51
|
Kato S, Yamauchi Y, Izawa S. Protein synthesis of Btn2 under pronounced translation repression during the process of alcoholic fermentation and wine-making in yeast. Appl Microbiol Biotechnol 2018; 102:9669-9677. [PMID: 30141081 DOI: 10.1007/s00253-018-9313-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/28/2018] [Accepted: 08/08/2018] [Indexed: 12/21/2022]
Abstract
Acute high-concentration ethanol (> 9% v/v) has adverse effects on Saccharomyces cerevisiae, including the remarkable repression of bulk mRNA translation. Therefore, increased mRNA levels do not necessarily lead to an increase in the corresponding protein levels in yeast cells under severe ethanol stress. We previously identified that synthesis of Btn2 protein was efficiently induced even under the pronounced translation repression caused by acute severe ethanol stress under laboratory conditions. However, it remains to be clarified whether the translational activity is also repressed and whether the synthesis of Btn2 protein is induced during the process of alcoholic fermentation, in which the ethanol concentration increases gradually to reach high levels. In this study, we revealed that the pronounced translation repression and the translation of BTN2 are induced by high ethanol concentrations that form gradually during alcoholic fermentation using a wine yeast strain EC1118. Furthermore, we confirmed the induced expression of non-native genes driven by the BTN2 promoter during the later stage of the wine-making process. Our findings provide new information on the translation activity in yeast cells during alcoholic fermentation and suggest the utility of the BTN2 promoter for sustaining the fermentation efficiency and quality modification of alcoholic beverages.
Collapse
Affiliation(s)
- Sae Kato
- Laboratory of Microbial Technology, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Kyoto, 606-8585, Japan
| | - Yukina Yamauchi
- Laboratory of Microbial Technology, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Kyoto, 606-8585, Japan
| | - Shingo Izawa
- Laboratory of Microbial Technology, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Kyoto, 606-8585, Japan.
| |
Collapse
|
52
|
Rodriguez J, Herrero A, Li S, Rauch N, Quintanilla A, Wynne K, Krstic A, Acosta JC, Taylor C, Schlisio S, von Kriegsheim A. PHD3 Regulates p53 Protein Stability by Hydroxylating Proline 359. Cell Rep 2018; 24:1316-1329. [PMID: 30067985 PMCID: PMC6088137 DOI: 10.1016/j.celrep.2018.06.108] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 03/30/2018] [Accepted: 06/27/2018] [Indexed: 01/05/2023] Open
Abstract
Cellular p53 protein levels are regulated by a ubiquitination/de-ubiquitination cycle that can target the protein for proteasomal destruction. The ubiquitination reaction is catalyzed by a multitude of ligases, whereas the removal of ubiquitin chains is mediated by two deubiquitinating enzymes (DUBs), USP7 (HAUSP) and USP10. Here, we show that PHD3 hydroxylates p53 at proline 359, a residue that is in the p53-DUB binding domain. Hydroxylation of p53 upon proline 359 regulates its interaction with USP7 and USP10, and its inhibition decreases the association of p53 with USP7/USP10, increases p53 ubiquitination, and rapidly reduces p53 protein levels independently of mRNA expression. Our results show that p53 is a PHD3 substrate and that hydroxylation by PHD3 regulates p53 protein stability through modulation of ubiquitination.
Collapse
Affiliation(s)
- Javier Rodriguez
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland; Cancer Research UK Edinburgh Centre, IGMM, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Ana Herrero
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland
| | - Shuijie Li
- Ludwig Institute for Cancer Research Ltd., SE-17177 Stockholm, Sweden; Department of Microbiology and Tumor and Cell Biology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Nora Rauch
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland
| | - Andrea Quintanilla
- Cancer Research UK Edinburgh Centre, IGMM, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Kieran Wynne
- Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Aleksandar Krstic
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland
| | - Juan Carlos Acosta
- Cancer Research UK Edinburgh Centre, IGMM, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Cormac Taylor
- Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Susanne Schlisio
- Ludwig Institute for Cancer Research Ltd., SE-17177 Stockholm, Sweden; Department of Microbiology and Tumor and Cell Biology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Alex von Kriegsheim
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland; Cancer Research UK Edinburgh Centre, IGMM, University of Edinburgh, Edinburgh EH4 2XR, UK.
| |
Collapse
|
53
|
Dalton HM, Curran SP. Hypodermal responses to protein synthesis inhibition induce systemic developmental arrest and AMPK-dependent survival in Caenorhabditis elegans. PLoS Genet 2018; 14:e1007520. [PMID: 30020921 PMCID: PMC6066256 DOI: 10.1371/journal.pgen.1007520] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/30/2018] [Accepted: 06/27/2018] [Indexed: 01/08/2023] Open
Abstract
Across organisms, manipulation of biosynthetic capacity arrests development early in life, but can increase health- and lifespan post-developmentally. Here we demonstrate that this developmental arrest is not sickness but rather a regulated survival program responding to reduced cellular performance. We inhibited protein synthesis by reducing ribosome biogenesis (rps-11/RPS11 RNAi), translation initiation (ifg-1/EIF3G mutation and egl-45/EIF3A RNAi), or ribosome progression (cycloheximide treatment), all of which result in a specific arrest at larval stage 2 of C. elegans development. This quiescent state can last for weeks—beyond the normal C. elegans adult lifespan—and is reversible, as animals can resume reproduction and live a normal lifespan once released from the source of protein synthesis inhibition. The arrest state affords resistance to thermal, oxidative, and heavy metal stress exposure. In addition to cell-autonomous responses, reducing biosynthetic capacity only in the hypodermis was sufficient to drive organism-level developmental arrest and stress resistance phenotypes. Among the cell non-autonomous responses to protein synthesis inhibition is reduced pharyngeal pumping that is dependent upon AMPK-mediated signaling. The reduced pharyngeal pumping in response to protein synthesis inhibition is recapitulated by exposure to microbes that generate protein synthesis-inhibiting xenobiotics, which may mechanistically reduce ingestion of pathogen and toxin. These data define the existence of a transient arrest-survival state in response to protein synthesis inhibition and provide an evolutionary foundation for the conserved enhancement of healthy aging observed in post-developmental animals with reduced biosynthetic capacity. Protein synthesis is an essential cellular process, but post-developmental reduction of protein synthesis across multiple species leads to improved health- and lifespan. To better understand the physiological responses to impaired protein synthesis, we characterize a novel developmental arrest state that occurs when reducing protein synthesis during C. elegans development. Arrested animals have multiple survival-promoting phenotypes that are all dependent on the cellular energy sensor, AMP kinase. This survival response acts through the hypodermis and causes a reduction in pharyngeal pumping, indicating that the animal is responding to a perceived external threat, even in adults. Furthermore, exposing animals to pathogens, or xenobiotics they produce, can recapitulate these phenotypes, providing a potential evolutionary explanation for how a beneficial response in adults could evolve through the inhibition of an essential biological process such as protein synthesis.
Collapse
Affiliation(s)
- Hans M. Dalton
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, United States of America
- Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Sean P. Curran
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, United States of America
- Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California, United States of America
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
54
|
Schult P, Roth H, Adams RL, Mas C, Imbert L, Orlik C, Ruggieri A, Pyle AM, Lohmann V. microRNA-122 amplifies hepatitis C virus translation by shaping the structure of the internal ribosomal entry site. Nat Commun 2018; 9:2613. [PMID: 29973597 PMCID: PMC6031695 DOI: 10.1038/s41467-018-05053-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 06/11/2018] [Indexed: 12/24/2022] Open
Abstract
The liver-specific microRNA-122 (miR-122) recognizes two conserved sites at the 5′ end of the hepatitis C virus (HCV) genome and contributes to stability, translation, and replication of the viral RNA. We show that stimulation of the HCV internal ribosome entry site (IRES) by miR-122 is essential for efficient viral replication. The mechanism relies on a dual function of the 5′ terminal sequence in the complementary positive (translation) and negative strand (replication), requiring different secondary structures. Predictions and experimental evidence argue for several alternative folds involving the miR-binding region (MBR) adjacent to the IRES and interfering with its function. Mutations in the MBR, designed to suppress these dysfunctional structures indeed stimulate translation independently of miR-122. Conversely, MBR mutants favoring alternative folds show impaired IRES activity. Our results therefore suggest that miR-122 binding assists the folding of a functional IRES in an RNA chaperone-like manner by suppressing energetically favorable alternative secondary structures. The liver-specific microRNA-122 is an essential proviral host factor of Hepatitis C virus replication. Here the authors show that microRNA-122 functions as an RNA chaperone that guides the formation of a functional internal ribosome entry site by preventing energetically more favorable secondary structures within the HCV RNA genome.
Collapse
Affiliation(s)
- Philipp Schult
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 344, 69120, Heidelberg, Germany
| | - Hanna Roth
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 344, 69120, Heidelberg, Germany
| | - Rebecca L Adams
- Department of Molecular, Cellular and Developmental Biology, Yale University, 219 Prospect St, New Haven, CT, 06511, USA
| | - Caroline Mas
- University Grenoble Alpes, CNRS, CEA, IBS, 71 Avenue des Martyrs, CS 10090, 38044, Grenoble CEDEX 9, France
| | - Lionel Imbert
- University Grenoble Alpes, CNRS, CEA, IBS, 71 Avenue des Martyrs, CS 10090, 38044, Grenoble CEDEX 9, France
| | - Christian Orlik
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 344, 69120, Heidelberg, Germany.,Department of Immunology, Molecular Immunology, University of Heidelberg, 69120, Heidelberg, Germany
| | - Alessia Ruggieri
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 344, 69120, Heidelberg, Germany
| | - Anna M Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, 219 Prospect St, New Haven, CT, 06511, USA.,Howard Hughes Medical Institute, 219 Prospect St, New Haven, CT, 06511, USA
| | - Volker Lohmann
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 344, 69120, Heidelberg, Germany.
| |
Collapse
|
55
|
Yanda MK, Liu Q, Cebotaru L. A potential strategy for reducing cysts in autosomal dominant polycystic kidney disease with a CFTR corrector. J Biol Chem 2018; 293:11513-11526. [PMID: 29875161 DOI: 10.1074/jbc.ra118.001846] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/22/2018] [Indexed: 12/27/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is associated with progressive enlargement of cysts, leading to a decline in function and renal failure that cannot be prevented by current treatments. Mutations in pkd1 and pkd2, encoding the polycystin 1 and 2 proteins, induce growth-related pathways, including heat shock proteins, as occurs in some cancers, raising the prospect that pharmacological interventions that target these pathways might alleviate or prevent ADPKD. Here, we demonstrate a role for VX-809, a corrector of cystic fibrosis transmembrane conductance regulator (CFTR), conventionally used to manage cystic fibrosis in reducing renal cyst growth. VX-809 reduced cyst growth in Pkd1-knockout mice and in proximal, tubule-derived, cultured Pkd1 knockout cells. VX-809 reduced both basal and forskolin-activated cAMP levels and also decreased the expression of the adenylyl cyclase AC3 but not of AC6. VX-809 also decreased resting levels of intracellular Ca2+ but did not affect ATP-stimulated Ca2+ release. Notably, VX-809 dramatically decreased thapsigargin-induced release of Ca2+ from the endoplasmic reticulum (ER). VX-809 also reduced the levels of heat shock proteins Hsp27, Hsp70, and Hsp90 in mice cystic kidneys, consistent with the restoration of cellular proteostasis. Moreover, VX-809 strongly decreased an ER stress marker, the GADD153 protein, and cell proliferation but had only a small effect on apoptosis. Given that administration of VX-809 is safe, this drug potentially offers a new way to treat patients with ADPKD.
