51
|
|
52
|
Qin XJ, Hudson LG, Liu W, Timmins GS, Liu KJ. Low concentration of arsenite exacerbates UVR-induced DNA strand breaks by inhibiting PARP-1 activity. Toxicol Appl Pharmacol 2008; 232:41-50. [PMID: 18619636 PMCID: PMC2584354 DOI: 10.1016/j.taap.2008.05.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 05/15/2008] [Accepted: 05/16/2008] [Indexed: 11/23/2022]
Abstract
Epidemiological studies have associated arsenic exposure with many types of human cancers. Arsenic has also been shown to act as a co-carcinogen even at low concentrations. However, the precise mechanism of its co-carcinogenic action is unknown. Recent studies indicate that arsenic can interfere with DNA-repair processes. Poly(ADP-ribose) polymerase (PARP)-1 is a zinc-finger DNA-repair protein, which can promptly sense DNA strand breaks and initiate DNA-repair pathways. In the present study, we tested the hypothesis that low concentrations of arsenic could inhibit PAPR-1 activity and so exacerbate levels of ultraviolet radiation (UVR)-induced DNA strand breaks. HaCat cells were treated with arsenite and/or UVR, and then DNA strand breaks were assessed by comet assay. Low concentrations of arsenite (
Collapse
Affiliation(s)
- Xu-Jun Qin
- Program of Toxicology, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico 87131-0001, USA
| | | | | | | | | |
Collapse
|
53
|
TAMARA D, GAMBELUNGHE ANGELA, AHSAN GAMBELUNGHE, GRAZIANO JOSEPH, PERRIN MARY, SLAVKOVICH VESNA, PARVEZ FARUQUE, HASNAT MILTON ABUL, BRANDT-RAUF PAUL. Urinary transforming growth factor-alpha in individuals exposed to arsenic in drinking water in Bangladesh. Biomarkers 2008; 6:127-32. [DOI: 10.1080/13547500010017376] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Do TAMARA
- The Mailman School of Public Health of Columbia University, New York, NY 10032, USA. e-mail: pwb
| | - ANGELA GAMBELUNGHE
- The Mailman School of Public Health of Columbia University, New York, NY 10032, USA. e-mail: pwb
| | - GAMBELUNGHE AHSAN
- The Mailman School of Public Health of Columbia University, New York, NY 10032, USA. e-mail: pwb
| | - JOSEPH GRAZIANO
- The Mailman School of Public Health of Columbia University, New York, NY 10032, USA. e-mail: pwb
| | - MARY PERRIN
- The Mailman School of Public Health of Columbia University, New York, NY 10032, USA. e-mail: pwb
| | - VESNA SLAVKOVICH
- The Mailman School of Public Health of Columbia University, New York, NY 10032, USA. e-mail: pwb
| | - FARUQUE PARVEZ
- The Mailman School of Public Health of Columbia University, New York, NY 10032, USA. e-mail: pwb
| | | | - PAUL BRANDT-RAUF
- The Mailman School of Public Health of Columbia University, New York, NY 10032, USA. e-mail: pwb
| |
Collapse
|
54
|
Adonis M, Martínez V, Marín P, Gil L. CYP1A1 and GSTM1 genetic polymorphisms in lung cancer populations exposed to arsenic in drinking water. Xenobiotica 2008; 35:519-30. [PMID: 16012082 DOI: 10.1080/00498250500057310] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Region II of Chile is the most important copper mining area in the world and it shows the highest lung cancer mortality rate in the country (35/100,000). The population in Antofagasta, the main city of Region II, was exposed from 1958 to 1970 to 860 microg m(-3) arsenic (As) in drinking water and has currently been declining to 40 microg m(-3). Glutathione serves as a reducing agent and glutathione S-transferase (GST) may have an important role in As methylation capacity and body retention. In the current study, the null genotype of GSTM1 and the MspI polymorphism of CYP450 1A1 were investigated in lung cancer patients and in healthy volunteers of Region II. In males, the 2A genotype of MspI represented a highly significant estimated relative lung cancer risk (OR=2.60). Relative lung cancer risk for the combined 2A/null GSTM1 genotypes was 2.51, which increased with the smoking habit (OR=2.98). In Region II, the cancer mortality rate for As-associated cancers at least partly might be related to differences in As biotransformation. Genetic biomarkers such as 2A and GSTM1 polymorphisms in addition to DR70 as screening biomarkers might provide relevant information to identify individuals with a high risk for lung cancer as prevention and protection actions to protect public health.
Collapse
Affiliation(s)
- M Adonis
- Laboratorio de Bioquímica y Toxicología Ambiental, Facultad de Medicina, ICBM, Universidad de Chile, Santiago, Chile
| | | | | | | |
Collapse
|
55
|
Pi J, Diwan BA, Sun Y, Liu J, Qu W, He Y, Styblo M, Waalkes MP. Arsenic-induced malignant transformation of human keratinocytes: involvement of Nrf2. Free Radic Biol Med 2008; 45:651-8. [PMID: 18572023 PMCID: PMC2658531 DOI: 10.1016/j.freeradbiomed.2008.05.020] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 04/15/2008] [Accepted: 05/15/2008] [Indexed: 10/22/2022]
Abstract
Arsenic is a well-known human skin carcinogen but the underlying mechanisms of carcinogenesis are unclear. Transcription factor Nrf2-mediated antioxidant response represents a critical cellular defense mechanism, and emerging data suggest that constitutive activation of Nrf2 contributes to malignant phenotype. In the present study when an immortalized, nontumorigenic human keratinocyte cell line (HaCaT) was continuously exposed to an environmentally relevant level of inorganic arsenite (100 nM) for 28 weeks, malignant transformation occurred as evidenced by the formation of highly aggressive squamous cell carcinoma after inoculation into nude mice. To investigate the mechanisms involved, a broad array of biomarkers for transformation were assessed in these arsenic-transformed cells (termed As-TM). In addition to increased secretion of matrix metalloproteinase-9 (MMP-9), a set of markers for squamous differentiation and skin keratinization, including keratin-1, keratin-10, involucrin, and loricrin, were significantly elevated in As-TM cells. Furthermore, As-TM cells showed increased intracellular glutathione and elevated expression of Nrf2 and its target genes, as well as generalized apoptotic resistance. In contrast to increased basal Nrf2 activity in As-TM cells, a diminished Nrf2-mediated antioxidant response induced by acute exposure to high doses of arsenite or tert-butyl hydroxyquinone occurred. The findings that multiple biomarkers for malignant transformation observed in As-TM cells, including MMP-9 and cytokeratins, are potentially regulated by Nrf2 suggest that constitutive Nrf2 activation may be involved in arsenic carcinogenesis of skin. The weakened Nrf2 activation in response to oxidative stressors observed in As-TM cells, coupled with acquired apoptotic resistance, would potentially have increased the likelihood of transmittable oxidative DNA damage and fixation of mutational/DNA damage events.
Collapse
Affiliation(s)
- Jingbo Pi
- Laboratory of Comparative Carcinogenesis, NCI at NIEHS, NIH, Research Triangle Park, NC 27709, USA
- Division of Translational Biology, The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709, USA
- Corresponding Authors: Fax: (919) 541-3970. E-mail: (M.P. Waalkes) or Fax: (919)-558-1305. E-mail: (J. Pi)
| | - Bhalchandra A. Diwan
- Basic Research Program, Science Applications International Corporation at Frederick, NCI at Frederick, Frederick, MD 21702, USA
| | - Yang Sun
- Laboratory of Comparative Carcinogenesis, NCI at NIEHS, NIH, Research Triangle Park, NC 27709, USA
| | - Jie Liu
- Laboratory of Comparative Carcinogenesis, NCI at NIEHS, NIH, Research Triangle Park, NC 27709, USA
| | - Wei Qu
- Laboratory of Comparative Carcinogenesis, NCI at NIEHS, NIH, Research Triangle Park, NC 27709, USA
| | - Yuying He
- Laboratory of Pharmacology and Chemistry, NIEHS, NIH, Research Triangle Park, NC 27709, USA
| | - Miroslav Styblo
- Department of Nutrition, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael P. Waalkes
- Laboratory of Comparative Carcinogenesis, NCI at NIEHS, NIH, Research Triangle Park, NC 27709, USA
- Corresponding Authors: Fax: (919) 541-3970. E-mail: (M.P. Waalkes) or Fax: (919)-558-1305. E-mail: (J. Pi)
| |
Collapse
|
56
|
Ramos W, Galarza C, Ronceros G, de Amat F, Teran M, Pichardo L, Juarez D, Anaya R, Mayhua A, Hurtado J, Ortega-Loayza AG. Noninfectious dermatological diseases associated with chronic exposure to mine tailings in a Peruvian district. Br J Dermatol 2008; 159:169-74. [PMID: 18510675 DOI: 10.1111/j.1365-2133.2008.08630.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Mine tailings are metallic wastes which are deposited in the environment due to mining activity. Long-term exposure to these metals is harmful to human health. OBJECTIVE To determine if chronic exposure to mine tailings constitutes a risk factor for the development of dermatological diseases in the district of San Mateo de Huanchor (Lima, Peru). METHODS An observational case-control study was carried out in the communities of Mayoc, Daza and Tamboraque (exposed to mine tailings, case group) located in the district of San Mateo de Huanchor, and also in the communities of Choccna and Caruya (not exposed to mine tailings, control group) located in the same district. Out of 230 adults, 121 were exposed and 109 were not exposed to mine tailings and out of 135 children, 71 were exposed and 64 were not exposed to mine tailings. RESULTS In the adult group, 71% of the exposed cases had some noninfectious dermatological disease while in the nonexposed group the frequency was 34% [P < 0.001; odds ratio (OR) 5.40; 95% confidence interval (CI) 3.02-9.68]. A statistically significant difference between groups was found for arsenical dermatitis, nonpruritic papulovesicular eruption, atopic dermatitis, contact dermatitis, seborrhoeic dermatitis and xerosis. In the paediatric population, 71 exposed and 64 nonexposed children were evaluated. Sixty-nine per cent of the exposed group had some noninfectious dermatological disease vs. 30% in the nonexposed group (P < 0.001; OR 6.00; 95% CI 2.71-13.31). A statistically significant difference between groups was found for xerosis and atopic dermatitis. CONCLUSION Chronic exposure to mine tailings represents a risk factor for development of noninfectious dermatological diseases in both adults and children.
Collapse
Affiliation(s)
- W Ramos
- Instituto de Investigaciones Clínicas de la Universidad Nacional Mayor de San Marcos, Lima, Peru
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Activation of inflammation/NF-kappaB signaling in infants born to arsenic-exposed mothers. PLoS Genet 2008; 3:e207. [PMID: 18039032 PMCID: PMC2082467 DOI: 10.1371/journal.pgen.0030207] [Citation(s) in RCA: 212] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Accepted: 10/04/2007] [Indexed: 11/19/2022] Open
Abstract
The long-term health outcome of prenatal exposure to arsenic has been associated with increased mortality in human populations. In this study, the extent to which maternal arsenic exposure impacts gene expression in the newborn was addressed. We monitored gene expression profiles in a population of newborns whose mothers experienced varying levels of arsenic exposure during pregnancy. Through the application of machine learning-based two-class prediction algorithms, we identified expression signatures from babies born to arsenic-unexposed and -exposed mothers that were highly predictive of prenatal arsenic exposure in a subsequent test population. Furthermore, 11 transcripts were identified that captured the maximal predictive capacity to classify prenatal arsenic exposure. Network analysis of the arsenic-modulated transcripts identified the activation of extensive molecular networks that are indicative of stress, inflammation, metal exposure, and apoptosis in the newborn. Exposure to arsenic is an important health hazard both in the United States and around the world, and is associated with increased risk for several types of cancer and other chronic diseases. These studies clearly demonstrate the robust impact of a mother's arsenic consumption on fetal gene expression as evidenced by transcript levels in newborn cord blood.
