51
|
Di Carlo A, De Mori R, Martelli F, Pompilio G, Capogrossi MC, Germani A. Hypoxia inhibits myogenic differentiation through accelerated MyoD degradation. J Biol Chem 2004; 279:16332-8. [PMID: 14754880 DOI: 10.1074/jbc.m313931200] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cells undergo a variety of biological responses when placed in hypoxic conditions, including alterations in metabolic state and growth rate. Here we investigated the effect of hypoxia on the ability of myogenic cells to differentiate in culture. Exposure of myoblasts to hypoxia strongly inhibited multinucleated myotube formation and the expression of differentiation markers. We showed that hypoxia reversibly inhibited MyoD, Myf5, and myogenin expression. One key step in skeletal muscle differentiation involves the up-regulation of the cell cycle-dependent kinase inhibitors p21 and p27 as well as the product of the retinoblastoma gene (pRb). Myoblasts cultured under hypoxic conditions in differentiation medium failed to up-regulate both p21 and pRb despite the G1 cell cycle arrest, as evidenced by p27 accumulation and pRb hypophosphorylation. Hypoxia-dependent inhibition of differentiation was associated with MyoD degradation by the ubiquitin-proteasome pathway. MyoD overexpression in C2C12 myoblasts overrode the differentiation block imposed by hypoxic conditions. Thus, hypoxia by inducing MyoD degradation blocked accumulation of early myogenic differentiation markers such as myogenin and p21 and pRb, preventing both permanent cell cycle withdraw and terminal differentiation. Our study revealed a novel anti-differentiation effect exerted by hypoxia in myogenic cells and identified MyoD degradation as a relevant target of hypoxia.
Collapse
Affiliation(s)
- Anna Di Carlo
- Laboratorio di Biologia Vascolare e Terapia Genica, Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico, 20138 Milan, Italy
| | | | | | | | | | | |
Collapse
|
52
|
Anderson JE, Vargas C. Correlated NOS-Imu and myf5 expression by satellite cells in mdx mouse muscle regeneration during NOS manipulation and deflazacort treatment. Neuromuscul Disord 2003; 13:388-96. [PMID: 12798794 DOI: 10.1016/s0960-8966(03)00029-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Satellite cells, muscle precursor cells in skeletal muscle, are normally quiescent and become activated by disease or injury. A lack of dystrophin and changes in the expression or activity of neuronal nitric oxide synthase (NOS-I) affect the timing of activation in vivo. Nitric oxide synthase inhibition delays muscle repair in normal mice, and worsens muscular dystrophy in the mdx mouse, a genetic homologue of Duchenne muscular dystrophy. However, the potential role of activation and repair events mediated by nitric oxide in determining the outcome of steroid or other treatments for muscular dystrophy is not clear. We tested the hypothesis that the extent of repair in dystrophic muscles of mdx mice is partly dependent on NOS-Imu expression and activity. Myotube formation in regenerating muscle was promoted by deflazacort treatment of mdx dystrophic mice (P<0.05), and improved by combination with the nitric oxide synthase substrate, L-arginine, especially in the diaphragm. NOS-Imu mRNA expression and activity were present in satellite cells and very new myotubes of regenerating and dystrophic muscle. Deflazacort treatment resulted in increased NOS-Imu expression in regenerating muscles in a strong and specific correlation with myf5 expression (r=0.95, P<0.01), a marker for muscle repair. Nitric oxide synthase inhibition prevented the deflazacort-induced rise in NOS-Imu and myf5 expression in the diaphragm without affecting the diameter of non-regenerating fibres. These in vivo studies suggest that gains in NOS-Imu expression and nitric oxide synthase activity in satellite cells can increase the extent and speed of repair, even in the absence of dystrophin in muscle fibres. NOS-Imu may be a useful therapeutic target to augment the effects of steroidal or other treatments of muscular dystrophy.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- Anti-Inflammatory Agents/therapeutic use
- Arginine/pharmacology
- Arginine/therapeutic use
- Blotting, Northern
- DNA-Binding Proteins
- Diaphragm/metabolism
- Dystrophin/deficiency
- Immunosuppressive Agents/pharmacology
- Immunosuppressive Agents/therapeutic use
- In Situ Hybridization
- Mice
- Mice, Inbred mdx
- Muscle Fibers, Skeletal/metabolism
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophies/metabolism
- Myogenic Regulatory Factor 5
- Nitric Oxide Synthase/antagonists & inhibitors
- Nitric Oxide Synthase/metabolism
- Pregnenediones/pharmacology
- Pregnenediones/therapeutic use
- Protein Isoforms
- Proto-Oncogene Proteins c-fos/metabolism
- Proto-Oncogene Proteins c-met/metabolism
- RNA, Messenger/metabolism
- Regeneration/drug effects
- Satellite Cells, Skeletal Muscle/drug effects
- Satellite Cells, Skeletal Muscle/enzymology
- Satellite Cells, Skeletal Muscle/metabolism
- Trans-Activators/metabolism
Collapse
Affiliation(s)
- Judy E Anderson
- Department of Human Anatomy and Cell Science, Faculty of Medicine, University of Manitoba, 730 William Avenue, Winnipeg, MB, Canada R3E 0W3.
| | | |
Collapse
|
53
|
Hossain MS, Akimitsu N, Kurokawa K, Sekimizu K. Myogenic differentiation of Drosophila Schneider cells by DNA double-strand break-inducing drugs. Differentiation 2003; 71:271-80. [PMID: 12823228 DOI: 10.1046/j.1432-0436.2003.7104504.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Drosophila melanogaster has been widely used as a model organism to study various aspects of development. Apart from the whole Drosophila embryo, there are a number of cultured cell lines derived from Drosophila embryo that have also been used for elucidating various aspects of development. Drosophila Schneider line 2 cells were derived from the late stages of the embryo (Schneider, 1972). We found that the Schneider cells undergo myogenic differentiation upon treatment with neocarzinostatin (NCS), DNA double-strand break (DSB)-inducing drug, as indicated by elongated morphology, myosin heavy chain protein expression, multinucleation and exit from the cell cycle. No induction of differentiation was observed when cell proliferation was inhibited with drugs that do not cause DNA DSBs. Pre-treatment of Schneider cells with inhibitors of PKC, PP 1/2A, p38 MAPK, JNK and proteasomes resulted in the inhibition of morphological differentiation induced by NCS. These results indicate that DNA DSBs can turn on the myogenic program in Drosophila Schneider cells and the process is dependent on PK C-, PP 1/2A-, p38 MAPK-, and JNK- mediated signaling and proteasomal activity. The molting hormone, 20-hydroxyecdysone (20-HE), also showed an anti-myogenic effect on the process. This is the first report of insect cells undergoing differentiation by DNA DSB-inducing drugs as far as we know, and it provides a very useful and convenient in vitro system to study various aspects of Drosophila myogenesis.
Collapse
Affiliation(s)
- Muktadir S Hossain
- Laboratory of Developmental Biochemistry, Faculty of Pharmaceutical Sciences, University of Tokyo, 3-1, 7-Chome, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
54
|
Jung JY, Lin AC, Ramos LM, Faddis BT, Chole RA. Nitric oxide synthase I mediates osteoclast activity in vitro and in vivo. J Cell Biochem 2003; 89:613-21. [PMID: 12761894 DOI: 10.1002/jcb.10527] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bone resorption is responsible for the morbidity associated with a number of inflammatory diseases such as rheumatoid arthritis, orthopedic implant osteolysis, periodontitis and aural cholesteatoma. Previous studies have established nitric oxide (NO) as a potentially important mediator of bone resorption. NO is a unique intercellular and intracellular signaling molecule involved in many physiologic and pathologic pathways. NO is generated from L-arginine by the enzyme nitric oxide synthase (NOS). There are three known isoforms of NOS with distinct cellular distributions. In this study, we have used mice with targeted deletions in each of these isoforms to establish a role for these enzymes in the regulation of bone resorption in vivo and in vitro. In a murine model of particle induced osteolysis, NOS I-/- mice demonstrated a significantly reduced osteoclast response. In vitro, osteoclasts derived from NOS I-/- mice were larger than wild type controls but demonstrated decreased resorption. Although NOS I has been demonstrated in osteoblasts and osteocytes as a mediator of adaptive bone remodeling, it has not previously been identified in osteoclasts. These results demonstrate a critical role for NOS I in inflammatory bone resorption and osteoclast function in vitro.
Collapse
Affiliation(s)
- Jae Y Jung
- Department of Otolaryngology, Washington University, St Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
55
|
Ebert JG, Zelenka M, Gath I, Gödtel-Armbrust U, Förstermann U. Colocalization but differential regulation of neuronal NO synthase and nicotinic acetylcholine receptor in C2C12 myotubes. Am J Physiol Cell Physiol 2003; 284:C1065-72. [PMID: 12620898 DOI: 10.1152/ajpcell.00476.2002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In mammalian skeletal muscle, neuronal-type nitric oxide synthase (nNOS) is found to be enriched at neuromuscular endplates. Here we demonstrate the colocalization of the nicotinic acetylcholine receptor (nAChR, stained with alpha-bungarotoxin) and nNOS (stained with a specific antibody) in murine C(2)C(12) myotubes. However, coimmunoprecipitation experiments demonstrated no evidence for a direct protein-protein association between the nAChR and nNOS in C(2)C(12) myotubes. An antibody to the alpha(1)-subunit of the nAChR did not coprecipitate nNOS, and an nNOS-specific antibody did not precipitate the alpha(1)-subunit of the nAChR. Treatment of mice with bacterial LPS downregulated the expression of nNOS in skeletal muscle, and treatment of C(2)C(12) cells with bacterial LPS and interferon-gamma markedly decreased nNOS mRNA and protein expression. In contrast, mRNA and protein of the nAChR (alpha-, gamma-, and epsilon-subunits) remained unchanged at the mRNA and protein levels. These data demonstrate that nNOS and the nAChR are colocalized in murine skeletal muscle and C(2)C(12) cells but differ in their expressional regulation.
