51
|
Juice volatile composition differences between Valencia orange and its mutant Rohde Red Valencia are associated with carotenoid profile differences. Food Chem 2018; 245:223-232. [DOI: 10.1016/j.foodchem.2017.10.066] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 10/10/2017] [Accepted: 10/10/2017] [Indexed: 11/22/2022]
|
52
|
Guo R, Shi L, Jiao Y, Li M, Zhong X, Gu F, Liu Q, Xia X, Li H. Metabolic responses to drought stress in the tissues of drought-tolerant and drought-sensitive wheat genotype seedlings. AOB PLANTS 2018; 10:ply016. [PMID: 29623182 PMCID: PMC5881611 DOI: 10.1093/aobpla/ply016] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
An in-depth understanding of the effects of drought stress on plant metabolism is necessary to improve the drought tolerance of wheat and to utilize genetic resources for the development of drought stress-tolerant wheat varieties. In this study, the profiles of 58 key metabolites produced by wheat seedlings in response to drought stress were investigated to determine various physiological processes related to drought tolerance between drought-tolerant and drought-sensitive wheat genotypes. Results showed that the wheat metabolome was dominated by sugars, organic acids and amino acids; the wheat metabolome played important roles to enhance the drought tolerance of shoots. Under drought stress, JD17 exhibited higher growth indices and higher photosynthesis ability than JD8. A high level of compatible solutes and energy in shoots were essential for wheat to develop drought tolerance. Drought also caused system alterations in widespread metabolic networks involving transamination, tricarboxylic acid cycle, glycolysis, glutamate-mediated proline biosynthesis, shikimate-mediated secondary metabolisms and γ-aminobutyric acid metabolisms. Long-term drought stress resulted in the drought-tolerant wheat genotype JD17, which induced metabolic shifts in the tricarboxylic acid cycle and glycolysis with the depletion of the γ-aminobutyric acid shut process. In JD17, the prolonged drought stress induced a progressive accumulation of osmolytes, including proline, sucrose, fructose, mannose and malic acid. This research extended our understanding of the mechanisms involved in wheat seedling drought tolerance; this study also demonstrated that gas chromatography-mass spectrometry metabolomics could be an effective approach to understand the drought effects on plant biochemistry.
Collapse
Affiliation(s)
- Rui Guo
- Institute of Environment and Sustainable Development in Agriculture (IEDA), Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Beijing, P.R. China
- Corresponding author’s e-mail address: ;
| | - LianXuan Shi
- School of Life Sciences, Northeast Normal University, Changchun, China
- Corresponding author’s e-mail address: ;
| | - Yang Jiao
- School of Life Sciences, Northeast Normal University, Changchun, China
| | - MingXia Li
- School of Life Sciences, Northeast Normal University, Changchun, China
| | - XiuLi Zhong
- Institute of Environment and Sustainable Development in Agriculture (IEDA), Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Beijing, P.R. China
| | - FengXue Gu
- Institute of Environment and Sustainable Development in Agriculture (IEDA), Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Beijing, P.R. China
| | - Qi Liu
- Institute of Environment and Sustainable Development in Agriculture (IEDA), Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Beijing, P.R. China
| | - Xu Xia
- Institute of Environment and Sustainable Development in Agriculture (IEDA), Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Beijing, P.R. China
| | - HaoRu Li
- Institute of Environment and Sustainable Development in Agriculture (IEDA), Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Beijing, P.R. China
| |
Collapse
|
53
|
Yue Y, Tian S, Wang Y, Ma H, Liu S, Wang Y, Hu H. Transcriptomic and GC-MS Metabolomic Analyses Reveal the Sink Strength Changes during Petunia Anther Development. Int J Mol Sci 2018; 19:ijms19040955. [PMID: 29570614 PMCID: PMC5979359 DOI: 10.3390/ijms19040955] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/10/2018] [Accepted: 03/18/2018] [Indexed: 12/17/2022] Open
Abstract
Petunia, which has been prevalently cultivated in landscaping, is a dicotyledonous herbaceous flower of high ornamental value. Annually, there is a massive worldwide market demand for petunia seeds. The normal development of anther is the necessary prerequisite for the plants to generate seeds. However, the knowledge of petunia anther development processes is still limited. To better understand the mechanisms of petunia anther development, the transcriptomes and metabolomes of petunia anthers at three typical development stages were constructed and then used to detect the gene expression patterns and primary metabolite profiles during the anther development processes. Results suggested that there were many differentially-expressed genes (DEGs) that mainly participated in photosynthesis and starch and sucrose metabolism when DEGs were compared between the different development stages of anthers. In this study, fructose and glucose, which were involved in starch and sucrose metabolism, were taken as the most important metabolites by partial least-squares discriminate analysis (PLS-DA). Additionally, the qRT-PCR analysis of the photosynthetic-related genes all showed decreased expression trends along with the anther development. These pieces of evidence indicated that the activities of energy and carbohydrate metabolic pathways were gradually reduced during all the development stages of anther, which affects the sink strength. Overall, this work provides a novel and comprehensive understanding of the metabolic processes in petunia anthers.
Collapse
Affiliation(s)
- Yuanzheng Yue
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China.
| | - Shaoze Tian
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yu Wang
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hui Ma
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Siyu Liu
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yuqiao Wang
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Huirong Hu
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
54
|
Atkinson RG. Phenylpropenes: Occurrence, Distribution, and Biosynthesis in Fruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2259-2272. [PMID: 28006900 DOI: 10.1021/acs.jafc.6b04696] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Phenylpropenes such as eugenol, chavicol, estragole, and anethole contribute to the flavor and aroma of a number of important herbs and spices. They have been shown to function as floral attractants for pollinators and to have antifungal and antimicrobial activities. Phenylpropenes are also detected as free volatiles and sequestered glycosides in a range of economically important fresh fruit species including apple, strawberry, tomato, and grape. Although they contribute a relatively small percentage of total volatiles compared with esters, aldehydes, and alcohols, phenylpropenes have been shown to contribute spicy anise- and clove-like notes to fruit. Phenylpropenes are typically found in fruit throughout development and to reach maximum concentrations in ripe fruit. Genes involved in the biosynthesis of phenylpropenes have been characterized and manipulated in strawberry and apple, which has validated the importance of these compounds to fruit aroma and may help elucidate other functions for phenylpropenes in fruit.
Collapse
Affiliation(s)
- Ross G Atkinson
- The New Zealand Institute for Plant & Food Research Limited (PFR) , Private Bag 92169, Auckland 1142 , New Zealand
| |
Collapse
|
55
|
Adebesin F, Widhalm JR, Lynch JH, McCoy RM, Dudareva N. A peroxisomal thioesterase plays auxiliary roles in plant β-oxidative benzoic acid metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:905-916. [PMID: 29315918 DOI: 10.1111/tpj.13818] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/01/2017] [Accepted: 12/08/2017] [Indexed: 05/20/2023]
Abstract
Peroxisomal β-oxidative degradation of compounds is a common metabolic process in eukaryotes. Reported benzoyl-coenzyme A (BA-CoA) thioesterase activity in peroxisomes from petunia flowers suggests that, like mammals and fungi, plants contain auxiliary enzymes mediating β-oxidation. Here we report the identification of Petunia hybrida thioesterase 1 (PhTE1), which catalyzes the hydrolysis of aromatic acyl-CoAs to their corresponding acids in peroxisomes. PhTE1 expression is spatially, developmentally and temporally regulated and exhibits a similar pattern to known benzenoid metabolic genes. PhTE1 activity is inhibited by free coenzyme A (CoA), indicating that PhTE1 is regulated by the peroxisomal CoA pool. PhTE1 downregulation in petunia flowers led to accumulation of BA-CoA with increased production of benzylbenzoate and phenylethylbenzoate, two compounds which rely on the presence of BA-CoA precursor in the cytoplasm, suggesting that acyl-CoAs can be exported from peroxisomes. Furthermore, PhTE1 downregulation resulted in increased pools of cytoplasmic phenylpropanoid pathway intermediates, volatile phenylpropenes, lignin and anthocyanins. These results indicate that PhTE1 influences (i) intraperoxisomal acyl-CoA/CoA levels needed to carry out β-oxidation, (ii) efflux of β-oxidative products, acyl-CoAs and free acids, from peroxisomes, and (iii) flux distribution within the benzenoid/phenylpropanoid metabolic network. Thus, this demonstrates that plant thioesterases play multiple auxiliary roles in peroxisomal β-oxidative metabolism.
