51
|
Liu S, Shen J, Fang S, Li K, Liu J, Yang L, Hu CD, Wan J. Genetic Spectrum and Distinct Evolution Patterns of SARS-CoV-2. Front Microbiol 2020; 11:593548. [PMID: 33101264 PMCID: PMC7545136 DOI: 10.3389/fmicb.2020.593548] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022] Open
Abstract
Four signature groups of frequently occurred single-nucleotide variants (SNVs) were identified in over twenty-eight thousand high-quality and high-coverage SARS-CoV-2 complete genome sequences, representing different viral strains. Some SNVs predominated but were mutually exclusively presented in patients from different countries and areas. These major SNV signatures exhibited distinguishable evolution patterns over time. A few hundred patients were detected with multiple viral strain-representing mutations simultaneously, which may stand for possible co-infection or potential homogenous recombination of SARS-CoV-2 in environment or within the viral host. Interestingly nucleotide substitutions among SARS-CoV-2 genomes tended to switch between bat RaTG13 coronavirus sequence and Wuhan-Hu-1 genome, indicating the higher genetic instability or tolerance of mutations on those sites or suggesting that major viral strains might exist between Wuhan-Hu-1 and RaTG13 coronavirus.
Collapse
Affiliation(s)
- Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States.,Collaborative Core for Cancer Bioinformatics (C3B) shared by Indiana University Simon Comprehensive Cancer Center and Purdue University Center for Cancer Research, Indianapolis, IN, United States
| | - Jikui Shen
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Shuyi Fang
- Department of BioHealth Informatics, Indiana University School of Informatics and Computing, Indiana University - Purdue University Indianapolis, Indianapolis, IN, United States
| | - Kailing Li
- Department of BioHealth Informatics, Indiana University School of Informatics and Computing, Indiana University - Purdue University Indianapolis, Indianapolis, IN, United States
| | - Juli Liu
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Lei Yang
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Chang-Deng Hu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States.,Collaborative Core for Cancer Bioinformatics (C3B) shared by Indiana University Simon Comprehensive Cancer Center and Purdue University Center for Cancer Research, Indianapolis, IN, United States.,Department of BioHealth Informatics, Indiana University School of Informatics and Computing, Indiana University - Purdue University Indianapolis, Indianapolis, IN, United States.,The Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
52
|
AbdelMassih AF, Ye J, Kamel A, Mishriky F, Ismail HA, Ragab HA, El Qadi L, Malak L, Abdu M, El-Husseiny M, Ashraf M, Hafez N, AlShehry N, El-Husseiny N, AbdelRaouf N, Shebl N, Hafez N, Youssef N, Afdal P, Hozaien R, Menshawey R, Saeed R, Fouda R. A multicenter consensus: A role of furin in the endothelial tropism in obese patients with COVID-19 infection. OBESITY MEDICINE 2020; 19:100281. [PMID: 32835124 PMCID: PMC7362855 DOI: 10.1016/j.obmed.2020.100281] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023]
Abstract
Furin, a cleavage enzyme, is increasingly recognized in the pathogenesis of metabolic syndrome. Its cleavage action is an essential activation step for the endothelial pathogenicity of several viruses including SARS-CoV-2. This Furin-mediated endothelial tropism seems to underlie the multi-organ system involvement of COVID-19; which is a feature that was not recognized in the older versions of coronaviridae. Obese and diabetic patients, males, and the elderly, have increased serum levels of Furin, with its increased cellular activity; this might explain why these subgroups are at an increased risk of COVID-19 related complications and deaths. In contrast, smoking decreases cellular levels of Furin, this finding may be at the origin of the decreased severity of COVID-19 in smokers. Chinese herbal derived luteolin is suggested to be putative Furin inhibitor, with previous success against Dengue Fever. Additionally, Furin intracellular levels are largely dependent on concentration of intracellular ions, notably sodium, potassium, and magnesium. Consequently, the use of ion channel inhibitors, such as Calcium Channel blockers or Potassium Channel blockers, can prevent cellular transfection early in the course of the illness. Nicotine patches and Colchicine have also been suggested as potential therapies due to Furin mediated inhibition of COVID-19.
Collapse
Affiliation(s)
- Antoine Fakhry AbdelMassih
- Pediatric Cardiology Unit, Pediatrics' Department, Faculty of Medicine, Cairo University, Egypt
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jianping Ye
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Aya Kamel
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Egypt
| | - Fady Mishriky
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Egypt
| | - Habiba-Allah Ismail
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Egypt
| | - Heba Amin Ragab
- Pediatric Cardiology Unit, Pediatrics' Department, Faculty of Medicine, Cairo University, Egypt
| | - Layla El Qadi
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Egypt
| | - Lauris Malak
- Pediatric Cardiology Unit, Pediatrics' Department, Faculty of Medicine, Cairo University, Egypt
| | - Mariam Abdu
- Pediatric Cardiology Unit, Pediatrics' Department, Faculty of Medicine, Cairo University, Egypt
| | - Miral El-Husseiny
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Egypt
| | - Mirette Ashraf
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Egypt
| | - Nada Hafez
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Egypt
| | - Nada AlShehry
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Egypt
| | - Nadine El-Husseiny
- Faculty of Dentistry, Cairo University, Egypt
- Pixagon Graphic Design Agency, Cairo, Egypt
| | - Nora AbdelRaouf
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Egypt
| | - Noura Shebl
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Egypt
| | - Nouran Hafez
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Egypt
| | - Nourhan Youssef
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Egypt
| | - Peter Afdal
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Egypt
| | - Rafeef Hozaien
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Egypt
| | - Rahma Menshawey
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Egypt
| | - Rana Saeed
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Egypt
| | - Raghda Fouda
- University of Irvine California, USA
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Pediatrics' Department, Faculty of Medicine, Cairo University, Egypt
| |
Collapse
|
53
|
Liu S, Shen J, Fang S, Li K, Liu J, Yang L, Hu CD, Wan J. Genetic spectrum and distinct evolution patterns of SARS-CoV-2. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020. [PMID: 32588000 DOI: 10.1101/2020.06.16.20132902] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Four signature groups of frequently occurred single-nucleotide variants (SNVs) were identified in over twenty-eight thousand high-quality and high-coverage SARS-CoV-2 complete genome sequences, representing different viral strains. Some SNVs predominated but were mutually exclusively presented in patients from different countries and areas. These major SNV signatures exhibited distinguishable evolution patterns over time. A few hundred patients were detected with multiple viral strain-representing mutations simultaneously, which may stand for possible co-infection or potential homogenous recombination of SARS-CoV-2 in environment or within the viral host. Interestingly nucleotide substitutions among SARS-CoV-2 genomes tended to switch between bat RaTG13 coronavirus sequence and Wuhan-Hu-1 genome, indicating the higher genetic instability or tolerance of mutations on those sites or suggesting that major viral strains might exist between Wuhan-Hu-1 and RaTG13 coronavirus.
Collapse
|
54
|
Chen L, Chen H, Dong S, Huang W, Chen L, Wei Y, Shi L, Li J, Zhu F, Zhu Z, Wang Y, Lv X, Yu X, Li H, Wei W, Zhang K, Zhu L, Qu C, Hong J, Hu C, Dong J, Qi R, Lu D, Wang H, Peng S, Hao G. The Effects of Chloroquine and Hydroxychloroquine on ACE2-Related Coronavirus Pathology and the Cardiovascular System: An Evidence-Based Review. FUNCTION 2020; 1:zqaa012. [PMID: 38626250 PMCID: PMC7454642 DOI: 10.1093/function/zqaa012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 01/08/2023] Open
Abstract
The ongoing pandemic of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a serious threat to global public health and there is currently no effective antiviral therapy. It has been suggested that chloroquine (CQ) and hydroxychloroquine (HCQ), which were primarily employed as prophylaxis and treatment for malaria, could be used to treat COVID-19. CQ and HCQ may be potential inhibitors of SARS-CoV-2 entry into host cells, which are mediated via the angiotensin-converting enzyme 2 (ACE2), and may also inhibit subsequent intracellular processes which lead to COVID-19, including damage to the cardiovascular (CV) system. However, paradoxically, CQ and HCQ have also been reported to cause damage to the CV system. In this review, we provide a critical examination of the published evidence. CQ and HCQ could potentially be useful drugs in the treatment of COVID-19 and other ACE2 involved virus infections, but the antiviral effects of CQ and HCQ need to be tested in more well-designed clinical randomized studies and their actions on the CV system need to be further elucidated. However, even if it were to turn out that CQ and HCQ are not useful drugs in practice, further studies of their mechanism of action could be helpful in improving our understanding of COVID-19 pathology.
Collapse
Affiliation(s)
- Li Chen
- Department of Medicine, Georgia Prevention Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Haiyan Chen
- Department of Endemic Disease, Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Shan Dong
- Guangzhou First People’s Hospital, The Second Affiliated Hospital of South China University of Technology, Guangzhou 510180, China
| | - Wei Huang
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Li Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yuan Wei
- Center for Scientific Research and Institute of Exercise and Health, Guangzhou Sports University, Guangzhou 510500, China
| | - Liping Shi
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Jinying Li
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Fengfeng Zhu
- Department of Hepatobiliary and Pancreas Surgery, The First Affiliated Hospital Of University of South China, Hengyang 421001, China
| | - Zhu Zhu
- Department of Hepatobiliary and Pancreas Surgery, The First Affiliated Hospital Of University of South China, Hengyang 421001, China
| | - Yiyang Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Xiuxiu Lv
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Xiaohui Yu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Hongmei Li
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Wei Wei
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Keke Zhang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Lihong Zhu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Chen Qu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Jian Hong
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Chaofeng Hu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Jun Dong
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Renbin Qi
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Daxiang Lu
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People’s Republic of China, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Huadong Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People’s Republic of China, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Shuang Peng
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Guang Hao
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou 510632, China
| |
Collapse
|
55
|
Tournier JN, Rougeaux C. Anthrax Toxin Detection: From In Vivo Studies to Diagnostic Applications. Microorganisms 2020; 8:microorganisms8081103. [PMID: 32717946 PMCID: PMC7464488 DOI: 10.3390/microorganisms8081103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 11/16/2022] Open
Abstract
Anthrax toxins are produced by Bacillus anthracis throughout infection and shape the physiopathogenesis of the disease. They are produced in low quantities but are highly efficient. They have thus been long ignored, but recent biochemical methods have improved our knowledge in animal models. This article reviews the various methods that have been used and how they could be applied to clinical diagnosis.
Collapse
Affiliation(s)
- Jean-Nicolas Tournier
- Unité Bactériologie Biothérapies Anti-infectieuses et Immunité, Institut de Recherche Biomédicale des Armées (IRBA), 1 place Général Valérie André, 91220 Brétigny sur Orge, France;
- Centre National de Référence-Laboratoire Expert Charbon, 1 place Général Valérie André, 91220 Brétigny sur Orge, France
- Innovative Vaccine Laboratory, Institut Pasteur, 28 rue du docteur Roux, 75015 Paris, France
- Ecole du Val-de-Grâce, 1 place Alphonse Laveran, 75005 Paris, France
| | - Clémence Rougeaux
- Unité Bactériologie Biothérapies Anti-infectieuses et Immunité, Institut de Recherche Biomédicale des Armées (IRBA), 1 place Général Valérie André, 91220 Brétigny sur Orge, France;
- Centre National de Référence-Laboratoire Expert Charbon, 1 place Général Valérie André, 91220 Brétigny sur Orge, France
- Correspondence: ; Tel.: +33-178-651-891
| |
Collapse
|
56
|
Georgi F, Greber UF. The Adenovirus Death Protein - a small membrane protein controls cell lysis and disease. FEBS Lett 2020; 594:1861-1878. [PMID: 32472693 DOI: 10.1002/1873-3468.13848] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/16/2022]
Abstract
Human adenoviruses (HAdVs) cause widespread acute and persistent infections. Infections are usually mild and controlled by humoral and cell-based immunity. Reactivation of persistently infected immune cells can lead to a life-threatening disease in immunocompromised individuals, especially children and transplant recipients. To date, no effective therapy or vaccine against HAdV disease is available to the public. HAdV-C2 and C5 are the best-studied of more than 100 HAdV types. They persist in infected cells and release their progeny by host cell lysis to neighbouring cells and fluids, a process facilitated by the adenovirus death protein (ADP). ADP consists of about 100 amino acids and harbours a single membrane-spanning domain. It undergoes post-translational processing in endoplasmic reticulum and Golgi compartments, before localizing to the inner nuclear membrane. Here, we discuss the current knowledge on how ADP induces membrane rupture. Membrane rupture is essential for both progression of disease and efficacy of therapeutic viruses in clinical applications, in particular oncolytic therapy.