Collapse
Affiliation(s)
- Jutta G Ebert
- Department of Pharmacology, Johannes Gutenberg University, D-55101 Mainz, Germany
| | | | | | | | | |
Collapse
|
56
|
Shen X, Collier JM, Hlaing M, Zhang L, Delshad EH, Bristow J, Bernstein HS. Genome-wide examination of myoblast cell cycle withdrawal during differentiation. Dev Dyn 2003; 226:128-38. [PMID: 12508234 DOI: 10.1002/dvdy.10200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Skeletal and cardiac myocytes cease division within weeks of birth. Although skeletal muscle retains limited capacity for regeneration through recruitment of satellite cells, resident populations of adult myocardial stem cells have not been identified. Because cell cycle withdrawal accompanies myocyte differentiation, we hypothesized that C2C12 cells, a mouse myoblast cell line previously used to characterize myocyte differentiation, also would provide a model for studying cell cycle withdrawal during differentiation. C2C12 cells were differentiated in culture medium containing horse serum and harvested at various time points to characterize the expression profiles of known cell cycle and myogenic regulatory factors by immunoblot analysis. BrdU incorporation decreased dramatically in confluent cultures 48 hr after addition of horse serum, as cells started to form myotubes. This finding was preceded by up-regulation of MyoD, followed by myogenin, and activation of Bcl-2. Cyclin D1 was expressed in proliferating cultures and became undetectable in cultures containing 40% fused myotubes, as levels of p21(WAF1/Cip1) increased and alpha-actin became detectable. Because C2C12 myoblasts withdraw from the cell cycle during myocyte differentiation following a course that recapitulates this process in vivo, we performed a genome-wide screen to identify other gene products involved in this process. Using microarrays containing approximately 10,000 minimally redundant mouse sequences that map to the UniGene database of the National Center for Biotechnology Information, we compared gene expression profiles between proliferating, differentiating, and differentiated C2C12 cells and verified candidate genes demonstrating differential expression by RT-PCR. Cluster analysis of differentially expressed genes revealed groups of gene products involved in cell cycle withdrawal, muscle differentiation, and apoptosis. In addition, we identified several genes, including DDAH2 and Ly-6A, whose expression specifically was up-regulated during cell cycle withdrawal coincident with early myoblast differentiation.
Collapse
Affiliation(s)
- Xun Shen
- Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | | | | | | | | | | | | |
Collapse
|
57
|
Tatsumi R, Hattori A, Ikeuchi Y, Anderson JE, Allen RE. Release of hepatocyte growth factor from mechanically stretched skeletal muscle satellite cells and role of pH and nitric oxide. Mol Biol Cell 2002; 13:2909-18. [PMID: 12181355 PMCID: PMC117951 DOI: 10.1091/mbc.e02-01-0062] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Application of mechanical stretch to cultured adult rat muscle satellite cells results in release of hepatocyte growth factor (HGF) and accelerated entry into the cell cycle. Stretch activation of cultured rat muscle satellite cells was observed only when medium pH was between 7.1 and 7.5, even though activation of satellite cells was accelerated by exogenous HGF over a pH range from 6.9 to 7.8. Furthermore, HGF was only released in stretched cultures when the pH of the medium was between 7.1 and 7.4. Conditioned medium from stretched satellite cell cultures stimulated activation of unstretched satellite cells, and the addition of anti-HGF neutralizing antibodies to stretch-conditioned medium inhibited the stretch activation response. Conditioned medium from satellite cells that were stretched in the presence of nitric-oxide synthase (NOS) inhibitor N(omega)-nitro-L-arginine methyl ester hydrochloride did not accelerate activation of unstretched control satellite cells, and HGF was not released into the medium. Conditioned medium from unstretched cells that were treated with a nitric oxide donor, sodium nitroprusside dihydrate, was able to accelerate the activation of satellite cells in vitro, and HGF was found in the conditioned medium. Immunoblot analysis indicated that both neuronal and endothelial NOS isoforms were present in satellite cell cultures. Furthermore, assays of NOS activity in stretched satellite cell cultures demonstrated that NOS is stimulated when satellite cells are stretched in vitro. These experiments indicate that stretch triggers an intracellular cascade of events, including nitric oxide synthesis, which results in HGF release and satellite cell activation.
Collapse
Affiliation(s)
- Ryuichi Tatsumi
- Department of Animal Science, Hokkaido University, Sapporo, Japan
| | | | | | | | | |
Collapse
|
58
|
Affiliation(s)
- Juan V Esplugues
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Spain.
| |
Collapse
|
59
|
Park JY, Lee D, Maeng JU, Koh DS, Kim K. Hyperpolarization, but not depolarization, increases intracellular Ca(2+) level in cultured chick myoblasts. Biochem Biophys Res Commun 2002; 290:1176-82. [PMID: 11811986 DOI: 10.1006/bbrc.2001.6323] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ca(2+) influx appears to be important for triggering myoblast fusion. It remains, however, unclear how Ca(2+) influx rises prior to myoblast fusion. The present study examines a possible involvement of the voltage-dependent Ca(2+) influx pathways. Treatment with the L-type Ca(2+) channel blockers, diltiazem, and nifedipine did not alter cytosolic Ca(2+) levels. Depolarization with high K(+) solution and activation of Ca(2+) channel with Bay K 8644, and agonist of voltage dependent Ca(2+) channels, failed to elicit increases intracellular Ca(2+) level, indicating the absence of depolarization-operated mechanisms. In contrast, phloretin, an agonist of Ca(2+)-activated potassium (K(Ca)) channels, was able to hyperpolarize membrane potential and promoted Ca(2+) influx. These effects were completely abolished by treatment of charybdotoxin, a specific inhibitor of K(Ca) channels. In addition, gadolinium, a potent stretch-activated channel (SAC) blocker, prevented the phloretin-mediated Ca(2+) increase, indicating the involvement of SACs in Ca(2+) influx. Furthermore, phloretin stimulated precocious myoblast fusion and this effect was blocked with gadolinium or charybdotoxin. Taken together, these results suggest that induced hyperpolarization, but not depolarization increases Ca(2+) influx through stretch-activated channels, and in turn triggers myoblast fusion.
Collapse
Affiliation(s)
- Jae-Yong Park
- School of Biological Sciences, Seoul National University, Seoul, 151-742, Korea
| | | | | | | | | |
Collapse
|
60
|
Chaubourt E, Voisin V, Fossier P, Baux G, Israël M, De La Porte S. Muscular nitric oxide synthase (muNOS) and utrophin. JOURNAL OF PHYSIOLOGY, PARIS 2002; 96:43-52. [PMID: 11755782 DOI: 10.1016/s0928-4257(01)00079-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Duchenne muscular dystrophy (DMD), the severe X-linked recessive disorder which results in progressive muscle degeneration, is due to a lack of dystrophin, a membrane cytoskeletal protein. Three types of treatment are envisaged: pharmacological (glucocorticoid), myoblast transplantation, and gene therapy. An alternative to the pharmacological approach is to compensate for dystrophin loss by the upregulation of another cytoskeletal protein, utrophin. Utrophin and dystrophin are part of a complex of proteins and glycoproteins, which links the basal lamina to the cytoskeleton, thus ensuring the stability of the muscle membrane. One protein of the complex, syntrophin, is associated with a muscular isoform of the neuronal nitric oxide synthase (nNOS). We have demonstrated an overexpression of utrophin, visualised by immunofluorescence and quantified by Western blotting, in normal myotubes and in mdx (the animal model of DMD) myotubes, as in normal (C57) and mdx mice, both treated with nitric oxide (NO) donor or L-arginine, the NOS substrate. There is evidence that utrophin may be capable of performing the same cellular functions as dystrophin and may functionally compensate for its lack. Thus, we propose to use NO donors, as palliative treatment of Duchenne and Becker muscular dystrophies, pending, or in combination with, gene and/or cellular therapy. Discussion has focussed on the various isoforms of NOS that could be implicated in the regeneration process. Dystrophic and healthy muscles respond to treatment, suggesting that although NOS is delocalised in the cytoplasm in the case of DMD, it conserves substantial activity. eNOS present in mitochondria and iNOS present in cytoplasm and the neuromuscular junction could also be activated. Lastly, production of NO by endothelial NOS of the capillaries would also be beneficial through increased supply of metabolites and oxygen to the muscles.
Collapse
Affiliation(s)
- Emmanuel Chaubourt
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS UPR 9040, Avenue de la Terrasse, 91198 Gif sur Yvette cedex, France
| | | | | | | | | | | |
Collapse
|
61
|
Abstract
Reactive oxygen intermediates (ROI) and nitric oxide (NO(.)) are produced in abundance in the inflammatory muscle diseases of autoimmune origin polymyositis (PM), dermatomyositis (DM), and inclusion body myositis (IBM). However, their role in the pathogenesis of these diseases is so far not clear. In contrast to demyelinating neuropathies, there is no convincing evidence for oxide-induced apoptosis either in myocytes or in lymphocytes and phagocytes in inflammatory myopathies. On the contrary, NO(.) released at low concentrations at target sites may even have cell-protective effects. A major mechanism of protection from apoptosis in both myocytes and inflammatory cells seems to be the upregulation of anti-apoptotic proteins like Bcl-2. Caution is warranted to apply antioxidative and anti-apoptotic agents to patients with inflammatory myopathies as long as the pathogenic role of oxides and apoptosis in the individual case is not resolved.