Collapse
Affiliation(s)
- Funmilayo Adebesin
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Joshua R Widhalm
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, 47907, USA
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Joseph H Lynch
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Rachel M McCoy
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, 47907, USA
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
56
|
Adebesin F, Widhalm JR, Boachon B, Lefèvre F, Pierman B, Lynch JH, Alam I, Junqueira B, Benke R, Ray S, Porter JA, Yanagisawa M, Wetzstein HY, Morgan JA, Boutry M, Schuurink RC, Dudareva N. Emission of volatile organic compounds from petunia flowers is facilitated by an ABC transporter. Science 2018; 356:1386-1388. [PMID: 28663500 DOI: 10.1126/science.aan0826] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/22/2017] [Indexed: 01/19/2023]
Abstract
Plants synthesize a diversity of volatile molecules that are important for reproduction and defense, serve as practical products for humans, and influence atmospheric chemistry and climate. Despite progress in deciphering plant volatile biosynthesis, their release from the cell has been poorly understood. The default assumption has been that volatiles passively diffuse out of cells. By characterization of a Petunia hybrida adenosine triphosphate-binding cassette (ABC) transporter, PhABCG1, we demonstrate that passage of volatiles across the plasma membrane relies on active transport. PhABCG1 down-regulation by RNA interference results in decreased emission of volatiles, which accumulate to toxic levels in the plasma membrane. This study provides direct proof of a biologically mediated mechanism of volatile emission.
Collapse
Affiliation(s)
- Funmilayo Adebesin
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Joshua R Widhalm
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA.,Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Benoît Boachon
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - François Lefèvre
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-5, Box L7-04-14, 1348 Louvain-la-Neuve, Belgium
| | - Baptiste Pierman
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-5, Box L7-04-14, 1348 Louvain-la-Neuve, Belgium
| | - Joseph H Lynch
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Iftekhar Alam
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-5, Box L7-04-14, 1348 Louvain-la-Neuve, Belgium
| | - Bruna Junqueira
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-5, Box L7-04-14, 1348 Louvain-la-Neuve, Belgium
| | - Ryan Benke
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Shaunak Ray
- School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, IN 47907-2100, USA
| | - Justin A Porter
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Makoto Yanagisawa
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907-2054, USA
| | - Hazel Y Wetzstein
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - John A Morgan
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA.,School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, IN 47907-2100, USA
| | - Marc Boutry
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-5, Box L7-04-14, 1348 Louvain-la-Neuve, Belgium
| | - Robert C Schuurink
- Department of Plant Physiology, University of Amsterdam, Swammerdam Institute for Life Sciences, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA. .,Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA.,Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
57
|
Chen G, Escobar-Bravo R, Kim HK, Leiss KA, Klinkhamer PGL. Induced Resistance Against Western Flower Thrips by the Pseudomonas syringae-Derived Defense Elicitors in Tomato. FRONTIERS IN PLANT SCIENCE 2018; 9:1417. [PMID: 30344528 PMCID: PMC6182256 DOI: 10.3389/fpls.2018.01417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/06/2018] [Indexed: 05/04/2023]
Abstract
Western flower thrips (WFT) Frankliniella occidentalis (Pergande) is a key agricultural pest of cultivated tomatoes. Induced host plant resistance by activating jasmonic acid (JA) signaling pathway constitutes a promising method for WFT control. The phytotoxin coronatine (COR), produced by Pseudomonas syringae pv. tomato DC3000 (Pst), mimics the plant hormone JA-Isoleucine and can promote resistance against herbivorous arthropods. Here we determined the effect of Pst and COR on tomato resistance against WFT, induction of JA and salicylic acid (SA) associated defenses, and plant chemistry. Additionally, we investigated the presence of other components in Pst-derived and filtered culture medium, and their interactive effect with COR on tomato resistance to WFT. Our results showed that infiltration of COR or Pst reduced WFT feeding damage in tomato plants. COR and Pst induced the expression of JA-associated gene and protein marker. COR also induced expression of a SA-related responsive gene, although at much less magnitude. Activation of JA defenses in COR and Pst infiltrated plants did not affect density of type VI leaf trichomes, which are defenses reported to be induced by JA. An untargeted metabolomic analysis showed that both treatments induced strong changes in infiltrated leaves, but leaf responses to COR or Pst slightly differed. Application of the Pst-derived and filtered culture medium, containing COR but not viable Pst, also increased tomato resistance against WFT confirming that the induction of tomato defenses does not require a living Pst population to be present in the plant. Infiltration of tomato plants with low concentrations of COR in diluted Pst-derived and filtered culture medium reduced WFT feeding damage in a greater magnitude than infiltration with an equivalent amount of pure COR indicating that other elicitors are present in the medium. This was confirmed by the fact that the medium from a COR-mutant of Pst also strongly reduced silver damage. In conclusion, our results indicate that induction of JA defenses by COR, Pst infection, the medium of Pst and the medium of a Pst COR- mutant increased resistance against WFT. This was not mediated by the reinforcement of leaf trichome densities, but rather the induction of chemical defenses.
Collapse
Affiliation(s)
- Gang Chen
- Plant Science and Natural Products, Institute of Biology, Leiden University, Leiden, Netherlands
- *Correspondence: Gang Chen,
| | - Rocío Escobar-Bravo
- Plant Science and Natural Products, Institute of Biology, Leiden University, Leiden, Netherlands
| | - Hye Kyong Kim
- Plant Science and Natural Products, Institute of Biology, Leiden University, Leiden, Netherlands
| | - Kirsten A. Leiss
- Business Unit Horticulture, Wageningen University and Research Center, Bleiswijk, Netherlands
| | - Peter G. L. Klinkhamer
- Plant Science and Natural Products, Institute of Biology, Leiden University, Leiden, Netherlands
| |
Collapse
|
58
|
Inoue K, Araki T, Endo M. Circadian clock during plant development. JOURNAL OF PLANT RESEARCH 2018; 131:59-66. [PMID: 29134443 PMCID: PMC5897470 DOI: 10.1007/s10265-017-0991-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/06/2017] [Indexed: 05/14/2023]
Abstract
Plants have endogenous biological clocks that allow organisms to anticipate and prepare for daily and seasonal environmental changes and increase their fitness in changing environments. The circadian clock in plants, as in animals and insects, mainly consists of multiple interlocking transcriptional/translational feedback loops. The circadian clock can be entrained by environmental cues such as light, temperature and nutrient status to synchronize internal biological rhythms with surrounding environments. Output pathways link the circadian oscillator to various physiological, developmental, and reproductive processes for adjusting the timing of these biological processes to an appropriate time of day or a suitable season. Recent genomic studies have demonstrated that polymorphism in circadian clock genes may contribute to local adaptations over a wide range of latitudes in many plant species. In the present review, we summarize the circadian regulation of biological processes throughout the life cycle of plants, and describe the contribution of the circadian clock to local adaptation.
Collapse
Affiliation(s)
- Keisuke Inoue
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Takashi Araki
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Motomu Endo
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| |
Collapse
|
59
|
Lynch JH, Orlova I, Zhao C, Guo L, Jaini R, Maeda H, Akhtar T, Cruz-Lebron J, Rhodes D, Morgan J, Pilot G, Pichersky E, Dudareva N. Multifaceted plant responses to circumvent Phe hyperaccumulation by downregulation of flux through the shikimate pathway and by vacuolar Phe sequestration. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:939-950. [PMID: 28977710 DOI: 10.1111/tpj.13730] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 07/10/2017] [Accepted: 09/28/2017] [Indexed: 06/07/2023]
Abstract
Detrimental effects of hyperaccumulation of the aromatic amino acid phenylalanine (Phe) in animals, known as phenylketonuria, are mitigated by excretion of Phe derivatives; however, how plants endure Phe accumulating conditions in the absence of an excretion system is currently unknown. To achieve Phe hyperaccumulation in a plant system, we simultaneously decreased in petunia flowers expression of all three Phe ammonia lyase (PAL) isoforms that catalyze the non-oxidative deamination of Phe to trans-cinnamic acid, the committed step for the major pathway of Phe metabolism. A total decrease in PAL activity by 81-94% led to an 18-fold expansion of the internal Phe pool. Phe accumulation had multifaceted intercompartmental effects on aromatic amino acid metabolism. It resulted in a decrease in the overall flux through the shikimate pathway, and a redirection of carbon flux toward the shikimate-derived aromatic amino acids tyrosine and tryptophan. Accumulation of Phe did not lead to an increase in flux toward phenylacetaldehyde, for which Phe is a direct precursor. Metabolic flux analysis revealed this to be due to the presence of a distinct metabolically inactive pool of Phe, likely localized in the vacuole. We have identified a vacuolar cationic amino acid transporter (PhCAT2) that contributes to sequestering excess of Phe in the vacuole. In vitro assays confirmed PhCAT2 can transport Phe, and decreased PhCAT2 expression in PAL-RNAi transgenic plants resulted in 1.6-fold increase in phenylacetaldehyde emission. These results demonstrate mechanisms by which plants maintain intercompartmental aromatic amino acid homeostasis, and provide critical insight for future phenylpropanoid metabolic engineering strategies.