Collapse
Affiliation(s)
- Murali K Yanda
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Qiangni Liu
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Liudmila Cebotaru
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.
| |
Collapse
|
56
|
Nguyen TTM, Ishida Y, Kato S, Iwaki A, Izawa S. The VFH1
(YLL056C
) promoter is vanillin-inducible and enables mRNA translation despite pronounced translation repression caused by severe vanillin stress in Saccharomyces cerevisiae. Yeast 2018; 35:465-475. [DOI: 10.1002/yea.3313] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/28/2018] [Accepted: 03/03/2018] [Indexed: 01/04/2023] Open
Affiliation(s)
- Trinh Thi My Nguyen
- Department of Applied Biology, Graduate School of Science and Technology; Kyoto Institute of Technology; Matsugasaki Kyoto Japan
- Department of Molecular and Environmental Biotechnology; University of Science, Vietnam National University in Ho Chi Minh City; Ho Chi Minh City Vietnam
| | - Yoko Ishida
- Department of Applied Biology, Graduate School of Science and Technology; Kyoto Institute of Technology; Matsugasaki Kyoto Japan
| | - Sae Kato
- Department of Applied Biology, Graduate School of Science and Technology; Kyoto Institute of Technology; Matsugasaki Kyoto Japan
| | - Aya Iwaki
- Department of Applied Biology, Graduate School of Science and Technology; Kyoto Institute of Technology; Matsugasaki Kyoto Japan
| | - Shingo Izawa
- Department of Applied Biology, Graduate School of Science and Technology; Kyoto Institute of Technology; Matsugasaki Kyoto Japan
| |
Collapse
|
57
|
Farkas Z, Kalapis D, Bódi Z, Szamecz B, Daraba A, Almási K, Kovács K, Boross G, Pál F, Horváth P, Balassa T, Molnár C, Pettkó-Szandtner A, Klement É, Rutkai E, Szvetnik A, Papp B, Pál C. Hsp70-associated chaperones have a critical role in buffering protein production costs. eLife 2018; 7:29845. [PMID: 29377792 PMCID: PMC5788500 DOI: 10.7554/elife.29845] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 12/23/2017] [Indexed: 02/01/2023] Open
Abstract
Proteins are necessary for cellular growth. Concurrently, however, protein production has high energetic demands associated with transcription and translation. Here, we propose that activity of molecular chaperones shape protein burden, that is the fitness costs associated with expression of unneeded proteins. To test this hypothesis, we performed a genome-wide genetic interaction screen in baker's yeast. Impairment of transcription, translation, and protein folding rendered cells hypersensitive to protein burden. Specifically, deletion of specific regulators of the Hsp70-associated chaperone network increased protein burden. In agreement with expectation, temperature stress, increased mistranslation and a chemical misfolding agent all substantially enhanced protein burden. Finally, unneeded protein perturbed interactions between key components of the Hsp70-Hsp90 network involved in folding of native proteins. We conclude that specific chaperones contribute to protein burden. Our work indicates that by minimizing the damaging impact of gratuitous protein overproduction, chaperones enable tolerance to massive changes in genomic expression.
Collapse
Affiliation(s)
- Zoltán Farkas
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Dorottya Kalapis
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Zoltán Bódi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Béla Szamecz
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Andreea Daraba
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Karola Almási
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Károly Kovács
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Gábor Boross
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Ferenc Pál
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Péter Horváth
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Tamás Balassa
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Csaba Molnár
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Aladár Pettkó-Szandtner
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary.,Laboratory of Proteomic Research, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Éva Klement
- Laboratory of Proteomic Research, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Edit Rutkai
- Division for Biotechnology, Bay Zoltán Nonprofit Ltd, Budapest, Hungary
| | - Attila Szvetnik
- Division for Biotechnology, Bay Zoltán Nonprofit Ltd, Budapest, Hungary
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Csaba Pál
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|
58
|
Sokół E, Kędzierska H, Czubaty A, Rybicka B, Rodzik K, Tański Z, Bogusławska J, Piekiełko-Witkowska A. microRNA-mediated regulation of splicing factors SRSF1, SRSF2 and hnRNP A1 in context of their alternatively spliced 3'UTRs. Exp Cell Res 2018; 363:208-217. [PMID: 29331391 DOI: 10.1016/j.yexcr.2018.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/29/2017] [Accepted: 01/08/2018] [Indexed: 12/30/2022]
Abstract
SRSF1, SRSF2 and hnRNP A1 are splicing factors that regulate the expression of oncogenes and tumor suppressors. SRSF1 and SRSF2 contribute to the carcinogenesis in the kidney. Despite their importance, the mechanisms regulating their expression in cancer are not entirely understood. Here, we investigated the microRNA-mediated regulation of SRSF1, SRSF2 and hnRNP A1 in renal cancer. The expression of microRNAs predicted to target SRSF1, SRSF2 and hnRNP A1 was disturbed in renal tumors compared with controls. Using qPCR, Western blot/ICC and luciferase reporter system assays we identified microRNAs that contribute to the regulation of expression of SRSF1 (miR-10b-5p, miR-203a-3p), SRSF2 (miR-183-5p, miR-200c-3p), and hnRNP A1 (miR-135a-5p, miR-149-5p). Silencing of SRSF1 and SRSF2 enhanced the expression of their targeting microRNAs. miR-183-5p and miR-200c-3p affected the expression of SRSF2-target genes, TNFRSF1B, TNFRSF9, CRADD and TP53. 3'UTR variants of SRSF1 and SRSF2 differed by the presence of miRNA-binding sites. In conclusion, we identified a group of microRNAs that contribute to the regulation of expression of SRSF1, SRSF2 and hnRNP A1. The microRNAs targeting SRSF1 and SRSF2 are involved in a regulatory feedback loop. microRNAs miR-183-5p and miR-200c-3p that target SRSF2, affect the expression of genes involved in apoptotic regulation.
Collapse
Affiliation(s)
- Elżbieta Sokół
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Hanna Kędzierska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Alicja Czubaty
- Department of Molecular Biology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Beata Rybicka
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Katarzyna Rodzik
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Zbigniew Tański
- Masovian Specialist Hospital in Ostrołęka, Ostrołęka, Poland
| | - Joanna Bogusławska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland.
| | - Agnieszka Piekiełko-Witkowska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland.
| |
Collapse
|
59
|
Winata CL, Łapiński M, Pryszcz L, Vaz C, Bin Ismail MH, Nama S, Hajan HS, Lee SGP, Korzh V, Sampath P, Tanavde V, Mathavan S. Cytoplasmic polyadenylation-mediated translational control of maternal mRNAs directs maternal-to-zygotic transition. Development 2018; 145:dev.159566. [PMID: 29229769 DOI: 10.1242/dev.159566] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/20/2017] [Indexed: 10/18/2022]
Abstract
In the earliest stages of animal development following fertilization, maternally deposited mRNAs direct biological processes to the point of zygotic genome activation (ZGA). These maternal mRNAs undergo cytoplasmic polyadenylation (CPA), suggesting translational control of their activation. To elucidate the biological role of CPA during embryogenesis, we performed genome-wide polysome profiling at several stages of zebrafish development. Our analysis revealed a correlation between CPA and polysome-association dynamics, demonstrating a coupling of translation to the CPA of maternal mRNAs. Pan-embryonic CPA inhibition disrupted the maternal-to-zygotic transition (MZT), causing a failure of developmental progression beyond the mid-blastula transition and changes in global gene expression that indicated a failure of ZGA and maternal mRNA clearance. Among the genes that were differentially expressed were those encoding chromatin modifiers and key transcription factors involved in ZGA, including nanog, pou5f3 and sox19b, which have distinct CPA dynamics. Our results establish the necessity of CPA for ensuring progression of the MZT. The RNA-seq data generated in this study represent a valuable zebrafish resource for the discovery of novel elements of the early embryonic transcriptome.
Collapse
Affiliation(s)
- Cecilia Lanny Winata
- International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland .,Max-Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Maciej Łapiński
- International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
| | - Leszek Pryszcz
- International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
| | - Candida Vaz
- Bioinformatics Institute, Agency for Science Technology and Research, 138671 Singapore
| | | | - Srikanth Nama
- Institute of Medical Biology, Agency of Science Technology and Research, 138648 Singapore
| | - Hajira Shreen Hajan
- Genome Institute of Singapore, Agency of Science Technology and Research, 138672 Singapore
| | - Serene Gek Ping Lee
- Genome Institute of Singapore, Agency of Science Technology and Research, 138672 Singapore
| | - Vladimir Korzh
- International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland.,Institute of Molecular and Cell Biology, Agency of Science Technology and Research, 138673 Singapore
| | - Prabha Sampath
- Institute of Medical Biology, Agency of Science Technology and Research, 138648 Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, 117596 Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 169857 Singapore
| | - Vivek Tanavde
- Bioinformatics Institute, Agency for Science Technology and Research, 138671 Singapore.,Institute of Medical Biology, Agency of Science Technology and Research, 138648 Singapore
| | - Sinnakaruppan Mathavan
- Genome Institute of Singapore, Agency of Science Technology and Research, 138672 Singapore .,Vision Research Foundation, Sankara Nethralaya, 600 006 Chennai, India
| |
Collapse
|
60
|
Maeda K, Toyoda S, Philippot L, Hattori S, Nakajima K, Ito Y, Yoshida N. Relative Contribution of nirK- and nirS- Bacterial Denitrifiers as Well as Fungal Denitrifiers to Nitrous Oxide Production from Dairy Manure Compost. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:14083-14091. [PMID: 29182319 DOI: 10.1021/acs.est.7b04017] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The relative contribution of fungi, bacteria, and nirS and nirK denirifiers to nitrous oxide (N2O) emission with unknown isotopic signature from dairy manure compost was examined by selective inhibition techniques. Chloramphenicol (CHP), cycloheximide (CYH), and diethyl dithiocarbamate (DDTC) were used to suppress the activity of bacteria, fungi, and nirK-possessing denitrifiers, respectively. Produced N2O were surveyed to isotopocule analysis, and its 15N site preference (SP) and δ18O values were compared. Bacteria, fungi, nirS, and nirK gene abundances were compared by qPCR. The results showed that N2O production was strongly inhibited by CHP addition in surface pile samples (82.2%) as well as in nitrite-amended core samples (98.4%), while CYH addition did not inhibit the N2O production. N2O with unknown isotopic signature (SP = 15.3-16.2‰), accompanied by δ18O (19.0-26.8‰) values which were close to bacterial denitrification, was also suppressed by CHP and DDTC addition (95.3%) indicating that nirK denitrifiers were responsible for this N2O production despite being less abundant than nirS denitrifiers. Altogether, our results suggest that bacteria are important for N2O production with different SP values both from compost surface and pile core. However, further work is required to decipher whether N2O with unknown isotopic signature is mostly due to nirK denitrifiers that are taxonomically different from the SP-characterized strains and therefore have different SP values rather than also being interwoven with the contribution of the NO-detoxifying pathway and/or of co-denitrification.
Collapse
Affiliation(s)
- Koki Maeda
- NARO, Hokkaido Agricultural Research Center, Dairy Research Division , 1 Hitsujigaoka, Sapporo 062-8555, Japan
| | - Sakae Toyoda
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Instititute of Technology , 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
| | - Laurent Philippot
- INRA, UMR 1229, Soil and Environmental Microbiology , 17 rue Sully BP 86510, Dijon 21065 Cedex, France
| | - Shohei Hattori
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Instititute of Technology , 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
| | - Keiichi Nakajima
- NARO, Hokkaido Agricultural Research Center, Dairy Research Division , 1 Hitsujigaoka, Sapporo 062-8555, Japan
| | - Yumi Ito
- NARO, Hokkaido Agricultural Research Center, Dairy Research Division , 1 Hitsujigaoka, Sapporo 062-8555, Japan
| | - Naohiro Yoshida
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Instititute of Technology , 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology , 2-12-1 Ookayama, Meguro-ku Tokyo 152-8550, Japan
| |
Collapse
|
61
|
Retro-2 and its dihydroquinazolinone derivatives inhibit filovirus infection. Antiviral Res 2017; 149:154-163. [PMID: 29175127 DOI: 10.1016/j.antiviral.2017.11.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/17/2017] [Accepted: 11/18/2017] [Indexed: 12/31/2022]
Abstract
Members of the family Filoviridae cause severe, often fatal disease in humans, for which there are no approved vaccines and only a few experimental drugs tested in animal models. Retro-2, a small molecule that inhibits retrograde trafficking of bacterial and plant toxins inside host cells, has been demonstrated to be effective against a range of bacterial and virus pathogens, both in vitro and in animal models. Here, we demonstrated that Retro-2 and its derivatives, Retro-2.1 and compound 25, blocked infection by Ebola virus and Marburg virus in vitro. We show that the derivatives were more potent inhibitors of infection as compared to the parent compound. Pseudotyped virus assays indicated that the compounds affected virus entry into cells while virus particle localization to Niemann-Pick C1-positive compartments showed that they acted at a late step in virus entry. Our work demonstrates a potential for Retro-type drugs to be developed into anti-filoviral therapeutics.
Collapse
|
62
|
Mao Y, Hoffman T, Singh-Varma A, Duan-Arnold Y, Moorman M, Danilkovitch A, Kohn J. Antimicrobial Peptides Secreted From Human Cryopreserved Viable Amniotic Membrane Contribute to its Antibacterial Activity. Sci Rep 2017; 7:13722. [PMID: 29057887 PMCID: PMC5651856 DOI: 10.1038/s41598-017-13310-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/21/2017] [Indexed: 12/18/2022] Open
Abstract
Chronic wounds remain a large problem in the field of medicine and are often associated with risk of infection and amputation. Recently, a commercially available human cryopreserved viable amniotic membrane (hCVAM) has been shown to effectively promote wound closure and reduce wound-related infections. A sprevious study indicates that hCVAM can inhibit the growth of bacteria associated with chronic wounds. In the present study, we investigated the mechanism of hCVAM antimicrobial activity. Our data demonstrate that antimicrobial activities against common pathogens in chronic wounds such as P.aeruginosa, S.aureus and Methicillin-resistant S.aureus (MRSA) are mediated via the secretion of soluble factors by viable cells in hCVAM and that these factors are proteins in nature. Further, we show that genes for antimicrobial peptides (AMPs) including human beta-defensins (HBDs) are expressed by hCVAM and that expression levels positively correlate with antimicrobial activity of hCVAM. At the protein level, our data indicate that HBD2 and HBD3 are secreted by hCVAM and directly contribute to its activity against P. aeruginosa. These data provide evidence that soluble factors including AMPs are hCVAM antimicrobial agents and are consistent with a role for AMPs in mediating antimicrobial properties of the membrane.
