51
|
Parent JH, Ciampa CJ, Harrison TM, Adams JN, Zhuang K, Betts MJ, Maass A, Winer JR, Jagust WJ, Berry AS. Locus coeruleus catecholamines link neuroticism and vulnerability to tau pathology in aging. Neuroimage 2022; 263:119658. [PMID: 36191755 PMCID: PMC10060440 DOI: 10.1016/j.neuroimage.2022.119658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/19/2022] [Accepted: 09/29/2022] [Indexed: 11/19/2022] Open
Abstract
Higher neuroticism is a risk factor for Alzheimer's disease (AD), and is implicated in disordered stress responses. The locus coeruleus (LC)-catecholamine system is activated during perceived threat and is a centerpiece of developing models of the pathophysiology of AD, as it is the first brain region to develop abnormal tau. We examined relationships among the "Big 5" personality traits, LC catecholamine synthesis capacity measured with [18F]Fluoro-m-tyrosine PET, and tau burden measured with [18F]Flortaucipir PET in cognitively normal older adults (n = 47). β-amyloid (Aβ) status was determined using [11C]Pittsburgh compound B PET (n = 14 Aβ positive). Lower LC catecholamine synthesis capacity was associated with higher neuroticism, more depressive symptoms as measured by the Geriatric Depression Scale, and higher amygdala tau-PET binding. Exploratory analyses with other personality traits revealed that low trait conscientiousness was also related to both lower LC catecholamine synthesis capacity, and more depressive symptoms. A significant indirect path linked both high neuroticism and low conscientiousness to greater amygdala tau burden via their mutual association with low LC catecholamine synthesis capacity. Together, these findings reveal LC catecholamine synthesis capacity to be a promising marker of affective health and pathology burden in aging, and identifies candidate neurobiological mechanisms for the effect of personality on increased vulnerability to dementia.
Collapse
Affiliation(s)
- Jourdan H. Parent
- Department of Psychology, Brandeis University, Waltham, MA, 02453, USA
| | - Claire J. Ciampa
- Department of Psychology, Brandeis University, Waltham, MA, 02453, USA
| | - Theresa M. Harrison
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Jenna N. Adams
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Kailin Zhuang
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Matthew J. Betts
- Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University, Magdeburg, 39106, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Magdeburg 39120, Germany
- Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| | - Anne Maass
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Magdeburg 39120, Germany
| | - Joseph R. Winer
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - William J. Jagust
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Anne S. Berry
- Department of Psychology, Brandeis University, Waltham, MA, 02453, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
52
|
Greene AN, Solomon MB, Privette Vinnedge LM. Novel molecular mechanisms in Alzheimer's disease: The potential role of DEK in disease pathogenesis. Front Aging Neurosci 2022; 14:1018180. [PMID: 36275000 PMCID: PMC9582447 DOI: 10.3389/fnagi.2022.1018180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease and age-related dementias (AD/ADRD) are debilitating diseases that exact a significant physical, emotional, cognitive, and financial toll on the individual and their social network. While genetic risk factors for early-onset AD have been identified, the molecular and genetic drivers of late-onset AD, the most common subtype, remain a mystery. Current treatment options are limited for the 35 million people in the United States with AD/ADRD. Thus, it is critically important to identify novel molecular mechanisms of dementia-related pathology that may be targets for the development of new interventions. Here, we summarize the overarching concepts regarding AD/ADRD pathogenesis. Then, we highlight one potential molecular driver of AD/ADRD, the chromatin remodeling protein DEK. We discuss in vitro, in vivo, and ex vivo findings, from our group and others, that link DEK loss with the cellular, molecular, and behavioral signatures of AD/ADRD. These include associations between DEK loss and cellular and molecular hallmarks of AD/ADRD, including apoptosis, Tau expression, and Tau hyperphosphorylation. We also briefly discuss work that suggests sex-specific differences in the role of DEK in AD/ADRD pathogenesis. Finally, we discuss future directions for exploiting the DEK protein as a novel player and potential therapeutic target for the treatment of AD/ADRD.
Collapse
Affiliation(s)
- Allie N. Greene
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Matia B. Solomon
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Department of Psychology, University of Cincinnati, Cincinnati, OH, United States
| | - Lisa M. Privette Vinnedge
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
53
|
Al-Ghraiybah NF, Wang J, Alkhalifa AE, Roberts AB, Raj R, Yang E, Kaddoumi A. Glial Cell-Mediated Neuroinflammation in Alzheimer's Disease. Int J Mol Sci 2022; 23:10572. [PMID: 36142483 PMCID: PMC9502483 DOI: 10.3390/ijms231810572] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder; it is the most common cause of dementia and has no treatment. It is characterized by two pathological hallmarks, the extracellular deposits of amyloid beta (Aβ) and the intraneuronal deposits of Neurofibrillary tangles (NFTs). Yet, those two hallmarks do not explain the full pathology seen with AD, suggesting the involvement of other mechanisms. Neuroinflammation could offer another explanation for the progression of the disease. This review provides an overview of recent advances on the role of the immune cells' microglia and astrocytes in neuroinflammation. In AD, microglia and astrocytes become reactive by several mechanisms leading to the release of proinflammatory cytokines that cause further neuronal damage. We then provide updates on neuroinflammation diagnostic markers and investigational therapeutics currently in clinical trials to target neuroinflammation.
Collapse
Affiliation(s)
- Nour F. Al-Ghraiybah
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| | - Junwei Wang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| | - Amer E. Alkhalifa
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| | - Andrew B. Roberts
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| | - Ruchika Raj
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Euitaek Yang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| | - Amal Kaddoumi
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S Donahue Dr., Auburn, AL 36849, USA
| |
Collapse
|
54
|
Gleason CE, Zuelsdorff M, Gooding DC, Kind AJH, Johnson AL, James TT, Lambrou NH, Wyman MF, Ketchum FB, Gee A, Johnson SC, Bendlin BB, Zetterberg H. Alzheimer's disease biomarkers in Black and non-Hispanic White cohorts: A contextualized review of the evidence. Alzheimers Dement 2022; 18:1545-1564. [PMID: 34870885 PMCID: PMC9543531 DOI: 10.1002/alz.12511] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023]
Abstract
Black Americans are disproportionately affected by dementia. To expand our understanding of mechanisms of this disparity, we look to Alzheimer's disease (AD) biomarkers. In this review, we summarize current data, comparing the few studies presenting these findings. Further, we contextualize the data using two influential frameworks: the National Institute on Aging-Alzheimer's Association (NIA-AA) Research Framework and NIA's Health Disparities Research Framework. The NIA-AA Research Framework provides a biological definition of AD that can be measured in vivo. However, current cut-points for determining pathological versus non-pathological status were developed using predominantly White cohorts-a serious limitation. The NIA's Health Disparities Research Framework is used to contextualize findings from studies identifying racial differences in biomarker levels, because studying biomakers in isolation cannot explain or reduce inequities. We offer recommendations to expand study beyond initial reports of racial differences. Specifically, life course experiences associated with racialization and commonly used study enrollment practices may better account for observations than exclusively biological explanations.
Collapse
Affiliation(s)
- Carey E. Gleason
- Division of Geriatrics and GerontologyDepartment of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Wisconsin Alzheimer's Disease Research CenterMadisonWisconsinUSA
- Geriatric ResearchEducation and Clinical Center (11G)William S. Middleton Memorial Veterans HospitalMadisonWisconsinUSA
| | - Megan Zuelsdorff
- Wisconsin Alzheimer's Disease Research CenterMadisonWisconsinUSA
- University of Wisconsin School of NursingMadisonWisconsinUSA
| | - Diane C. Gooding
- Department of PsychologyUniversity of Wisconsin, MadisonMadisonWisconsinUSA
- Department of PsychiatryUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Amy J. H. Kind
- Division of Geriatrics and GerontologyDepartment of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Wisconsin Alzheimer's Disease Research CenterMadisonWisconsinUSA
- Geriatric ResearchEducation and Clinical Center (11G)William S. Middleton Memorial Veterans HospitalMadisonWisconsinUSA
- Center for Health Disparities ResearchDepartment of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Adrienne L. Johnson
- Center for Tobacco Research and InterventionUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Taryn T. James
- Division of Geriatrics and GerontologyDepartment of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Wisconsin Alzheimer's Disease Research CenterMadisonWisconsinUSA
| | - Nickolas H. Lambrou
- Geriatric ResearchEducation and Clinical Center (11G)William S. Middleton Memorial Veterans HospitalMadisonWisconsinUSA
| | - Mary F. Wyman
- Geriatric ResearchEducation and Clinical Center (11G)William S. Middleton Memorial Veterans HospitalMadisonWisconsinUSA
- Department of PsychologyUniversity of Wisconsin, MadisonMadisonWisconsinUSA
| | - Fred B. Ketchum
- Department of NeurologyUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Alexander Gee
- Nehemiah Center for Urban Leadership DevelopmentMadisonWisconsinUSA
| | - Sterling C. Johnson
- Division of Geriatrics and GerontologyDepartment of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Wisconsin Alzheimer's Disease Research CenterMadisonWisconsinUSA
- Geriatric ResearchEducation and Clinical Center (11G)William S. Middleton Memorial Veterans HospitalMadisonWisconsinUSA
| | - Barbara B. Bendlin
- Division of Geriatrics and GerontologyDepartment of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Wisconsin Alzheimer's Disease Research CenterMadisonWisconsinUSA
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Neurodegenerative DiseaseUCL Institute of Neurology, Queen SquareLondonUK
- UK Dementia Research Institute at UCLLondonUK
- Hong Kong Center for NeurodegenerationHong KongChina
| |
Collapse
|
55
|
Saiyasit N, Butlig EAR, Chaney SD, Traylor MK, Hawley NA, Randall RB, Bobinger HV, Frizell CA, Trimm F, Crook ED, Lin M, Hill BD, Keller JL, Nelson AR. Neurovascular Dysfunction in Diverse Communities With Health Disparities-Contributions to Dementia and Alzheimer's Disease. Front Neurosci 2022; 16:915405. [PMID: 35844216 PMCID: PMC9279126 DOI: 10.3389/fnins.2022.915405] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/31/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease and related dementias (ADRD) are an expanding worldwide crisis. In the absence of scientific breakthroughs, the global prevalence of ADRD will continue to increase as more people are living longer. Racial or ethnic minority groups have an increased risk and incidence of ADRD and have often been neglected by the scientific research community. There is mounting evidence that vascular insults in the brain can initiate a series of biological events leading to neurodegeneration, cognitive impairment, and ADRD. We are a group of researchers interested in developing and expanding ADRD research, with an emphasis on vascular contributions to dementia, to serve our local diverse community. Toward this goal, the primary objective of this review was to investigate and better understand health disparities in Alabama and the contributions of the social determinants of health to those disparities, particularly in the context of vascular dysfunction in ADRD. Here, we explain the neurovascular dysfunction associated with Alzheimer's disease (AD) as well as the intrinsic and extrinsic risk factors contributing to dysfunction of the neurovascular unit (NVU). Next, we ascertain ethnoregional health disparities of individuals living in Alabama, as well as relevant vascular risk factors linked to AD. We also discuss current pharmaceutical and non-pharmaceutical treatment options for neurovascular dysfunction, mild cognitive impairment (MCI) and AD, including relevant studies and ongoing clinical trials. Overall, individuals in Alabama are adversely affected by social and structural determinants of health leading to health disparities, driven by rurality, ethnic minority status, and lower socioeconomic status (SES). In general, these communities have limited access to healthcare and healthy food and other amenities resulting in decreased opportunities for early diagnosis of and pharmaceutical treatments for ADRD. Although this review is focused on the current state of health disparities of ADRD patients in Alabama, future studies must include diversity of race, ethnicity, and region to best be able to treat all individuals affected by ADRD.