Collapse
Affiliation(s)
- Fanny Georgi
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Urs F Greber
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| |
Collapse
|
57
|
Robins WP, Mekalanos JJ. Protein covariance networks reveal interactions important to the emergence of SARS coronaviruses as human pathogens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32577639 DOI: 10.1101/2020.06.05.136887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
SARS-CoV-2 is one of three recognized coronaviruses (CoVs) that have caused epidemics or pandemics in the 21 st century and that have likely emerged from animal reservoirs based on genomic similarities to bat and other animal viruses. Here we report the analysis of conserved interactions between amino acid residues in proteins encoded by SARS-CoV-related viruses. We identified pairs and networks of residue variants that exhibited statistically high frequencies of covariance with each other. While these interactions are likely key to both protein structure and other protein-protein interactions, we have also found that they can be used to provide a new computational approach (CoVariance-based Phylogeny Analysis) for understanding viral evolution and adaptation. Our data provide evidence that the evolutionary processes that converted a bat virus into human pathogen occurred through recombination with other viruses in combination with new adaptive mutations important for entry into human cells.
Collapse
|
58
|
Potential Therapeutic Targeting of Coronavirus Spike Glycoprotein Priming. Molecules 2020; 25:molecules25102424. [PMID: 32455942 PMCID: PMC7287953 DOI: 10.3390/molecules25102424] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
Processing of certain viral proteins and bacterial toxins by host serine proteases is a frequent and critical step in virulence. The coronavirus spike glycoprotein contains three (S1, S2, and S2′) cleavage sites that are processed by human host proteases. The exact nature of these cleavage sites, and their respective processing proteases, can determine whether the virus can cross species and the level of pathogenicity. Recent comparisons of the genomes of the highly pathogenic SARS-CoV2 and MERS-CoV, with less pathogenic strains (e.g., Bat-RaTG13, the bat homologue of SARS-CoV2) identified possible mutations in the receptor binding domain and in the S1 and S2′ cleavage sites of their spike glycoprotein. However, there remains some confusion on the relative roles of the possible serine proteases involved for priming. Using anthrax toxin as a model system, we show that in vivo inhibition of priming by pan-active serine protease inhibitors can be effective at suppressing toxicity. Hence, our studies should encourage further efforts in developing either pan-serine protease inhibitors or inhibitor cocktails to target SARS-CoV2 and potentially ward off future pandemics that could develop because of additional mutations in the S-protein priming sequence in coronaviruses.
Collapse
|
59
|
Maksoud E, Liao EH, Haghighi AP. A Neuron-Glial Trans-Signaling Cascade Mediates LRRK2-Induced Neurodegeneration. Cell Rep 2020; 26:1774-1786.e4. [PMID: 30759389 PMCID: PMC6474846 DOI: 10.1016/j.celrep.2019.01.077] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/19/2018] [Accepted: 01/19/2019] [Indexed: 12/19/2022] Open
Abstract
Pathogenic mutations in leucine-rich repeat kinase 2 (LRRK2) induce an age-dependent loss of dopaminergic (DA) neurons. We have identified Furin 1, a pro-protein convertase, as a translational target of LRRK2 in DA neurons. Transgenic knockdown of Furin1 or its substrate the bone morphogenic protein (BMP) ligand glass bottom boat (Gbb) protects against LRRK2-induced loss of DA neurons. LRRK2 enhances the accumulation of phosphorylated Mad (pMad) in the nuclei of glial cells in the vicinity of DA neurons but not in DA neurons. Consistently, exposure to paraquat enhances Furin 1 levels in DA neurons and induces BMP signaling in glia. In support of a neuron-glial signaling model, knocking down BMP pathway members only in glia, but not in neurons, can protect against paraquat toxicity. We propose that a neuron-glial BMP-signaling cascade is critical for mediating age-dependent neurodegeneration in two models of Parkinson's disease, thus opening avenues for future therapeutic interventions.
Collapse
Affiliation(s)
- Elie Maksoud
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Edward H Liao
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | | |
Collapse
|
60
|
Echavarria-Consuegra L, Smit JM, Reggiori F. Role of autophagy during the replication and pathogenesis of common mosquito-borne flavi- and alphaviruses. Open Biol 2020; 9:190009. [PMID: 30862253 PMCID: PMC6451359 DOI: 10.1098/rsob.190009] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Arboviruses that are transmitted to humans by mosquitoes represent one of the most important causes of febrile illness worldwide. In recent decades, we have witnessed a dramatic re-emergence of several mosquito-borne arboviruses, including dengue virus (DENV), West Nile virus (WNV), chikungunya virus (CHIKV) and Zika virus (ZIKV). DENV is currently the most common mosquito-borne arbovirus, with an estimated 390 million infections worldwide annually. Despite a global effort, no specific therapeutic strategies are available to combat the diseases caused by these viruses. Multiple cellular pathways modulate the outcome of infection by either promoting or hampering viral replication and/or pathogenesis, and autophagy appears to be one of them. Autophagy is a degradative pathway generally induced to counteract viral infection. Viruses, however, have evolved strategies to subvert this pathway and to hijack autophagy components for their own benefit. In this review, we will focus on the role of autophagy in mosquito-borne arboviruses with emphasis on DENV, CHIKV, WNV and ZIKV, due to their epidemiological importance and high disease burden.
Collapse
Affiliation(s)
- Liliana Echavarria-Consuegra
- 1 Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen , Groningen , The Netherlands
| | - Jolanda M Smit
- 1 Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen , Groningen , The Netherlands
| | - Fulvio Reggiori
- 2 Department of Cell Biology, University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| |
Collapse
|
61
|
Bone marrow niche crosses paths with BMPs: a road to protection and persistence in CML. Biochem Soc Trans 2020; 47:1307-1325. [PMID: 31551354 DOI: 10.1042/bst20190221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/23/2019] [Accepted: 08/29/2019] [Indexed: 12/21/2022]
Abstract
Chronic myeloid leukaemia (CML) is a paradigm of precision medicine, being one of the first cancers to be treated with targeted therapy. This has revolutionised CML therapy and patient outcome, with high survival rates. However, this now means an ever-increasing number of patients are living with the disease on life-long tyrosine kinase inhibitor (TKI) therapy, with most patients anticipated to have near normal life expectancy. Unfortunately, in a significant number of patients, TKIs are not curative. This low-level disease persistence suggests that despite a molecularly targeted therapeutic approach, there are BCR-ABL1-independent mechanisms exploited to sustain the survival of a small cell population of leukaemic stem cells (LSCs). In CML, LSCs display many features akin to haemopoietic stem cells, namely quiescence, self-renewal and the ability to produce mature progeny, this all occurs through intrinsic and extrinsic signals within the specialised microenvironment of the bone marrow (BM) niche. One important avenue of investigation in CML is how the disease highjacks the BM, thereby remodelling this microenvironment to create a niche, which enables LSC persistence and resistance to TKI treatment. In this review, we explore how changes in growth factor levels, in particular, the bone morphogenetic proteins (BMPs) and pro-inflammatory cytokines, impact on cell behaviour, extracellular matrix deposition and bone remodelling in CML. We also discuss the challenges in targeting LSCs and the potential of dual targeting using combination therapies against BMP receptors and BCR-ABL1.
Collapse
|
62
|
Momben Abolfath S, Kolberg M, Karginov VA, Leppla SH, Nestorovich EM. Exploring the Nature of Cationic Blocker Recognition by the Anthrax Toxin Channel. Biophys J 2019; 117:1751-1763. [PMID: 31587826 PMCID: PMC6838753 DOI: 10.1016/j.bpj.2019.08.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/11/2019] [Accepted: 08/05/2019] [Indexed: 01/20/2023] Open
Abstract
Obstructing conductive pathways of the channel-forming toxins with targeted blockers is a promising drug design approach. Nearly all tested positively charged ligands have been shown to reversibly block the cation-selective channel-forming protective antigen (PA63) component of the binary anthrax toxin. The cationic ligands with more hydrophobic surfaces, particularly those carrying aromatic moieties, inhibited PA63 more effectively. To understand the physical basis of PA63 selectivity for a particular ligand, detailed information is required on how the blocker structural elements (e.g., positively charged and aromatic groups) influence the molecular kinetics of the blocker/channel binding reactions. In this study, we address this problem using the high-resolution single-channel planar lipid bilayer technique. Several structurally distinct cationic blockers, namely per-6-S-(3-amino) propyl-β-cyclodextrin, per-6-S-(3-aminomethyl) benzyl-α-cyclodextrin, per-6-S-(3-aminomethyl) benzyl-β-cyclodextrin, per-6-S-(3-aminomethyl) benzyl-γ-cyclodextrin, methyltriphenylphosphonium ion, and G0 polyamidoamine dendrimer are tested for their ability to inhibit the heptameric and octameric PA63 variants and PA63F427A mutant. The F427 residues form a hydrophobic constriction region inside the channel, known as the "ϕ-clamp." We show that the cationic blockers interact with PA63 through a combination of forces. Analysis of the binding reaction kinetics suggests the involvement of cation-π, Coulomb, and salt-concentration-independent π-π or hydrophobic interactions in the cationic cyclodextrin binding. It is possible that these blockers bind to the ϕ-clamp and are also stabilized by the Coulomb interactions of their terminal amino groups with the water-exposed negatively charged channel residues. In PA63F427A, only the suggested Coulomb component of the cyclodextrin interaction remains. Methyltriphenylphosphonium ion and G0 polyamidoamine dendrimer, despite being positively charged, interact primarily with the ϕ-clamp. We also show that seven- and eightfold symmetric cyclodextrins effectively block the heptameric and octameric forms of PA63 interchangeably, adding flexibility to the earlier formulated blocker/target symmetry match requirement.