Collapse
Affiliation(s)
- M Stangel
- Department of Neurology, Universitätsklinikum Benjamin Franklin, Free University Berlin, D-12200 Berlin, Germany
| | | | | | | |
Collapse
|
62
|
Guo Y, Petrof BJ, Hussain SN. Expression and localization of protein inhibitor of neuronal nitric oxide synthase in Duchenne muscular dystrophy. Muscle Nerve 2001; 24:1468-75. [PMID: 11745948 DOI: 10.1002/mus.1170] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In skeletal muscle fibers, nitric oxide is synthesized by neuronal nitric oxide synthase (nNOS), which normally associates with the dystrophin complex in close proximity to the sarcolemma. Many reports have documented that very low levels of nNOS protein exist in muscle fibers of Duchenne muscular dystrophy (DMD) patients. In this study we investigated the functional significance of PIN (protein inhibitor of nNOS) in targeting of nNOS to the sarcolemma and the association between nNOS and the dystrophin complex in normal and dystrophic muscle fibers. Northern blotting for PIN mRNA in normal mouse muscles and muscles of mdx mice (an animal model of DMD) revealed a significant rise in PIN mRNA in dystrophic muscles compared with normal muscles. Immunohistochemical analysis showed that, in normal mouse muscle fibers, PIN expression was localized at the sarcolemma, peripheral nuclei, and the sarcoplasm. By comparison, PIN protein in muscles from mdx mice was more concentrated around the sarcolemma and central nuclei. The presence of PIN protein expression in muscles from mdx mice was evident despite the significant reduction in nNOS and dystrophin protein expressions in these fibers. In muscle sections of DMD patients, the absence of nNOS protein expression was accompanied by maintained PIN expression. Prominent PIN expression was also detectable in macrophages infiltrating dystrophic muscle fibers both in mdx mice and DMD patients. These results suggest that PIN expression in muscles from mdx mice and DMD patients is controlled by factors different from those involved in the regulation of nNOS and dystrophin. Moreover, our results indicate that PIN is not an integral component of the dystrophin complex inside skeletal muscle fibers.
Collapse
Affiliation(s)
- Y Guo
- Critical Care Division, Royal Victoria Hospital, Room L3.05, 687 Pine Avenue West, Montréal, Québec H3A 1A1, Canada
| | | | | |
Collapse
|
63
|
Tews DS. Role of nitric oxide and nitric oxide synthases in experimental models of denervation and reinnervation. Microsc Res Tech 2001; 55:181-6. [PMID: 11747093 DOI: 10.1002/jemt.1169] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Nitric oxide (NO) is a short-living free molecule synthesized by three different isoforms of nitric oxide synthases (NOS)-neuronal NOS, endothelial NOS, and inducible NOS-associated with neuromuscular transmission, muscle contractility, mitochondrial respiration, and carbohydrate metabolism in skeletal muscle. Neuronal NOS is constitutively expressed at the muscle fiber sarcolemma linked to the dystrophin-glycoprotein complex and concentrated at the neuromuscular endplate. There is increasing evidence that altered expression of neuronal NOS plays a role in muscle fiber damage in neuromuscular diseases such as dystrophinopathies and denervating disorders. Although there have been some previous conflicting results on the neuronal NOS expression pattern in denervated muscle fibers, it is now well established that denervation is associated with a down-regulation and disappearance of sarcolemmal neuronal NOS at synaptic/extrasynaptic or both sites. As NO has been shown to induce collapse and growth arrest on neuronal growth cones, down-regulation of sarcolemmal neuronal NOS may contribute to axonal regeneration and attraction to muscle fibers aiming at the formation of new motor endplates providing reinnervation and reconstitution of NOS expression. As NO serves as a retrograde messenger, it may trigger structural downstream events responsible for neuromuscular synaptogenesis and preventing polyneural innervation. Nevertheless, decreased NO production in denervation reduces the cytoprotective scavenger function of NO for superoxide anions promoting oxidative stress that is likely to be involved in muscle fiber damage and death. However, the multifaced role of NOS and NO under physiological and pathological conditions remains poorly understood on the basis of the current knowledge.
Collapse
Affiliation(s)
- D S Tews
- Division of Neuropathology, Johannes Gutenberg-University Hospital, Langenbeckstrasse 1, D-55101 Mainz, Germany 2001.
| |
Collapse
|
64
|
Tiboni GM, Lamonaca D. Transplacental exposure to methylene blue initiates teratogenesis in the mouse: preliminary evidence for a mechanistic implication of cyclic GMP pathway disruption. TERATOLOGY 2001; 64:213-20. [PMID: 11598927 DOI: 10.1002/tera.1066] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND The vital dye methylene blue (MB) has been shown to be teratogenic when injected into the amnion in the second trimester. On the other hand, the teratogenic potential of transplacental exposure to MB has not been determined. METHODS MB was administered subcutaneously to ICR (CD-1) mice at 0, 35, 50, 60, or 70 mg/kg on gestation day 8 (plug day = day 0). Teratological assessments were carried out at term gestation, on gestation day 18. Since MB inhibits soluble guanylate cyclase enzyme activity, zaprinast (ZPN), a selective cGMP-phosphodiesterase type V inhibitor, was administered to prevent developmental disorders initiated by MB at 50 mg/kg. RESULTS There was a dose-dependent increment of embryolethality. MB treatment also produced axial skeleton and neural tube defects. Coadministration of ZPN (20 mg/kg per three times) abolished completely MB-induced neural tube defects and reduced by one-half the incidence of fetuses exhibiting axial skeletal defects. ZPN did not provide protection against the embryocidal effects of MB. CONCLUSIONS This study showed that transplacental exposure to MB is teratogenic in the mouse. Coadministration of ZPN prevented partly MB-induced teratogenesis, which supports the hypothesis that imbalance of cGMP pathway accounts, in part, for the teratogenicity of MB.
Collapse
Affiliation(s)
- G M Tiboni
- Sezione di Ostetricia e Ginecologia, Dipartimento di Medicina e Scienze dell'Invecchiamento, Facoltà di Medicina e Chirurgia, Università "G. d'Annunzio," Ospedale Clinicizzato "SS. Annunziata," 66013-Chieti, Italy.
| | | |
Collapse
|
65
|
Wehling M, Spencer MJ, Tidball JG. A nitric oxide synthase transgene ameliorates muscular dystrophy in mdx mice. J Cell Biol 2001; 155:123-31. [PMID: 11581289 PMCID: PMC2150800 DOI: 10.1083/jcb.200105110] [Citation(s) in RCA: 405] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dystrophin-deficient muscles experience large reductions in expression of nitric oxide synthase (NOS), which suggests that NO deficiency may influence the dystrophic pathology. Because NO can function as an antiinflammatory and cytoprotective molecule, we propose that the loss of NOS from dystrophic muscle exacerbates muscle inflammation and fiber damage by inflammatory cells. Analysis of transgenic mdx mice that were null mutants for dystrophin, but expressed normal levels of NO in muscle, showed that the normalization of NO production caused large reductions in macrophage concentrations in the mdx muscle. Expression of the NOS transgene in mdx muscle also prevented the majority of muscle membrane injury that is detectable in vivo, and resulted in large decreases in serum creatine kinase concentrations. Furthermore, our data show that mdx muscle macrophages are cytolytic at concentrations that occur in dystrophic, NOS-deficient muscle, but are not cytolytic at concentrations that occur in dystrophic mice that express the NOS transgene in muscle. Finally, our data show that antibody depletions of macrophages from mdx mice cause significant reductions in muscle membrane injury. Together, these findings indicate that macrophages promote injury of dystrophin-deficient muscle, and the loss of normal levels of NO production by dystrophic muscle exacerbates inflammation and membrane injury in muscular dystrophy.
Collapse
MESH Headings
- Animals
- Creatine Kinase/blood
- Disease Models, Animal
- Dystrophin/genetics
- Dystrophin/metabolism
- Humans
- Macrophages/metabolism
- Mice
- Mice, Inbred mdx
- Mice, Transgenic
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/physiopathology
- Nitric Oxide Synthase/genetics
- Nitric Oxide Synthase/metabolism
- Nitric Oxide Synthase Type I
- Transgenes
Collapse
Affiliation(s)
- M Wehling
- Department of Physiological Science, University of California at Los Angeles School of Medicine, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
66
|
Abstract
The effects of different types of cell carriers, strategies for cell transfer on carriers, and of several fusion inhibitors on the growth kinetics of primary human myoblasts culture were studied in order to develop a bioprocess suitable for the treatment of Duchenne muscular dystrophy based on the transplantation of unfused cells. Our results indicate that myoblast production is larger on Cytodex 1 and 3 than on polypropylene or polyester fabrics and on a commercial porous macrocarrier. Myoblast growth conditions with Cytodex 1 were further investigated to establish the bioprocess operating conditions. It was found that microcarrier density of 3 g DW l(-1), inoculum density of 2x10(5) cells ml(-1), and continuous agitation speed of 30-rpm result in final myoblast production comparable to static cultures. However, for all the culture conditions used, myoblasts growth kinetics exhibited a lag phase that lasted a minimum of 1 week prior to growth, the end of the lag phase correlating with the appearance of microcarrier aggregates. Based on this observation, we propose that aggregation promotes cell growth by offering a network of very large inter-particular pores that protect cells from mechanical stress. We took advantage of the presence of these aggregates for the scale-up of the culture process. Indeed, using myoblast-loaded microcarrier-aggregates instead of myoblast suspension to inoculate a fresh suspension of microcarriers significantly reduced the duration of the lag phase and allowed the scale-up of the bioprocess at the 500-ml scale. In order to ensure the production of unfused myoblasts, the efficiency of five different fusion inhibitors was investigated. Only calpeptin (9.1 microg ml(-1)) significantly inhibited the fusion of the myoblasts, while TGFbeta (50 ng ml(-1)) and LPA (10 microg ml(-1)) increased myoblasts growth but did not affect fusion, sphingosine (30 microg ml(-1)) induced a 50% death and NMMA (25 microg ml(-1)) had no effect on either growth or fusion. Finally, transplantation trials on severe combined immunodeficient mice showed that microcarrier-cultured human myoblasts grown using the optimized bioprocess resulted in grafts as successful as myoblasts grown in static cultures. The bioprocess, therefore, prove to be suitable for the large-scale production of myoblasts required for muscular dystrophy treatment.
