51
|
Wang H, Sun L, Yan K, Wang J, Wang C, Yu G, Wang Y. Effects of coagulation-sedimentation-filtration pretreatment on micropollutant abatement by the electro-peroxone process. CHEMOSPHERE 2021; 266:129230. [PMID: 33316471 DOI: 10.1016/j.chemosphere.2020.129230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/22/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
The electro-peroxone (EP) process has been considered an attractive alternative to conventional ozonation for micropollutant abatement in water treatment. However, how to integrate the EP process into the water treatment trains in water utilities has yet to be investigated. This study compared micropollutant abatement during the EP treatment of potable source water with and without pretreatment of biological oxidation, flocculation, sedimentation, and filtration. Results show that this pretreatment train removed 39% of dissolved organic carbon (DOC) and 28% of the UV254 absorbance of the raw water, leading to higher ozone (O3) stability in the treated water. By electrochemically generating hydrogen peroxide to accelerate O3 decomposition to hydroxyl radicals (•OH), the EP process considerably shortened the time required for ozone depletion and micropollutant abatement during the treatment of both the raw and pretreated water to ∼1 min, compared to ∼3 and 7.5 min during conventional ozonation of the raw and treated water, respectively. For the same specific ozone dose of 1 mg O3 mg-1 DOC (corresponding to 4.3 and 2.8 mg O3 L-1 for the raw and treated water, respectively), the abatement efficiencies of micropollutants with moderate and low ozone reactivity were increased by ∼10-15%, while the energy consumption for micropollutant abatement was decreased by ∼24-56% during the EP treatment of the treated water than the raw water. These results indicate that partial removal of DOC and ammonia from the raw water by the pretreatment train has a beneficial effect on enhancing micropollutant abatement and reducing energy consumption of the EP process. Therefore, it is more cost-effective to integrate the EP process after the pretreatment train in water utilities for micropollutant abatement.
Collapse
Affiliation(s)
- Huijiao Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510006, China
| | - Linzhao Sun
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, 100084, China
| | - Kai Yan
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510006, China
| | - Jianbing Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Chunrong Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Gang Yu
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, 100084, China
| | - Yujue Wang
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
52
|
Basturk I, Varank G, Murat Hocaoglu S, Yazici Guvenc S. Medical laboratory wastewater treatment by electro-fenton process: Modeling and optimization using central composite design. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:393-408. [PMID: 32885546 DOI: 10.1002/wer.1433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/25/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Medical laboratory wastewaters arising from diagnosis and examination units show highly toxic characteristic. Within the scope of the study, removal of the wastewater's toxicity and increasing BOD5 /COD ratio of the medical laboratory wastewaters through electro-Fenton (EF) process were investigated. In the study, central composite design was applied to optimize the process parameters of EF for COD, BOD5 , and toxicity unit (TU) removal. Based on ANOVA, H2 O2 /COD was found to be significant parameter for COD removal, whereas current, reaction time, and H2 O2 /COD were determined to be significant parameters for BOD5 and TU removal. Optimum conditions (pH value of 3.4, current 3 A, reaction time 33.9 min, and H2 O2 /COD of 1.29) were determined, and predicted removals of COD, BOD5, and TU were found to be 55.1%, 42.5%, and 99.7% and experimental removals were found to be 53.4%, 41.2%, and 99.5%, respectively. TU value of the wastewater decreased from the value of 163-0.815, and BOD5 /COD value increased from the value of 0.32-0.39. The results of the study indicate that EF process is an effective treatment option for COD, BOD5, and especially toxicity removal from medical laboratory wastewater. PRACTITIONER POINTS: Electro-Fenton process was applied medical laboratory wastewater with highly toxic characteristic. Response surface methodology approach using central composite design was employed for modeling. 53.4%, 41.2%, and 99.5% of COD, BOD5, and toxicity removals were achieved under statistically optimized conditions. TU value of the wastewater decreased from the value of 163-0.815. BOD5 /COD value increased from the value of 0.32-0.39.
Collapse
Affiliation(s)
- Irfan Basturk
- The Scientific and Technological Research Council of Turkey, Marmara Research Center, Environment and Cleaner Production Institute, Kocaeli, Turkey
| | - Gamze Varank
- Department of Environmental Engineering, Yıldız Technical University, Davutpaşa Campus, Istanbul, Turkey
| | - Selda Murat Hocaoglu
- The Scientific and Technological Research Council of Turkey, Marmara Research Center, Environment and Cleaner Production Institute, Kocaeli, Turkey
| | - Senem Yazici Guvenc
- Department of Environmental Engineering, Yıldız Technical University, Davutpaşa Campus, Istanbul, Turkey
| |
Collapse
|
53
|
Wang J, Wu Y, Bu L, Zhu S, Zhang W, Zhou S, Gao N. Simultaneous removal of chlorite and contaminants of emerging concern under UV photolysis: Hydroxyl radicals vs. chlorate formation. WATER RESEARCH 2021; 190:116708. [PMID: 33279746 DOI: 10.1016/j.watres.2020.116708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/23/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
It is well known that using chlorine dioxide (ClO2) as a disinfectant inevitably produces a common disinfection byproducts chlorite (ClO2‒). In this study, we found that UV photolysis after ClO2 disinfection can effectively eliminate both ClO2‒ and contaminants of emerging concern (CECs). However, the kinetic mechanisms of UV/ClO2‒ process destructing CECs, as well as transformation of ClO2‒ in UV/ClO2‒ system are not clear yet. Therefore, we systematically investigated the UV/ClO2‒ system to assist us appropriately design this process under optimal operational conditions. In this work, we first investigated the impact of water matrix conditions (i.e., pH, bicarbonate and natural organic matter (NOM)) and ClO2‒ dosage on the UV/ClO2‒ process. We found that bicarbonate and NOM have inhibition effects, while lower pH and higher ClO2‒ dosage have enhancement effects. Besides, hydroxyl radical (HO•) and reactive chlorine species (RCS) are generated from UV/ClO2‒ system, and RCS are main contributors to CBZ degradation. Then we proposed a possible degradation pathway of CBZ based on the determined products from experiments. Additionally, we found that photolysis of ClO2‒ resulted in the generation of chloride (Cl‒) and chlorate (ClO3‒). As the ClO2‒ dosage increases, the yield of ClO3‒ increased while that of Cl‒ decreased. Finally, we elucidated the second order rate constant of the target organic compound with HO• has a strong correlation with the formation of ClO3‒.
Collapse
Affiliation(s)
- Jue Wang
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, College of Civil Engineering, Hunan University, Changsha, Hunan, 410082, PR China
| | - Yangtao Wu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, College of Civil Engineering, Hunan University, Changsha, Hunan, 410082, PR China
| | - Lingjun Bu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, College of Civil Engineering, Hunan University, Changsha, Hunan, 410082, PR China
| | - Shumin Zhu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, College of Civil Engineering, Hunan University, Changsha, Hunan, 410082, PR China
| | - Weiqiu Zhang
- Brook Byer Institute for Sustainable Systems and School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Shiqing Zhou
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, College of Civil Engineering, Hunan University, Changsha, Hunan, 410082, PR China.