Collapse
Affiliation(s)
| | - Michelle Kolberg
- Department of Biology, The Catholic University of America, Washington DC
| | | | - Stephen H Leppla
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | | |
Collapse
|
63
|
Elvina Xavier MA, Liu S, Bugge TH, Torres JB, Mosley M, Hopkins SL, Allen PD, Berridge G, Vendrell I, Fischer R, Kersemans V, Smart S, Leppla SH, Cornelissen B. Tumor Imaging Using Radiolabeled Matrix Metalloproteinase-Activated Anthrax Proteins. J Nucl Med 2019; 60:1474-1482. [PMID: 30954944 PMCID: PMC6785798 DOI: 10.2967/jnumed.119.226423] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/13/2019] [Indexed: 11/20/2022] Open
Abstract
Increased activity of matrix metalloproteinases (MMPs) is associated with worse prognosis in different cancer types. The wild-type protective antigen (PA-WT) of the binary anthrax lethal toxin was modified to form a pore in cell membranes only when cleaved by MMPs (to form PA-L1). Anthrax lethal factor (LF) is then able to translocate through these pores. Here, we used a 111In-radiolabeled form of LF with the PA/LF system for noninvasive in vivo imaging of MMP activity in tumor tissue by SPECT. Methods: MMP-mediated activation of PA-L1 was correlated to anthrax receptor expression and MMP activity in a panel of cancer cells (HT1080, MDA-MB-231, B8484, and MCF7). Uptake of 111In-radiolabeled PA-L1, 111In-PA-WTK563C, or 111In-LFE687A (a catalytically inactive LF mutant) in tumor and normal tissues was measured using SPECT/CT imaging in vivo. Results: Activation of PA-L1 in vitro correlated with anthrax receptor expression and MMP activity (HT1080 > MDA-MB-231 > B8484 > MCF7). PA-L1-mediated delivery of 111In-LFE687A was demonstrated and was corroborated using confocal microscopy with fluorescently labeled LFE687A Uptake was blocked by the broad-spectrum MMP inhibitor GM6001. In vivo imaging showed selective accumulation of 111In-PA-L1 in MDA-MB-231 tumor xenografts (5.7 ± 0.9 percentage injected dose [%ID]/g) at 3 h after intravenous administration. 111In-LFE687A was selectively delivered to MMP-positive MDA-MB-231 tumor tissue by MMP-activatable PA-L1 (5.98 ± 0.62 %ID/g) but not by furin-cleavable PA-WT (1.05 ± 0.21 %ID/g) or a noncleavable PA variant control, PA-U7 (2.74 ± 0.24 %ID/g). Conclusion: Taken together, our results indicate that radiolabeled forms of mutated anthrax lethal toxin hold promise for noninvasive imaging of MMP activity in tumor tissue.
Collapse
Affiliation(s)
- Mary-Ann Elvina Xavier
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Shihui Liu
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland; and
| | - Thomas H Bugge
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Julia Baguña Torres
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Michael Mosley
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Samantha L Hopkins
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Phillip D Allen
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Georgina Berridge
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Iolanda Vendrell
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Veerle Kersemans
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Sean Smart
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Stephen H Leppla
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland; and
| | - Bart Cornelissen
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
64
|
Abstract
The anthrax toxin receptors-capillary morphogenesis gene 2 (CMG2) and tumor endothelial marker 8 (TEM8)-were identified almost 20 years ago, although few studies have moved beyond their roles as receptors for the anthrax toxins to address their physiological functions. In the last few years, insight into their endogenous roles has come from two rare diseases: hyaline fibromatosis syndrome, caused by mutations in CMG2, and growth retardation, alopecia, pseudo-anodontia, and optic atrophy (GAPO) syndrome, caused by loss-of-function mutations in TEM8. Although CMG2 and TEM8 are highly homologous at the protein level, the difference in disease symptoms points to variations in the physiological roles of the two anthrax receptors. Here, we focus on the similarities between these receptors in their ability to regulate extracellular matrix homeostasis, angiogenesis, cell migration, and skin elasticity. In this way, we shed light on how mutations in these two related proteins cause such seemingly different diseases and we highlight the existing knowledge gaps that could form the focus of future studies.
Collapse
Affiliation(s)
- Oksana A. Sergeeva
- Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| | | |
Collapse
|
65
|
Braun E, Sauter D. Furin-mediated protein processing in infectious diseases and cancer. Clin Transl Immunology 2019; 8:e1073. [PMID: 31406574 PMCID: PMC6682551 DOI: 10.1002/cti2.1073] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/10/2019] [Accepted: 07/13/2019] [Indexed: 12/17/2022] Open
Abstract
Proteolytic cleavage regulates numerous processes in health and disease. One key player is the ubiquitously expressed serine protease furin, which cleaves a plethora of proteins at polybasic recognition motifs. Mammalian substrates of furin include cytokines, hormones, growth factors and receptors. Thus, it is not surprising that aberrant furin activity is associated with a variety of disorders including cancer. Furthermore, the enzymatic activity of furin is exploited by numerous viral and bacterial pathogens, thereby enhancing their virulence and spread. In this review, we describe the physiological and pathophysiological substrates of furin and discuss how dysregulation of a simple proteolytic cleavage event may promote infectious diseases and cancer. One major focus is the role of furin in viral glycoprotein maturation and pathogenicity. We also outline cellular mechanisms regulating the expression and activation of furin and summarise current approaches that target this protease for therapeutic intervention.
Collapse
Affiliation(s)
- Elisabeth Braun
- Institute of Molecular VirologyUlm University Medical CenterUlmGermany
| | - Daniel Sauter
- Institute of Molecular VirologyUlm University Medical CenterUlmGermany
| |
Collapse
|
66
|
Osadchuk TV, Kibirev VK, Shybyryn OV. 1,3-Oxazol-4-ylphosphonium salts as new non-peptide inhibitors of furin. UKRAINIAN BIOCHEMICAL JOURNAL 2019. [DOI: 10.15407/ubj91.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
67
|
Fischer ES, Campbell WA, Liu S, Ghirlando R, Fattah RJ, Bugge TH, Leppla SH. Bismaleimide cross-linked anthrax toxin forms functional octamers with high specificity in tumor targeting. Protein Sci 2019; 28:1059-1070. [PMID: 30942916 PMCID: PMC6511737 DOI: 10.1002/pro.3613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/01/2019] [Indexed: 12/12/2022]
Abstract
In recent years, anthrax toxin has been reengineered to act as a highly specific antiangiogenic cancer therapeutic, shown to kill tumors in animal models. This has been achieved by modifying protective antigen (PA) so that its activation and toxicity require the presence of two proteases, matrix metalloproteinase (MMP) and urokinase plasminogen activator (uPA), which are upregulated in tumor microenvironments. These therapeutics consist of intercomplementing PA variants, which are individually nontoxic, but form functional toxins upon complementary oligomerization. Here, we have created a dual-protease requiring PA targeting system which utilizes bismaleimide cross-linked PA (CLPA) rather than the intercomplementing PA variants. Three different CLPA agents were tested and, as expected, found to exclusively form octamers. Two of the CLPA agents have in vitro toxicities equal to those of previous intercomplementing agents, while the third CLPA agent had compromised in vitro cleavage and was significantly less cytotoxic. We hypothesize this difference was due to steric hindrance caused by cross-linking two PA monomers in close proximity to the PA cleavage site. Overall, this work advances the development and use of the PA and LF tumor-targeting system as a practical cancer therapeutic, as it provides a way to reduce the drug components of the anthrax toxin drug delivery system from three to two, which may lower the cost and simplify testing in clinical trials. HIGHLIGHT: Previously, anthrax toxin has been reengineered to act as a highly specific antiangiogenic cancer therapeutic. Here, we present a version, which utilizes bismaleimide cross-linked protective antigen (PA) rather than intercomplementing PA variants. This advances the development of anthrax toxin as a practical cancer therapeutic as it reduces the components of the drug delivery system to two, which may lower the cost and simplify testing in clinical trials.
Collapse
Affiliation(s)
- Elyse S. Fischer
- Laboratory of Parasitic DiseasesNational Institute of Allergy and Infectious DiseasesBethesdaMaryland
| | - Warren A. Campbell
- Laboratory of Parasitic DiseasesNational Institute of Allergy and Infectious DiseasesBethesdaMaryland
| | - Shihui Liu
- Oral and Pharyngeal Cancer BranchNational Institute of Dental and Craniofacial ResearchBethesdaMaryland
| | - Rodolfo Ghirlando
- Laboratory of Molecular BiologyNational Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaMaryland, 20892
| | - Rasem J. Fattah
- Laboratory of Parasitic DiseasesNational Institute of Allergy and Infectious DiseasesBethesdaMaryland
| | - Thomas H. Bugge
- Oral and Pharyngeal Cancer BranchNational Institute of Dental and Craniofacial ResearchBethesdaMaryland
| | - Stephen H. Leppla
- Laboratory of Parasitic DiseasesNational Institute of Allergy and Infectious DiseasesBethesdaMaryland
| |
Collapse
|
68
|
Mamedov T, Musayeva I, Acsora R, Gun N, Gulec B, Mammadova G, Cicek K, Hasanova G. Engineering, and production of functionally active human Furin in N. benthamiana plant: In vivo post-translational processing of target proteins by Furin in plants. PLoS One 2019; 14:e0213438. [PMID: 30861020 PMCID: PMC6413912 DOI: 10.1371/journal.pone.0213438] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 02/21/2019] [Indexed: 11/19/2022] Open
Abstract
A plant expression platform with eukaryotic post-translational modification (PTM) machinery has many advantages compared to other protein expression systems. This promising technology is useful for the production of a variety of recombinant proteins including, therapeutic proteins, vaccine antigens, native additives, and industrial enzymes. However, plants lack some of the important PTMs, including furin processing, which limits this system for the production of certain mammalian complex proteins of therapeutic value. Furin is a ubiquitous proprotein convertase that is involved in the processing (activation) of a wide variety of precursor proteins, including blood coagulation factors, cell surface receptors, hormones and growth factors, viral envelope glycoproteins, etc. and plays a critical regulatory role in a wide variety of cellular events. In this study, we engineered the human furin gene for expression in plants and demonstrated the production of a functional active recombinant truncated human furin in N. benthamiana plant. We demonstrate that plant produced human furin is highly active both in vivo and in vitro and specifically cleaved the tested target proteins, Factor IX (FIX) and Protective Antigen (PA83). We also demonstrate that both, enzymatic deglycosylation and proteolytic processing of target proteins can be achieved in vivo by co-expression of deglycosylating and furin cleavage enzymes in a single cell to produce deglycosylated and furin processed target proteins. It is highly expected that this strategy will have many potential applications in pharmaceutical industry and can be used to produce safe and affordable therapeutic proteins, antibodies, and vaccines using a plant expression system.
Collapse
Affiliation(s)
- Tarlan Mamedov
- Akdeniz University, Department of Agricultural Biotechnology, Antalya, Turkey
- Azerbaijan National Academy of Science, Department of Biology and Medical Science, Baku, Azerbaijan
| | - Ilaha Musayeva
- Akdeniz University, Department of Agricultural Biotechnology, Antalya, Turkey
| | - Rabia Acsora
- Akdeniz University, Department of Agricultural Biotechnology, Antalya, Turkey
| | - Nilufer Gun
- Akdeniz University, Department of Agricultural Biotechnology, Antalya, Turkey
| | - Burcu Gulec
- Akdeniz University, Department of Agricultural Biotechnology, Antalya, Turkey
| | - Gulshan Mammadova
- Akdeniz University, Department of Agricultural Biotechnology, Antalya, Turkey
| | - Kader Cicek
- Akdeniz University, Department of Agricultural Biotechnology, Antalya, Turkey
| | - Gulnara Hasanova
- Akdeniz University, Department of Agricultural Biotechnology, Antalya, Turkey
| |
Collapse
|
69
|
Asymmetric paralog evolution between the "cryptic" gene Bmp16 and its well-studied sister genes Bmp2 and Bmp4. Sci Rep 2019; 9:3136. [PMID: 30816280 PMCID: PMC6395752 DOI: 10.1038/s41598-019-40055-1] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 02/07/2019] [Indexed: 12/05/2022] Open
Abstract
The vertebrate gene repertoire is characterized by “cryptic” genes whose identification has been hampered by their absence from the genomes of well-studied species. One example is the Bmp16 gene, a paralog of the developmental key genes Bmp2 and -4. We focus on the Bmp2/4/16 group of genes to study the evolutionary dynamics following gen(om)e duplications with special emphasis on the poorly studied Bmp16 gene. We reveal the presence of Bmp16 in chondrichthyans in addition to previously reported teleost fishes and reptiles. Using comprehensive, vertebrate-wide gene sampling, our phylogenetic analysis complemented with synteny analyses suggests that Bmp2, -4 and -16 are remnants of a gene quartet that originated during the two rounds of whole-genome duplication (2R-WGD) early in vertebrate evolution. We confirm that Bmp16 genes were lost independently in at least three lineages (mammals, archelosaurs and amphibians) and report that they have elevated rates of sequence evolution. This finding agrees with their more “flexible” deployment during development; while Bmp16 has limited embryonic expression domains in the cloudy catshark, it is broadly expressed in the green anole lizard. Our study illustrates the dynamics of gene family evolution by integrating insights from sequence diversification, gene repertoire changes, and shuffling of expression domains.