Collapse
Affiliation(s)
- Yong Mao
- New Jersey Center for Biomaterials Rutgers University 145 Bevier Rd., Piscataway, NJ, 08854, United States
| | - Tyler Hoffman
- New Jersey Center for Biomaterials Rutgers University 145 Bevier Rd., Piscataway, NJ, 08854, United States
| | - Anya Singh-Varma
- New Jersey Center for Biomaterials Rutgers University 145 Bevier Rd., Piscataway, NJ, 08854, United States
| | - Yi Duan-Arnold
- Osiris Therapeutics, Inc, Columbia, MD, 21046, United States
| | - Matthew Moorman
- Osiris Therapeutics, Inc, Columbia, MD, 21046, United States
| | | | - Joachim Kohn
- New Jersey Center for Biomaterials Rutgers University 145 Bevier Rd., Piscataway, NJ, 08854, United States.
| |
Collapse
|
63
|
Jurewicz E, Wyroba E, Filipek A. Tubulin-dependent secretion of S100A6 and cellular signaling pathways activated by S100A6-integrin β1 interaction. Cell Signal 2017; 42:21-29. [PMID: 29020611 DOI: 10.1016/j.cellsig.2017.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/28/2017] [Accepted: 10/07/2017] [Indexed: 12/29/2022]
Abstract
S100A6 is a calcium binding protein expressed mainly in fibroblasts and epithelial cells. Interestingly, S100A6 is also present in extracellular fluids. Recently we have shown that S100A6 is secreted by WJMS cells and binds to integrin β1 (Jurewicz et al., 2014). In this work we describe for the first time the mechanism of S100A6 secretion and signaling pathways activated by the S100A6-integrin β1 complex. We show that colchicine suppressed the release of S100A6 into the cell medium, which indicates that the protein might be secreted via a tubulin-dependent pathway. By applying double immunogold labeling and immunofluorescence staining we have shown that S100A6 associates with microtubules in WJMS cells. Furthermore, results obtained from immunoprecipitation and proximity ligation assay (PLA), and from in vitro assays, reveal that S100A6 is able to form complexes with α and β tubulin in these cells, and that the S100A6-tubulin interaction is direct. We have also found that the S100A6 protein, due to binding to integrin β1, activates integrin-linked kinase (ILK), focal adhesion kinase (FAK) and p21-activated kinase (PAK). Our results suggest that binding of S100A6 to integrin β1 affects cell adhesion/proliferation due to activation of ILK and FAK signaling pathways.
Collapse
Affiliation(s)
- Ewelina Jurewicz
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Str., 02-093 Warsaw, Poland
| | - Elżbieta Wyroba
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Str., 02-093 Warsaw, Poland
| | - Anna Filipek
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Str., 02-093 Warsaw, Poland.
| |
Collapse
|
64
|
Gov L, Schneider CA, Lima TS, Pandori W, Lodoen MB. NLRP3 and Potassium Efflux Drive Rapid IL-1β Release from Primary Human Monocytes during Toxoplasma gondii Infection. THE JOURNAL OF IMMUNOLOGY 2017; 199:2855-2864. [PMID: 28904126 DOI: 10.4049/jimmunol.1700245] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 08/18/2017] [Indexed: 12/13/2022]
Abstract
IL-1β is produced by myeloid cells and acts as a critical mediator of host defense during infection and injury. We found that the intracellular protozoan parasite Toxoplasma gondii induced an early IL-1β response (within 4 h) in primary human peripheral blood monocytes isolated from healthy donors. This process involved upregulation of IL-1β, IL-1RN (IL-1R antagonist), and NLRP3 transcripts, de novo protein synthesis, and the release of pro- and mature IL-1β from infected primary monocytes. The released pro-IL-1β was cleavable to mature bioactive IL-1β in the extracellular space by the protease caspase-1. Treatment of primary monocytes with the NLRP3 inhibitor MCC950 or with extracellular potassium significantly reduced IL-1β cleavage and release in response to T. gondii infection, without affecting the release of TNF-α, and indicated a role for the inflammasome sensor NLRP3 and for potassium efflux in T. gondii-induced IL-1β production. Interestingly, T. gondii infection did not induce an IL-1β response in primary human macrophages derived from the same blood donors as the monocytes. Consistent with this finding, NLRP3 was downregulated during the differentiation of monocytes to macrophages and was not induced in macrophages during T. gondii infection. To our knowledge, these findings are the first to identify NLRP3 as an inflammasome sensor for T. gondii in primary human peripheral blood cells and to define an upstream regulator of its activation through the release of intracellular potassium.
Collapse
Affiliation(s)
- Lanny Gov
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697; and Institute for Immunology, University of California, Irvine, Irvine, CA 92697
| | - Christine A Schneider
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697; and Institute for Immunology, University of California, Irvine, Irvine, CA 92697
| | - Tatiane S Lima
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697; and Institute for Immunology, University of California, Irvine, Irvine, CA 92697
| | - William Pandori
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697; and Institute for Immunology, University of California, Irvine, Irvine, CA 92697
| | - Melissa B Lodoen
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697; and Institute for Immunology, University of California, Irvine, Irvine, CA 92697
| |
Collapse
|
65
|
Kramer S. Simultaneous detection of mRNA transcription and decay intermediates by dual colour single mRNA FISH on subcellular resolution. Nucleic Acids Res 2017; 45:e49. [PMID: 27940558 PMCID: PMC5397161 DOI: 10.1093/nar/gkw1245] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 11/28/2016] [Indexed: 02/06/2023] Open
Abstract
The detection of mRNAs undergoing transcription or decay is challenging, because both processes are fast. However, the relative proportion of an mRNA in synthesis or decay increases with mRNA size and decreases with mRNA half-life. Based on this rationale, I have exploited a 22 200 nucleotide-long, short-lived endogenous mRNA as a reporter for mRNA metabolism in trypanosomes. The extreme 5΄ and 3΄ ends were labeled with red- and green-fluorescent Affymetrix® single mRNA FISH probes, respectively. In the resulting fluorescence images, yellow spots represent intact mRNAs; red spots are mRNAs in transcription or 3΄-5΄ decay, and green spots are mRNAs in 5΄-3΄ degradation. Most red spots were nuclear and insensitive to transcriptional inhibition and thus likely transcription intermediates. Most green spots were cytoplasmic, confirming that the majority of cytoplasmic decay in trypanosomes is 5΄-3΄. The system showed the expected changes at inhibition of transcription or translation and RNAi depletion of the trypanosome homologue to the 5΄-3΄ exoribonuclease Xrn1. The method allows to monitor changes in mRNA metabolism both on cellular and on population/tissue wide levels, but also to study the subcellular localization of mRNA transcription and decay pathways. I show that the system is applicable to mammalian cells.
Collapse
Affiliation(s)
- Susanne Kramer
- Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
66
|
Gold VA, Chroscicki P, Bragoszewski P, Chacinska A. Visualization of cytosolic ribosomes on the surface of mitochondria by electron cryo-tomography. EMBO Rep 2017; 18:1786-1800. [PMID: 28827470 PMCID: PMC5623831 DOI: 10.15252/embr.201744261] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/11/2017] [Accepted: 07/14/2017] [Indexed: 12/31/2022] Open
Abstract
We employed electron cryo‐tomography to visualize cytosolic ribosomes on the surface of mitochondria. Translation‐arrested ribosomes reveal the clustered organization of the TOM complex, corroborating earlier reports of localized translation. Ribosomes are shown to interact specifically with the TOM complex, and nascent chain binding is crucial for ribosome recruitment and stabilization. Ribosomes are bound to the membrane in discrete clusters, often in the vicinity of the crista junctions. This interaction highlights how protein synthesis may be coupled with transport. Our work provides unique insights into the spatial organization of cytosolic ribosomes on mitochondria.
Collapse
Affiliation(s)
- Vicki Am Gold
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany .,Living Systems Institute, University of Exeter, Exeter, UK.,College of Life and Environmental Sciences, Geoffrey Pope, University of Exeter, Exeter, UK
| | - Piotr Chroscicki
- The International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Piotr Bragoszewski
- The International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Agnieszka Chacinska
- The International Institute of Molecular and Cell Biology, Warsaw, Poland .,Centre of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
67
|
Tan EP, McGreal SR, Graw S, Tessman R, Koppel SJ, Dhakal P, Zhang Z, Machacek M, Zachara NE, Koestler DC, Peterson KR, Thyfault JP, Swerdlow RH, Krishnamurthy P, DiTacchio L, Apte U, Slawson C. Sustained O-GlcNAcylation reprograms mitochondrial function to regulate energy metabolism. J Biol Chem 2017; 292:14940-14962. [PMID: 28739801 DOI: 10.1074/jbc.m117.797944] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/20/2017] [Indexed: 01/31/2023] Open
Abstract
Dysfunctional mitochondria and generation of reactive oxygen species (ROS) promote chronic diseases, which have spurred interest in the molecular mechanisms underlying these conditions. Previously, we have demonstrated that disruption of post-translational modification of proteins with β-linked N-acetylglucosamine (O-GlcNAcylation) via overexpression of the O-GlcNAc-regulating enzymes O-GlcNAc transferase (OGT) or O-GlcNAcase (OGA) impairs mitochondrial function. Here, we report that sustained alterations in O-GlcNAcylation either by pharmacological or genetic manipulation also alter metabolic function. Sustained O-GlcNAc elevation in SH-SY5Y neuroblastoma cells increased OGA expression and reduced cellular respiration and ROS generation. Cells with elevated O-GlcNAc levels had elongated mitochondria and increased mitochondrial membrane potential, and RNA-sequencing analysis indicated transcriptome reprogramming and down-regulation of the NRF2-mediated antioxidant response. Sustained O-GlcNAcylation in mouse brain and liver validated the metabolic phenotypes observed in the cells, and OGT knockdown in the liver elevated ROS levels, impaired respiration, and increased the NRF2 antioxidant response. Moreover, elevated O-GlcNAc levels promoted weight loss and lowered respiration in mice and skewed the mice toward carbohydrate-dependent metabolism as determined by indirect calorimetry. In summary, sustained elevation in O-GlcNAcylation coupled with increased OGA expression reprograms energy metabolism, a finding that has potential implications for the etiology, development, and management of metabolic diseases.
Collapse
Affiliation(s)
- Ee Phie Tan
- From the Departments of Biochemistry and Molecular Biology
| | | | | | | | | | | | - Zhen Zhang
- From the Departments of Biochemistry and Molecular Biology
| | - Miranda Machacek
- From the Departments of Biochemistry and Molecular Biology.,Pathology and Laboratory Medicine, and
| | - Natasha E Zachara
- the Department of Biological Chemistry, The Johns Hopkins University of Medicine, Baltimore, Maryland 21205
| | | | | | | | - Russell H Swerdlow
- Neurology, University of Kansas Medical Center and.,University of Kansas Alzheimer's Disease Center, Kansas City, Kansas 64108 and
| | - Partha Krishnamurthy
- Pharmacology, Toxicology and Therapeutics.,University of Kansas Alzheimer's Disease Center, Kansas City, Kansas 64108 and
| | | | | | - Chad Slawson
- From the Departments of Biochemistry and Molecular Biology, .,University of Kansas Alzheimer's Disease Center, Kansas City, Kansas 64108 and
| |
Collapse
|
68
|
Moral J, Montilla‐Bascón G, Canales FJ, Rubiales D, Prats E. Cytoskeleton reorganization/disorganization is a key feature of induced inaccessibility for defence to successive pathogen attacks. MOLECULAR PLANT PATHOLOGY 2017; 18:662-671. [PMID: 27147535 PMCID: PMC6638220 DOI: 10.1111/mpp.12424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/28/2016] [Accepted: 05/03/2016] [Indexed: 06/05/2023]
Abstract
In this work, we investigated the involvement of the long-term dynamics of cytoskeletal reorganization on the induced inaccessibility phenomenon by which cells that successfully defend against a previous fungal attack become highly resistant to subsequent attacks. This was performed on pea through double inoculation experiments using inappropriate (Blumeria graminis f. sp. avenae, Bga) and appropriate (Erysiphe pisi, Ep) powdery mildew fungi. Pea leaves previously inoculated with Bga showed a significant reduction of later Ep infection relative to leaves inoculated only with Ep, indicating that cells had developed induced inaccessibility. This reduction in Ep infection was higher when the time interval between Bga and Ep inoculation ranged between 18 and 24 h, although increased penetration resistance in co-infected cells was observed even with time intervals of 24 days between inoculations. Interestingly, this increase in resistance to Ep following successful defence to the inappropriate Bga was associated with an increase in actin microfilament density that reached a maximum at 18-24 h after Bga inoculation and very slowly decreased afterwards. The putative role of cytoskeleton reorganization/disorganization leading to inaccessibility is supported by the suppression of the induced resistance mediated by specific actin (cytochalasin D, latrunculin B) or general protein (cycloheximide) inhibitors.