Collapse
Affiliation(s)
- Napatsorn Saiyasit
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Evan-Angelo R. Butlig
- Department of Neurology, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA, United States
| | - Samantha D. Chaney
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Miranda K. Traylor
- Department of Health, Kinesiology, and Sport, University of South Alabama, Mobile, AL, United States
| | - Nanako A. Hawley
- Department of Psychology, University of South Alabama, Mobile, AL, United States
| | - Ryleigh B. Randall
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Hanna V. Bobinger
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Carl A. Frizell
- Department of Physician Assistant Studies, University of South Alabama, Mobile, AL, United States
| | - Franklin Trimm
- College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Errol D. Crook
- Department of Internal Medicine, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Mike Lin
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Benjamin D. Hill
- Department of Psychology, University of South Alabama, Mobile, AL, United States
| | - Joshua L. Keller
- Department of Health, Kinesiology, and Sport, University of South Alabama, Mobile, AL, United States
| | - Amy R. Nelson
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| |
Collapse
|
56
|
Bastani S, Vahedian V, Rashidi M, Mir A, Mirzaei S, Alipourfard I, Pouremamali F, Nejabati H, Kadkhoda J, Maroufi NF, Akbarzadeh M. An evaluation on potential anti-oxidant and anti-inflammatory effects of Crocin. Biomed Pharmacother 2022; 153:113297. [PMID: 35738178 DOI: 10.1016/j.biopha.2022.113297] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/02/2022] Open
Abstract
Crocin, an active ingredient derived from saffron, is one of the herbal components that has recently been considered by researchers. Crocin has been shown to have many anti-inflammatory and antioxidant properties, and therefore can be used to treat various diseases. It has been shown that Crocin has a positive effect on the prevention and treatment of cardiovascular disease, cancer, diabetes, and kidney disease. In addition, the role of this substance in COVID-19 pandemic has been identified. In this review article, we tried to have a comprehensive review of the antioxidant and anti-inflammatory effects of Crocin in different diseases and different tissues. In conclusion, Crocin may be helpful in pathological conditions that are associated with inflammation and oxidative stress.
Collapse
Affiliation(s)
- Sepideh Bastani
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Vahedian
- Cancer Biology Research Group, Faculty of Medicine Institute of Biotechnology (FMB-IBTEC) Sao Paulo State University (UNESP), Brazil
| | - Mohsen Rashidi
- Department of Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amirabbas Mir
- Institute of Nano Science and Nano Technology, University of Kashan, P.O. Box 87317-51167, Kashan, Islamic Republic of Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Iraj Alipourfard
- Institutitue of Biology, Biotechnology and Environmental Protection - Faculty of Natural Sciences - University of Silesia - Katowice - Poland
| | - Farhad Pouremamali
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamidreza Nejabati
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jamileh Kadkhoda
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Fathi Maroufi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Akbarzadeh
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
57
|
Roberts AL, Liu J, Lawn RB, Jha SC, Sumner JA, Kang JH, Rimm EB, Grodstein F, Kubzansky LD, Chibnik LB, Koenen KC. Association of Posttraumatic Stress Disorder With Accelerated Cognitive Decline in Middle-aged Women. JAMA Netw Open 2022; 5:e2217698. [PMID: 35771577 PMCID: PMC9247738 DOI: 10.1001/jamanetworkopen.2022.17698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
IMPORTANCE Posttraumatic stress disorder (PTSD) has been hypothesized to lead to impaired cognitive function. However, no large-scale studies have assessed whether PTSD is prospectively associated with cognitive decline in middle-aged adults. OBJECTIVE To assess the association between PTSD and decline in cognitive function over time. DESIGN, SETTING, AND PARTICIPANTS This cohort study included participants from the Nurses' Health Study II, an ongoing longitudinal cohort study involving community-dwelling middle-aged female nurses residing in the US who had at least a 2-year nursing degree at the time of enrollment in 1989. The present study included 12 270 trauma-exposed women who were enrolled in the PTSD substudy of the Nurses' Health Study II and completed 1 to 5 cognitive assessments. Data were collected from March 1, 2008, to July 30, 2019. EXPOSURES Lifetime PTSD symptoms, assessed using a validated questionnaire between March 1, 2008, and February 28, 2010. MAIN OUTCOMES AND MEASURES The main outcome was evaluated using the Cogstate Brief Battery, a self-administered online cognitive battery. Cognitive function was measured by a psychomotor speed and attention composite score and a learning and working memory composite score. Women completed the Cogstate Brief Battery every 6 or 12 months (up to 24 months) from October 3, 2014, to July 30, 2019. Linear mixed-effects models were used to evaluate the association of PTSD symptoms with the rate of change in cognition over follow-up, considering a broad range of relevant covariates, including the presence of depression symptoms and history of clinician-diagnosed depression. The rate of cognitive change was adjusted for potential practice effects (ie, potential changes in test results that occur when a test is taken more than once) by including indicators for the number of previous tests taken. RESULTS Among 12 270 women, the mean (SD) age at the baseline cognitive assessment was 61.1 (4.6) years; 125 women (1.0%) were Asian, 75 (0.6%) were Black, 156 (1.3%) were Hispanic, 11 767 (95.9%) were non-Hispanic White, and 147 (1.2%) were of other race and/or ethnicity. A higher number of PTSD symptoms was associated with worse cognitive trajectories. Compared with women with no PTSD symptoms, women with the highest symptom level (6-7 symptoms) had a significantly worse rate of change in both learning and working memory (β = -0.08 SD/y; 95% CI, -0.11 to -0.04 SD/y; P < .001) and psychomotor speed and attention (β = -0.05 SD/y; 95% CI, -0.09 to -0.01 SD/y; P = .02), adjusted for demographic characteristics. Associations were unchanged when additionally adjusted for behavioral factors (eg, 6-7 symptoms in the analysis of learning and working memory: β = -0.08 SD/y; 95% CI, -0.11 to -0.04 SD/y; P < .001) and health conditions (eg, 6-7 symptoms in the analysis of learning and working memory: β = -0.08 SD/y; 95% CI, -0.11 to -0.04 SD/y; P < .001) and were partially attenuated but still evident when further adjusted for practice effects (eg, 6-7 symptoms in the analysis of learning and working memory: β = -0.07 SD/y; 95% CI, -0.10 to -0.03 SD/y; P < .001) and comorbid depression (eg, 6-7 symptoms in the analysis of learning and working memory: β = -0.07 SD/y; 95% CI, -0.11 to -0.03 SD/y; P < .001). CONCLUSIONS AND RELEVANCE In this large-scale prospective cohort study, PTSD was associated with accelerated cognitive decline in middle-aged women, suggesting that earlier cognitive screening among women with PTSD may be warranted. Given that cognitive decline is strongly associated with subsequent Alzheimer disease and related dementias, better understanding of this association may be important to promote healthy aging.
Collapse
Affiliation(s)
- Andrea L. Roberts
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Jiaxuan Liu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Rebecca B. Lawn
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Shaili C. Jha
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | | | - Jae H. Kang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Eric B. Rimm
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Francine Grodstein
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois
| | - Laura D. Kubzansky
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Lori B. Chibnik
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Neurology, Massachusetts General Hospital, Boston
| | - Karestan C. Koenen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Boston
| |
Collapse
|
58
|
Nucara A, Ripanti F, Sennato S, Nisini G, De Santis E, Sefat M, Carbonaro M, Mango D, Minicozzi V, Carbone M. Influence of Cortisol on the Fibril Formation Kinetics of Aβ42 Peptide: A Multi-Technical Approach. Int J Mol Sci 2022; 23:ijms23116007. [PMID: 35682687 PMCID: PMC9180743 DOI: 10.3390/ijms23116007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 11/24/2022] Open
Abstract
Amyloid-β peptide (Aβ) aggregates are known to be correlated with pathological neurodegenerative diseases. The fibril formation process of such peptides in solution is influenced by several factors, such as the ionic strength of the buffer, concentration, pH, and presence of other molecules, just to mention a few. In this paper, we report a detailed analysis of in vitro Aβ42 fibril formation in the presence of cortisol at different relative concentrations. The thioflavin T fluorescence assay allowed us to monitor the fibril formation kinetics, while a morphological characterization of the aggregates was obtained by atomic force microscopy. Moreover, infrared absorption spectroscopy was exploited to investigate the secondary structure changes along the fibril formation path. Molecular dynamics calculations allowed us to understand the intermolecular interactions with cortisol. The combined results demonstrated the influence of cortisol on the fibril formation process: indeed, at cortisol-Aβ42 concentration ratio (ρ) close to 0.1 a faster organization of Aβ42 fragments into fibrils is promoted, while for ρ = 1 the formation of fibrils is completely inhibited.
Collapse
Affiliation(s)
- Alessandro Nucara
- Department of Physics, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy;
- Correspondence: (A.N.); (F.R.)
| | - Francesca Ripanti
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
- Correspondence: (A.N.); (F.R.)
| | - Simona Sennato
- CNR-ISC Sede Sapienza, Department of Physics, Sapienza University, P.le A. Moro 5, 00185 Rome, Italy;
| | - Giacomo Nisini
- Department of Physics, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy;
| | - Emiliano De Santis
- Department of Physics and Astronomy and Department of Chemistry-BMC, Uppsala University, Husargatan 3, 752 37 Uppsala, Sweden;
| | - Mahta Sefat
- School of Pharmacy, Tor Vergata University of Rome, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (M.S.); (D.M.)
| | - Marina Carbonaro
- Council for Agricultural Research and Economics (CREA), Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy;
| | - Dalila Mango
- School of Pharmacy, Tor Vergata University of Rome, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (M.S.); (D.M.)
- Laboratory Pharmacology of Synaptic Plasticity, European Brain Research Institute, 00161 Rome, Italy
| | - Velia Minicozzi
- Department of Physics and INFN, Tor Vergata University of Rome, Via della Ricerca Scientifica 1, 00133 Rome, Italy;
| | - Marilena Carbone
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy;
| |
Collapse
|
59
|
Marquine MJ, Gallo LC, Tarraf W, Wu B, Moore AA, Vásquez PM, Talavera G, Allison M, Muñoz E, Isasi CR, Perreira KM, Bigornia SJ, Daviglus M, Estrella ML, Zeng D, González HM. The Association of Stress, Metabolic Syndrome, and Systemic Inflammation With Neurocognitive Function in the Hispanic Community Health Study/Study of Latinos and Its Sociocultural Ancillary Study. J Gerontol B Psychol Sci Soc Sci 2022; 77:860-871. [PMID: 34378777 PMCID: PMC9071500 DOI: 10.1093/geronb/gbab150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVES Identifying sociocultural correlates of neurocognitive dysfunction among Hispanics/Latinos, and their underlying biological pathways, is crucial for understanding disparities in Alzheimer's disease and related dementias. We examined cross-sectional associations between stress and neurocognition, and the role that metabolic syndrome (MetS) and systemic inflammation might play in these associations. METHOD Participants included 3,045 adults aged 45-75 (56% female, education 0-20+ years, 86% Spanish-speaking, 23% U.S.-born), enrolled in the Hispanic Community Health Study/Study of Latinos and its Sociocultural Ancillary Study. Global neurocognition was the primary outcome and operationalized as the average of the z scores of measures of learning and memory, word fluency, and processing speed. Stress measures included self-report assessments of stress appraisal (perceived and acculturative stress) and exposure to chronic and traumatic stressors. MetS was defined via established criteria including waist circumference, high blood pressure, elevated triglycerides, fasting plasma glucose, and high levels of high-density lipoprotein cholesterol. Systemic inflammation was represented by high-sensitivity C-reactive protein (hs-CRP). RESULTS Separate survey multivariable linear regression models adjusting for covariates showed that higher perceived (b = -0.004, SE = 0.002, p < .05) and acculturative stress (b = -0.004, SE = 0.001, p < .0001) were significantly associated with worse global neurocognition, while lifetime exposure to traumatic stressors was associated with better global neurocognition (b = 0.034, SE = 0.009, p < .001). Neither MetS nor hs-CRP were notable pathways in the association between stress and neurocognition; rather, they were both independently associated with worse neurocognition in models including stress measures (ps < .05). DISCUSSION These cross-sectional analyses suggest that stress appraisal, MetS, and systemic inflammation may be targets to reduce neurocognitive dysfunction among Hispanics/Latinos.
Collapse
Affiliation(s)
- María J Marquine
- Department of Medicine, University of California San Diego, La Jolla, California, USA
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Linda C Gallo
- Department of Psychology, San Diego State University, San Diego, California, USA
| | - Wassim Tarraf
- Department of Healthcare Sciences, Institute of Gerontology, Wayne State University, Detroit, Michigan, USA
| | - Benson Wu
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Alison A Moore
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Priscilla M Vásquez
- Department of Urban Public Health, Charles R. Drew University of Medicine and Science, Los Angeles, California, USA
| | - Gregory Talavera
- Department of Psychology, San Diego State University, San Diego, California, USA
| | - Matthew Allison
- Department of Family Medicine, University of California San Diego, La Jolla, California, USA
| | - Elizabeth Muñoz
- Department of Human Development and Family Sciences, University of Texas at Austin, Austin, Texas, USA
| | - Carmen R Isasi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Krista M Perreira
- Department of Social Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sherman J Bigornia
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham, New Hampshire, USA
| | - Martha Daviglus
- Institute of Minority Health Research, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Mayra L Estrella
- Institute of Minority Health Research, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Donglin Zeng
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Hector M González
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
60
|
Silva J, Patricio F, Patricio-Martínez A, Santos-López G, Cedillo L, Tizabi Y, Limón ID. Neuropathological Aspects of SARS-CoV-2 Infection: Significance for Both Alzheimer's and Parkinson's Disease. Front Neurosci 2022; 16:867825. [PMID: 35592266 PMCID: PMC9111171 DOI: 10.3389/fnins.2022.867825] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/14/2022] [Indexed: 01/08/2023] Open
Abstract
Evidence suggests that SARS-CoV-2 entry into the central nervous system can result in neurological and/or neurodegenerative diseases. In this review, routes of SARS-Cov-2 entry into the brain via neuroinvasive pathways such as transcribrial, ocular surface or hematogenous system are discussed. It is argued that SARS-Cov-2-induced cytokine storm, neuroinflammation and oxidative stress increase the risk of developing neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Further studies on the effects of SARS-CoV-2 and its variants on protein aggregation, glia or microglia activation, and blood-brain barrier are warranted.