| | - Naiyun Gao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
54
|
Olajire A. Recent advances on the treatment technology of oil and gas produced water for sustainable energy industry-mechanistic aspects and process chemistry perspectives. CHEMICAL ENGINEERING JOURNAL ADVANCES 2020. [DOI: 10.1016/j.ceja.2020.100049] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
55
|
Dogruel S, Cetinkaya Atesci Z, Aydin E, Pehlivanoglu-Mantas E. Ozonation in advanced treatment of secondary municipal wastewater effluents for the removal of micropollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:45460-45475. [PMID: 32794092 DOI: 10.1007/s11356-020-10339-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/30/2020] [Indexed: 05/25/2023]
Abstract
The objective of this study was the experimental evaluation of ozonation as an additional treatment step for the removal emerging contaminants from secondary effluents of two wastewater treatment plants (WWTPs), one receiving a primarily domestic wastewater (WWTP-A), and the other one domestic sewage together with pretreated tannery wastewater streams (WWTP-B). The experimental runs were conducted at two different pH values (i.e., original pH and adjusted pH of 10) and at six different ozone doses ranging between 0.2 and 1.5 mg O3/mg DOC. A total of 20 compounds, including 12 micropollutants (MPs) and 8 metabolites, were selected as the target analytes for the evaluation of ozonation performance. When the tested MPs and metabolites were considered individually, the maximum elimination level for each compound was reached at different doses; therefore, optimum ozone doses were determined based on the reduction of the total MP content. Ozonation at the original pH with an ozone dose in the range of 0.4-0.6 and 0.8-1.0 mg O3/mg DOC was selected as the optimum operating condition for WWTP-A and WWTP-B, respectively, both resulting in an average overall removal efficiency of 55%. Ozone treatment yielded only poor elimination for o-desmethyl naproxen (15%), which was found to be by far the main contributor accounting alone for approximately 30% of the total MP concentration in the secondary effluents. The systematic approach used in this study could well be adopted as a guide to other domestic and municipal WWTPs, which are thought to have a highly variable composition in terms of the MPs and metabolites.
Collapse
Affiliation(s)
- Serdar Dogruel
- Environmental Engineering Department, Faculty of Civil Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey.
| | - Zuhal Cetinkaya Atesci
- Environmental Engineering Department, Faculty of Engineering, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| | - Egemen Aydin
- Agat Laboratories, 9770 Route Transcanadienne, St. Laurent, Quebec, H4S 1V9, Canada
| | - Elif Pehlivanoglu-Mantas
- Environmental Engineering Department, Faculty of Civil Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| |
Collapse
|
56
|
Xie Y, Dai J, Chen G. Feasibility study on applying the iron-activated persulfate system as a pre-treatment process for clofibric acid selective degradation in municipal wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:140020. [PMID: 32535472 DOI: 10.1016/j.scitotenv.2020.140020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
Clofibric acid (CFA) was selected as an example of the widespread micropollutants in municipal wastewater to investigate the feasibility of the application of an iron-activated persulfate (Fe-PS) system for selective micropollutants removal prior to biological wastewater treatment. In pure CFA solution, the CFA degradation rate was accelerated with an increase in oxidant dosage and 2.15 mg·L-1 (0.01 mM) CFA could be completed removed within 30 min with 270 mg·L-1 (1 mM) potassium persulfate (PS) activated by 56 mg·L-1 iron powder (Fe). Although both sulfate radicals (SO4∙-) and hydroxyl radicals (HO∙) were generated in the Fe-PS system, SO4∙- was identified as the dominant oxidant for CFA degradation. To investigate the interference from model compounds in the municipal wastewater, CFA degradation in different concentrations of ammonia or/and glucose solutions, the synthetic municipal wastewater, and real municipal wastewater systems were investigated. A complete removal of CFA was achieved with ammonia or/and glucose interferences. Less than 3% ammonia was removed due to the formation of aminopropyl radicals. About 15% degradation of dissolved organic carbon (DOC) was mainly attributed to the oxidation of glucose by HO∙, Indicating the excellent selective oxidation ability of the Fe-PS system targeting at CFA over glucose. Even though the alkalinity significantly hindered the oxidation of CFA in both synthetic and real municipal wastewater system, the removal efficiency of CFA was significantly higher than that of DOC. The decrease of CFA removal efficiency in municipal wastewater system comparing to the other tests was due to the slow degradation of PS in the system and further hindered the SO4∙- generation. Therefore, the impacts of other impurities in municipal wastewater on the oxidation activities of Fe-PS system should be further investigated. In general, this study confirmed the feasibility of using the Fe-PS system for selective degrading resistant CFA in municipal wastewater.
Collapse
Affiliation(s)
- Yiruiwen Xie
- Department of Civil and Environmental Engineering, Water Technology Lab, Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ji Dai
- Department of Civil and Environmental Engineering, Water Technology Lab, Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Guanghao Chen
- Department of Civil and Environmental Engineering, Water Technology Lab, Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
57
|
Schmitt A, Mendret J, Roustan M, Brosillon S. Ozonation using hollow fiber contactor technology and its perspectives for micropollutants removal in water: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 729:138664. [PMID: 32380322 DOI: 10.1016/j.scitotenv.2020.138664] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/18/2020] [Accepted: 04/10/2020] [Indexed: 06/11/2023]
Abstract
Membrane contactor is a device generally used for the removal or the absorption of a gas into another fluid. The membrane acts as a barrier between the two phases and mass transfer occurs by diffusion and not by dispersion. This article is a review of the application of membrane contactor technology for ozonation applied to water treatment. The challenge of removing micropollutants is also discussed. In the first part, the ozonation process is mentioned, in particular chemical reactions induced by ozone and its advantages and disadvantages. In the second part, generalities on membrane contactor technology using hollow fibers are presented. Then, the benefit of using a membrane contactor for the elimination of micropollutants is shown through a critical analysis of the influence of several parameters on the ozonation efficiency. The impact of the membrane material is also highlighted. Finally, several modeling approaches are presented as a tool for a better understanding of the phenomena occurring in the contactor and a possible optimization of this process.
Collapse
Affiliation(s)
- Alice Schmitt
- IEM (Institut Européen des Membranes), UMR 5635 (CNRS-ENSCM-UM2), Université Montpellier 2, Place E. Bataillon, F-34095 Montpellier, France
| | - Julie Mendret
- IEM (Institut Européen des Membranes), UMR 5635 (CNRS-ENSCM-UM2), Université Montpellier 2, Place E. Bataillon, F-34095 Montpellier, France.
| | - Michel Roustan
- TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Stephan Brosillon
- IEM (Institut Européen des Membranes), UMR 5635 (CNRS-ENSCM-UM2), Université Montpellier 2, Place E. Bataillon, F-34095 Montpellier, France
| |
Collapse
|
58
|
Wang Z, Zhang Y, Li K, Sun Z, Wang J. Enhanced mineralization of reactive brilliant red X-3B by UV driven photocatalytic membrane contact ozonation. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:122194. [PMID: 32044632 DOI: 10.1016/j.jhazmat.2020.122194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/08/2020] [Accepted: 01/25/2020] [Indexed: 06/10/2023]
Abstract
The partial oxidation on refractory organics in ozonation process and the poor performance of mass transfer between ozone (O3) phase and liquid phase by common O3 distribution techniques inhibit the practical application of O3. To overcome these defects, hollow fiber membrane was applied in membrane contact ozonation (MCO)-UV process for the reactive brilliant red X-3B (RBRX-3B) degradation. The efficiency of mass transfer was guaranteed due to the enormous gas/liquid contact area supplied in this bubble-less O3 transfer process. UV photolysis not only significantly improved the O3 utilization efficiency but also accelerated the mineralization of RBRX-3B by promoting O3 to decompose to hydroxyl radicals (OH). When 15 mg/L of O3 was supplied at flow rate of 0.2 L/min, and a liquid velocity of 0.453 m/s, the chemical oxygen demand (COD) removal and total organic carbon (TOC) removal reached 90 % and 77 %, respectively. The rate constant for TOC removal in the MCO-UV process (7.89 × 10-3 min-1) was 3.08 and 6.12 times higher than that in MCO and UV photolysis processes, respectively. Furthermore, the mineralization efficiency (ΔCOD/ΔO3 = 0.84 mg/mg) and electrical energy per mass (EEM = 4.7 kW h/kg) were calculated and these results indicated a promising future for the MCO-UV process.