Collapse
Affiliation(s)
- Juan Moral
- CSIC, Institute for Sustainable AgricultureCórdobaE‐14004Spain
| | | | | | - Diego Rubiales
- CSIC, Institute for Sustainable AgricultureCórdobaE‐14004Spain
| | - Elena Prats
- CSIC, Institute for Sustainable AgricultureCórdobaE‐14004Spain
| |
Collapse
|
69
|
Vitnik ŽJ, Popović-Đorđević JB, Vitnik VD. Structural and vibrational analyses of new potential anticancer drug 2-(phenylmethyl)-2-azaspiro[5.11]heptadecane-1,3,7-trione. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
70
|
Yang L, Wu P, Xue J, Tan H, Zhang Z, Wei X. Cycloheximide congeners produced by Streptomyces sp. SC0581 and photoinduced interconversion between ( E) - and ( Z)-2,3-dehydroanhydrocycloheximides. Beilstein J Org Chem 2017; 13:1039-1049. [PMID: 28684983 PMCID: PMC5480333 DOI: 10.3762/bjoc.13.103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/10/2017] [Indexed: 11/23/2022] Open
Abstract
Three new cycloheximide congeners, 2,3-dehydro-α-epi-isocycloheximide (1), (E)- and (Z)-2,3-dehydroanhydrocycloheximides (2 and 3), together with three known compounds, anhydroisoheximide (4), cycloheximide (5), and isocycloheximide (6), were obtained from the cultures of Streptomyces sp. SC0581. Their structures were elucidated by extensive spectroscopic analysis in combination with theoretical conformational analysis and ECD computations. The photoinduced interconversion between 2 and 3 was observed and verified and the possible reaction path and mechanism were proposed by theoretical computations. The antifungal and cytotoxic activities of 1-6 were evaluated and suggested that 2,3-dehydrogenation results in the loss of the activities and supported that the OH-α is important to the activities of cycloheximide congeners.
Collapse
Affiliation(s)
- Li Yang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Yuquanlu 19A, Beijing 100049, China
| | - Ping Wu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
| | - Jinghua Xue
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
| | - Huitong Tan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
| | - Zheng Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
| | - Xiaoyi Wei
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
| |
Collapse
|
71
|
Abstract
As obligate parasites, viruses strictly depend on host cell translation for the production of new progeny, yet infected cells also synthesize antiviral proteins to limit virus infection. Modulation of host cell translation therefore represents a frequent strategy by which viruses optimize their replication and spread. Here we sought to define how host cell translation is regulated during infection of human cells with dengue virus (DENV) and Zika virus (ZIKV), two positive-strand RNA flaviviruses. Polysome profiling and analysis of de novo protein synthesis revealed that flavivirus infection causes potent repression of host cell translation, while synthesis of viral proteins remains efficient. Selective repression of host cell translation was mediated by the DENV polyprotein at the level of translation initiation. In addition, DENV and ZIKV infection suppressed host cell stress responses such as the formation of stress granules and phosphorylation of the translation initiation factor eIF2α (α subunit of eukaryotic initiation factor 2). Mechanistic analyses revealed that translation repression was uncoupled from the disruption of stress granule formation and eIF2α signaling. Rather, DENV infection induced p38-Mnk1 signaling that resulted in the phosphorylation of the eukaryotic translation initiation factor eIF4E and was essential for the efficient production of virus particles. Together, these results identify the uncoupling of translation suppression from the cellular stress responses as a conserved strategy by which flaviviruses ensure efficient replication in human cells. For efficient production of new progeny, viruses need to balance their dependency on the host cell translation machinery with potentially adverse effects of antiviral proteins produced by the infected cell. To achieve this, many viruses evolved mechanisms to manipulate host cell translation. Here we find that infection of human cells with two major human pathogens, dengue virus (DENV) and Zika virus (ZIKV), leads to the potent repression of host cell translation initiation, while the synthesis of viral protein remains unaffected. Unlike other RNA viruses, these flaviviruses concomitantly suppress host cell stress responses, thereby uncoupling translation suppression from stress granule formation. We identified that the p38-Mnk1 cascade regulating phosphorylation of eIF4E is a target of DENV infection and plays an important role in virus production. Our results define several molecular interfaces by which flaviviruses hijack host cell translation and interfere with stress responses to optimize the production of new virus particles.
Collapse
|
72
|
Czamara K, Petko F, Baranska M, Kaczor A. Raman microscopy at the subcellular level: a study on early apoptosis in endothelial cells induced by Fas ligand and cycloheximide. Analyst 2017; 141:1390-7. [PMID: 26765153 DOI: 10.1039/c5an02202a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
High spatially resolved Raman microscopy was applied to study the early apoptosis in endothelial cells and chemical and structural changes induced by this process. Application of cluster analysis enabled separation of signals due to various subcellular organelles and compartments such as the nuclei, nucleoli, endoplasmic reticulum or cytoplasm and analysis of alterations locally at the subcellular level. Different stimuli, i.e. Fas ligand, a tumor necrosis factor, and cycloheximide, an inhibitor of eukaryotic protein biosynthesis, were applied to induce apoptotic mechanisms. Due to different mechanisms of action, the changes observed in subcellular structures were different for FasL and cycloheximide. Although in both cases a statistically significant decrease of the protein level was observed in all studied cellular structures, the increase of the nucleic acids content locally in apoptotic nuclei was considerably more pronounced upon FasL-induced apoptosis compared to the cycloheximide one. Additionally, apoptosis invokes also a decrease of the proteins with the α-helix protein structure selectively for FasL in the cytoplasm and endoplasmic reticulum.
Collapse
Affiliation(s)
- Krzysztof Czamara
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland. and Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland
| | - Filip Petko
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland
| | - Malgorzata Baranska
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland. and Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland
| | - Agnieszka Kaczor
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland. and Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland
| |
Collapse
|
73
|
Gil KE, Park MJ, Lee HJ, Park YJ, Han SH, Kwon YJ, Seo PJ, Jung JH, Park CM. Alternative splicing provides a proactive mechanism for the diurnal CONSTANS dynamics in Arabidopsis photoperiodic flowering. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:128-140. [PMID: 27607358 DOI: 10.1111/tpj.13351] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/31/2016] [Accepted: 09/02/2016] [Indexed: 05/19/2023]
Abstract
The circadian clock control of CONSTANS (CO) transcription and the light-mediated stabilization of its encoded protein coordinately adjust photoperiodic flowering by triggering rhythmic expression of the floral integrator flowering locus T (FT). Diurnal accumulation of CO is modulated sequentially by distinct E3 ubiquitin ligases, allowing peak CO to occur in the late afternoon under long days. Here we show that CO abundance is not simply targeted by E3 enzymes but is also actively self-adjusted through dynamic interactions between two CO isoforms. Alternative splicing of CO produces two protein variants, the full-size COα and the truncated COβ lacking DNA-binding affinity. Notably, COβ, which is resistant to E3 enzymes, induces the interaction of COα with CO-destabilizing E3 enzymes but inhibits the association of COα with CO-stabilizing E3 ligase. These observations demonstrate that CO plays an active role in sustaining its diurnal accumulation dynamics during Arabidopsis photoperiodic flowering.
Collapse
Affiliation(s)
- Kyung-Eun Gil
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Mi-Jeong Park
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Hyo-Jun Lee
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Young-Joon Park
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Shin-Hee Han
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Young-Ju Kwon
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Jae-Hoon Jung
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
74
|
SO4 = uptake and catalase role in preconditioning after H2O2-induced oxidative stress in human erythrocytes. Pflugers Arch 2016; 469:235-250. [DOI: 10.1007/s00424-016-1927-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 12/04/2016] [Accepted: 12/06/2016] [Indexed: 10/20/2022]
|
75
|
Bellamri M, Le Hegarat L, Vernhet L, Baffet G, Turesky RJ, Langouët S. Human T lymphocytes bioactivate heterocyclic aromatic amines by forming DNA adducts. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:656-667. [PMID: 27801952 PMCID: PMC5123841 DOI: 10.1002/em.22059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/29/2016] [Indexed: 05/06/2023]
Abstract
Heterocyclic aromatic amines (HAA) are formed in cooked meat, poultry and fish but also arise in tobacco smoke and exhaust gases. HAA are potential human carcinogens, which require metabolic activation to exert their genotoxicity. Human tissues can bioactivate HAA to produce reactive intermediates that bind to DNA. HAA DNA adduct formation occurs in human hepatocytes; however, the potential of HAA to form DNA adducts has not been investigated in human T lymphocytes. In this study, we investigated the ability of human T lymphocytes activated with PMA/Ionomycin or CD3/CD28 to express functional CYP1 activity and bioactivate three major HAA: 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), and 2-amino-9H-pyrido[2,3-b]indole (AαC) to form DNA adducts. Adducts were measured by ultraperformance liquid chromatography-electrospray ionization/multistage scan mass spectrometry. The highest level of DNA adducts occurred for AαC (16 adducts per 109 nucleotides), followed by PhIP (9 adducts per 109 nucleotides). In contrast, DNA adducts formed from MeIQx and the structurally related aromatic amine 4-aminobiphenyl, a known human carcinogen, were below the limit of detection (< 3 adducts per 109 nucleotides). Moreover, we demonstrate that AαC is a potent inducer of CYP1A1 and CYP1B1 activity through a transcriptional mechanism involving the AhR pathway. Overall, our results highlight the capacity of activated human T lymphocytes to more efficiently bioactivate AαC to form DNA adducts than other prominent HAA or 4-ABP. Environ. Mol. Mutagen. 57:656-667, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Medjda Bellamri
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1085, Institut de Recherche en Santé Environnement et Travail (IRSET), Université de Rennes 1, UMS 3480 Biosit, F-35043 Rennes, France
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Fougères Laboratory, Toxicology of Contaminants Unit, Fougères, France
| | - Ludovic Le Hegarat
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Fougères Laboratory, Toxicology of Contaminants Unit, Fougères, France
| | - Laurent Vernhet
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1085, Institut de Recherche en Santé Environnement et Travail (IRSET), Université de Rennes 1, UMS 3480 Biosit, F-35043 Rennes, France
| | - Georges Baffet
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1085, Institut de Recherche en Santé Environnement et Travail (IRSET), Université de Rennes 1, UMS 3480 Biosit, F-35043 Rennes, France
| | - Robert J Turesky
- Masonic Cancer Center and Department of Medicinal Chemistry, Cancer and Cardiology Research Building, University of Minnesota, 2231 6th Street, Minneapolis, Minnesota 55455, United States
| | - Sophie Langouët
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1085, Institut de Recherche en Santé Environnement et Travail (IRSET), Université de Rennes 1, UMS 3480 Biosit, F-35043 Rennes, France
- Correspondence should be addressed to: Dr. Sophie Langouët, Institut National de la Santé et de la Recherche Médicale (Inserm), U1085, Institut de Recherche en Santé Environnement et Travail (IRSET), Université de Rennes 1, 2 avenue du Pr L Bernard,, F-35043 Rennes, France. Tel: 02 23 23 48 06;
| |
Collapse
|
76
|
Allam O, Samarani S, Jenabian MA, Routy JP, Tremblay C, Amre D, Ahmad A. Differential synthesis and release of IL-18 and IL-18 Binding Protein from human platelets and their implications for HIV infection. Cytokine 2016; 90:144-154. [PMID: 27914933 DOI: 10.1016/j.cyto.2016.10.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/24/2016] [Accepted: 10/27/2016] [Indexed: 01/01/2023]
Abstract
IL-18 is a pro-inflammatory cytokine belonging to the IL-1 family and is produced in the body from macrophages, epithelial and dendritic cells, keratinocytes, adrenal cortex etc. The cytokine is produced as an inactive precursor that is cleaved inside cells into its mature form by activated caspase 1, which exists as an inactive precursor in human cells and requires assembly of an inflammasomes for its activation. We show here for the first time that human platelets contain transcripts for the IL-18 gene. They synthesize the cytokine de novo, process and release it upon activation. The activation also results in the assembly of an inflammasome and activation of caspase-1. Platelets also contain the IL-18 antagonist, the IL-18-Binding Protein (IL-18BP); however, it is not synthesized in them de novo, is present in pre-made form and is released irrespective of platelet activation. IL-18 and IL-18BP co-localize to α granules inside platelets and are secreted out with different kinetics. Platelet activation contributes to plasma concentrations in healthy individuals, as their plasma samples contain abundant IL-18, while their platelet-poor plasma samples contain very little amounts of the cytokine. The plasma and PPP samples from these donors, however, contain comparable amounts of IL-18BP. Unlike healthy individuals, the platelet-poor plasma from HIV-infected individuals contains significant amounts of IL-18. Our findings have important implications for viral infections and other human diseases that are accompanied by platelet activation.