Collapse
|
58
|
Wu J, Liu J, Waalkes MP, Cheng ML, Li L, Li CX, Yang Q. High dietary fat exacerbates arsenic-induced liver fibrosis in mice. Exp Biol Med (Maywood) 2008; 233:377-84. [PMID: 18296743 DOI: 10.3181/0710-rm-269] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Many factors could potentially affect the process of arsenic-induced liver fibrosis. The present study was undertaken to examine the effect of high fat diet on arsenic-induced liver fibrosis and preneoplastic changes. Mice were given sodium arsenite (As3+, 200 ppm) or sodium arsenate (As5+, 200 ppm) in the drinking water for 10 months, and provided a normal diet or a diet containing 20% added fat. Serum aspartate aminotransferase (AST), indicative of liver injury, was elevated in both arsenite and arsenate groups, and a high fat diet further increased these levels. Histopathology (H&E and Masson stain) showed that liver inflammation, steatosis (fatty liver), hepatocyte degeneration, and fibrosis occurred with arsenic alone, but their severity was markedly increased with the high fat diet. Total liver RNA was isolated for real-time RT-PCR analysis. Arsenic exposure increased the expression of inflammation genes, such as TNF-alpha, IL-6, iNOS, chemokines, and macrophage inflammatory protein-2. The expression of the stress-related gene heme oxygenase-1 was increased, while metallothionein-1 and GSH S-transferase-pi were decreased when arsenic was combined with the high fat diet. Expression of genes related to liver fibrosis, such as procollagen-1 and -3, SM-actin and TGF-beta, were synergistically increased in the arsenic plus high fat diet group. The expression of genes encoding matrix metalloproteinases (MMP2, MMP9) and tissue inhibitors of metalloproteinases (TIMP1, TIMP2) was also enhanced, suggestive of early oncogenic events. In general, arsenite produced more pronounced effects than arsenate. In summary, chronic inorganic arsenic exposure in mice produces liver injury, and a high fat diet markedly increases arsenic-induced hepatofibrogenesis.
Collapse
Affiliation(s)
- Jun Wu
- Guiyang Medical College, 550004 Guiyang, China.
| | | | | | | | | | | | | |
Collapse
|
59
|
Kitchin KT, Wallace K. The role of protein binding of trivalent arsenicals in arsenic carcinogenesis and toxicity. J Inorg Biochem 2008; 102:532-9. [DOI: 10.1016/j.jinorgbio.2007.10.021] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 10/19/2007] [Accepted: 10/29/2007] [Indexed: 02/01/2023]
|
60
|
Benbrahim-Tallaa L, Waalkes MP. Inorganic arsenic and human prostate cancer. ENVIRONMENTAL HEALTH PERSPECTIVES 2008; 116:158-64. [PMID: 18288312 PMCID: PMC2235216 DOI: 10.1289/ehp.10423] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Accepted: 11/08/2007] [Indexed: 05/18/2023]
Abstract
OBJECTIVE We critically evaluated the etiologic role of inorganic arsenic in human prostate cancer. DATA SOURCES We assessed data from relevant epidemiologic studies concerning environmental inorganic arsenic exposure. Whole animal studies were evaluated as were in vitro model systems of inorganic arsenic carcinogenesis in the prostate. DATA SYNTHESIS Multiple studies in humans reveal an association between environmental inorganic arsenic exposure and prostate cancer mortality or incidence. Many of these human studies provide clear evidence of a dose-response relationship. Relevant whole animal models showing a relationship between inorganic arsenic and prostate cancer are not available. However, cellular model systems indicate arsenic can induce malignant transformation of human prostate epithelial cells in vitro. Arsenic also appears to impact prostate cancer cell progression by precipitating events leading to androgen independence in vitro. CONCLUSION Available evidence in human populations and human cells in vitro indicates that the prostate is a target for inorganic arsenic carcinogenesis. A role for this common environmental contaminant in human prostate cancer initiation and/or progression would be very important.
Collapse
Affiliation(s)
- Lamia Benbrahim-Tallaa
- Inorganic Carcinogenesis Section, Laboratory of Comparative Carcinogenesis, National Cancer Institute at the National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Michael P. Waalkes
- Inorganic Carcinogenesis Section, Laboratory of Comparative Carcinogenesis, National Cancer Institute at the National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| |
Collapse
|
61
|
Wang ZX, Jiang CS, Liu L, Wang XH, Jin HJ, Wu Q, Chen Q. The role of Akt on arsenic trioxide suppression of 3T3-L1 preadipocyte differentiation. Cell Res 2007; 15:379-86. [PMID: 15916724 DOI: 10.1038/sj.cr.7290305] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The present study investigates the molecular details of how arsenic trioxide inhibits preadipocyte differentiation and examines the role of Akt/PKB in regulation of differentiation and apoptosis. Continual exposure of arsenic trioxide, at the clinic achievable dosage that does not induce apoptosis, suppressed 3T3-L1 cell differentiation into fat cells by inhibiting the expression of PPARgamma and C/EBPalpha and disrupting the interaction between PPARgamma and RXRalpha, which determines the programming of the adipogenic genes. Interestingly, if we treated the cells for 12 or 24 h and then withdrew arsenic trioxide, the cells were able to differentiate to the comparable levels of untreated cells as assayed by the activity of GAPDH, the biochemical marker of preadipocyte differentiation. Long term treatment blocked the differentiation and the activity of GAPDH could not recover to the comparable levels of untreated cells. Continual exposure of arsenic trioxide caused accumulation in G2/M phase and the accumulation of p21. We found that arsenic trioxide induced the expression and the phosphorylation of Akt/PKB and it inhibited the interaction between Akt/PKB and PPARgamma . Akt/PKB inhibitor appears to block the arsenic trioxide suppression of differentiation. Our results suggested that Akt/PKB may play a role in suppression of apoptosis and negatively regulate preadipocyte differentiation.
Collapse
Affiliation(s)
- Zhi Xin Wang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
62
|
Waalkes MP, Liu J, Diwan BA. Transplacental arsenic carcinogenesis in mice. Toxicol Appl Pharmacol 2007; 222:271-80. [PMID: 17306315 PMCID: PMC1995036 DOI: 10.1016/j.taap.2006.12.034] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 12/01/2006] [Accepted: 12/11/2006] [Indexed: 01/12/2023]
Abstract
Our work has focused on the carcinogenic effects of in utero arsenic exposure in mice. Our data show that a short period of maternal exposure to inorganic arsenic in the drinking water is an effective, multi-tissue carcinogen in the adult offspring. These studies have been reproduced in three temporally separate studies using two different mouse strains. In these studies pregnant mice were treated with drinking water containing sodium arsenite at up to 85 ppm arsenic from days 8 to 18 of gestation, and the offspring were observed for up to 2 years. The doses used in all these studies were well tolerated by both the dam and offspring. In C3H mice, two separate studies show male offspring exposed to arsenic in utero developed liver carcinoma and adrenal cortical adenoma in a dose-related fashion during adulthood. Prenatally exposed female C3H offspring show dose-related increases in ovarian tumors and lung carcinoma and in proliferative lesions (tumors plus preneoplastic hyperplasia) of the uterus and oviduct. In addition, prenatal arsenic plus postnatal exposure to the tumor promoter, 12-O-tetradecanoyl phorbol-13-acetate (TPA) in C3H mice produces excess lung tumors in both sexes and liver tumors in females. Male CD1 mice treated with arsenic in utero develop tumors of the liver and adrenal and renal hyperplasia while females develop tumors of urogenital system, ovary, uterus and adrenal and hyperplasia of the oviduct. Additional postnatal treatment with diethylstilbestrol or tamoxifen after prenatal arsenic in CD1 mice induces urinary bladder transitional cell proliferative lesions, including carcinoma and papilloma, and enhances the carcinogenic response in the liver of both sexes. Overall this model has provided convincing evidence that arsenic is a transplacental carcinogen in mice with the ability to target tissues of potential human relevance, such as the urinary bladder, lung and liver. Transplacental carcinogenesis clearly occurs with other agents in humans and investigating a potential transplacental component of the human carcinogenic response to arsenic should be a research priority.
Collapse
Affiliation(s)
- Michael P Waalkes
- Inorganic Carcinogenesis Section, Laboratory of Comparative Carcinogenesis, National Cancer Institute at National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| | | | | |
Collapse
|
63
|
Sen B, Wolf DC, Turpaz Y, Bugrim A, Retief J, Hester SD. Identification of interspecies concordance of mechanisms of arsenic-induced bladder cancer. Toxicol In Vitro 2007; 21:1513-29. [PMID: 17720352 DOI: 10.1016/j.tiv.2007.06.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Revised: 06/07/2007] [Accepted: 06/22/2007] [Indexed: 10/23/2022]
Abstract
Exposure to arsenic causes cancer by inducing a variety of responses that affect the expression of genes associated with numerous biological pathways leading to altered cell growth and proliferation, signaling, apoptosis and oxidative stress response. Affymetrix GeneChip arrays were used to detect gene expression changes following dimethylarsinic acid (DMA) exposure to human bladder cells (UROtsa) or rat bladder cells (MYP3) and rat bladder epithelium in vivo at comparable doses. Using different experimental models coupled with transcriptional profiling allowed investigation of the correlation of mechanisms of DMA-induced toxicity between in vitro and in vivo treatment and across species. Our observations suggest that DMA-induced gene expression in UROtsa cells is distinct from that observed in the MYP3 cells. Principal component analysis shows a more distinct separation by treatment and dose in MYP3 cells as compared to UROtsa cells. However, at the level of pathways and biological networks, DMA affects both common and unique processes in the bladder transitional cells of human and rats. Twelve pathways were found common between human in vitro, rat in vitro and rat in vivo systems. These included signaling pathways involved in adhesion, cellular growth and differentiation. Fifty-five genes found to be commonly expressed between rat in vivo and rat in vitro systems were involved in diverse functions such as cell cycle regulation, lipid metabolism and protein degradation. Many of the genes, processes and pathways have previously been associated with arsenic-induced toxicity. Our finding reiterates and also identifies new biological processes that might provide more information regarding the mechanisms of DMA-induced toxicity. The results of our analysis further suggest that gene expression profiles can address pertinent issues of relevance to risk assessment, namely interspecies extrapolation of mechanistic information as well as comparison of in vitro to in vivo response.
Collapse
Affiliation(s)
- Banalata Sen
- Environmental Carcinogenesis Division, US Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC 27711, USA.
| | | | | | | | | | | |
Collapse
|
64
|
Li Y, Chen Y, Slavkovic V, Ahsan H, Parvez F, Graziano JH, Brandt-Rauf PW. Serum levels of the extracellular domain of the epidermal growth factor receptor in individuals exposed to arsenic in drinking water in Bangladesh. Biomarkers 2007; 12:256-65. [PMID: 17453740 DOI: 10.1080/13547500601133939] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Epidermal growth factor receptor-dependent mechanisms have been implicated in growth signal transduction pathways that contribute to cancer development, including dermal carcinogenesis. Detection of the extracellular domain of the epidermal growth factor receptor (EGFR ECD) in serum has been suggested as a potential biomarker for monitoring this effect in vivo. Arsenic is a known human carcinogen, producing skin and other malignancies in populations exposed through their drinking water. One such exposed population, which we have been studying for a number of years, is in Bangladesh. The purpose of this study was to examine the EGFR ECD as a potential biomarker of arsenic exposure and/or effect in this population. Levels of the EGFR ECD were determined by enzyme-linked immunosorbent assay in the serum samples from 574 individuals with a range of arsenic exposures from drinking water in the Araihazar area of Bangladesh. In multiple regression analysis, serum EGFR ECD was found to be positively associated with three different measures of arsenic exposure (well water arsenic, urinary arsenic and a cumulative arsenic index) at statistically significant levels (p<or=0.034), and this association was strongest among the individuals with arsenic-induced skin lesions (p <or= 0.002). When the study subjects were stratified in tertiles of serum EGFR ECD levels, the risk of skin lesions increased progressively for each increase in all three arsenic measures (also stratified in tertiles) and this increasing risk became more pronounced among subjects within the highest tertile of EGFR ECD levels. These results suggest that serum EGFR ECD levels may be a potential biomarker of effect of arsenic exposure and may indicate those exposed individuals at greatest risk for the development of arsenic-induced skin lesions.