Collapse
Affiliation(s)
- Jaime Silva
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Felipe Patricio
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Aleidy Patricio-Martínez
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Gerardo Santos-López
- Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Atlixco, Mexico
| | - Lilia Cedillo
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, United States
| | - Ilhuicamina Daniel Limón
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| |
Collapse
|
61
|
Kim E, Bolkan C, Crespi E, Madigan J. Feasibility of Hair Cortisol as a Biomarker of Chronic Stress in People With Dementia. Biol Res Nurs 2022; 24:388-399. [DOI: 10.1177/10998004221090468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Hair cortisol concentrations (HCC) are an innovative way to measure chronic stress relying on a small sample of hair. To date, there are no studies that have studied HCC as a biomarker of chronic stress in individuals with dementia. Given the vulnerability to chronic stress in people with dementia, using HCC as an objective measure of physiological stress in those with dementia has potential to enhance our understanding of this population. The goal of this exploratory, multidisciplinary, pilot study was to establish feasibility of HCC testing in people with dementia as a biomarker of chronic stress. HCC was examined over a 6-month period to assess physiological stress response during a transition to memory care. Newly admitted memory care residents ( n = 13, mean age = 82) were followed over 6 months. Residents’ hair samples and health information were collected at 3-month intervals. HCC levels significantly changed during the transition to memory care, which may reflect chronic physiological stress. Participants with frequent behavioral and psychological symptoms of dementia (BPSD) had significantly lower HCC at baseline and exhibited a blunted cortisol reactivity at follow-up. Based on detected changes in HCC, participants likely experienced stress reactions during the transition to memory care, providing preliminary evidence that HCC may be a useful, non-invasive measure of physiological stress in this population. This approach may also be applied to understanding the significance of person-centered care environments on minimizing chronic stress for people with dementia.
Collapse
Affiliation(s)
- Eunsaem Kim
- Mo-Im Kim Nursing Research Institute, Yonsei University Colleage of Nursing, Seoul, Korea
| | - Cory Bolkan
- Department of Human Development, Washington State University, Vancouver. WA, USA
| | - Erica Crespi
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Jennifer Madigan
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
62
|
Rudge JD. A New Hypothesis for Alzheimer's Disease: The Lipid Invasion Model. J Alzheimers Dis Rep 2022; 6:129-161. [PMID: 35530118 PMCID: PMC9028744 DOI: 10.3233/adr-210299] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/05/2022] [Indexed: 02/07/2023] Open
Abstract
This paper proposes a new hypothesis for Alzheimer's disease (AD)-the lipid invasion model. It argues that AD results from external influx of free fatty acids (FFAs) and lipid-rich lipoproteins into the brain, following disruption of the blood-brain barrier (BBB). The lipid invasion model explains how the influx of albumin-bound FFAs via a disrupted BBB induces bioenergetic changes and oxidative stress, stimulates microglia-driven neuroinflammation, and causes anterograde amnesia. It also explains how the influx of external lipoproteins, which are much larger and more lipid-rich, especially more cholesterol-rich, than those normally present in the brain, causes endosomal-lysosomal abnormalities and overproduction of the peptide amyloid-β (Aβ). This leads to the formation of amyloid plaques and neurofibrillary tangles, the most well-known hallmarks of AD. The lipid invasion model argues that a key role of the BBB is protecting the brain from external lipid access. It shows how the BBB can be damaged by excess Aβ, as well as by most other known risk factors for AD, including aging, apolipoprotein E4 (APOE4), and lifestyle factors such as hypertension, smoking, obesity, diabetes, chronic sleep deprivation, stress, and head injury. The lipid invasion model gives a new rationale for what we already know about AD, explaining its many associated risk factors and neuropathologies, including some that are less well-accounted for in other explanations of AD. It offers new insights and suggests new ways to prevent, detect, and treat this destructive disease and potentially other neurodegenerative diseases.
Collapse
Affiliation(s)
- Jonathan D’Arcy Rudge
- School of Biological Sciences, University of Reading, Reading, Berkshire, United Kingdom
| |
Collapse
|
63
|
Pentkowski NS, Bouquin SJ, Maestas-Olguin CR, Villasenor ZM, Clark BJ. Differential effects of chronic stress on anxiety-like behavior and contextual fear conditioning in the TgF344-AD rat model of Alzheimer's disease. Behav Brain Res 2022; 418:113661. [PMID: 34780859 DOI: 10.1016/j.bbr.2021.113661] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative brain disorder that leads to severe cognitive and functional impairments. Many AD patients also exhibit neuropsychiatric symptoms, such as anxiety and depression, prior to the clinical diagnosis of dementia. Chronic stress is associated with numerous adverse health consequences and disease states, and AD patients exhibit altered stress systems. Thus, stress may represent a causal link between neuropsychiatric symptoms and AD. To address this possibility, we examined the effects of chronic stress in the TgF344-AD rat model that co-expresses the mutant human amyloid precursor protein (APPsw) and presenilin 1 (PS1ΔE9) genes. Adult male transgenic (Tg+) and wild-type (WT) rats (6-7.5 months of age), with and without a history of chronic restraint stress, were tested for footshock-induced conditioned fear and for anxiety-like behavior in the elevated plus-maze. We found that non-stressed Tg+ rats showed increased anxiety-like behavior compared to non-stressed WT rats. In contrast, Tg+ and WT rats did not differ in levels of freezing immediately following footshock or during contextual re-exposure. Additionally, stressed Tg+ rats were not significantly different from stressed WT rats on any measures of anxiety or fear. Thus, while stress has been linked as a risk factor for AD-related pathology, it appears from the present findings that two weeks of daily restraint stress did not further enhance anxiety- or fear-like behaviors in TgF344-AD rats.
Collapse
Affiliation(s)
- Nathan S Pentkowski
- Department of Psychology, University of New Mexico, Albuquerque, NM 87109, USA.
| | - Samuel J Bouquin
- Department of Psychology, University of New Mexico, Albuquerque, NM 87109, USA
| | | | | | - Benjamin J Clark
- Department of Psychology, University of New Mexico, Albuquerque, NM 87109, USA
| |
Collapse
|
64
|
Bougea A, Stefanis L, Chrousos G. Stress system and related biomarkers in Parkinson's disease. Adv Clin Chem 2022; 111:177-215. [DOI: 10.1016/bs.acc.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
65
|
Alipour HR, Yaghmaei P, Ahmadian S, Ghobeh M, Ebrahim-Habibi A. A study on alpha-terpineol in Alzheimer’s disease with the use of rodent in vivo model, restraint stress effect and in vitro Amyloid beta fibrils. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e19090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
| | | | | | | | - Azadeh Ebrahim-Habibi
- Tehran University of Medical Sciences, Iran; Tehran University of Medical Sciences, Iran
| |
Collapse
|
66
|
Shepherd A, Zhang T, Hoffmann LB, Zeleznikow-Johnston AM, Churilov L, Hannan AJ, Burrows EL. A Preclinical Model of Computerized Cognitive Training: Touchscreen Cognitive Testing Enhances Cognition and Hippocampal Cellular Plasticity in Wildtype and Alzheimer's Disease Mice. Front Behav Neurosci 2021; 15:766745. [PMID: 34938165 PMCID: PMC8685297 DOI: 10.3389/fnbeh.2021.766745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/12/2021] [Indexed: 11/29/2022] Open
Abstract
With the growing popularity of touchscreen cognitive testing in rodents, it is imperative to understand the fundamental effects exposure to this paradigm can have on the animals involved. In this study, we set out to assess hippocampal-dependant learning in the APP/PS1 mouse model of Alzheimer’s disease (AD) on two highly translatable touchscreen tasks – the Paired Associate Learning (PAL) task and the Trial Unique Non-Matching to Location (TUNL) task. Both of these tests are based on human tasks from the Cambridge Neuropsychological Test Automated Battery (CANTAB) and are sensitive to deficits in both mild cognitive impairment (MCI) and AD. Mice were assessed for deficits in PAL at 9–12 months of age, then on TUNL at 8–11 and 13–16 months. No cognitive deficits were evident in APP/PS1 mice at any age, contrary to previous reports using maze-based learning and memory tasks. We hypothesized that daily and long-term touchscreen training may have inadvertently acted as a cognitive enhancer. When touchscreen-tested mice were assessed on the Morris water maze, they showed improved task acquisition compared to naïve APP/PS1 mice and wild-type (WT) littermate controls. In addition, we show that touchscreen-trained WT and APP/PS1 mice show increased cell proliferation and immature neuron numbers in the dentate gyrus compared to behaviorally naïve WT and APP/PS1 mice. This result indicates that the touchscreen testing paradigm could improve cognitive performance, and/or mask an impairment, in experimental mouse models. This touchscreen-induced cognitive enhancement may involve increased neurogenesis, and possibly other forms of cellular plasticity. This is the first study to show increased numbers of proliferating cells and immature neurons in the hippocampus following touchscreen testing, and that touchscreen training can improve cognitive performance in maze-based spatial navigation tasks. This potential for touchscreen testing to induce cognitive enhancement, or other phenotypic shifts, in preclinical models should be considered in study design. Furthermore, touchscreen-mediated cognitive enhancement could have therapeutic implications for cognitive disorders.
Collapse
Affiliation(s)
- Amy Shepherd
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| | - Tracy Zhang
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| | - Lucas B Hoffmann
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| | - Ariel M Zeleznikow-Johnston
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| | - Leonid Churilov
- Melbourne Medical School, The University of Melbourne, Parkville, VIC, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia.,Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| | - Emma L Burrows
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
67
|
Ginsberg SD, Joshi S, Sharma S, Guzman G, Wang T, Arancio O, Chiosis G. The penalty of stress - Epichaperomes negatively reshaping the brain in neurodegenerative disorders. J Neurochem 2021; 159:958-979. [PMID: 34657288 PMCID: PMC8688321 DOI: 10.1111/jnc.15525] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/22/2021] [Accepted: 10/13/2021] [Indexed: 02/06/2023]
Abstract
Adaptation to acute and chronic stress and/or persistent stressors is a subject of wide interest in central nervous system disorders. In this context, stress is an effector of change in organismal homeostasis and the response is generated when the brain perceives a potential threat. Herein, we discuss a nuanced and granular view whereby a wide variety of genotoxic and environmental stressors, including aging, genetic risk factors, environmental exposures, and age- and lifestyle-related changes, act as direct insults to cellular, as opposed to organismal, homeostasis. These two concepts of how stressors impact the central nervous system are not mutually exclusive. We discuss how maladaptive stressor-induced changes in protein connectivity through epichaperomes, disease-associated pathologic scaffolds composed of tightly bound chaperones, co-chaperones, and other factors, impact intracellular protein functionality altering phenotypes, that in turn disrupt and remodel brain networks ranging from intercellular to brain connectome levels. We provide an evidence-based view on how these maladaptive changes ranging from stressor to phenotype provide unique precision medicine opportunities for diagnostic and therapeutic development, especially in the context of neurodegenerative disorders including Alzheimer's disease where treatment options are currently limited.