Collapse
Affiliation(s)
- Zhiyong Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China; National Engineering Laboratory for Industrial Wastewater Treatment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Yong Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China; National Engineering Laboratory for Industrial Wastewater Treatment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Kuiling Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China; National Engineering Laboratory for Industrial Wastewater Treatment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Zhengguang Sun
- Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, Hubei University, Wuhan, 430062, China
| | - Jun Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China; National Engineering Laboratory for Industrial Wastewater Treatment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
59
|
Wang H, Zhan J, Gao L, Yu G, Komarneni S, Wang Y. Kinetics and mechanism of thiamethoxam abatement by ozonation and ozone-based advanced oxidation processes. JOURNAL OF HAZARDOUS MATERIALS 2020; 390:122180. [PMID: 32006850 DOI: 10.1016/j.jhazmat.2020.122180] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/18/2020] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
In this study, the abatement of neonicotinoid insecticide, thiamethoxam, by single ozonation, ozone/ultraviolet (O3/UV) and electro-peroxone (EP) process was evaluated. The second-order rate constants for the reaction of thiamethoxam with O3 and hydroxyl radical (OH) at pH 7 were determined to be 15.4 M-1 s-1 and 3.9 × 109 M-1 s-1, respectively. The degradation pathways of thiamethoxam were proposed based on quantum chemical calculations and transformation products were identified using chromatographic and mass-spectrometric techniques. The acute and chronic toxicity of thiamethoxam and its major TPs to various aquatic organisms were assessed. With typical ozone doses applied in water treatment (≤5 mg/L), thiamethoxam was abated by only ∼16-32 % in two real water matrices (groundwater and surface water) during single ozonation, but by ∼100 % and >70 % during the O3/UV and EP treatment, respectively. The energy demand to abate 90 % thiamethoxam in the two water matrices was generally comparable for single ozonation and the EP process (∼0.14 ± 0.03 kW h/m3), but higher for the O3/UV process (0.21-0.22 kW h/m3). These results suggest that single ozonation is unable to sufficiently abate thiamethoxam under typical conditions of water treatment. Therefore, ozone-based advanced oxidation processes are needed to enhance thiamethoxam abatement.
Collapse
Affiliation(s)
- Huijiao Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Juhong Zhan
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Lingwei Gao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Gang Yu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Sridhar Komarneni
- Department of Ecosystem Science and Management and Material Research Institute, 205 MRL Building, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yujue Wang
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
60
|
Guo Y, Zhao E, Wang J, Zhang X, Huang H, Yu G, Wang Y. Comparison of emerging contaminant abatement by conventional ozonation, catalytic ozonation, O 3/H 2O 2 and electro-peroxone processes. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121829. [PMID: 31836369 DOI: 10.1016/j.jhazmat.2019.121829] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
The abatement of several emerging contaminants (ECs) in groundwater by conventional ozonation and three ozone-based advanced oxidation processes (AOPs) - catalytic ozonation with manganese dioxide (MnO2), conventional peroxone (O3/H2O2), and electro-peroxone (EP) - was compared in this study. The addition of MnO2, H2O2, or electro-generation of H2O2 during ozonation enhanced ozone transformation to hydroxyl radicals to different extent. These changes did not considerably influence the abatement of ECs with moderate to high ozone reactivities ( [Formula: see text] ), whose abatements were similar with >90 % during all four processes. In comparison, the abatements of ozone-refractory ECs (kO3< 15 M-1s-1) were lower during conventional ozonation (∼40-85 % abatement), but could be enhanced by ∼10-40 % during the three ozone-based AOPs. Besides enhancing ozone-refractory EC abatement, the three AOPs, especially the O3/H2O2 and EP processes, reduced considerably bromate formation compared to conventional ozonation. These results demonstrate that the EP process performs similarly as catalytic ozonation and O3/H2O2 processes in terms of EC abatement and bromate control. Considering its more convenient, flexible, and safer way of operation, the EP process may provide an attractive alternative to the two more traditional AOPs for water treatment.
Collapse
Affiliation(s)
- Yang Guo
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Erzhuo Zhao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jun Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xiaoyuan Zhang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Haiou Huang
- School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Gang Yu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yujue Wang
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
61
|
Wei K, Wang Z, Ouyang C, Cao X, Liang P, Huang X, Zhang X. A hybrid fluidized-bed reactor (HFBR) based on arrayed ceramic membranes (ACMs) coupled with powdered activated carbon (PAC) for efficient catalytic ozonation: A comprehensive study on a pilot scale. WATER RESEARCH 2020; 173:115536. [PMID: 32032886 DOI: 10.1016/j.watres.2020.115536] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 12/16/2019] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Taking advantage of the high mass transfer in the bulk solution of fluidized-bed reactor (FBR), and the benefits of simultaneous particle separation and ozone catalysis on ceramic membranes, we proposed a hybrid fluidized-bed reactor (HFBR) based on arrayed ceramic membranes (ACMs) coupled with powdered activated carbon (PAC) for efficient catalytic ozonation. The optimum HFBR performance on a pilot scale was found at PAC addition of 3 g/L, ozone dosage of 25 mg/L, hydraulic retention time of 60 min and auxiliary aeration strength of 5 m3/h. During the 30-day treatment of coal-gasification secondary effluent (200 L/h), the HFBR system revealed not only a 117% increase in ozone utilization efficiency (ΔCOD/ΔO3) upon pure ozonation but also a highly purified effluent with better sterilization and low residual bromate (∼11 μg/L). Low-molecular-weight organic fragments and acids, as well as phthalate esters were identified as the main products in this process. By density functional theory (DFT) calculations, it was found the main functional groups (carbonyls, -C=O) on the PAC could be protected from direct ozonation in the presence of ozone-degradable organics (e.g. phenolic and aliphatic compounds) in the wastewater through an ozone-competing reaction, which prevented the rapid inactivation of the PAC in catalytic ozonation. A longer service life and cheaper materials for ceramic membranes would benefit low operation costs for the HFBR. Moreover, the addition of PAC could greatly reduce ozone demand by ∼60% in the HFBR, and therefore decrease energy consumption by ∼30%. Hence, the HFBR was proved to be a highly competitive technology for wide application in the near future.
Collapse
Affiliation(s)
- Kajia Wei
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Zhuo Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Changpei Ouyang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xiaoxin Cao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xiaoyuan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
62
|
Cruz-Alcalde A, Esplugas S, Sans C. Characterization and fate of EfOM during ozonation applied for effective abatement of recalcitrant micropollutants. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
63
|
Ghanbari F, Khatebasreh M, Mahdavianpour M, Lin KYA. Oxidative removal of benzotriazole using peroxymonosulfate/ozone/ultrasound: Synergy, optimization, degradation intermediates and utilizing for real wastewater. CHEMOSPHERE 2020; 244:125326. [PMID: 31809930 DOI: 10.1016/j.chemosphere.2019.125326] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/18/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
This study investigated the degradation efficiency of BTA using combination of ultrasound (US), peroxymonosulfate (PMS), and ozone. The effects of different operational parameters were investigated to optimize the process performance. The results showed that the highest removal efficiency was reached at neutral pH, ozone = 6.8 mg/L, PMS = 1.5 mM and US power = 200 W. Under these conditions, 40 mg/L of BTA was completely degraded within 60 min leading to the almost 85% of chemical oxygen demand removal, 75% of total organic carbon removal and 73.3% of organic nitrogen removal. Based on the scavenging tests, it was found that hydroxyl radical was the main oxidizing agent in the oxidation of BTA by PMS/ozone/US process. The inhibitive effect of anions on BTA removal was under this order NO2- > HCO3- > Cl- > NO3- > SO42-. Degradation intermediates of BTA were identified and oxidation pathway was proposed. Finally, real samples of saline water, petrochemical wastewater and secondary effluent matrices were investigated for the performance of PMS/ozone/US process and it was found that 54%, 72.3% and 94.6% BTA removal efficiency were reached, respectively. PMS/ozone/US process was compared to US/peroxone (ozone + H2O2) and the results showed importance of US irradiation in both systems. Accordingly, PMS/ozone/US process could be considered as an efficient and promising process for BTA degradation in various wastewaters.