Collapse
Affiliation(s)
- Y Li
- Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
65
|
Pysher MD, Sollome JJ, Regan S, Cardinal TR, Hoying JB, Brooks HL, Vaillancourt RR. Increased hexokinase II expression in the renal glomerulus of mice in response to arsenic. Toxicol Appl Pharmacol 2007; 224:39-48. [PMID: 17643460 PMCID: PMC2042004 DOI: 10.1016/j.taap.2007.06.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 06/12/2007] [Accepted: 06/19/2007] [Indexed: 12/13/2022]
Abstract
Epidemiological studies link arsenic exposure to increased risks of cancers of the skin, kidney, lung, bladder and liver. Additionally, a variety of non-cancerous conditions such as diabetes mellitus, hypertension, and cardiovascular disease have been associated with chronic ingestion of low levels of arsenic. However, the biological and molecular mechanisms by which arsenic exerts its effects remain elusive. Here we report increased renal hexokinase II (HKII) expression in response to arsenic exposure both in vivo and in vitro. In our model, HKII was up-regulated in the renal glomeruli of mice exposed to low levels of arsenic (10 ppb or 50 ppb) via their drinking water for up to 21 days. Additionally, a similar effect was observed in cultured renal mesangial cells exposed to arsenic. This correlation between our in vivo and in vitro data provides further evidence for a direct link between altered renal HKII expression and arsenic exposure. Thus, our data suggest that alterations in renal HKII expression may be involved in arsenic-induced pathological conditions involving the kidney. More importantly, these results were obtained using environmentally relevant arsenic concentrations.
Collapse
Affiliation(s)
- Michele D Pysher
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 E. Mabel Street, Tucson, AZ 85721, USA
| | | | | | | | | | | | | |
Collapse
|
66
|
McCarty KM, Smith TJ, Zhou W, Gonzalez E, Quamruzzaman Q, Rahman M, Mahiuddin G, Ryan L, Su L, Christiani DC. Polymorphisms in XPD (Asp312Asn and Lys751Gln) genes, sunburn and arsenic-related skin lesions. Carcinogenesis 2007; 28:1697-702. [PMID: 17470448 PMCID: PMC3879118 DOI: 10.1093/carcin/bgm099] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Single-nucleotide polymorphisms in genes related to DNA repair capacity and ultraviolet exposure have not been well investigated in relation to skin lesions associated with arsenic exposure. This population based case-control study, of 600 cases and 600 controls, frequency matched on age and gender in Pabna, Bangladesh, in 2001-2002, investigated the association and potential effect modification between polymorphisms in Xeroderma Pigmentosum complementation group D (XPD) (Lys751Gln and Asp312Asn) genes, tendency to sunburn and arsenic-related skin lesions. METHODS Unconditional logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs). RESULT No significant association was observed between skin lesions and the XPD 312 Asp/Asn (adjusted OR = 0.87, 95% CI = 0.65-1.15) Asn/Asn (adjusted OR = 0.76, 95% CI = 0.50-1.15) (referent Asp/Asp); XPD 751 Lys/Gln (adjusted OR = 0.92, 95% CI = 0.69-1.23) Gln/Gln (adjusted OR = 0.98, 95% CI = 0.66-1.45) (referent Lys/Lys). While we did not observe any evidence of effect modification of these polymorphisms on the association between well arsenic concentration and skin lesions, we did observe effect modification between these polymorphisms and sunburn tendency and arsenic-related skin lesions. Individuals with the heterozygote or homozygote variant forms (Asp/Asn or Asn/Asn) had half the risk of skin lesions (OR = 0.45, 95% CI = 0.29-0.68) compared with those with the wild-type XPDAsp312Asn genotype (Asp/Asp) and individuals with heterozygote or homozygote variant forms (Lys/Gln or Gln/Gln) had half the risk of skin lesions (OR = 0.47, 95% CI = 0.31-0.72) compared with those with the wild-type XPDLys751Gln genotype (Lys/Lys), within the least sensitive strata of sunburn severity. We observed effect modification on the multiplicative scale for XPD 751 and XPD 312. CONCLUSION XPD polymorphisms modified the relationship between tendency to sunburn and skin lesions in an arsenic exposed population. Further study is necessary to explore the effect of XPD polymorphisms and sun exposure on risk of arsenic-related skin lesions.
Collapse
Affiliation(s)
- Kathleen M McCarty
- Department of Epidemiology and Public Health, Division of Environmental Health Sciences, Yale University School of Medicine, Epidemiology and Public Health, New Haven, CT, 06520 USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Patterson TJ, Rice RH. Arsenite and insulin exhibit opposing effects on epidermal growth factor receptor and keratinocyte proliferative potential. Toxicol Appl Pharmacol 2007; 221:119-28. [PMID: 17400267 PMCID: PMC1950287 DOI: 10.1016/j.taap.2007.02.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Revised: 12/27/2006] [Accepted: 02/02/2007] [Indexed: 10/23/2022]
Abstract
Previous work has suggested that arsenic exposure contributes to skin carcinogenesis by preserving the proliferative potential of human epidermal keratinocytes, thereby slowing the exit of putative target stem cells into the differentiation pathway. To find a molecular basis for this action, present work has explored the influence of arsenite on keratinocyte responses to epidermal growth factor (EGF). The ability of cultured keratinocytes to found colonies upon passaging several days after confluence was preserved by arsenite and EGF in an additive fashion, but neither was effective when the receptor tyrosine kinase activity was inhibited. Arsenite prevented the loss of EGF receptor protein and phosphorylation of tyrosine 1173, preserving its capability to signal. The level of nuclear beta-catenin was higher in cells treated with arsenite and EGF in parallel to elevated colony forming ability, and expression of a dominant negative beta-catenin suppressed the increase in both colony forming ability and yield of putative stem cells induced by arsenite and EGF. As judged by expression of three genes regulated by beta-catenin, this transcription factor had substantially higher activity in the arsenite/EGF-treated cells. Trivalent antimony exhibited the same effects as arsenite. A novel finding is that insulin in the medium induced the loss of EGF receptor protein, which was largely prevented by arsenite exposure.
Collapse
Affiliation(s)
| | - Robert H. Rice
- *Correspondence to: Robert. H. Rice, Department of Environmental Toxicology, University of California, One Shields Avenue, Davis, CA 95616-8588. Tel: 530-752-5176; Fax: 530-752-3394;
| |
Collapse
|
68
|
Shen J, Liu J, Xie Y, Diwan BA, Waalkes MP. Fetal onset of aberrant gene expression relevant to pulmonary carcinogenesis in lung adenocarcinoma development induced by in utero arsenic exposure. Toxicol Sci 2007; 95:313-20. [PMID: 17077188 PMCID: PMC2692318 DOI: 10.1093/toxsci/kfl151] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Arsenic is a human pulmonary carcinogen. Our work indicates that in utero arsenic exposure in mice can induce or initiate lung cancer in female offspring. To define early molecular changes, pregnant C3H mice were given 85 ppm arsenic in drinking water from days 8 to 18 of gestation and expression of selected genes in the fetal lung or in lung tumors developing in adults was examined. Transplacental arsenic exposure increased estrogen receptor-alpha (ER-alpha) transcript and protein levels in the female fetal lung. An overexpression of various estrogen-regulated genes also occurred, including trefoil factor-3, anterior gradient-2, and the steroid metabolism genes 17-beta-hydroxysteroid dehydrogenase type 5 and aromatase. The insulin growth factor system, which can be influenced by ER and has been implicated in the pulmonary oncogenic process, was activated in fetal lung after gestational arsenic exposure. In utero arsenic exposure also induced overexpression of alpha-fetoprotein, epidermal growth factor receptor, L-myc, and metallothionein-1 in fetal lung, all of which are associated with lung cancer. Lung adenoma and adenocarcinoma from adult female mice exposed to arsenic in utero showed widespread, intense nuclear ER-alpha expression. In contrast, normal adult lung and diethylnitrosamine-induced lung adenocarcinoma showed little evidence of ER-alpha expression. Thus, transplacental arsenic exposure at a carcinogenic dose produced aberrant estrogen-linked pulmonary gene expression. ER-alpha activation was specifically associated with arsenic-induced lung adenocarcinoma and adenoma but not with nitrosamine-induced lung tumors. These data provide evidence that arsenic-induced aberrant ER signaling could disrupt early life stage genetic programing in the lung leading eventually to lung tumor formation much later in adulthood.
Collapse
Affiliation(s)
- Jun Shen
- Inorganic Carcinogenesis Section, Laboratory of Comparative Carcinogenesis, National Cancer Institute at National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Jie Liu
- Inorganic Carcinogenesis Section, Laboratory of Comparative Carcinogenesis, National Cancer Institute at National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Yaxiong Xie
- Inorganic Carcinogenesis Section, Laboratory of Comparative Carcinogenesis, National Cancer Institute at National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Bhalchandra A. Diwan
- Basic Research Program, Science Applications International Corp. at Frederick, National Cancer Institute, Frederick, Maryland
| | - Michael P. Waalkes
- Inorganic Carcinogenesis Section, Laboratory of Comparative Carcinogenesis, National Cancer Institute at National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| |
Collapse
|
69
|
Ouyang W, Li J, Zhang D, Jiang BH, Huang DC. PI-3K/Akt signal pathway plays a crucial role in arsenite-induced cell proliferation of human keratinocytes through induction of cyclin D1. J Cell Biochem 2007; 101:969-78. [PMID: 17370311 DOI: 10.1002/jcb.21279] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Exposure of arsenite can induce hyperproliferation of skin cells, which is believed to play important roles in arsenite-induced carcinogenesis by affecting both promotion and progression stages. However, the signal pathways and target genes activated by arsenite exposure responsible for the proliferation remain to be defined. In the present study, we found that: (1) exposure of human keratinocytic HaCat cells to arsenite caused an increase in cell proliferation, which was significantly inhibited by pretreatment of wortmannin, a specific chemical inhibitor of PI-3K/Akt signal pathway; (2) arsenite exposure was also able to activate PI-3K/Akt signal pathway, which thereby induced the elevation of cyclin D1 expression level in both HaCat cells and human primary keratinocytes based on that inhibition of PI-3K/Akt pathway by either pretreatment of wortmannin or the transfection of their dominant mutants, significantly inhibited cyclin D1 expression upon arsenite exposure; (3) PI-3K/Akt pathway is implicated in arsenite-induced proliferation of HaCat cells through the induction of cyclin D1 because either knockdown of cyclin D1 by its siRNA or inhibition of PI-3K/Akt signal pathway by their dominant mutants markedly impaired the proliferation of HaCat cells induced by arsenite exposure. Taken together, we provide the direct evidence that PI-3K/Akt pathway plays a role in the regulation of cell proliferation through the induction of cyclin D1 in human keratinocytes upon arsenite treatment. Given the importance of aberrant cell proliferation in cell transformation, we propose that the activation of PI-3K/Akt pathway and cyclin D1 induction may be the important mediators of human skin carcinogenic effect of arsenite.
Collapse
Affiliation(s)
- Weiming Ouyang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | | | | | | | | |
Collapse
|
70
|
Valenzuela OL, Germolec DR, Borja-Aburto VH, Contreras-Ruiz J, García-Vargas GG, Del Razo LM. Chronic arsenic exposure increases TGFalpha concentration in bladder urothelial cells of Mexican populations environmentally exposed to inorganic arsenic. Toxicol Appl Pharmacol 2006; 222:264-70. [PMID: 17267001 PMCID: PMC2632965 DOI: 10.1016/j.taap.2006.12.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Revised: 12/08/2006] [Accepted: 12/14/2006] [Indexed: 10/23/2022]
Abstract
Inorganic arsenic (iAs) is a well-established carcinogen and human exposure has been associated with a variety of cancers including those of skin, lung, and bladder. High expression of transforming growth factor alpha (TGF-alpha) has associated with local relapses in early stages of urinary bladder cancer. iAs exposures are at least in part determined by the rate of formation and composition of iAs metabolites (MAs(III), MAs(V), DMAs(III), DMAs(V)). This study examines the relationship between TGF-alpha concentration in exfoliated bladder urothelial cells (BUC) separated from urine and urinary arsenic species in 72 resident women (18-51 years old) from areas exposed to different concentrations of iAs in drinking water (2-378 ppb) in central Mexico. Urinary arsenic species, including trivalent methylated metabolites were measured by hydride generation atomic absorption spectrometry method. The concentration of TGF-alpha in BUC was measured using an ELISA assay. Results show a statistically significant positive correlation between TGF-alpha concentration in BUC and each of the six arsenic species present in urine. The multivariate linear regression analyses show that the increment of TGF-alpha levels in BUC was importantly associated with the presence of arsenic species after adjusting by age, and presence of urinary infection. People from areas with high arsenic exposure had a significantly higher TGF-alpha concentration in BUC than people from areas of low arsenic exposure (128.8 vs. 64.4 pg/mg protein; p<0.05). Notably, exfoliated cells isolated from individuals with skin lesions contained significantly greater amount of TGF-alpha than cells from individuals without skin lesions: 157.7 vs. 64.9 pg/mg protein (p=0.003). These results suggest that TGF-alpha in exfoliated BUC may serve as a susceptibility marker of adverse health effects on epithelial tissue in arsenic-endemic areas.
