51
|
Hammer A, Waschbisch A, Kuhbandner K, Bayas A, Lee DH, Duscha A, Haghikia A, Gold R, Linker RA. The NRF2 pathway as potential biomarker for dimethyl fumarate treatment in multiple sclerosis. Ann Clin Transl Neurol 2018; 5:668-676. [PMID: 29928650 PMCID: PMC5989754 DOI: 10.1002/acn3.553] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/29/2018] [Accepted: 02/17/2018] [Indexed: 12/11/2022] Open
Abstract
Objective Immunological studies have demonstrated a plethora of beneficial effects of dimethyl fumarate (DMF) on various cell types. However, the cellular and molecular targets are incompletely understood and response markers are scarce. Here, we focus on the relation between nuclear factor (erythroid‐derived 2)‐like 2 (NRF2) pathway induction under DMF therapy and the composition of the blood immune cell compartment and clinical efficacy in relapsing‐remitting multiple sclerosis (MS) patients. Methods We explored effects of DMF on peripheral immune cell subsets by flow cytometric and transcriptional analysis of serial blood samples obtained from 43 MS patients during the first year of therapy. Results Gene expression analysis proved activation of NRF2 signaling under DMF therapy that was paralleled by a temporal expansion of FoxP3+ regulatory T cells, CD56bright natural killer cells, plasmacytoid dendritic cells, and a decrease in CD8+ T cells, B cells, and type 1 myeloid dendritic cells. In a subgroup of 28 patients with completely available clinical data, individuals with higher levels of the NRF2 target gene NAD(P)H quinone dehydrogenase 1 (NQO1) 4–6 weeks after DMF therapy initiation were more likely to achieve no evidence of disease activity status 1 year later. The degree of NQO1 induction further correlated with patient age. Interpretation We demonstrate that positive effects of DMF on the clinical outcome are paralleled by induction of the antioxidant NRF2 transcriptional pathway and a shift toward regulatory immune cell subsets in the periphery. Our data identify a role of the NRF2 pathway as potential biomarker for DMF treatment in MS.
Collapse
Affiliation(s)
- Anna Hammer
- Department of Neurology University Hospital Erlangen Friedrich-Alexander-University Erlangen-Nürnberg Erlangen 91054 Germany
| | - Anne Waschbisch
- Department of Neurology University Hospital Erlangen Friedrich-Alexander-University Erlangen-Nürnberg Erlangen 91054 Germany.,Present address: Department of Neurology University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen Aachen 52074 Germany
| | - Kristina Kuhbandner
- Department of Neurology University Hospital Erlangen Friedrich-Alexander-University Erlangen-Nürnberg Erlangen 91054 Germany
| | - Antonios Bayas
- Department of Neurology Hospital Augsburg Augsburg 86156 Germany
| | - De-Hyung Lee
- Department of Neurology University Hospital Erlangen Friedrich-Alexander-University Erlangen-Nürnberg Erlangen 91054 Germany
| | - Alexander Duscha
- Department of Neurology Ruhr-University Bochum Bochum 44791 Germany
| | - Aiden Haghikia
- Department of Neurology Ruhr-University Bochum Bochum 44791 Germany
| | - Ralf Gold
- Department of Neurology Ruhr-University Bochum Bochum 44791 Germany
| | - Ralf A Linker
- Department of Neurology University Hospital Erlangen Friedrich-Alexander-University Erlangen-Nürnberg Erlangen 91054 Germany
| |
Collapse
|
52
|
Bellahcène A, Nokin MJ, Castronovo V, Schalkwijk C. Methylglyoxal-derived stress: An emerging biological factor involved in the onset and progression of cancer. Semin Cancer Biol 2018; 49:64-74. [DOI: 10.1016/j.semcancer.2017.05.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/18/2017] [Accepted: 05/22/2017] [Indexed: 02/07/2023]
|
53
|
Xu Q, Gu T, Liu R, Cao Z, Zhang Y, Chen Y, Wu N, Chen G. FTH1 expression is affected by promoter polymorphism and not DNA methylation in response to DHV-1 challenge in duck. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 79:195-202. [PMID: 29051032 DOI: 10.1016/j.dci.2017.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/15/2017] [Accepted: 10/15/2017] [Indexed: 06/07/2023]
Abstract
Ferritin heavy polypeptide 1 (FTH1) plays a pivotal role in response to viral infections. FTH1 expression is modulated by various pathogens, but the regulatory mechanisms are unknown. We firstly construct duck hepatitis virus 1 (DHV-1) infection model, including morbid ducklings, non-morbid ducklings and control ducklings. Then the mRNA expression of duck FTH1 (duFTH1) was measured mRNA expression of duck FTH1 (duFTH1) in the liver and spleen after duck hepatitis virus 1 (DHV-1) infection using quantitative polymerase chain reaction (qPCR) and found that duFTH1 mRNA was down-regulated significantly in morbid ducklings (liver, P < 0.01; spleen, P < 0.05) compared with the control ducklings. We also found that duFTH1 expression was significantly higher in the spleen (P < 0.01) and liver (P < 0.05) of non-morbid ducklings than in morbid ducklings. Moreover, DNA methylation of the duFTH1 promoter was examined by bisulfite sequencing (BSP) and we found that the duFTH1 promoter was hypomethylated, the relative methylation was only 5.9% and 2.0% in the morbid ducklings and non-morbid ducklings, respectively. The promoter contained a -55 C/T mutation in 75% of non-morbid ducklings, and this polymorphism affected promoter activity. Further analysis suggested that this mutation altered the binding site of the transcription factor NRF1. Binding of NRF1 to the FTH1 promoter was confirmed by electrophoretic mobility shift assay (EMSA) analysis. Thus, our findings revealed the NRF1 was a negative regulator, and lossed of binding of NRF1 to duFTH1 promoter due to -55C/T mutation enhances duFTH1 expression in non-morbid ducks, which provided molecular insights into the effect of duFTH1 expression via promoter polymorphisms, but not DNA methylation, in response to DHV-1 challenge.
Collapse
Affiliation(s)
- Qi Xu
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Tiantian Gu
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ran Liu
- Jining Animal Husbandry and Veterinary Bureau, Jining, shandong, China
| | - Zhengfeng Cao
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yu Zhang
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yang Chen
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ningzhao Wu
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Guohong Chen
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
54
|
Namani A, Matiur Rahaman M, Chen M, Tang X. Gene-expression signature regulated by the KEAP1-NRF2-CUL3 axis is associated with a poor prognosis in head and neck squamous cell cancer. BMC Cancer 2018; 18:46. [PMID: 29306329 PMCID: PMC5756380 DOI: 10.1186/s12885-017-3907-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 12/12/2017] [Indexed: 12/31/2022] Open
Abstract
Background NRF2 is the key regulator of oxidative stress in normal cells and aberrant expression of the NRF2 pathway due to genetic alterations in the KEAP1 (Kelch-like ECH-associated protein 1)-NRF2 (nuclear factor erythroid 2 like 2)-CUL3 (cullin 3) axis leads to tumorigenesis and drug resistance in many cancers including head and neck squamous cell cancer (HNSCC). The main goal of this study was to identify specific genes regulated by the KEAP1-NRF2-CUL3 axis in HNSCC patients, to assess the prognostic value of this gene signature in different cohorts, and to reveal potential biomarkers. Methods RNA-Seq V2 level 3 data from 279 tumor samples along with 37 adjacent normal samples from patients enrolled in the The Cancer Genome Atlas (TCGA)-HNSCC study were used to identify upregulated genes using two methods (altered KEAP1-NRF2-CUL3 versus normal, and altered KEAP1-NRF2-CUL3 versus wild-type). We then used a new approach to identify the combined gene signature by integrating both datasets and subsequently tested this signature in 4 independent HNSCC datasets to assess its prognostic value. In addition, functional annotation using the DAVID v6.8 database and protein-protein interaction (PPI) analysis using the STRING v10 database were performed on the signature. Results A signature composed of a subset of 17 genes regulated by the KEAP1-NRF2-CUL3 axis was identified by overlapping both the upregulated genes of altered versus normal (251 genes) and altered versus wild-type (25 genes) datasets. We showed that increased expression was significantly associated with poor survival in 4 independent HNSCC datasets, including the TCGA-HNSCC dataset. Furthermore, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and PPI analysis revealed that most of the genes in this signature are associated with drug metabolism and glutathione metabolic pathways. Conclusions Altogether, our study emphasizes the discovery of a gene signature regulated by the KEAP1-NRF2-CUL3 axis which is strongly associated with tumorigenesis and drug resistance in HNSCC. This 17-gene signature provides potential biomarkers and therapeutic targets for HNSCC cases in which the NRF2 pathway is activated. Electronic supplementary material The online version of this article (10.1186/s12885-017-3907-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Akhileshwar Namani
- Department of Biochemistry, University School of Medicine, Hangzhou, 310058, People's Republic of China
| | - Md Matiur Rahaman
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Ming Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| | - Xiuwen Tang
- Department of Biochemistry, University School of Medicine, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
55
|
Wang XY, Wang ZY, Zhu YS, Zhu SM, Fan RF, Wang L. Alleviation of cadmium-induced oxidative stress by trehalose via inhibiting the Nrf2-Keap1 signaling pathway in primary rat proximal tubular cells. J Biochem Mol Toxicol 2017; 32. [DOI: 10.1002/jbt.22011] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 10/17/2017] [Accepted: 10/27/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Xin-Yu Wang
- College of Animal Science and Veterinary Medicine; Shandong Agricultural University; Tai'an City Shandong Province 271018 People's Republic of China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention; Shandong Agricultural University; Tai'an City Shandong Province 271018 People's Republic of China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention; Shandong Agricultural University; Tai'an City Shandong Province 271018 People's Republic of China
| | - Zhen-Yong Wang
- College of Animal Science and Veterinary Medicine; Shandong Agricultural University; Tai'an City Shandong Province 271018 People's Republic of China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention; Shandong Agricultural University; Tai'an City Shandong Province 271018 People's Republic of China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention; Shandong Agricultural University; Tai'an City Shandong Province 271018 People's Republic of China
| | - Yi-Song Zhu
- College of Animal Science and Veterinary Medicine; Shandong Agricultural University; Tai'an City Shandong Province 271018 People's Republic of China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention; Shandong Agricultural University; Tai'an City Shandong Province 271018 People's Republic of China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention; Shandong Agricultural University; Tai'an City Shandong Province 271018 People's Republic of China