Collapse
Affiliation(s)
- P Boudreault
- Laboratoire d'optimisation des bioprocédés, Département de génie chimique et, Centre de recherche sur la fonction, la structure et l'ingénierie des protéines, Université Laval, Ste-Foy, QC, G1K 7P4, Canada
| | | | | | | |
Collapse
|
67
|
Canicio J, Ruiz-Lozano P, Carrasco M, Palacin M, Chien K, Zorzano A, Kaliman P. Nuclear factor kappa B-inducing kinase and Ikappa B kinase-alpha signal skeletal muscle cell differentiation. J Biol Chem 2001; 276:20228-33. [PMID: 11279241 DOI: 10.1074/jbc.m100718200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear factor kappaB (NF-kappaB)-inducing kinase (NIK), IkappaB kinase (IKK)-alpha and -beta, and IkappaBalpha are common elements that signal NF-kappaB activation in response to diverse stimuli. In this study, we analyzed the role of this pathway during insulin-like growth factor II (IGF-II)-induced myoblast differentiation. L6E9 myoblasts differentiated with IGF-II showed an induction of NF-kappaB DNA-binding activity that correlated in time with the activation of IKKalpha, IKKbeta, and NIK. Moreover, the activation of IKKalpha, IKKbeta, and NIK by IGF-II was dependent on phosphatidylinositol 3-kinase, a key regulator of myogenesis. Adenoviral transduction with the IkappaBalpha(S32A/S36A) mutant severely impaired both IGF-II-dependent NF-kappaB activation and myoblast differentiation, indicating that phosphorylation of IkappaBalpha at Ser-32 and Ser-36 is an essential myogenic step. Adenoviral transfer of wild-type or kinase-deficient forms of IKKalpha or IKKbeta revealed that IKKalpha is required for IGF-II-dependent myoblast differentiation, whereas IKKbeta is not essential for this process. Finally, overexpression of kinase-proficient wild-type NIK showed that the activation of NIK is sufficient to generate signals that trigger myogenin expression and multinucleated myotube formation in the absence of IGF-II.
Collapse
Affiliation(s)
- J Canicio
- Departament de Bioquimica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, E-08028 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
68
|
Louboutin JP, Rouger K, Tinsley JM, Halldorson J, Wilson JM. iNOS Expression In Dystrophinopathies Can Be Reduced By Somatic Gene Transfer of Dystrophin or Utrophin. Mol Med 2001. [DOI: 10.1007/bf03402218] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
69
|
Abstract
In the past five years, skeletal muscle has emerged as a paradigm of "nitric oxide" (NO) function and redox-related signaling in biology. All major nitric oxide synthase (NOS) isoforms, including a muscle-specific splice variant of neuronal-type (n) NOS, are expressed in skeletal muscles of all mammals. Expression and localization of NOS isoforms are dependent on age and developmental stage, innervation and activity, history of exposure to cytokines and growth factors, and muscle fiber type and species. nNOS in particular may show a fast-twitch muscle predominance. Muscle NOS localization and activity are regulated by a number of protein-protein interactions and co- and/or posttranslational modifications. Subcellular compartmentalization of the NOSs enables distinct functions that are mediated by increases in cGMP and by S-nitrosylation of proteins such as the ryanodine receptor-calcium release channel. Skeletal muscle functions regulated by NO or related molecules include force production (excitation-contraction coupling), autoregulation of blood flow, myocyte differentiation, respiration, and glucose homeostasis. These studies provide new insights into fundamental aspects of muscle physiology, cell biology, ion channel physiology, calcium homeostasis, signal transduction, and the biochemistry of redox-related systems.
Collapse
Affiliation(s)
- J S Stamler
- Howard Hughes Medical Institute, Department of Medicine, Divisions of Pulmonary and Cardiology and Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA.
| | | |
Collapse
|
70
|
Sander M, Chavoshan B, Harris SA, Iannaccone ST, Stull JT, Thomas GD, Victor RG. Functional muscle ischemia in neuronal nitric oxide synthase-deficient skeletal muscle of children with Duchenne muscular dystrophy. Proc Natl Acad Sci U S A 2000; 97:13818-23. [PMID: 11087833 PMCID: PMC17659 DOI: 10.1073/pnas.250379497] [Citation(s) in RCA: 332] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal disease caused by mutation of the gene encoding the cytoskeletal protein dystrophin. Despite a wealth of recent information about the molecular basis of DMD, effective treatment for this disease does not exist because the mechanism by which dystrophin deficiency produces the clinical phenotype is unknown. In both mouse and human skeletal muscle, dystrophin deficiency results in loss of neuronal nitric oxide synthase, which normally is localized to the sarcolemma as part of the dystrophin-glycoprotein complex. Recent studies in mice suggest that skeletal muscle-derived nitric oxide may play a key role in the regulation of blood flow within exercising skeletal muscle by blunting the vasoconstrictor response to alpha-adrenergic receptor activation. Here we report that this protective mechanism is defective in children with DMD, because the vasoconstrictor response (measured as a decrease in muscle oxygenation) to reflex sympathetic activation was not blunted during exercise of the dystrophic muscles. In contrast, this protective mechanism is intact in healthy children and those with polymyositis or limb-girdle muscular dystrophy, muscle diseases that do not result in loss of neuronal nitric oxide synthase. This clinical investigation suggests that unopposed sympathetic vasoconstriction in exercising human skeletal muscle may constitute a heretofore unappreciated vascular mechanism contributing to the pathogenesis of DMD.
Collapse
Affiliation(s)
- M Sander
- Copenhagen Muscle Research Center, Rigshospitalet, DK-2200, Copenhagen N, Denmark
| | | | | | | | | | | | | |
Collapse
|
71
|
Lück G, Hoch W, Hopf C, Blottner D. Nitric oxide synthase (NOS-1) coclustered with agrin-induced AChR-specializations on cultured skeletal myotubes. Mol Cell Neurosci 2000; 16:269-81. [PMID: 10995553 DOI: 10.1006/mcne.2000.0873] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previously we reported that neuronal nitric oxide synthase type-1 (NOS-1) is expressed in skeletal myotubes in vitro. In the present paper we sought to determine whether agrin-induced membrane specializations known to include the nicotinic acetylcholine receptor (AChR) on cultured myotubes may also contain NOS-1 and related molecules. After treatment with various agrin constructs containing the full C-terminally AChR-clustering domain (fragments N2, N4), but not with fragment C2 (truncated), NOS-1 expressed in the cytosol of mouse C2C12 skeletal myotubes coclustered with AChR, 43K rapsyn, MuSK, and the dystrophin/utrophin glycoprotein-complex (DUGC). Agrin-induced specializations also included coaggregates of N-methyl-d-aspartic acid (NMDA)-receptor, alpha-sodium (NaCh), or Shaker-type K+ channel (KCh)/PSD-95 complexes, and NOS-1. We conclude that agrin is crucial for recruitment of preassembled multimolecular membrane clusters, including AChR, NMDAR, and ion channels linked to NOS-1. Coassembly of NOS-1 to postsynaptic molecules may reflect site-specific NO-signaling pathways in neuromuscular junction formation and functions.
Collapse
Affiliation(s)
- G Lück
- Department of Anatomy 1, Neurobiology Unit, University Hospital Benjamin Franklin, Freie Universität Berlin, Königin-Luise-Strasse 15, Berlin, D-14195, Germany
| | | | | | | |
Collapse
|
72
|
Anderson JE. A role for nitric oxide in muscle repair: nitric oxide-mediated activation of muscle satellite cells. Mol Biol Cell 2000; 11:1859-74. [PMID: 10793157 PMCID: PMC14889 DOI: 10.1091/mbc.11.5.1859] [Citation(s) in RCA: 299] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Muscle satellite cells are quiescent precursors interposed between myofibers and a sheath of external lamina. Although their activation and recruitment to cycle enable muscle repair and adaptation, the activation signal is not known. Evidence is presented that nitric oxide (NO) mediates satellite cell activation, including morphological hypertrophy and decreased adhesion in the fiber-lamina complex. Activation in vivo occurred within 1 min after injury. Cell isolation and histology showed that pharmacological inhibition of nitric oxide synthase (NOS) activity prevented the immediate injury-induced myogenic cell release and delayed the hypertrophy of satellite cells in that muscle. Transient activation of satellite cells in contralateral muscles 10 min later suggested that a circulating factor may interact with NO-mediated signaling. Interestingly, satellite cell activation in muscles of mdx dystrophic mice and NOS-I knockout mice quantitatively resembled NOS-inhibited release of normal cells, in agreement with reports of displaced and reduced NOS expression in dystrophin-deficient mdx muscle and the complete loss of NOS-I expression in knockout mice. Brief NOS inhibition in normal and mdx mice during injury produced subtle alterations in subsequent repair, including apoptosis in myotube nuclei and myotube formation inside laminar sheaths. Longer NOS inhibition delayed and restricted the extent of repair and resulted in fiber branching. A model proposes the hypothesis that NO release mediates satellite cell activation, possibly via shear-induced rapid increases in NOS activity that produce "NO transients."