Collapse
Affiliation(s)
- Olga L Valenzuela
- Sección de Toxicología, Cinvestav-IPN, Av. Instituto Politécnico Nacional #2508, Col. Zacatenco, CP 07300, México DF, México
| | | | | | | | | | | |
Collapse
|
71
|
Cooper KL, Liu KJ, Hudson LG. Contributions of reactive oxygen species and mitogen-activated protein kinase signaling in arsenite-stimulated hemeoxygenase-1 production. Toxicol Appl Pharmacol 2006; 218:119-27. [PMID: 17196236 DOI: 10.1016/j.taap.2006.09.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Revised: 09/12/2006] [Accepted: 09/21/2006] [Indexed: 11/23/2022]
Abstract
Hemeoxygenase-1 (HO-1) is an oxidative stress responsive gene upregulated by various physiological and exogenous stimuli. HO-1 has cytoprotective activities and arsenite is a potent inducer of HO-1 in many cell types and tissues, including epidermal keratinocytes. We investigated the potential contributions of reactive oxygen species (ROS) generation and mitogen-activated protein kinase (MAPK) activation to arsenite-dependent regulation of HO-1 in HaCaT cells, an immortalized human keratinocyte line. Both epidermal growth factor (EGF) and arsenite stimulated ROS production was detected by dihydroethidium (DHE) staining and fluorescence microscopy. Arsenite induced HO-1 in a time- and concentration-dependent manner, while HO-1 expression in response to EGF was modest and evident at extended time points (48-72 h). Inhibition of EGF receptor, MEK I/II or Src decreased arsenite-stimulated HO-1 expression by 20-30%. In contrast, addition of a superoxide scavenger or inhibition of p38 activity decreased the arsenite-dependent response by 80-90% suggesting that ROS and p38 are required for HO-1 induction. However, ROS generation alone was insufficient for the observed arsenite-dependent response as use of a xanthine/xanthine oxidase system to generate ROS did not produce an equivalent upregulation of HO-1. Cooperation between ERK signaling and ROS generation was demonstrated by synergistic induction of HO-1 in cells co-treated with EGF and xanthine/xanthine oxidase resulting in a response nearly equivalent to that observed with arsenite. These findings suggest that the ERK/MAPK activation is necessary but not sufficient for optimal arsenite-stimulated HO-1 induction. The robust and persistent upregulation of HO-1 may have a role in cellular adaptation to chronic arsenic exposure.
Collapse
Affiliation(s)
- Karen L Cooper
- MSC09 5360, 1 University of New Mexico Health Sciences Center, Program in Toxicology, College of Pharmacy, Albuquerque, NM 87131, USA
| | | | | |
Collapse
|
72
|
Bower JJ, Leonard SS, Chen F, Shi X. As(III) transcriptionally activates the gadd45a gene via the formation of H2O2. Free Radic Biol Med 2006; 41:285-94. [PMID: 16814109 DOI: 10.1016/j.freeradbiomed.2006.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Revised: 04/04/2006] [Accepted: 04/06/2006] [Indexed: 10/24/2022]
Abstract
Arsenic is a ubiquitous environmental contaminant associated with increased risks of human cancers of the skin, lung, bladder, and prostate. Intriguingly, it is also used to treat certain types of leukemia. It has recently been suggested that these paradoxic effects may be mediated by arsenic's ability to simultaneously activate DNA damage and apoptotic and transformation pathways. Here, we investigate the effects of arsenic exposure on the induction of the growth arrest and DNA damage protein 45 alpha (GADD45 alpha), which is thought to play roles in apoptosis, DNA damage response, and cell cycle arrest. We found that arsenic transcriptionally activates the gadd45 alpha promoter located in a 153-bp region between -234 and -81, relative to the transcriptional start site. In addition, this transcriptional induction was abrogated in the presence of H2O2 scavengers, suggesting a role for H2O2 in the transcriptional control of the gadd45a gene through a Fenton-like free radical mechanism.
Collapse
Affiliation(s)
- Jacquelyn J Bower
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | | | | | | |
Collapse
|
73
|
Devesa V, Adair BM, Liu J, Waalkes MP, Diwan BA, Styblo M, Thomas DJ. Arsenicals in maternal and fetal mouse tissues after gestational exposure to arsenite. Toxicology 2006; 224:147-55. [PMID: 16753250 PMCID: PMC2365744 DOI: 10.1016/j.tox.2006.04.041] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 04/12/2006] [Accepted: 04/26/2006] [Indexed: 10/24/2022]
Abstract
Exposure of pregnant C3H/HeNCR mice to 42.5- or 85-ppm of arsenic as sodium arsenite in drinking water between days 8 and 18 of gestation markedly increases tumor incidence in their offspring. In the work reported here, distribution of inorganic arsenic and its metabolites, methyl arsenic and dimethyl arsenic, were determined in maternal and fetal tissues collected on gestational day 18 of these exposure regimens. Tissues were collected from three females and from associated fetuses exposed to each dosage level. Concentrations of total speciated arsenic (sum of inorganic, methyl, and dimethyl arsenic) were higher in maternal tissues than in placenta and fetal tissues; total speciated arsenic concentration in placenta exceeded those in fetal tissues. Significant dosage-dependent (42.5 ppm versus 85 ppm of arsenite in drinking water) differences were found in total speciated arsenic concentrations in maternal lung (p<0.01) and liver (p<0.001). Total speciated arsenic concentrations did not differ significantly between dosage levels for maternal blood or for fetal lung, liver, and blood, or for placenta. Percentages of inorganic, methyl, or dimethyl arsenic in maternal or fetal tissues were not dosage-dependent. Over the range of total speciated arsenic concentrations in most maternal and fetal tissues, dimethyl arsenic was the most abundant arsenical. However, in maternal liver at the highest total speciated arsenic concentration, inorganic arsenic was the most abundant arsenical, suggesting that a high tissue burden of arsenic affected formation or retention of methylated species in this organ. Tissue concentration-dependent processes could affect kinetics of transfer of inorganic arsenic or its metabolites from mother to fetus.
Collapse
Affiliation(s)
- Vicenta Devesa
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Blakely M. Adair
- Experimental Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Jie Liu
- Laboratory of Comparative Carcinogenesis, National Cancer Institute at the National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Michael P. Waalkes
- Laboratory of Comparative Carcinogenesis, National Cancer Institute at the National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Bhalchandra A. Diwan
- Basic Research Program, SAIC-Frederick, NCI at Frederick, Frederick, MD, United States
| | - Miroslav Styblo
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Nutrition, School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - David J. Thomas
- Experimental Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| |
Collapse
|
74
|
Yu HS, Liao WT, Chai CY. Arsenic carcinogenesis in the skin. J Biomed Sci 2006; 13:657-66. [PMID: 16807664 DOI: 10.1007/s11373-006-9092-8] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Accepted: 05/09/2006] [Indexed: 11/25/2022] Open
Abstract
Chronic arsenic poisoning is a world public health issue. Long-term exposure to inorganic arsenic (As) from drinking water has been documented to induce cancers in lung, urinary bladder, kidney, liver and skin in a dose-response relationship. Oxidative stress, chromosomal abnormality and altered growth factors are possible modes of action in arsenic carcinogenesis. Arsenic tends to accumulate in the skin. Skin hyperpigmentation and hyperkeratosis have long been known to be the hallmark signs of chronic As exposure. There are significant associations between these dermatological lesions and risk of skin cancer. The most common arsenic-induced skin cancers are Bowen's disease (carcinoma in situ), basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). Arsenic-induced Bowen's disease (As-BD) is able to transform into invasive BCC and SCC. Individuals with As-BD are considered for more aggressive cancer screening in the lung and urinary bladder. As-BD provides an excellent model for studying the early stages of chemical carcinogenesis in human beings. Arsenic exposure is associated with G2/M cell cycle arrest and DNA aneuploidy in both cultured keratinocytes and As-BD lesions. These cellular abnormalities relate to the p53 dysfunction induced by arsenic. The characteristic clinical figures of arsenic-induced skin cancer are: (i) occurrence on sun-protected areas of the body; (ii) multiple and recrudescent lesions. Both As and UVB are able to induce skin cancer. Arsenic treatment enhances the cytotoxicity, mutagenicity and clastogenicity of UV in mammalian cells. Both As and UVB induce apoptosis in keratinocytes by caspase-9 and caspase-8 signaling, respectively. Combined UVB and As treatments resulted in the antiproliferative and proapoptotic effects by stimulating both caspase pathways in the keratinocytes. UVB irradiation inhibited mutant p53 and ki-67 expression, as well as increased in the number of apoptotic cells in As-BD lesions which resulted in an inhibitory effect on proliferation. As-UVB interaction provides a reasonable explanation for the rare occurrences of arsenical cancer in the sun-exposed skin. The multiple and recurrent skin lesions are associated with cellular immune dysfunction in chronic arsenism. A decrease in peripheral CD4+ cells was noticed in the inhabitants of arsenic exposure areas. There was a decrease in the number of Langerhans cells in As-BD lesion which results in an impaired immune function on the lesional sites. Since CD4+ cells are the target cell affected by As, the interaction between CD4+ cells and epidermal keratinocytes under As affection might be closely linked to the pathogenesis of multiple occurrence of arsenic-induced skin cancer. In this review, we provide and discuss the pathomechanisms of arsenic skin cancer and the relationship to its characteristic figures. Such information is critical for understanding the molecular mechanism for arsenic carcinogenesis in other internal organs.
Collapse
Affiliation(s)
- Hsin-Su Yu
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | | | | |
Collapse
|
75
|
Wang YH, Chen YH, Wu TN, Lin YJ, Tsai HJ. A keratin 18 transgenic zebrafish Tg(k18(2.9):RFP) treated with inorganic arsenite reveals visible overproliferation of epithelial cells. Toxicol Lett 2006; 163:191-7. [PMID: 16376500 DOI: 10.1016/j.toxlet.2005.10.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Revised: 10/25/2005] [Accepted: 10/25/2005] [Indexed: 01/15/2023]
Abstract
Inorganic arsenic has strong human carcinogenic potential, but the availability of an animal model to study toxicity is extremely limited. Here, we used the transgenic zebrafish line Tg(k18(2.9):RFP) as an animal model to study arsenite toxicity. This line was chosen because the red fluorescent protein (RFP) is expressed in stratified epithelia (including skin), due to the RFP reporter driven by the promoter of the zebrafish keratin 18 gene. We titrated doses of inorganic arsenite for zebrafish embryos and found that arsenite exposure at 50 microM for 120 h was suitable for mimicking a long-term, chronic effect. When embryos derived from Tg(k18(2.9):RFP) adults were treated with this arsenite dose and time of exposure, abnormal phenotypes were not noticeable under the light microscope. However, arsenic keratosis was visible in the epithelial cells under the fluorescent microscope. Morphological defects became more severe with increased dose and exposure duration, suggesting that the severity of skin lesions was dose- and time-dependent. Histochemical examination of keratosis after 4',6'-diamidino-2-phenylindole hydrochloride (DAPI) staining showed that the epithelial cells overproliferated after treatment with arsenite. Therefore, this Tg(k18(2.9):RFP) zebrafish line is an excellent model for studying toxicity induced by inorganic arsenite and may have potential for studying other environmental pollutants.