Collapse
|
70
|
Sanrattana W, Maas C, de Maat S. SERPINs-From Trap to Treatment. Front Med (Lausanne) 2019; 6:25. [PMID: 30809526 PMCID: PMC6379291 DOI: 10.3389/fmed.2019.00025] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/25/2019] [Indexed: 01/04/2023] Open
Abstract
Excessive enzyme activity often has pathological consequences. This for example is the case in thrombosis and hereditary angioedema, where serine proteases of the coagulation system and kallikrein-kinin system are excessively active. Serine proteases are controlled by SERPINs (serine protease inhibitors). We here describe the basic biochemical mechanisms behind SERPIN activity and identify key determinants that influence their function. We explore the clinical phenotypes of several SERPIN deficiencies and review studies where SERPINs are being used beyond replacement therapy. Excitingly, rare human SERPIN mutations have led us and others to believe that it is possible to refine SERPINs toward desired behavior for the treatment of enzyme-driven pathology.
Collapse
Affiliation(s)
| | | | - Steven de Maat
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
71
|
Davod J, Fatemeh DN, Honari H, Hosseini R. Constructing and transient expression of a gene cassette containing edible vaccine elements and shigellosis, anthrax and cholera recombinant antigens in tomato. Mol Biol Rep 2018; 45:2237-2246. [PMID: 30244396 PMCID: PMC7088786 DOI: 10.1007/s11033-018-4385-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 09/12/2018] [Indexed: 12/04/2022]
Abstract
Shigella dysenteriae causing shigellosis is one of the diseases that threaten the health of human society in the developing countries. In Shigella, IpaD gene is one of the key pathogenic genes causing strong mucosal immune system reactions. Anthrax disease is caused by Bacillus anthracis. PA protective antigen is one of the subunits in anthrax toxin complex responsible for the transfer of other subunits into the cytosol of host cells. The 20 kDa subunit of PA (PA20) has the property of immunogenicity. CTxB or B subunit of Vibrio cholerae toxin (CT) is a non-toxic protein and has the function to transfer toxic subunit into cytosol of the host cells by binding to GM1 receptor. The aim of this study was to fuse PA20, ipaD and CTxB and transform tomato plants by this cassette in order to produce an oral vaccine against shigellosis, anthrax and cholera. CTxB was used for these two antigens as an immune adjuvant. IpaD and PA20 genes were cloned in pBI121 containing the CTxB gene and Extensin signal peptide. In order to evaluate the transient expression of Shigellosis, Anthrax and Cholera antigens, agro-infiltrated tomato tissues were inoculated with Agrobacterium tumefaciens containing the gene cassette. Cloning was confirmed by PCR, enzymatic digestion and sequencing techniques. Expression of the antigens was examined by SDS-PAGE, dot blot and ELISA. Maturate green fruits demonstrated the highest expression of the recombinant proteins. The first phase of this study was carried out for cloning and expressing of CtxB, ipaD and PA20 antigens in tomato. In the next phase, we aim to analyze the immunogenicity of this vaccine candidate in laboratory animals.
Collapse
Affiliation(s)
- Jafari Davod
- Medical Biotechnology Department, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Biotechnology Department, Faculty of Agricultural and Natural Sciences, Imam Khomeini International University (IKIU), Qazvin, Iran
| | - Dehghan Nayeri Fatemeh
- Biotechnology Department, Faculty of Agricultural and Natural Sciences, Imam Khomeini International University (IKIU), Qazvin, Iran
| | - Hossein Honari
- Faculty of Basic Science, Imam Hussein University, Tehran, Iran
| | - Ramin Hosseini
- Biotechnology Department, Faculty of Agricultural and Natural Sciences, Imam Khomeini International University (IKIU), Qazvin, Iran
| |
Collapse
|
72
|
Cabron AS, El Azzouzi K, Boss M, Arnold P, Schwarz J, Rosas M, Dobert JP, Pavlenko E, Schumacher N, Renné T, Taylor PR, Linder S, Rose-John S, Zunke F. Structural and Functional Analyses of the Shedding Protease ADAM17 in HoxB8-Immortalized Macrophages and Dendritic-like Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:3106-3118. [PMID: 30355783 PMCID: PMC6215251 DOI: 10.4049/jimmunol.1701556] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 09/16/2018] [Indexed: 01/19/2023]
Abstract
A disintegrin and metalloproteinase (ADAM) 17 has been implicated in many shedding processes. Major substrates of ADAM17 are TNF-α, IL-6R, and ligands of the epidermal growth factor receptor. The essential role of the protease is emphasized by the fact that ADAM17 deficiency is lethal in mice. To study ADAM17 function in vivo, we generated viable hypomorphic ADAM17 mice called ADAM17ex/ex mice. Recent studies indicated regulation of proteolytic ADAM17 activity by cellular processes such as cytoplasmic phosphorylation and removal of the prodomain by furin cleavage. Maturation and thus activation of ADAM17 is not fully understood. So far, studies of ADAM17 maturation have been mainly limited to mouse embryonic fibroblasts or transfected cell lines relying on nonphysiologic stimuli such as phorbol esters, thus making interpretation of the results difficult in a physiologic context. In this article, we present a robust cell system to study ADAM17 maturation and function in primary cells of the immune system. To this end, HoxB8 conditionally immortalized macrophage precursor cell lines were derived from bone marrow of wild-type and hypomorphic ADAM17ex/ex mice, which are devoid of measurable ADAM17 activity. ADAM17 mutants were stably expressed in macrophage precursor cells, differentiated to macrophages under different growth factor conditions (M-CSF versus GM-CSF), and analyzed for cellular localization, proteolytic activity, and podosome disassembly. Our study reveals maturation and activity of ADAM17 in a more physiological-immune cell system. We show that this cell system can be further exploited for genetic modifications of ADAM17 and for studying its function in immune cells.
Collapse
Affiliation(s)
- Anne-Sophie Cabron
- Institute of Biochemistry, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Karim El Azzouzi
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany
| | - Melanie Boss
- Institute of Biochemistry, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Philipp Arnold
- Institute of Anatomy, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Jeanette Schwarz
- Institute of Biochemistry, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Marcela Rosas
- Division of Infection and Immunity, Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff CF10 3AT, United Kingdom
| | - Jan Philipp Dobert
- Institute of Biochemistry, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Egor Pavlenko
- Institute of Biochemistry, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Neele Schumacher
- Institute of Biochemistry, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Thomas Renné
- Department of Molecular Medicine and Surgery, Karolinska Institutet and University Hospital, Solna, SE-171 76 Stockholm, Sweden; and
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Philip R Taylor
- Division of Infection and Immunity, Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff CF10 3AT, United Kingdom
| | - Stefan Linder
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany;
| | - Friederike Zunke
- Institute of Biochemistry, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany;
| |
Collapse
|
73
|
Investigation on the processing and improving the cleavage efficiency of furin cleavage sites in Pichia pastoris. Microb Cell Fact 2018; 17:172. [PMID: 30409181 PMCID: PMC6223083 DOI: 10.1186/s12934-018-1020-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/31/2018] [Indexed: 12/21/2022] Open
Abstract
Background Proprotein convertase furin is responsible for the processing of a wide variety of precursors consisted of signal peptide, propeptide and mature peptide in mammal. Many precursors processed by furin have important physiological functions and can be recombinantly expressed in Pichia pastoris expression system for research, pharmaceutical and vaccine applications. However, it is not clear whether the furin cleavage sites between the propeptide and mature peptide can be properly processed in P. pastoris, bringing uncertainty for proper expression of the coding DNA sequences of furin precursors containing the propeptides and mature peptides. Results In this study, we evaluated the ability of P. pastoris to process furin cleavage sites and how to improve the cleavage efficiencies of furin cleavage sites in P. pastoris. The results showed that P. pastoris can process furin cleavage sites but the cleavage efficiencies are not high. Arg residue at position P1 or P4 in furin cleavage sites significantly affect cleavage efficiency in P. pastoris. Kex2 protease, but not YPS1, in P. pastoris is responsible for processing furin cleavage sites. Heterologous expression of furin or overexpression of Kex2 in P. pastoris effectively increased cleavage efficiencies of furin cleavage sites. Conclusions Our investigation on the processing of furin cleavage sites provides important information for recombinant expression of furin precursors in P. pastoris. Furin or Kex2 overexpressing strains may be good choices for expressing precursors processed by furin in P. pastoris.
Collapse
|
74
|
Influence of organic solvents on the furin activity. UKRAINIAN BIOCHEMICAL JOURNAL 2018. [DOI: 10.15407/ubj90.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
75
|
Preadaptation of Simian Immunodeficiency Virus SIVsmm Facilitated Env-Mediated Counteraction of Human Tetherin by Human Immunodeficiency Virus Type 2. J Virol 2018; 92:JVI.00276-18. [PMID: 29976668 DOI: 10.1128/jvi.00276-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/23/2018] [Indexed: 12/14/2022] Open
Abstract
The host restriction factor tetherin inhibits virion release from infected cells and poses a significant barrier to successful zoonotic transmission of primate lentiviruses to humans. While most simian immunodeficiency viruses (SIV), including the direct precursors of human immunodeficiency virus type 1 (HIV-1) and HIV-2, use their Nef protein to counteract tetherin in their natural hosts, they fail to antagonize the human tetherin ortholog. Pandemic HIV-1 group M and epidemic group O strains overcame this hurdle by adapting their Vpu and Nef proteins, respectively, whereas HIV-2 group A uses its envelope (Env) glycoprotein to counteract human tetherin. Whether or how the remaining eight groups of HIV-2 antagonize this antiviral factor has remained unclear. Here, we show that Nef proteins from diverse groups of HIV-2 do not or only modestly antagonize human tetherin, while their ability to downmodulate CD3 and CD4 is highly conserved. Experiments in transfected cell lines and infected primary cells revealed that not only Env proteins of epidemic HIV-2 group A but also those of a circulating recombinant form (CRF01_AB) and rare groups F and I decrease surface expression of human tetherin and significantly enhance progeny virus release. Intriguingly, we found that many SIVsmm Envs also counteract human as well as smm tetherin. Thus, Env-mediated tetherin antagonism in different groups of HIV-2 presumably stems from a preadaptation of their SIVsmm precursors to humans. In summary, we identified a phenotypic trait of SIVsmm that may have facilitated its successful zoonotic transmission to humans and the emergence of HIV-2.IMPORTANCE HIV-2 groups A to I resulted from nine independent cross-species transmission events of SIVsmm to humans and differ considerably in their prevalence and geographic spread. Thus, detailed characterization of these viruses offers a valuable means to elucidate immune evasion mechanisms and human-specific adaptations determining viral spread. In a systematic comparison of rare and epidemic HIV-2 groups and their simian SIVsmm counterparts, we found that the ability of Nef to downmodulate the primary viral entry receptor CD4 and the T cell receptor CD3 is conserved, while effects on CD28, CD74, and major histocompatibility complex class I surface expression vary considerably. Furthermore, we show that not only the Env proteins of HIV-2 groups A, AB, F, and I but also those of some SIVsmm isolates antagonize human tetherin. This finding helps to explain why SIVsmm has been able to cross the species barrier to humans on at least nine independent occasions.