Collapse
Affiliation(s)
- J E Anderson
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0W3.
| |
Collapse
|
73
|
Gücüyener K, Ergenekon E, Erbas D, Pinarli G, Serdaroğlu A. The serum nitric oxide levels in patients with Duchenne muscular dystrophy. Brain Dev 2000; 22:181-3. [PMID: 10814901 DOI: 10.1016/s0387-7604(00)00106-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Nitric oxide is formed in skeletal muscle by the neuronal type nitric oxide synthase and the signalling function of dystrophin and related compounds are in part mediated by nitric oxide. Duchenne muscular dystrophy, mdx mice and patients with Becker dystrophy demonstrated neuronal type nitric oxide synthase deficiency in muscle biopsy specimens. We have intended to find out whether the plasma nitric oxide levels show any abnormality in patients with Duchenne muscular dystrophy. Serum NO levels of Duchenne patients (4.191+/-2.82 micromol/l) were significantly lower than those of the control (39.53+/-19.43 micromol/l) and cerebral palsy (77.84+/-21.70 micromol/l) groups.
Collapse
Affiliation(s)
- K Gücüyener
- Nitric Oxide Study Group, Gazi University Medical Faculty, Turkey.
| | | | | | | | | |
Collapse
|
74
|
|
75
|
Constantin B, Cronier L. Involvement of gap junctional communication in myogenesis. INTERNATIONAL REVIEW OF CYTOLOGY 2000; 196:1-65. [PMID: 10730212 DOI: 10.1016/s0074-7696(00)96001-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell-to-cell communication plays important roles in development and in tissue morphogenesis. Gap junctional intercellular communication (GJIC) has been implicated in embryonic development of various tissues and provides a pathway to exchange ions, secondary messengers, and metabolites through the intercellular gap junction channels. Although GJIC is absent in adult skeletal muscles, the formation of skeletal muscles involves a sequence of complex events including cell-cell interaction processes where myogenic cells closely adhere to each other. Much experimental evidence has shown that myogenic precursors and developing muscle fibers can directly communicate through junctional channels. This review summarizes current knowledge on the GJIC and developmental events involved in the formation of skeletal muscle fibers and describes recent progress in the investigation of the role of GJIC in myogenesis: evidence of gap junctions in somitic and myotomal tissue as well as in developing muscle fibers in situ, GJIC between perfusion myoblasts in culture, and involvement of GJIC in cytodifferentiation of skeletal muscle cells and in myoblast fusion. A model of intercellular signaling is proposed where GJIC participates to coordinate a multicellular population of interacting myogenic precursors to allow commitment to the skeletal muscle fate.
Collapse
Affiliation(s)
- B Constantin
- Laboratoire de Physiologie Générale, CNRS UMR 6558, University of Poitiers, France.
| | | |
Collapse
|
76
|
Kun Kim D, Kyung Hong E, Ho Lee K, Il Kim J, Keun Song W. Molecular cloning and expression of nitric oxide synthase gene in chick embryonic muscle cells. Cell Biochem Funct 1999; 17:261-70. [PMID: 10587613 DOI: 10.1002/(sici)1099-0844(199912)17:4<261::aid-cbf838>3.0.co;2-t] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The chick skeletal muscle nitric oxide synthase (NOS) gene was cloned in order to further define the involvement of NOS in the differentiation of skeletal muscle cells. The respective cDNA had an open reading frame of 1136 amino acid residues, predicting a protein of 129,709.85 Da, and recognition sites for FAD, FMN, NADPH, and a calmodulin-binding site like those of other mammalian NOS's. Alignment of the deduced amino acid sequence revealed high homology with mammalian inducible NOS (iNOS), but not other NOS isoforms, suggesting chick skeletal muscle NOS may be an iNOS isoform. Immunoblots showed that NOS expression was highly restricted in embryonic muscle, but not in adult skeletal muscle: NOS expression markedly increased from embryonic day 9, reached a maximum by embryonic day 13, and then gradually declined until it was no longer detectable on embryonic day 19. When muscle cells obtained on embryonic day 12 were cultured, NOS expression increased transiently prior to the onset of differentiation and decreased thereafter. Inhibition of NOS expression by PDTC completely prevented muscle cell differentiation, as indicated by the inhibition of expression of myosin heavy chain and creatine kinase. The inhibitory effect of PDTC was completely reversed by addition of sodium nitroprusside, a compound that produces NO. These results clearly indicate that NOS is significantly involved in the differentiation of chick skeletal muscle cells.
Collapse
Affiliation(s)
- D Kun Kim
- Department of Molecular Biology and Research Center for Cell Differentiation, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | |
Collapse
|
77
|
Abstract
1. Mechanical stimuli are thought to modulate the number of sarcomeres in series (sarcomere number) in skeletal muscle fibres. However, the mechanisms by which muscle cells transduce mechanical signals into serial sarcomere addition have not been explored. In this study, we test the hypothesis that nitric oxide positively modulates sarcomere addition. 2. The soleus muscle was cast-immobilized in a shortened position in 3-week-old female Wistar rats. After 4 weeks, the casts were removed, creating a period of rapid sarcomere addition. During the remobilization period, nitric oxide synthase (NOS) inhibitors or substrate were administered. 3. Rats treated with the non-isoform-specific NOS inhibitor L-nitro-arginine methyl ester during 3 weeks of remobilization had smaller soleus sarcomere numbers than control rats. Rats treated with 1-(2-trifluoromethyl-phenyl)-imidazole, which has greater specificity for the neuronal isoform than for the endothelial isoform of NOS, also had smaller soleus sarcomere numbers than control rats. These results suggest that inhibition of the neuronal isoform of NOS reduces sarcomere addition during remobilization. 4. Rats treated with L-arginine, the substrate for NOS, during 1 week of remobilization had soleus sarcomere numbers for the immobilized-remobilized muscle which were closer to that for the contralateral, non-immobilized muscle than did rats that were not treated with L-arginine. 5. These results support the hypothesis that nitric oxide derived from the neuronal isoform of NOS positively modulates sarcomere addition.
Collapse
Affiliation(s)
- T J Koh
- Department of Physiological Science, University of California, Los Angeles, CA 90095-1527, USA
| | | |
Collapse
|
78
|
Mason CA, Chang P, Fallery C, Rabinovitch M. Nitric oxide mediates LC-3-dependent regulation of fibronectin in ductus arteriosus intimal cushion formation. FASEB J 1999; 13:1423-34. [PMID: 10428766 DOI: 10.1096/fasebj.13.11.1423] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Ductus arteriosus intimal cushion formation is characterized by fibronectin-dependent smooth muscle cell (SMC) migration. Enhanced fibronectin synthesis in ductus SMC is regulated by the interaction of LC-3, a microtubule-associated protein, with an AU-rich element (ARE) in the 3'-untranslated region of fibronectin mRNA, facilitating its recruitment to polyribosomes for translation. Since nitric oxide (NO) is implicated in posttranscriptional gene regulation and is produced in the ductus, we investigated its mechanistic role in LC-3-mediated fibronectin synthesis. NO production was sevenfold higher in ductus vs. aortic SMC (P<0.005) associated with increased neuronal NO synthase (nNOS) expression. The NOS inhibitor L-NMMA decreased fibronectin synthesis by approximately 45-50% (P<0.05), whereas the NO donor, SNAP, increased ductus fibronectin synthesis approximately onefold (P<0.05); neither agent altered fibronectin mRNA levels. Immunoblotting revealed that SNAP increased and L-NMMA reduced a membrane-associated phosphorylated form of LC-3. RNA gel mobility shift assays confirmed that NO enhanced LC-3 binding to the fibronectin mRNA ARE. Our studies indicate a tissue-specific program in the ductus arteriosus whereby elevated nNOS expression and NO production regulate the posttranscriptional increase in fibronectin synthesis required for SMC motility.
Collapse
Affiliation(s)
- C A Mason
- Division of Cardiovascular Research, Research Institute, The Hospital for Sick Children, Departments of Pediatrics, Pathology and Medicine, University of Toronto, Toronto, Ontario, Canada M5G 1X8
| | | | | | | |
Collapse
|
79
|
Kaliman P, Canicio J, Testar X, Palacín M, Zorzano A. Insulin-like growth factor-II, phosphatidylinositol 3-kinase, nuclear factor-kappaB and inducible nitric-oxide synthase define a common myogenic signaling pathway. J Biol Chem 1999; 274:17437-44. [PMID: 10364173 DOI: 10.1074/jbc.274.25.17437] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Insulin-like growth factors (IGFs) are potent inducers of skeletal muscle differentiation and phosphatidylinositol (PI) 3-kinase activity is essential for this process. Here we show that IGF-II induces nuclear factor-kappaB (NF-kappaB) and nitric-oxide synthase (NOS) activities downstream from PI 3-kinase and that these events are critical for myogenesis. Differentiation of rat L6E9 myoblasts with IGF-II transiently induced NF-kappaB DNA binding activity, inducible nitric-oxide synthase (iNOS) expression, and nitric oxide (NO) production. IGF-II-induced iNOS expression and NO production were blocked by NF-kappaB inhibition. Both NF-kappaB and NOS activities were essential for IGF-II-induced terminal differentiation (myotube formation and expression of skeletal muscle proteins: myosin heavy chain, GLUT 4, and caveolin 3), which was totally blocked by NF-kappaB or NOS inhibitors in rat and human myoblasts. Moreover, the NOS substrate L-Arg induced myogenesis in the absence of IGFs in both rat and human myoblasts, and this effect was blocked by NOS inhibition. Regarding the mechanisms involved in IGF-II activation of NF-kappaB, PI 3-kinase inhibition prevented NF-kappaB activation, iNOS expression, and NO production. Moreover, IGF-II induced, through a PI 3-kinase-dependent pathway, a decrease in IkappaB-alpha protein content that correlated with a decrease in the amount of IkappaB-alpha associated with p65 NF-kappaB.