Collapse
Affiliation(s)
- Yun-Hsin Wang
- Institute of Molecular and Cellular Biology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 106, Taiwan
| | | | | | | | | |
Collapse
|
76
|
Liu J, Xie Y, Ducharme DMK, Shen J, Diwan BA, Merrick BA, Grissom SF, Tucker CJ, Paules RS, Tennant R, Waalkes MP. Global gene expression associated with hepatocarcinogenesis in adult male mice induced by in utero arsenic exposure. ENVIRONMENTAL HEALTH PERSPECTIVES 2006; 114:404-11. [PMID: 16507464 PMCID: PMC1392235 DOI: 10.1289/ehp.8534] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Our previous work has shown that exposure to inorganic arsenic in utero produces hepatocellular carcinoma (HCC) in adult male mice. To explore further the molecular mechanisms of transplacental arsenic hepatocarcinogenesis, we conducted a second arsenic transplacental carcinogenesis study and used a genomewide microarray to profile arsenic-induced aberrant gene expression more extensively. Briefly, pregnant C3H mice were given drinking water containing 85 ppm arsenic as sodium arsenite or unaltered water from days 8 to 18 of gestation. The incidence of HCC in adult male offspring was increased 4-fold and tumor multiplicity 3-fold after transplacental arsenic exposure. Samples of normal liver and liver tumors were taken at autopsy for genomic analysis. Arsenic exposure in utero resulted in significant alterations (p < 0.001) in the expression of 2,010 genes in arsenic-exposed liver samples and in the expression of 2,540 genes in arsenic-induced HCC. Ingenuity Pathway Analysis revealed that significant alterations in gene expression occurred in a number of biological networks, and Myc plays a critical role in one of the primary networks. Real-time reverse transcriptase-polymerase chain reaction and Western blot analysis of selected genes/proteins showed > 90% concordance. Arsenic-altered gene expression included activation of oncogenes and HCC biomarkers, and increased expression of cell proliferation-related genes, stress proteins, and insulin-like growth factors and genes involved in cell-cell communications. Liver feminization was evidenced by increased expression of estrogen-linked genes and altered expression of genes that encode gender-related metabolic enzymes. These novel findings are in agreement with the biology and histology of arsenic-induced HCC, thereby indicating that multiple genetic events are associated with transplacental arsenic hepatocarcinogenesis.
Collapse
Affiliation(s)
- Jie Liu
- Inorganic Carcinogenesis Section, Laboratory of Comparative Carcinogenesis, National Cancer Institute, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Soto-Peña GA, Luna AL, Acosta-Saavedra L, Conde P, López-Carrillo L, Cebrián ME, Bastida M, Calderón-Aranda ES, Vega L. Assessment of lymphocyte subpopulations and cytokine secretion in children exposed to arsenic. FASEB J 2006; 20:779-81. [PMID: 16461332 DOI: 10.1096/fj.05-4860fje] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Exposure of several human populations to arsenic has been associated with a high incidence of detrimental dermatological and carcinogenic effects. To date, studies examining the immunotoxic effects of arsenic in humans, and specifically in children, are lacking. Therefore, we evaluated several parameters of immunological status in a group of children exposed to arsenic through their drinking water. Peripheral blood mononuclear cells (PBMCs) of 90 children (6 to 10 years old) were collected. Proportions of lymphocyte subpopulations, PBMC mitogenic proliferative response, and urinary arsenic levels were evaluated. Increased urine arsenic levels were associated with a reduced proliferative response to phytohemaglutinin (PHA) stimulation (P=0.005), CD4 subpopulation proportion (P=0.092), CD4/CD8 ratio (P=0.056), and IL-2 secretion levels (P=0.003). Increased arsenic exposure was also associated with an increase in GM-CSF secretion by mononucleated cells (P=0.000). We did not observe changes in CD8, B, or NK cell proportions, nor did we observe changes in the secretion of IL-4, IL-10, or IFN-gamma by PHA-activated PBMCs. These data indicate that arsenic exposure could alter the activation processes of T cells, such that an immunosuppression status that favors opportunistic infections and carcinogenesis is produced together with increased GM-CSF secretion that may be associated with chronic inflammation.
Collapse
Affiliation(s)
- Gerson A Soto-Peña
- Sección Externa de Toxicología, CINVESTAV, San Pedro Zacatenco, México City, México
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Liu ZM, Huang HS. As2O3-induced c-Src/EGFR/ERK signaling is via Sp1 binding sites to stimulate p21WAF1/CIP1 expression in human epidermoid carcinoma A431 cells. Cell Signal 2006; 18:244-55. [PMID: 15961274 DOI: 10.1016/j.cellsig.2005.04.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Revised: 04/19/2005] [Accepted: 04/19/2005] [Indexed: 11/30/2022]
Abstract
Arsenic has been effectively used to treat acute promyelocytic leukemia, and can induce cell cycle arrest or apoptosis in human solid tumors. Previously, we have demonstrated that As2O3 can induce p21WAF1/CIP1 (p21) expression in A431 cells and then due to cellular cytotoxicity. Presently, we have clarified these signaling events and compared them with EGF. Using reporter assay, RT-PCR and Western blotting, we show that c-Src activation might be a prerequisite for As2O3-induced EGFR/Ras/Raf/ERK signaling. Furthermore, with the aids of 5'-deletion and site-directed mutagenesis, we demonstrate that Sp1 binding sites, ranging from -64 to -84 bp, are essential for As2O3- or EGF-regulated p21 expression. Finally, our experiments utilizing cycloheximide prompt the suggestion that the stability of mRNA or protein also contributes to As2O3- or EGF-induced p21 expression. Taken together, we conclude that the Sp1 binding sites are required for As2O3-induced p21 gene transcription through c-Src/EGFR/Ras/Raf/ERK pathway. Furthermore, post-transcriptional or post-translational stabilization mechanism is also essential for As2O3-induced p21 expression. EGF-induced p21 expression may involve similar mechanisms as those that operate in the As2O3-mediated reactions in A431 cells.
Collapse
Affiliation(s)
- Zi-Miao Liu
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | | |
Collapse
|
79
|
Rossman TG. Letter to the editor. Cancer Lett 2006; 231:339-40; author reply 341. [PMID: 16112427 DOI: 10.1016/j.canlet.2005.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Accepted: 06/25/2005] [Indexed: 11/28/2022]
|
80
|
Ouyang W, Li J, Ma Q, Huang C. Essential roles of PI-3K/Akt/IKKbeta/NFkappaB pathway in cyclin D1 induction by arsenite in JB6 Cl41 cells. Carcinogenesis 2005; 27:864-73. [PMID: 16387740 DOI: 10.1093/carcin/bgi321] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Skin is a major target of carcinogenic trivalent arsenic (arsenite, As3+). It has been thought that cell proliferation is one of the central events involved in the carcinogenic effect of arsenite. Cyclin D1, a nuclear protein playing a pivotal role in cell proliferation and cell cycle transition from G1 to S phases, has been reported to be induced in human fibroblast by arsenite via uncertain molecular mechanisms. In the present study, the potential roles of PI-3K/Akt/IKKbeta/NFkappaB signal pathway in cyclin D1 induction by arsenite were addressed in mouse epidermal Cl41 cells. We found that exposure of Cl41 cells to arsenite was able to induce cell proliferation, activate PI-3K-->Akt/p70(S6k) signal pathway and increase cyclin D1 expression at both transcription and protein levels. Pre-treatment of Cl41 cells with PI-3K inhibitor, wortmannin, significantly inhibited the phosphorylation of Akt and p70(S6k) and thereby dramatically impaired the cyclin D1 induction by arsenite, implicating the importance of the PI-3K signal pathway in the cyclin D1 induction by arsenite. Furthermore, inhibition of PI-3K/Akt by overexpression of Deltap85 or DN-Akt blocked arsenite-induced IKK phosphorylation, IkappaBalpha degradation and cyclin D1 expression, indicating that IKK/NFkappaB is the downstream transducer of arsenite-triggered PI-3K/Akt cascade. Moreover, inhibition of IKKbeta/NFkappaB signal pathway by overexpression of its dominant negative mutant, IKKbeta-KM, also significantly blocked arsenite-induced cyclin D1 expression. Overall, arsenite exposure triggered PI-3K/Akt/IKKbeta/NFkappaB signal cascade which in turn plays essential roles in inducing cyclin D1 expression.
Collapse
Affiliation(s)
- Weiming Ouyang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | | | | | | |
Collapse
|
81
|
Liu J, Xie Y, Merrick BA, Shen J, Ducharme DMK, Collins J, Diwan BA, Logsdon D, Waalkes MP. Transplacental arsenic plus postnatal 12-O-teradecanoyl phorbol-13-acetate exposures associated with hepatocarcinogenesis induce similar aberrant gene expression patterns in male and female mouse liver. Toxicol Appl Pharmacol 2005; 213:216-23. [PMID: 16368122 DOI: 10.1016/j.taap.2005.10.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Revised: 10/25/2005] [Accepted: 10/26/2005] [Indexed: 11/15/2022]
Abstract
Our prior work shows that in utero arsenic exposure alone is a complete transplacental carcinogen, producing hepatocellular carcinoma in adult male offspring but not in females. In a follow-up study to potentially promote arsenic-initiated tumors, mice were exposed to arsenic (85 ppm) from gestation day 8 to 18 and then exposed to 12-O-teradecanoyl phorbol-13-acetate (TPA), a well-known tumor promoter after weaning. The dermal application of TPA (2 mug/0.1 ml acetone, twice/week for 21 weeks) after transplacental arsenic did not further increase arsenic-induced liver tumor formation in adult males but significantly increased liver tumor formation in adult females. Thus, for comparison, liver tumors and normal liver samples taken from adult male and female mice at necropsy were analyzed for aberrant gene/protein expression by microarray, real-time RT-PCR and Western blot analysis. Arsenic/TPA treatment resulted in increased expression of alpha-fetoprotein, k-ras, c-myc, estrogen receptor-alpha, cyclin D1, cdk2na, plasminogen activator inhibitor-1, cytokeratin-8, cytokeratin-18, glutathione S-transferases and insulin-like growth factor binding proteins in liver and liver tumors from both male and female mice. Arsenic/TPA also decreased the expression of BRCA1, betaine-homocysteine methyltransferase, CYP7B1, CYP2F2 and insulin-like growth factor-1 in normal and cancerous livers. Alterations in these gene products were associated with arsenic/TPA-induced liver tumors, regardless of sex. Thus, transplacental arsenic plus postnatal TPA exposure induced similar aberrant gene expression patterns in male and female mouse liver, which are persistent and potentially important to the mechanism of arsenic initiation of hepatocarcinogenesis.
Collapse
Affiliation(s)
- Jie Liu
- Inorganic Carcinogenesis Section, Laboratory of Comparative Carcinogenesis, National Cancer Institute at NIEHS, Mail Drop F0-09, Research Triangle Park, NC 27709, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Yang C, Wu J, Zhang R, Zhang P, Eckard J, Yusuf R, Huang X, Rossman TG, Frenkel K. Caffeic acid phenethyl ester (CAPE) prevents transformation of human cells by arsenite (As) and suppresses growth of As-transformed cells. Toxicology 2005; 213:81-96. [PMID: 16085347 DOI: 10.1016/j.tox.2005.05.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Revised: 04/14/2005] [Accepted: 05/18/2005] [Indexed: 10/25/2022]
Abstract
Recent evidence suggests that inflammatory cytokines and growth factors contribute to arsenite (As)-induced human carcinogenesis. We investigated the expression of inflammatory cytokine mRNAs during the transformation process induced by chronic As exposure in non-tumorigenic human osteogenic sarcoma (N-HOS) cells using gene arrays, and results were confirmed by RT-PCR and protein arrays. Caffeic acid phenethyl ester (CAPE), a naturally occurring immunomodulating agent, was used to evaluate the role of inflammatory factors in the process of As-mediated N-HOS cell transformation and in As-transformed HOS (AsT-HOS) cells. We found that an 8-week continuous exposure of N-HOS to 0.3 microM arsenite resulted in HOS cell transformation. That exposure also caused substantial decreases in inflammatory cytokine mRNAs, such as interleukin (IL) IL-1alpha, IL-2, IL-8, IL-18, MCP-1, TGF-beta2, and TNF-alpha, while it increased c-jun mRNA in a time-dependent manner. Co-incubation of N-HOS with As and CAPE (0.5-2.5 microM) prevented As-mediated declines in cytokine mRNAs in the co-treated cells, as well as their transformation to anchorage independence, while it caused decreases in c-jun mRNA. CAPE (up to 10 microM) had no effect on growth of N-HOS cells. However, CAPE (1-10 microM) treatment of AsT-HOS cells inhibited cell growth, induced cell cycle G2/M arrest, and triggered apoptosis, accompanied by changes in cytokine gene expression, as well as decreases in cyclin B1 and cdc2 abundance. Resveratrol (RV) and (-)(.) epigallocatechin gallate (EGCG), preventive agents present in grapes and green tea, respectively, induced similar changes in AsT-HOS cell growth but required much higher doses than CAPE to cause 50% growth arrest (<2.5 microM CAPE versus 25 microM RV or 50 microM EGCG). Overall, our findings suggest that inflammatory cytokines play an important role in the suppressive effects of CAPE on As-induced cell transformation and in the selective cytotoxicity of CAPE to As-transformed HOS cells.