Collapse
Affiliation(s)
- Stephen D. Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York, USA
- Departments of Psychiatry, Neuroscience & Physiology, the NYU Neuroscience Institute, New York University Grossman School of Medicine, New York City, New York, USA
| | - Suhasini Joshi
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Sahil Sharma
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Gianny Guzman
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Tai Wang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Ottavio Arancio
- Department of Pathology and Cell Biology, Columbia University, New York City, New York, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York City, New York, USA
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| |
Collapse
|
68
|
Carrier M, Šimončičová E, St-Pierre MK, McKee C, Tremblay MÈ. Psychological Stress as a Risk Factor for Accelerated Cellular Aging and Cognitive Decline: The Involvement of Microglia-Neuron Crosstalk. Front Mol Neurosci 2021; 14:749737. [PMID: 34803607 PMCID: PMC8599581 DOI: 10.3389/fnmol.2021.749737] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/16/2021] [Indexed: 12/22/2022] Open
Abstract
The relationship between the central nervous system (CNS) and microglia is lifelong. Microglia originate in the embryonic yolk sac during development and populate the CNS before the blood-brain barrier forms. In the CNS, they constitute a self-renewing population. Although they represent up to 10% of all brain cells, we are only beginning to understand how much brain homeostasis relies on their physiological functions. Often compared to a double-edged sword, microglia hold the potential to exert neuroprotective roles that can also exacerbate neurodegeneration once compromised. Microglia can promote synaptic growth in addition to eliminating synapses that are less active. Synaptic loss, which is considered one of the best pathological correlates of cognitive decline, is a distinctive feature of major depressive disorder (MDD) and cognitive aging. Long-term psychological stress accelerates cellular aging and predisposes to various diseases, including MDD, and cognitive decline. Among the underlying mechanisms, stress-induced neuroinflammation alters microglial interactions with the surrounding parenchymal cells and exacerbates oxidative burden and cellular damage, hence inducing changes in microglia and neurons typical of cognitive aging. Focusing on microglial interactions with neurons and their synapses, this review discusses the disrupted communication between these cells, notably involving fractalkine signaling and the triggering receptor expressed on myeloid cells (TREM). Overall, chronic stress emerges as a key player in cellular aging by altering the microglial sensome, notably via fractalkine signaling deficiency. To study cellular aging, novel positron emission tomography radiotracers for TREM and the purinergic family of receptors show interest for human study.
Collapse
Affiliation(s)
- Micaël Carrier
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada.,Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Eva Šimončičová
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Marie-Kim St-Pierre
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
| | - Chloe McKee
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada.,Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Department of Molecular Medicine, Université Laval, Québec City, QC, Canada.,Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
69
|
Leszko M, Carpenter BD. Reliability and Validity of the Polish Version of the Alzheimer's Disease Knowledge Scale. Dement Geriatr Cogn Disord 2021; 50:51-59. [PMID: 33789277 DOI: 10.1159/000514872] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/29/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION In the context of increasing numbers of older adults and an increased prevalence of neurodegenerative diseases, the early diagnosis of dementia has become an important issue. Poland's population is aging, and the growing number of individuals with Alzheimer's disease (AD) may pose challenges for families and the health-care system. While creating effective psychoeducational interventions aiming at increasing caregivers' knowledge may be beneficial, Poland lacks a standardized measurement for assessing knowledge about AD or a related form of dementia. METHODS The aim of our study was to translate and evaluate the Alzheimer's Disease Knowledge Scale (ADKS) among Polish individuals. RESULTS The Polish ADKS was developed through a translation-back translation method. Psychometric evaluation was done with a sample of 942 individuals (caregivers, health-care professionals, and general population) who completed the questionnaire. DISCUSSION The results indicate that the scale produces acceptable psychometric properties and can be used to evaluate the effectiveness of educational interventions among caregivers, health-care professionals, and the general population.
Collapse
Affiliation(s)
- Magdalena Leszko
- Department of Psychology, University of Szczecin, Szczecin, Poland
| | - Brian D Carpenter
- Department of Psychological and Brain Sciences, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
70
|
Asthana NK, Mehaffey E, Sewell DD. COVID-19 Associated Suicidal Ideation in Older Adults: Two Case Reports With a Review of the Literature. Am J Geriatr Psychiatry 2021; 29:1101-1116. [PMID: 34266752 PMCID: PMC8196233 DOI: 10.1016/j.jagp.2021.05.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 01/03/2023]
Abstract
The COVID-19 pandemic may profoundly harm the mental health and emotional well- being of many older adults. Public health interventions to minimize the spread of the virus have had the unintended consequences of worsening social isolation, financial stress, and unemployment. Results of early research efforts assessing the impact of these interventions on the mental health of older adults have been mixed. Available findings suggest that a subset of community-dwelling older adults have been less negatively impacted than younger adults, while people of color, the poor, residents of nursing homes and other communal living environments, and those living with dementia and their caregivers are more likely to suffer from COVID-related health problems. This manuscript describes two older adults for whom COVID-19 associated stresses caused significant worsening in their psychiatric illnesses, including the emergence of suicidal ideation, summarizes the literature on the impact of interactions between psychosocial stresses and biological factors on the mental health and well-being of older adults, and discusses interventions to help older adults whose mental health has worsened due to COVID-19. Timely and accurate diagnosis, prompt provision of individualized care using both pharmacologic and psychotherapeutic interventions, adoption of new technologies that permit care to be provided safely at a distance and which allow for virtual social interactions, coupled with ongoing advocacy for policy changes that address significant health care disparities and provide older adults continued access to health care and relief from financial hardship, will help older adults remaining as healthy as possible during the pandemic.
Collapse
|
71
|
Mediators and Moderators of the Association Between Perceived Stress and Episodic Memory in Diverse Older Adults. J Int Neuropsychol Soc 2021; 27:883-895. [PMID: 33292897 PMCID: PMC8187476 DOI: 10.1017/s1355617720001253] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Stress is a risk factor for numerous negative health outcomes, including cognitive impairment in late-life. The negative association between stress and cognition may be mediated by depressive symptoms, which separate studies have identified as both a consequence of perceived stress and a risk factor for cognitive decline. Pathways linking perceived stress, depressive symptoms, and cognition may be moderated by sociodemographics and psychosocial resources. The goal of this cross-sectional study was to identify modifying factors and enhance understanding of the mechanisms underlying the stress-cognition association in a racially and ethnically diverse sample of older adults. METHOD A linear regression estimated the association between perceived stress and episodic memory in 578 older adults (Mage = 74.58) in the Washington Heights-Inwood Columbia Aging Project. Subsequent models tested whether depressive symptoms mediated the stress-memory relationship and whether sociodemographics (gender, race, and ethnicity) or perceived control moderated these pathways. RESULTS Independent of sociodemographics and chronic diseases, greater perceived stress was associated with worse episodic memory. This relationship was mediated by more depressive symptoms. Higher perceived control buffered the association between stress and depressive symptoms. There was no significant moderation by gender, race, or ethnicity. CONCLUSION Depressive symptoms may play a role in the negative association between perceived stress and cognition among older adults; however, longitudinal analyses and studies using experimental designs are needed. Perceived control is a modifiable psychological resource that may offset the negative impact of stress.
Collapse
|
72
|
Juszczyk G, Mikulska J, Kasperek K, Pietrzak D, Mrozek W, Herbet M. Chronic Stress and Oxidative Stress as Common Factors of the Pathogenesis of Depression and Alzheimer's Disease: The Role of Antioxidants in Prevention and Treatment. Antioxidants (Basel) 2021; 10:antiox10091439. [PMID: 34573069 PMCID: PMC8470444 DOI: 10.3390/antiox10091439] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
There is a growing body of scientific research showing the link between depression and dementia in Alzheimer’s disease (AD). The chronic stress contributes to the formation of oxidative stress in the parts of the brain involved in the development of depression and AD. The scientific literature reports the significant role of antioxidants, which are highly effective in treating these diseases. In this review, we have summarized the relationship between chronic stress, oxidative stress, and the changes in the brain they cause occurring in the brain. Among all the compounds showing antioxidant properties, the most promising results in AD treatment were observed for Vitamin E, coenzyme Q10 (CoQ10), melatonin, polyphenols, curcumin, and selenium. In case of depression treatment, the greatest potential was observed in curcumin, zinc, selenium, vitamin E, and saffron.
Collapse
|
73
|
Trammell AR, McDaniel DJ, Obideen M, Okafor M, Thomas TL, Goldstein FC, Shaw LM, Hajjar IM. Perceived Stress is Associated with Alzheimer's Disease Cerebrospinal Fluid Biomarkers in African Americans with Mild Cognitive Impairment. J Alzheimers Dis 2021; 77:843-853. [PMID: 32741810 DOI: 10.3233/jad-200089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND African Americans (AA) have a higher Alzheimer's disease (AD) prevalence and report more perceived stress than White Americans. The biological basis of the stress-AD link is unclear. This study investigates the connection between stress and AD biomarkers in a biracial cohort. OBJECTIVE Establish biomarker evidence for the observed association between stress and AD, especially in AA. METHODS A cross-sectional study (n = 364, 41.8% AA) administering cognitive tests and the perceived stress scale (PSS) questionnaire. A subset (n = 309) provided cerebrospinal fluid for measurement of Aβ42, Tau, Ptau, Tau/Aβ42 (TAR), and Ptau/Aβ42 (PTAR). Multivariate linear regression, including factors that confound racial differences in AD, was performed. RESULTS Higher PSS scores were associated with higher Ptau (β= 0.43, p = 0.01) and PTAR (β= 0.005, p = 0.03) in AA with impaired cognition (mild cognitive impairment). CONCLUSION Higher PSS scores were associated with Tau-related AD biomarker indices in AA/MCI, suggesting a potential biological connection for stress with AD and its racial disparity.
Collapse
Affiliation(s)
- Antoine R Trammell
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Darius J McDaniel
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Malik Obideen
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Maureen Okafor
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Tiffany L Thomas
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Felicia C Goldstein
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Leslie M Shaw
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Ihab M Hajjar
- Department of Medicine and Neurology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
74
|
Network pharmacology of Withania somnifera against stress associated neurodegenerative diseases. ADVANCES IN TRADITIONAL MEDICINE 2021. [DOI: 10.1007/s13596-020-00530-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
75
|
Sierra-Fonseca JA, Hamdan JN, Cohen AA, Cardenas SM, Saucedo S, Lodoza GA, Gosselink KL. Neonatal Maternal Separation Modifies Proteostasis Marker Expression in the Adult Hippocampus. Front Mol Neurosci 2021; 14:661993. [PMID: 34447296 PMCID: PMC8383781 DOI: 10.3389/fnmol.2021.661993] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 07/05/2021] [Indexed: 01/01/2023] Open
Abstract
Exposure to early-life stress (ELS) can persistently modify neuronal circuits and functions, and contribute to the expression of misfolded and aggregated proteins that are hallmarks of several neurodegenerative diseases. The healthy brain is able to clear dysfunctional proteins through the ubiquitin-proteasome system (UPS) and the autophagy-lysosomal pathway (ALP). Accumulating evidence indicates that impairment of these pathways contributes to enhanced protein aggregation and neurodegeneration. While stress is a known precipitant of neurological decline, few specific mechanistic links underlying this relationship have been identified. We hypothesized that neonatal maternal separation (MatSep), a well-established model of ELS, has the ability to alter the levels of UPS and ALP components in the brain, and thus has the potential to disrupt proteostasis. The expression of proteostasis-associated protein markers was evaluated by immunoblotting in the hippocampus and cortex of adult Wistar rats that were previously subjected to MatSep. We observed multiple sex- and MatSep-specific changes in the expression of proteins in the ALP, mitophagy, and UPS pathways, particularly in the hippocampus of adult animals. In contrast, MatSep had limited influence on proteostasis marker expression in the cortex of adult animals. Our results indicate that MatSep can selectively modify the intracellular protein degradation machinery in ways that may impact the development and progression of neurodegenerative disease.
Collapse
Affiliation(s)
- Jorge A Sierra-Fonseca
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
| | - Jameel N Hamdan
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
| | - Alexis A Cohen
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States.,Neuroscience Program, Smith College, Northampton, MA, United States
| | - Sonia M Cardenas
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
| | - Sigifredo Saucedo
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
| | - Gabriel A Lodoza
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
| | - Kristin L Gosselink
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States.,Department of Physiology and Pathology, Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| |
Collapse
|
76
|
Highlighting Immune System and Stress in Major Depressive Disorder, Parkinson's, and Alzheimer's Diseases, with a Connection with Serotonin. Int J Mol Sci 2021; 22:ijms22168525. [PMID: 34445231 PMCID: PMC8395198 DOI: 10.3390/ijms22168525] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 01/10/2023] Open
Abstract
There is recognition that both stress and immune responses are important factors in a variety of neurological disorders. Moreover, there is an important role of several neurotransmitters that connect these factors to several neurological diseases, with a special focus in this paper on serotonin. Accordingly, it is known that imbalances in stressors can promote a variety of neuropsychiatric or neurodegenerative pathologies. Here, we discuss some facts that link major depressive disorder, Alzheimer’s, and Parkinson’s to the stress and immune responses, as well as the connection between these responses and serotonergic signaling. These are important topics of investigation which may lead to new or better treatments, improving the life quality of patients that suffer from these conditions.