Collapse
Affiliation(s)
- Ossama Allam
- Laboratory of Innate Immunity, CHU Ste-Justine Research Center/Department of Microbiology, Infectiology & Immunology, University of Montreal, Montreal, QC, Canada
| | - Suzanne Samarani
- Laboratory of Innate Immunity, CHU Ste-Justine Research Center/Department of Microbiology, Infectiology & Immunology, University of Montreal, Montreal, QC, Canada
| | - Mohammad-Ali Jenabian
- Department of Biological Sciences, University of Quebec at Montreal (UQAM), Montreal, Quebec, Canada
| | - Jean-Pierre Routy
- Division of Hematology & Chronic Viral Illness Service, McGill University, Montreal, QC, Canada
| | - Cecile Tremblay
- CHUM/Department of Microbiology, Infectiology & Immunology, University of Montreal, Montreal, QC, Canada
| | - Devendra Amre
- CHU Ste-Justine Research Center/Department of Pediatrics, University of Montreal, Montreal, QC, Canada
| | - Ali Ahmad
- Laboratory of Innate Immunity, CHU Ste-Justine Research Center/Department of Microbiology, Infectiology & Immunology, University of Montreal, Montreal, QC, Canada.
| |
Collapse
|
77
|
Dumas E, Neagoe PE, McDonald PP, White M, Sirois MG. New Insights into the Pro-Inflammatory Activities of Ang1 on Neutrophils: Induction of MIP-1β Synthesis and Release. PLoS One 2016; 11:e0163140. [PMID: 27632174 PMCID: PMC5025150 DOI: 10.1371/journal.pone.0163140] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 09/02/2016] [Indexed: 12/28/2022] Open
Abstract
We reported the expression of angiopoietin Tie2 receptor on human neutrophils and the capacity of angiopoietins (Ang1 and Ang2) to induce pro-inflammatory activities, such as platelet-activating factor synthesis, β2-integrin activation and neutrophil migration. Recently, we observed differential effects between both angiopoietins, namely, the capacity of Ang1, but not Ang2, to promote rapid interleukin-8 synthesis and release, as well as neutrophil viability. Herein, we addressed whether Ang1 and/or Ang2 could modulate the synthesis and release of macrophage inflammatory protein-1β (MIP-1β) by neutrophils. Neutrophils were isolated from blood of healthy volunteers; intracellular and extracellular MIP-1β protein concentrations were assessed by ELISA. After 24 hours, the basal intracellular and extracellular MIP-1β protein concentrations were ≈500 and 100 pg/106 neutrophils, respectively. Treatment with Ang1 (10 nM) increased neutrophil intracellular and extracellular MIP-1β concentrations by 310 and 388% respectively. Pretreatment with PI3K (LY294002), p38 MAPK (SB203580) and MEK (U0126) inhibitors completely inhibited Ang1-mediated increase of MIP-1β intracellular and extracellular protein levels. Pretreatment with NF-κB complex inhibitors, namely Bay11-7085 and IKK inhibitor VII or with a transcription inhibitor (actinomycin D) and protein synthesis inhibitor (cycloheximide), did also abrogate Ang1-mediated increase of MIP-1β intracellular and extracellular protein levels. We validated by RT-qPCR analyses the effect of Ang1 on the induction of MIP-1β mRNA levels. Our study is the first one to report Ang1 capacity to induce MIP-1β gene expression, protein synthesis and release from neutrophils, and that these effects are mediated by PI3K, p38 MAPK and MEK activation and downstream NF-κB activation.
Collapse
Affiliation(s)
- Elizabeth Dumas
- Research center, Montreal Heart Institute, Montreal (Quebec), Canada
- Departments of pharmacology, Faculty of medicine, Université de Montréal, Montreal (Quebec), Canada
| | - Paul-Eduard Neagoe
- Research center, Montreal Heart Institute, Montreal (Quebec), Canada
- Departments of pharmacology, Faculty of medicine, Université de Montréal, Montreal (Quebec), Canada
| | - Patrick P. McDonald
- Pulmonary Division/Research, Faculty of Medicine, Université de Sherbrooke, Sherbrooke (Quebec), Canada
| | - Michel White
- Research center, Montreal Heart Institute, Montreal (Quebec), Canada
- Departments of medicine, Faculty of medicine, Université de Montréal, Montreal (Quebec), Canada
| | - Martin G. Sirois
- Research center, Montreal Heart Institute, Montreal (Quebec), Canada
- Departments of pharmacology, Faculty of medicine, Université de Montréal, Montreal (Quebec), Canada
- * E-mail:
| |
Collapse
|
78
|
Growth of the Mammalian Golgi Apparatus during Interphase. Mol Cell Biol 2016; 36:2344-59. [PMID: 27325676 DOI: 10.1128/mcb.00046-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 06/14/2016] [Indexed: 12/11/2022] Open
Abstract
During the cell cycle, genetic materials and organelles are duplicated to ensure that there is sufficient cellular content for daughter cells. While Golgi growth in interphase has been observed in lower eukaryotes, the elaborate ribbon structure of the mammalian Golgi apparatus has made it challenging to monitor. Here we demonstrate the growth of the mammalian Golgi apparatus in its protein content and volume during interphase. Through ultrastructural analyses, physical growth of the Golgi apparatus was revealed to occur by cisternal elongation of the individual Golgi stacks. By examining the timing and regulation of Golgi growth, we established that Golgi growth starts after passage through the cell growth checkpoint at late G1 phase and continues in a manner highly correlated with cell size growth. Finally, by identifying S6 kinase 1 as a major player in Golgi growth, we revealed the coordination between cell size and Golgi growth via activation of the protein synthesis machinery in early interphase.
Collapse
|
79
|
Yamauchi Y, Izawa S. Prioritized Expression of BTN2 of Saccharomyces cerevisiae under Pronounced Translation Repression Induced by Severe Ethanol Stress. Front Microbiol 2016; 7:1319. [PMID: 27602028 PMCID: PMC4993754 DOI: 10.3389/fmicb.2016.01319] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/10/2016] [Indexed: 11/24/2022] Open
Abstract
Severe ethanol stress (>9% ethanol, v/v) as well as glucose deprivation rapidly induces a pronounced repression of overall protein synthesis in budding yeast Saccharomyces cerevisiae. Therefore, transcriptional activation in yeast cells under severe ethanol stress does not always indicate the production of expected protein levels. Messenger RNAs of genes containing heat shock elements can be intensively translated under glucose deprivation, suggesting that some mRNAs are preferentially translated even under severe ethanol stress. In the present study, we tried to identify the mRNA that can be preferentially translated under severe ethanol stress. BTN2 encodes a v-SNARE binding protein, and its null mutant shows hypersensitivity to ethanol. We found that BTN2 mRNA was efficiently translated under severe ethanol stress but not under mild ethanol stress. Moreover, the increased Btn2 protein levels caused by severe ethanol stress were smoothly decreased with the elimination of ethanol stress. These findings suggested that severe ethanol stress extensively induced BTN2 expression. Further, the BTN2 promoter induced protein synthesis of non-native genes such as CUR1, GIC2, and YUR1 in the presence of high ethanol concentrations, indicating that this promoter overcame severe ethanol stress-induced translation repression. Thus, our findings provide an important clue about yeast response to severe ethanol stress and suggest that the BTN2 promoter can be used to improve the efficiency of ethanol production and stress tolerance of yeast cells by modifying gene expression in the presence of high ethanol concentration.
Collapse
Affiliation(s)
- Yukina Yamauchi
- Laboratory of Microbial Technology, Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology Kyoto, Japan
| | - Shingo Izawa
- Laboratory of Microbial Technology, Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology Kyoto, Japan
| |
Collapse
|
80
|
Dubnikov T, Ben-Gedalya T, Reiner R, Hoepfner D, Cabral WA, Marini JC, Cohen E. PrP-containing aggresomes are cytosolic components of an ER quality control mechanism. J Cell Sci 2016; 129:3635-3647. [PMID: 27550517 DOI: 10.1242/jcs.186981] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 08/13/2016] [Indexed: 11/20/2022] Open
Abstract
Limited detoxification capacity often directs aggregation-prone, potentially hazardous, misfolded proteins to be deposited in designated cytosolic compartments known as 'aggresomes'. The roles of aggresomes as cellular quality control centers, and the cellular origin of the deposits contained within these structures, remain to be characterized. Here, we utilized the observation that the prion protein (PrP, also known as PRNP) accumulates in aggresomes following the inhibition of folding chaperones, members of the cyclophilin family, to address these questions. We found that misfolded PrP molecules must pass through the endoplasmic reticulum (ER) in order to be deposited in aggresomes, that the Golgi plays no role in this process and that cytosolic PrP species are not deposited in pre-existing aggresomes. Prior to their deposition in the aggresome, PrP molecules lose the ER localization signal and have to acquire a GPI anchor. Our discoveries indicate that PrP aggresomes are cytosolic overflow deposition centers for the ER quality control mechanisms and highlight the importance of these structures for the maintenance of protein homeostasis within the ER.
Collapse
Affiliation(s)
- Tatyana Dubnikov
- Biochemistry and Molecular Biology, the Institute for Medical Research Israel - Canada (IMRIC), the School of Medicine of the Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Tziona Ben-Gedalya
- Biochemistry and Molecular Biology, the Institute for Medical Research Israel - Canada (IMRIC), the School of Medicine of the Hebrew University of Jerusalem, Jerusalem 91120, Israel Department of Obstetrics and Gynecology, Hadassah University Hospital, Ein Kerem, Jerusalem, 91120, Israel
| | - Robert Reiner
- Biochemistry and Molecular Biology, the Institute for Medical Research Israel - Canada (IMRIC), the School of Medicine of the Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Dominic Hoepfner
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel 4056, Switzerland
| | - Wayne A Cabral
- Bone and Extracellular Matrix Branch, NICHD, NIH, Bethesda, MD 20892, USA
| | - Joan C Marini
- Bone and Extracellular Matrix Branch, NICHD, NIH, Bethesda, MD 20892, USA
| | - Ehud Cohen
- Biochemistry and Molecular Biology, the Institute for Medical Research Israel - Canada (IMRIC), the School of Medicine of the Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
81
|
Antimalarial Benzoxaboroles Target Plasmodium falciparum Leucyl-tRNA Synthetase. Antimicrob Agents Chemother 2016; 60:4886-95. [PMID: 27270277 DOI: 10.1128/aac.00820-16] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 05/26/2016] [Indexed: 01/18/2023] Open
Abstract
There is a need for new antimalarials, ideally with novel mechanisms of action. Benzoxaboroles have been shown to be active against bacteria, fungi, and trypanosomes. Therefore, we investigated the antimalarial activity and mechanism of action of 3-aminomethyl benzoxaboroles against Plasmodium falciparum Two 3-aminomethyl compounds, AN6426 and AN8432, demonstrated good potency against cultured multidrug-resistant (W2 strain) P. falciparum (50% inhibitory concentration [IC50] of 310 nM and 490 nM, respectively) and efficacy against murine Plasmodium berghei infection when administered orally once daily for 4 days (90% effective dose [ED90], 7.4 and 16.2 mg/kg of body weight, respectively). To characterize mechanisms of action, we selected parasites with decreased drug sensitivity by culturing with stepwise increases in concentration of AN6426. Resistant clones were characterized by whole-genome sequencing. Three generations of resistant parasites had polymorphisms in the predicted editing domain of the gene encoding a P. falciparum leucyl-tRNA synthetase (LeuRS; PF3D7_0622800) and in another gene (PF3D7_1218100), which encodes a protein of unknown function. Solution of the structure of the P. falciparum LeuRS editing domain suggested key roles for mutated residues in LeuRS editing. Short incubations with AN6426 and AN8432, unlike artemisinin, caused dose-dependent inhibition of [(14)C]leucine incorporation by cultured wild-type, but not resistant, parasites. The growth of resistant, but not wild-type, parasites was impaired in the presence of the unnatural amino acid norvaline, consistent with a loss of LeuRS editing activity in resistant parasites. In summary, the benzoxaboroles AN6426 and AN8432 offer effective antimalarial activity and act, at least in part, against a novel target, the editing domain of P. falciparum LeuRS.
Collapse
|
82
|
Ishida Y, Nguyen TTM, Kitajima S, Izawa S. Prioritized Expression of BDH2 under Bulk Translational Repression and Its Contribution to Tolerance to Severe Vanillin Stress in Saccharomyces cerevisiae. Front Microbiol 2016; 7:1059. [PMID: 27458450 PMCID: PMC4933698 DOI: 10.3389/fmicb.2016.01059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/23/2016] [Indexed: 01/10/2023] Open
Abstract
Vanillin is a potent fermentation inhibitor derived from the lignocellulosic biomass in biofuel production, and high concentrations of vanillin result in the pronounced repression of bulk translation in Saccharomyces cerevisiae. Studies on genes that are efficiently translated even in the presence of high concentrations of vanillin will be useful for improving yeast vanillin tolerance and fermentation efficiency. The BDH1 and BDH2 genes encode putative medium-chain alcohol dehydrogenase/reductases and their amino acid sequences are very similar to each other. Although BDH2 was previously suggested to be involved in vanillin tolerance, it has yet to be clarified whether Bdh1/Bdh2 actually contribute to vanillin tolerance and reductions in vanillin. Therefore, we herein investigated the effects of Bdh1 and Bdh2 on vanillin tolerance. bdh2Δ cells exhibited hypersensitivity to vanillin and slower reductions in vanillin than wild-type cells and bdh1Δ cells. Additionally, the overexpression of the BDH2 gene improved yeast tolerance to vanillin more efficiently than that of BDH1. Only BDH2 mRNA was efficiently translated under severe vanillin stress, however, both BDH genes were transcriptionally up-regulated. These results reveal the importance of Bdh2 in vanillin detoxification and confirm the preferential translation of the BDH2 gene in the presence of high concentrations of vanillin. The BDH2 promoter also enabled the expression of non-native genes under severe vanillin stress and furfural stress, suggesting its availability to improve of the efficiency of bioethanol production through modifications in gene expression in the presence of fermentation inhibitors.