| | - Si-Ming Zhu
- College of Animal Science and Veterinary Medicine; Shandong Agricultural University; Tai'an City Shandong Province 271018 People's Republic of China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention; Shandong Agricultural University; Tai'an City Shandong Province 271018 People's Republic of China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention; Shandong Agricultural University; Tai'an City Shandong Province 271018 People's Republic of China
| | - Rui-Feng Fan
- College of Animal Science and Veterinary Medicine; Shandong Agricultural University; Tai'an City Shandong Province 271018 People's Republic of China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention; Shandong Agricultural University; Tai'an City Shandong Province 271018 People's Republic of China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention; Shandong Agricultural University; Tai'an City Shandong Province 271018 People's Republic of China
| | - Lin Wang
- College of Animal Science and Veterinary Medicine; Shandong Agricultural University; Tai'an City Shandong Province 271018 People's Republic of China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention; Shandong Agricultural University; Tai'an City Shandong Province 271018 People's Republic of China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention; Shandong Agricultural University; Tai'an City Shandong Province 271018 People's Republic of China
| |
Collapse
|
56
|
Jung KA, Lee S, Kwak MK. NFE2L2/NRF2 Activity Is Linked to Mitochondria and AMP-Activated Protein Kinase Signaling in Cancers Through miR-181c/Mitochondria-Encoded Cytochrome c Oxidase Regulation. Antioxid Redox Signal 2017; 27:945-961. [PMID: 28383996 DOI: 10.1089/ars.2016.6797] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AIMS The nuclear factor (erythroid-derived 2)-like 2 (NFE2L2; NFE2L2/NRF2) pathway contributes to the environmental resistance of cancers by enhancing the antioxidant capacity. Here, we explored the potential connection between NFE2L2/NRF2 and mitochondrial function in cancers. RESULTS Global miRNA expression analysis of HT29 and HCT116 human colon cancer cells identified that NFE2L2/NRF2 silencing upregulated miR-181c through nuclear factor-κB signaling, and this increase was associated with the reduction in mitochondria-encoded cytochrome c oxidase subunit-1 (MT-CO1), a catalytic core subunit of the complex IV of the electron transport chain (ETC). As a result of ETC dysfunction, NFE2L2/NRF2-silenced cancer cells exhibited the decreases in the mitochondrial membrane potential, oxygen consumption rate, and cellular adenosine triphosphate (ATP) contents. Notably, these changes induced adenosine monophosphate (AMP)-activated protein kinase-α (AMPKα) activation and subsequent metabolic adaptation signaling, including the inhibition of fatty acid and sterol biosynthesis enzymes. As supportive evidence of AMPKα-driven adaption, NFE2L2/NRF2-silenced cells were more vulnerable to AMPKα inhibition-induced growth suppression. Similarly, mouse tumor xenografts derived from NFE2L2/NRF2-silenced HT29 exhibited MT-CO1 reduction and AMPKα activation, thereby increasing responsiveness to the AMPK inhibitor treatment. The association of NFE2L2/NRF2 with MT-CO1 and AMPKα was confirmed in breast cancer cells. INNOVATION We demonstrated the significance of NFE2L2/NRF2 in cancer mitochondria by elucidating the involvement of miR-181c/MT-CO1 as underlying molecular events. We also provide evidence of the crosstalk between NFE2L2/NRF2 and AMPKα as an adaptive link in cancers. CONCLUSION Therefore, it may be an effective strategy to inhibit both NFE2L2/NRF2 and AMPKα signaling to overcome adaptive behaviors of cancer. Antioxid. Redox Signal. 27, 945-961.
Collapse
Affiliation(s)
- Kyeong-Ah Jung
- 1 Department of Pharmacy, Graduate School of The Catholic University of Korea , Bucheon, Gyeonggi-do, Republic of Korea
| | - Sujin Lee
- 1 Department of Pharmacy, Graduate School of The Catholic University of Korea , Bucheon, Gyeonggi-do, Republic of Korea
| | - Mi-Kyoung Kwak
- 1 Department of Pharmacy, Graduate School of The Catholic University of Korea , Bucheon, Gyeonggi-do, Republic of Korea.,2 College of Pharmacy, The Catholic University of Korea , Bucheon, Gyeonggi-do, Republic of Korea
| |
Collapse
|
57
|
Li D, Wang N, Zhang J, Ma S, Zhao Z, Ellis EM. Hepatoprotective effect of 7-Hydroxycoumarin against Methyl glyoxal toxicity via activation of Nrf2. Chem Biol Interact 2017; 276:203-209. [DOI: 10.1016/j.cbi.2017.02.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 02/23/2017] [Accepted: 02/27/2017] [Indexed: 01/11/2023]
|
58
|
Nokin MJ, Durieux F, Bellier J, Peulen O, Uchida K, Spiegel DA, Cochrane JR, Hutton CA, Castronovo V, Bellahcène A. Hormetic potential of methylglyoxal, a side-product of glycolysis, in switching tumours from growth to death. Sci Rep 2017; 7:11722. [PMID: 28916747 PMCID: PMC5600983 DOI: 10.1038/s41598-017-12119-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/04/2017] [Indexed: 02/07/2023] Open
Abstract
Metabolic reprogramming toward aerobic glycolysis unavoidably favours methylglyoxal (MG) and advanced glycation end products (AGEs) formation in cancer cells. MG was initially considered a highly cytotoxic molecule with potential anti-cancer value. However, we have recently demonstrated that MG enhanced tumour growth and metastasis. In an attempt to understand this dual role, we explored MG-mediated dicarbonyl stress status in four breast and glioblastoma cancer cell lines in relation with their glycolytic phenotype and MG detoxifying capacity. In glycolytic cancer cells cultured in high glucose, we observed a significant increase of the conversion of MG to D-lactate through the glyoxalase system. Moreover, upon exogenous MG challenge, glycolytic cells showed elevated amounts of intracellular MG and induced de novo GLO1 detoxifying enzyme and Nrf2 expression. Thus, supporting the adaptive nature of glycolytic cancer cells to MG dicarbonyl stress when compared to non-glycolytic ones. Finally and consistent with the pro-tumoural role of MG, we showed that low doses of MG induced AGEs formation and tumour growth in vivo, both of which can be reversed using a MG scavenger. Our study represents the first demonstration of a hormetic effect of MG defined by a low-dose stimulation and a high-dose inhibition of tumour growth.
Collapse
Affiliation(s)
- Marie-Julie Nokin
- Metastasis Research Laboratory, GIGA-CANCER, University of Liège, Liège, Belgium
| | - Florence Durieux
- Metastasis Research Laboratory, GIGA-CANCER, University of Liège, Liège, Belgium
| | - Justine Bellier
- Metastasis Research Laboratory, GIGA-CANCER, University of Liège, Liège, Belgium
| | - Olivier Peulen
- Metastasis Research Laboratory, GIGA-CANCER, University of Liège, Liège, Belgium
| | - Koji Uchida
- Laboratory of Food Chemistry, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - David A Spiegel
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut, USA
| | - James R Cochrane
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Australia
| | - Craig A Hutton
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Australia
| | - Vincent Castronovo
- Metastasis Research Laboratory, GIGA-CANCER, University of Liège, Liège, Belgium
| | - Akeila Bellahcène
- Metastasis Research Laboratory, GIGA-CANCER, University of Liège, Liège, Belgium.
| |
Collapse
|
59
|
Penning TM. Aldo-Keto Reductase Regulation by the Nrf2 System: Implications for Stress Response, Chemotherapy Drug Resistance, and Carcinogenesis. Chem Res Toxicol 2017; 30:162-176. [PMID: 27806574 PMCID: PMC5241174 DOI: 10.1021/acs.chemrestox.6b00319] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Human aldo-keto reductases (AKRs) are NAD(P)H-dependent oxidoreductases that convert aldehydes and ketones to primary and secondary alcohols for subsequent conjugation reactions and can be referred to as "phase 1" enzymes. Among all the human genes regulated by the Keap1/Nrf2 pathway, they are consistently the most overexpressed in response to Nrf2 activators. Although these enzymes play clear cytoprotective roles and deal effectively with carbonyl stress, their upregulation by the Keap1/Nrf2 pathway also has a potential dark-side, which can lead to chemotherapeutic drug resistance and the metabolic activation of lung carcinogens (e.g., polycyclic aromatic hydrocarbons). They also play determinant roles in 4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanone metabolism to R- and S-4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanol. The overexpression of AKR genes as components of the "smoking gene" battery raises the issue as to whether this is part of a smoking stress response or acquired susceptibility to lung cancer. Human AKR genes also regulate retinoid, prostaglandin, and steroid hormone metabolism and can regulate the local concentrations of ligands available for nuclear receptors (NRs). The prospect exists that signaling through the Keap1/Nrf2 system can also effect NR signaling, but this has remained largely unexplored. We present the case that chemoprevention through the Keap1/Nrf2 system may be context dependent and that the Nrf2 "dose-response curve" for electrophilic and redox balance may not be monotonic.
Collapse
Affiliation(s)
- Trevor M. Penning
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
60
|
Mechanism of progestin resistance in endometrial precancer/cancer through Nrf2-AKR1C1 pathway. Oncotarget 2016; 7:10363-72. [PMID: 26824415 PMCID: PMC4891125 DOI: 10.18632/oncotarget.7004] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 01/01/2016] [Indexed: 12/23/2022] Open
Abstract
Progestin resistance is a main obstacle for endometrial precancer/cancer conservative therapy. Therefore, biomarkers to predict progestin resistance and studies to gain a more detailed understanding of the mechanism are needed. The antioxidant Nrf2-AKR1C1 signal pathway exerts chemopreventive activity. However whether it plays a role in progestin resistance has not been explored. In this study, elevated levels of AKR1C1 and Nrf2 were found in progestin-resistant endometrial epithelia, but not in responsive endometrial glands. Exogenous overexpression of Nrf2/AKR1C1 resulted in progestin resistance. Inversely, silencing of Nrf2 or AKR1C1 rendered endometrial cancer cells more susceptible to progestin treatment. Moreover, medroxyprogesterone acetate withdrawal resulted in suppression of Nrf2/AKR1C1 expression accompanied by a reduction of cellular proliferative activity. In addition, brusatol and metformin overcame progestin resistance by down-regulating Nrf2/AKR1C1 expression. Our findings suggest that overexpression of Nrf2 and AKR1C1 in endometrial precancer/cancer may be part of the molecular mechanisms underlying progestin resistance. If validated in a larger cohort, overexpression of Nrf2 and AKR1C1 may prove to be useful biomarkers to predict progestin resistance. Targeting the Nrf2/AKR1C1 pathway may represent a new therapeutic strategy for treatment of endometrial hyperplasia/cancer.