Collapse
|
77
|
Khaspekov LG. Current Views on the Role of Stress in the Pathogenesis of Chronic Neurodegenerative Diseases. BIOCHEMISTRY (MOSCOW) 2021; 86:737-745. [PMID: 34225596 DOI: 10.1134/s0006297921060110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The review summarizes the results of studies on the cellular and molecular mechanisms mediating the impact of stress on the pathogenesis of neurodegenerative brain pathologies (Alzheimer's disease, Parkinson's disease, etc.) and presents current information on the role of stress in the hyperphosphorylation of tau protein, aggregation of beta-amyloid, and hyperactivation of the hypothalamic-pituitary-adrenal axis involved in the hyperproduction of factors that contribute to the pathogenetic role of stress in neurodegeneration. The data on the participation of microglia in the effects of stress on the pathogenesis of neurodegenerative diseases are presented.
Collapse
|
78
|
Vandael D, Wierda K, Vints K, Baatsen P, De Groef L, Moons L, Rybakin V, Gounko NV. Corticotropin-releasing factor induces functional and structural synaptic remodelling in acute stress. Transl Psychiatry 2021; 11:378. [PMID: 34234103 PMCID: PMC8263770 DOI: 10.1038/s41398-021-01497-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023] Open
Abstract
Biological responses to stress are complex and highly conserved. Corticotropin-releasing factor (CRF) plays a central role in regulating these lifesaving physiological responses to stress. We show that, in mice, CRF rapidly changes Schaffer Collateral (SC) input into hippocampal CA1 pyramidal cells (PC) by modulating both functional and structural aspects of these synapses. Host exposure to acute stress, in vivo CRF injection, and ex vivo CRF application all result in fast de novo formation and remodeling of existing dendritic spines. Functionally, CRF leads to a rapid increase in synaptic strength of SC input into CA1 neurons, e.g., increase in spontaneous neurotransmitter release, paired-pulse facilitation, and repetitive excitability and improves synaptic plasticity: long-term potentiation (LTP) and long-term depression (LTD). In line with the changes in synaptic function, CRF increases the number of presynaptic vesicles, induces redistribution of vesicles towards the active zone, increases active zone size, and improves the alignment of the pre- and postsynaptic compartments. Therefore, CRF rapidly enhances synaptic communication in the hippocampus, potentially playing a crucial role in the enhanced memory consolidation in acute stress.
Collapse
Affiliation(s)
- Dorien Vandael
- VIB-KU Leuven Center for Brain & Disease Research, Electron Microscopy Platform & VIB-Bioimaging Core, O&N5 Herestraat 49,, box 602, 3000, Leuven, Belgium
- KU Leuven Department of Neurosciences, Leuven Brain Institute, O&N5 Herestraat 49,, box 602, 3000, Leuven, Belgium
| | - Keimpe Wierda
- KU Leuven Department of Neurosciences, Leuven Brain Institute, O&N5 Herestraat 49,, box 602, 3000, Leuven, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Electrophysiology Expertise Unit, O&N5 Herestraat 49, 3000, Leuven, Belgium
| | - Katlijn Vints
- VIB-KU Leuven Center for Brain & Disease Research, Electron Microscopy Platform & VIB-Bioimaging Core, O&N5 Herestraat 49,, box 602, 3000, Leuven, Belgium
- KU Leuven Department of Neurosciences, Leuven Brain Institute, O&N5 Herestraat 49,, box 602, 3000, Leuven, Belgium
| | - Pieter Baatsen
- VIB-KU Leuven Center for Brain & Disease Research, Electron Microscopy Platform & VIB-Bioimaging Core, O&N5 Herestraat 49,, box 602, 3000, Leuven, Belgium
- KU Leuven Department of Neurosciences, Leuven Brain Institute, O&N5 Herestraat 49,, box 602, 3000, Leuven, Belgium
| | - Lies De Groef
- KU Leuven Faculty of Science, Department of Biology, Laboratory of Neural Circuit Development and Regeneration, Naamsestraat 61, 3000, Leuven, Belgium
| | - Lieve Moons
- KU Leuven Faculty of Science, Department of Biology, Laboratory of Neural Circuit Development and Regeneration, Naamsestraat 61, 3000, Leuven, Belgium
| | - Vasily Rybakin
- National University of Singapore, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, and Immunology Program, 5 Science Drive 2, Blk MD4, 117545, Singapore, Singapore
| | - Natalia V Gounko
- VIB-KU Leuven Center for Brain & Disease Research, Electron Microscopy Platform & VIB-Bioimaging Core, O&N5 Herestraat 49,, box 602, 3000, Leuven, Belgium.
- KU Leuven Department of Neurosciences, Leuven Brain Institute, O&N5 Herestraat 49,, box 602, 3000, Leuven, Belgium.
| |
Collapse
|
79
|
Milligan Armstrong A, Porter T, Quek H, White A, Haynes J, Jackaman C, Villemagne V, Munyard K, Laws SM, Verdile G, Groth D. Chronic stress and Alzheimer's disease: the interplay between the hypothalamic-pituitary-adrenal axis, genetics and microglia. Biol Rev Camb Philos Soc 2021; 96:2209-2228. [PMID: 34159699 DOI: 10.1111/brv.12750] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/21/2022]
Abstract
Chronic psychosocial stress is increasingly being recognised as a risk factor for sporadic Alzheimer's disease (AD). The hypothalamic-pituitary-adrenal axis (HPA axis) is the major stress response pathway in the body and tightly regulates the production of cortisol, a glucocorticoid hormone. Dysregulation of the HPA axis and increased levels of cortisol are commonly found in AD patients and make a major contribution to the disease process. The underlying mechanisms remain poorly understood. In addition, within the general population there are interindividual differences in sensitivities to glucocorticoid and stress responses, which are thought to be due to a combination of genetic and environmental factors. These differences could ultimately impact an individuals' risk of AD. The purpose of this review is first to summarise the literature describing environmental and genetic factors that can impact an individual's HPA axis reactivity and function and ultimately AD risk. Secondly, we propose a mechanism by which genetic factors that influence HPA axis reactivity may also impact inflammation, a key driver of neurodegeneration. We hypothesize that these factors can mediate glucocorticoid priming of the immune cells of the brain, microglia, to become pro-inflammatory and promote a neurotoxic environment resulting in neurodegeneration. Understanding the underlying molecular mechanisms and identifying these genetic factors has implications for evaluating stress-related risk/progression to neurodegeneration, informing the success of interventions based on stress management and potential risks associated with the common use of glucocorticoids.
Collapse
Affiliation(s)
- Ayeisha Milligan Armstrong
- Curtin Health Innovation Research Institute, Curtin University, Kent St, Bentley, WA, 6102, Australia.,Curtin Medical School, Curtin University, Kent St, Bentley, WA, 6102, Australia
| | - Tenielle Porter
- Curtin Medical School, Curtin University, Kent St, Bentley, WA, 6102, Australia.,Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - Hazel Quek
- QIMR Berghofer Medical Institute, 300 Herston Rd, Herston, QLD, Australia
| | - Anthony White
- QIMR Berghofer Medical Institute, 300 Herston Rd, Herston, QLD, Australia
| | - John Haynes
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Connie Jackaman
- Curtin Health Innovation Research Institute, Curtin University, Kent St, Bentley, WA, 6102, Australia.,Curtin Medical School, Curtin University, Kent St, Bentley, WA, 6102, Australia
| | - Victor Villemagne
- School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia.,The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
| | - Kylie Munyard
- Curtin Health Innovation Research Institute, Curtin University, Kent St, Bentley, WA, 6102, Australia.,Curtin Medical School, Curtin University, Kent St, Bentley, WA, 6102, Australia
| | - Simon M Laws
- Curtin Medical School, Curtin University, Kent St, Bentley, WA, 6102, Australia.,Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - Giuseppe Verdile
- Curtin Health Innovation Research Institute, Curtin University, Kent St, Bentley, WA, 6102, Australia.,Curtin Medical School, Curtin University, Kent St, Bentley, WA, 6102, Australia.,School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - David Groth
- Curtin Health Innovation Research Institute, Curtin University, Kent St, Bentley, WA, 6102, Australia.,Curtin Medical School, Curtin University, Kent St, Bentley, WA, 6102, Australia
| |
Collapse
|
80
|
Mohammadi S, Zandi M, Dousti Kataj P, Karimi Zandi L. Chronic stress and Alzheimer's disease. Biotechnol Appl Biochem 2021; 69:1451-1458. [PMID: 34152660 DOI: 10.1002/bab.2216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/18/2021] [Indexed: 12/17/2022]
Abstract
Stress is a key factor in the development and progress of diseases. In neurodegenerative conditions, stress management can play an important role in maintaining the quality of life and the capacity to improve. Neurodegenerative diseases, including Alzheimer's disease, cause the motor and cognitive malfunctions that are spontaneously stressful and also can disturb the neural circuits that promote stress responses. The interruption of those circuits leads to aggressive and inappropriate behavior. In addition, stress contributes to illness and may exacerbate symptoms. In this review, we present stress-activated neural pathways involved in Alzheimer's disease from a clinical and experimental point of view, as well as supportive drugs and therapies.
Collapse
Affiliation(s)
- Shima Mohammadi
- Neuroscience and Addiction Studies Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Zandi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Parviz Dousti Kataj
- Neuroscience and Addiction Studies Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Karimi Zandi
- Neuroscience and Addiction Studies Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
81
|
Effects of Sociodemographic Variables and Depressive Symptoms on MoCA Test Performance in Native Germans and Turkish Migrants in Germany. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18126335. [PMID: 34208085 PMCID: PMC8296159 DOI: 10.3390/ijerph18126335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/28/2021] [Accepted: 06/07/2021] [Indexed: 11/17/2022]
Abstract
The validity of the Montreal Cognitive Assessment (MoCA) in migrants is questionable, as sociodemographic factors and the migration process may influence performance. Our aim was to evaluate possible predictors (age, education, sex, depression, and migration) of MoCA results in Turkish migrants and Germans living in Germany. Linear regression models were conducted with a German (n = 419), a Turkish (n = 133), and an overall sample. All predictor analyses reached statistical significance. For the German sample, age, sex, education, and depression were significant predictors, whereas education was the only predictor for Turkish migrants. For the overall sample, having no migration background and higher education were significant predictors. Migration background and education had an impact on MoCA performance in a sample of German and Turkish individuals living in Germany. Thus, culture-specific normative data for the MoCA are needed, and the development of culture-sensitive cognitive screening tools is encouraged.
Collapse
|
82
|
Araujo I, Henriksen A, Gamsby J, Gulick D. Impact of Alcohol Abuse on Susceptibility to Rare Neurodegenerative Diseases. Front Mol Biosci 2021; 8:643273. [PMID: 34179073 PMCID: PMC8220155 DOI: 10.3389/fmolb.2021.643273] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/14/2021] [Indexed: 12/22/2022] Open
Abstract
Despite the prevalence and well-recognized adverse effects of prenatal alcohol exposure and alcohol use disorder in the causation of numerous diseases, their potential roles in the etiology of neurodegenerative diseases remain poorly characterized. This is especially true of the rare neurodegenerative diseases, for which small population sizes make it difficult to conduct broad studies of specific etiological factors. Nonetheless, alcohol has potent and long-lasting effects on neurodegenerative substrates, at both the cellular and systems levels. This review highlights the general effects of alcohol in the brain that contribute to neurodegeneration across diseases, and then focuses on specific diseases in which alcohol exposure is likely to play a major role. These specific diseases include dementias (alcohol-induced, frontotemporal, and Korsakoff syndrome), ataxias (cerebellar and frontal), and Niemann-Pick disease (primarily a Type B variant and Type C). We conclude that there is ample evidence to support a role of alcohol abuse in the etiology of these diseases, but more work is needed to identify the primary mechanisms of alcohol's effects.