Collapse
Affiliation(s)
- Chengfeng Yang
- Department of Environmental Medicine and NYU Cancer Institute, NYU School of Medicine, New York, NY 10016, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Khan MMH, Hossain MK, Kobayashi K, Sakauchi F, Yamashita T, Ahmed MF, Hossain MD, Quamruzzaman Q, Mori M. Levels of blood and urine chemicals associated with longer duration of having arsenicosis in Bangladesh. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2005; 15:289-301. [PMID: 16175745 DOI: 10.1080/09603120500155831] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Arsenicosis is presently one of the significant public health problems in Bangladesh. Employing household screening of over 3.6 million people living in 6 arsenic-affected Upzilas of Bangladesh, 1,503 arsenicosis patients were identified at first and then blood and urine were collected from some of them and analyzed through laboratory techniques. As the relation between blood and urine chemicals with duration of having arsenicosis (DHA) is not clear, this study presented all findings by shorter versus longer DHA. Complications namely chronic bronchitis, conjunctivitis/congestions, weakness, and wasting were common, with relatively higher rates in longer group. Logistic regression analysis adjusted for age, sex, education, smoking, duration of drinking tube-well water, and whether any arsenicosis patients were in the family-indicated higher odds ratio (OR) of longer DHA (LDHA) in 3rd tertile with respect to GOT (OR = 2.12; 95%CI: 1.09-4.13), and blood glucose (OR = 2.00; 95%CI: 1.07-3.72) than 1st tertile. The OR of LDHA was significantly lower (OR = 0.48; 95%CI: 0.25-0.93) in 3rd tertile for triglycerides compared with 1st tertile. Albumin/globulin (A/G) ratio of 2nd tertile showed significantly lower OR of LDHA (OR=0.51; 95%CI: 0.28-0.95) than 1st tertile. Further epidemiological investigations based on a large sample, through cohort or case control studies, may be useful for validating and generalizing the results in Bangladesh.
Collapse
Affiliation(s)
- M M H Khan
- Department of Public Health, Sapporo Medical University School of Medicine, South 1, West 17, Chuo-ku, Sapporo 060-8556, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Pi J, He Y, Bortner C, Huang J, Liu J, Zhou T, Qu W, North SL, Kasprzak KS, Diwan BA, Chignell CF, Waalkes MP. Low level, long-term inorganic arsenite exposure causes generalized resistance to apoptosis in cultured human keratinocytes: potential role in skin co-carcinogenesis. Int J Cancer 2005; 116:20-6. [PMID: 15756686 DOI: 10.1002/ijc.20990] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Inorganic arsenic is a human carcinogen that targets the skin. Carcinogenesis is a multistep process in which acquired apoptotic resistance is a common event and prior work in non-skin cells shows acquired resistance to apoptosis occurs with chronic arsenite exposure. In the present study, when HaCaT cells, an immortalized, non-tumorigenic human keratinocyte cell line, were continuously exposed to low-level inorganic arsenite (as sodium arsenite; 100 nM) for 28 weeks, the cells acquired a generalized resistance to apoptosis. This included resistance to apoptosis induced by acute high concentrations of arsenite, ultraviolet A (UVA) irradiation, and several chemotherapeutic compounds (cisplatin, etoposide and doxorubicin). These arsenite-tolerant (As-TL) cells showed similar levels of UVA-induced reactive oxygen species (ROS) and oxidative DNA damage when compared to passage match control cells. Because cellular apoptosis is dependent on the balance between proapoptotic and survival pathways, the roles of protein kinase B (PKB), a key antiapoptotic molecule, in this acquired apoptotic resistance were investigated. Stimulation of apoptosis markedly decreased nuclear phosphorylated PKB (P-PKB) levels in control cells, but As-TL cells showed greatly increased stability of nuclear P-PKB. Pretreatment of the As-TL cells with LY294002 or Wortmannin, which specifically inhibit PKB phosphorylation, completely blocked apoptotic resistance in As-TL cells, indicating acquired apoptotic resistance is associated with increased stability of nuclear P-PKB. Because arsenic and UV irradiation are co-carcinogenic in mouse skin, resistance to UV-induced apoptosis in As-TL cells may allow UV-damaged cells to escape normal cell population controls and initiate the carcinogenic cascade. The observation that As-TL cells show no lessening of UV-induced genotoxicity supports this possibility.
Collapse
Affiliation(s)
- Jingbo Pi
- Laboratory of Comparative Carcinogenesis, National Cancer Institute at the National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Gentry PR, Covington TR, Lawrence G, McDonald T, Snow ET, Germolec D, Moser G, Yager JW, Clewell HJ. Comparison of tissue dosimetry in the mouse following chronic exposure to arsenic compounds. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2005; 68:329-351. [PMID: 15799626 DOI: 10.1080/15287390590900813] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Several chronic bioassays have been conducted in multiple strains of mice in which various concentrations of arsenate or arsenite were administered in the drinking water without a tumorigenic effect. However, one study (Ng et al., 1999) reported a significant increase in tumor incidence in C57Bl/6J mice exposed to arsenic in their drinking water throughout their lifetime, with no tumors reported in controls. A physiologically based pharmacokinetic model for arsenic in the mouse has previously been developed (Gentry et al., 2004) to investigate potential differences in tissue dosimetry of arsenic species across various strains of mice. Initial results indicated no significant differences in blood, liver, or urine dosimetry in B6C3F1 and C57Bl/6 mice for acute or subchronic exposure. The current work was conducted to compare model-predicted estimates of tissue dosimetry to additional kinetic information from the (C57Bl/6 xCBA)F1 and TgAc mouse. The results from the current modeling indicate that the pharmacokinetic parameters derived based on information in the B6C3F1 mouse adequately describe the measured concentrations in the blood/plasma, liver, and urine of both the (C57Bl/6 x CBA)F1 and TgAc mouse, providing further support that the differences in response observed in the chronic bioassays are not related to strain-specific differences in pharmacokinetics. One significant finding was that no increases in skin or lung concentrations of arsenic species in the (C57Bl/6 x CBA)F1 strain were observed following administration of low concentrations (0.2 or 2 mg/U of arsenate in the drinking water, even though differences in response in the skin were reported. These data suggest that pharmacodynamic changes may be observed following exposure to arsenic compounds without an observable change in tissue dosimetry. These results provided further indirect support for the existence of inducible arsenic efflux in these tissues.
Collapse
Affiliation(s)
- P Robinan Gentry
- ENVIRON International Corp., 602 East Georgia Avenue, Ruston, LA 71270, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Patterson TJ, Reznikova TV, Phillips MA, Rice RH. Arsenite maintains germinative state in cultured human epidermal cells. Toxicol Appl Pharmacol 2005; 207:69-77. [PMID: 16054901 DOI: 10.1016/j.taap.2004.11.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2004] [Revised: 11/25/2004] [Accepted: 11/29/2004] [Indexed: 11/20/2022]
Abstract
Arsenic is a well-known carcinogen for human skin, but its mechanism of action and proximal macromolecular targets remain to be elucidated. In the present study, low micromolar concentrations of sodium arsenite maintained the proliferative potential of epidermal keratinocytes, decreasing their exit from the germinative compartment under conditions that promote differentiation of untreated cells. This effect was observed in suspension and in post-confluent surface cultures as measured by colony-forming ability and by proportion of rapidly adhering colony-forming cells. Arsenite-treated cultures exhibited elevated levels of beta1-integrin and beta-catenin, two proteins enriched in cells with high proliferative potential. Levels of phosphorylated (inactive) glycogen synthase kinase 3beta were higher in the treated cultures, likely accounting for the increased levels of transcriptionally available beta-catenin. These findings suggest that arsenic could have co-carcinogenic and tumor co-promoting activities in the epidermis as a result of increasing the population and persistence of germinative cells targeted by tumor initiators and promoters. These findings also identify a critical signal transduction pathway meriting further exploration in pursuit of this phenomenon.
Collapse
Affiliation(s)
- Timothy J Patterson
- Department of Environmental Toxicology, University of California, One Shields Avenue, Davis, CA 95616-8588, USA
| | | | | | | |
Collapse
|
87
|
Abstract
Arsenic is a metalloid compound that is widely distributed in the environment. Human exposure of this compound has been associated with increased cancer incidence. Although the exact mechanisms remain to be investigated, numerous carcinogenic pathways have been proposed. Potential carcinogenic actions for arsenic include oxidative stress, genotoxic damage, DNA repair inhibition, epigenetic events, and activation of certain signal transduction pathways leading to abberrant gene expression. In this article, we summarize current knowledge on the molecular mechanisms of arsenic carcinogenesis with an emphasis on ROS and signal transduction pathways.
Collapse
Affiliation(s)
- Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA.
| | | | | | | |
Collapse
|
88
|
Xie Y, Trouba KJ, Liu J, Waalkes MP, Germolec DR. Biokinetics and subchronic toxic effects of oral arsenite, arsenate, monomethylarsonic acid, and dimethylarsinic acid in v-Ha-ras transgenic (Tg.AC) mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2004; 112:1255-63. [PMID: 15345372 PMCID: PMC1277119 DOI: 10.1289/txg.7152] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2004] [Accepted: 06/17/2004] [Indexed: 05/18/2023]
Abstract
Previous research demonstrated that 12-O-tetradecanoylphorbol-13-acetate (TPA) treatment increased the number of skin papillomas in v-Ha-ras transgenic (Tg.AC) mice that had received sodium arsenite [(As(III)] in drinking water, indicating that this model is useful for studying the toxic effects of arsenic in vivo. Because the liver is a known target of arsenic, we examined the pathophysiologic and molecular effects of inorganic and organic arsenical exposure on Tg.AC mouse liver in this study. Tg.AC mice were provided drinking water containing As(III), sodium arsenate [As(V)], monomethylarsonic acid [(MMA(V)], and 1,000 ppm dimethylarsinic acid [DMA(V)] at dosages of 150, 200, 1,500, or 1,000 ppm as arsenic, respectively, for 17 weeks. Control mice received unaltered water. Four weeks after initiation of arsenic treatment, TPA at a dose of 1.25 microg/200 microL acetone was applied twice a week for 2 weeks to the shaved dorsal skin of all mice, including the controls not receiving arsenic. In some cases arsenic exposure reduced body weight gain and caused mortality (including moribundity). Arsenical exposure resulted in a dose-dependent accumulation of arsenic in the liver that was unexpectedly independent of chemical species and produced hepatic global DNA hypomethylation. cDNA microarray and reverse transcriptase-polymerase chain reaction analysis revealed that all arsenicals altered the expression of numerous genes associated with toxicity and cancer. However, organic arsenicals [MMA(V) and DMA(V)] induced a pattern of gene expression dissimilar to that of inorganic arsenicals. In summary, subchronic exposure of Tg.AC mice to inorganic or organic arsenicals resulted in toxic manifestations, hepatic arsenic accumulation, global DNA hypomethylation, and numerous gene expression changes. These effects may play a role in arsenic-induced hepatotoxicity and carcinogenesis and may be of particular toxicologic relevance.