Collapse
|
76
|
Kalu N, Atsmon-Raz Y, Momben Abolfath S, Lucas L, Kenney C, Leppla SH, Tieleman DP, Nestorovich EM. Effect of late endosomal DOBMP lipid and traditional model lipids of electrophysiology on the anthrax toxin channel activity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2192-2203. [PMID: 30409515 DOI: 10.1016/j.bbamem.2018.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/09/2018] [Accepted: 08/19/2018] [Indexed: 01/26/2023]
Abstract
Anthrax toxin action requires triggering of natural endocytic transport mechanisms whereby the binding component of the toxin forms channels (PA63) within endosomal limiting and intraluminal vesicle membranes to deliver the toxin's enzymatic components into the cytosol. Membrane lipid composition varies at different stages of anthrax toxin internalization, with intraluminal vesicle membranes containing ~70% of anionic bis(monoacylglycero)phosphate lipid. Using model bilayer measurements, we show that membrane lipids can have a strong effect on the anthrax toxin channel properties, including the channel-forming activity, voltage-gating, conductance, selectivity, and enzymatic factor binding. Interestingly, the highest PA63 insertion rate was observed in bis(monoacylglycero)phosphate membranes. The molecular dynamics simulation data show that the conformational properties of the channel are different in bis(monoacylglycero)phosphate compared to PC, PE, and PS lipids. The anthrax toxin protein/lipid bilayer system can be advanced as a novel robust model to directly investigate lipid influence on membrane protein properties and protein/protein interactions.
Collapse
Affiliation(s)
- Nnanya Kalu
- Department of Biology, The Catholic University of America, 620 Michigan Ave NE, Washington 20064, DC, USA
| | - Yoav Atsmon-Raz
- Department of Biological Sciences, Centre for Molecular Simulation, University of Calgary, 2500 University Drive NW, Calgary T2N 1N4, Alberta, Canada.
| | - Sanaz Momben Abolfath
- Department of Biology, The Catholic University of America, 620 Michigan Ave NE, Washington 20064, DC, USA
| | - Laura Lucas
- Department of Biology, The Catholic University of America, 620 Michigan Ave NE, Washington 20064, DC, USA
| | - Clare Kenney
- Department of Biology, The Catholic University of America, 620 Michigan Ave NE, Washington 20064, DC, USA
| | - Stephen H Leppla
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda 20892, MD, USA
| | - D Peter Tieleman
- Department of Biological Sciences, Centre for Molecular Simulation, University of Calgary, 2500 University Drive NW, Calgary T2N 1N4, Alberta, Canada
| | - Ekaterina M Nestorovich
- Department of Biology, The Catholic University of America, 620 Michigan Ave NE, Washington 20064, DC, USA.
| |
Collapse
|
77
|
Hoffmann HH, Schneider WM, Blomen VA, Scull MA, Hovnanian A, Brummelkamp TR, Rice CM. Diverse Viruses Require the Calcium Transporter SPCA1 for Maturation and Spread. Cell Host Microbe 2018; 22:460-470.e5. [PMID: 29024641 DOI: 10.1016/j.chom.2017.09.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/05/2017] [Accepted: 09/06/2017] [Indexed: 10/18/2022]
Abstract
Respiratory and arthropod-borne viral infections are a global threat due to the lack of effective antivirals and vaccines. A potential strategy is to target host proteins required for viruses but non-essential for the host. To identify such proteins, we performed a genome-wide knockout screen in human haploid cells and identified the calcium pump SPCA1. SPCA1 is required by viruses from the Paramyxoviridae, Flaviviridae, and Togaviridae families, including measles, dengue, West Nile, Zika, and chikungunya viruses. Calcium transport activity is required for SPCA1 to promote virus spread. SPCA1 regulates proteases within the trans-Golgi network that require calcium for their activity and are critical for virus glycoprotein maturation. Consistent with these findings, viral glycoproteins fail to mature in SPCA1-deficient cells preventing viral spread, which is evident even in cells with partial loss of SPCA1. Thus, SPCA1 is an attractive antiviral host target for a broad spectrum of established and emerging viral infections.
Collapse
Affiliation(s)
- H-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - William M Schneider
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Vincent A Blomen
- Biochemistry Division, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Margaret A Scull
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Alain Hovnanian
- INSERM UMR 1163 and Imagine Institute, 75015 Paris, France; Université Paris V Descartes - Sorbonne Paris Cité, 75006 Paris, France; Department of Genetics, Necker Hospital, 75015 Paris, France
| | - Thijn R Brummelkamp
- Biochemistry Division, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; Cancer Genomics Centre, 3584 CG Utrecht, The Netherlands
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
78
|
Shali A, Hasannia S, Gashtasbi F, Abdous M, Shahangian SS, Jalili S. Generation and screening of efficient neutralizing single domain antibodies (VHHs) against the critical functional domain of anthrax protective antigen (PA). Int J Biol Macromol 2018. [DOI: 10.1016/j.ijbiomac.2018.03.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
79
|
Harnessing post-translational modifications for next-generation HIV immunogens. Biochem Soc Trans 2018; 46:691-698. [PMID: 29784645 DOI: 10.1042/bst20170394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/10/2018] [Accepted: 04/17/2018] [Indexed: 12/12/2022]
Abstract
The extensive post-translational modifications of the envelope spikes of the human immunodeficiency virus (HIV) present considerable challenges and opportunities for HIV vaccine design. These oligomeric glycoproteins typically have over 30 disulfide bonds and around a 100 N-linked glycosylation sites, and are functionally dependent on protease cleavage within the secretory system. The resulting mature structure adopts a compact fold with the vast majority of its surface obscured by a protective shield of glycans which can be targeted by broadly neutralizing antibodies (bnAbs). Despite the notorious heterogeneity of glycosylation, rare B-cell lineages can evolve to utilize and cope with viral glycan diversity, and these structures therefore present promising targets for vaccine design. The latest generation of recombinant envelope spike mimetics contains re-engineered post-translational modifications to present stable antigens to guide the development of bnAbs by vaccination.
Collapse
|
80
|
Extracellular Conformational Changes in the Capsid of Human Papillomaviruses Contribute to Asynchronous Uptake into Host Cells. J Virol 2018; 92:JVI.02106-17. [PMID: 29593032 DOI: 10.1128/jvi.02106-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/17/2018] [Indexed: 11/20/2022] Open
Abstract
Human papillomavirus 16 (HPV16) is the leading cause of cervical cancer. For initial infection, HPV16 utilizes a novel endocytic pathway for host cell entry. Unique among viruses, uptake occurs asynchronously over a protracted period of time, with half-times between 9 and 12 h. To trigger endocytic uptake, the virus particles need to undergo a series of structural modifications after initial binding to heparan sulfate proteoglycans (HSPGs). These changes involve proteolytic cleavage of the major capsid protein L1 by kallikrein-8 (KLK8), exposure of the N terminus of the minor capsid protein L2 by cyclophilins, and cleavage of this N terminus by furin. Overall, the structural changes are thought to facilitate the engagement of an elusive secondary receptor for internalization. Here, we addressed whether structural changes are the rate-limiting steps during infectious internalization of HPV16 by using structurally primed HPV16 particles. Our findings indicate that the structural modifications mediated by cyclophilins and furin, which lead to exposure and cleavage, respectively, of the L2 N terminus contribute to the slow and asynchronous internalization kinetics, whereas conformational changes elicited by HSPG binding and KLK8 cleavage did not. However, these structural modifications accounted for only 30 to 50% of the delay in internalization. Therefore, we propose that limited internalization receptor availability for engagement of HPV16 causes slow and asynchronous internalization in addition to rate-limiting structural changes in the viral capsid.IMPORTANCE HPVs are the main cause of anogenital cancers. Their unique biology is linked to the differentiation program of skin or mucosa. Here, we analyzed another unique aspect of HPV infections using the prototype HPV16. After initial cell binding, HPVs display an unusually protracted residence time on the plasma membrane prior to asynchronous uptake. As viruses typically do not expose themselves to host immune sensing, we analyzed the underlying reasons for this unusual behavior. This study provides evidence that both extracellular structural modifications and possibly a limited availability of the internalization receptor contribute to the slow internalization process of the virus. These findings indicate that perhaps a unique niche for initial infection that could allow for rapid infection exists. In addition, our results may help to develop novel, preventive antiviral measures.
Collapse
|
81
|
Böttcher-Friebertshäuser E, Garten W, Klenk HD. Characterization of Proprotein Convertases and Their Involvement in Virus Propagation. ACTIVATION OF VIRUSES BY HOST PROTEASES 2018. [PMCID: PMC7122180 DOI: 10.1007/978-3-319-75474-1_9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Wolfgang Garten
- Institut für Virologie, Philipps Universität, Marburg, Germany
| | | |
Collapse
|
82
|
Klein T, Eckhard U, Dufour A, Solis N, Overall CM. Proteolytic Cleavage-Mechanisms, Function, and "Omic" Approaches for a Near-Ubiquitous Posttranslational Modification. Chem Rev 2017; 118:1137-1168. [PMID: 29265812 DOI: 10.1021/acs.chemrev.7b00120] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Proteases enzymatically hydrolyze peptide bonds in substrate proteins, resulting in a widespread, irreversible posttranslational modification of the protein's structure and biological function. Often regarded as a mere degradative mechanism in destruction of proteins or turnover in maintaining physiological homeostasis, recent research in the field of degradomics has led to the recognition of two main yet unexpected concepts. First, that targeted, limited proteolytic cleavage events by a wide repertoire of proteases are pivotal regulators of most, if not all, physiological and pathological processes. Second, an unexpected in vivo abundance of stable cleaved proteins revealed pervasive, functionally relevant protein processing in normal and diseased tissue-from 40 to 70% of proteins also occur in vivo as distinct stable proteoforms with undocumented N- or C-termini, meaning these proteoforms are stable functional cleavage products, most with unknown functional implications. In this Review, we discuss the structural biology aspects and mechanisms of catalysis by different protease classes. We also provide an overview of biological pathways that utilize specific proteolytic cleavage as a precision control mechanism in protein quality control, stability, localization, and maturation, as well as proteolytic cleavage as a mediator in signaling pathways. Lastly, we provide a comprehensive overview of analytical methods and approaches to study activity and substrates of proteolytic enzymes in relevant biological models, both historical and focusing on state of the art proteomics techniques in the field of degradomics research.
Collapse
Affiliation(s)
- Theo Klein
- Life Sciences Institute, Department of Oral Biological and Medical Sciences, and ‡Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - Ulrich Eckhard
- Life Sciences Institute, Department of Oral Biological and Medical Sciences, and ‡Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - Antoine Dufour
- Life Sciences Institute, Department of Oral Biological and Medical Sciences, and ‡Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - Nestor Solis
- Life Sciences Institute, Department of Oral Biological and Medical Sciences, and ‡Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - Christopher M Overall
- Life Sciences Institute, Department of Oral Biological and Medical Sciences, and ‡Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
83
|
Hasegawa-Minato J, Toyoshima M, Ishibashi M, Zhang X, Shigeta S, Grandori C, Kitatani K, Yaegashi N. Novel cooperative pathway of c-Myc and Furin, a pro-protein convertase, in cell proliferation as a therapeutic target in ovarian cancers. Oncotarget 2017; 9:3483-3496. [PMID: 29423060 PMCID: PMC5790477 DOI: 10.18632/oncotarget.23322] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/16/2017] [Indexed: 01/16/2023] Open
Abstract
c-Myc is a master regulator of various oncogenic functions in many types of human cancers. However, direct c-Myc-targeted therapy has not been successful in the clinic. Here, we explored a novel therapeutic target, which shows synthetic lethality in c-Myc-driven ovarian cancers, and examined the molecular mechanism of the synthetic lethal interaction. By high throughput siRNA screening with a library of 6,550 genes, Furin, a pro-protein convertase, was identified as the top hit gene. Furin inhibition by siRNA or a Furin inhibitor significantly suppressed cell proliferation in high c-Myc-expressing ovarian cancer cells compared with low c-Myc-expressing cells. Conversely, Furin overexpression in the presence of high c-Myc significantly promoted cell proliferation compared with only c-Myc or Furin overexpression. Notch1, one of the Furin substrates, was upregulated by c-Myc, and Notch1 cleaved by Furin increased cell proliferation of high c-Myc-expressing ovarian cancer cells. Notch1 was involved in the cooperative pathway of c-Myc and Furin in cell proliferation. In clinical ovarian cancer specimens, co-expression of c-Myc and Furin correlated with poor survival. In conclusion, we found that c-Myc cooperates with Furin to promote cell proliferation. Furin may be a promising therapeutic target in c-Myc-driven ovarian cancer.