Collapse
Affiliation(s)
- Farshid Ghanbari
- Department of Environmental Health Engineering, Abadan Faculty of Medical Sciences, Abadan, Iran.
| | - Masoumeh Khatebasreh
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mostafa Mahdavianpour
- Department of Environmental Health Engineering, Abadan Faculty of Medical Sciences, Abadan, Iran
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture & Research Center of Sustainable Energy and Nanotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan.
| |
Collapse
|
64
|
Advanced Oxidation Processes for the Removal of Antibiotics from Water. An Overview. WATER 2019. [DOI: 10.3390/w12010102] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this work, the application of advanced oxidation processes (AOPs) for the removal of antibiotics from water has been reviewed. The present concern about water has been exposed, and the main problems derived from the presence of emerging pollutants have been analyzed. Photolysis processes, ozone-based AOPs including ozonation, O3/UV, O3/H2O2, and O3/H2O2/UV, hydrogen peroxide-based methods (i.e., H2O2/UV, Fenton, Fenton-like, hetero-Fenton, and photo-Fenton), heterogeneous photocatalysis (TiO2/UV and TiO2/H2O2/UV systems), and sonochemical and electrooxidative AOPs have been reviewed. The main challenges and prospects of AOPs, as well as some recommendations for the improvement of AOPs aimed at the removal of antibiotics from wastewaters, are pointed out.
Collapse
|
65
|
Guo Y, Zhu S, Wang B, Huang J, Deng S, Yu G, Wang Y. Modelling of emerging contaminant removal during heterogeneous catalytic ozonation using chemical kinetic approaches. JOURNAL OF HAZARDOUS MATERIALS 2019; 380:120888. [PMID: 31336267 DOI: 10.1016/j.jhazmat.2019.120888] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
This study evaluated the prediction of emerging contaminant (EC) removal during heterogeneous catalytic ozonation by chemical kinetic models. Six ECs with differing ozone reactivity were spiked in a synthetic water and a groundwater, then treated by conventional ozonation and heterogeneous catalytic ozonation with α- or β-MnO2 catalysts. Results show that catalysts did not considerably influence the removal of ECs with high and intermediate ozone reactivity (diclofenac, gemfibrozil, and bezafibrate), but enhanced the removal efficiencies of ECs with low ozone reactivity (2,4-dichlorophenoxyacetic acid, clofibric acid, and ibuprofen) to varied extent (˜10-30%). The removal efficiencies of ECs could be reasonably predicted using chemical kinetic models based on the ozone (O3) and hydroxyl radical (OH) rate constants of ECs, pseudo-first-order rate constants observed for EC adsorption on the MnO2 catalysts, and O3 and OH exposures observed for catalytic ozonation. Furthermore, the model reveals that ECs are removed mainly by O3 and/or •OH oxidation during heterogeneous catalytic ozonation, while adsorption of ECs on catalysts contributes negligibly. Therefore, the removal efficiencies of ECs could be satisfactorily predicted using a simplified model based only on the O3 and OH rate constant and the O3 and OH exposures.
Collapse
Affiliation(s)
- Yang Guo
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing, 100084, China
| | - Shuai Zhu
- Beijing Guohuan Tsinghua Environmental Engineering Design & Research Institute Co.,Ltd, China
| | - Bin Wang
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing, 100084, China
| | - Jun Huang
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing, 100084, China
| | - Shubo Deng
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing, 100084, China
| | - Gang Yu
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing, 100084, China
| | - Yujue Wang
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing, 100084, China.
| |
Collapse
|
66
|
Yuan J, Van Dyke MI, Huck PM. Selection and evaluation of water pretreatment technologies for managed aquifer recharge (MAR) with reclaimed water. CHEMOSPHERE 2019; 236:124886. [PMID: 31564425 DOI: 10.1016/j.chemosphere.2019.124886] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
Managed aquifer recharge with reclaimed water is a promising strategy for indirect potable reuse. However, residual contaminants in the treated wastewater effluent could potentially have adverse effects on human health. Hence, adequate water pretreatment is required. A multi-criteria approach was used to select and evaluate suitable water pretreatment technologies that can remove these critical contaminants in wastewater effluent for MAR identified in a previous study (Yuan et al., 2017). The treatment efficiency targets were calculated based on the concentrations and the suggested limits of critical contaminants. Treatment efficiency credits were then assigned to each treatment option for the removal of critical contaminants based on literature data. Treatment units that resulted in the highest efficiency credit scores were selected and combined into treatment train options, which were evaluated in terms of treatability, cost, and sustainability. This paper proposes an approach for the selection and evaluation of water treatment options, which will be helpful to guide the future implementation of MAR projects with reclaimed water.
Collapse
Affiliation(s)
- Jie Yuan
- NSERC Chair in Water Treatment, Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
| | - Michele I Van Dyke
- NSERC Chair in Water Treatment, Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Peter M Huck
- NSERC Chair in Water Treatment, Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
67
|
Ur Rehman SW, Wang H, Yao W, Deantes-Espinosa VM, Wang B, Huang J, Deng S, Yu G, Wang Y. Ozonation of the algaecide irgarol: Kinetics, transformation products, and toxicity. CHEMOSPHERE 2019; 236:124374. [PMID: 31344619 DOI: 10.1016/j.chemosphere.2019.124374] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 07/04/2019] [Accepted: 07/14/2019] [Indexed: 05/14/2023]
Abstract
The degradation of irgarol, a frequently detected algaecide in the aquatic environment, by ozonation was investigated in this study. The second-order rate constants for the reaction of irgarol with ozone (O3) and hydroxyl radical (OH) were determined to be 505 M-1 s-1 and 4.96 × 109 M-1 s-1, respectively. During ozonation, sixteen transformation products (TPs) of irgarol were proposed using an electrospray ionization quadrupole time-of-flight mass spectrometer. Most of the TPs are ozone-refractory compounds and therefore could only be further transformed by oxidation with OH generated from O3 decomposition during ozonation. Toxicity analysis using the ecological structure activity relationship class program indicates that some of the TPs (e.g., irgarol sulfoxide) still exhibit high acute or chronic toxicity to aquatic organisms (fish, daphnia, and algae) as the parent compound. With a typical ozone dose applied in water treatment (2 mg/L, corresponding to a specific ozone dose of 0.8 mg O3/mg dissolved organic carbon), irgarol could be completely abated in a selected surface water by ozonation. However, most of the TPs persisted in the ozonation effluent because of their low ozone reactivity. The results of this study suggest that ozonation with typical ozone doses applied in water treatment may not be able to sufficiently reduce the ecotoxicological effects of irgarol on aquatic organisms. More effective treatment processes such as ozone-based advanced oxidation processes may be required to enhance the removal of toxic TPs of irgarol in water treatment.