Collapse
Affiliation(s)
- Joseph H Lynch
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Irina Orlova
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - Chengsong Zhao
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Longyun Guo
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Rohit Jaini
- School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Hiroshi Maeda
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - Tariq Akhtar
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - David Rhodes
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - John Morgan
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
- School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Guillaume Pilot
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Eran Pichersky
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
60
|
Maiti S, Mitra A. Morphological, Physiological and Ultrastructural Changes in Flowers Explain the Spatio-Temporal Emission of Scent Volatiles in Polianthes tuberosa L. PLANT & CELL PHYSIOLOGY 2017; 58:2095-2111. [PMID: 29036488 DOI: 10.1093/pcp/pcx143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 09/14/2017] [Indexed: 05/15/2023]
Abstract
Tuberose or Polianthes tuberosa L. is a horticultural crop of tropical origin, widely cultivated for its pleasant and intense floral fragrance in the evening. Here an investigation was made into the physiological and cell biological aspects of floral scent biosynthesis, tissue localization and emission that have not previously been examined. Volatiles collected from floral headspace were analyzed by gas chromatography-mass spectrometry (GC-MS) for identification of individual compounds and elucidation of emission patterns. Transcript accumulation and the amount of active enzyme were measured to understand the enzymatic route of scent volatile biosynthesis. Localization of scent volatiles was investigated by histochemical and ultrastructural studies. Scent emission was found to be rhythmic and nocturnal under normal day-night influence, peaking at night. Enhanced enzyme activities and transcript accumulation were recorded just prior to maximum emission. Through scanning electron microscopy (SEM) analysis, the presence of a large number of floral stomata on the adaxial surface of the tepal was revealed which might have bearing on tissue-specific emission. Guard cells of stomata responded significantly to histochemical tests, which also indicated that epidermal tissues are mostly involved in scent emission. High metabolic activity was found in epidermal layers during anthesis as shown by transmission electron microscopy (TEM) analysis. Further, new insight into the localization of scent compounds, the plausible tissue involved in their release along with the preceding ultrastructural changes at the cellular levels is presented. Finally, ultrastructural analysis of the tepal surface has been able to fill a major gap in knowledge of stomatal involvement during scent emission.
Collapse
Affiliation(s)
- Saborni Maiti
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur-721302, India
| | - Adinpunya Mitra
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur-721302, India
| |
Collapse
|
61
|
Abstract
AIM Quercetin (Q1) is a flavonoid widely present in plants and endowed with several pharmacological properties mostly due to its antioxidant potential. Q1 shows anticancer activity and could be useful in cancer prevention. On the other hand, Q1 is poorly soluble in water and unstable in physiological systems, and its bioavailability is very low. METHODS A small set of Q1 derivatives (Q2-Q9) has been synthesized following opportunely modified chemical procedures previously reported. Anticancer activity has been evaluated by MTT assay. Human Topoisomerases inhibition has been performed by direct enzymatic assays. Apoptosis has been evaluated by TUNEL assay. ROS production and scavenging activity have been determined by immunofluorescence. RESULTS The anticancer profile of a small library of Q1 analogues, in which the OH groups were all or partially replaced with hydrophobic functional groups, has been evaluated. Two of the studied compounds demonstrated an interesting cytotoxic profile in two breast cancer models showing the capability to inhibit human Topoisomerases. CONCLUSION The studied compounds represent suitable leads for the development of innovative anticancer drugs. [Formula: see text].
Collapse
|
62
|
Liu F, Xiao Z, Yang L, Chen Q, Shao L, Liu J, Yu Y. PhERF6, interacting with EOBI, negatively regulates fragrance biosynthesis in petunia flowers. THE NEW PHYTOLOGIST 2017; 215:1490-1502. [PMID: 28675474 DOI: 10.1111/nph.14675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 05/21/2017] [Indexed: 05/22/2023]
Abstract
In petunia, the production of volatile benzenoids/phenylpropanoids determines floral aroma, highly regulated by development, rhythm and ethylene. Previous studies identified several R2R3-type MYB trans-factors as positive regulators of scent biosynthesis in petunia flowers. Ethylene response factors (ERFs) have been shown to take part in the signal transduction of hormones, and regulation of metabolism and development processes in various plant species. Using virus-induced gene silencing technology, a negative regulator of volatile benzenoid biosynthesis, PhERF6, was identified by a screen for regulators of the expression of genes related to scent production. PhERF6 expression was temporally and spatially connected with scent production and was upregulated by exogenous ethylene. Up-/downregulation of the mRNA level of PhERF6 affected the expression of ODO1 and several floral scent-related genes. PhERF6 silencing led to a significant increase in the concentrations of volatiles emitted by flowers. Yeast two-hybrid, bimolecular fluorescence complementation and co-immunoprecipitation assays indicated that PhERF6 interacted with the N-terminus of EOBI, which includes two DNA binding domains. Our results show that PhERF6 negatively regulates volatile production in petunia flowers by competing for the binding of the c-myb domains of the EOBI protein with the promoters of genes related to floral scent.
Collapse
Affiliation(s)
- Fei Liu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhina Xiao
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Li Yang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Qian Chen
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Lu Shao
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Juanxu Liu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Yixun Yu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
63
|
Pragadheesh VS, Chanotiya CS, Rastogi S, Shasany AK. Scent from Jasminum grandiflorum flowers: Investigation of the change in linalool enantiomers at various developmental stages using chemical and molecular methods. PHYTOCHEMISTRY 2017; 140:83-94. [PMID: 28463687 DOI: 10.1016/j.phytochem.2017.04.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/21/2017] [Accepted: 04/21/2017] [Indexed: 06/07/2023]
Abstract
Jasminum species are among the most preferred fresh cut flowers in India since ancient times. The plant produces small and fragrant flowers, which are of great demand in the preparation of fragrant garlands and also in perfume industries. Floral volatile of Jasminum grandiflorum L. (Family: Oleaceae) was extracted using solid-phase microextraction and analyzed in enantioselective gas chromatography. Chemical classes of identified volatiles revealed the presence of terpenoids, phenylpropanoids, and fatty acid derivatives. Marker constituent of flower volatiles, linalool was selected for analytical characterization on ethyl- and acetyl-β-cyclodextrin stationary phase. (R)-(-)-Linalool was found as major enantiomer in volatiles of floral buds whereas (S)-(+)-linalool predominated in the volatiles of matured flowers. Simultaneously, a quantitative real-time PCR was performed to find the gene expression of linalool synthase to investigate the mechanism of enantiomeric inversion. The emission pattern of (R)-(-)-linalool at different flower developmental stages was well correlated (P = 0.01) with the gene expression of the cloned linalool synthase from J. grandiflorum. We observed that the successive change in (R)- to (S)-linalool ratio from bud to mature flower was mainly due to the enantio- specific transformation and temporal decline of (R)-linalool producing gene in J. grandiflorum. This enantiomeric change also leads to the difference in flower aroma. Furthermore, this is probably the reason behind consumer's acceptance for jasmine buds rather than bloomed flowers in cut flower segments.
Collapse
Affiliation(s)
- V S Pragadheesh
- Laboratory of Aromatic Plants and Chiral Separation, Chemical Sciences Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, 226 015, India; Academy of Scientific and Innovative Research, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, 226 015, India
| | - Chandan S Chanotiya
- Laboratory of Aromatic Plants and Chiral Separation, Chemical Sciences Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, 226 015, India; Academy of Scientific and Innovative Research, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, 226 015, India.
| | - Shubhra Rastogi
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, 226 015, India
| | - Ajit K Shasany
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, 226 015, India
| |
Collapse
|
64
|
Lu D, Yuan X, Kim S, Marques JV, Chakravarthy PP, Moinuddin SGA, Luchterhand R, Herman B, Davin LB, Lewis NG. Eugenol specialty chemical production in transgenic poplar (Populus tremula × P. alba) field trials. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:970-981. [PMID: 28064439 PMCID: PMC5506655 DOI: 10.1111/pbi.12692] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/20/2016] [Accepted: 01/05/2017] [Indexed: 05/09/2023]
Abstract
A foundational study assessed effects of biochemical pathway introduction into poplar to produce eugenol, chavicol, p-anol, isoeugenol and their sequestered storage products, from potentially available substrates, coniferyl and p-coumaryl alcohols. At the onset, it was unknown whether significant carbon flux to monolignols vs. other phenylpropanoid (acetate) pathway metabolites would be kinetically favoured. Various transgenic poplar lines generated eugenol and chavicol glucosides in ca. 0.45% (~0.35 and ~0.1%, respectively) of dry weight foliage tissue in field trials, as well as their corresponding aglycones in trace amounts. There were only traces of any of these metabolites in branch tissues, even after ~4-year field trials. Levels of bioproduct accumulation in foliage plateaued, even at the lowest introduced gene expression levels, suggesting limited monolignol substrate availability. Nevertheless, this level still allows foliage collection for platform chemical production, with the remaining (stem) biomass available for wood, pulp/paper and bioenergy product purposes. Several transformed lines displayed unexpected precocious flowering after 4-year field trial growth. This necessitated terminating (felling) these particular plants, as USDA APHIS prohibits the possibility of their interacting (cross-pollination, etc.) with wild-type (native plant) lines. In future, additional biotechnological approaches can be employed (e.g. gene editing) to produce sterile plant lines, to avoid such complications. While increased gene expression did not increase target bioproduct accumulation, the exciting possibility now exists of significantly increasing their amounts (e.g. 10- to 40-fold plus) in foliage and stems via systematic deployment of numerous 'omics', systems biology, synthetic biology and metabolic flux modelling approaches.