Collapse
Affiliation(s)
- Junko Hasegawa-Minato
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masafumi Toyoshima
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masumi Ishibashi
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Xuewei Zhang
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shogo Shigeta
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Carla Grandori
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,SEngine Precision Medicine, Seattle, WA, USA
| | - Kazuyuki Kitatani
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Tohoku Medical Megabank Organization, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nobuo Yaegashi
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
84
|
Kalu N, Alcaraz A, Yamini G, Momben Abolfath S, Lucas L, Kenney C, Aguilella VM, Nestorovich EM. Effect of endosomal acidification on small ion transport through the anthrax toxin PA 63 channel. FEBS Lett 2017; 591:3481-3492. [PMID: 28963849 DOI: 10.1002/1873-3468.12866] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 11/12/2022]
Abstract
Tight regulation of pH is critical for the structure and function of cells and organelles. The pH environment changes dramatically along the endocytic pathway, an internalization transport process that is 'hijacked' by many intracellularly active bacterial exotoxins, including the anthrax toxin. Here, we investigate the role of pH on single-channel properties of the anthrax toxin protective antigen (PA63 ). Using conductance and current noise analysis, blocker binding, ion selectivity, and poly(ethylene glycol) partitioning measurements, we show that the channel exists in two different open states ('maximum' and 'main') at pH ≥ 5.5, while only a maximum conductance state is detected at pH < 5.5. We describe two substantially distinct patterns of PA63 conductance dependence on KCl concentration uncovered at pH 6.5 and 4.5.
Collapse
Affiliation(s)
- Nnanya Kalu
- Department of Biology, The Catholic University of America, Washington, DC, USA
| | - Antonio Alcaraz
- Laboratory of Molecular Biophysics, Department of Physics, Universitat Jaume I, Castellón, Spain
| | - Goli Yamini
- Department of Biology, The Catholic University of America, Washington, DC, USA
| | | | - Laura Lucas
- Department of Biology, The Catholic University of America, Washington, DC, USA
| | - Clare Kenney
- Department of Biology, The Catholic University of America, Washington, DC, USA
| | - Vicente M Aguilella
- Laboratory of Molecular Biophysics, Department of Physics, Universitat Jaume I, Castellón, Spain
| | | |
Collapse
|
85
|
Anderson EN, Wharton KA. Alternative cleavage of the bone morphogenetic protein (BMP), Gbb, produces ligands with distinct developmental functions and receptor preferences. J Biol Chem 2017; 292:19160-19178. [PMID: 28924042 DOI: 10.1074/jbc.m117.793513] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/14/2017] [Indexed: 12/27/2022] Open
Abstract
The family of TGF-β and bone morphogenetic protein (BMP) signaling proteins has numerous developmental and physiological roles. They are made as proprotein dimers and then cleaved by proprotein convertases to release the C-terminal domain as an active ligand dimer. Multiple proteolytic processing sites in Glass bottom boat (Gbb), the Drosophila BMP7 ortholog, can produce distinct ligand forms. Cleavage at the S1 or atypical S0 site in Gbb produces Gbb15, the conventional small BMP ligand, whereas NS site cleavage produces a larger Gbb38 ligand. We hypothesized that the Gbb prodomain is involved not only in regulating the production of specific ligands but also their signaling output. We found that blocking NS cleavage increased association of the full-length prodomain with Gbb15, resulting in a concomitant decrease in signaling activity. Moreover, NS cleavage was required in vivo for Gbb-Decapentaplegic (Dpp) heterodimer-mediated wing vein patterning but not for Gbb15-Dpp heterodimer activity in cell culture. Gbb NS cleavage was also required for viability through its regulation of pupal ecdysis in a type II receptor Wishful thinking (Wit)-dependent manner. In fact, Gbb38-mediated signaling exhibits a preference for Wit over the other type II receptor Punt. Finally, we discovered that Gbb38 is produced when processing at the S1/S0 site is blocked by O-linked glycosylation in third instar larvae. Our findings demonstrate that BMP prodomain cleavage ensures that the mature ligand is not inhibited by the prodomain. Furthermore, alternative processing of BMP proproteins produces ligands that signal through different receptors and exhibit specific developmental functions.
Collapse
Affiliation(s)
- Edward N Anderson
- From the Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912
| | - Kristi A Wharton
- From the Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
86
|
Reihill JA, Walker B, Hamilton RA, Ferguson TEG, Elborn JS, Stutts MJ, Harvey BJ, Saint-Criq V, Hendrick SM, Martin SL. Inhibition of Protease-Epithelial Sodium Channel Signaling Improves Mucociliary Function in Cystic Fibrosis Airways. Am J Respir Crit Care Med 2017; 194:701-10. [PMID: 27014936 DOI: 10.1164/rccm.201511-2216oc] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE In cystic fibrosis (CF) a reduction in airway surface liquid (ASL) height compromises mucociliary clearance, favoring mucus plugging and chronic bacterial infection. Inhibitors of the epithelial sodium channel (ENaC) have therapeutic potential in CF airways to reduce hyperstimulated sodium and fluid absorption to levels that can restore airway hydration. OBJECTIVES To determine whether a novel compound (QUB-TL1) designed to inhibit protease/ENaC signaling in CF airways restores ASL volume and mucociliary function. METHODS Protease activity was measured using fluorogenic activity assays. Differentiated primary airway epithelial cell cultures (F508del homozygotes) were used to determined ENaC activity (Ussing chamber recordings), ASL height (confocal microscopy), and mucociliary function (by tracking the surface flow of apically applied microbeads). Cell toxicity was measured using a lactate dehydrogenase assay. MEASUREMENTS AND MAIN RESULTS QUB-TL1 inhibits extracellularly located channel activating proteases (CAPs), including prostasin, matriptase, and furin, the activities of which are observed at excessive levels at the apical surface of CF airway epithelial cells. QUB-TL1-mediated CAP inhibition results in diminished ENaC-mediated Na(+) absorption in CF airway epithelial cells caused by internalization of a prominent pool of cleaved (active) ENaCγ from the cell surface. Importantly, diminished ENaC activity correlates with improved airway hydration status and mucociliary clearance. We further demonstrate QUB-TL1-mediated furin inhibition, which is in contrast to other serine protease inhibitors (camostat mesylate and aprotinin), affords protection against neutrophil elastase-mediated ENaC activation and Pseudomonas aeruginosa exotoxin A-induced cell death. CONCLUSIONS QUB-TL1 corrects aberrant CAP activities, providing a mechanism to delay or prevent the development of CF lung disease in a manner independent of CF transmembrane conductance regulator mutation.
Collapse
Affiliation(s)
- James A Reihill
- 1 Biomolecular Sciences Research Group, School of Pharmacy, and
| | - Brian Walker
- 1 Biomolecular Sciences Research Group, School of Pharmacy, and
| | | | | | - J Stuart Elborn
- 2 School of Medicine, Dentistry & Biomedical Sciences, Queen's University, Belfast, Northern Ireland, United Kingdom
| | - M Jackson Stutts
- 3 Marsico Lung Institute and Cystic Fibrosis Center, University of North Carolina, Chapel Hill, North Carolina; and
| | - Brian J Harvey
- 4 Department of Molecular Medicine, Royal College of Surgeons in Ireland, RCSI-ERC Beaumont Hospital, Dublin, Ireland
| | - Vinciane Saint-Criq
- 4 Department of Molecular Medicine, Royal College of Surgeons in Ireland, RCSI-ERC Beaumont Hospital, Dublin, Ireland
| | - Siobhan M Hendrick
- 4 Department of Molecular Medicine, Royal College of Surgeons in Ireland, RCSI-ERC Beaumont Hospital, Dublin, Ireland
| | | |
Collapse
|
87
|
Comparative Studies of Actin- and Rho-Specific ADP-Ribosylating Toxins: Insight from Structural Biology. Curr Top Microbiol Immunol 2017; 399:69-86. [PMID: 27540723 DOI: 10.1007/82_2016_23] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mono-ADP-ribosylation is a major post-translational modification performed by bacterial toxins, which transfer an ADP-ribose moiety to a substrate acceptor residue. Actin- and Rho-specific ADP-ribosylating toxins (ARTs) are typical ARTs known to have very similar tertiary structures but totally different targets. Actin-specific ARTs are the A components of binary toxins, ADP-ribosylate actin at Arg177, leading to the depolymerization of the actin cytoskeleton. On the other hand, C3-like exoenzymes are Rho-specific ARTs, ADP-ribosylate Rho GTPases at Asn41, exerting an indirect effect on the actin cytoskeleton. This review focuses on the differences and similarities of actin- and Rho-specific ARTs, especially with respect to their substrate recognition and cell entry mechanisms, based on structural studies.
Collapse
|
88
|
Abstract
Most viruses in the genus Flavivirus are horizontally transmitted between hematophagous arthropods and vertebrate hosts, but some are maintained in arthropod- or vertebrate-restricted transmission cycles. Flaviviruses maintained by vertebrate-only transmission are commonly referred to as no known vector (NKV) flaviviruses. Fourteen species and two subtypes of NKV flaviviruses are recognized by the International Committee on Taxonomy of Viruses (ICTV), and Tamana bat virus potentially belongs to this group. NKV flaviviruses have been isolated in nature almost exclusively from bats and rodents; exceptions are the two isolates of Dakar bat virus recovered from febrile humans and the recent isolations of Sokoluk virus from field-collected ticks, which raises questions as to whether it should remain classified as an NKV flavivirus. There is evidence to suggest that two other NKV flaviviruses, Entebbe bat virus and Yokose virus, may also infect arthropods in nature. The best characterized bat- and rodent-associated NKV flaviviruses are Rio Bravo and Modoc viruses, respectively, but both have received limited research attention compared to many of their arthropod-infecting counterparts. Herein, we provide a comprehensive review of NKV flaviviruses, placing a particular emphasis on their classification, host range, geographic distribution, replication kinetics, pathogenesis, transmissibility and molecular biology.