Collapse
Affiliation(s)
- Yaxiong Xie
- Inorganic Carcinogenesis Section, Laboratory of Comparative Carcinogenesis, National Cancer Institute at the National Institute of Environmental Health Sciences Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | |
Collapse
|
89
|
Waalkes MP, Liu J, Ward JM, Diwan BA. Mechanisms underlying arsenic carcinogenesis: hypersensitivity of mice exposed to inorganic arsenic during gestation. Toxicology 2004; 198:31-8. [PMID: 15138027 DOI: 10.1016/j.tox.2004.01.017] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Inorganic arsenic is an important human carcinogen of unknown etiology. Defining carcinogenic mechanisms is critical to assessing the human health hazard of arsenic exposure but requires appropriate model systems. It has proven difficult to induced tumors in animals with inorganic arsenic alone. Several groups have studied the carcinogenic potential of inorganic arsenic in rodents, finding it to act as co-promoter or co-carcinogen, but not as a complete carcinogen. As gestation is a time of high sensitivity to chemical carcinogenesis, we performed two in utero exposure studies with inorganic arsenic. In the first study, pregnant mice received drinking water containing sodium arsenite at 0 (control), 42.5 and 85 ppm arsenic from gestation day 8 to 18, and the offspring were observed for up to 90 weeks. As adults, male offspring developed hepatocellular carcinoma (HCC) and adrenal tumors after in utero arsenite exposure. Although liver tumors were not induced by arsenic in female offspring, they did develop lung carcinoma, ovarian tumors, and uterine and oviduct preneoplasia. In a second study, the same doses of arsenic were used and the skin tumor promoting phorbol ester, TPA, was applied to the skin after birth in an effort to promote skin tumors potentially initiated by arsenic in utero. TPA did not promote dermal tumors after in utero arsenite exposure. Otherwise, results from the second chronic study largely duplicated the first and, irrespective of additional TPA exposure, arsenic exposure in utero induced HCC and adrenal tumors in males and ovarian tumors in females. In addition, combined arsenic and TPA induced a significant increase in hepatocellular tumors in female offspring, although arsenic alone was not effective. Thus, in utero inorganic arsenic exposure can act as a complete carcinogen in mice, with brief exposures consistently inducing tumors at several sites. In addition, it appears gestational arsenic can act as a tumor initiator in the female mouse liver, inducing liver lesions that can be promoted by TPA.
Collapse
Affiliation(s)
- Michael P Waalkes
- Laboratory of Comparative Carcinogenesis, National Cancer Institute at the National Institute of Environmental Health Sciences, 111 Alexander Drive, P.O. Box 12233, MD F0-09, Research Triangle Park, NC 27709, USA.
| | | | | | | |
Collapse
|
90
|
Patterson TJ, Ngo M, Aronov PA, Reznikova TV, Green PG, Rice RH. Biological activity of inorganic arsenic and antimony reflects oxidation state in cultured human keratinocytes. Chem Res Toxicol 2004; 16:1624-31. [PMID: 14680377 DOI: 10.1021/tx034146y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sodium arsenite is much more potent than sodium arsenate in producing adverse effects in animals and in cultured cells. Although arsenate may exhibit toxicity as a phosphate analogue, its potency in vivo appears to be enhanced by reduction to arsenite. To understand the relative importance of this reduction, which is critical in evaluating the responsiveness of cell culture models to the different oxidation states and thus to elucidating the mechanism of arsenic action, present work has correlated the extent of reduction with biological activity in human keratinocytes. The results show that at biologically relevant concentrations, arsenate reduction to appreciable levels required several days, helping rationalize a previous empirical observation that it was approximately one-third as potent as arsenite. The relatively low conversion rate also emphasizes a limitation of culture; arsenate was nearly as efficacious as arsenite, but the time required for it to reach maximal effect exceeded ordinary medium change intervals. In keratinocytes, an important role for purine nucleoside phosphorylase in the reduction could not be demonstrated, indicating that another pathway is dominant in this cell type. Methylation of inorganic arsenic, uptake of methylated forms, and their reduction were all very slow. These findings suggest that the reduced methylated forms have only a small contribution to skin carcinogenesis unless they are supplied through the circulation. In parallel experiments, trivalent antimony was similar to arsenite in potency and efficacy, whereas pentavalent antimony was virtually without biological effect. Conversion of antimony in the pentavalent to the trivalent oxidation state was not detectable in keratinocytes. These findings emphasize the importance of intracellular reduction of the metalloids for biological effects.
Collapse
Affiliation(s)
- Timothy J Patterson
- Departments of Environmental Toxicology and Civil and Environmental Engineering, University of California, Davis, California 95616, USA
| | | | | | | | | | | |
Collapse
|
91
|
Burns FJ, Uddin AN, Wu F, Nádas A, Rossman TG. Arsenic-induced enhancement of ultraviolet radiation carcinogenesis in mouse skin: a dose-response study. ENVIRONMENTAL HEALTH PERSPECTIVES 2004; 112:599-603. [PMID: 15064167 PMCID: PMC1241927 DOI: 10.1289/ehp.6655] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The present study was designed to establish the form of the dose-response relationship for dietary sodium arsenite as a co-carcinogen with ultraviolet radiation (UVR) in a mouse skin model. Hairless mice (strain Skh1) were fed sodium arsenite continuously in drinking water starting at 21 days of age at concentrations of 0.0, 1.25, 2.5, 5.0, and 10 mg/L. At 42 days of age, solar spectrum UVR exposures were applied three times weekly to the dorsal skin at 1.0 kJ/m2 per exposure until the experiment ended at 182 days. Untreated mice and mice fed only arsenite developed no tumors. In the remaining groups a total of 322 locally invasive squamous carcinomas occurred. The carcinoma yield in mice exposed only to UVR was 2.4 +/- 0.5 cancers/mouse at 182 days. Dietary arsenite markedly enhanced the UVR-induced cancer yield in a pattern consistent with linearity up to a peak of 11.1 +/- 1.0 cancers/mouse at 5.0 mg/L arsenite, representing a peak enhancement ratio of 4.63 +/- 1.05. A decline occurred to 6.8 +/- 0.8 cancers/mouse at 10.0 mg/L arsenite. New cancer rates exhibited a consistent-with-linear dependence on time beginning after initial cancer-free intervals ranging between 88 and 95 days. Epidermal hyperplasia was elevated by arsenite alone and UVR alone and was greater than additive for the combined exposures as were growth rates of the cancers. These results demonstrate the usefulness of a new animal model for studying the carcinogenic action of dietary arsenite on skin exposed to UVR and should contribute to understanding how to make use of animal data for assessment of human cancer risks in tissues exposed to mixtures of carcinogens and cancer-enhancing agents.
Collapse
Affiliation(s)
- Fredric J Burns
- Department of Environmental Medicine, School of Medicine, New York University, 57 Old Forge Road, Tuxedo, NY 10987, USA.
| | | | | | | | | |
Collapse
|
92
|
Liao WT, Chang KL, Yu CL, Chen GS, Chang LW, Yu HS. Arsenic induces human keratinocyte apoptosis by the FAS/FAS ligand pathway, which correlates with alterations in nuclear factor-kappa B and activator protein-1 activity. J Invest Dermatol 2004; 122:125-9. [PMID: 14962100 DOI: 10.1046/j.0022-202x.2003.22109.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Epidemiologic studies demonstrated that long-term exposure to arsenic induces arsenical skin cancers, including Bowen's disease. Immunohistochemically, Bowen's disease shows proliferating and apoptotic characteristics. The transcription factors nuclear factor-kappa B (NF-kappa B) and activator protein-1 (AP-1) functionally regulate cell proliferation, transformation, and apoptosis. To investigate the mechanism of arsenic-induced apoptosis and related alterations in NF-kappa B and AP-1 activity, we exposed cultured human foreskin keratinocytes to different concentrations of sodium arsenite. At lower concentrations (< or =1 microM), arsenic induced keratinocyte proliferation and enhanced both NF-kappa B and AP-1 activity. At higher concentrations (> or =5 microM), arsenic induced keratinocyte apoptosis by the Fas/Fas ligand (FasL) pathway. At apoptosis induction concentrations, NF-kappa B activity was not enhanced; however, AP-1 activity was further enhanced. These results indicated that upregulation of NF-kappa B at lower arsenic concentrations was correlated with keratinocyte proliferation. In contrast, higher concentrations of arsenic enhanced AP-1 and induced Fas/FasL-associated apoptosis. The concentration-dependent arsenic effects on transcription factors activity can help to clarify the mechanisms in arsenic-induced proliferation and apoptosis in keratinocytes.
Collapse
Affiliation(s)
- Wei-Ting Liao
- Department of Biochemistry and Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | |
Collapse
|
93
|
Pi J, Qu W, Reece JM, Kumagai Y, Waalkes MP. Transcription factor Nrf2 activation by inorganic arsenic in cultured keratinocytes: involvement of hydrogen peroxide. Exp Cell Res 2003; 290:234-45. [PMID: 14567983 DOI: 10.1016/s0014-4827(03)00341-0] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Inorganic arsenic is a well-documented human carcinogen that targets the skin. The induction of oxidative stress, as shown with arsenic, may have a bearing on the carcinogenic mechanism of this metalloid. The transcription factor Nrf2 is a key player in the regulation of genes encoding for many antioxidative response enzymes. Thus, the effect of inorganic arsenic (as sodium arsenite) on Nrf2 expression and localization was studied in HaCaT cells, an immortalized human keratinocyte cell line. We found, for the first time, that arsenic enhanced cellular expression of Nrf2 at the transcriptional and protein levels and activated expression of Nrf2-related genes in these cells. In addition, arsenic exposure caused nuclear accumulation of Nrf2 in association with downstream activation of Nrf2-mediated oxidative response genes. Arsenic simultaneously increased the expression of Keap1, a regulator of Nrf2 activity. The coordinated induction of Keap1 expression and nuclear Nrf2 accumulation induced by arsenic suggests that Keap1 is important to arsenic-induced Nrf2 activation. Furthermore, when cells were pretreated with scavengers of hydrogen peroxide (H(2)O(2)) such as catalase-polyethylene glycol (PEG-CAT) or Tiron, arsenic-induced nuclear Nrf2 accumulation was suppressed, whereas CuDIPSH, a cell-permeable superoxide dismutase (SOD) mimic compound that produces H(2)O(2) from superoxide (*O(2)(-)), enhanced Nrf2 nuclear accumulation. These results indicate that H(2)O(2), rather than *O(2)(-), is the mediator of nuclear Nrf2 accumulation. Additional study showed that arsenic causes increased cellular H(2)O(2) production and that H(2)O(2) itself has the ability to increase Nrf2 expression at both the transcription and protein levels in HaCaT cells. Taken together, these data clearly show that arsenic increases Nrf2 expression and activity at multiple levels and that H(2)O(2) is one of the mediators of this process.
Collapse
Affiliation(s)
- Jingbo Pi
- Inorganic Carcinogenesis Section, Laboratory of Comparative Carcinogenesis, NCI at NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | | | | | |
Collapse
|
94
|
Simeonova PP, Hulderman T, Harki D, Luster MI. Arsenic exposure accelerates atherogenesis in apolipoprotein E(-/-) mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2003; 111:1744-8. [PMID: 14594625 PMCID: PMC1241717 DOI: 10.1289/ehp.6332] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Epidemiologic studies have shown an association between elevated arsenic levels in drinking water and an increased risk of atherosclerosis and vascular diseases. The studies presented here were performed to evaluate the atherogenic potential of arsenic using a well-established and controlled animal model of human atherosclerosis, mice deficient in apolipoprotein E (ApoE), and in vitro systems including primary human vascular cells. Wild-type and ApoE-deficient mice were exposed to 20 or 100 microg/mL sodium arsenite in drinking water for 24 weeks. As assessed morphometrically, the size of grossly discernible lesions covering the intimal area of aorta were increased significantly in arsenic-treated ApoE-deficient mice compared with nontreated transgenic mice. This effect was not associated with increased levels of serum cholesterol but was accompanied by an accumulation of arsenic in the vessel wall. Introduction of cocoa butter into the diet for 2 weeks resulted in higher serum cholesterol levels and only slight increases in the lesion size in control or arsenic-exposed ApoE-deficient mice. There were no lesions observed in the wild-type C57BL6 mice, resistant to atherosclerosis, whether they received arsenic or control drinking water. In vitro studies, including primary aorta endothelial or smooth muscle cells, were conducted to evaluate whether arsenic induces cellular mechanisms relevant to atherogenesis such as endothelial dysfunction, lipid oxidation, and smooth muscle cell proliferation. Arsenic treatment does not modulate endothelial cell-mediated lipid oxidation or smooth muscle cell proliferation but induced the expression of genes coding inflammatory mediators, including interleukin-8. Induction of endothelial inflammatory activity may play a role in arsenic-related vascular effects.