Collapse
Affiliation(s)
- P Kaliman
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal 645, 08028 Barcelona, Spain.
| | | | | | | | | |
Collapse
|
80
|
Ulibarri JA, Mozdziak PE, Schultz E, Cook C, Best TM. Nitric oxide donors, sodium nitroprusside and S-nitroso-N-acetylpencillamine, stimulate myoblast proliferation in vitro. In Vitro Cell Dev Biol Anim 1999; 35:215-8. [PMID: 10478801 DOI: 10.1007/s11626-999-0029-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Nitric oxide (NO) is an inter- and intracellular messenger involved in a variety of physiologic and pathophysiologic conditions. The effect of two NO donors, sodium nitroprusside (SNP) and S-nitroso-N-acetylpenicillamine (SNAP) and their effect on myoblast proliferation was examined. Both donors stimulated an increase in myoblast cell number over a range (1-10 microM) of donor concentrations. However, 50 microM SNAP inhibited myoblast proliferation. Cell numbers from cultures treated with degraded 10 microM SNAP were equivalent to the control. Therefore, it appears NO can stimulate as well as inhibit myoblast proliferation.
Collapse
Affiliation(s)
- J A Ulibarri
- Department of Pathology, University of Wisconsin Medical School, Madison 53711, USA
| | | | | | | | | |
Collapse
|
81
|
Adams DR, Brochwicz-Lewinski M, Butler AR. Nitric oxide: physiological roles, biosynthesis and medical uses. FORTSCHRITTE DER CHEMIE ORGANISCHER NATURSTOFFE = PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS. PROGRES DANS LA CHIMIE DES SUBSTANCES ORGANIQUES NATURELLES 1999; 76:1-211. [PMID: 10091554 DOI: 10.1007/978-3-7091-6351-1_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- D R Adams
- Department of Chemistry, Heriot Watt University, Edinburgh, Scotland
| | | | | |
Collapse
|
82
|
Guo Y, Greenwood MT, Petrof BJ, Hussain SN. Expression and regulation of protein inhibitor of neuronal nitric oxide synthase in ventilatory muscles. Am J Respir Cell Mol Biol 1999; 20:319-26. [PMID: 9922224 DOI: 10.1165/ajrcmb.20.2.3437] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In skeletal muscle fibers, nitric oxide (NO) is synthesized by neuronal NO synthase (nNOS) and regulates excitation-contraction coupling, glucose uptake, and mitochondrial respiration. Recently, a novel 89-amino acid protein, designated protein inhibitor of nNOS (PIN), has been shown to interact with and specifically inhibit nNOS activity. In this study, we investigated the distribution, localization, and regulation of PIN expression in ventilatory and limb muscles of various species. Amplified PIN cDNA from the rat diaphragm revealed an open reading frame identical to that of human PIN. Among muscles of adult rats, PIN mRNA was strongly expressed in muscles rich in type I fibers, whereas much weaker expression was evident in muscles rich in type II fibers. By comparison, PIN protein expression was not related to fiber-type distribution. Similarly, PIN protein was equally expressed among rat, mouse, and human diaphragms. Both PIN mRNA and PIN protein were expressed at much higher levels in the embryonic rat diaphragm than in adult muscle. Immunohistochemistry revealed that PIN protein was localized in close proximity to the sarcolemma and nuclei. PIN protein was also abundant in muscle spindles and axons of nerves supplying skeletal muscle fibers. We conclude that PIN is expressed in various skeletal muscle fibers and that its expression is regulated during muscle development. The localization of PIN in muscle regions containing abundant nNOS protein suggests that it plays a role in the regulation of NO synthesis in skeletal muscle fibers.
Collapse
Affiliation(s)
- Y Guo
- Critical Care and Respiratory Divisions, Royal Victoria Hospital; and Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
83
|
Kim SS, Rhee S, Lee KH, Kim JH, Kim HS, Kang MS, Chung CH. Inhibitors of the proteasome block the myogenic differentiation of rat L6 myoblasts. FEBS Lett 1998; 433:47-50. [PMID: 9738931 DOI: 10.1016/s0014-5793(98)00883-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Myogenesis is characterized by membrane fusion and accumulation of muscle specific proteins. We have previously shown that nitric oxide acts as a messenger for membrane fusion. Here we show that inhibitors of the proteasome, such as lactacystin, reversibly block both the fusion of L6 myoblasts and the accumulation of muscle specific proteins, such as myosin heavy chain (MHC). The inhibitors also reversibly prevented the induction of the NF-kappaB activity, which is required for the expression of nitric oxide synthase (NOS). Moreover, the inhibition of the NF-kappaB activity occurred in parallel with that of the NOS activity upon treatment with increasing concentrations of lactacystin. While pyrrolidine dithiocarbamate, an inhibitor of NF-kappaB, blocked both membrane fusion and accumulation of MHC, N(G)-monomethyl-L-arginine, a specific inhibitor of NOS, inhibited only the fusion. These results suggest that the proteasome plays an essential role in the regulation of myogenic differentiation through the activation of NF-kappaB and that the target of NF-kappaB for the expression of muscle specific proteins is distinct from that for myoblast fusion.
Collapse
Affiliation(s)
- S S Kim
- Department of Molecular Biology and Research Center for Cell Differentiation, College of Natural Sciences, Seoul National University, South Korea
| | | | | | | | | | | | | |
Collapse
|
84
|
Tidball JG, Lavergne E, Lau KS, Spencer MJ, Stull JT, Wehling M. Mechanical loading regulates NOS expression and activity in developing and adult skeletal muscle. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:C260-6. [PMID: 9688857 DOI: 10.1152/ajpcell.1998.275.1.c260] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The hypothesis that changes in muscle activation and loading regulate the expression and activity of neuronal nitric oxide (NO) synthase (nNOS) was tested using in vitro and in vivo approaches. Removal of weight bearing from rat hindlimb muscles for 10 days resulted in a significant decrease in nNOS protein and mRNA concentration in soleus muscles, which returned to control concentrations after return to weight bearing. Similarly, the concentration of nNOS in cultured myotubes increased by application of cyclic loading for 2 days. NO release from excised soleus muscles was increased significantly by a single passive stretch of 20% or by submaximal activation at 2 Hz, although the increases were not additive when both stimuli were applied simultaneously. Increased NO release resulting from passive stretch or activation was dependent on the presence of extracellular calcium. Cyclic loading of cultured myotubes also resulted in a significant increase in NO release. Together, these findings show that activity of muscle influences NO production in the short term, by regulating NOS activity, and in the long term, by regulating nNOS expression.
Collapse
MESH Headings
- Aging/physiology
- Animals
- Cells, Cultured
- Electric Stimulation
- Female
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Enzymologic
- Hindlimb Suspension/physiology
- Motor Activity
- Movement
- Muscle Development
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/physiology
- Myosin Heavy Chains/biosynthesis
- Nitric Oxide Synthase/biosynthesis
- Nitric Oxide Synthase Type I
- Protein Biosynthesis
- RNA, Messenger/biosynthesis
- Rats
- Rats, Wistar
- Stress, Mechanical
- Time Factors
- Transcription, Genetic
Collapse
Affiliation(s)
- J G Tidball
- Department of Physiological Science, University of California, Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
85
|
El Dwairi Q, Guo Y, Comtois A, Zhu E, Greenwood MT, Bredt DS, Hussain SN. Ontogenesis of nitric oxide synthases in the ventilatory muscles. Am J Respir Cell Mol Biol 1998; 18:844-52. [PMID: 9618389 DOI: 10.1165/ajrcmb.18.6.3109] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Nitric oxide (NO) acts as an endogenous mediator in mature skeletal muscle. In this study, we investigated the regulation of the endothelial (eNOS) and neuronal (nNOS) isoforms of nitric oxide synthase (NOS) in skeletal-muscle development (rat diaphragm). Muscle NOS activity, nNOS and eNOS protein, and mRNA expressions were markedly increased during the late gestational and early postnatal periods. Expression of both isoforms, however, declined progressively thereafter. Similarly, argininosuccinate lyase and argininosuccinate synthetase, both involved in the recycling of L-citrulline to L-arginine, were expressed at high levels in rat embryonic and neonatal diaphragms, with gradual reduction in their expression during late postnatal development. Immunostaining revealed extensive nNOS expression at the sarcolemma in neonatal and mature diaphragms, whereas eNOS expression was limited to the endothelium. Both neonatal and adult diaphragms expressed an alternatively spliced nNOS isoform with an insert of 34 amino acids between exons 16 and 17. In vitro-generated muscle force rose significantly after NOS inhibition in both neonatal and adult diaphragms, but the magnitude of force augmentation was larger in adult than in neonatal diaphragm. These results indicate that constitutive NOS isoforms are developmentally regulated in skeletal muscles, suggesting multiple roles for NO in developing and mature skeletal-muscle fibers.
Collapse
Affiliation(s)
- Q El Dwairi
- Critical and Respiratory Divisions, Royal Victoria Hospital and Meakins-Christie Laboratories, McGill University,Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
86
|
Tews DS, Goebel HH. Cell death and oxidative damage in inflammatory myopathies. CLINICAL IMMUNOLOGY AND IMMUNOPATHOLOGY 1998; 87:240-7. [PMID: 9646833 DOI: 10.1006/clin.1998.4527] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
There is evidence that muscle fibers in denervating disorders and muscular dystrophies undergo apoptosis. In 21 patients with autoimmune inflammatory myopathies, we found no features of muscle fiber apoptosis such as DNA fragmentation or expression of apoptosis-related proteins. However, muscle fibers in myositis displayed distinct up-regulation of inducible and neuronal nitric oxide synthase (NOS). While inducible NOS was distinctly up-regulated on the sarcolemma of all kinds of muscle fibers neuronal NOS displayed increased expression in the sarcoplasm of damaged as well as atrophic muscle fibers. There were no disease-specific patterns in the different myositis subtypes. Enhanced expression of NOS with production of nitric oxide may contribute to oxidative stress mediating muscle fiber damage and muscle fiber necrosis representing the predominant cell death mechanism in myositis. Nevertheless, inflammatory cells displayed numerous DNA-fragmentation-positive nuclei and expression of apoptosis-related proteins indicating that apoptosis plays a role in the regulation of the inflammatory cellular response.