Collapse
Affiliation(s)
- Yoko Ishida
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology Kyoto, Japan
| | - Trinh T M Nguyen
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology Kyoto, Japan
| | - Sakihito Kitajima
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology Kyoto, Japan
| | - Shingo Izawa
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology Kyoto, Japan
| |
Collapse
|
83
|
Bansal N, Bartucci M, Yusuff S, Davis S, Flaherty K, Huselid E, Patrizii M, Jones D, Cao L, Sydorenko N, Moon YC, Zhong H, Medina DJ, Kerrigan J, Stein MN, Kim IY, Davis TW, DiPaola RS, Bertino JR, Sabaawy HE. BMI-1 Targeting Interferes with Patient-Derived Tumor-Initiating Cell Survival and Tumor Growth in Prostate Cancer. Clin Cancer Res 2016; 22:6176-6191. [PMID: 27307599 DOI: 10.1158/1078-0432.ccr-15-3107] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 05/19/2016] [Accepted: 05/24/2016] [Indexed: 12/16/2022]
Abstract
PURPOSE Current prostate cancer management calls for identifying novel and more effective therapies. Self-renewing tumor-initiating cells (TICs) hold intrinsic therapy resistance and account for tumor relapse and progression. As BMI-1 regulates stem cell self-renewal, impairing BMI-1 function for TIC-tailored therapies appears to be a promising approach. EXPERIMENTAL DESIGN We have previously developed a combined immunophenotypic and time-of-adherence assay to identify CD49bhiCD29hiCD44hi cells as human prostate TICs. We utilized this assay with patient-derived prostate cancer cells and xenograft models to characterize the effects of pharmacologic inhibitors of BMI-1. RESULTS We demonstrate that in cell lines and patient-derived TICs, BMI-1 expression is upregulated and associated with stem cell-like traits. From a screened library, we identified a number of post-transcriptional small molecules that target BMI-1 in prostate TICs. Pharmacologic inhibition of BMI-1 in patient-derived cells significantly decreased colony formation in vitro and attenuated tumor initiation in vivo, thereby functionally diminishing the frequency of TICs, particularly in cells resistant to proliferation- and androgen receptor-directed therapies, without toxic effects on normal tissues. CONCLUSIONS Our data offer a paradigm for targeting TICs and support the development of BMI-1-targeting therapy for a more effective prostate cancer treatment. Clin Cancer Res; 22(24); 6176-91. ©2016 AACR.
Collapse
Affiliation(s)
- Nitu Bansal
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901
| | - Monica Bartucci
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901
| | - Shamila Yusuff
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901
| | - Stephani Davis
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, New Brunswick, NJ 08901
| | - Kathleen Flaherty
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901
| | - Eric Huselid
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, New Brunswick, NJ 08901
| | - Michele Patrizii
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, New Brunswick, NJ 08901
| | - Daniel Jones
- Graduate Program in Cell and Developmental Biology, RBHS-Robert Wood Johnson Medical School, Graduate School of Biomedical Sciences, Rutgers University, New Brunswick, NJ 08901
| | - Liangxian Cao
- PTC Therapeutics, Inc., 100 Corporate CT, South Plainfield, NJ 07080
| | - Nadiya Sydorenko
- PTC Therapeutics, Inc., 100 Corporate CT, South Plainfield, NJ 07080
| | - Young-Choon Moon
- PTC Therapeutics, Inc., 100 Corporate CT, South Plainfield, NJ 07080
| | - Hua Zhong
- Department of Pathology and Laboratory Medicine, Rutgers University, New Brunswick, NJ 08901
| | - Daniel J Medina
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901.,Department of Medicine, Rutgers University, New Brunswick, NJ 08901
| | - John Kerrigan
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901
| | - Mark N Stein
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901.,Department of Medicine, Rutgers University, New Brunswick, NJ 08901
| | - Isaac Y Kim
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901.,Department of Surgery, RBHS-Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901
| | - Thomas W Davis
- PTC Therapeutics, Inc., 100 Corporate CT, South Plainfield, NJ 07080
| | - Robert S DiPaola
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901.,Department of Medicine, Rutgers University, New Brunswick, NJ 08901
| | - Joseph R Bertino
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901.,Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, New Brunswick, NJ 08901.,Department of Medicine, Rutgers University, New Brunswick, NJ 08901
| | - Hatem E Sabaawy
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901.,Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, New Brunswick, NJ 08901.,Graduate Program in Cell and Developmental Biology, RBHS-Robert Wood Johnson Medical School, Graduate School of Biomedical Sciences, Rutgers University, New Brunswick, NJ 08901.,Department of Medicine, Rutgers University, New Brunswick, NJ 08901
| |
Collapse
|
84
|
Pham LM, Carvalho L, Schaus S, Kolaczyk ED. Perturbation Detection Through Modeling of Gene Expression on a Latent Biological Pathway Network: A Bayesian hierarchical approach. J Am Stat Assoc 2016; 111:73-92. [PMID: 27647944 DOI: 10.1080/01621459.2015.1110523] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Cellular response to a perturbation is the result of a dynamic system of biological variables linked in a complex network. A major challenge in drug and disease studies is identifying the key factors of a biological network that are essential in determining the cell's fate. Here our goal is the identification of perturbed pathways from high-throughput gene expression data. We develop a three-level hierarchical model, where (i) the first level captures the relationship between gene expression and biological pathways using confirmatory factor analysis, (ii) the second level models the behavior within an underlying network of pathways induced by an unknown perturbation using a conditional autoregressive model, and (iii) the third level is a spike-and-slab prior on the perturbations. We then identify perturbations through posterior-based variable selection. We illustrate our approach using gene transcription drug perturbation profiles from the DREAM7 drug sensitivity predication challenge data set. Our proposed method identified regulatory pathways that are known to play a causative role and that were not readily resolved using gene set enrichment analysis or exploratory factor models. Simulation results are presented assessing the performance of this model relative to a network-free variant and its robustness to inaccuracies in biological databases.
Collapse
|
85
|
Stulberg ER, Lozano GL, Morin JB, Park H, Baraban EG, Mlot C, Heffelfinger C, Phillips GM, Rush JS, Phillips AJ, Broderick NA, Thomas MG, Stabb EV, Handelsman J. Genomic and Secondary Metabolite Analyses of Streptomyces sp. 2AW Provide Insight into the Evolution of the Cycloheximide Pathway. Front Microbiol 2016; 7:573. [PMID: 27199910 PMCID: PMC4853412 DOI: 10.3389/fmicb.2016.00573] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/07/2016] [Indexed: 11/13/2022] Open
Abstract
The dearth of new antibiotics in the face of widespread antimicrobial resistance makes developing innovative strategies for discovering new antibiotics critical for the future management of infectious disease. Understanding the genetics and evolution of antibiotic producers will help guide the discovery and bioengineering of novel antibiotics. We discovered an isolate in Alaskan boreal forest soil that had broad antimicrobial activity. We elucidated the corresponding antimicrobial natural products and sequenced the genome of this isolate, designated Streptomyces sp. 2AW. This strain illustrates the chemical virtuosity typical of the Streptomyces genus, producing cycloheximide as well as two other biosynthetically unrelated antibiotics, neutramycin, and hygromycin A. Combining bioinformatic and chemical analyses, we identified the gene clusters responsible for antibiotic production. Interestingly, 2AW appears dissimilar from other cycloheximide producers in that the gene encoding the polyketide synthase resides on a separate part of the chromosome from the genes responsible for tailoring cycloheximide-specific modifications. This gene arrangement and our phylogenetic analyses of the gene products suggest that 2AW holds an evolutionarily ancestral lineage of the cycloheximide pathway. Our analyses support the hypothesis that the 2AW glutaramide gene cluster is basal to the lineage wherein cycloheximide production diverged from other glutarimide antibiotics. This study illustrates the power of combining modern biochemical and genomic analyses to gain insight into the evolution of antibiotic-producing microorganisms.
Collapse
Affiliation(s)
- Elizabeth R Stulberg
- Department of Molecular, Cellular and Developmental Biology, Yale University New Haven, CT, USA
| | - Gabriel L Lozano
- Department of Molecular, Cellular and Developmental Biology, Yale University New Haven, CT, USA
| | - Jesse B Morin
- Department of Molecular, Cellular and Developmental Biology, Yale University New Haven, CT, USA
| | - Hyunjun Park
- Department of Bacteriology, University of Wisconsin-Madison Madison, WI, USA
| | - Ezra G Baraban
- Department of Molecular, Cellular and Developmental Biology, Yale University New Haven, CT, USA
| | - Christine Mlot
- Department of Bacteriology, University of Wisconsin-Madison Madison, WI, USA
| | | | | | - Jason S Rush
- Department of Chemistry, Yale University New Haven, CT, USA
| | | | - Nichole A Broderick
- Department of Molecular, Cellular and Developmental Biology, Yale University New Haven, CT, USA
| | - Michael G Thomas
- Department of Bacteriology, University of Wisconsin-Madison Madison, WI, USA
| | - Eric V Stabb
- Department of Microbiology, University of Georgia Athens, GA, USA
| | - Jo Handelsman
- Department of Molecular, Cellular and Developmental Biology, Yale University New Haven, CT, USA
| |
Collapse
|
86
|
Latorre E, Carelli S, Caremoli F, Giallongo T, Colli M, Canazza A, Provenzani A, Di Giulio AM, Gorio A. Human Antigen R Binding and Regulation of SOX2 mRNA in Human Mesenchymal Stem Cells. Mol Pharmacol 2015; 89:243-52. [PMID: 26677051 DOI: 10.1124/mol.115.100701] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 12/11/2015] [Indexed: 02/02/2023] Open
Abstract
Since 2005, sex determining region y-box 2 (SOX2) has drawn the attention of the scientific community for being one of the key transcription factors responsible for pluripotency induction in somatic stem cells. Our research investigated the turnover regulation of SOX2 mRNA in human adipose-derived stem cells, considered one of the most valuable sources of somatic stem cells in regenerative medicine. Mitoxantrone is a drug that acts on nucleic acids primarily used to treat certain types of cancer and was recently shown to ameliorate the outcome of autoimmune diseases such as multiple sclerosis. In addition, mitoxantrone has been shown to inhibit the binding of human antigen R (HuR) RNA-binding protein to tumor necrosis factor-α mRNA. Our results show that HuR binds to the 3'-untranslated region of SOX2 mRNA together with the RNA-induced silencing complex miR145. The HuR binding works by stabilizing the interaction between the 3'-untranslated region and the RNA-induced silencing complex. Cell exposure to mitoxantrone leads to HuR detachment and the subsequent prolongation of the SOX2 mRNA half-life. The prolonged SOX2 half-life allows improvement of the spheroid-forming capability of the adipose-derived stem cells. The silencing of HuR confirmed the above observations and illustrates how the RNA-binding protein HuR may be a required molecule for regulation of SOX2 mRNA decay.