Collapse
Affiliation(s)
- Syed Waqi Ur Rehman
- School of Environment, Tsinghua University, Beijing, 100084, China; Beijing Key Laboratory for Emerging Organic Contaminants Control, Tsinghua University, Beijing, 100084, China; State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, 100084, China
| | - Huijiao Wang
- School of Environment, Tsinghua University, Beijing, 100084, China; Beijing Key Laboratory for Emerging Organic Contaminants Control, Tsinghua University, Beijing, 100084, China
| | - Weikun Yao
- School of Environment, Tsinghua University, Beijing, 100084, China; Beijing Key Laboratory for Emerging Organic Contaminants Control, Tsinghua University, Beijing, 100084, China
| | | | - Bin Wang
- School of Environment, Tsinghua University, Beijing, 100084, China; Beijing Key Laboratory for Emerging Organic Contaminants Control, Tsinghua University, Beijing, 100084, China
| | - Jun Huang
- School of Environment, Tsinghua University, Beijing, 100084, China; Beijing Key Laboratory for Emerging Organic Contaminants Control, Tsinghua University, Beijing, 100084, China
| | - Shubo Deng
- School of Environment, Tsinghua University, Beijing, 100084, China; Beijing Key Laboratory for Emerging Organic Contaminants Control, Tsinghua University, Beijing, 100084, China
| | - Gang Yu
- School of Environment, Tsinghua University, Beijing, 100084, China; Beijing Key Laboratory for Emerging Organic Contaminants Control, Tsinghua University, Beijing, 100084, China
| | - Yujue Wang
- School of Environment, Tsinghua University, Beijing, 100084, China; Beijing Key Laboratory for Emerging Organic Contaminants Control, Tsinghua University, Beijing, 100084, China; State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
68
|
Ghalebizade M, Ayati B. Acid Orange 7 treatment and fate by electro-peroxone process using novel electrode arrangement. CHEMOSPHERE 2019; 235:1007-1014. [PMID: 31561289 DOI: 10.1016/j.chemosphere.2019.06.211] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/01/2019] [Accepted: 06/27/2019] [Indexed: 06/10/2023]
Abstract
Electro-peroxone is a novel advanced oxidation process that surpasses ozonation or peroxone because of its advantages. In this technology, combining ozone and hydrogen peroxide generated electrochemically leads to the production of hydroxyl radicals, which are the strongest oxidizing agents. In this study, a cylindrical reactor with a continuous circular flow using novel arrangements of electrodes was used to examine the effects of variant parameters on dye removal efficiency. Acid Orange 7 (C16H11N2NaO4S) served as an indicator pollutant. Based on overall energy consumption and energy consumption per dye removed weight, electro-peroxone not only has proper efficiency at high dye concentrations, it also has the least energy consumption per dye removed weight; 53 KWh kg-1 is achieved for 500 mg L-1 initial dye concentration at 99% removal efficiency after 40 min. The results show that at the optimum condition of [Dye] = 500 mg L-1, pH = 7.7, applied current = 0.5 A, O3 rate = 1 L min-1, and [Na2SO4] = 0.1 M, dye is removed completely after 90 min and COD and TOC removal is 99% and 90%, respectively. LC-MS results also showed that AO7 initially was converted to more toxic compounds than AO7 like benzoic acid but finally linear acidic intermediate with less toxicity such as fumaric acid was formed.
Collapse
Affiliation(s)
- Mohamad Ghalebizade
- Candidate of Environmental Engineering, Civil and Environmental Engineering Faculty, Tarbiat Modares University, P.O. Box, 14115-397, Tehran, Iran.
| | - Bita Ayati
- Civil and Environmental Engineering Faculty, Tarbiat Modares University, P.O. Box, 14115-397, Tehran, Iran.
| |
Collapse
|
69
|
Ike IA, Karanfil T, Cho J, Hur J. Oxidation byproducts from the degradation of dissolved organic matter by advanced oxidation processes - A critical review. WATER RESEARCH 2019; 164:114929. [PMID: 31387056 DOI: 10.1016/j.watres.2019.114929] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/15/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
Advanced oxidation processes (AOPs) have been increasingly used for the treatment of source waters and wastewaters. AOPs characteristically produce oxidation byproducts (OBPs) from the partial degradation of dissolved organic matter (DOM) and/or the transformation of inorganic ions (especially, halides) into highly toxic substances including bromate and halogenated organic OBPs (X-OBPs). However, despite the enormous health and environmental risks posed by X-OBPs, an integral understanding of the complex OBP formation mechanisms during AOPs is lacking, which limits the development of safe and effective AOP-based water treatment schemes. The present critical and comprehensive review was intended to fill in this important knowledge gap. The study shows, contrary to the hitherto prevailing opinion, that the direct incorporation of halide atoms (X•) into DOM makes an insignificant contribution to the formation of organic X-OBPs. The principal halogenating agent is hypohalous acid/hypohalite (HOX/XO-), whose control is, therefore, critical to the reduction of both organic and inorganic X-OBPs. Significant generation of X-OBPs has been observed during sulfate radical AOPs (SR-AOPs), which arises principally from the oxidizing effects of the unactivated oxidant and/or the applied catalytic activator rather than the sulfate radical as is commonly held. A high organic carbon/X- molar ratio (>5), an effective non-catalytic activator such as UV or Fe2+, a low oxidant concentration, and short treatment time are suggested to limit the accumulation of HOX/XO- and, thus, the generation of X-OBPs during SR-AOPs. At present, there are no established techniques to prevent the formation of X-OBPs during UV/chlor(am)ine AOPs because the maintenance of substantial amounts of active halogen is essential to these processes. The findings and conclusions reached in this review would advance the research and application of AOPs.
Collapse
Affiliation(s)
- Ikechukwu A Ike
- Department of Environment and Energy, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul, 05006, South Korea
| | - Tanju Karanfil
- Environmental Engineering and Earth Sciences, Clemson University, 342 Computer Court, Anderson, SC, 29625, USA
| | - Jinwoo Cho
- Department of Environment and Energy, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul, 05006, South Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul, 05006, South Korea.
| |
Collapse
|
70
|
Wang H, Mustafa M, Yu G, Östman M, Cheng Y, Wang Y, Tysklind M. Oxidation of emerging biocides and antibiotics in wastewater by ozonation and the electro-peroxone process. CHEMOSPHERE 2019; 235:575-585. [PMID: 31276870 DOI: 10.1016/j.chemosphere.2019.06.205] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/19/2019] [Accepted: 06/26/2019] [Indexed: 06/09/2023]
Abstract
This study investigated the abatement of a number of antimicrobials frequently detected in municipal wastewater by conventional ozonation and a recently developed ozone-based advanced oxidation process, the electro-peroxone (E-peroxone) process. A synthetic water and a real secondary wastewater effluent were spiked with fourteen antimicrobials, including antibiotics and biocides, and then treated by the two processes. The results show that most of the antibiotics investigated (e.g., ofloxacin, trimethoprim, norfloxacin, and ciprofloxacin) readily react with ozone (O3) and could therefore be efficiently eliminated from the water matrices by direct O3 oxidation during both processes. In contrast, most of the biocides tested in this study (e.g., clotrimazole, pentamidine, bixafen, propiconazole, and fluconazole) were only moderately reactive, or non-reactive, with O3. Therefore, these biocides were removed at considerably lower rate than the antibiotics during the two ozone-based processes, with hydroxyl radical (OH) oxidation playing an important role in their abatement mechanisms. When compared with conventional ozonation, the E-peroxone process is defined by the in situ electrogeneration of hydrogen peroxide, which considerably enhances the transformation of O3 to OH. As a result, the E-peroxone process significantly accelerated the abatement of biocides and required a considerably shorter treatment time to eliminate all of the tested compounds from the water matrices than conventional ozonation. In addition, the E-peroxone process enhanced the contributions of OH fractions to the abatement of moderately ozone reactive benzotriazoles. These results demonstrate that the E-peroxone process holds promise as an effective tertiary treatment option for enhancing the abatement of ozone-resistant antimicrobials in wastewater.
Collapse
Affiliation(s)
- Huijiao Wang
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China; School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Key Laboratory for Solid Waste Management and Environment Safety, Tsinghua University, Beijing, 100084, China
| | - Majid Mustafa
- Department of Chemistry, Umeå University, SE-90187, Umeå, Sweden.
| | - Gang Yu
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Key Laboratory for Solid Waste Management and Environment Safety, Tsinghua University, Beijing, 100084, China
| | - Marcus Östman
- Department of Chemistry, Umeå University, SE-90187, Umeå, Sweden
| | - Yi Cheng
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yujue Wang
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Key Laboratory for Solid Waste Management and Environment Safety, Tsinghua University, Beijing, 100084, China.
| | - Mats Tysklind
- Department of Chemistry, Umeå University, SE-90187, Umeå, Sweden
| |
Collapse
|
71
|
Chi H, Wang Z, He X, Zhang J, Wang D, Ma J. Activation of peroxymonosulfate system by copper-based catalyst for degradation of naproxen: Mechanisms and pathways. CHEMOSPHERE 2019; 228:54-64. [PMID: 31022620 DOI: 10.1016/j.chemosphere.2019.03.119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/13/2019] [Accepted: 03/17/2019] [Indexed: 06/09/2023]
Abstract
Organic degradation by zero-valent metal (ZVM)-activated peroxymonosulfate (PMS) systems has drawn great attention in water treatment. Among various types of ZVM, zero-valent copper (ZVC) showed greatest activating capacity. However, the disadvantages of the released Cu2+ limit the practical utilization of ZVC. In this study, the activation capacity of four normal-sized copper catalysts, namely, copper sheet, graphene-copper sheet, copper foam, and graphene-copper foam, for PMS was investigated using Naproxen (NPX) as the probe compound. Results showed that the degradation efficiency of NPX increased by 10%, while the release of Cu2+ decreased by 30% by coating the copper with graphene. Stability tests showed that all of the four catalysts exhibited considerable stability in PMS activation. Furthermore, we found for the first time that the hydroxyl radical was the dominant species in the degradation of NPX rather than the sulfate radical, which was proved by ESR and radical scavenging experiments. Finally, six intermediates were identified by HPLC-MS/MS, and the degradation pathways were proposed. This study confirmed the feasibility of graphene coating on metals to achieve the enhancement of PMS activation.