Collapse
Affiliation(s)
- Da Lu
- Institute of Biological ChemistryWashington State UniversityPullmanWAUSA
| | - Xianghe Yuan
- Institute of Biological ChemistryWashington State UniversityPullmanWAUSA
| | - Sung‐Jin Kim
- Institute of Biological ChemistryWashington State UniversityPullmanWAUSA
| | - Joaquim V. Marques
- Institute of Biological ChemistryWashington State UniversityPullmanWAUSA
| | | | | | - Randi Luchterhand
- Puyallup Research and Extension CenterWashington State UniversityPuyallupWAUSA
| | - Barri Herman
- Institute of Biological ChemistryWashington State UniversityPullmanWAUSA
- Puyallup Research and Extension CenterWashington State UniversityPuyallupWAUSA
| | - Laurence B. Davin
- Institute of Biological ChemistryWashington State UniversityPullmanWAUSA
| | - Norman G. Lewis
- Institute of Biological ChemistryWashington State UniversityPullmanWAUSA
| |
Collapse
|
65
|
Chung H, Lee N, Seo JA, Kim YS. Comparative analysis of nonvolatile and volatile metabolites in Lichtheimia ramosa cultivated in different growth media. Biosci Biotechnol Biochem 2017; 81:565-572. [DOI: 10.1080/09168451.2016.1256756] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Abstract
Lichtheimia ramosa is one of the predominant filamentous fungi in Korean traditional nuruk. The nonvolatile and volatile metabolites of L. ramosa cultivated in three growth media: complete medium (CM), potato dextrose broth (PDB), and sabouraud dextrose broth (SDB), were investigated and compared. Among nonvolatile metabolites, serine, lysine, and ornithine increased in CM and PDB cultivated with L. ramosa during the exponential phase. In addition, glucose level increased in CM whereas decreased in PDB and SDB. The major volatile metabolites in the extract samples were acetic acid, ethanol, 3-methyl-2-buten-1-ol, 2-phenylethanol, ethylacetate, 2-furaldehyde, 5-(hydroxymethyl)-2-furaldehyde, 2,3-dihydro-3,5,-dihydroxy-6-methyl-4H-pyran-4-one, and α-humulene. In particular, the levels of volatile metabolites related to makgeolli (e.g., acetic acid, ethanol, and ethyl acetate) were highest in extracts cultivated in CM. On the other hand, the level of 2-phenylethanol was relatively higher in PDB and SDB, possibly due to there being more phenylalanine present in the biomass sample in media.
Collapse
Affiliation(s)
- Hyun Chung
- Department of Food Science and Engineering, Ewha Womans University, Seoul, Korea
| | - NaKyeom Lee
- Department of Food Science and Engineering, Ewha Womans University, Seoul, Korea
| | - Jeong-Ah Seo
- School of Systems Biomedical Science, Soongsil University, Seoul, Korea
| | - Young-Suk Kim
- Department of Food Science and Engineering, Ewha Womans University, Seoul, Korea
| |
Collapse
|
66
|
Bera P, Mukherjee C, Mitra A. Enzymatic production and emission of floral scent volatiles in Jasminum sambac. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 256:25-38. [PMID: 28167035 DOI: 10.1016/j.plantsci.2016.11.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 05/24/2023]
Abstract
Floral scent composed of low molecular weight volatile organic compounds. The sweet fragrance of any evening blooming flower is dominated by benzenoid and terpenoid volatile compounds. Floral scent of Jasminum sambac (Oleaceae) includes three major benzenoid esters - benzylacetate, methylbenzoate, and methylsalicylate and three major terpene compounds viz. (E)-β-ocimene, linalool and α-farnesene. We analyzed concentrations and emission rates of benzenoids and terpenoids during the developmental stages of J. sambac flower. In addition to spatial emission from different floral parts, we studied the time-course mRNA accumulations of phenylalanine ammonia-lyase (PAL) and the two representative genes of terpenoid pathway, namely 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) and terpene synthase (TPS). Further, in vitro activities of several enzymes of phenylpropanoid/benzenoid pathway viz., PAL and acetyl-coenzyme A: benzylalcohol acetyltransferase (BEAT), S-adenosyl-l-methionine: benzoic acid carboxyl methyl transferase (BAMT) and S-adenosyl-l-methionine: salicylic acid carboxyl methyltransferase (SAMT) were studied. All the above enzyme activities along with the in vitro activities of DXR and TPS were found to follow a certain rhythm as observed in the emission of different benzenoid and terpenoid compounds. Linalool emission peaked after petal opening and coincided with maximal expression of JsTPS gene as evidenced from RT-PCR analyses (semi-quantitative). The maximum transcript accumulation of this gene was observed in flower petals, indicating that the petals of J. sambac flower play an important role as a major contributor of volatile precursors. The transcripts accumulation of JsDXR and JsTPS in different developmental stages and in different floral part showed that emissions of terpenoid volatiles in J. sambac flower are partially regulated at transcription levels.
Collapse
Affiliation(s)
- Paramita Bera
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, India
| | - Chiranjit Mukherjee
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, India
| | - Adinpunya Mitra
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, India.
| |
Collapse
|
67
|
Escobar-Bravo R, Klinkhamer PG, Leiss KA. Induction of Jasmonic Acid-Associated Defenses by Thrips Alters Host Suitability for Conspecifics and Correlates with Increased Trichome Densities in Tomato. PLANT & CELL PHYSIOLOGY 2017; 58:622-634. [PMID: 28158865 PMCID: PMC5444573 DOI: 10.1093/pcp/pcx014] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 01/20/2017] [Indexed: 05/04/2023]
Abstract
Plant defenses inducible by herbivorous arthropods can determine performance of subsequent feeding herbivores. We investigated how infestation of tomato (Solanum lycopersicum) plants with the Western flower thrips (Frankliniella occidentalis) alters host plant suitability and foraging decisions of their conspecifics. We explored the role of delayed-induced jasmonic acid (JA)-mediated plant defense responses in thrips preference by using the tomato mutant def-1, impaired in JA biosynthesis. In particular, we investigated the effect of thrips infestation on trichome-associated tomato defenses. The results showed that when offered a choice, thrips preferred non-infested plants over infested wild-type plants, while no differences were observed in def-1. Exogenous application of methyl jasmonate restored the repellency effect in def-1. Gene expression analysis showed induction of the JA defense signaling pathway in wild-type plants, while activating the ethylene signaling pathway in both genotypes. Activation of JA defenses led to increases in type-VI leaf glandular trichome densities in the wild type, augmenting the production of trichome-associated volatiles, i.e. terpenes. Our study revealed that plant-mediated intraspecific interactions between thrips are determined by JA-mediated defenses in tomato. We report that insects can alter not only trichome densities but also the allelochemicals produced therein, and that this response might depend on the magnitude and/or type of the induction.
Collapse
|
68
|
Weiss J, Mühlemann JK, Ruiz-Hernández V, Dudareva N, Egea-Cortines M. Phenotypic Space and Variation of Floral Scent Profiles during Late Flower Development in Antirrhinum. FRONTIERS IN PLANT SCIENCE 2016; 7:1903. [PMID: 28066463 PMCID: PMC5174079 DOI: 10.3389/fpls.2016.01903] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 12/01/2016] [Indexed: 05/24/2023]
Abstract
The genus Antirrhinum comprises about 28 species with a center of origin in the Iberian Peninsula. They show an important diversity of growing niches. We have performed a comprehensive analysis of scent profiles in eight wild species, Antirrhinum linkianum, A. tortuosum, A. cirrigherum, A. latifolium, A. meonanthum, A. braun-blanquetii, A. barrelieri, and A. graniticum. We used also two laboratory inbred lines A. majus, 165E and Sippe50. We identified 63 volatile organic compounds (VOCs) belonging to phenylpropanoids, benzenoids, mono- and sesquiterpenes, nitrogen-containing compounds, and aliphatic alcohols previously described in plants. Twenty-four VOCs were produced at levels higher than 2% of total VOC emission, while other VOCs were emitted in trace amounts. The absolute scent emission varied during flower maturation and species. The lowest emitting was A. meonanthum while A. tortuosum had the largest emissions. Species were clustered according to their scent profiles and the resulting dendrogram matched the current species phylogeny. However, two accessions, A. majus Sippe 50 and A. braun-blanquetii, showed development-specific changes in their VOC composition, suggesting a precise control and fine tuning of scent profiles. Cluster analysis of the different scent components failed to identify a specific synthesis pathway, indicating a key role of scent profiles as blends. There is considerable degree of chemodiversity in scent profiles in Antirrhinum. The specific developmental stage plays an important role in scent quantitative emissions. The relative robustness of the bouquets could be an adaptation to local pollinators.