Collapse
Affiliation(s)
- Elisa Latorre
- Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Milan, Italy (E.L., S.C., F.C., T.G., M.C., A.M.D.G., A.G.); Laboratory of Cell Biology, Cerebrovascular Diseases Unit, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.C.); and Laboratory of Genomic Screening Center for Integrative Biology, University of Trento, Trento, Italy (A.P.)
| | - Stephana Carelli
- Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Milan, Italy (E.L., S.C., F.C., T.G., M.C., A.M.D.G., A.G.); Laboratory of Cell Biology, Cerebrovascular Diseases Unit, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.C.); and Laboratory of Genomic Screening Center for Integrative Biology, University of Trento, Trento, Italy (A.P.)
| | - Filippo Caremoli
- Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Milan, Italy (E.L., S.C., F.C., T.G., M.C., A.M.D.G., A.G.); Laboratory of Cell Biology, Cerebrovascular Diseases Unit, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.C.); and Laboratory of Genomic Screening Center for Integrative Biology, University of Trento, Trento, Italy (A.P.)
| | - Toniella Giallongo
- Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Milan, Italy (E.L., S.C., F.C., T.G., M.C., A.M.D.G., A.G.); Laboratory of Cell Biology, Cerebrovascular Diseases Unit, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.C.); and Laboratory of Genomic Screening Center for Integrative Biology, University of Trento, Trento, Italy (A.P.)
| | - Mattia Colli
- Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Milan, Italy (E.L., S.C., F.C., T.G., M.C., A.M.D.G., A.G.); Laboratory of Cell Biology, Cerebrovascular Diseases Unit, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.C.); and Laboratory of Genomic Screening Center for Integrative Biology, University of Trento, Trento, Italy (A.P.)
| | - Alessandra Canazza
- Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Milan, Italy (E.L., S.C., F.C., T.G., M.C., A.M.D.G., A.G.); Laboratory of Cell Biology, Cerebrovascular Diseases Unit, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.C.); and Laboratory of Genomic Screening Center for Integrative Biology, University of Trento, Trento, Italy (A.P.)
| | - Alessandro Provenzani
- Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Milan, Italy (E.L., S.C., F.C., T.G., M.C., A.M.D.G., A.G.); Laboratory of Cell Biology, Cerebrovascular Diseases Unit, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.C.); and Laboratory of Genomic Screening Center for Integrative Biology, University of Trento, Trento, Italy (A.P.)
| | - Anna Maria Di Giulio
- Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Milan, Italy (E.L., S.C., F.C., T.G., M.C., A.M.D.G., A.G.); Laboratory of Cell Biology, Cerebrovascular Diseases Unit, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.C.); and Laboratory of Genomic Screening Center for Integrative Biology, University of Trento, Trento, Italy (A.P.)
| | - Alfredo Gorio
- Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Milan, Italy (E.L., S.C., F.C., T.G., M.C., A.M.D.G., A.G.); Laboratory of Cell Biology, Cerebrovascular Diseases Unit, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.C.); and Laboratory of Genomic Screening Center for Integrative Biology, University of Trento, Trento, Italy (A.P.)
| |
Collapse
|
87
|
Yu JM, Sun W, Hua F, Xie J, Lin H, Zhou DD, Hu ZW. BCL6 induces EMT by promoting the ZEB1-mediated transcription repression of E-cadherin in breast cancer cells. Cancer Lett 2015; 365:190-200. [DOI: 10.1016/j.canlet.2015.05.029] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 05/19/2015] [Accepted: 05/29/2015] [Indexed: 11/30/2022]
|
88
|
Popović-Djordjević JB, Klaus AS, Žižak ŽS, Matić IZ, Drakulić BJ. Antiproliferative and antibacterial activity of some glutarimide derivatives. J Enzyme Inhib Med Chem 2015; 31:915-23. [PMID: 26247353 DOI: 10.3109/14756366.2015.1070844] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Antiproliferative and antibacterial activities of nine glutarimide derivatives (1-9) were reported. Cytotoxicity of compounds was tested toward three human cancer cell lines, HeLa, K562 and MDA-MB-453 by MTT assay. Compound 7 (2-benzyl-2-azaspiro[5.11]heptadecane-1,3,7-trione), containing 12-membered ketone ring, was found to be the most potent toward all tested cell lines (IC50 = 9-27 μM). Preliminary screening of antibacterial activity by a disk diffusion method showed that Gram-positive bacteria were more susceptible to the tested compounds than Gram-negative bacteria. Minimum inhibitory concentration (MIC) determined by a broth microdilution method confirmed that compounds 1, 2, 4, 6-8 and 9 inhibited the growth of all tested Gram-positive and some of the Gram-negative bacteria. The best antibacterial potential was achieved with compound 9 (ethyl 4-(1-benzyl-2,6-dioxopiperidin-3-yl)butanoate) against Bacillus cereus (MIC 0.625 mg/mL; 1.97 × 10(-3 )mol/L). Distinction between more and less active/inactive compounds was assessed from the pharmacophoric patterns obtained by molecular interaction fields.
Collapse
Affiliation(s)
| | - Anita S Klaus
- b Department for Industrial Microbiology, Faculty of Agriculture , University of Belgrade , Belgrade , Serbia
| | - Željko S Žižak
- c Institute of Oncology and Radiology of Serbia , Belgrade , Serbia , and
| | - Ivana Z Matić
- c Institute of Oncology and Radiology of Serbia , Belgrade , Serbia , and
| | - Branko J Drakulić
- d Department of Chemistry , Institute of Chemistry, Technology and Metallurgy, University of Belgrade , Belgrade , Serbia
| |
Collapse
|
89
|
Proteasome inhibitors induce AMPK activation via CaMKKβ in human breast cancer cells. Breast Cancer Res Treat 2015; 153:79-88. [DOI: 10.1007/s10549-015-3512-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 07/18/2015] [Indexed: 01/15/2023]
|
90
|
Comparative Analysis of Transmembrane Regulators of the Filamentous Growth Mitogen-Activated Protein Kinase Pathway Uncovers Functional and Regulatory Differences. EUKARYOTIC CELL 2015; 14:868-83. [PMID: 26116211 DOI: 10.1128/ec.00085-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/17/2015] [Indexed: 12/14/2022]
Abstract
Filamentous growth is a microbial differentiation response that involves the concerted action of multiple signaling pathways. In budding yeast, one pathway that regulates filamentous growth is a Cdc42p-dependent mitogen-activated protein kinase (MAPK) pathway. Several transmembrane (TM) proteins regulate the filamentous growth pathway, including the signaling mucin Msb2p, the tetraspan osmosensor Sho1p, and an adaptor Opy2p. The TM proteins were compared to identify common and unique features. Msb2p, Sho1p, and Opy2p associated by coimmunoprecipitation analysis but showed predominantly different localization patterns. The different localization patterns of the proteins resulted in part from different rates of turnover from the plasma membrane (PM). In particular, Msb2p (and Opy2p) were turned over rapidly compared to Sho1p. Msb2p signaled from the PM, and its turnover was a rate-limiting step in MAPK signaling. Genetic analysis identified unique phenotypes of cells overexpressing the TM proteins. Therefore, each TM regulator of the filamentous growth pathway has its own regulatory pattern and specific function in regulating filamentous growth. This specialization may be important for fine-tuning and potentially diversifying the filamentation response.
Collapse
|
91
|
Sabirzhanova I, Lopes Pacheco M, Rapino D, Grover R, Handa JT, Guggino WB, Cebotaru L. Rescuing Trafficking Mutants of the ATP-binding Cassette Protein, ABCA4, with Small Molecule Correctors as a Treatment for Stargardt Eye Disease. J Biol Chem 2015; 290:19743-55. [PMID: 26092729 DOI: 10.1074/jbc.m115.647685] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Indexed: 11/06/2022] Open
Abstract
Stargardt disease is the most common form of early onset macular degeneration. Mutations in ABCA4, a member of the ATP-binding cassette (ABC) family, are associated with Stargardt disease. Here, we have examined two disease-causing mutations in the NBD1 region of ABCA4, R1108C, and R1129C, which occur within regions of high similarity with CFTR, another ABC transporter gene, which is associated with cystic fibrosis. We show that R1108C and R1129C are both temperature-sensitive processing mutants that engage the cellular quality control mechanism and show a strong interaction with the chaperone Hsp 27. Both mutant proteins also interact with HDCAC6 and are degraded in the aggresome. We also demonstrate that novel corrector compounds that are being tested as treatment for cystic fibrosis, such as VX-809, can rescue the processing of the ABCA4 mutants, particularly their expression at the cell surface, and can reduce their binding to HDAC6. Thus, our data suggest that VX-809 can potentially be developed as a new therapy for Stargardt disease, for which there is currently no treatment.
Collapse
Affiliation(s)
- Inna Sabirzhanova
- From the Division of Gastroenterology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, Physiology Center for Retinal Biology, and
| | - Miquéias Lopes Pacheco
- From the Division of Gastroenterology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, Physiology Center for Retinal Biology, and
| | - Daniele Rapino
- From the Division of Gastroenterology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, Physiology Center for Retinal Biology, and
| | - Rahul Grover
- From the Division of Gastroenterology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, Physiology Center for Retinal Biology, and
| | - James T Handa
- Department of Ophthalmology, Johns Hopkins University, Baltimore, Maryland 21231
| | - William B Guggino
- From the Division of Gastroenterology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland 21205
| | - Liudmila Cebotaru
- From the Division of Gastroenterology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, Physiology Center for Retinal Biology, and Department of Ophthalmology, Johns Hopkins University, Baltimore, Maryland 21231
| |
Collapse
|
92
|
Uncoupling Stress-Inducible Phosphorylation of Heat Shock Factor 1 from Its Activation. Mol Cell Biol 2015; 35:2530-40. [PMID: 25963659 DOI: 10.1128/mcb.00816-14] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 05/04/2015] [Indexed: 12/31/2022] Open
Abstract
In mammals the stress-inducible expression of genes encoding heat shock proteins is under the control of the heat shock transcription factor 1 (HSF1). Activation of HSF1 is a multistep process, involving trimerization, acquisition of DNA-binding and transcriptional activities, which coincide with several posttranslational modifications. Stress-inducible phosphorylation of HSF1, or hyperphosphorylation, which occurs mainly within the regulatory domain (RD), has been proposed as a requirement for HSF-driven transcription and is widely used for assessing HSF1 activation. Nonetheless, the contribution of hyperphosphorylation to the activity of HSF1 remains unknown. In this study, we generated a phosphorylation-deficient HSF1 mutant (HSF1Δ∼PRD), where the 15 known phosphorylation sites within the RD were disrupted. Our results show that the phosphorylation status of the RD does not affect the subcellular localization and DNA-binding activity of HSF1. Surprisingly, under stress conditions, HSF1Δ∼PRD is a potent transactivator of both endogenous targets and a reporter gene, and HSF1Δ∼PRD has a reduced activation threshold. Our results provide the first direct evidence for uncoupling stress-inducible phosphorylation of HSF1 from its activation, and we propose that the phosphorylation signature alone is not an appropriate marker for HSF1 activity.
Collapse
|
93
|
Shi M, Zhang H, Wang L, Zhu C, Sheng K, Du Y, Wang K, Dias A, Chen S, Whitman M, Wang E, Reed R, Cheng H. Premature Termination Codons Are Recognized in the Nucleus in A Reading-Frame Dependent Manner. Cell Discov 2015; 1. [PMID: 26491543 PMCID: PMC4610414 DOI: 10.1038/celldisc.2015.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
mRNAs containing premature termination codons (PTCs) are known to be degraded via nonsense-mediated mRNA decay (NMD). Unexpectedly, we found that mRNAs containing any type of PTC (UAA, UAG, UGA) are detained in the nucleus whereas their wild-type counterparts are rapidly exported. This retention is strictly reading-frame dependent. Strikingly, our data indicate that translating ribosomes in the nucleus proofread the frame and detect the PTCs in the nucleus. Moreover, the shuttling NMD protein Upf1 specifically associates with PTC+ mRNA in the nucleus and is required for nuclear retention of PTC+ mRNA. Together, our data lead to a working model that PTCs are recognized in the nucleus by translating ribosomes, resulting in recruitment of Upf1, which in turn functions in nuclear retention of PTC+ mRNA. Nuclear PTC recognition adds a new layer of proofreading for mRNA and may be vital for ensuring the extraordinary fidelity required for protein production.
Collapse
Affiliation(s)
- Min Shi
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Heng Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lantian Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Changlan Zhu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ke Sheng
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yanhua Du
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ke Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Anusha Dias
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - She Chen
- National Institute of Biological Sciences, Beijing 102206
| | - Malcolm Whitman
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Enduo Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Robin Reed
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Hong Cheng
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
94
|
Deciphering poxvirus gene expression by RNA sequencing and ribosome profiling. J Virol 2015; 89:6874-86. [PMID: 25903347 DOI: 10.1128/jvi.00528-15] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/14/2015] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED The more than 200 closely spaced annotated open reading frames, extensive transcriptional read-through, and numerous unpredicted RNA start sites have made the analysis of vaccinia virus gene expression challenging. Genome-wide ribosome profiling provided an unprecedented assessment of poxvirus gene expression. By 4 h after infection, approximately 80% of the ribosome-associated mRNA was viral. Ribosome-associated mRNAs were detected for most annotated early genes at 2 h and for most intermediate and late genes at 4 and 8 h. Cluster analysis identified a subset of early mRNAs that continued to be translated at the later times. At 2 h, there was excellent correlation between the abundance of individual mRNAs and the numbers of associated ribosomes, indicating that expression was primarily transcriptionally regulated. However, extensive transcriptional read-through invalidated similar correlations at later times. The mRNAs with the highest density of ribosomes had host response, DNA replication, and transcription roles at early times and were virion components at late times. Translation inhibitors were used to map initiation sites at single-nucleotide resolution at the start of most annotated open reading frames although in some cases a downstream methionine was used instead. Additional putative translational initiation sites with AUG or alternative codons occurred mostly within open reading frames, and fewer occurred in untranslated leader sequences, antisense strands, and intergenic regions. However, most open reading frames associated with these additional translation initiation sites were short, raising questions regarding their biological roles. The data were used to construct a high-resolution genome-wide map of the vaccinia virus translatome. IMPORTANCE This report contains the first genome-wide, high-resolution analysis of poxvirus gene expression at both transcriptional and translational levels. The study was made possible by recent methodological advances allowing examination of the translated regions of mRNAs including start sites at single-nucleotide resolution. Vaccinia virus ribosome-associated mRNA sequences were detected for most annotated early genes at 2 h and for most intermediate and late genes at 4 and 8 h after infection. The ribosome profiling approach was particularly valuable for poxviruses because of the close spacing of approximately 200 open reading frames and extensive transcriptional read-through resulting in overlapping mRNAs. The expression of intermediate and late genes, in particular, was visualized with unprecedented clarity and quantitation. We also identified novel putative translation initiation sites that were mostly associated with short protein coding sequences. The results provide a framework for further studies of poxvirus gene expression.