Collapse
Affiliation(s)
- Huizhong Chi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Zeyu Wang
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, 150001, China.
| | - Xu He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Jianqiao Zhang
- Environmental Protection and Affairs Bureau of Shenzhen Luohu District, Shenzhen, 518003, China.
| | - Da Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
72
|
Optimization of the Electro-Peroxone Process for Micropollutant Abatement Using Chemical Kinetic Approaches. Molecules 2019; 24:molecules24142638. [PMID: 31330777 PMCID: PMC6680746 DOI: 10.3390/molecules24142638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 12/26/2022] Open
Abstract
The electro-peroxone (E-peroxone) process is an emerging electrocatalytic ozonation process that is enabled by in situ producing hydrogen peroxide (H2O2) from cathodic oxygen reduction during ozonation. The in situ-generated H2O2 can then promote ozone (O3) transformation to hydroxyl radicals (•OH), and thus enhance the abatement of ozone-refractory pollutants compared to conventional ozonation. In this study, a chemical kinetic model was employed to simulate micropollutant abatement during the E-peroxone treatment of various water matrices (surface water, secondary wastewater effluent, and groundwater). Results show that by following the O3 and •OH exposures during the E-peroxone process, the abatement kinetics of a variety of model micropollutants could be well predicted using the model. In addition, the effect of specific ozone doses on micropollutant abatement efficiencies could be quantitatively evaluated using the model. Therefore, the chemical kinetic model can be used to reveal important information for the design and optimization of the treatment time and ozone doses of the E-peroxone process for cost-effective micropollutant abatement in water and wastewater treatment.
Collapse
|
73
|
Yao W, Fu J, Yang H, Yu G, Wang Y. The beneficial effect of cathodic hydrogen peroxide generation on mitigating chlorinated by-product formation during water treatment by an electro-peroxone process. WATER RESEARCH 2019; 157:209-217. [PMID: 30954696 DOI: 10.1016/j.watres.2019.03.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 06/09/2023]
Abstract
The formation of chlorinated by-products is a major concern associated with electrochemical water treatment processes. This study investigated the formation of chlorinated by-products during surface water treatment by a newly developed electrochemical advanced oxidation process (EAOP), the electro-peroxone (E-peroxone) process, which couples ozonation with in situ electro-generation of hydrogen peroxide (H2O2) from cathodic oxygen reduction. Due to the enhanced ozone (O3) conversion to hydroxyl radicals (•OH) by electro-generated H2O2, the E-peroxone process considerably accelerated the abatement of ozone-refractory micropollutants such as clofibric acid and chloramphenicol in the selected surface water compared to conventional ozonation. In addition, the cathodically generated H2O2 effectively quenched hypochlorous acid (HOCl) derived from the anodic oxidation of chloride in the surface water. Therefore, the formation of trichloromethane (TCM) and chloroacetic acids (CAAs) from the reactions of HOCl with dissolved organic matter (DOM) was insignificant during the E-peroxone process, and similar levels of TCM and CAAs were generally observed in the conventional ozonation and E-peroxone treated water. In contrast, considerable amounts of HOCl could be generated from the anodic oxidation of chloride and then accumulated in the surface water during conventional electrolysis process, which resulted in significantly higher concentrations of TCM and CAAs in the electrolysis treated water. The results of this study suggest that the E-peroxone process can overcome the major limitation of conventional electrochemical processes and provide an effective and safe EAOP alternative for micropollutant abatement during water treatment.
Collapse
Affiliation(s)
- Weikun Yao
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Key Laboratory for Solid Waste Management and Environment Safety, Tsinghua University, Beijing, 100084, China
| | - Jing Fu
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Key Laboratory for Solid Waste Management and Environment Safety, Tsinghua University, Beijing, 100084, China
| | - Hongwei Yang
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Key Laboratory for Solid Waste Management and Environment Safety, Tsinghua University, Beijing, 100084, China.
| | - Gang Yu
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Key Laboratory for Solid Waste Management and Environment Safety, Tsinghua University, Beijing, 100084, China
| | - Yujue Wang
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Key Laboratory for Solid Waste Management and Environment Safety, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
74
|
Zhou W, Meng X, Gao J, Alshawabkeh AN. Hydrogen peroxide generation from O 2 electroreduction for environmental remediation: A state-of-the-art review. CHEMOSPHERE 2019; 225:588-607. [PMID: 30903840 PMCID: PMC6921702 DOI: 10.1016/j.chemosphere.2019.03.042] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 05/12/2023]
Abstract
The electrochemical production of hydrogen peroxide (H2O2) by 2-electron oxygen reduction reaction (ORR) is an attractive alternative to the present complex anthraquinone process. The objective of this paper is to provide a state-of-the-arts review of the most important aspects of this process. First, recent advances in H2O2 production are reviewed and the advantages of H2O2 electrogeneration via 2-electron ORR are highlighted. Second, the selectivity of the ORR pathway towards H2O2 formation as well as the development process of H2O2 production are presented. The cathode characteristics are the decisive factors of H2O2 production. Thus the focus is shifted to the introduction of commonly used carbon cathodes and their modification methods, including the introduction of other active carbon materials, hetero-atoms doping (i.e., O, N, F, B, and P) and decoration with metal oxides. Cathode stability is evaluated due to its significance for long-term application. Effects of various operational parameters, such as electrode potential/current density, supporting electrolyte, electrolyte pH, temperature, dissolved oxygen, and current mode on H2O2 production are then discussed. Additionally, the environmental application of electrogenerated H2O2 on aqueous and gaseous contaminants removal, including dyes, pesticides, herbicides, phenolic compounds, drugs, VOCs, SO2, NO, and Hg0, are described. Finally, a brief conclusion about the recent progress achieved in H2O2 electrogeneration via 2-electron ORR and an outlook on future research challenges are proposed.
Collapse
Affiliation(s)
- Wei Zhou
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 PR China; Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Xiaoxiao Meng
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 PR China
| | - Jihui Gao
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 PR China.
| | - Akram N Alshawabkeh
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
75
|
Guillossou R, Le Roux J, Mailler R, Vulliet E, Morlay C, Nauleau F, Gasperi J, Rocher V. Organic micropollutants in a large wastewater treatment plant: What are the benefits of an advanced treatment by activated carbon adsorption in comparison to conventional treatment? CHEMOSPHERE 2019; 218:1050-1060. [PMID: 30609484 DOI: 10.1016/j.chemosphere.2018.11.182] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/16/2018] [Accepted: 11/26/2018] [Indexed: 06/09/2023]
Abstract
Several advanced treatments, such as ozonation or activated carbon adsorption, are currently considered for the removal of organic micropollutants (OMPs) in wastewater treatment plants (WWTP). However, little is known on the overall performances of a WWTP upgraded with those processes and the benefits provided regarding the elimination of multiple families of OMPs. In this study, 5 sampling campaigns were performed to determine the removal of 48 OMPs in a WWTP followed by an activated carbon pilot. The primary treatment had no effect on OMPs (removals < 20%), whereas the biological treatment removed OMPs that can be easily sorbed onto sludges or biodegraded (>60%). The additional elimination provided by the advanced treatment was not significant (<10%) for OMPs already well removed in the WWTP) but was substantial (>30%) for recalcitrant OMPs. Removals higher than 60% were obtained for all OMPs (except azithromycin and sulfamethoxazole) over the WWTP and the activated carbon pilot. The adsorption conditions (10 g/m3 fresh activated carbon addition) were not sufficient to achieve the 80% removal targeted in Switzerland for compounds suggested as indicator substances for wastewater treatment. A higher dose of activated carbon or the combination with another advanced treatment should be used to achieve a satisfactory removal of those compounds.