Collapse
|
61
|
MacLeod AK, Acosta-Jimenez L, Coates PJ, McMahon M, Carey FA, Honda T, Henderson CJ, Wolf CR. Aldo-keto reductases are biomarkers of NRF2 activity and are co-ordinately overexpressed in non-small cell lung cancer. Br J Cancer 2016; 115:1530-1539. [PMID: 27824809 PMCID: PMC5155360 DOI: 10.1038/bjc.2016.363] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/07/2016] [Accepted: 10/08/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Although the nuclear factor-erythroid 2-related factor 2 (NRF2) pathway is one of the most frequently dysregulated in cancer, it is not clear whether mutational status is a good predictor of NRF2 activity. Here we utilise four members of the aldo-keto reductase (AKR) superfamily as biomarkers to address this question. METHODS Twenty-three cell lines of diverse origin and NRF2-pathway mutational status were used to determine the relationship between AKR expression and NRF2 activity. AKR expression was evaluated in lung cancer biopsies and Cancer Genome Atlas (TCGA) and Oncomine data sets. RESULTS AKRs were expressed at a high basal level in cell lines carrying mutations in the NRF2 pathway. In non-mutant cell lines, co-ordinate induction of AKRs was consistently observed following activation of NRF2. Immunohistochemical analysis of lung tumour biopsies and interrogation of TCGA data revealed that AKRs are enriched in both squamous cell carcinomas (SCCs) and adenocarcinomas that contain somatic alterations in the NRF2 pathway but, in the case of SCC, AKRs were also enriched in most other tumours. CONCLUSIONS An AKR biomarker panel can be used to determine NRF2 status in tumours. Hyperactivation of the NRF2 pathway is far more prevalent in lung SCC than previously predicted by genomic analyses.
Collapse
Affiliation(s)
- A Kenneth MacLeod
- Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee DD1 9SY, UK
| | - Lourdes Acosta-Jimenez
- Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee DD1 9SY, UK
| | - Philip J Coates
- Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee DD1 9SY, UK
| | - Michael McMahon
- Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee DD1 9SY, UK
| | - Frank A Carey
- Department of Pathology and Neuroscience, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Tadashi Honda
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Colin J Henderson
- Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee DD1 9SY, UK
| | - C Roland Wolf
- Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee DD1 9SY, UK
| |
Collapse
|
62
|
Li G, Zhang Z, Quan Q, Jiang R, Szeto SS, Yuan S, Wong WT, Lam HHC, Lee SMY, Chu IK. Discovery, Synthesis, and Functional Characterization of a Novel Neuroprotective Natural Product from the Fruit of Alpinia oxyphylla for use in Parkinson’s Disease Through LC/MS-Based Multivariate Data Analysis-Guided Fractionation. J Proteome Res 2016; 15:2595-606. [DOI: 10.1021/acs.jproteome.6b00152] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Guohui Li
- Department
of Chemistry, The University of Hong Kong, Hong Kong, China
- State
Key Laboratory of Quality Research in Chinese Medicine and Institute
of Chinese Medical Sciences, University of Macau, Avenue Padre
Tomás Pereira S.J., Taipa, Macao, China
| | - Zaijun Zhang
- State
Key Laboratory of Quality Research in Chinese Medicine and Institute
of Chinese Medical Sciences, University of Macau, Avenue Padre
Tomás Pereira S.J., Taipa, Macao, China
- Institute of New Drug Research, Guangdong Province Key Laboratory of Pharmacodynamic, Constituents of Traditional Chinese Medicine & New Drug Research, College of Pharmacy, Jinan University, Guangdong, China
| | - Quan Quan
- Department
of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Renwang Jiang
- Institute
of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Samuel S.W. Szeto
- Department
of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Shuai Yuan
- State
Key Laboratory of Quality Research in Chinese Medicine and Institute
of Chinese Medical Sciences, University of Macau, Avenue Padre
Tomás Pereira S.J., Taipa, Macao, China
| | - Wing-tak Wong
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Herman H. C. Lam
- Department
of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Simon Ming-Yuen Lee
- State
Key Laboratory of Quality Research in Chinese Medicine and Institute
of Chinese Medical Sciences, University of Macau, Avenue Padre
Tomás Pereira S.J., Taipa, Macao, China
| | - Ivan K. Chu
- Department
of Chemistry, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
63
|
Shen ZY, Sun Q, Xia ZY, Meng QT, Lei SQ, Zhao B, Tang LH, Xue R, Chen R. Overexpression of DJ-1 reduces oxidative stress and attenuates hypoxia/reoxygenation injury in NRK-52E cells exposed to high glucose. Int J Mol Med 2016; 38:729-36. [PMID: 27430285 PMCID: PMC4990284 DOI: 10.3892/ijmm.2016.2680] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 06/30/2016] [Indexed: 01/27/2023] Open
Abstract
Patients with diabetes are more vulnerable to renal ischemia/reperfusion (I/R) injury, which is implicated in hyperglycemia-induced oxidative stress. We previously reported that the hyperglycemia-induced inhibition of DJ-1, a novel oncogene that exhibits potent antioxidant activity, is implicated in the severity of myocardial I/R injury. In the present study, we aimed to explore the role of DJ-1 in hypoxia/reoxygenation (H/R) injury in renal cells exposed to high glucose (HG). For this purpose, NRK-52E cells were exposed to HG (30 mM) for 48 h and then exposed to hypoxia for 4 h and reoxygenation for 2 h, which significantly decreased cell viability and superoxide dismutase (SOD) activity, and increased the malondialdehyde (MDA) content, accompanied by a decrease in DJ-1 protein expression. The overexpression of DJ-1 by transfection with a DJ-1 overexpression plasmid exerted protective effects against HG-induced H/R injury, as evidenced by increased CCK-8 levels and SOD activity, the decreased release of lactate dehydrogenase (LDH) and the decreased MDA content, and increased nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase-1 (HO-1) expression. Similar effects were observed following treatment with the antioxidant, N-acetylcysteine. These results suggest that the overexpression of DJ-1 reduces oxidative stress and attenuates H/R injury in NRK-52E cells exposed to HG.
Collapse
Affiliation(s)
- Zi-Ying Shen
- Department of Anesthesiology, Affiliated Hospital of Qingdao University Medical College, Qingdao, Shandong 266003, P.R. China
| | - Qian Sun
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhong-Yuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qing-Tao Meng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Shao-Qing Lei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Bo Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ling-Hua Tang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Rui Xue
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Rong Chen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
64
|
Lockman KA, Htun V, Sinha R, Treskes P, Nelson LJ, Martin SF, Rogers SM, Le Bihan T, Hayes PC, Plevris JN. Proteomic profiling of cellular steatosis with concomitant oxidative stress in vitro. Lipids Health Dis 2016; 15:114. [PMID: 27368608 PMCID: PMC4930558 DOI: 10.1186/s12944-016-0283-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/24/2016] [Indexed: 12/14/2022] Open
Abstract
Background Nutrient excess underpins the development of nonalcoholic fatty liver disease (NAFLD). The ensuing metabolic derangement is characterised by increased cellular respiration, oxidative stress and mitochondrial impairment. We have previously recapitulated these events in an in vitro cellular steatosis model. Here, we examined the distinct patterns of protein expression involved using a proteomics approach. Methods Human hepatoblastoma C3A cells were treated with a combination of energy substrates; lactate (L), pyruvate (P), octanoate (O) and ammonia (N). Proteins extracts were trypsinized and analyzed on a capillary HPLC OrbitrapXL mass spectrometer. Proteins were quantified using a label-free intensity based approach. Functional enrichment analysis was performed using ToppCluster via Gene Ontology (GO) database. Results Of the 1327 proteins identified, 104 were differentially expressed between LPON and untreated cells (defined as: ≥2 peptides; fold change ≥1.5; p-value <0.05). Seventy of these were upregulated with LPON. Functional enrichment analysis revealed enhanced protein biosynthesis accompanied by downregulation of histones H2A type 1-A, H1.2, H1.5 and H1.0I in LPON cells. Lipid binding annotations were also enriched as well as proteins involved in cholesterol synthesis, uptake and efflux. Increased expression of aldo-keto reductase family 1, member C1 and C3 suggests enhanced sterol metabolism and increased ROS-mediated lipid peroxidation. Conclusions The surge of energy substrates diverts free fatty acid metabolism towards pathways that can mitigate lipotoxicity. The histones depletion may represent an adaptation to increased protein synthesis. However, this can also expose DNA to oxidative stress thus should be explored further in the context of NAFLD progression.