Collapse
Affiliation(s)
- Iskra Araujo
- Gulick Laboratory, Byrd Neuroscience Institute, University of South Florida Health, Tampa, FL, United States
| | - Amy Henriksen
- Gulick Laboratory, Byrd Neuroscience Institute, University of South Florida Health, Tampa, FL, United States
| | - Joshua Gamsby
- Gulick Laboratory, Byrd Neuroscience Institute, University of South Florida Health, Tampa, FL, United States
- Department of Molecular Medicine, Morsani College of Medicine, University of South FL, Tampa, FL, United States
| | - Danielle Gulick
- Gulick Laboratory, Byrd Neuroscience Institute, University of South Florida Health, Tampa, FL, United States
- Department of Molecular Medicine, Morsani College of Medicine, University of South FL, Tampa, FL, United States
| |
Collapse
|
83
|
Samanchi R, Prakash Muthukrishnan S, Dada T, Sihota R, Kaur S, Sharma R. Altered spontaneous cortical activity in mild glaucoma: A quantitative EEG study. Neurosci Lett 2021; 759:136036. [PMID: 34116196 DOI: 10.1016/j.neulet.2021.136036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 05/15/2021] [Accepted: 06/06/2021] [Indexed: 11/19/2022]
Abstract
Functional neuroimaging studies have reported alterations in cortical activity indicating glaucoma as a progressive neurodegenerative disease. Hence the current study aimed to assess the cortical activity using high-density EEG in patients with mild glaucoma during resting state. Treatment-naive 37 patients with primary open angle glaucoma (POAG), 34 patients with primary angle closure glaucoma (PACG), and 32 healthy controls were included in the study. Resting state EEG i.e., eyes closed (EC) and eyes open conditions (EO) were acquired using 128-channel for 3 min. After preprocessing, the current density of 6239 voxels of the data was estimated using sLORETA. In comparison to healthy controls, PACG had higher activity at cingulate gyri, medial and superior frontal gyri during EO only. POAG had significantly higher activity at precentral gyrus and middle frontal gyrus during EC, whereas at cingulate gyri, frontal gyri, precentral gyri, paracentral lobule, sub-gyral region, postcentral gyrus, and precuneus during EO. POAG had significantly higher activity at precuneus and cuneus compared to PACG during EO. Intraocular pressure and mean-deviation of visual fields had a positive correlation with cortical activity. Results of the study indicate physiological alterations not only at the level of retina but also at brain even in the early stages of the disease. These alterations in the cortical activity were more in POAG than PACG. Controlling the IOP alone might be insufficient in glaucoma because of widespread alterations in cortical activity. These findings might enhance the current understanding of cortical involvement in glaucoma.
Collapse
Affiliation(s)
- Rupesh Samanchi
- Stress and Cognitive Electroimaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Suriya Prakash Muthukrishnan
- Stress and Cognitive Electroimaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Tanuj Dada
- Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Ramanjit Sihota
- Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Simran Kaur
- Stress and Cognitive Electroimaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Ratna Sharma
- Stress and Cognitive Electroimaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
84
|
Lin YF, Wang LY, Chen CS, Li CC, Hsiao YH. Cellular senescence as a driver of cognitive decline triggered by chronic unpredictable stress. Neurobiol Stress 2021; 15:100341. [PMID: 34095365 PMCID: PMC8163993 DOI: 10.1016/j.ynstr.2021.100341] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022] Open
Abstract
When an individual is under stress, the undesired effect on the brain often exceeds expectations. Additionally, when stress persists for a long time, it can trigger serious health problems, particularly depression. Recent studies have revealed that depressed patients have a higher rate of brain aging than healthy subjects and that depression increases dementia risk later in life. However, it remains unknown which factors are involved in brain aging triggered by chronic stress. The most critical change during brain aging is the decline in cognitive function. In addition, cellular senescence is a stable state of cell cycle arrest that occurs because of damage and/or stress and is considered a sign of aging. We used the chronic unpredictable stress (CUS) model to mimic stressful life situations and found that, compared with nonstressed control mice, CUS-treated C57BL/6 mice exhibited depression-like behaviors and cognitive decline. Additionally, the protein expression of the senescence marker p16INK4a was increased in the hippocampus, and senescence-associated β-galactosidase (SA-β-gal)-positive cells were found in the hippocampal dentate gyrus (DG) in CUS-treated mice. Furthermore, the levels of SA-β-gal or p16INK4a were strongly correlated with the severity of memory impairment in CUS-treated mice, whereas clearing senescent cells using the pharmacological senolytic cocktail dasatinib plus quercetin (D + Q) alleviated CUS-induced cognitive deficits, suggesting that targeting senescent cells may be a promising candidate approach to study chronic stress-induced cognitive decline. Our findings open new avenues for stress-related research and provide new insight into the association of chronic stress-induced cellular senescence with cognitive deficits.
Collapse
Affiliation(s)
- Yu-Fen Lin
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Li-Yun Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chi-Sheng Chen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Chun Li
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Hsin Hsiao
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
85
|
Poumeaud F, Mircher C, Smith PJ, Faye PA, Sturtz FG. Deciphering the links between psychological stress, depression, and neurocognitive decline in patients with Down syndrome. Neurobiol Stress 2021; 14:100305. [PMID: 33614867 PMCID: PMC7879042 DOI: 10.1016/j.ynstr.2021.100305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/16/2021] [Accepted: 01/23/2021] [Indexed: 12/27/2022] Open
Abstract
The relationships between psychological stress and cognitive functions are still to be defined despite some recent progress. Clinically, we noticed that patients with Down syndrome (DS) may develop rapid neurocognitive decline and Alzheimer's disease (AD) earlier than expected, often shortly after a traumatic life event (bereavement over the leave of a primary caregiver, an assault, modification of lifestyle, or the loss of parents). Of course, individuals with DS are naturally prone to develop AD, given the triplication of chromosome 21. However, the relatively weak intensity of the stressful event and the rapid pace of cognitive decline after stress in these patients have to be noticed. It seems DS patients react to stress in a similar manner normal persons react to a very intense stress, and thereafter develop a state very much alike post-traumatic stress disorders. Unfortunately, only a few studies have studied stress-induced regression in patients with DS. Thus, we reviewed the biochemical events involved in psychological stress and found some possible links with cognitive impairment and AD. Interestingly, these links could probably be also applied to non-DS persons submitted to an intense stress. We believe these links should be further explored as a better understanding of the relationships between stress and cognition could help in many situations including individuals of the general population.
Collapse
Affiliation(s)
- François Poumeaud
- Univ. Limoges, Peripheral Neuropathies, EA6309, F-87000, Limoges, France
| | - Clotilde Mircher
- Institut Jérôme Lejeune, 37 Rue des Volontaires, F-75015, Paris, France
| | - Peter J. Smith
- University of Chicago, 950 E. 61st Street, SSC Suite 207, Chicago, IL, 60637, USA
| | - Pierre-Antoine Faye
- Univ. Limoges, Peripheral Neuropathies, EA6309, F-87000, Limoges, France
- CHU Limoges, Department of Biochemistry and Molecular Biology, F-87000, Limoges, France
| | - Franck G. Sturtz
- Univ. Limoges, Peripheral Neuropathies, EA6309, F-87000, Limoges, France
- CHU Limoges, Department of Biochemistry and Molecular Biology, F-87000, Limoges, France
| |
Collapse
|
86
|
Murayama MA, Arimitsu N, Shimizu J, Fujiwara N, Takai K, Ikeda Y, Okada Y, Hirotsu C, Takada E, Suzuki T, Suzuki N. Female dominance of both spatial cognitive dysfunction and neuropsychiatric symptoms in a mouse model of Alzheimer's disease. Exp Anim 2021; 70:398-405. [PMID: 33840703 PMCID: PMC8390308 DOI: 10.1538/expanim.21-0009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Alzheimer’s disease (AD) is a prevalent neurological disorder affecting memory function in elderly persons. Indeed, AD exhibits abnormality in cognitive
behaviors and higher susceptibility to neuropsychiatric symptoms (NPS). Various factors including aging, sex difference and NPS severity, are implicated during
in development of AD. In this study, we evaluated behavioral abnormalities of AD model, PDAPP transgenic mice at young age using the Morris Water Maze test,
which was established to assess hippocampal-dependent learning and memory. We found that female AD model mice exhibited spatial learning dysfunction and highly
susceptible to NPS such as anxiety and depression, whereas spatial reference memory function was comparable in female PDAPP Tg mice to female wild type (WT)
mice. Spatial learning function was comparable in male AD model mice to male WT mice. Multiple regression analysis showed that spatial learning dysfunction was
associated with NPS severity such as anxiety and depression. Furthermore, the analysis showed that spatial reference memory function was associated with status
of depression, but not anxiety. Thus, these results suggest female dominance of spatial learning dysfunction in the AD model mice accompanying increased NPS
severity. The understandings of AD model may be useful for the development of therapeutic agents and methods in human AD.
Collapse
Affiliation(s)
- Masanori A Murayama
- Department of Immunology and Medicine, St. Marianna University of School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan.,Present address: Department of Animal Models for Human Diseases, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan
| | - Nagisa Arimitsu
- Department of Immunology and Medicine, St. Marianna University of School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan
| | - Jun Shimizu
- Department of Immunology and Medicine, St. Marianna University of School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan
| | - Naruyoshi Fujiwara
- Department of Immunology and Medicine, St. Marianna University of School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan
| | - Kenji Takai
- Department of Immunology and Medicine, St. Marianna University of School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan
| | - Yoshiki Ikeda
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan
| | - Yoko Okada
- Department of Immunology and Medicine, St. Marianna University of School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan
| | - Chieko Hirotsu
- Department of Immunology and Medicine, St. Marianna University of School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan
| | - Erika Takada
- Department of Immunology and Medicine, St. Marianna University of School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan
| | - Tomoko Suzuki
- Department of Immunology and Medicine, St. Marianna University of School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan
| | - Noboru Suzuki
- Department of Immunology and Medicine, St. Marianna University of School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan
| |
Collapse
|
87
|
Murayama MA, Arimitsu N, Shimizu J, Fujiwara N, Takai K, Okada Y, Hirotsu C, Takada E, Suzuki T, Suzuki N. Dementia model mice exhibited improvements of neuropsychiatric symptoms as well as cognitive dysfunction with neural cell transplantation. Exp Anim 2021; 70:387-397. [PMID: 33828024 PMCID: PMC8390309 DOI: 10.1538/expanim.21-0008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Elderly patients with dementia suffer from cognitive dysfunctions and neuropsychiatric symptoms (NPS) such as anxiety and depression. Alzheimer’s disease (AD)
is a form of age-related dementia, and loss of cholinergic neurons is intimately associated with development of AD symptoms. We and others have reported that
neural cell transplantation ameliorated cognitive dysfunction in AD model mice. It remains largely unclear whether neural cell transplantation ameliorates the
NPS of AD. It would be interesting to determine whether NPS correlates with cognitive dysfunctions before and after neural cell transplantation in AD model
mice. Based on the revalidation of our previous data from a Morris water maze test, we found that neural cell transplantation improved anxiety and depression
significantly and marginally affected locomotion activity in AD mice. A correlation analysis revealed that the spatial learning function of AD mice was
correlated with their NPS scores both before and after cell transplantation in a similar manner. In contrast, in the mice subjected to cell transplantation,
spatial reference memory function was not correlated with NPS scores. These results suggested the neural cell transplantation in the AD model mice significantly
improved NPS to the same degree as cognitive dysfunctions, possibly via distinct mechanisms, such as the cholinergic and GABAergic systems.
Collapse
Affiliation(s)
- Masanori A Murayama
- Department of Immunology and Medicine, St. Marianna University of School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan.,Present address: Department of Animal Models for Human Diseases, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan
| | - Nagisa Arimitsu
- Department of Immunology and Medicine, St. Marianna University of School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan
| | - Jun Shimizu
- Department of Immunology and Medicine, St. Marianna University of School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan
| | - Naruyoshi Fujiwara
- Department of Immunology and Medicine, St. Marianna University of School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan
| | - Kenji Takai
- Department of Immunology and Medicine, St. Marianna University of School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan
| | - Yoko Okada
- Department of Immunology and Medicine, St. Marianna University of School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan
| | - Chieko Hirotsu
- Department of Immunology and Medicine, St. Marianna University of School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan
| | - Erika Takada
- Department of Immunology and Medicine, St. Marianna University of School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan
| | - Tomoko Suzuki
- Department of Immunology and Medicine, St. Marianna University of School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan
| | - Noboru Suzuki
- Department of Immunology and Medicine, St. Marianna University of School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan
| |
Collapse
|
88
|
Hendrickx JO, Martinet W, Van Dam D, De Meyer GRY. Inflammation, Nitro-Oxidative Stress, Impaired Autophagy, and Insulin Resistance as a Mechanistic Convergence Between Arterial Stiffness and Alzheimer's Disease. Front Mol Biosci 2021; 8:651215. [PMID: 33855048 PMCID: PMC8039307 DOI: 10.3389/fmolb.2021.651215] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
The average age of the world's elderly population is steadily increasing. This unprecedented rise in the aged world population will increase the prevalence of age-related disorders such as cardiovascular disease (CVD) and neurodegeneration. In recent years, there has been an increased interest in the potential interplay between CVDs and neurodegenerative syndromes, as several vascular risk factors have been associated with Alzheimer's disease (AD). Along these lines, arterial stiffness is an independent risk factor for both CVD and AD. In this review, we discuss several inflammaging-related disease mechanisms including acute tissue-specific inflammation, nitro-oxidative stress, impaired autophagy, and insulin resistance which may contribute to the proposed synergism between arterial stiffness and AD.