Collapse
Affiliation(s)
- D S Tews
- Division of Neuropathology, Johannes Gutenberg-University, Mainz, Germany
| | | |
Collapse
|
87
|
Askanas V, Engel WK, Alvarez RB. Fourteen newly recognized proteins at the human neuromuscular junctions--and their nonjunctional accumulation in inclusion-body myositis. Ann N Y Acad Sci 1998; 841:28-56. [PMID: 9668220 DOI: 10.1111/j.1749-6632.1998.tb10908.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- V Askanas
- Department of Neurology, University of Southern California School of Medicine, Good Samaritan Hospital, Los Angeles 90017-1912, USA
| | | | | |
Collapse
|
88
|
Lück G, Oberbäumer I, Blottner D. In situ identification of neuronal nitric oxide synthase (NOS-I) mRNA in mouse and rat skeletal muscle. Neurosci Lett 1998; 246:77-80. [PMID: 9627184 DOI: 10.1016/s0304-3940(98)00237-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Skeletal muscle provides a major source of the signaling molecule nitric oxide (NO) however in situ identification of NO-synthase (NOS) mRNA has not been verified. We have used NOS-I (neuronal NOS) probes prepared from plasmid DNA by reverse transcription-polymerase chain reaction (RT-PCR) to detect mRNA transcripts in skeletal muscle cells and myofibers of rat and mouse. Mouse C2C12 myoblasts and myotubes reveal strong cytosolic in situ hybridization (ISH) signals in vitro. In adult animals, ISH signals are detectable in striated myofibers at subsarcolemmal and perinuclear regions whilst the myofibrillar compartment is devoid of signals. Expression of NOS-I mRNA in fusion-competent myoblasts suggests that the NOS/NO system is of relevance to myogenic differentiation. Compartmentalization of NOS-I mRNA may reflect spatiofunctional actions between NOS message and protein and the putative subcellular NO targets.
Collapse
Affiliation(s)
- G Lück
- Department of Anatomy, University Hospital Benjamin Franklin, Freie Universität Berlin, Berlin-Dahlem, Germany
| | | | | |
Collapse
|
89
|
Yang CC, Alvarez RB, Engel WK, Haun CK, Askanas V. Immunolocalization of nitric oxide synthases at the postsynaptic domain of human and rat neuromuscular junctions--light and electron microscopic studies. Exp Neurol 1997; 148:34-44. [PMID: 9398448 DOI: 10.1006/exnr.1997.6663] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Neuronal (n) and inducible (i) nitric oxide synthase (NOS) were immunolocalized at the postsynaptic domain of human and rat neuromuscular junctions (NMJs) by light and electron microscopy. We applied polyclonal and monoclonal antibodies for colocalization with three other synaptic proteins, utilizing double and triple fluorescence labeling, and gold and peroxidase for immunoelectron microscopy. By light microscopy, nNOS and iNOS colocalized with desmin and dystrophin, known postsynaptic components, but not with neurofilament protein, a presynaptic component. By electronmicroscopy, nNOS, but not iNOS, colocalized postsynaptically on the same structures as desmin; iNOS was also postsynaptic, but did not colocalize with desmin immunoreactivity. At the NMJs of Duchenne muscular dystrophy patients, both nNOS and iNOS were strongly immunoreactive. At the NMJs of a patient with myasthenia gravis, nNOS was weaker than in controls. Total denervation of rat sciatic nerve did not cause any decrease of nNOS or iNOS immunoreactivity 7 days thereafter. At 15 days after denervation, there was a gradual decrease of immunoreactivity, and immunoreactivity disappeared 30 days after denervation, corresponding to the ultrastructurally detectable disorganization of the postsynaptic region. This seems to be the first combined light and electron microscopic description of the postsynaptic localization of nNOS and iNOS at human and rat NMJs.
Collapse
Affiliation(s)
- C C Yang
- USC Neuromuscular Center, Department of Neurology, Los Angeles, California 90017-1912, USA
| | | | | | | | | |
Collapse
|
90
|
Oexle K, Zwirner A, Freudenberg K, Kohlschütter A, Speer A. Examination of telomere lengths in muscle tissue casts doubt on replicative aging as cause of progression in Duchenne muscular dystrophy. Pediatr Res 1997; 42:226-31. [PMID: 9262227 DOI: 10.1203/00006450-199708000-00016] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The mean telomere length (TL) of somatic cells indicates their replicative age. In comparison with normal leukocytes (-0.03 kbp/y, 6.2 kbp at 80 y), we found advanced TL shortening in premature aging due to ataxia-telangiectasia or the Nijmegen chromosomal breakage syndrome. Duchenne muscular dystrophy (DMD) has been related to replicative senescence of satellite cells (SCs) caused by increased fiber turnover. Therefore, we determined TLs in DMD muscle. Because the regenerated fiber nuclei are produced by SCs. telomeres of both fiber and SC nuclei should be shortened. In DMD the SC number is increased. We determined that up to the age of 7 y the sum of fiber and SC nuclei should be large enough (73%) for the detection of TL shortening. Normal muscle fibers have negligible turnover rates, and, as expected, we did not find age-related TL shortening (10-83 y, n = 24, 8.3 +/- 0.5 kbp). Surprisingly, there was only slight TL shortening in patient muscles (DMD, 0.3-4.8 y, n = 4, 8.3 +/- 0.7 kbp; 5-7 y, n = 7, 7.9 +/- 0.4 kbp; limb-girdle muscular dystrophy 2C, 13 y, 7.6 kbp; Becker muscular dystrophy, 7 y, 8.5 kbp). Similarly, the peak positions of the telomere blots varied only slightly (DMD, 10.0 +/- 0.9 kbp; normal: 10.7 +/- 0.9 kbp). In accordance with our TL findings we derived less than 4 annual doublings per SC from published histologic data on DMD.
Collapse
Affiliation(s)
- K Oexle
- Department of Neuropediatrics, Virchow Medical Center, Humboldt University, Berlin, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
91
|
Abstract
Endogenous nitric oxide (NO) mediates certain aspects of synaptic plasticity and neurotoxicity associated with NMDA-type glutamate receptors. Neuronal NO synthase contains a modular protein-protein interaction motif, termed the PDZ domain, that links the synthase to a synaptic protein complex containing postsynaptic density protein PSD-95 and NMDA receptors. Characterization of this pathway has provided new insights into the role of NO in brain physiology and disease.
Collapse
Affiliation(s)
- J E Brenman
- Department of Physiology and Program in Biomedical Sciences, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, California 94143-0444, USA
| | | |
Collapse
|
92
|
Chao DS, Silvagno F, Xia H, Cornwell TL, Lincoln TM, Bredt DS. Nitric oxide synthase and cyclic GMP-dependent protein kinase concentrated at the neuromuscular endplate. Neuroscience 1997; 76:665-72. [PMID: 9135041 DOI: 10.1016/s0306-4522(96)00367-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nitric oxide mediates diverse functions in development and physiology of vertebrate skeletal muscle. Neuronal type nitric oxide synthase-mu is enriched in fast-twitch fibers and binds to syntrophin, a component of the sarcolemmal dystrophin glycoprotein complex. Here, we show that cyclic GMP-dependent protein kinase type I, a primary effector for nitric oxide, occurs selectively at the neuromuscular junction, in mice and rats, and both neuronal type nitric oxide synthase-mu and cyclic GMP-dependent protein kinase type I remain at skeletal muscle endplates at least two weeks following muscle denervation. Expression of neuronal type nitric oxide synthase-mu and cyclic GMP-dependent protein kinase type I are up-regulated following fusion of cultured primary myotubes. Interestingly, the highest levels of neuronal type nitric oxide synthase-mu in muscle are found complexed with dystrophin at the sarcolemma of intrafusal fibers in muscle spindles. Localization of neuronal type nitric oxide synthase-mu and cyclic GMP-dependent protein kinase type I at the neuromuscular junction suggests functions for nitric oxide and cyclic GMP in the regulation of synaptic actions of intra- and extrafusal muscle fibers.
Collapse
Affiliation(s)
- D S Chao
- Department of Physiology and Program in Biomedical Sciences, University of California at San Francisco School of Medicine, 94143-0444, U.S.A
| | | | | | | | | | | |
Collapse
|
93
|
Hübner C, Lehr HA, Bodlaj R, Finckh B, Oexle K, Marklund SL, Freudenberg K, Kontush A, Speer A, Terwolbeck K, Voit T, Kohlschütter A. Wheat kernel ingestion protects from progression of muscle weakness in mdx mice, an animal model of Duchenne muscular dystrophy. Pediatr Res 1996; 40:444-9. [PMID: 8865282 DOI: 10.1203/00006450-199609000-00013] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A simple, reproducible test was used to quantify muscle weakness in mdx mice, an animal model of Duchenne muscular dystrophy. The effect of bedding on wheat kernels and of dietary supplementation of alpha-tocopherol on the progression of muscle weakness was investigated in mdx mice. When measured during the first 200 d of life, mdx mice developed muscle weakness, irrespective of bedding and diet. When kept on wood shavings and fed a conventional rodent diet, mdx mice showed progressive muscle weakness over the consecutive 200 d, and eventually showed a significant weight loss during the next 200-d observation period. Progression of muscle weakness and weight loss were almost completely prevented in mdx mice that were kept on wheat kernel bedding. In contrast, only incomplete maintenance of muscle strength and body weight was observed in mdx mice kept on wood shavings and fed the alpha-tocopherol-supplemented diet. It is concluded from these experiments that a component of wheat kernels other than alpha-tocopherol is essential to prevent the progression of muscle weakness in mdx mice.