Collapse
Affiliation(s)
- Julia Weiss
- Department of Genetics, Institute of Biotechnology, Universidad Politécnica de CartagenaCartagena, Spain
| | | | - Victoria Ruiz-Hernández
- Department of Genetics, Institute of Biotechnology, Universidad Politécnica de CartagenaCartagena, Spain
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, West LafayetteIN, USA
| | - Marcos Egea-Cortines
- Department of Genetics, Institute of Biotechnology, Universidad Politécnica de CartagenaCartagena, Spain
| |
Collapse
|
69
|
Amrad A, Moser M, Mandel T, de Vries M, Schuurink RC, Freitas L, Kuhlemeier C. Gain and Loss of Floral Scent Production through Changes in Structural Genes during Pollinator-Mediated Speciation. Curr Biol 2016; 26:3303-3312. [PMID: 27916524 DOI: 10.1016/j.cub.2016.10.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/06/2016] [Accepted: 10/12/2016] [Indexed: 10/20/2022]
Abstract
The interactions of plants with their pollinators are thought to be a driving force in the evolution of angiosperms. Adaptation to a new pollinator involves coordinated changes in multiple floral traits controlled by multiple genes. Surprisingly, such complex genetic shifts have happened numerous times during evolution. Here we report on the genetic basis of the changes in one such trait, floral scent emission, in the genus Petunia (Solanaceae). The increase in the quantity and complexity of the volatiles during the shift from bee to hawkmoth pollination was due to de novo expression of the genes encoding benzoic acid/salicylic acid carboxyl methyltransferase (BSMT) and benzoyl-CoA:benzylalcohol/2-phenylethanol benzoyltransferase (BPBT) together with moderately increased transcript levels for most enzymes of the phenylpropanoid/benzenoid pathway. Loss of cinnamate-CoA ligase (CNL) function as well as a reduction in the expression of the MYB transcription factor ODO1 explain the loss of scent during the transition from moth to hummingbird pollination. The CNL gene in the hummingbird-adapted species is inactive due to a stop codon, but also appears to have undergone further degradation over time. Therefore, we propose that loss of scent happened relatively early in the transition toward hummingbird pollination, and probably preceded the loss of UV-absorbing flavonols. The discovery that CNL is also involved in the loss of scent during the transition from outcrossing to selfing in Capsella (Brassicaceae) (see the accompanying paper) raises interesting questions about the possible causes of deep evolutionary conservation of the targets of evolutionary change.
Collapse
Affiliation(s)
- Avichai Amrad
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Michel Moser
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Therese Mandel
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Michel de Vries
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Robert C Schuurink
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Loreta Freitas
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, P.O. Box 15053, Avenida Bento Goncalves, 9500 Porto Alegre, Brazil
| | - Cris Kuhlemeier
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland.
| |
Collapse
|
70
|
Cheng S, Fu X, Mei X, Zhou Y, Du B, Watanabe N, Yang Z. Regulation of biosynthesis and emission of volatile phenylpropanoids/benzenoids in petunia× hybrida flowers by multi-factors of circadian clock, light, and temperature. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 107:1-8. [PMID: 27235646 DOI: 10.1016/j.plaphy.2016.05.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/03/2016] [Accepted: 05/18/2016] [Indexed: 05/24/2023]
Abstract
Floral volatile phenylpropanoids and benzenoids (VPBs) play important ecological functions and have potential economic applications. Little is known about how multi-factors in integration regulate the formation and emission of floral VPBs. In the present study, we investigated effects of multi factors including endogenous circadian clock, light, and temperature on the formation and emission of VPBs, which are major volatiles in flowers of Petunia× hybrida cv. 'Mitchell Diploid'. Endogenous circadian clock was proposed as the most important factor regulating rhythmic emission of VPBs and expressions of structural genes involved in the upstream biosynthetic pathway of VPBs, but did not affect expression levels of structural genes involved in the downstream pathway and VPBs-related regulators. In contrast to light, temperature was a more constant factor affecting emission of VPBs. VPBs emission could be inhibited within a short time by increasing temperature. The information will contribute to our understanding of emission mechanism of floral volatiles.
Collapse
Affiliation(s)
- Sihua Cheng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Xiumin Fu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, China
| | - Xin Mei
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, China
| | - Ying Zhou
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, China
| | - Bing Du
- College of Food, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, China; Juxiangyuan Health Food (Zhongshan) Co., Ltd., No. 13, Yandong Second Road, Torch Development Zone, Zhongshan, 528400, China
| | - Naoharu Watanabe
- Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, 432-8561, Japan
| | - Ziyin Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
71
|
Prieto-Benítez S, Dötterl S, Giménez-Benavides L. Circadian rhythm of a Silene species favours nocturnal pollination and constrains diurnal visitation. ANNALS OF BOTANY 2016; 118:907-918. [PMID: 27451986 PMCID: PMC5055817 DOI: 10.1093/aob/mcw136] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/24/2016] [Accepted: 05/31/2016] [Indexed: 05/24/2023]
Abstract
Background and Aims Traits related to flower advertisement and reward sometimes vary in a circadian way, reflecting phenotypic specialization. However, specialized flowers are not necessarily restricted to specialized pollinators. This is the case of most Silene species, typically associated with diurnal or nocturnal syndromes of pollination but usually showing complex suites of pollinators. Methods A Silene species with mixed floral features between diurnal and nocturnal syndromes was used to test how petal opening, nectar production, scent emission and pollination success correlate in a circadian rhythm, and whether this is influenced by environmental conditions. The effect of diurnal and nocturnal visitation rates on plant reproductive success is also explored in three populations, including the effect of the pollinating seed predator Hadena sancta. Key Results The result showed that repeated petal opening at dusk was correlated with nectar secretion and higher scent production during the night. However, depending on environmental conditions, petals remain opened for a while in the morning, when nectar and pollen still were available. Pollen deposition was similarly effective at night and in the morning, but less effective in the afternoon. These results were consistent with field studies. Conclusions The circadian rhythm regulating floral attractiveness and reward in S. colorata is predominantly adapted to nocturnal flower visitors. However, favourable environmental conditions lengthen the optimal daily period of flower attraction and pollination towards morning. This allows the complementarity of day and night pollination. Diurnal pollination may help to compensate the plant reproductive success when nocturnal pollinators are scarce and when the net outcome of H. sancta shifts from mutualism to parasitism. These results suggest a functional mechanism explaining why the supposed nocturnal syndrome of many Silene species does not successfully predict their pollinator guilds.
Collapse
Affiliation(s)
- Samuel Prieto-Benítez
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos-ESCET, C/ Tulipán, s/n. 28933-Móstoles, Madrid, Spain
| | - Stefan Dötterl
- Department of Ecology & Evolution, Plant Ecology, University of Salzburg, Hellbrunnerstr. 34, 5020 Salzburg, Austria
| | - Luis Giménez-Benavides
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos-ESCET, C/ Tulipán, s/n. 28933-Móstoles, Madrid, Spain
| |
Collapse
|
72
|
Wishart DS. Emerging applications of metabolomics in drug discovery and precision medicine. Nat Rev Drug Discov 2016; 15:473-84. [PMID: 26965202 DOI: 10.1038/nrd.2016.32] [Citation(s) in RCA: 897] [Impact Index Per Article: 112.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Metabolomics is an emerging 'omics' science involving the comprehensive characterization of metabolites and metabolism in biological systems. Recent advances in metabolomics technologies are leading to a growing number of mainstream biomedical applications. In particular, metabolomics is increasingly being used to diagnose disease, understand disease mechanisms, identify novel drug targets, customize drug treatments and monitor therapeutic outcomes. This Review discusses some of the latest technological advances in metabolomics, focusing on the application of metabolomics towards uncovering the underlying causes of complex diseases (such as atherosclerosis, cancer and diabetes), the growing role of metabolomics in drug discovery and its potential effect on precision medicine.
Collapse
Affiliation(s)
- David S Wishart
- Department of Biological Sciences, CW 405, Biological Sciences Building, University of Alberta, Edmonton, Alberta, Canada T6G 2E9.,Department of Computing Science, 2-21 Athabasca Hall University of Alberta, Edmonton, Alberta, Canada T6G 2E8.,National Institute of Nanotechnology, National Research Council, Edmonton, Alberta, Canada T6G 2M9
| |
Collapse
|
73
|
Vandenbussche M, Chambrier P, Rodrigues Bento S, Morel P. Petunia, Your Next Supermodel? FRONTIERS IN PLANT SCIENCE 2016; 7:72. [PMID: 26870078 PMCID: PMC4735711 DOI: 10.3389/fpls.2016.00072] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/15/2016] [Indexed: 05/24/2023]
Abstract
Plant biology in general, and plant evo-devo in particular would strongly benefit from a broader range of available model systems. In recent years, technological advances have facilitated the analysis and comparison of individual gene functions in multiple species, representing now a fairly wide taxonomic range of the plant kingdom. Because genes are embedded in gene networks, studying evolution of gene function ultimately should be put in the context of studying the evolution of entire gene networks, since changes in the function of a single gene will normally go together with further changes in its network environment. For this reason, plant comparative biology/evo-devo will require the availability of a defined set of 'super' models occupying key taxonomic positions, in which performing gene functional analysis and testing genetic interactions ideally is as straightforward as, e.g., in Arabidopsis. Here we review why petunia has the potential to become one of these future supermodels, as a representative of the Asterid clade. We will first detail its intrinsic qualities as a model system. Next, we highlight how the revolution in sequencing technologies will now finally allows exploitation of the petunia system to its full potential, despite that petunia has already a long history as a model in plant molecular biology and genetics. We conclude with a series of arguments in favor of a more diversified multi-model approach in plant biology, and we point out where the petunia model system may further play a role, based on its biological features and molecular toolkit.