Collapse
Affiliation(s)
- Jhana O. Hendrickx
- Laboratory of Physiopharmacology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Wim Martinet
- Laboratory of Physiopharmacology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Debby Van Dam
- Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Alzheimer Research Center, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Guido R. Y. De Meyer
- Laboratory of Physiopharmacology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
89
|
Pathways to well-being: Untangling the causal relationships among biopsychosocial variables. Soc Sci Med 2021; 272:112846. [DOI: 10.1016/j.socscimed.2020.112846] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 12/30/2019] [Accepted: 02/08/2020] [Indexed: 02/07/2023]
|
90
|
Picard K, St-Pierre MK, Vecchiarelli HA, Bordeleau M, Tremblay MÈ. Neuroendocrine, neuroinflammatory and pathological outcomes of chronic stress: A story of microglial remodeling. Neurochem Int 2021; 145:104987. [PMID: 33587954 DOI: 10.1016/j.neuint.2021.104987] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
Microglia, the resident macrophage cells of the central nervous system (CNS), are involved in a myriad of processes required to maintain CNS homeostasis. These cells are dynamic and can adapt their phenotype and functions to the physiological needs of the organism. Microglia rapidly respond to changes occurring in their microenvironment, such as the ones taking place during stress. While stress can be beneficial for the organism to adapt to a situation, it can become highly detrimental when it turns chronic. Microglial response to prolonged stress may lead to an alteration of their beneficial physiological functions, becoming either maladaptive or pro-inflammatory. In this review, we aim to summarize the effects of chronic stress exerted on microglia through the neuroendocrine system and inflammation at adulthood. We also discuss how these effects of chronic stress could contribute to microglial involvement in neuropsychiatric and sleep disorders, as well as neurodegenerative diseases.
Collapse
Affiliation(s)
- Katherine Picard
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Marie-Kim St-Pierre
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | | | - Maude Bordeleau
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada; Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada; Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
91
|
Anhedonia as a Potential Risk Factor of Alzheimer's Disease in a Community-Dwelling Elderly Sample: Results from the ZARADEMP Project. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041370. [PMID: 33546118 PMCID: PMC7913238 DOI: 10.3390/ijerph18041370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/22/2021] [Accepted: 01/30/2021] [Indexed: 12/18/2022]
Abstract
(1) Introduction: Dementia is a major public health problem, and Alzheimer's disease (AD) is the most frequent subtype. Clarifying the potential risk factors is necessary in order to improve dementia-prevention strategies and quality of life. Here, our purpose was to investigate the role of the absence of hedonic tone; anhedonia, understood as the reduction on previous enjoyable daily activities, which occasionally is underdetected and underdiagnosed; and the risk of developing AD in a cognitively unimpaired and non-depressed population sample. (2) Method: We used data from the Zaragoza Dementia and Depression (ZARADEMP) project, a longitudinal epidemiological study on dementia and depression. After excluding subjects with dementia, a sample of 2830 dwellers aged ≥65 years was followed for 4.5 years. The geriatric mental state examination was used to identify cases of anhedonia. AD was diagnosed by a panel of research psychiatrists according to Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) criteria. A multivariate survival analysis and Cox proportional hazards regression model were performed, and the analysis was controlled by an analysis for the presence of clinically significant depression. (3) Results: We found a significant association between anhedonia cases and AD risk in the univariate analysis (hazard ratio (HR): 2.37; 95% CI: 1.04-5.40). This association persisted more strongly in the fully adjusted model. (4) Conclusions: Identifying cognitively intact individuals with anhedonia is a priority to implement preventive strategies that could delay the progression of cognitive and functional impairment in subjects at risk of AD.
Collapse
|
92
|
Autophagy status as a gateway for stress-induced catecholamine interplay in neurodegeneration. Neurosci Biobehav Rev 2021; 123:238-256. [PMID: 33497785 DOI: 10.1016/j.neubiorev.2021.01.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 12/13/2022]
Abstract
The catecholamine-containing brainstem nuclei locus coeruleus (LC) and ventral tegmental area (VTA) are critically involved in stress responses. Alterations of catecholamine systems during chronic stress may contribute to neurodegeneration, including cognitive decline. Stress-related catecholamine alterations, while contributing to anxiety and depression, might accelerate neuronal degeneration by increasing the formation of toxic dopamine and norepinephrine by-products. These, in turn, may impair proteostasis within a variety of cortical and subcortical areas. In particular, the molecular events governing neurotransmission, neuroplasticity, and proteostasis within LC and VTA affect a variety of brain areas. Therefore, we focus on alterations of autophagy machinery in these nuclei as a relevant trigger in this chain of events. In fact, these catecholamine-containing areas are mostly prone to autophagy-dependent neurodegeneration. Thus, we propose a dynamic hypothesis according to which stress-induced autophagy alterations within the LC-VTA network foster a cascade towards early neurodegeneration within these nuclei.
Collapse
|
93
|
Leszko M, Meenrajan S. Attitudes, beliefs, and changing trends of cannabidiol (CBD) oil use among caregivers of individuals with Alzheimer's disease. Complement Ther Med 2021; 57:102660. [PMID: 33418066 DOI: 10.1016/j.ctim.2021.102660] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVES With the increasing popularity of CBD-based products, especially CBD oil, it is increasingly important to understand what motivates caregivers of individuals with Alzheimer's disease (AD) to use CBD oil as part of treatment. The purpose of this study was to identify the attitudes and beliefs of caregivers of individuals with AD toward CBD oil in Poland, to identify factors that might be associated with the decision to use CBD oil among caregivers, and to explore whether such a decision was discussed with a healthcare professional. METHOD A cross-sectional online survey was conducted in Poland. Participation in the study was entirely voluntary and completely anonymous. Caregivers (n = 73) were asked about their practices and attitudes regarding CBD oil. RESULTS The most common source of knowledge about CBD oil was an online support group for caregivers. The vast majority of caregivers found CBD to be effective in managing behavioral symptoms of AD and believed that healthcare professionals should offer CBD oil as a part of treatment. However, only 63 % (n = 46) reported consulting with their physician about using CBD oil. The study also demonstrated that some caregivers thought that CBD oil use was illegal in Poland and that their care-recipient may develop a dependence and withdrawal symptoms if they stopped using it. CONCLUSIONS The results of the study highlight the positive and negative perceptions among caregivers of people with AD. The study also emphasizes the importance of enhancing communication between caregivers and healthcare professionals to discuss the use of CBD oil in the treatment of individuals with AD.
Collapse
Affiliation(s)
- Magdalena Leszko
- University of Szczecin, Department of Psychology, ul. Krakowska 69, 71-017 Szczecin, Poland.
| | - Senthil Meenrajan
- University of Florida, College of Medicine, 1600 SW Archer Rd m509, Gainesville, FL 32610, United States
| |
Collapse
|
94
|
Bhuiyan P, Wang YW, Sha HH, Dong HQ, Qian YN. Neuroimmune connections between corticotropin-releasing hormone and mast cells: novel strategies for the treatment of neurodegenerative diseases. Neural Regen Res 2021; 16:2184-2197. [PMID: 33818491 PMCID: PMC8354134 DOI: 10.4103/1673-5374.310608] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Corticotropin-releasing hormone is a critical component of the hypothalamic–pituitary–adrenal axis, which plays a major role in the body’s immune response to stress. Mast cells are both sensors and effectors in the interaction between the nervous and immune systems. As first responders to stress, mast cells can initiate, amplify and prolong neuroimmune responses upon activation. Corticotropin-releasing hormone plays a pivotal role in triggering stress responses and related diseases by acting on its receptors in mast cells. Corticotropin-releasing hormone can stimulate mast cell activation, influence the activation of immune cells by peripheral nerves and modulate neuroimmune interactions. The latest evidence shows that the release of corticotropin-releasing hormone induces the degranulation of mast cells under stress conditions, leading to disruption of the blood-brain barrier, which plays an important role in neurological diseases, such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, autism spectrum disorder and amyotrophic lateral sclerosis. Recent studies suggest that stress increases intestinal permeability and disrupts the blood-brain barrier through corticotropin-releasing hormone-mediated activation of mast cells, providing new insight into the complex interplay between the brain and gastrointestinal tract. The neuroimmune target of mast cells is the site at which the corticotropin-releasing hormone directly participates in the inflammatory responses of nerve terminals. In this review, we focus on the neuroimmune connections between corticotropin-releasing hormone and mast cells, with the aim of providing novel potential therapeutic targets for inflammatory, autoimmune and nervous system diseases.
Collapse
Affiliation(s)
- Piplu Bhuiyan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yi-Wei Wang
- Department of Anesthesiology, Wuxi People's Hospital, Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Huan-Huan Sha
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hong-Quan Dong
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yan-Ning Qian
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
95
|
Guarnieri B, Maestri M, Cucchiara F, Lo Gerfo A, Schirru A, Arnaldi D, Mattioli P, Nobili F, Lombardi G, Cerroni G, Bartoli A, Manni R, Sinforiani E, Terzaghi M, Arena MG, Silvestri R, La Morgia C, Di Perri MC, Franzoni F, Tognoni G, Mancuso M, Sorbi S, Bonuccelli U, Siciliano G, Faraguna U, Bonanni E. Multicenter Study on Sleep and Circadian Alterations as Objective Markers of Mild Cognitive Impairment and Alzheimer’s Disease Reveals Sex Differences. J Alzheimers Dis 2020; 78:1707-1719. [DOI: 10.3233/jad-200632] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background: Circadian and sleep disturbances are associated with increased risk of mild cognitive impairment (MCI) and Alzheimer’s disease (AD). Wearable activity trackers could provide a new approach in diagnosis and prevention. Objective: To evaluate sleep and circadian rhythm parameters, through wearable activity trackers, in MCI and AD patients as compared to controls, focusing on sex dissimilarities. Methods: Based on minute level data from consumer wearable devices, we analyzed actigraphic sleep parameters by applying an electromedical type I registered algorithm, and the corresponding circadian variables in 158 subjects: 86 females and 72 males (42 AD, 28 MCI, and 88 controls). Moreover, we used a confusion-matrix chart method to assess accuracy, precision, sensitivity, and specificity of two decision-tree models based on actigraphic data in predicting disease or health status. Results: Wake after sleep onset (WASO) was higher (p < 0.001) and sleep efficiency (SE) lower (p = 0.003) in MCI, and Sleep Regularity Index (SRI) was lower in AD patients compared to controls (p = 0.004). SE was lower in male AD compared to female AD (p = 0.038) and SRI lower in male AD compared to male controls (p = 0.008), male MCI (p = 0.047), but also female AD subjects (p = 0.046). Mesor was significantly lower in males in the overall population. Age reduced the dissimilarities for WASO and SE but demonstrated sex differences for amplitude (p = 0.009) in the overall population, controls (p = 0.005), and AD subjects (p = 0.034). The confusion-matrices showed good predictive power of actigraphic data. Conclusion: Actigraphic data could help identify disease or health status. Sex (possibly gender) differences could impact on neurodegeneration and disease trajectory with potential clinical applications.