Collapse
Affiliation(s)
- Ronan Guillossou
- Université Paris-Est, Laboratoire Eau, Environnement, Systèmes Urbains (LEESU), UMR MA 102 - AgroParisTech, 61 Avenue du Général de Gaulle, Créteil Cedex, France.
| | - Julien Le Roux
- Université Paris-Est, Laboratoire Eau, Environnement, Systèmes Urbains (LEESU), UMR MA 102 - AgroParisTech, 61 Avenue du Général de Gaulle, Créteil Cedex, France
| | - Romain Mailler
- Syndicat Interdépartemental pour l'Assainissement de l'Agglomération Parisienne (SIAAP), Direction Innovation et Environnement, 82 Avenue Kléber, Colombes, France
| | - Emmanuelle Vulliet
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS-Lyon, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, Villeurbanne, France
| | - Catherine Morlay
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut National des Sciences Appliquées-Lyon, MATEIS, UMR 5510, Villeurbanne, France
| | - Fabrice Nauleau
- Saur, Direction de la Recherche et du Développement, Maurepas, France
| | - Johnny Gasperi
- Université Paris-Est, Laboratoire Eau, Environnement, Systèmes Urbains (LEESU), UMR MA 102 - AgroParisTech, 61 Avenue du Général de Gaulle, Créteil Cedex, France.
| | - Vincent Rocher
- Syndicat Interdépartemental pour l'Assainissement de l'Agglomération Parisienne (SIAAP), Direction Innovation et Environnement, 82 Avenue Kléber, Colombes, France
| |
Collapse
|
76
|
Chen W, Gu Z, Wen P, Li Q. Degradation of refractory organic contaminants in membrane concentrates from landfill leachate by a combined coagulation-ozonation process. CHEMOSPHERE 2019; 217:411-422. [PMID: 30423520 DOI: 10.1016/j.chemosphere.2018.11.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/30/2018] [Accepted: 11/01/2018] [Indexed: 05/21/2023]
Abstract
Landfill leachate is a typical refractory wastewater for which research into rapid and efficient treatment methods has become very topical. In this study, a coagulation-ozonation process was developed to treat the concentrate arising from membrane treatment of landfill leachate. The effect of coagulant type and initial pH on treatment efficiencies was investigated. Results showed that many of organics were effectively removed in the coagulation process. Thereafter, ozone was applied to further treat the coagulation-resistant organic substances. Our results revealed that the degradation rate of these coagulation-resistant substances followed the trend (color number) CN > (light absorbance at 254 nm) UV254 > (chemical oxygen demand) COD, and the residual coagulation-resistant substances were oxidized rapidly in the ozone process. Ozone first destroyed the molecular structure of fulvic acid and the by-products generated, such as protein-like substances. In addition, the molecular weight, organic condensation degree, and concentration of benzene ring compounds were considerably decreased. Moreover, the macro molecular organics (i.e., humic acid and fulvic acid) within the size range 1-100 kDa were effectively degraded and partially transformed into bicarbonate. Overall, the combined coagulation-ozonation process reduced COD, UV254, and CN in the landfill leachate concentrate by 88.32%, 94.37%, and 98.83%, respectively, and thus the biodegradability of the treated leachate also was significantly improved. This excellent performance proved the feasibility of the combined coagulation-ozonation process for the removal of recalcitrant organic substances contained in landfill leachate concentrate, benefiting subsequent biological treatment.
Collapse
Affiliation(s)
- Weiming Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Zhepei Gu
- Key Laboratory of Special Wastewater Treatment of Sichuan Province Higher Education System, College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Peng Wen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Qibin Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China; Key Laboratory of Special Wastewater Treatment of Sichuan Province Higher Education System, College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China.
| |
Collapse
|
77
|
Enhanced treatment of pharmaceutical wastewater by combining three-dimensional electrochemical process with ozonation to in situ regenerate granular activated carbon particle electrodes. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.06.030] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
78
|
Davarnejad R, Sabzehei M. Sodium diclofenac removal from a pharmaceutical wastewater by electro-Fenton process. SEP SCI TECHNOL 2018. [DOI: 10.1080/01496395.2018.1540639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Reza Davarnejad
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, Iran
| | - Meysam Sabzehei
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, Iran
| |
Collapse
|
79
|
Sun Y, Angelotti B, Brooks M, Dowbiggin B, Evans PJ, Devins B, Wang ZW. A pilot-scale investigation of disinfection by-product precursors and trace organic removal mechanisms in ozone-biologically activated carbon treatment for potable reuse. CHEMOSPHERE 2018; 210:539-549. [PMID: 30029146 DOI: 10.1016/j.chemosphere.2018.06.162] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 06/08/2023]
Abstract
Although granular activated carbon (GAC) has been broadly applied in ozone-biologically activated carbon filtration (O3/BAC) systems for potable reuse of municipal wastewater, the mechanisms of various pollutant removal remain largely unknown as the regenerated GAC develops microbial populations resulting in biofiltration but loses significant adsorption capacity as it becomes spent GAC. Therefore, pilot-scale parallel performance comparisons of spent and regenerated GAC, along with a range of pre-oxidant ozone doses, were used to shed light on the mechanisms responsible for the removal of various types of treatment byproduct precursors and trace organic compounds. It was confirmed from this pilot-study that ozone alone can effectively degrade chlorinated trihalomethane (THM) and haloacetic acid (HAA) precursors, chloramine-reactive N-nitrosodimethylamine (NDMA) precursors, and 29 PPCPs. In contrast, biodegradation by microbial population on spent or regenerated GAC can remove NDMA and 22 PPCPs, while the adsorption by regenerated GAC can remove chlorinated THM and HAA precursors, PFAS, flame retardants, and 27 PPCPs. The results of this pilot study are intended to provide those interested in potable reuse with an example of the simultaneous removal capabilities and mechanisms that can be anticipated for treating a complex mixture of organics present in real municipal wastewater effluent.
Collapse
Affiliation(s)
- Yewei Sun
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Bob Angelotti
- Upper Occoquan Service Authority, Centreville, VA, USA.
| | - Matt Brooks
- Upper Occoquan Service Authority, Centreville, VA, USA
| | | | | | | | - Zhi-Wu Wang
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
80
|
Wang Y, Yu G, Deng S, Huang J, Wang B. The electro-peroxone process for the abatement of emerging contaminants: Mechanisms, recent advances, and prospects. CHEMOSPHERE 2018; 208:640-654. [PMID: 29894965 DOI: 10.1016/j.chemosphere.2018.05.095] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/08/2018] [Accepted: 05/14/2018] [Indexed: 06/08/2023]
Abstract
The electro-peroxone (E-peroxone) process is an emerging electrochemical advanced oxidation process (EAOP) that combines ozonation with in situ cathodic hydrogen peroxide (H2O2) production to drive the peroxone reaction for water and wastewater treatment. Over the past several years, the E-peroxone process has quickly emerged as a promising EAOP for the abatement of emerging contaminants (ECs) in water. Because of the enhanced ozone (O3) transformation to hydroxyl radicals (OH) by electro-generated H2O2, the E-peroxone process can considerably increase the efficiency and decrease the energy demand for the abatement of ozone-resistant ECs compared with conventional ozonation. Meanwhile, the E-peroxone process can substantially mitigate the formation of bromate during the treatment of bromide-containing water, which has been a major concern of conventional ozonation for water treatment. Hence, by simply installing electrodes in ozone contactors, the E-peroxone process can remarkably enhance the performance of water and wastewater treatment in various aspects. Compared with other ozone-based AOPs such as the conventional peroxone (O3/H2O2) and UV/O3 processes, the E-peroxone process also represents a more convenient, cost-effective, energy-efficient, and safer option for EC abatements. This paper reviews recent research of the E-peroxone process, with focus on the abatement of ECs in real water matrices. The fundamental reaction mechanisms that are essential to the understanding, design, and operation of the E-peroxone process are described. The abatement of various ECs in natural water and wastewater by the E-peroxone process are critically reviewed. The challenges in scaling-up the E-peroxone process and integrating it in water and wastewater treatment trains for practical applications are discussed.