Collapse
Affiliation(s)
- Khalida Ann Lockman
- Hepatology Laboratory, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, Scotland, UK
| | - Varanand Htun
- Hepatology Laboratory, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, Scotland, UK
| | - Rohit Sinha
- Hepatology Laboratory, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, Scotland, UK
| | - Philipp Treskes
- Hepatology Laboratory, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, Scotland, UK
| | - Leonard J Nelson
- Hepatology Laboratory, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, Scotland, UK
| | - Sarah F Martin
- Kinetic Parameter Facility, SynthSys - Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Sophie M Rogers
- Kinetic Parameter Facility, SynthSys - Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Thierry Le Bihan
- Kinetic Parameter Facility, SynthSys - Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Peter C Hayes
- Hepatology Laboratory, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, Scotland, UK
| | - John N Plevris
- Hepatology Laboratory, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, Scotland, UK.
| |
Collapse
|
65
|
Novel high throughput pooled shRNA screening identifies NQO1 as a potential drug target for host directed therapy for tuberculosis. Sci Rep 2016; 6:27566. [PMID: 27297123 PMCID: PMC4906352 DOI: 10.1038/srep27566] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/20/2016] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED Chemical regulation of macrophage function is one key strategy for developing host-directed adjuvant therapies for tuberculosis (TB). A critical step to develop these therapies is the identification and characterization of specific macrophage molecules and pathways with a high potential to serve as drug targets. Using a barcoded lentivirus-based pooled short-hairpin RNA (shRNA) library combined with next generation sequencing, we identified 205 silenced host genes highly enriched in mycobacteria-resistant macrophages. Twenty-one of these "hits" belonged to the oxidoreductase functional category. NAD(P)H quinone oxidoreductase 1 (NQO1) was the top oxidoreductase "hit". NQO1 expression was increased after mycobacterial infection, and NQO1 knockdown increased macrophage differentiation, NF-κB activation, and the secretion of pro-inflammatory cytokines TNF-α and IL-1β in response to infection. This suggests that mycobacteria hijacks NQO1 to down-regulate pro-inflammatory and anti-bacterial functions. The competitive inhibitor of NQO1 dicoumarol synergized with rifampin to promote intracellular killing of mycobacteria. Thus, NQO1 is a new host target in mycobacterial infection that could potentially be exploited to increase antibiotic efficacy in vivo. Our findings also suggest that pooled shRNA libraries could be valuable tools for genome-wide screening in the search for novel druggable host targets for adjunctive TB therapies.
Collapse
|
66
|
Ryoo IG, Choi BH, Kwak MK. Activation of NRF2 by p62 and proteasome reduction in sphere-forming breast carcinoma cells. Oncotarget 2016; 6:8167-84. [PMID: 25717032 PMCID: PMC4480743 DOI: 10.18632/oncotarget.3047] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/07/2015] [Indexed: 12/21/2022] Open
Abstract
Cancer stem cells (CSCs) express high levels of drug efflux transporters and antioxidant genes, and are therefore believed to be responsible for cancer recurrence following chemo/radiotherapy intervention. In this study, we investigated the role of NF-E2-related factor 2 (NRF2), a master regulator of antioxidant gene expression, in the growth and stress resistance of CSC-enriched mammosphere. The MCF7 mammospheres expressed significantly higher levels of the NRF2 protein and target gene expression compared to the monolayer. As underlying mechanisms, we observed that proteolytic activity and expression of the proteasome catalytic subunits were decreased in the mammospheres. Additionally, mammospheres retained a high level of p62 and the silencing of p62 was observed to attenuate NRF2 activation. NRF2 increase was confirmed in sphere-cultures of the colon and ovarian cancer cells. The functional implication of NRF2 was demonstrated in NRF2-knockdown mammospheres. NRF2-silenced mammospheres demonstrated increased cell death and retarded sphere growth as a result of target gene repression. Moreover, unlike the control mammospheres, NRF2-knockdown mammospheres did not develop anticancer drug resistance. Collectively, these results indicated that altered proteasome function and p62 expression caused NRF2 activation in CSC-enriched mammospheres. In addition, NRF2 appeared to play a role in CSC survival and anticancer drug resistance.
Collapse
Affiliation(s)
- In-Geun Ryoo
- College of Pharmacy, The Catholic University of Korea, Bucheon, Gyeonggi-do, Republic of Korea
| | - Bo-Hyun Choi
- College of Pharmacy, The Catholic University of Korea, Bucheon, Gyeonggi-do, Republic of Korea
| | - Mi-Kyoung Kwak
- College of Pharmacy, The Catholic University of Korea, Bucheon, Gyeonggi-do, Republic of Korea
| |
Collapse
|
67
|
Sasaki M, Shinozaki S, Shimokado K. Sulforaphane promotes murine hair growth by accelerating the degradation of dihydrotestosterone. Biochem Biophys Res Commun 2016; 472:250-4. [DOI: 10.1016/j.bbrc.2016.02.099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 02/23/2016] [Indexed: 11/29/2022]
|
68
|
Zhang A, Zhang J, Plymate S, Mostaghel EA. Classical and Non-Classical Roles for Pre-Receptor Control of DHT Metabolism in Prostate Cancer Progression. Discov Oncol 2016; 7:104-13. [PMID: 26797685 DOI: 10.1007/s12672-016-0250-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/05/2016] [Indexed: 12/22/2022] Open
Abstract
Androgens play an important role in prostate cancer (PCa) development and progression. Accordingly, androgen deprivation therapy remains the front-line treatment for locally recurrent or advanced PCa, but patients eventually relapse with the lethal form of the disease termed castration resistant PCa (CRPC). Importantly, castration does not eliminate androgens from the prostate tumor microenvironment which is characterized by elevated tissue androgens that are well within the range capable of activating the androgen receptor (AR). In this mini-review, we discuss emerging data that suggest a role for the enzymes mediating pre-receptor control of dihydrotestosterone (DHT) metabolism, including AKR1C2, HSD17B6, HSD17B10, and the UGT family members UGT2B15 and UGT2B17, in controlling intratumoral androgen levels, and thereby influencing PCa progression. We review the expression of steroidogenic enzymes involved in this pathway in primary PCa and CRPC, the activity and regulation of these enzymes in PCa experimental models, and the impact of genetic variation in genes mediating pre-receptor DHT metabolism on PCa risk. Finally, we discuss recent data that suggests several of these enzymes may also play an unrecognized role in CRPC progression separate from their role in androgen inactivation.
Collapse
Affiliation(s)
- Ailin Zhang
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, MS D5-380, Seattle, WA, 98109, USA
| | - Jiawei Zhang
- School of Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Stephen Plymate
- Department of Medicine, University of Washington, Seattle, WA, 98104, USA
| | - Elahe A Mostaghel
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, MS D5-380, Seattle, WA, 98109, USA.
| |
Collapse
|
69
|
The Nrf2/HO-1 Axis in Cancer Cell Growth and Chemoresistance. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:1958174. [PMID: 26697129 PMCID: PMC4677237 DOI: 10.1155/2016/1958174] [Citation(s) in RCA: 204] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 08/13/2015] [Accepted: 08/18/2015] [Indexed: 12/20/2022]
Abstract
The transcription factor, nuclear factor erythroid 2 p45-related factor 2 (Nrf2), acts as a sensor of oxidative or electrophilic stresses and plays a pivotal role in redox homeostasis. Oxidative or electrophilic agents cause a conformational change in the Nrf2 inhibitory protein Keap1 inducing the nuclear translocation of the transcription factor which, through its binding to the antioxidant/electrophilic response element (ARE/EpRE), regulates the expression of antioxidant and detoxifying genes such as heme oxygenase 1 (HO-1). Nrf2 and HO-1 are frequently upregulated in different types of tumours and correlate with tumour progression, aggressiveness, resistance to therapy, and poor prognosis. This review focuses on the Nrf2/HO-1 stress response mechanism as a promising target for anticancer treatment which is able to overcome resistance to therapies.
Collapse
|
70
|
Tebay LE, Robertson H, Durant ST, Vitale SR, Penning TM, Dinkova-Kostova AT, Hayes JD. Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease. Free Radic Biol Med 2015; 88:108-146. [PMID: 26122708 PMCID: PMC4659505 DOI: 10.1016/j.freeradbiomed.2015.06.021] [Citation(s) in RCA: 616] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 12/11/2022]
Abstract
UNLABELLED Nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) regulates the basal and stress-inducible expression of a battery of genes encoding key components of the glutathione-based and thioredoxin-based antioxidant systems, as well as aldo-keto reductase, glutathione S-transferase, and NAD(P)H quinone oxidoreductase-1 drug-metabolizing isoenzymes along with multidrug-resistance-associated efflux pumps. It therefore plays a pivotal role in both intrinsic resistance and cellular adaptation to reactive oxygen species (ROS) and xenobiotics. Activation of Nrf2 can, however, serve as a double-edged sword because some of the genes it induces may contribute to chemical carcinogenesis by promoting futile redox cycling of polycyclic aromatic hydrocarbon metabolites or confer resistance to chemotherapeutic drugs by increasing the expression of efflux pumps, suggesting its cytoprotective effects will vary in a context-specific fashion. In addition to cytoprotection, Nrf2 also controls genes involved in intermediary metabolism, positively regulating those involved in NADPH generation, purine biosynthesis, and the β-oxidation of fatty acids, while suppressing those involved in lipogenesis and gluconeogenesis. Nrf2 is subject to regulation at multiple levels. Its ability to orchestrate adaptation to oxidants and electrophiles is due principally to stress-stimulated modification of thiols within one of its repressors, the Kelch-like ECH-associated protein 1 (Keap1), which is present in the cullin-3 RING ubiquitin ligase (CRL) complex CRLKeap1. Thus modification of Cys residues in Keap1 blocks CRLKeap1 activity, allowing newly translated Nrf2 to accumulate rapidly and induce its target genes. The ability of Keap1 to repress Nrf2 can be attenuated by p62/sequestosome-1 in a mechanistic target of rapamycin complex 1 (mTORC1)-dependent manner, thereby allowing refeeding after fasting to increase Nrf2-target gene expression. In parallel with repression by Keap1, Nrf2 is also repressed by β-transducin repeat-containing protein (β-TrCP), present in the Skp1-cullin-1-F-box protein (SCF) ubiquitin ligase complex SCFβ-TrCP. The ability of SCFβ-TrCP to suppress Nrf2 activity is itself enhanced by prior phosphorylation of the transcription factor by glycogen synthase kinase-3 (GSK-3) through formation of a DSGIS-containing phosphodegron. However, formation of the phosphodegron in Nrf2 by GSK-3 is inhibited by stimuli that activate protein kinase B (PKB)/Akt. In particular, PKB/Akt activity can be increased by phosphoinositide 3-kinase and mTORC2, thereby providing an explanation of why antioxidant-responsive element-driven genes are induced by growth factors and nutrients. Thus Nrf2 activity is tightly controlled via CRLKeap1 and SCFβ-TrCP by oxidative stress and energy-based signals, allowing it to mediate adaptive responses that restore redox homeostasis and modulate intermediary metabolism. Based on the fact that Nrf2 influences multiple biochemical pathways in both positive and negative ways, it is likely its dose-response curve, in terms of susceptibility to certain degenerative disease, is U-shaped. Specifically, too little Nrf2 activity will lead to loss of cytoprotection, diminished antioxidant capacity, and lowered β-oxidation of fatty acids, while conversely also exhibiting heightened sensitivity to ROS-based signaling that involves receptor tyrosine kinases and apoptosis signal-regulating kinase-1. By contrast, too much Nrf2 activity disturbs the homeostatic balance in favor of reduction, and so may have deleterious consequences including overproduction of reduced glutathione and NADPH, the blunting of ROS-based signal transduction, epithelial cell hyperplasia, and failure of certain cell types to differentiate correctly. We discuss the basis of a putative U-shaped Nrf2 dose-response curve in terms of potentially competing processes relevant to different stages of tumorigenesis.