Collapse
Affiliation(s)
- Biancamaria Guarnieri
- Center of Sleep Medicine, Villa Serena Hospital, Città S. Angelo, Pescara, Italy
- Villaserena Foundation for the Research, Città S. Angelo, Pescara, Italy
| | - Michelangelo Maestri
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Federico Cucchiara
- SONNOLab, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
- Clinical Pharmacology and Pharmacogenetic Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Annalisa Lo Gerfo
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alessandro Schirru
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Dario Arnaldi
- Clinical Neurology, Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale San Martino, Genoa, Italy
| | - Pietro Mattioli
- Clinical Neurology, Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale San Martino, Genoa, Italy
| | - Flavio Nobili
- Clinical Neurology, Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale San Martino, Genoa, Italy
| | | | - Gianluigi Cerroni
- Center of Sleep Medicine, Villa Serena Hospital, Città S. Angelo, Pescara, Italy
- Villaserena Foundation for the Research, Città S. Angelo, Pescara, Italy
| | - Antonella Bartoli
- Center of Sleep Medicine, Villa Serena Hospital, Città S. Angelo, Pescara, Italy
- Villaserena Foundation for the Research, Città S. Angelo, Pescara, Italy
| | - Raffaele Manni
- Sleep and Epilepsy Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Elena Sinforiani
- Neuropsychology/Alzheimer's Disease Assessment Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Michele Terzaghi
- Sleep and Epilepsy Unit, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Maria Grazia Arena
- Center for Cognitive Disorders and Dementias, Alzheimer's Disease Assessment Unit, UOC of Neurology and Neuromuscular Disorders, AOU Policlinico, ``G. Martino'', University of Messina, Messina, Italy
| | - Rosalia Silvestri
- Sleep Medicine Center, UOSD of Neurophysiopathology and Movement Disorders, AOU Policlinico ``G.~Martino'', Department of Clinical and Experimental Medicine, University of Messina, Italy
| | - Chiara La Morgia
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna Bologna, Italy
| | - Maria Caterina Di Perri
- Sleep Medicine Center, UOSD of Neurophysiopathology and Movement Disorders, AOU Policlinico ``G.~Martino'', Department of Clinical and Experimental Medicine, University of Messina, Italy
| | - Ferdinando Franzoni
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gloria Tognoni
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Michelangelo Mancuso
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Sandro Sorbi
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Ubaldo Bonuccelli
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gabriele Siciliano
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Ugo Faraguna
- SONNOLab, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Enrica Bonanni
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
96
|
Shirzad S, Neamati A, Vafaee F, Ghazavi H. Bufo viridis secretions improve anxiety and depression-like behavior following intracerebroventricular injection of amyloid β. Res Pharm Sci 2020; 15:571-582. [PMID: 33828600 PMCID: PMC8020856 DOI: 10.4103/1735-5362.301342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/11/2020] [Accepted: 11/14/2020] [Indexed: 01/04/2023] Open
Abstract
Background and purpose: Venenum Bufonis is a Chinese traditional medicine produced from the glandular secretions of toads that contain biogenic amines, which have anti-inflammatory properties. The present study aimed to examine the effect of Bufo viridis secretions (BVS) on anxiety and depression-like behavior and hippocampal senile plaques volume in an animal model of Alzheimer's disease (AD). Experimental approach: Thirty-eight male Wistar rats were used. AD was induced by amyloid-beta (Aβ1-42) (10 μg/2 μL, intracerebroventricular injection, icv) and then BVS at 20, 40, and 80 mg/kg were injected intraperitoneally (ip) in six equal intervals over 21 days. Anxiety and depression-like behavior were assessed using behavioral tests including open field test (OFT), elevated plus maze (EPM), and forced swimming test (FST) 21 days after the surgery. The volume of senile plaques was assessed based on the Cavalieri principle. Findings/Results: Results of the OFT showed that the central crossing number and the time in the AD group were significantly decreased compared to the sham group (P < 0.01 and P < 0.001, respectively). Also, the values of these two parameters significantly increased in the AD + BVS80 group than the AD group (P < 0.05 and P < 0.001, respectively). The time spent in the closed arm in the EPM dramatically increased in the AD group compared to the sham group (P < 0.05) and significantly decreased in the AD + BVS80 group compared to the AD group (P < 0.05). Results of the FST indicated that immobility time had a reduction in the AD + BVS20 (P < 0.01), AD + BVS40, and AD + BVS80 groups compared to the AD group (P < 0.001). The volume of senile plaques in the hippocampus showed a reduction in the treatment groups in comparison with the AD group (P < 0.001 for all). Conclusion and implications: Results revealed that BVS injection could improve symptoms of anxiety and depression and decrease senile plaques in the hippocampus in an animal model of AD.
Collapse
Affiliation(s)
- Shima Shirzad
- Department of Biology, Faculty of Science, Mashhad Branch, Islamic Azad University, Mashhad, I.R. Iran
| | - Ali Neamati
- Department of Biology, Faculty of Science, Mashhad Branch, Islamic Azad University, Mashhad, I.R. Iran
| | - Farzaneh Vafaee
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, I.R. Iran.,Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, I.R. Iran
| | - Hamed Ghazavi
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, I.R. Iran.,Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, I.R. Iran
| |
Collapse
|
97
|
Saeedi M, Rashidy-Pour A. Association between chronic stress and Alzheimer's disease: Therapeutic effects of Saffron. Biomed Pharmacother 2020; 133:110995. [PMID: 33232931 DOI: 10.1016/j.biopha.2020.110995] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/28/2020] [Accepted: 11/01/2020] [Indexed: 12/19/2022] Open
Abstract
Chronic stress and high levels of glucocorticoids produce functional and structural changes in brain and especially in the hippocampus, an important limbic system structure that plays a key role in cognitive functions including learning and memory. Alzheimer's disease (AD) is a chronic neurodegenerative disease that usually starts slowly and worsens over time. Indeed, cognitive dysfunction, neuronal atrophy, and synaptic loss are associated with both AD and chronic stress. Recent preclinical and clinical studies have highlighted a possible link between chronic stress, cognitive decline and the development of AD. It is suggested that Tau protein is an essential mediator of the neurodegenerative effects of stress and glucocorticoids towards the development of AD pathology. Recent findings from animal and humans studies demonstrated that saffron and its main constitutive crocin are effective against chronic stress-induced cognitive dysfunction and oxidative stress and slowed cognitive decline in AD. The inhibitory actions on acetylcholinesterase activity, aggregation of beta-amyloid protein into amyloid plaques and tau protein into neurofibrillary tangles, and also the antioxidant, anti-inflammatory, and the promotion of synaptic plasticity effects are among the possible mechanisms to explain the neuroprotective effects of saffron. New evidences demonstrate that saffron and its main component crocin might be a promising target for cognition improvement in AD and stress-related disorders.
Collapse
Affiliation(s)
- Mohammad Saeedi
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
98
|
Oumohand SE, Ward DD, Boenniger MM, Merten N, Kirschbaum C, Breteler MMB. Perceived stress but not hair cortisol concentration is related to adult cognitive performance. Psychoneuroendocrinology 2020; 121:104810. [PMID: 32739745 DOI: 10.1016/j.psyneuen.2020.104810] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 07/12/2020] [Accepted: 07/20/2020] [Indexed: 11/26/2022]
Abstract
Chronic stress detrimentally affects cognition but evidence from population-based studies is scarce and largely based on one-dimensional stress assessments. In this study, we aimed to investigate associations of subjective and psychological chronic stress measures with cognition in a population-based sample of adults aged 30-95 years from the Rhineland Study. Participants completed the Perceived Stress Scale (subjective measure) and a cognitive test battery (N = 1766). Hair cortisol concentration (physiological measure) was assessed by liquid chromatography tandem mass spectrometry in 1098 participants. Cross-sectional associations between the two measures of chronic stress and cognition were investigated using multivariable linear regression models. Subjective and physiological measures of chronic stress were not associated with each other (B = 0.005 [95 %CI = -0.005 - 0.015]). Participants with higher perceived stress and specifically lower perceived self-efficacy performed worse in all cognitive domains (effect sizes ranged from β = -0.129 [95 %CI = -0.177 - -0.080] to -0.054 [95 %CI = -0.099 - -0.009]; and from β = 0.052 [95 %CI = 0.005 - 0.098] to 0.120 [95 %CI = 0.072 - 0.167], respectively). Relationships between subjective chronic stress measures and executive functioning were stronger in men compared to women (interaction β = -0.144 [95 %CI = -0.221 - -0.067]). Relationships between perceived stress and working memory, and between perceived self-efficacy and executive functioning, processing speed, verbal episodic and working memory, increased with older age. Hair cortisol concentration was not associated with performance in any cognitive domain. Our results suggest that subjective and physiological measures capture different aspects of chronic stress in the general population.
Collapse
Affiliation(s)
- Sadia E Oumohand
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127 Bonn, Germany
| | - David D Ward
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127 Bonn, Germany
| | - Meta M Boenniger
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127 Bonn, Germany
| | - Natascha Merten
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127 Bonn, Germany
| | - Clemens Kirschbaum
- Faculty of Psychology, Technische Universität Dresden, 01062 Dresden, Germany
| | - Monique M B Breteler
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127 Bonn, Germany; Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), Faculty of Medicine, University of Bonn, Venusberg-Campus 1, Building 11, 53127 Bonn, Germany.
| |
Collapse
|
99
|
Nguyen ET, Selmanovic D, Maltry M, Morano R, Franco-Villanueva A, Estrada CM, Solomon MB. Endocrine stress responsivity and social memory in 3xTg-AD female and male mice: A tale of two experiments. Horm Behav 2020; 126:104852. [PMID: 32949555 DOI: 10.1016/j.yhbeh.2020.104852] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022]
Abstract
Stress confers risk for the development and progression of Alzheimer's disease (AD). Relative to men, women are disproportionately more likely to be diagnosed with this neurodegenerative disease. We hypothesized that sex differences in endocrine stress responsiveness may be a factor in this statistic. To test this hypothesis, we assessed basal and stress-induced corticosterone, social recognition, and coat state deterioration (surrogate for depression-like behavior) in male and female 3xTg-AD mice. Prior to reported amyloid plaque deposition, 3xTg females (4 months), but not 3xTg males, had heightened corticosterone responses to restraint exposure. Subsequently, only 3xTg females (6 months) displayed deficits in social memory concomitant with prominent β-amyloid (Aβ) immunostaining. These data suggest that elevated corticosterone stress responses may precede cognitive impairments in genetically vulnerable females. 3xTg mice of both sexes exhibited coat state deterioration relative to same-sex controls. Corticolimbic glucocorticoid receptor (GR) dysfunction is associated with glucocorticoid hypersecretion and cognitive impairment. Our findings indicate sex- and brain-region specific effects of genotype on hippocampal and amygdala GR protein expression. Because olfactory deficits may impede social recognition, in Experiment 2, we assessed olfaction and found no differences between genotypes. Notably, in this cohort, heightened corticosterone stress responses in 3xTg females was not accompanied by social memory deficits or coat state deterioration. However, coat state deterioration was consistent in 3xTg males. We report consistent heightened stress-induced corticosterone levels and Aβ pathology in female 3xTg-AD mice. However, the behavioral findings illuminate unknown inconsistencies in certain phenotypes in this AD mouse model.
Collapse
Affiliation(s)
- Elizabeth T Nguyen
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA; Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Din Selmanovic
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Marissa Maltry
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Rachel Morano
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Ana Franco-Villanueva
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Christina M Estrada
- Experimental Psychology Graduate Program, University of Cincinnati, Cincinnati, OH, USA
| | - Matia B Solomon
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA; Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Experimental Psychology Graduate Program, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
100
|
Nabe-Nielsen K, Rod NH, Hansen ÅM, Prescott E, Grynderup MB, Islamoska S, Ishtiak-Ahmed K, Garde AH, Gyntelberg F, Mortensen EL, Phung TKT, Waldemar G, Westendorp RGJ. Perceived stress and dementia: Results from the Copenhagen city heart study. Aging Ment Health 2020; 24:1828-1836. [PMID: 31184203 DOI: 10.1080/13607863.2019.1625304] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Objectives: We investigated if perceived stress in midlife increased the risk of dementia. Furthermore, we explored differences between subgroups related to sex, age and employment status when reporting stress.Methods: In this longitudinal study, we used information on perceived stress from 10,814 participants (mean age 56.7 years). Participants were followed through Danish national registers for development of dementia. Participants were considered at risk of dementia from the date they turned 60 years. Perceived stress was assessed as a combination of self-reported intensity and frequency of stress, and categorized into low (score 0-1), medium (score 2-4), and high stress (score 5-6). We used Poisson regression to estimate incidence rate ratios (IRR) and their 95% confidence intervals (CI) and adjusted for sociodemographic factors and psychiatric morbidity at baseline (main model) as well as cardio/cerebrovascular diseases and health behaviors at baseline (additional model).Results: The mean follow-up time was 13.8 years, and 1,519 participants were registered with dementia. Dementia risk was higher in participants reporting medium stress (IRR = 1.11, 95% CI: 0.99-1.24) and high stress (IRR = 1.36, 95% CI: 1.13-1.65). Adjustment for cardio/cerebrovascular diseases and health behaviors did not alter the results. We did not find strong support for differences between subgroups, although the association between stress and dementia was stronger for those who were employed at the time of reporting high stress.Conclusion: Our results provide empirical support for an effect of perceived stress on the risk of dementia in old age.
Collapse
Affiliation(s)
| | - Naja Hulvej Rod
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Åse Marie Hansen
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark.,The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Eva Prescott
- Department of Cardiology, Bispebjerg Hospital, Copenhagen, Denmark
| | | | - Sabrina Islamoska
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Kazi Ishtiak-Ahmed
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Anne Helene Garde
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark.,The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Finn Gyntelberg
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Erik Lykke Mortensen
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark.,Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Thien Kieu Thi Phung
- Danish Dementia Research Centre, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Gunhild Waldemar
- Danish Dementia Research Centre, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Rudi G J Westendorp
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark.,Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|