Collapse
Affiliation(s)
- Yujue Wang
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Key Laboratory for Emerging Organic Contaminants Control, Tsinghua University, Beijing 100084, China.
| | - Gang Yu
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Key Laboratory for Emerging Organic Contaminants Control, Tsinghua University, Beijing 100084, China
| | - Shubo Deng
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Key Laboratory for Emerging Organic Contaminants Control, Tsinghua University, Beijing 100084, China
| | - Jun Huang
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Key Laboratory for Emerging Organic Contaminants Control, Tsinghua University, Beijing 100084, China
| | - Bin Wang
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Key Laboratory for Emerging Organic Contaminants Control, Tsinghua University, Beijing 100084, China
| |
Collapse
|
81
|
Guo Y, Wang H, Wang B, Deng S, Huang J, Yu G, Wang Y. Prediction of micropollutant abatement during homogeneous catalytic ozonation by a chemical kinetic model. WATER RESEARCH 2018; 142:383-395. [PMID: 29913384 DOI: 10.1016/j.watres.2018.06.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/01/2018] [Accepted: 06/08/2018] [Indexed: 06/08/2023]
Abstract
Prediction of micropollutant abatements by catalytic ozonation is critical for its process design and optimization in water treatment. In this study, a chemical kinetic model based on ozone (O3) and hydroxyl radical (OH) rate constants (kO3 and kOH) and O3 and OH exposures is proposed for the generalized prediction of micropollutant abatement by homogeneous catalytic ozonation. Several micropollutants with kO3 ranging from <0.15 to 1.0 × 106 M-1 s-1 were spiked in water matrices (deionized water and surface water) and then treated by ozonation alone and homogeneous catalytic ozonation with varying transition metals (Ti2+, Co2+, Ni2+, Zn2+, Cu2+, Mn2+, Fe2+, and Fe3+). The addition of the varying catalysts enhanced the kinetics and yield of OH formation from O3 decomposition to different extent. Consequently, for the same applied O3 doses, higher OH exposures can generally be obtained at the expense of lower O3 exposures during catalytic ozonation with the varying catalysts compared to ozonation alone. The changes in O3 and OH exposures did not considerably influence the abatement of micropollutants with high and moderate O3 reactivities (diclofenac, gemfibrozil, and bezafibrate), whose abatement efficiencies were generally >90% during both ozonation alone and catalytic ozonation with the varying catalysts. In contrast, ozone-resistant micropollutants (2,4-dichlorophenoxyacetic acid, clofibric acid, and ibuprofen) were less effectively abated during ozonation (∼40-60% abatement), and the addition of the varying catalysts could enhance their absolute abatement efficiencies to various extent (∼0-10% in the deionized water and ∼0-22% in the surface water) during catalytic ozonation. Despite the differing catalytic mechanisms of the varying transition metals, the abatement efficiencies of micropollutants by catalytic ozonation could be satisfactorily predicted by the chemical kinetic model using the O3 and OH rate constants of the micropollutants reported in literature and the O3 and OH exposures determined during the treatment processes. These results demonstrate that the chemical kinetic model can provide a useful tool for the generalized prediction of micropollutant abatement by homogeneous catalytic ozonation.
Collapse
Affiliation(s)
- Yang Guo
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Huijiao Wang
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Bin Wang
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Shubo Deng
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Jun Huang
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Gang Yu
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Yujue Wang
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
82
|
Covarrubias-García I, Aizpuru A, Arriaga S. Temporal and longitudinal biofilm matrix analysis of a biofilter treating ethyl acetate during ozonation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:19155-19166. [PMID: 29728966 DOI: 10.1007/s11356-018-2084-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/19/2018] [Indexed: 06/08/2023]
Abstract
The present paper focuses on the biofilm composition and pattern of biomass in gas biofiltration of ethyl acetate working under continuous addition of ozone (O3). Two biofilters were operated for 230 days, one under continuous addition of O3 (90 ppbv) and another one without. Throughout the operation time, the extracellular polymeric substances (EPS), the main components in the extracellular matrix (ECM), were extracted from the biofilm and characterized qualitatively using Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR) and quantitatively by analyzing its main constituents: carbohydrates, proteins, and glucuronic acid. To date, EPS characterization has been attempted mainly with biofilm aggregates related to water treatment, not air biofiltration. The results of this study may be helpful and provide more information about EPS structure when O3 was added. O3 addition only affected the amount of EPS and not its composition. The greater effect was observed on carbohydrate content since it is the main component in EPS. The EPS/biomass ratio measured was twice lower with O3 addition. Higher removal efficiency (RE) and mineralization rates were obtained with the biofilter subjected to O3 addition, and a smaller volume of a reactor would be necessary to treat all contaminant under this condition. EPS content is only quantitatively reduced by O3 addition, and at the low O3 concentration applied, no structural alteration is noted regarding the composition of the EPS.
Collapse
Affiliation(s)
- Itzel Covarrubias-García
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), Camino a la Presa San José 2055, Lomas 4a Sección, 78216, San Luis Potosí, CP, Mexico
| | - Aitor Aizpuru
- Campus Puerto Ángel, Universidad del Mar, Oaxaca, Mexico
| | - Sonia Arriaga
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), Camino a la Presa San José 2055, Lomas 4a Sección, 78216, San Luis Potosí, CP, Mexico.
| |
Collapse
|
83
|
Guo Z, Zhou L, Cao H, Xie Y, Xiao J, Yang J, Zhang Y. C3N4–Mn/CNT composite as a heterogeneous catalyst in the electro-peroxone process for promoting the reaction between O3and H2O2in acid solution. Catal Sci Technol 2018. [DOI: 10.1039/c8cy01517a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The C3N4–Mn/CNT catalyst promotes the reaction between O3and H2O2in acid solution, and enhances the degradation efficiency of the electro-peroxone process.
Collapse
Affiliation(s)
- Zhuang Guo
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology
- Beijing Engineering Research Center of Process Pollution Control
- Institute of Process Engineering, Chinese Academy of Science
- Beijing 100190
- China
| | - Linbi Zhou
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology
- Beijing Engineering Research Center of Process Pollution Control
- Institute of Process Engineering, Chinese Academy of Science
- Beijing 100190
- China
| | - Hongbin Cao
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology
- Beijing Engineering Research Center of Process Pollution Control
- Institute of Process Engineering, Chinese Academy of Science
- Beijing 100190
- China
| | - Yongbing Xie
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology
- Beijing Engineering Research Center of Process Pollution Control
- Institute of Process Engineering, Chinese Academy of Science
- Beijing 100190
- China
| | - Jiadong Xiao
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology
- Beijing Engineering Research Center of Process Pollution Control
- Institute of Process Engineering, Chinese Academy of Science
- Beijing 100190
- China
| | - Jin Yang
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology
- Beijing Engineering Research Center of Process Pollution Control
- Institute of Process Engineering, Chinese Academy of Science
- Beijing 100190
- China
| | - Yi Zhang
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology
- Beijing Engineering Research Center of Process Pollution Control
- Institute of Process Engineering, Chinese Academy of Science
- Beijing 100190
- China
| |
Collapse
|