Collapse
Affiliation(s)
- Lauren E Tebay
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK
| | - Holly Robertson
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK
| | - Stephen T Durant
- AstraZeneca Oncology Innovative Medicines, Bioscience, 33F197 Mereside, Alderley Park, Cheshire SK10 4TG, UK
| | - Steven R Vitale
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6160, USA
| | - Trevor M Penning
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6160, USA
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK
| | - John D Hayes
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK.
| |
Collapse
|
71
|
Zheng J, Zhao T, Yuan Y, Hu N, Tang X. Hydrogen sulfide (H2S) attenuates uranium-induced acute nephrotoxicity through oxidative stress and inflammatory response via Nrf2-NF-κB pathways. Chem Biol Interact 2015; 242:353-62. [PMID: 26523793 DOI: 10.1016/j.cbi.2015.10.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 09/23/2015] [Accepted: 10/27/2015] [Indexed: 01/14/2023]
Abstract
As an endogenous gaseous mediator, H2S exerts anti-oxidative, anti-inflammatory and cytoprotective effects in kidneys. This study was designed to investigate the protective effect of H2S against uranium-induced nephrotoxicity in adult SD male rats after in vivo effect of uranium on endogenous H2S formation was explored in kidneys. The levels of endogenous H2S and H2S-producing enzymes (CBS and CSE) were measured in renal homogenates from rats intoxicated by an intraperitoneally (i.p.) injection of uranyl acetate at a single dose of 2.5, 5 or 10 mg/kg. In rats injected i.p. with uranyl acetate (5 mg/kg) or NaHS (an H2S donor, 28 or 56 μmol/kg) alone or in combination, we determined biochemical parameters and histopathological alteration to assess kidney function, examined oxidative stress markers, and investigated Nrf2 and NF-κB pathways in kidney homogenates. The results suggest that uranium intoxication in rats decreased endogenous H2S generation as well as CBS and CSE protein expression. NaHS administration in uranium-intoxicated rats ameliorated the renal biochemical indices and histopathological effects, lowered MDA accumulation, and restored GSH level and anti-oxidative enzymes activities like SOD, CAT, GPx and GST. NaHS treatment in uranium-intoxicated rats activated uranium-inhibited protein expression and nuclear translocation of transcription factor Nrf2, which increased protein expression of downstream target-Nrf2 genes HO-1, NQO-1, GCLC, and TXNRD-1. NaHS administration in uranium-intoxicated rats inhibited uranium-induced nuclear translocation and phosphorylation of transcription factor κB/p65, which decreased protein expression of target-p65 inflammatory genes TNF-α, iNOS, and COX-2. Taken together, these data implicate that H2S can afford protection to rat kidneys against uranium-induced adverse effects through induction of antioxidant defense by activating Nrf2 pathway and reduction of inflammatory response by suppressing NF-κB pathway.
Collapse
Affiliation(s)
- Jifang Zheng
- Institute of Biology, Pharmacy and Life College, University of South China, Changsheng West Road 28, Hengyang City, Hunan Province 421001, PR China
| | - Tingting Zhao
- Institute of Biology, Pharmacy and Life College, University of South China, Changsheng West Road 28, Hengyang City, Hunan Province 421001, PR China
| | - Yan Yuan
- Institute of Biology, Pharmacy and Life College, University of South China, Changsheng West Road 28, Hengyang City, Hunan Province 421001, PR China
| | - Nan Hu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Changsheng West Road 28, Hengyang City, Hunan Province 421001, PR China
| | - Xiaoqing Tang
- Institute of Neuroscience, Medical College, University of South China, Changsheng West Road 28, Hengyang City, Hunan Province 421001, PR China.
| |
Collapse
|
72
|
Pecorelli A, Belmonte G, Meloni I, Cervellati F, Gardi C, Sticozzi C, De Felice C, Signorini C, Cortelazzo A, Leoncini S, Ciccoli L, Renieri A, Jay Forman H, Hayek J, Valacchi G. Alteration of serum lipid profile, SRB1 loss, and impaired Nrf2 activation in CDKL5 disorder. Free Radic Biol Med 2015; 86:156-65. [PMID: 26006105 PMCID: PMC5572621 DOI: 10.1016/j.freeradbiomed.2015.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/03/2015] [Accepted: 05/08/2015] [Indexed: 11/24/2022]
Abstract
CDKL5 mutation is associated with an atypical Rett syndrome (RTT) variant. Recently, cholesterol homeostasis perturbation and oxidative-mediated loss of the high-density lipoprotein receptor SRB1 in typical RTT have been suggested. Here, we demonstrate an altered lipid serum profile also in CDKL5 patients with decreased levels of SRB1 and impaired activation of the defensive system Nrf2. In addition, CDKL5 fibroblasts showed an increase in 4-hydroxy-2-nonenal- and nitrotyrosine-SRB1 adducts that lead to its ubiquitination and probable degradation. This study highlights a possible common denominator between two different RTT variants (MECP2 and CDKL5) and a possible common future therapeutic target.
Collapse
Affiliation(s)
- Alessandra Pecorelli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy; Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, "Santa Maria alle Scotte" General Hospital, Siena, Italy
| | - Giuseppe Belmonte
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | | | - Franco Cervellati
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Concetta Gardi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Claudia Sticozzi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Claudio De Felice
- Neonatal Intensive Care Unit, Azienda Ospedaliera Universitaria Senese, "Santa Maria alle Scotte" General Hospital, Siena, Italy
| | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Alessio Cortelazzo
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, "Santa Maria alle Scotte" General Hospital, Siena, Italy
| | - Silvia Leoncini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy; Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, "Santa Maria alle Scotte" General Hospital, Siena, Italy
| | - Lucia Ciccoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Alessandra Renieri
- Medical Genetics, University of Siena, Siena, Italy; Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Henry Jay Forman
- Life and Environmental Sciences Unit, University of California at Merced, Merced, CA 95344, USA; Andrus Gerontology Center of the Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Joussef Hayek
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, "Santa Maria alle Scotte" General Hospital, Siena, Italy
| | - Giuseppe Valacchi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
73
|
Song MG, Ryoo IG, Choi HY, Choi BH, Kim ST, Heo TH, Lee JY, Park PH, Kwak MK. NRF2 Signaling Negatively Regulates Phorbol-12-Myristate-13-Acetate (PMA)-Induced Differentiation of Human Monocytic U937 Cells into Pro-Inflammatory Macrophages. PLoS One 2015. [PMID: 26222138 PMCID: PMC4519053 DOI: 10.1371/journal.pone.0134235] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Blood monocytes are recruited to injured tissue sites and differentiate into macrophages, which protect against pathogens and repair damaged tissues. Reactive oxygen species (ROS) are known to be an important contributor to monocytes’ differentiation and macrophages’ function. NF-E2-related factor 2 (NRF2), a transcription factor regulating cellular redox homeostasis, is known to be a critical modulator of inflammatory responses. We herein investigated the role of NRF2 in macrophage differentiation using the human monocytic U937 cell line and phorbol-12-myristate-13-acetate (PMA). In U937 cells with NRF2 silencing, PMA-stimulated cell adherence was significantly facilitated when compared to control U937 cells. Both transcript and protein levels for pro-inflammatory cytokines, including interleukine-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNFα) were highly elevated in PMA-stimulated NRF2-silenced U937 compared to the control. In addition, PMA-inducible secretion of monocyte chemotactic protein 1 (MCP-1) was significantly high in NRF2-silenced U937. As an underlying mechanism, we showed that NRF2-knockdown U937 retained high levels of cellular ROS and endoplasmic reticulum (ER) stress markers expression; and subsequently, PMA-stimulated levels of Ca2+ and PKCα were greater in NRF2-knockdown U937 cells, which caused enhanced nuclear accumulation of nuclear factor-ҡB (NFҡB) p50 and extracellular signal-regulated kinase (ERK)-1/2 phosphorylation. Whereas the treatment of NRF2-silenced U937 cells with pharmacological inhibitors of NFҡB or ERK1/2 largely blocked PMA-induced IL-1β and IL-6 expression, indicating that these pathways are associated with cell differentiation. Taken together, our results suggest that the NRF2 system functions to suppress PMA-stimulated U937 cell differentiation into pro-inflammatory macrophages and provide evidence that the ROS-PKCα-ERK-NFҡB axis is involved in PMA-facilitated differentiation of NRF2-silenced U937 cells.