Collapse
|
74
|
Escobar-Bravo R, Alba JM, Pons C, Granell A, Kant MR, Moriones E, Fernández-Muñoz R. A Jasmonate-Inducible Defense Trait Transferred from Wild into Cultivated Tomato Establishes Increased Whitefly Resistance and Reduced Viral Disease Incidence. FRONTIERS IN PLANT SCIENCE 2016; 7:1732. [PMID: 27920785 PMCID: PMC5118631 DOI: 10.3389/fpls.2016.01732] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/03/2016] [Indexed: 05/21/2023]
Abstract
Whiteflies damage tomatoes mostly via the viruses they transmit. Cultivated tomatoes lack many of the resistances of their wild relatives. In order to increase protection to its major pest, the whitefly Bemisia tabaci and its transmitted Tomato Yellow Leaf Curl Virus (TYLCV), we introgressed a trichome-based resistance trait from the wild tomato Solanum pimpinellifolium into cultivated tomato, Solanum lycopersicum. The tomato backcross line BC5S2 contains acylsucrose-producing type-IV trichomes, unlike cultivated tomatoes, and exhibits increased, yet limited protection to whiteflies at early development stages. Treatment of young plants with methyl jasmonate (MeJA) resulted in a 60% increase in type-IV trichome density, acylsucrose production, and enhanced resistance to whiteflies, leading to 50% decrease in the virus disease incidence compared to cultivated tomato. Using transcriptomics, metabolite analysis, and insect bioassays we established the basis of this inducible resistance. We found that MeJA activated the expression of the genes involved in the biosynthesis of the defensive acylsugars in young BC5S2 plants leading to enhanced chemical defenses in their acquired type-IV trichomes. Our results show that not only constitutive but also these inducible defenses can be transferred from wild into cultivated crops to aid sustainable protection, suggesting that conventional breeding strategies provide a feasible alternative to increase pest resistance in tomato.
Collapse
Affiliation(s)
- Rocío Escobar-Bravo
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga – Consejo Superior de Investigaciones CientíficasAlgarrobo-Costa, Spain
| | - Juan M. Alba
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of AmsterdamAmsterdam, Netherlands
| | - Clara Pons
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas – Universidad Politécnica de ValenciaValencia, Spain
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas – Universidad Politécnica de ValenciaValencia, Spain
| | - Merijn R. Kant
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of AmsterdamAmsterdam, Netherlands
| | - Enrique Moriones
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga – Consejo Superior de Investigaciones CientíficasAlgarrobo-Costa, Spain
| | - Rafael Fernández-Muñoz
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga – Consejo Superior de Investigaciones CientíficasAlgarrobo-Costa, Spain
- *Correspondence: Rafael Fernández-Muñoz,
| |
Collapse
|
75
|
Identification of a plastidial phenylalanine exporter that influences flux distribution through the phenylalanine biosynthetic network. Nat Commun 2015; 6:8142. [PMID: 26356302 PMCID: PMC4647861 DOI: 10.1038/ncomms9142] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 07/22/2015] [Indexed: 12/19/2022] Open
Abstract
In addition to proteins, L-phenylalanine is a versatile precursor for thousands of plant metabolites. Production of phenylalanine-derived compounds is a complex multi-compartmental process using phenylalanine synthesized predominantly in plastids as precursor. The transporter(s) exporting phenylalanine from plastids, however, remains unknown. Here, a gene encoding a Petunia hybrida plastidial cationic amino-acid transporter (PhpCAT) functioning in plastidial phenylalanine export is identified based on homology to an Escherichia coli phenylalanine transporter and co-expression with phenylalanine metabolic genes. Radiolabel transport assays show that PhpCAT exports all three aromatic amino acids. PhpCAT downregulation and overexpression result in decreased and increased levels, respectively, of phenylalanine-derived volatiles, as well as phenylalanine, tyrosine and their biosynthetic intermediates. Metabolic flux analysis reveals that flux through the plastidial phenylalanine biosynthetic pathway is reduced in PhpCAT RNAi lines, suggesting that the rate of phenylalanine export from plastids contributes to regulating flux through the aromatic amino-acid network.
Collapse
|
76
|
ul Hassan MN, Zainal Z, Ismail I. Green leaf volatiles: biosynthesis, biological functions and their applications in biotechnology. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:727-39. [PMID: 25865366 DOI: 10.1111/pbi.12368] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 02/25/2015] [Accepted: 02/25/2015] [Indexed: 05/25/2023]
Abstract
Plants have evolved numerous constitutive and inducible defence mechanisms to cope with biotic and abiotic stresses. These stresses induce the expression of various genes to activate defence-related pathways that result in the release of defence chemicals. One of these defence mechanisms is the oxylipin pathway, which produces jasmonates, divinylethers and green leaf volatiles (GLVs) through the peroxidation of polyunsaturated fatty acids (PUFAs). GLVs have recently emerged as key players in plant defence, plant-plant interactions and plant-insect interactions. Some GLVs inhibit the growth and propagation of plant pathogens, including bacteria, viruses and fungi. In certain cases, GLVs released from plants under herbivore attack can serve as aerial messengers to neighbouring plants and to attract parasitic or parasitoid enemies of the herbivores. The plants that perceive these volatile signals are primed and can then adapt in preparation for the upcoming challenges. Due to their 'green note' odour, GLVs impart aromas and flavours to many natural foods, such as vegetables and fruits, and therefore, they can be exploited in industrial biotechnology. The aim of this study was to review the progress and recent developments in research on the oxylipin pathway, with a specific focus on the biosynthesis and biological functions of GLVs and their applications in industrial biotechnology.
Collapse
Affiliation(s)
- Muhammad Naeem ul Hassan
- Faculty of Science and Technology, School of Bioscience and Biotechnology, University Kebangsaan Malaysia, Bangi, Malaysia
- Department of Chemistry, University of Sargodha, Sargodha, Pakistan
| | - Zamri Zainal
- Faculty of Science and Technology, School of Bioscience and Biotechnology, University Kebangsaan Malaysia, Bangi, Malaysia
- Institute of Systems Biology (INBIOSIS), University Kebangsaan Malaysia, Bangi, Malaysia
| | - Ismanizan Ismail
- Faculty of Science and Technology, School of Bioscience and Biotechnology, University Kebangsaan Malaysia, Bangi, Malaysia
- Institute of Systems Biology (INBIOSIS), University Kebangsaan Malaysia, Bangi, Malaysia
| |
Collapse
|
77
|
Yue Y, Yu R, Fan Y. Transcriptome profiling provides new insights into the formation of floral scent in Hedychium coronarium. BMC Genomics 2015; 16:470. [PMID: 26084652 PMCID: PMC4472261 DOI: 10.1186/s12864-015-1653-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/20/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hedychium coronarium is a popular ornamental plant in tropical and subtropical regions because its flowers not only possess intense and inviting fragrance but also enjoy elegant shape. The fragrance results from volatile terpenes and benzenoids presented in the floral scent profile. However, in this species, even in monocots, little is known about the underlying molecular mechanism of floral scent production. RESULTS Using Illumina platform, approximately 81 million high-quality reads were obtained from a pooled cDNA library. The de novo assembly resulted in a transcriptome with 65,591 unigenes, 50.90% of which were annotated using public databases. Digital gene expression (DGE) profiling analysis revealed 7,796 differential expression genes (DEGs) during petal development. GO term classification and KEGG pathway analysis indicated that the levels of transcripts changed significantly in "metabolic process", including "terpenoid biosynthetic process". Through a systematic analysis, 35 and 33 candidate genes might be involved in the biosynthesis of floral volatile terpenes and benzenoids, respectively. Among them, flower-specific HcDXS2A, HcGPPS, HcTPSs, HcCNL and HcBCMT1 might play critical roles in regulating the formation of floral fragrance through DGE profiling coupled with floral volatile profiling analyses. In vitro characterization showed that HcTPS6 was capable of generating β-farnesene as its main product. In the transcriptome, 1,741 transcription factors (TFs) were identified and 474 TFs showed differential expression during petal development. It is supposed that two R2R3-MYBs with flower-specific and developmental expression might be involved in the scent production. CONCLUSIONS The novel transcriptome and DGE profiling provide an important resource for functional genomics studies and give us a dynamic view of biological process during petal development in H. coronarium. These data lay the basis for elucidating the molecular mechanism of floral scent formation and regulation in monocot. The results also provide the opportunities for genetic modification of floral scent profile in Hedychium.