Collapse
|
89
|
Briese T, Loroño-Pino MA, Garcia-Rejon JE, Farfan-Ale JA, Machain-Williams C, Dorman KS, Lipkin WI, Blitvich BJ. Complete genome sequence of T'Ho virus, a novel putative flavivirus from the Yucatan Peninsula of Mexico. Virol J 2017; 14:110. [PMID: 28606155 PMCID: PMC5469153 DOI: 10.1186/s12985-017-0777-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 06/06/2017] [Indexed: 11/10/2022] Open
Abstract
Background We previously reported the discovery of a novel, putative flavivirus designated T’Ho virus in Culex quinquefasciatus mosquitoes in the Yucatan Peninsula of Mexico. A 1358-nt region of the NS5 gene was amplified and sequenced but an isolate was not recovered. Results The complete genome of T’Ho virus was sequenced using a combination of unbiased high-throughput sequencing, 5′ and 3′ rapid amplification of cDNA ends, reverse transcription-polymerase chain reaction and Sanger sequencing. The genome contains a single open reading frame of 10,284 nt which is flanked by 5′ and 3′ untranslated regions of 97 and 556-nt, respectively. Genome sequence alignments revealed that T’Ho virus is most closely related to Rocio virus (67.4% nucleotide identity) and Ilheus virus (65.9%), both of which belong to the Ntaya group, followed by other Ntaya group viruses (58.8–63.3%) and Japanese encephalitis group viruses (62.0–63.7%). Phylogenetic inference is in agreement with these findings. Conclusions This study furthers our understanding of flavivirus genetics, phylogeny and diagnostics. Because the two closest known relatives of T’Ho virus are human pathogens, T’Ho virus could be an unrecognized cause of human disease. It is therefore important that future studies investigate the public health significance of this virus.
Collapse
Affiliation(s)
- Thomas Briese
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Maria A Loroño-Pino
- Laboratorio de Arbovirología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Julian E Garcia-Rejon
- Laboratorio de Arbovirología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Jose A Farfan-Ale
- Laboratorio de Arbovirología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Carlos Machain-Williams
- Laboratorio de Arbovirología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Karin S Dorman
- Departments of Statistics and Genetics, Development and Cell Biology, College of Liberal Arts and Sciences and College Agriculture and Life Sciences, Iowa State University, Ames, IA, USA
| | - W Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Bradley J Blitvich
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
90
|
Solovyeva NI, Gureeva TA, Timoshenko OS, Moskvitina TA, Kugaevskaya EV. Furin as proprotein convertase and its role in normal and pathological biological processes. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2017. [DOI: 10.1134/s1990750817020081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
91
|
Jaaks P, Bernasconi M. The proprotein convertase furin in tumour progression. Int J Cancer 2017; 141:654-663. [PMID: 28369813 DOI: 10.1002/ijc.30714] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 03/06/2017] [Accepted: 03/23/2017] [Indexed: 01/17/2023]
Abstract
Proprotein convertases are proteases that have been implicated in the activation of a wide variety of proteins. These proteins are generally synthesised as precursor proteins and require limited proteolysis for conversion into their mature bioactive counterparts. Many of these proteins, including metalloproteases, growth factors and their receptors or adhesion molecules, have been shown to facilitate tumour formation and progression. Hence, this review will focus on the proprotein convertase furin and its role in cancer. The expression of furin has been confirmed in a large spectrum of cancers such as head and neck squamous cell carcinoma, breast cancer and rhabdomyosarcoma. Functional studies modulating furin activity uncovered its importance for the processing of many cancer-related substrates and strongly indicate that high furin activity promotes the malignant phenotype of cancer cells. In this review, we summarise the expression and function of furin in different cancer types, discuss its role in processing cancer-related proproteins and give examples of potential therapeutic approaches that take advantage of the proteolytic activity of furin in cancer cells.
Collapse
Affiliation(s)
- Patricia Jaaks
- Department of Oncology, University Children's Hospital Zurich, Zurich, Switzerland.,Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Michele Bernasconi
- Department of Oncology, University Children's Hospital Zurich, Zurich, Switzerland.,Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
92
|
Roveri M, Pfohl A, Jaaks P, Alijaj N, Leroux JC, Luciani P, Bernasconi M. Prolonged circulation and increased tumor accumulation of liposomal vincristine in a mouse model of rhabdomyosarcoma. Nanomedicine (Lond) 2017; 12:1135-1151. [PMID: 28447920 DOI: 10.2217/nnm-2017-0430] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
AIM Our goal was to improve vincristine (VCR) based rhabdomyosarcoma (RMS) therapy by encapsulating the drug into liposomes. A targeting strategy was attempted to enhance tumor accumulation. MATERIALS & METHODS VCR was loaded in control and peptide-decorated liposomes via an active method. The interaction of an RMS-specific peptide with the presumed target furin and the cellular uptake of both liposomal groups were studied in vitro. Pharmacokinetics and biodistribution of VCR-containing liposomes were assessed in an RMS xenograft mouse model. RESULTS Liposomes ensured high VCR concentration in plasma and in the tumor. Peptide-decorated liposomes showed modest uptake in RMS cells. CONCLUSION The investigated peptide-modified liposomal formulation may not be optimal for furin-mediated RMS targeting. Nevertheless, VCR-loaded liposomes could serve as a delivery platform for experimental RMS.
Collapse
Affiliation(s)
- Maurizio Roveri
- Experimental Infectious Diseases & Cancer Research, University Children's Hospital Zurich, 8008 Zurich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, 8032 Zurich, Switzerland.,Department of Chemistry & Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Alice Pfohl
- Experimental Infectious Diseases & Cancer Research, University Children's Hospital Zurich, 8008 Zurich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, 8032 Zurich, Switzerland.,Department of Chemistry & Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Patricia Jaaks
- Experimental Infectious Diseases & Cancer Research, University Children's Hospital Zurich, 8008 Zurich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Nagjie Alijaj
- Experimental Infectious Diseases & Cancer Research, University Children's Hospital Zurich, 8008 Zurich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Jean-Christophe Leroux
- Department of Chemistry & Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Paola Luciani
- Department of Chemistry & Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, 8093 Zurich, Switzerland.,Department of Pharmaceutical Technology, Institute of Pharmacy, Friedrich Schiller University, 07743 Jena, Germany
| | - Michele Bernasconi
- Experimental Infectious Diseases & Cancer Research, University Children's Hospital Zurich, 8008 Zurich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| |
Collapse
|
93
|
The Molecular Basis of Toxins' Interactions with Intracellular Signaling via Discrete Portals. Toxins (Basel) 2017; 9:toxins9030107. [PMID: 28300784 PMCID: PMC5371862 DOI: 10.3390/toxins9030107] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/02/2017] [Accepted: 03/04/2017] [Indexed: 12/20/2022] Open
Abstract
An understanding of the molecular mechanisms by which microbial, plant or animal-secreted toxins exert their action provides the most important element for assessment of human health risks and opens new insights into therapies addressing a plethora of pathologies, ranging from neurological disorders to cancer, using toxinomimetic agents. Recently, molecular and cellular biology dissecting tools have provided a wealth of information on the action of these diverse toxins, yet, an integrated framework to explain their selective toxicity is still lacking. In this review, specific examples of different toxins are emphasized to illustrate the fundamental mechanisms of toxicity at different biochemical, molecular and cellular- levels with particular consideration for the nervous system. The target of primary action has been highlighted and operationally classified into 13 sub-categories. Selected examples of toxins were assigned to each target category, denominated as portal, and the modulation of the different portal’s signaling was featured. The first portal encompasses the plasma membrane lipid domains, which give rise to pores when challenged for example with pardaxin, a fish toxin, or is subject to degradation when enzymes of lipid metabolism such as phospholipases A2 (PLA2) or phospholipase C (PLC) act upon it. Several major portals consist of ion channels, pumps, transporters and ligand gated ionotropic receptors which many toxins act on, disturbing the intracellular ion homeostasis. Another group of portals consists of G-protein-coupled and tyrosine kinase receptors that, upon interaction with discrete toxins, alter second messengers towards pathological levels. Lastly, subcellular organelles such as mitochondria, nucleus, protein- and RNA-synthesis machineries, cytoskeletal networks and exocytic vesicles are also portals targeted and deregulated by other diverse group of toxins. A fundamental concept can be drawn from these seemingly different toxins with respect to the site of action and the secondary messengers and signaling cascades they trigger in the host. While the interaction with the initial portal is largely determined by the chemical nature of the toxin, once inside the cell, several ubiquitous second messengers and protein kinases/ phosphatases pathways are impaired, to attain toxicity. Therefore, toxins represent one of the most promising natural molecules for developing novel therapeutics that selectively target the major cellular portals involved in human physiology and diseases.
Collapse
|
94
|
Zhang Y, Zhou M, Wei H, Zhou H, He J, Lu Y, Wang D, Chen B, Zeng J, Peng W, Du F, Gong A, Xu M. Furin promotes epithelial-mesenchymal transition in pancreatic cancer cells via Hippo-YAP pathway. Int J Oncol 2017; 50:1352-1362. [PMID: 28259973 DOI: 10.3892/ijo.2017.3896] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/20/2017] [Indexed: 11/06/2022] Open
Abstract
Furin, a well-characterized proprotein convertase, plays an important role in many diseases and links to tumor metastasis. However, the role of furin in pancreatic cancer progression remains to be elucidated. In the present study, we found that furin promotes the growth and the epithelial-mesenchymal transition (EMT) of pancreatic cancer cells. First, we found that furin knockdown significantly inhibited proliferation, invasion and migration in BxPC3 and SW1990 cells, while furin overexpression promoted the above behavior in PANC1 and PaTu8988 cells. Further evidence revealed that furin knockdown resulted in the upregulation of E-cadherin (epithelial marker), and the downregulation of N-cadherin and Vimentin (mesenchymal markers) in BxPC3 and SW1990 cells, whereas furin overexpression remarkably led to the opposite effects in PANC1 and PaTu8988 cells. Furthermore, our data showed that Furin knockdown, furin inhibitor D6R or overexpression significantly affected YAP phosphoration level and total YAP protein level, indicating that furin was involved in Hippo-YAP pathway. It is suggested that furin promotes epithelial-mesenchymal transition in pancreatic cancer cells probably via Hippo-YAP pathway and may be a potential target for anti-pancreatic cancer.
Collapse
Affiliation(s)
- Youli Zhang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Meng Zhou
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Hong Wei
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Hailang Zhou
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Junbo He
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Ying Lu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Dawei Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Baoding Chen
- Department of Ultrasound Diagnosis, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Jian Zeng
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Wanxin Peng
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Fengyi Du
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Aihua Gong
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| |
Collapse
|
95
|
Head BM, Rubinstein E, Meyers AFA. Alternative pre-approved and novel therapies for the treatment of anthrax. BMC Infect Dis 2016; 16:621. [PMID: 27809794 PMCID: PMC5094018 DOI: 10.1186/s12879-016-1951-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 10/22/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacillus anthracis, the causative agent of anthrax, is a spore forming and toxin producing rod-shaped bacterium that is classified as a category A bioterror agent. This pathogenic microbe can be transmitted to both animals and humans. Clinical presentation depends on the route of entry (direct contact, ingestion, injection or aerosolization) with symptoms ranging from isolated skin infections to more severe manifestations such as cardiac or pulmonary shock, meningitis, and death. To date, anthrax is treatable if antibiotics are administered promptly and continued for 60 days. However, if treatment is delayed or administered improperly, the patient's chances of survival are decreased drastically. In addition, antibiotics are ineffective against the harmful anthrax toxins and spores. Therefore, alternative therapeutics are essential. In this review article, we explore and discuss advances that have been made in anthrax therapy with a primary focus on alternative pre-approved and novel antibiotics as well as anti-toxin therapies. METHODS A literature search was conducted using the University of Manitoba search engine. Using this search engine allowed access to a greater variety of journals/articles that would have otherwise been restricted for general use. In order to be considered for discussion for this review, all articles must have been published later than 2009. RESULTS The alternative pre-approved antibiotics demonstrated high efficacy against B. anthracis both in vitro and in vivo. In addition, the safety profile and clinical pharmacology of these drugs were already known. Compounds that targeted underexploited bacterial processes (DNA replication, RNA synthesis, and cell division) were also very effective in combatting B. anthracis. In addition, these novel compounds prevented bacterial resistance. Targeting B. anthracis virulence, more specifically the anthrax toxins, increased the length of which treatment could be administered. CONCLUSIONS Several novel and pre-existing antibiotics, as well as toxin inhibitors, have shown increasing promise. A combination treatment that targets both bacterial growth and toxin production would be ideal and probably necessary for effectively combatting this armed bacterium.