Collapse
Affiliation(s)
- Min-gu Song
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongsangbuk-do 712–749, Republic of Korea
| | - In-geun Ryoo
- College of Pharmacy, The Catholic University of Korea, Bucheon, Gyeonggi-do 420–743, Republic of Korea
| | - Hye-young Choi
- College of Pharmacy, The Catholic University of Korea, Bucheon, Gyeonggi-do 420–743, Republic of Korea
| | - Bo-hyun Choi
- College of Pharmacy, The Catholic University of Korea, Bucheon, Gyeonggi-do 420–743, Republic of Korea
| | - Sang-Tae Kim
- Seoul National University Bundang Hospital, Sungnam, Gyeonggi-do 463–707, Republic of Korea
| | - Tae-Hwe Heo
- College of Pharmacy, The Catholic University of Korea, Bucheon, Gyeonggi-do 420–743, Republic of Korea
| | - Joo Young Lee
- College of Pharmacy, The Catholic University of Korea, Bucheon, Gyeonggi-do 420–743, Republic of Korea
| | - Pil-Hoon Park
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongsangbuk-do 712–749, Republic of Korea
| | - Mi-Kyoung Kwak
- College of Pharmacy, The Catholic University of Korea, Bucheon, Gyeonggi-do 420–743, Republic of Korea
- * E-mail:
| |
Collapse
|
74
|
Sison-Young RLC, Mitsa D, Jenkins RE, Mottram D, Alexandre E, Richert L, Aerts H, Weaver RJ, Jones RP, Johann E, Hewitt PG, Ingelman-Sundberg M, Goldring CEP, Kitteringham NR, Park BK. Comparative Proteomic Characterization of 4 Human Liver-Derived Single Cell Culture Models Reveals Significant Variation in the Capacity for Drug Disposition, Bioactivation, and Detoxication. Toxicol Sci 2015; 147:412-24. [PMID: 26160117 PMCID: PMC4583060 DOI: 10.1093/toxsci/kfv136] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In vitro preclinical models for the assessment of drug-induced liver injury (DILI) are usually based on cryopreserved primary human hepatocytes (cPHH) or human hepatic tumor-derived cell lines; however, it is unclear how well such cell models reflect the normal function of liver cells. The physiological, pharmacological, and toxicological phenotyping of available cell-based systems is necessary in order to decide the testing purpose for which they are fit. We have therefore undertaken a global proteomic analysis of 3 human-derived hepatic cell lines (HepG2, Upcyte, and HepaRG) in comparison with cPHH with a focus on drug metabolizing enzymes and transport proteins (DMETs), as well as Nrf2-regulated proteins. In total, 4946 proteins were identified, of which 2722 proteins were common across all cell models, including 128 DMETs. Approximately 90% reduction in expression of cytochromes P450 was observed in HepG2 and Upcyte cells, and approximately 60% in HepaRG cells relative to cPHH. Drug transporter expression was also lower compared with cPHH with the exception of MRP3 and P-gp (MDR1) which appeared to be significantly expressed in HepaRG cells. In contrast, a high proportion of Nrf2-regulated proteins were more highly expressed in the cell lines compared with cPHH. The proteomic database derived here will provide a rational basis for the context-specific selection of the most appropriate ‘hepatocyte-like’ cell for the evaluation of particular cellular functions associated with DILI and, at the same time, assist in the construction of a testing paradigm which takes into account the in vivo disposition of a new drug.
Collapse
Affiliation(s)
- Rowena L C Sison-Young
- *Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, Liverpool L69 3GE, UK
| | - Dimitra Mitsa
- *Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, Liverpool L69 3GE, UK
| | - Rosalind E Jenkins
- *Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, Liverpool L69 3GE, UK
| | - David Mottram
- *Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, Liverpool L69 3GE, UK
| | | | | | - Hélène Aerts
- Biologie Servier, 905 Route de Saran, 45520, Gidy, France
| | | | - Robert P Jones
- *Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, Liverpool L69 3GE, UK
| | - Esther Johann
- North Western Hepatobiliary Unit, Aintree University Hospital NHS Foundation Trust, Longmoor Lane, Liverpool L9 7AL, UK
| | - Philip G Hewitt
- Merck KGaA, Merck Serono, Non-Clinical Safety, 64293 Darmstadt, Germany; and
| | - Magnus Ingelman-Sundberg
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Christopher E P Goldring
- *Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, Liverpool L69 3GE, UK
| | - Neil R Kitteringham
- *Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, Liverpool L69 3GE, UK;
| | - B Kevin Park
- *Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, Liverpool L69 3GE, UK
| |
Collapse
|
75
|
Matoušková P, Bártíková H, Boušová I, Levorová L, Szotáková B, Skálová L. Drug-Metabolizing and Antioxidant Enzymes in Monosodium L-Glutamate Obese Mice. Drug Metab Dispos 2014; 43:258-65. [DOI: 10.1124/dmd.114.061176] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
76
|
A prolyl-hydroxylase inhibitor, ethyl-3,4-dihydroxybenzoate, induces cell autophagy and apoptosis in esophageal squamous cell carcinoma cells via up-regulation of BNIP3 and N-myc downstream-regulated gene-1. PLoS One 2014; 9:e107204. [PMID: 25232961 PMCID: PMC4169646 DOI: 10.1371/journal.pone.0107204] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 08/12/2014] [Indexed: 12/14/2022] Open
Abstract
The protocatechuic acid ethyl ester ethyl-3,4-dihydroxybenzoate is an antioxidant found in the testa of peanut seeds. Previous studies have shown that ethyl-3,4-dihydroxybenzoate can effectively reduce breast cancer cell metastasis by inhibiting prolyl-hydroxylase. In this study, we investigated the cytotoxic effect of ethyl-3,4-dihydroxybenzoate on esophageal squamous cell carcinoma cells in vitro and identified key regulators of ethyl-3,4-dihydroxybenzoate-induced esophageal cancer cell death through transcription expression profiling. Using flow cytometry analysis, we found that ethyl-3,4-dihydroxybenzoate induced S phase accumulation, a loss in mitochondrial membrane permeabilization, and caspase-dependent apoptosis. Moreover, an expression profile analysis identified 46 up- and 9 down-regulated genes in esophageal cancer KYSE 170 cells treated with ethyl-3,4-dihydroxybenzoate. These differentially expressed genes are involved in several signaling pathways associated with cell cycle regulation and cellular metabolism. Consistent with the expression profile results, the transcriptional and protein expression levels of candidate genes NDRG1, BNIP3, AKR1C1, CCNG2 and VEGFA were found to be significantly increased in treated KYSE 170 cells by reverse-transcription PCR and western blot analysis. We also found that protein levels of hypoxia-inducible factor-1α, BNIP3, Beclin and NDRG1 were increased and that enriched expression of BNIP3 and Beclin caused autophagy mediated by microtubule-associated protein 1 light chain 3 in the treated cells. Autophagy and apoptosis were activated together in esophageal cancer cells after exposed to ethyl-3,4-dihydroxybenzoate. Furthermore, knock-down of NDRG1 expression by siRNA significantly attenuated apoptosis in the cancer cells, implying that NDRG1 may be required for ethyl-3,4-dihydroxybenzoate-induced apoptosis. Together, these results suggest that the cytotoxic effects of ethyl-3,4-dihydroxybenzoate were mediated by the up-regulation of NDRG1, BNIP3, Beclin and hypoxia-inducible factor-1α, initiating BNIP3 and Beclin mediated autophagy at an early stage and ultimately resulting in esophageal cancer cell apoptosis.
Collapse
|
77
|
Valdés A, García-Cañas V, Simó C, Ibáñez C, Micol V, Ferragut JA, Cifuentes A. Comprehensive foodomics study on the mechanisms operating at various molecular levels in cancer cells in response to individual rosemary polyphenols. Anal Chem 2014; 86:9807-15. [PMID: 25188358 DOI: 10.1021/ac502401j] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this work, the contribution of carnosic acid (CA) and carnosol (CS), two major compounds present in rosemary, against colon cancer HT-29 cells proliferation is investigated using a comprehensive Foodomics approach. The Foodomics study reveals that CA induces transcriptional activation of genes that encode detoxifying enzymes and altered the expression of genes linked to transport and biosynthesis of terpenoids in the colon cancer cell line. Functional analysis highlighted the activation of the ROS metabolism and alteration of several genes involved in pathways describing oxidative degradation of relevant endogenous metabolites, providing new evidence about the transcriptional change induced by CA in HT-29 cells. Metabolomics analysis showed that the treatment with CA affected the intracellular levels of glutathione. Elevated levels of GSH provided additional evidence to transcriptomic results regarding chemopreventive response of cells to CA treatment. Moreover, the Foodomics approach was useful to establish the links between decreased levels of N-acetylputrescine and its degradation pathway at the gene level. The findings from this work and the predictions based on microarray data will help explore novel metabolic processes and potential signaling pathways to further elucidate the effect of CA in colon cancer cells.
Collapse
Affiliation(s)
- Alberto Valdés
- Laboratory of Foodomics, Institute of Food Science Research (CIAL), CSIC , Nicolas Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
78
|
Ryoo IG, Ha H, Kwak MK. Inhibitory role of the KEAP1-NRF2 pathway in TGFβ1-stimulated renal epithelial transition to fibroblastic cells: a modulatory effect on SMAD signaling. PLoS One 2014; 9:e93265. [PMID: 24691097 PMCID: PMC3972195 DOI: 10.1371/journal.pone.0093265] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/02/2014] [Indexed: 02/06/2023] Open
Abstract
Transforming growth factor β1 (TGFβ1) is a potent stimulator of epithelial-to-mesenchymal transition (EMT) and has been associated with chronic kidney diseases by activating profibrotic gene expression. In this study, we investigated the role of the KEAP1-NRF2 pathway, which is a master regulator of the cellular antioxidant system, in TGFβ1-stimulated EMT gene changes using human renal tubular epithelial HK2. Treatment with TGFβ1 enhanced the levels of reactive oxygen species (ROS) and TGFβ1-stimulated EMT gene changes, including an increase in profibrotic fibronectin-1 and collagen 1A1, were diminished by the antioxidant N-acetylcysteine. In HK2, TGFβ1 suppressed NRF2 activity and thereby reduced the expression of GSH synthesizing enzyme through the elevation of ATF3 level. Therefore, the activation of NRF2 signaling with sulforaphane effectively attenuated the TGFβ1-stimulated increase in fibronectin-1 and collagen 1A1. Conversely, the TGFβ1-EMT gene changes were further enhanced by NRF2 knockdown compared to the control cells. The relationship of NRF2 signaling and TGFβ1-EMT changes was further confirmed in a stable KEAP1-knockdown HK2, which is a model of pure activation of NRF2. The TGFβ1-mediated increase of collagen 1A1 and fibronectin-1 in KEAP1 knockdown HK2 was suppressed. In particular, TGFβ1-SMAD signaling was modulated in KEAP1 knockdown HK2: the TGFβ1-stimulated SMAD2/3 phosphorylation and SMAD transcriptional activity were repressed. Additionally, the protein level of SMAD7, an inhibitor of SMAD signaling, was elevated and the level of SMURF1, an E3 ubiquitin ligase for SMAD7 protein, was diminished in KEAP1 knockdown HK2. Finally, the inhibition of SMAD7 expression in KEAP1 knockdown HK2 restored TGFβ1 response, indicating that SMURF1-SMAD7 may be a molecular signaling linking the NRF2-GSH pathway to TGFβ1-EMT changes. Collectively, these results indicate that the KEAP1-NRF2 antioxidant system can be an effective modulator of TGFβ1-stimulated renal epithelial transition to fibroblastic cells through the SMUR1-SMAD7 signaling, and further implies the beneficial role of NRF2 in chronic renal diseases.