Collapse
Affiliation(s)
- Yuechong Yue
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| | - Rangcai Yu
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Yanping Fan
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
78
|
Medina-Puche L, Molina-Hidalgo FJ, Boersma M, Schuurink RC, López-Vidriero I, Solano R, Franco-Zorrilla JM, Caballero JL, Blanco-Portales R, Muñoz-Blanco J. An R2R3-MYB Transcription Factor Regulates Eugenol Production in Ripe Strawberry Fruit Receptacles. PLANT PHYSIOLOGY 2015; 168:598-614. [PMID: 25931522 PMCID: PMC4453772 DOI: 10.1104/pp.114.252908] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 04/29/2015] [Indexed: 05/18/2023]
Abstract
Eugenol is a volatile phenylpropanoid that contributes to flower and ripe fruit scent. In ripe strawberry (Fragaria × ananassa) fruit receptacles, eugenol is biosynthesized by eugenol synthase (FaEGS2). However, the transcriptional regulation of this process is still unknown. We have identified and functionally characterized an R2R3 MYB transcription factor (emission of benzenoid II [FaEOBII]) that seems to be the orthologous gene of PhEOBII from Petunia hybrida, which contributes to the regulation of eugenol biosynthesis in petals. The expression of FaEOBII was ripening related and fruit receptacle specific, although high expression values were also found in petals. This expression pattern of FaEOBII correlated with eugenol content in both fruit receptacle and petals. The expression of FaEOBII was repressed by auxins and activated by abscisic acid, in parallel to the ripening process. In ripe strawberry receptacles, where the expression of FaEOBII was silenced, the expression of cinnamyl alcohol dehydrogenase1 and FaEGS2, two structural genes involved in eugenol production, was down-regulated. A subsequent decrease in eugenol content in ripe receptacles was also observed, confirming the involvement of FaEOBII in eugenol metabolism. Additionally, the expression of FaEOBII was under the control of FaMYB10, another R2R3 MYB transcription factor that regulates the early and late biosynthetic genes from the flavonoid/phenylpropanoid pathway. In parallel, the amount of eugenol in FaMYB10-silenced receptacles was also diminished. Taken together, these data indicate that FaEOBII plays a regulating role in the volatile phenylpropanoid pathway gene expression that gives rise to eugenol production in ripe strawberry receptacles.
Collapse
Affiliation(s)
- Laura Medina-Puche
- Departamento de Bioquímica y Biología Molecular, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario 3, Universidad de Córdoba, 14071 Cordoba, Spain (L.M.-P., F.J.M.-H., J.L.C., R.B.-P., J.M.-B.);Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands (M.B., R.C.S.); andGenomics Unit (I.L.-V., J.-M.F.-Z.) and Department of Plant Molecular Genetics (R.S.), Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Francisco Javier Molina-Hidalgo
- Departamento de Bioquímica y Biología Molecular, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario 3, Universidad de Córdoba, 14071 Cordoba, Spain (L.M.-P., F.J.M.-H., J.L.C., R.B.-P., J.M.-B.);Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands (M.B., R.C.S.); andGenomics Unit (I.L.-V., J.-M.F.-Z.) and Department of Plant Molecular Genetics (R.S.), Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Maaike Boersma
- Departamento de Bioquímica y Biología Molecular, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario 3, Universidad de Córdoba, 14071 Cordoba, Spain (L.M.-P., F.J.M.-H., J.L.C., R.B.-P., J.M.-B.);Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands (M.B., R.C.S.); andGenomics Unit (I.L.-V., J.-M.F.-Z.) and Department of Plant Molecular Genetics (R.S.), Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Robert C Schuurink
- Departamento de Bioquímica y Biología Molecular, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario 3, Universidad de Córdoba, 14071 Cordoba, Spain (L.M.-P., F.J.M.-H., J.L.C., R.B.-P., J.M.-B.);Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands (M.B., R.C.S.); andGenomics Unit (I.L.-V., J.-M.F.-Z.) and Department of Plant Molecular Genetics (R.S.), Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Irene López-Vidriero
- Departamento de Bioquímica y Biología Molecular, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario 3, Universidad de Córdoba, 14071 Cordoba, Spain (L.M.-P., F.J.M.-H., J.L.C., R.B.-P., J.M.-B.);Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands (M.B., R.C.S.); andGenomics Unit (I.L.-V., J.-M.F.-Z.) and Department of Plant Molecular Genetics (R.S.), Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Roberto Solano
- Departamento de Bioquímica y Biología Molecular, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario 3, Universidad de Córdoba, 14071 Cordoba, Spain (L.M.-P., F.J.M.-H., J.L.C., R.B.-P., J.M.-B.);Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands (M.B., R.C.S.); andGenomics Unit (I.L.-V., J.-M.F.-Z.) and Department of Plant Molecular Genetics (R.S.), Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - José-Manuel Franco-Zorrilla
- Departamento de Bioquímica y Biología Molecular, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario 3, Universidad de Córdoba, 14071 Cordoba, Spain (L.M.-P., F.J.M.-H., J.L.C., R.B.-P., J.M.-B.);Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands (M.B., R.C.S.); andGenomics Unit (I.L.-V., J.-M.F.-Z.) and Department of Plant Molecular Genetics (R.S.), Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - José Luis Caballero
- Departamento de Bioquímica y Biología Molecular, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario 3, Universidad de Córdoba, 14071 Cordoba, Spain (L.M.-P., F.J.M.-H., J.L.C., R.B.-P., J.M.-B.);Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands (M.B., R.C.S.); andGenomics Unit (I.L.-V., J.-M.F.-Z.) and Department of Plant Molecular Genetics (R.S.), Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Rosario Blanco-Portales
- Departamento de Bioquímica y Biología Molecular, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario 3, Universidad de Córdoba, 14071 Cordoba, Spain (L.M.-P., F.J.M.-H., J.L.C., R.B.-P., J.M.-B.);Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands (M.B., R.C.S.); andGenomics Unit (I.L.-V., J.-M.F.-Z.) and Department of Plant Molecular Genetics (R.S.), Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Juan Muñoz-Blanco
- Departamento de Bioquímica y Biología Molecular, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario 3, Universidad de Córdoba, 14071 Cordoba, Spain (L.M.-P., F.J.M.-H., J.L.C., R.B.-P., J.M.-B.);Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands (M.B., R.C.S.); andGenomics Unit (I.L.-V., J.-M.F.-Z.) and Department of Plant Molecular Genetics (R.S.), Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| |
Collapse
|
79
|
Yauk YK, Chagné D, Tomes S, Matich AJ, Wang MY, Chen X, Maddumage R, Hunt MB, Rowan DD, Atkinson RG. The O-methyltransferase gene MdoOMT1 is required for biosynthesis of methylated phenylpropenes in ripe apple fruit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:937-950. [PMID: 25904040 DOI: 10.1111/tpj.12861] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 04/13/2015] [Accepted: 04/17/2015] [Indexed: 05/27/2023]
Abstract
Phenylpropenes, such as eugenol and trans-anethole, are important aromatic compounds that determine flavour and aroma in many herbs and spices. Some apple varieties produce fruit with a highly desirable spicy/aromatic flavour that has been attributed to the production of estragole, a methylated phenylpropene. To elucidate the molecular basis for estragole production and its contribution to ripe apple flavour and aroma we characterised a segregating population from a Royal Gala (RG, estragole producer) × Granny Smith (GS, non-producer) apple cross. Two quantitative trait loci (QTLs; accounting for 9.2 and 24.8% of the variation) on linkage group (LG) 1 and LG2 were identified that co-located with seven candidate genes for phenylpropene O-methyltransferases (MdoOMT1-7). Of these genes, only expression of MdoOMT1 on LG1 increased strongly with ethylene and could be correlated with increasing estragole production in ripening RG fruit. Transient over-expression in tobacco showed that MdoOMT1 utilised a range of phenylpropene substrates and catalysed the conversion of chavicol to estragole. Royal Gala carried two alleles (MdoOMT1a, MdoOMT1b) whilst GS appeared to be homozygous for MdoOMT1b. MdoOMT1a showed a higher affinity and catalytic efficiency towards chavicol than MdoOMT1b, which could account for the phenotypic variation at the LG1 QTL. Multiple transgenic RG lines with reduced MdoOMT1 expression produced lower levels of methylated phenylpropenes, including estragole and methyleugenol. Differences in fruit aroma could be perceived in these fruit, compared with controls, by sensory analysis. Together these results indicate that MdoOMT1 is required for the production of methylated phenylpropenes in apple and that phenylpropenes including estragole may contribute to ripe apple fruit aroma.