Collapse
Affiliation(s)
- Petia P Simeonova
- Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, USA.
| | | | | | | |
Collapse
|
95
|
Tsou TC, Tsai FY, Wu MC, Chang LW. The protective role of NF-kappaB and AP-1 in arsenite-induced apoptosis in aortic endothelial cells. Toxicol Appl Pharmacol 2003; 191:177-87. [PMID: 12946653 DOI: 10.1016/s0041-008x(03)00239-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Arsenite (NaAsO(2)) has been shown to produce vascular dysfunction in many studies. Arsenite-induced damage to vascular endothelial cells represents one of the possible mechanisms causing leakage of the vascular endothelial barrier. To explore arsenite-induced vascular endothelial damage, we used primary porcine aortic endothelial cells (PAECs) as an in vitro system to test the effects of arsenite on signal transduction pathways and apoptosis. Here we demonstrated that arsenite exposure induced apoptosis accompanied by the occurrence of apoptotic signals including degradation of poly(ADP-ribose) polymerase (PARP) and CPP32 (cleavage/activation) and DNA ladder formation. By using the luciferase reporter assay, we demonstrated that arsenite exposure differentially activated two redox-sensitive transcription factors, NF-kappaB and AP-1. Lower levels of arsenite exposure (25 microM NaAsO(2), 24 h) induced co-activation of NF-kappaB and AP-1, accompanied by 9% total apoptosis. In contrast, higher levels of arsenite exposure (40 microM NaAsO(2), 24 h) induced higher levels of AP-1 activation, accompanied by 45% total apoptosis. Blockade of NF-kappaB or JNK activity further enhanced arsenite-induced apoptosis. Upregulation of JNK activity showed no effect on arsenite-induced apoptosis. Based on these data, we propose that activation of redox-sensitive transcription factors, NF-kappaB and AP-1, plays a very important role in the protection of PAECs from arsenite-induced apoptosis.
Collapse
Affiliation(s)
- Tsui-Chun Tsou
- Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Medical Research Building/Room 108, 100 Shih-Chuan 1st Road, Kaohsiung 807, Taiwan, Republic of China.
| | | | | | | |
Collapse
|
96
|
Wu MM, Chiou HY, Ho IC, Chen CJ, Lee TC. Gene expression of inflammatory molecules in circulating lymphocytes from arsenic-exposed human subjects. ENVIRONMENTAL HEALTH PERSPECTIVES 2003; 111:1429-38. [PMID: 12928151 PMCID: PMC1241636 DOI: 10.1289/ehp.6396] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Long-term arsenic exposure is associated with an increased risk of vascular diseases including ischemic heart disease, cerebrovascular disease, and carotid atherosclerosis. The pathogenic mechanisms of arsenic atherogenicity are not completely clear. A fundamental role for inflammation in atherosclerosis and its complications has become appreciated recently. To investigate molecular targets of inflammatory pathway possibly involved in arsenic-associated atherosclerosis, we conducted an exploratory study using cDNA microarray and enzyme-linked immunosorbent assay to identify genes with differential expression in arsenic-exposed yet apparently healthy individuals. As an initial experiment, array hybridization was performed with mRNA isolated from activated lymphocytes of 24 study subjects with low (0-4.32 microg/L), intermediate (4.64-9.00 microg/L), and high (9.60-46.5 microg/L) levels of blood arsenic, with each group comprising eight age-, sex-, and smoking frequency-matched individuals. A total of 708 transcripts of known human genes were analyzed, and 62 transcripts (8.8%) showed significant differences in the intermediate or high-arsenic groups compared with the low-level arsenic group. Among the significantly altered genes, several cytokines and growth factors involving inflammation, including interleukin-1 beta, interleukin-6, chemokine C-C motif ligand 2/monocyte chemotactic protein-1 (CCL2/MCP1), chemokine C-X-C motif ligand 1/growth-related oncogene alpha, chemokine C-X-C motif ligand 2/growth-related oncogene beta, CD14 antigen, and matrix metalloproteinase 1 (interstitial collagenase) were upregulated in persons with increased arsenic exposure. Multivariate analyses on 64 study subjects of varying arsenic exposure levels showed that the association of CCL2/MCP1 plasma protein level with blood arsenic remained significant after adjustment for other risk factors of cardiovascular diseases. The results of this gene expression study indicate that the expression of inflammatory molecules may be increased in human subjects after prolonged exposure to arsenic, which might be a contributory factor to the high risk of atherosclerosis in arseniasis-endemic areas in Taiwan. Further multidisciplinary studies, including molecular epidemiologic investigations, are needed to elucidate the role of arsenic-associated inflammation in the development of atherosclerosis and subsequent cardiovascular disease.
Collapse
Affiliation(s)
- Meei-Maan Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
97
|
Wu MM, Chiou HY, Ho IC, Chen CJ, Lee TC. Gene expression of inflammatory molecules in circulating lymphocytes from arsenic-exposed human subjects. ENVIRONMENTAL HEALTH PERSPECTIVES 2003. [PMID: 12928151 DOI: 10.1289/txg.6396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Long-term arsenic exposure is associated with an increased risk of vascular diseases including ischemic heart disease, cerebrovascular disease, and carotid atherosclerosis. The pathogenic mechanisms of arsenic atherogenicity are not completely clear. A fundamental role for inflammation in atherosclerosis and its complications has become appreciated recently. To investigate molecular targets of inflammatory pathway possibly involved in arsenic-associated atherosclerosis, we conducted an exploratory study using cDNA microarray and enzyme-linked immunosorbent assay to identify genes with differential expression in arsenic-exposed yet apparently healthy individuals. As an initial experiment, array hybridization was performed with mRNA isolated from activated lymphocytes of 24 study subjects with low (0-4.32 microg/L), intermediate (4.64-9.00 microg/L), and high (9.60-46.5 microg/L) levels of blood arsenic, with each group comprising eight age-, sex-, and smoking frequency-matched individuals. A total of 708 transcripts of known human genes were analyzed, and 62 transcripts (8.8%) showed significant differences in the intermediate or high-arsenic groups compared with the low-level arsenic group. Among the significantly altered genes, several cytokines and growth factors involving inflammation, including interleukin-1 beta, interleukin-6, chemokine C-C motif ligand 2/monocyte chemotactic protein-1 (CCL2/MCP1), chemokine C-X-C motif ligand 1/growth-related oncogene alpha, chemokine C-X-C motif ligand 2/growth-related oncogene beta, CD14 antigen, and matrix metalloproteinase 1 (interstitial collagenase) were upregulated in persons with increased arsenic exposure. Multivariate analyses on 64 study subjects of varying arsenic exposure levels showed that the association of CCL2/MCP1 plasma protein level with blood arsenic remained significant after adjustment for other risk factors of cardiovascular diseases. The results of this gene expression study indicate that the expression of inflammatory molecules may be increased in human subjects after prolonged exposure to arsenic, which might be a contributory factor to the high risk of atherosclerosis in arseniasis-endemic areas in Taiwan. Further multidisciplinary studies, including molecular epidemiologic investigations, are needed to elucidate the role of arsenic-associated inflammation in the development of atherosclerosis and subsequent cardiovascular disease.
Collapse
Affiliation(s)
- Meei-Maan Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
98
|
Yuan SS, Hou MF, Chang HL, Chan TF, Wu YH, Wu YC, Su JH. Arsenite-induced nitric oxide generation is cell cycle-dependent and aberrant in NBS cells. Toxicol In Vitro 2003; 17:139-43. [PMID: 12650666 DOI: 10.1016/s0887-2333(02)00129-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Exposure to arsenic has been reported to cause DNA damage and eventually the occurrence of bladder, lung and skin cancers. A previous report has demonstrated that arsenite-induced phosphorylation of Mre11, a protein involved in the repair of DNA double strand breaks (DSBs), is M phase-dependent and requires the Nijmegen breakage syndrome (NBS) protein, NBS1 [DNA Repair 1 (2002) 137]. Furthermore, arsenite treatment arrests cells at the M phase and the cells eventually go through apoptosis [Biochemical Pharmacology 60 (2000) 771]. Here we demonstrate that arsenite treatment enhances the generation of nitric oxide (NO), and that the enhanced NO generation is dominant at the G2/M phase. Arsenite-induced NO generation is impaired in DSB repair-defective NBS cells, but not in NBS1-reconstituted NBS cells, suggesting NBS1 is required for effective NO generation. In summary, our study showed, for the first time, that arsenite-induced NO generation is cell-cycle- and NBS1-dependent.
Collapse
Affiliation(s)
- S S Yuan
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan 807, Republic of China
| | | | | | | | | | | | | |
Collapse
|
99
|
He Z, Ma WY, Liu G, Zhang Y, Bode AM, Dong Z. Arsenite-induced phosphorylation of histone H3 at serine 10 is mediated by Akt1, extracellular signal-regulated kinase 2, and p90 ribosomal S6 kinase 2 but not mitogen- and stress-activated protein kinase 1. J Biol Chem 2003; 278:10588-93. [PMID: 12529330 DOI: 10.1074/jbc.m208581200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Arsenite is known to be an environmental human carcinogen. However, the mechanism of action of this compound in skin carcinogenesis is not completely clear. Here, we provide evidence that arsenite can induce phosphorylation of histone H3 at serine 10 in a time- and dose-dependent manner in JB6 Cl 41 cells. Arsenite induces phosphorylation of Akt1 at serine 473 and increases Akt1 activity. A dominant-negative mutant of Akt1 inhibits the arsenite-induced phosphorylation of histone H3 at serine 10. Additionally, active Akt1 kinase strongly phosphorylates histone H3 at serine 10 in vitro. The arsenite-induced phosphorylation of histone H3 at serine 10 was almost completely blocked by a dominant-negative mutant of extracellular signal-regulated kinase 2 and the mitogen-activated protein kinase/extracellular signal-regulated kinase inhibitor PD98059. N- or C-terminal mutant mitogen- and stress-activated protein kinase 1 or its inhibitor H89 had no effect on arsenite-induced phosphorylation of histone H3 at serine 10 in JB6 Cl 41 cells. However, cells deficient in p90 ribosomal S6 kinase 2 (Rsk2(-/-)) totally block this phosphorylation in a dose- and time-dependent manner. Taken together, these results suggested that arsenite-induced phosphorylation of histone H3 at serine 10 is mediated by Akt1, extracellular signal-regulated kinase 2 and p90 ribosomal S6 kinase 2 but not mitogen- and stress-activated protein kinase 1.
Collapse
Affiliation(s)
- Zhiwei He
- Hormel Institute, University of Minnesota, Austin 55912, USA
| | | | | | | | | | | |
Collapse
|
100
|
Abstract
Mutations seem to be only one of the mechanisms involved in carcinogenesis; selection of mutated clones is a second crucial mechanism. An evolutionary (darwinian) theory of carcinogenesis can be useful to explain some contradictory observations of epidemiology, and to provide a common theoretical framework for carcinogenesis. In both the selection of species and in carcinogenesis (selection of mutated cells), mutation and selection can be interpreted as necessary and insufficient causes. Selection presupposes competition among clones-that is, survival advantage of the mutated species; without selective forces a mutation is mute, while the lack of mutations makes selective advantage impossible. The identification of carcinogen related fingerprints is ambiguous: it can suggest both a genuine mutational hotspot left by the carcinogenic stimulus (like in tobacco related p53 mutations), and selective advantage of clones whose mutations seem to be not exposure specific (like in the case of aflatoxin). We present several examples of exposures that can increase the risk of cancer in humans not via mutations but through a putative mechanism of clone selection.
Collapse
Affiliation(s)
- P Vineis
- CPO-Piemonte and Università di Torino, Italy.
| | | | | |
Collapse
|