Collapse
Affiliation(s)
- In-geun Ryoo
- College of Pharmacy, The Catholic University of Korea, Bucheon, Gyeonggi-do, Republic of Korea
| | - Hunjoo Ha
- College of Pharmacy, Ewha Womans University, Seodaemun-gu, Seoul, Republic of Korea
| | - Mi-Kyoung Kwak
- College of Pharmacy, The Catholic University of Korea, Bucheon, Gyeonggi-do, Republic of Korea
- * E-mail:
| |
Collapse
|
79
|
Hayes JD, Dinkova-Kostova AT. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci 2014; 39:199-218. [PMID: 24647116 DOI: 10.1016/j.tibs.2014.02.002] [Citation(s) in RCA: 1503] [Impact Index Per Article: 150.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/03/2014] [Accepted: 02/05/2014] [Indexed: 02/08/2023]
Abstract
Nuclear factor-erythroid 2 p45-related factor 2 (Nrf2, also called Nfe2l2) is a transcription factor that regulates the cellular redox status. Nrf2 is controlled through a complex transcriptional/epigenetic and post-translational network that ensures its activity increases during redox perturbation, inflammation, growth factor stimulation and nutrient/energy fluxes, thereby enabling the factor to orchestrate adaptive responses to diverse forms of stress. Besides mediating stress-stimulated induction of antioxidant and detoxification genes, Nrf2 contributes to adaptation by upregulating the repair and degradation of damaged macromolecules, and by modulating intermediary metabolism. In the latter case, Nrf2 inhibits lipogenesis, supports β-oxidation of fatty acids, facilitates flux through the pentose phosphate pathway, and increases NADPH regeneration and purine biosynthesis; these observations suggest Nrf2 directs metabolic reprogramming during stress.
Collapse
Affiliation(s)
- John D Hayes
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK.
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK
| |
Collapse
|
80
|
Li D, Ellis EM. Aldo-keto reductase 7A5 (AKR7A5) attenuates oxidative stress and reactive aldehyde toxicity in V79-4 cells. Toxicol In Vitro 2014; 28:707-14. [PMID: 24590062 DOI: 10.1016/j.tiv.2014.02.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 01/27/2014] [Accepted: 02/19/2014] [Indexed: 12/18/2022]
Abstract
Aldo-keto reductase (AKR) enzymes are critical in the detoxification of endogenous and exogenous aldehydes. In previous studies, we have shown that AKR7A5 enzyme is catalytically active towards aldehydes arising from lipid peroxidation (LPO) and that it can significantly protect against 4-hydroxynonenal-induced apoptosis, suggesting a protective role against the consequences of oxidative stress. The aim of this study was to elucidate the cytoprotective effect of AKR7A5 against oxidative stress using a transgenic mammalian cell line expressing AKR7A5. Results show that expression of AKR7A5 in V79-4 cells provides significant protection against the cytotoxicity of H2O2 and menadione, with its expression altering the IC50 of H2O2 from 1.1 to 2.3 mM and the IC50 of menadione from 8.6 to 9.6 μM, thus providing direct evidence for its anti-oxidant activity. Cells expressing AKR7A5 were also found to be more resistant to several LPO-derived aldehydes--trans-2-nonenal, hexanal and methylglyoxal. In addition the ability of AKR7A5 to enable the cells to cope with ROS accumulation and glutathione depletion was assessed. V79-4 cells overexpressing AKR7A5 were able to lower cellular ROS levels following treatment with H2O2 and menadione. AKR7A5 was also able to maintain cellular glutathione homeostasis in the presence of H2O2 and menadione. These findings indicate the importance of AKR7A5 in protecting cells from the damaging effects of oxidative stress, and that this cytoprotective function is carried out through multiple pathways.
Collapse
Affiliation(s)
- Dan Li
- Department of Biopharmaceuticals, School of Pharmacy, China Medical University, Heping District, Shenyang 110001, China; Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom.
| | - Elizabeth M Ellis
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
| |
Collapse
|
81
|
Gao B, Doan A, Hybertson BM. The clinical potential of influencing Nrf2 signaling in degenerative and immunological disorders. Clin Pharmacol 2014; 6:19-34. [PMID: 24520207 PMCID: PMC3917919 DOI: 10.2147/cpaa.s35078] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nuclear factor (erythroid-derived 2)-like 2 (Nrf2; encoded in humans by the NFE2L2 gene) is a transcription factor that regulates the gene expression of a wide variety of cytoprotective phase II detoxification and antioxidant enzymes through a promoter sequence known as the antioxidant-responsive element (ARE). The ARE is a promoter element found in many cytoprotective genes; therefore, Nrf2 plays a pivotal role in the ARE-driven cellular defense system against environmental stresses. Agents that target the ARE/Nrf2 pathway have been tested in a wide variety of disorders, with at least one new Nrf2-activating drug now approved by the US Food and Drug Administration. Examination of in vitro and in vivo experimental results, and taking into account recent human clinical trial results, has led to an opinion that Nrf2-activating strategies – which can include drugs, foods, dietary supplements, and exercise – are likely best targeted at disease prevention, disease recurrence prevention, or slowing of disease progression in early stage illnesses; they may also be useful as an interventional strategy. However, this rubric may be viewed even more conservatively in the pathophysiology of cancer. The activation of the Nrf2 pathway has been widely accepted as offering chemoprevention benefit, but it may be unhelpful or even harmful in the setting of established cancers. For example, Nrf2 activation might interfere with chemotherapies or radiotherapies or otherwise give tumor cells additional growth and survival advantages, unless they already possess mutations that fully activate their Nrf2 pathway constitutively. With all this in mind, the ARE/Nrf2 pathway remains of great interest as a possible target for the pharmacological control of degenerative and immunological diseases, both by activation and by inhibition, and its regulation remains a promising biological target for the development of new therapies.
Collapse
Affiliation(s)
- Bifeng Gao
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - An Doan
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brooks M Hybertson
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
82
|
Limonciel A, Jennings P. A review of the evidence that ochratoxin A is an Nrf2 inhibitor: implications for nephrotoxicity and renal carcinogenicity. Toxins (Basel) 2014; 6:371-9. [PMID: 24448208 PMCID: PMC3920267 DOI: 10.3390/toxins6010371] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/10/2014] [Accepted: 01/14/2014] [Indexed: 01/14/2023] Open
Abstract
Several studies have demonstrated that ochratoxin A (OTA) inhibits the nuclear factor, erythroid 2-like 2 (Nrf2) oxidative stress response pathway. At the cellular level this would attenuate (i) glutathione synthesis; (ii) recycling of oxidised glutathione; (iii) activity of oxidoreductases; and (iv) phase II metabolism inducibility. The effects combined would render the cell and tissue more vulnerable to oxidative stress. Indeed, Nrf2 knock out animals exhibit increased susceptibility to various types of chemical-induced injury. Several studies have shown that OTA exposure can inhibit Nrf2 responses. Such an action would initially lead to increased susceptibility to both physiological and chemical-induced cell stress. However, chronic exposure to OTA may also act as a selective pressure for somatic mutations in Nrf2 or its inhibitor Keap-1, leading to constitutive Nrf2 activation. Nrf2 overexpression confers a survival advantage and is often associated with cancer cell survival. Here we review the evidence for OTA’s role as an Nrf2 inhibitor and discuss the implications of this mechanism in nephrotoxicity and carcinogenicity.
Collapse
Affiliation(s)
- Alice Limonciel
- Division of Physiology, Department of Physiology and Medical Physics, Innsbruck Medical University, Innsbruck A6020, Austria.
| | - Paul Jennings
- Division of Physiology, Department of Physiology and Medical Physics, Innsbruck Medical University, Innsbruck A6020, Austria.
| |
Collapse
|
83
|
Frohnert BI, Long EK, Hahn WS, Bernlohr DA. Glutathionylated lipid aldehydes are products of adipocyte oxidative stress and activators of macrophage inflammation. Diabetes 2014; 63:89-100. [PMID: 24062247 PMCID: PMC3868039 DOI: 10.2337/db13-0777] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obesity-induced insulin resistance has been linked to adipose tissue lipid aldehyde production and protein carbonylation. Trans-4-hydroxy-2-nonenal (4-HNE) is the most abundant lipid aldehyde in murine adipose tissue and is metabolized by glutathione S-transferase A4 (GSTA4), producing glutathionyl-HNE (GS-HNE) and its metabolite glutathionyl-1,4-dihydroxynonene (GS-DHN). The objective of this study was to evaluate adipocyte production of GS-HNE and GS-DHN and their effect on macrophage inflammation. Compared with lean controls, GS-HNE and GS-DHN were more abundant in visceral adipose tissue of ob/ob mice and diet-induced obese, insulin-resistant mice. High glucose and oxidative stress induced production of GS-HNE and GS-DHN by 3T3-L1 adipocytes in a GSTA4-dependent manner, and both glutathionylated metabolites induced secretion of tumor necrosis factor-α from RAW 264.7 and primary peritoneal macrophages. Targeted microarray analysis revealed GS-HNE and GS-DHN induced expression of inflammatory genes, including C3, C4b, c-Fos, igtb2, Nfkb1, and Nos2. Transgenic overexpression of GSTA4 in mouse adipose tissue led to increased production of GS-HNE associated with higher fasting glucose levels and moderately impaired glucose tolerance. These results indicated adipocyte oxidative stress results in GSTA4-dependent production of proinflammatory glutathione metabolites, GS-HNE and GS-DHN, which may represent a novel mechanism by which adipocyte dysfunction results in tissue inflammation and insulin resistance.