Collapse
|
95
|
Grote D, Moison C, Duhamel S, Chagraoui J, Girard S, Yang J, Mayotte N, Coulombe Y, Masson JY, Brown GW, Meloche S, Sauvageau G. E4F1 is a master regulator of CHK1-mediated functions. Cell Rep 2015; 11:210-9. [PMID: 25843717 DOI: 10.1016/j.celrep.2015.03.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 01/21/2015] [Accepted: 02/23/2015] [Indexed: 01/12/2023] Open
Abstract
It has been previously shown that the polycomb protein BMI1 and E4F1 interact physically and genetically in the hematopoietic system. Here, we report that E4f1 is essential for hematopoietic cell function and survival. E4f1 deletion induces acute bone marrow failure characterized by apoptosis of progenitors while stem cells are preserved. E4f1-deficient cells accumulate DNA damage and show defects in progression through S phase and mitosis, revealing a role for E4F1 in cell-cycle progression and genome integrity. Importantly, we showed that E4F1 interacts with and protects the checkpoint kinase 1 (CHK1) protein from degradation. Finally, defects observed in E4f1-deficient cells were fully reversed by ectopic expression of Chek1. Altogether, our results classify E4F1 as a master regulator of CHK1 activity that ensures high fidelity of DNA replication, thus safeguarding genome stability.
Collapse
Affiliation(s)
- David Grote
- Molecular Genetics of Stem Cells Laboratory, Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Céline Moison
- Molecular Genetics of Stem Cells Laboratory, Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Stéphanie Duhamel
- Signaling and Cell Growth Laboratory, Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Jalila Chagraoui
- Molecular Genetics of Stem Cells Laboratory, Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Simon Girard
- Molecular Genetics of Stem Cells Laboratory, Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Jay Yang
- Department of Biochemistry and Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Nadine Mayotte
- Molecular Genetics of Stem Cells Laboratory, Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Yan Coulombe
- Genome Stability Laboratory, CHU de Quebec Research Center, HDQ Pavilion, Oncology Axis, 9 McMahon, Québec City, QC G1R 2J6, Canada
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Quebec Research Center, HDQ Pavilion, Oncology Axis, 9 McMahon, Québec City, QC G1R 2J6, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Grant W Brown
- Department of Biochemistry and Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Sylvain Meloche
- Signaling and Cell Growth Laboratory, Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada; Department of Pharmacology, University of Montreal, Montreal, QC H3C 3J7, Canada.
| | - Guy Sauvageau
- Molecular Genetics of Stem Cells Laboratory, Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada.
| |
Collapse
|
96
|
Rapino D, Sabirzhanova I, Lopes-Pacheco M, Grover R, Guggino WB, Cebotaru L. Rescue of NBD2 mutants N1303K and S1235R of CFTR by small-molecule correctors and transcomplementation. PLoS One 2015; 10:e0119796. [PMID: 25799511 PMCID: PMC4370480 DOI: 10.1371/journal.pone.0119796] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 01/30/2015] [Indexed: 11/18/2022] Open
Abstract
Although, the most common Cystic Fibrosis mutation, ΔF508, in the cystic fibrosis transmembrane regulator. (CFTR), is located in nucleotide binding domain (NBD1), disease-causing mutations also occur in NBD2. To provide information on potential therapeutic strategies for mutations in NBD2, we studied, using a combination of biochemical approaches and newly created cell lines, two disease-causing NBD2 mutants, N1303K and S1235R. Surprisingly, neither was rescued by low temperature. Inhibition of proteasomes with MG132 or aggresomes with tubacin rescued the immature B and mature C bands of N1303K and S1235R, indicating that degradation occurs via proteasomes and aggresomes. We found no effect of the lysosome inhibitor E64. Thus, our results show that these NBD2 mutants are processing mutants with unique characteristics. Several known correctors developed to rescue ΔF508-CFTR, when applied either alone or in combination, significantly increased the maturation of bands B and C of both NBD 2 mutants. The best correction occurred with the combinations of C4 plus C18 or C3 plus C4. Co-transfection of truncated CFTR (∆27-264) into stably transfected cells was also able to rescue them. This demonstrates for the first time that transcomplementation with a truncated version of CFTR can rescue NBD2 mutants. Our results show that the N1303K mutation has a more profound effect on NBD2 processing than S1235R and that small-molecule correctors increase the maturation of bands B and C in NBD2 mutants. In addition, ∆27-264 was able to transcomplement both NDB2 mutants. We conclude that differences and similarities occur in the impact of mutations on NBD2 when compared to ΔF508-CFTR suggesting that individualized strategies may be needed to restore their function. Finally our results are important because they suggest that gene or corrector molecule therapies either alone or in combination individualized for NBD2 mutants may be beneficial for patients bearing N1303K or S1235R mutations.
Collapse
Affiliation(s)
- Daniele Rapino
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
- Department of Physiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Inna Sabirzhanova
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
- Department of Physiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Miquéias Lopes-Pacheco
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
- Department of Physiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Rahul Grover
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
- Department of Physiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - William B. Guggino
- Department of Physiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Liudmila Cebotaru
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
- * E-mail: .
| |
Collapse
|
97
|
Kinetic pathway of 40S ribosomal subunit recruitment to hepatitis C virus internal ribosome entry site. Proc Natl Acad Sci U S A 2014; 112:319-25. [PMID: 25516984 DOI: 10.1073/pnas.1421328111] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Translation initiation can occur by multiple pathways. To delineate these pathways by single-molecule methods, fluorescently labeled ribosomal subunits are required. Here, we labeled human 40S ribosomal subunits with a fluorescent SNAP-tag at ribosomal protein eS25 (RPS25). The resulting ribosomal subunits could be specifically labeled in living cells and in vitro. Using single-molecule Förster resonance energy transfer (FRET) between RPS25 and domain II of the hepatitis C virus (HCV) internal ribosome entry site (IRES), we measured the rates of 40S subunit arrival to the HCV IRES. Our data support a single-step model of HCV IRES recruitment to 40S subunits, irreversible on the initiation time scale. We furthermore demonstrated that after binding, the 40S:HCV IRES complex is conformationally dynamic, undergoing slow large-scale rearrangements. Addition of translation extracts suppresses these fluctuations, funneling the complex into a single conformation on the 80S assembly pathway. These findings show that 40S:HCV IRES complex formation is accompanied by dynamic conformational rearrangements that may be modulated by initiation factors.
Collapse
|
98
|
Lehotzky A, Oláh J, Szunyogh S, Szabó A, Berki T, Ovádi J. Zinc-induced structural changes of the disordered tppp/p25 inhibits its degradation by the proteasome. Biochim Biophys Acta Mol Basis Dis 2014; 1852:83-91. [PMID: 25445539 DOI: 10.1016/j.bbadis.2014.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/21/2014] [Accepted: 10/27/2014] [Indexed: 02/07/2023]
Abstract
Tubulin Polymerization Promoting Protein/p25 (TPPP/p25), a neomorphic moonlighting protein displaying both physiological and pathological functions, plays a crucial role in the differentiation of the zinc-rich oligodendrocytes, the major constituent of myelin sheath; and it is enriched and co-localizes with α-synuclein in brain inclusions hallmarking Parkinson's disease and other synucleinopathies. In this work we showed that the binding of Zn(2+) to TPPP/p25 promotes its dimerization resulting in increased tubulin polymerization promoting activity. We also demonstrated that the Zn(2+) increases the intracellular TPPP/p25 level resulting in a more decorated microtubule network in CHO10 and CG-4 cells expressing TPPP/p25 ectopically and endogenously, respectively. This stabilization effect is crucial for the differentiation and aggresome formation under physiological and pathological conditions, respectively. The Zn(2+)-mediated effect was similar to that produced by treatment of the cells with MG132, a proteasome inhibitor or Zn(2+) plus MG132 as quantified by cellular ELISA. The enhancing effect of zinc ion on the level of TPPP/p25 was independent of the expression level of the protein produced by doxycycline induction at different levels or inhibition of the protein synthesis by cycloheximide. Thus, we suggest that the zinc as a specific divalent cation could be involved in the fine-tuning of the physiological TPPP/p25 level counteracting both the enrichment and the lack of this protein leading to distinct central nervous system diseases.
Collapse
Affiliation(s)
- Attila Lehotzky
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.
| | - Judit Oláh
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.
| | - Sándor Szunyogh
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.
| | - Adél Szabó
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.
| | - Tímea Berki
- Department of Immunology and Biotechnology, Medical School, University of Pécs, Pécs, Hungary.
| | - Judit Ovádi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
99
|
Artieri CG, Fraser HB. Accounting for biases in riboprofiling data indicates a major role for proline in stalling translation. Genome Res 2014; 24:2011-21. [PMID: 25294246 PMCID: PMC4248317 DOI: 10.1101/gr.175893.114] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The recent advent of ribosome profiling-sequencing of short ribosome-bound fragments of mRNA-has offered an unprecedented opportunity to interrogate the sequence features responsible for modulating translational rates. Nevertheless, numerous analyses of the first riboprofiling data set have produced equivocal and often incompatible results. Here we analyze three independent yeast riboprofiling data sets, including two with much higher coverage than previously available, and find that all three show substantial technical sequence biases that confound interpretations of ribosomal occupancy. After accounting for these biases, we find no effect of previously implicated factors on ribosomal pausing. Rather, we find that incorporation of proline, whose unique side-chain stalls peptide synthesis in vitro, also slows the ribosome in vivo. We also reanalyze a method that implicated positively charged amino acids as the major determinant of ribosomal stalling and demonstrate that it produces false signals of stalling in low-coverage data. Our results suggest that any analysis of riboprofiling data should account for sequencing biases and sparse coverage. To this end, we establish a robust methodology that enables analysis of ribosome profiling data without prior assumptions regarding which positions spanned by the ribosome cause stalling.
Collapse
Affiliation(s)
- Carlo G Artieri
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Hunter B Fraser
- Department of Biology, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
100
|
Scherer O, Steinmetz H, Kaether C, Weinigel C, Barz D, Kleinert H, Menche D, Müller R, Pergola C, Werz O. Targeting V-ATPase in primary human monocytes by archazolid potently represses the classical secretion of cytokines due to accumulation at the endoplasmic reticulum. Biochem Pharmacol 2014; 91:490-500. [PMID: 25107704 DOI: 10.1016/j.bcp.2014.07.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/25/2014] [Accepted: 07/28/2014] [Indexed: 01/08/2023]
Abstract
The macrolide archazolid inhibits vacuolar-type H(+)-ATPase (V-ATPase), a proton-translocating enzyme involved in protein transport and pH regulation of cell organelles, and potently suppresses cancer cell growth at low nanomolar concentrations. In view of the growing link between inflammation and cancer, we investigated whether inhibition of V-ATPase by archazolid may affect primary human monocytes that can promote cancer by sustaining inflammation through the release of tumor-promoting cytokines. Human primary monocytes express V-ATPase, and archazolid (10-100nM) increases the vesicular pH in these cells. Archazolid (10nM) markedly reduced the release of pro-inflammatory (TNF-α, interleukin-6 and -8) but also of anti-inflammatory (interleukin-10) cytokines in monocytes stimulated with LPS, without affecting cell viability up to 1000nM. Of interest, secretion of interleukin-1β was increased by archazolid. Comparable effects were obtained by the V-ATPase inhibitors bafilomycin and apicularen. The phosphorylation of p38 MAPK and ERK-1/2, Akt, SAPK/JNK or of the inhibitor of NFκB (IκBα) as well as mRNA expression of IL-8 were not altered by archazolid in LPS-stimulated monocytes. Instead, archazolid caused endoplasmic reticulum (ER) stress response visualized by increased BiP expression and accumulation of IL-8 (and TNF-α) at the ER, indicating a perturbation of protein secretion. In conclusion, by interference with V-ATPase, archazolid significantly affects the secretion of cytokines due to accumulation at the ER which might be of relevance when using these agents for cancer therapy.
Collapse
Affiliation(s)
- Olga Scherer
- Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | | | - Christoph Kaether
- Leibniz Institute for Age Research - Fritz Lipmann Institute, Jena, Germany
| | - Christina Weinigel
- Institute of Transfusion Medicine, University Hospital Jena, Jena, Germany
| | - Dagmar Barz
- Institute of Transfusion Medicine, University Hospital Jena, Jena, Germany
| | | | - Dirk Menche
- Kekulé-Institut für Organische Chemie und Biochemie der Rheinischen Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Pharmazeutical Biotechnology, Saarland University, Saarbrücken, Germany
| | - Carlo Pergola
- Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Oliver Werz
- Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany.
| |
Collapse
|