Collapse
Affiliation(s)
- C Hübner
- Department of Neuropediatrics, Virchow Medical Center, Humboldt University, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Silvagno F, Xia H, Bredt DS. Neuronal nitric-oxide synthase-mu, an alternatively spliced isoform expressed in differentiated skeletal muscle. J Biol Chem 1996; 271:11204-8. [PMID: 8626668 DOI: 10.1074/jbc.271.19.11204] [Citation(s) in RCA: 265] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Nitric oxide (NO) functions as a molecular mediator in numerous processes in cellular development and physiology. Differential expression and regulation of a family of three NO synthase (NOS) gene products help achieve this diversity of action. Previous studies identify post-translational modification and interaction of NOS with specific protein targets as tissue-specific modes of regulation. Here, we show that alternative splicing specifically regulates neuronal NOS (nNOS, type I) in striated muscle. nNOS in skeletal muscle is slightly more massive than nNOS from brain owing to a 102-base pair (34-amino acid) alternatively spliced segment between exons 16 and 17. Following purification, this novel nNOS mu isoform has similar catalytic activity to that of nNOS expressed in cerebellum. nNOS mu appears to function exclusively in differentiated muscle as its expression occurs coincidentally with myotube fusion in culture. An isoform-specific antibody detects nNOS mu protein only in skeletal muscle and heart. This study identifies alternative splicing as a means for tissue-specific regulation of nNOS and reports the first additional protein sequence for a mammalian NOS since the original cloning of the gene family.
Collapse
Affiliation(s)
- F Silvagno
- Department of Physiology, University of California, San Francisco School of Medicine 94143-0444, USA
| | | | | |
Collapse
|
95
|
Constantin B, Cognard C, Raymond G. Myoblast fusion requires cytosolic calcium elevation but not activation of voltage-dependent calcium channels. Cell Calcium 1996; 19:365-74. [PMID: 8793176 DOI: 10.1016/s0143-4160(96)90109-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Many studies of in vitro skeletal myogenesis have demonstrated that fusion of myoblasts into multinucleated myotubes is regulated by calcium-dependent processes. Calcium ions appear to be necessary at the outer face of the membrane, and an additional internal calcium increase seems required to promote fusion of aligned myoblasts. It has been proposed that a calcium influx could take place prior to fusion and that this may be mediated by voltage-dependent calcium channels. Previously, we showed that two types of voltage-dependent calcium currents were expressed in multinucleated myotubes but not in rat myoblasts growing in primary culture before the withdrawal of the growth medium. We also showed that the previous formation of multinucleated synticia was not a prerequisite of developmental appearance of calcium currents, suggesting that the two events were time-correlated but not sequentially dependent. These features led us to investigate changes in internal calcium activity and the possible appearance of voltage-dependent calcium influx pathways just after the promotion of fusion by the change of culture medium. The results confirm that a rise in cytosolic calcium activity occurs slightly before fusion in confluent myoblasts and remained in newly formed myotubes. Reducing this elevation by internal calcium buffering lowered myoblast fusion and, reciprocally, blocking cell fusion prevented calcium increase. Treatment with the organic calcium channel blockers nifedipine (5 microM) and PN 200-110 (1 microM) did not alter cytosolic calcium changes nor cell fusion, and voltage-dependent calcium currents were never observed by the perforated patch-clamp technique in aligned fusion-competent myoblasts. Other voltage-operated mechanisms of calcium rise were not detected since depolarization with hyperpotassium solutions failed to elicit increases in intracellular calcium. On the contrary, acetylcholine was able to promote extracellular calcium-dependent calcium transients. Our results confirm the requirement of an increase in resting calcium during fusion, but do not support the hypothesis of an influx through voltage-dependent channels or other voltage-operated pathways. The elevation of internal calcium activity may result from other mechanisms, such as a cholinergic action for example.
Collapse
Affiliation(s)
- B Constantin
- Laboratory of General Physiology, URA CNRS 1869, University of Poitiers, France
| | | | | |
Collapse
|
96
|
Affiliation(s)
- D S Chao
- Department of Physiology, School of Medicine, University of California, San Francisco 94143, USA
| | | | | | | |
Collapse
|
97
|
Affiliation(s)
- Q Liu
- Department of Pharmacology, Cornell University Medical College, New York 10021, USA
| | | |
Collapse
|
98
|
Lee QP, Park HW, Thayer J, Mirkes PE, Juchau MR. Apoptosis induced in cultured rat embryos by intra-amniotically microinjected sodium nitroprusside. TERATOLOGY 1996; 53:21-30. [PMID: 8928084 DOI: 10.1002/(sici)1096-9926(199601)53:1<21::aid-tera3>3.0.co;2-c] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Previously, we reported that massive cell death was induced in the mesencephalic area of cultured rat embryos after embryos of gestational day 10.5 were intra-amniotically microinjected with sodium nitroprusside (SNP, 800 microM) and cultured for 24 hr at 37 degrees C. The massive cell death apparently was the result of NO-mediated embryotoxicity. Damage was concentration dependent and tissue specific. In follow-up studies, we now report evidence that NO generated from SNP induces apoptosis in organogenesis stage cultured rat embryos. Nile blue sulfate (NBS) staining suggested that microinjections of 400 microM SNP induced apoptosis in the mesencephalic area. Since we observed no massive cell death ("white caps") at this concentration, it appeared that early stages of apoptosis preceded "white cap" formation. At 800 microM SNP, total disintegration of cell bodies was evident and may have resulted from later stages of aoptosis or necrosis, or both. The "white caps" per se, an accumulation of disintegrated cell bodies, did not stain with NBS, probably due to total loss of cell integrity and resultant coagulation. The majority of the coagulated dead cells in the "white caps" were heavily stained with 3,3'-diaminobenzidine via in situ 3' end-labeling with terminal transferase. However, it is now known that NO can damage DNA directly and that in situ 3' end-labeling by terminal transferase detects not only apoptosis but also random DNA breakage. Increased 3' end-labeling and a "DNA ladder" were detectable within 5-10 hr after exposure of day 10.5 embryos to 400 or 800 microM of microinjected SNP. Some smear background was also observed in the "ladder." Rostral aspects of embryos exhibited more prominent indices of apoptosis than caudal regions. The results suggested that microinjections of SNP into the amniotic fluid of day 10.5 cultured rat embryos induces NO-mediated cell death in the mesencephalic and rhombencephalic regions by the process of apoptosis or of both apoptosis and necrosis, depending on the timing, concentration, and stage of gestation.
Collapse
Affiliation(s)
- Q P Lee
- Department of Pharmacology, University of Washington, Seattle 98195, USA
| | | | | | | | | |
Collapse
|
99
|
Clementi E, Sciorati C, Riccio M, Miloso M, Meldolesi J, Nisticò G. Nitric oxide action on growth factor-elicited signals. Phosphoinositide hydrolysis and [Ca2+]i responses are negatively modulated via a cGMP-dependent protein kinase I pathway. J Biol Chem 1995; 270:22277-82. [PMID: 7673208 DOI: 10.1074/jbc.270.38.22277] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The role of nitric oxide (NO) in the phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis and intracellular Ca2+ release responses induced by epidermal, platelet-derived, and fibroblast growth factors was investigated in three cell lines, a clone of NIH-3T3 fibroblasts overexpressing epidermal growth factor receptors and the tumoral epithelial cells A431 and KB. In all three cell types, pretreatment with NO donors decreased growth factor-induced PIP2 and Ca2+ responses, whereas pretreatment with NO synthase inhibitors increased them. The Ca2(+)-dependent PIP2 hydroysis induced by micromolar concentrations of the Ca2+ ionophore, ionomycin, was also modulated negatively and positively by NO donors and synthase inhibitors, respectively. In contrast, the Ca2+ content of the intracellular stores was unaffected by the various pretreatments employed. NO donors and synthase inhibitors induced an increase and decrease, respectively, of the intracellular cGMP formation in all three cell lines investigated. All of the effects of the NO donors were mimicked by 8-bromo-cGMP administration and abolished by pretreatment with the specific blocker of the cGMP-dependent protein kinase I, KT5823, which by itself mimicked the effects of the synthase inhibitors. Together with previous observations on G protein-coupled receptors, the present results demonstrate that PIP2 hydrolysis and Ca2+ release occur under the feedback control of NO, independently of the phospholipase C (beta, gamma, or delta type) involved and of the mechanism of activation. Such a control, which appears to be effected by the cGMP-dependent protein kinase I acting at the level of the phospholipases C themselves, might ultimately contribute to the inhibitory role of NO on growth previously observed with various cell types.
Collapse
Affiliation(s)
- E Clementi
- Department of Pharmacology, Faculty of Pharmacy, University of Reggio Calabria, Catanzaro, Italy
| | | | | | | | | | | |
Collapse
|
100
|
Brenman JE, Chao DS, Xia H, Aldape K, Bredt DS. Nitric oxide synthase complexed with dystrophin and absent from skeletal muscle sarcolemma in Duchenne muscular dystrophy. Cell 1995; 82:743-52. [PMID: 7545544 DOI: 10.1016/0092-8674(95)90471-9] [Citation(s) in RCA: 729] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Nitric oxide (NO) is synthesized in skeletal muscle by neuronal-type NO synthase (nNOS), which is localized to sarcolemma of fast-twitch fibers. Synthesis of NO in active muscle opposes contractile force. We show that nNOS partitions with skeletal muscle membranes owing to association of nNOS with dystrophin, the protein mutated in Duchenne muscular dystrophy (DMD). The dystrophin complex interacts with an N-terminal domain of nNOS that contains a GLGF motif. mdx mice and humans with DMD evince a selective loss of nNOS protein and catalytic activity from muscle membranes, demonstrating a novel role for dystrophin in localizing a signaling enzyme to the myocyte sarcolemma. Aberrant regulation of nNOS may contribute to preferential degeneration of fast-twitch muscle fibers in DMD.
Collapse
Affiliation(s)
- J E Brenman
- Department of Physiology, University of California, San Francisco School of Medicine 94143-0444, USA
| | | | | | | | | |
Collapse
|