Collapse
Affiliation(s)
| | - Eric K. Long
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Wendy S. Hahn
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - David A. Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
- Corresponding author: David A. Bernlohr,
| |
Collapse
|
84
|
Gañán-Gómez I, Wei Y, Yang H, Boyano-Adánez MC, García-Manero G. Oncogenic functions of the transcription factor Nrf2. Free Radic Biol Med 2013; 65:750-764. [PMID: 23820265 DOI: 10.1016/j.freeradbiomed.2013.06.041] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 05/30/2013] [Accepted: 06/24/2013] [Indexed: 02/03/2023]
Abstract
Nuclear factor E2-related factor 2 (Nrf2) is a transcription factor that controls the expression of a large pool of antioxidant and cytoprotective genes regulating the cellular response to oxidative and electrophilic stress. Nrf2 is negatively regulated by Kelch-like ECH-associated protein 1 (Keap1) and, upon stimulation by an oxidative or electrophilic insult, is rapidly activated by protein stabilization. Owing to its cytoprotective functions, Nrf2 has been traditionally studied in the field of chemoprevention; however, there is accumulated evidence that Keap1/Nrf2 mutations or unbalanced regulation that leads to overexpression or hyperactivation of Nrf2 may participate in tumorigenesis and be involved in chemoresistance of a wide number of solid cancers and leukemias. In addition to protecting cells from reactive oxygen species, Nrf2 seems to play a direct role in cell growth control and is related to apoptosis-regulating pathways. Moreover, Nrf2 activity is connected with oncogenic kinase pathways, structural proteins, hormonal regulation, other transcription factors, and epigenetic enzymes involved in the pathogenesis of various types of tumors. The aim of this review is to compile and summarize existing knowledge of the oncogenic functions of Nrf2 to provide a solid basis for its potential use as a molecular marker and pharmacological target in cancer.
Collapse
Affiliation(s)
- Irene Gañán-Gómez
- Department of System Biology, Biochemistry and Molecular Biology Unit, University of Alcalá, 28871 Alcalá de Henares (Madrid), Spain.
| | - Yue Wei
- Department of Leukemia, University of Texas M.D. Anderson Cancer Center, 77030 Houston, TX, USA
| | - Hui Yang
- Department of Leukemia, University of Texas M.D. Anderson Cancer Center, 77030 Houston, TX, USA
| | - María Carmen Boyano-Adánez
- Department of System Biology, Biochemistry and Molecular Biology Unit, University of Alcalá, 28871 Alcalá de Henares (Madrid), Spain
| | - Guillermo García-Manero
- Department of Leukemia, University of Texas M.D. Anderson Cancer Center, 77030 Houston, TX, USA
| |
Collapse
|
85
|
Torigoe T, Hirohashi Y, Yasuda K, Sato N. Constitutive expression and activation of stress response genes in cancer stem-like cells/tumour initiating cells: Potent targets for cancer stem cell therapy. Int J Hyperthermia 2013; 29:436-41. [DOI: 10.3109/02656736.2013.814809] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
86
|
Nrf2 inducibility of aldo-keto reductases. Toxicol Lett 2013; 221:39. [DOI: 10.1016/j.toxlet.2013.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 05/22/2013] [Indexed: 11/24/2022]
|
87
|
Chapple SJ, Cheng X, Mann GE. Effects of 4-hydroxynonenal on vascular endothelial and smooth muscle cell redox signaling and function in health and disease. Redox Biol 2013; 1:319-31. [PMID: 24024167 PMCID: PMC3757694 DOI: 10.1016/j.redox.2013.04.001] [Citation(s) in RCA: 329] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 04/21/2013] [Indexed: 12/04/2022] Open
Abstract
4-hydroxynonenal (HNE) is a lipid hydroperoxide end product formed from the oxidation of n-6 polyunsaturated fatty acids. The relative abundance of HNE within the vasculature is dependent not only on the rate of lipid peroxidation and HNE synthesis but also on the removal of HNE adducts by phase II metabolic pathways such as glutathione-S-transferases. Depending on its relative concentration, HNE can induce a range of hormetic effects in vascular endothelial and smooth muscle cells, including kinase activation, proliferation, induction of phase II enzymes and in high doses inactivation of enzymatic processes and apoptosis. HNE also plays an important role in the pathogenesis of vascular diseases such as atherosclerosis, diabetes, neurodegenerative disorders and in utero diseases such as pre-eclampsia. This review examines the known production, metabolism and consequences of HNE synthesis within vascular endothelial and smooth muscle cells, highlighting alterations in mitochondrial and endoplasmic reticulum function and their association with various vascular pathologies. HNE is a lipid peroxidation endproduct regulating vascular redox signaling. HNE detoxification is tightly regulated in vascular and other cell types. Elevated HNE levels are associated with various vascular diseases.
Collapse
Key Words
- 15d-PGJ2, 15-deoxy-Delta (12,14) prostaglandin-J2
- 4-hydroxynonenal
- AP-1, Activator protein-1
- AR, Aldose reductase
- ARE, Antioxidant response element
- ATF6, Activating transcription factor 6
- Akt, Protein kinase B
- BAEC, Bovine aortic endothelial cells
- BH4, Tetrahydrobiopterin
- BLMVEC, Bovine lung microvascular vein endothelial cells
- BPAEC, Bovine pulmonary arterial endothelial cells
- BTB, Broad complex Tramtrack and Bric–brac domain
- CHOP, C/EBP-homologous protein
- CREB, cAMP response element-binding protein
- EGFR, Epidermal growth factor receptor
- ER, Endoplasmic reticulum
- ERAD, Endoplasmic reticulum assisted degradation
- ERK1/2, Extracellular signal-regulated kinase 1/2
- Elk1, ETS domain-containing protein
- Endothelial cells
- EpRE, Electrophile response element
- FAK, Focal adhesion kinase
- FAP, Familial amyloidotic polyneuropathy
- GCLC, Glutamate cysteine ligase catalytic subunit
- GCLM, Glutamate cysteine ligase modifier subunit
- GS-DHN, Glutathionyl-1,4 dihydroxynonene
- GS-HNE, HNE-conjugates
- GSH, Glutathione
- GST, Glutathione-S-transferase
- GTPCH, Guanosine triphosphate cyclohydrolase I
- HASMC, Human aortic smooth muscle cells
- HCSMC, Human coronary smooth muscle cells
- HERP, Homocysteine inducible ER protein
- HMEC, Human microvascular endothelial cells
- HNE, 4-hydroxynonenal
- HO-1, Heme oxygenase-1
- HUVEC, Human umbilical vein endothelial cells
- Hsp-70/72/90, Heat shock proteins-70/ -72/ -90
- IRE1, Inositol requiring enzyme 1 IRE1
- IVR, Central intervening region
- JNK, c-jun N-terminal kinase
- Keap1, Kelch-like ECH-associated protein 1
- MASMC, Mouse aortic smooth muscle cells
- MEK1/2, Mitogen activated protein kinase kinase 1/2
- MMP-1/2, Matrix metalloproteinase-1/ -2
- MPEC, Mouse pancreatic islet endothelial cells
- NAC, N-acetylcysteine
- NFκB, Nuclear factor kappa B
- NO, Nitric oxide
- NQO1, NAD(P)H quinone oxidoreductase
- Nrf2
- Nrf2, Nuclear factor-E2-related factor 2
- PCEC, Porcine cerebral endothelial cells
- PDGF, Platelet-derived growth factor
- PDI, Protein disulfide isomerases
- PERK, Protein kinase-like endoplasmic reticulum kinase
- PKC, Protein kinase C
- PUFAs, Polyunsaturated fatty acids
- RASMC, Rat aortic smooth muscle cells
- ROS, Reactive oxygen species
- RVSMC, Rat vascular smooth muscle cells
- Redox signaling
- SMC, Smooth muscle cell
- TKR, Tyrosine kinase receptor
- UPR, Unfolded protein response
- Vascular biology
- Vascular smooth muscle cells
- eNOS, Endothelial nitric oxide synthase
- elF2α, Eukaryotic translation initiation factor 2α
- iNOS, Inducible nitric oxide synthase
- oxLDL, Oxidized low density lipoprotein
- tBHP, Tert-butylhydroperoxide
- xCT, cystine/glutamate amino acid transporter
Collapse
Affiliation(s)
- Sarah J Chapple
- Cardiovascular Division, British Heart Foundation Centre of Research Excellence, School of Medicine, King's College London, 150 Stamford Street, London SE1 9NH, U.K
| | | | | |
Collapse
|
88
|
Enhanced 4-hydroxynonenal resistance in KEAP1 silenced human colon cancer cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:423965. [PMID: 23766854 PMCID: PMC3674683 DOI: 10.1155/2013/423965] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 04/09/2013] [Indexed: 12/19/2022]
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) is the transcription factor that regulates an array of antioxidant/detoxifying genes for cellular defense. The conformational changes of Kelch-like ECH-associated protein 1 (KEAP1), a cytosolic repressor protein of NRF2, by various stimuli result in NRF2 liberation and accumulation in the nucleus. In the present study, we aimed to investigate the effect of KEAP1 knockdown on NRF2 target gene expression and its toxicological implication using human colon cancer cells. The stable KEAP1-knockdown HT29 cells exhibit elevated levels of NRF2 and its target gene expressions. In particular, the mRNA levels of aldo-keto reductases (AKR1C1, 1C2, 1C3, 1B1, and 1B10) were substantially increased in KEAP1 silenced HT29 cells. These differential AKRs expressions appear to contribute to protection against oxidative stress. The KEAP1-knockdown cells were relatively more resistant to hydrogen peroxide (H2O2) and 4-hydroxynonenal (4HNE) compared to the control cells. Accordantly, we observed accumulation of 4HNE protein adducts in H2O2- or 4HNE-treated control cells, whereas KEAP1-knockdown cells did not increase adduct formation. The treatment of KEAP1-silenced cells with AKR1C inhibitor flufenamic acid increased 4HNE-induced cellular toxicity and protein adduct formation. Taken together, these results indicate that AKRs, which are NRF2-dependent highly inducible gene clusters, play a role in NRF2-mediated cytoprotection against lipid peroxide toxicity.
Collapse
|