Collapse
Affiliation(s)
- Breanne M. Head
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9 Canada
| | - Ethan Rubinstein
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9 Canada
| | - Adrienne F. A. Meyers
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9 Canada
- National Laboratory for HIV Immunology, JC Wilt Infectious Disease Research Centre, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
96
|
Zilbermintz L, Leonardi W, Tran SH, Zozaya J, Mathew-Joseph A, Liem S, Levitin A, Martchenko M. Cross-inhibition of pathogenic agents and the host proteins they exploit. Sci Rep 2016; 6:34846. [PMID: 27703274 PMCID: PMC5050486 DOI: 10.1038/srep34846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/19/2016] [Indexed: 11/09/2022] Open
Abstract
The major limitations of pathogen-directed therapies are the emergence of drug-resistance and their narrow spectrum of coverage. A recently applied approach directs therapies against host proteins exploited by pathogens in order to circumvent these limitations. However, host-oriented drugs leave the pathogens unaffected and may result in continued pathogen dissemination. In this study we aimed to discover drugs that could simultaneously cross-inhibit pathogenic agents, as well as the host proteins that mediate their lethality. We observed that many pathogenic and host-assisting proteins belong to the same functional class. In doing so we targeted a protease component of anthrax toxin as well as host proteases exploited by this toxin. We identified two approved drugs, ascorbic acid 6-palmitate and salmon sperm protamine, that effectively inhibited anthrax cytotoxic protease and demonstrated that they also block proteolytic activities of host furin, cathepsin B, and caspases that mediate toxin's lethality in cells. We demonstrated that these drugs are broad-spectrum and reduce cellular sensitivity to other bacterial toxins that require the same host proteases. This approach should be generally applicable to the discovery of simultaneous pathogen and host-targeting inhibitors of many additional pathogenic agents.
Collapse
Affiliation(s)
| | | | | | - Josue Zozaya
- Keck Graduate Institute, Claremont, CA 91711, USA
| | | | - Spencer Liem
- Keck Graduate Institute, Claremont, CA 91711, USA
| | | | | |
Collapse
|
97
|
Manfredi MA, Antunes AA, Jesus LDOP, Juliano MA, Juliano L, Judice WADS. Specificity characterization of the α-mating factor hormone by Kex2 protease. Biochimie 2016; 131:149-158. [PMID: 27720750 DOI: 10.1016/j.biochi.2016.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/04/2016] [Accepted: 10/04/2016] [Indexed: 10/20/2022]
Abstract
Kex2 is a Ca2+-dependent serine protease from S. cerevisiae. Characterization of the substrate specificity of Kex2 is of particular interest because this protease serves as the prototype of a large family of eukaryotic subtilisin-related proprotein-processing proteases that cleave sites consisting of pairs or clusters of basic residues. Our goal was to study the prime region subsite S' of Kex2 because previous studies have only taken into account non-prime sites using AMC substrates but not the specificity of prime sites identified through structural modeling or predicted cleavage sites. Therefore, we used peptides derived from Abz-KR↓EADQ-EDDnp and Abz-YKR↓EADQ-EDDnp based on the pro-α-mating factor sequence. The specificity of Kex2 due to basic residues at P1' is affected by the type of residue in the P3 position. Some residues in P1' with large or bulky side chains yielded poor substrate specificity. The kcat/KM values for peptides with P2' substitutions containing Tyr in P3 were higher than those obtained for the peptides without Tyr. In fact, P' and P modifications mainly promoted changes in kcat and KM, respectively. The pH profile of Kex2 was fit to a double-sigmoidal pH-titration curve. The specificity results suggest that Kex2 might be involved in the processing of the putative cleavage sites in a polypeptide involved in cell elongation, hyphal formation and the processing of a toxin, which result in host cell lysis. In summary, the specificity of Kex2 is dependent on the set of interactions with prime and non-prime subsites, resulting in synergism.
Collapse
Affiliation(s)
- Marcella Araújo Manfredi
- Centro Interdisciplinar de Investigação Bioquímica, Universidade de Mogi das Cruzes - UMC, Mogi das Cruzes, SP, Brazil
| | - Alyne Alexandrino Antunes
- Centro Interdisciplinar de Investigação Bioquímica, Universidade de Mogi das Cruzes - UMC, Mogi das Cruzes, SP, Brazil
| | | | - Maria Aparecida Juliano
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100, São Paulo, SP, 04044-020, Brazil
| | - Luiz Juliano
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100, São Paulo, SP, 04044-020, Brazil
| | - Wagner Alves de Souza Judice
- Centro Interdisciplinar de Investigação Bioquímica, Universidade de Mogi das Cruzes - UMC, Mogi das Cruzes, SP, Brazil.
| |
Collapse
|
98
|
Structure of the unliganded form of the proprotein convertase furin suggests activation by a substrate-induced mechanism. Proc Natl Acad Sci U S A 2016; 113:11196-11201. [PMID: 27647913 DOI: 10.1073/pnas.1613630113] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Proprotein convertases (PCs) are highly specific proteases required for the proteolytic modification of many secreted proteins. An unbalanced activity of these enzymes is connected to pathologies like cancer, atherosclerosis, hypercholesterolaemia, and infectious diseases. Novel protein crystallographic structures of the prototypical PC family member furin in different functional states were determined to 1.8-2.0 Å. These, together with biochemical data and modeling by molecular dynamics calculations, suggest essential elements underlying its unusually high substrate specificity. Furin shows a complex activation mechanism and exists in at least four defined states: (i) the "off state," incompatible with substrate binding as seen in the unliganded enzyme; (ii) the active "on state" seen in inhibitor-bound furin; and the respective (iii) calcium-free and (iv) calcium-bound forms. The transition from the off to the on state is triggered by ligand binding at subsites S1 to S4 and appears to underlie the preferential recognition of the four-residue sequence motif of furin. The molecular dynamics simulations of the four structural states reflect the experimental observations in general and provide approximations of the respective stabilities. Ligation by calcium at the PC-specific binding site II influences the active-site geometry and determines the rotamer state of the oxyanion hole-forming Asn295, and thus adds a second level of the activity modulation of furin. The described crystal forms and the observations of different defined functional states may foster the development of new tools and strategies for pharmacological intervention targeting furin.
Collapse
|
99
|
Davis MR, Arner E, Duffy CRE, De Sousa PA, Dahlman I, Arner P, Summers KM. Expression of FBN1 during adipogenesis: Relevance to the lipodystrophy phenotype in Marfan syndrome and related conditions. Mol Genet Metab 2016; 119:174-85. [PMID: 27386756 PMCID: PMC5044862 DOI: 10.1016/j.ymgme.2016.06.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/18/2016] [Accepted: 06/18/2016] [Indexed: 01/27/2023]
Abstract
Fibrillin-1 is a large glycoprotein encoded by the FBN1 gene in humans. It provides strength and elasticity to connective tissues and is involved in regulating the bioavailability of the growth factor TGFβ. Mutations in FBN1 may be associated with depleted or abnormal adipose tissue, seen in some patients with Marfan syndrome and lipodystrophies. As this lack of adipose tissue does not result in high morbidity or mortality, it is generally under-appreciated, but is a cause of psychosocial problems particularly to young patients. We examined the role of fibrillin-1 in adipogenesis. In inbred mouse strains we found significant variation in the level of expression in the Fbn1 gene that correlated with variation in several measures of body fat, suggesting that mouse fibrillin-1 is associated with the level of fat tissue. Furthermore, we found that FBN1 mRNA was up-regulated in the adipose tissue of obese women compared to non-obese, and associated with an increase in adipocyte size. We used human mesenchymal stem cells differentiated in culture to adipocytes to show that fibrillin-1 declines after the initiation of differentiation. Gene expression results from a similar experiment (available through the FANTOM5 project) revealed that the decline in fibrillin-1 protein was paralleled by a decline in FBN1 mRNA. Examination of the FBN1 gene showed that the region commonly affected in FBN1-associated lipodystrophy is highly conserved both across the three human fibrillin genes and across genes encoding fibrillin-1 in vertebrates. These results suggest that fibrillin-1 is involved as the undifferentiated mesenchymal stem cells transition to adipogenesis but then declines as the developing adipocytes take on their final phenotype. Since the C-terminal peptide of fibrillin-1 is a glucogenic hormone, individuals with low fibrillin-1 (for example with FBN1 mutations associated with lipodystrophy) may fail to differentiate adipocytes and/or to accumulate adipocyte lipids, although this still needs to be shown experimentally.
Collapse
Affiliation(s)
- Margaret R Davis
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, EH25 9RG, UK.
| | - Erik Arner
- RIKEN Center for Life Science Technologies (Division of Genomic Technologies) (CLST (DGT)), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | - Cairnan R E Duffy
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellors Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
| | - Paul A De Sousa
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellors Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
| | - Ingrid Dahlman
- Department of Medicine, Huddinge (Med H), Karolinska Universitetssjukhuset Huddinge, 141 86, Stockholm, Sweden.
| | - Peter Arner
- Department of Medicine, Huddinge (Med H), Karolinska Universitetssjukhuset Huddinge, 141 86, Stockholm, Sweden.
| | - Kim M Summers
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, EH25 9RG, UK.
| |
Collapse
|
100
|
Chen KH, Liu S, Leysath CE, Miller-Randolph S, Zhang Y, Fattah R, Bugge TH, Leppla SH. Anthrax Toxin Protective Antigen Variants That Selectively Utilize either the CMG2 or TEM8 Receptors for Cellular Uptake and Tumor Targeting. J Biol Chem 2016; 291:22021-22029. [PMID: 27555325 DOI: 10.1074/jbc.m116.753301] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Indexed: 11/06/2022] Open
Abstract
The protective antigen (PA) moiety of anthrax toxin binds to cellular receptors and mediates the translocation of the two enzymatic moieties of the toxin to the cytosol. Two PA receptors are known, with capillary morphogenesis protein 2 (CMG2) being the more important for pathogenesis and tumor endothelial marker 8 (TEM8) playing a minor role. The C-terminal PA domain 4 (PAD4) has extensive interactions with the receptors and is required for binding. Our previous study identified PAD4 variants having enhanced TEM8 binding specificity. To obtain PA variants that selectively bind to CMG2, here we performed phage display selections using magnetic beads having bound CMG2. We found that PA residue isoleucine 656 plays a critical role in PA binding to TEM8 but has a much lesser effect on PA binding to CMG2. We further characterized the role of residue 656 in distinguishing PA binding to CMG2 versus TEM8 by substituting it with the other 19 amino acids. Of the resulting variants, PA I656Q and PA I656V had significantly reduced activity on TEM8-expressing CHO cells but maintained their activity on CMG2-expressing CHO cells. The preference of these PA mutants for CMG2 over TEM8 was further demonstrated using mouse embryonic fibroblast cells and mice deficient in the CMG2 and/or the TEM8 receptors. The structural basis of the alterations in the receptor binding activities of these mutants is also discussed.
Collapse
Affiliation(s)
- Kuang-Hua Chen
- From the Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892-3202 and
| | - Shihui Liu
- From the Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892-3202 and the Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, NIDCR, National Institutes of Health, Bethesda, Maryland 20892
| | - Clinton E Leysath
- From the Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892-3202 and
| | - Sharmina Miller-Randolph
- From the Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892-3202 and
| | - Yi Zhang
- From the Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892-3202 and
| | - Rasem Fattah
- From the Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892-3202 and
| | - Thomas H Bugge
- the Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, NIDCR, National Institutes of Health, Bethesda, Maryland 20892
| | - Stephen H Leppla
- From the Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892-3202 and
| |
Collapse
|