Collapse
Affiliation(s)
- Yar-Khing Yauk
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - David Chagné
- Plant and Food Research Limited (PFR), Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Sumathi Tomes
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Adam J Matich
- Plant and Food Research Limited (PFR), Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Mindy Y Wang
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Xiuyin Chen
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Ratnasiri Maddumage
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Martin B Hunt
- Plant and Food Research Limited (PFR), Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Daryl D Rowan
- Plant and Food Research Limited (PFR), Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Ross G Atkinson
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| |
Collapse
|
80
|
Li Y, Wang X, Chen T, Yao F, Li C, Tang Q, Sun M, Sun G, Hu S, Yu J, Song S. RNA-Seq Based De Novo Transcriptome Assembly and Gene Discovery of Cistanche deserticola Fleshy Stem. PLoS One 2015; 10:e0125722. [PMID: 25938435 PMCID: PMC4418726 DOI: 10.1371/journal.pone.0125722] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/18/2015] [Indexed: 11/19/2022] Open
Abstract
Backgrounds Cistanche deserticola is a completely non-photosynthetic parasitic plant with great medicinal value and mainly distributed in desert of Northwest China. Its dried fleshy stem is a crucial tonic in traditional Chinese medicine with roles of mainly improving male sexual function and strengthening immunity, but few mechanistic studies have been conducted partly due to the lack of genomic and transcriptomic resources. Results In this study, we performed deep transcriptome sequencing in fleshy stem of C. deserticola, and about 80 million reads were generated using Illumina pair-end sequencing on HiSeq2000 platform. Using trinity assembler, we obtained 95,787 transcript sequences with transcript lengths ranging from 200bp to 15,698bp, having an average length of 950 bases and the N50 length of 1,519 bases. 63,957 transcripts were identified actively expressed with FPKM ≥ 0.5, in which 30,098 transcripts were annotated with gene descriptions or gene ontology terms by sequence similarity analyses against several public databases (Uniprot, NR and Nt at NCBI, and KEGG). Furthermore, we identified key enzyme genes involved in biosynthesis of lignin and phenylethanoid glycosides (PhGs) which are known to be the primary active ingredients. Four phenylalanine ammonia-lyase (PAL) genes, the first key enzyme in lignin and PhG biosynthesis, were identified based on sequences comparison and phylogenetic analysis. Two biosynthesis pathways of PhGs were also proposed for the first time. Conclusions In all, we completed a global analysis of the C. deserticola fleshy stem transcriptome using RNA-seq technology. A collection of enzyme genes related to biosynthesis of lignin and phenylethanoid glysides were identified from the assembled and annotated transcripts, and the gene family of PAL was also predicted. The sequence data from this study will provide a valuable resource for conducting future phenylethanoid glysides biosynthesis researches and functional genomic studies in this important medicinal plant.
Collapse
Affiliation(s)
- Yuli Li
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiliang Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tingting Chen
- Core Genomic Facility, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Fuwen Yao
- Core Genomic Facility, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cuiping Li
- Core Genomic Facility, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Qingli Tang
- HongKui CongRong Group, Alashan, Inner Mongolia, China
| | - Min Sun
- Core Genomic Facility, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Gaoyuan Sun
- Core Genomic Facility, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Songnian Hu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Jun Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Shuhui Song
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- Core Genomic Facility, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
81
|
Alba JM, Schimmel BCJ, Glas JJ, Ataide LMS, Pappas ML, Villarroel CA, Schuurink RC, Sabelis MW, Kant MR. Spider mites suppress tomato defenses downstream of jasmonate and salicylate independently of hormonal crosstalk. THE NEW PHYTOLOGIST 2015; 205:828-40. [PMID: 25297722 PMCID: PMC4301184 DOI: 10.1111/nph.13075] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 08/18/2014] [Indexed: 05/08/2023]
Abstract
Plants respond to herbivory by mounting a defense. Some plant-eating spider mites (Tetranychus spp.) have adapted to plant defenses to maintain a high reproductive performance. From natural populations we selected three spider mite strains from two species, Tetranychus urticae and Tetranychus evansi, that can suppress plant defenses, using a fourth defense-inducing strain as a benchmark, to assess to which extent these strains suppress defenses differently. We characterized timing and magnitude of phytohormone accumulation and defense-gene expression, and determined if mites that cannot suppress defenses benefit from sharing a leaf with suppressors. The nonsuppressor strain induced a mixture of jasmonate- (JA) and salicylate (SA)-dependent defenses. Induced defense genes separated into three groups: 'early' (expression peak at 1 d postinfestation (dpi)); 'intermediate' (4 dpi); and 'late', whose expression increased until the leaf died. The T. evansi strains suppressed genes from all three groups, but the T. urticae strain only suppressed the late ones. Suppression occurred downstream of JA and SA accumulation, independently of the JA-SA antagonism, and was powerful enough to boost the reproductive performance of nonsuppressors up to 45%. Our results show that suppressing defenses not only brings benefits but, within herbivore communities, can also generate a considerable ecological cost when promoting the population growth of a competitor.
Collapse
Affiliation(s)
- Juan M Alba
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, 1090 GE, Amsterdam, the Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Oliva M, Ovadia R, Perl A, Bar E, Lewinsohn E, Galili G, Oren-Shamir M. Enhanced formation of aromatic amino acids increases fragrance without affecting flower longevity or pigmentation in Petunia × hybrida. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:125-36. [PMID: 25283446 DOI: 10.1111/pbi.12253] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 08/07/2014] [Accepted: 08/11/2014] [Indexed: 05/09/2023]
Abstract
Purple Petunia × hybrida V26 plants accumulate fragrant benzenoid-phenylpropanoid molecules and anthocyanin pigments in their petals. These specialized metabolites are synthesized mainly from the aromatic amino acids phenylalanine. Here, we studied the profile of secondary metabolites of petunia plants, expressing a feedback-insensitive bacterial form of 3-deoxy-di-arabino-heptulosonate 7-phosphate synthase enzyme (AroG*) of the shikimate pathway, as a tool to stimulate the conversion of primary to secondary metabolism via the aromatic amino acids. We focused on specialized metabolites contributing to flower showy traits. The presence of AroG* protein led to increased aromatic amino acid levels in the leaves and high phenylalanine levels in the petals. In addition, the AroG* petals accumulated significantly higher levels of fragrant benzenoid-phenylpropanoid volatiles, without affecting the flowers' lifetime. In contrast, AroG* abundance had no effect on flavonoids and anthocyanins levels. The metabolic profile of all five AroG* lines was comparable, even though two lines produced the transgene in the leaves, but not in the petals. This implies that phenylalanine produced in leaves can be transported through the stem to the flowers and serve as a precursor for formation of fragrant metabolites. Dipping cut petunia stems in labelled phenylalanine solution resulted in production of labelled fragrant volatiles in the flowers. This study emphasizes further the potential of this metabolic engineering approach to stimulate the production of specialized metabolites and enhance the quality of various plant organs. Furthermore, transformation of vegetative tissues with AroG* is sufficient for induced production of specialized metabolites in organs such as the flowers.
Collapse
Affiliation(s)
- Moran Oliva
- Department of Ornamental Horticulture, Agriculture Research Organization, The Volcani Center, Beit Dagan, Israel; Department of Plant Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | |
Collapse
|
83
|
Glas JJ, Alba JM, Simoni S, Villarroel CA, Stoops M, Schimmel BC, Schuurink RC, Sabelis MW, Kant MR. Defense suppression benefits herbivores that have a monopoly on their feeding site but can backfire within natural communities. BMC Biol 2014; 12:98. [PMID: 25403155 PMCID: PMC4258945 DOI: 10.1186/s12915-014-0098-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 11/07/2014] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Plants have inducible defenses to combat attacking organisms. Hence, some herbivores have adapted to suppress these defenses. Suppression of plant defenses has been shown to benefit herbivores by boosting their growth and reproductive performance. RESULTS We observed in field-grown tomatoes that spider mites (Tetranychus urticae) establish larger colonies on plants already infested with the tomato russet mite (Aculops lycopersici). Using laboratory assays, we observed that spider mites have a much higher reproductive performance on russet mite-infested plants, similar to their performance on the jasmonic acid (JA)-biosynthesis mutant def-1. Hence, we tested if russet mites suppress JA-responses thereby facilitating spider mites. We found that russet mites manipulate defenses: they induce those mediated by salicylic acid (SA) but suppress those mediated by JA which would otherwise hinder growth. This suppression of JA-defenses occurs downstream of JA-accumulation and is independent from its natural antagonist SA. In contrast, spider mites induced both JA- and SA-responses while plants infested with the two mite species together display strongly reduced JA-responses, yet a doubled SA-response. The spider mite-induced JA-response in the presence of russet mites was restored on transgenic tomatoes unable to accumulate SA (nahG), but russet mites alone still did not induce JA-responses on nahG plants. Thus, indirect facilitation of spider mites by russet mites depends on the antagonistic action of SA on JA while suppression of JA-defenses by russet mites does not. Furthermore, russet mite-induced SA-responses inhibited secondary infection by Pseudomonas syringae (Pst) while not affecting the mite itself. Finally, while facilitating spider mites, russet mites experience reduced population growth. CONCLUSIONS Our results show that the benefits of suppressing plant defenses may diminish within communities with natural competitors. We show that suppression of defenses via the JA-SA antagonism can be a consequence, rather than the cause, of a primary suppression event and that its overall effect is determined by the presence of competing herbivores and the distinct palette of defenses these induce. Thus, whether or not host-defense manipulation improves an herbivore's fitness depends on interactions with other herbivores via induced-host defenses, implicating bidirectional causation of community structure of herbivores sharing a plant.
Collapse
Affiliation(s)
- Joris J Glas
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, Netherlands.
| | - Juan M Alba
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, Netherlands.
| | - Sauro Simoni
- CRA-ABP Consiglio per la Ricerca e la Sperimentazione in Agricoltura - Research, Centre for Agrobiology and Pedology, via Lanciola 12/a, 50125, Florence, Italy.
| | - Carlos A Villarroel
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, Netherlands.
| | - Marije Stoops
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, Netherlands.
| | - Bernardus Cj Schimmel
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, Netherlands.
| | - Robert C Schuurink
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, Netherlands.
| | - Maurice W Sabelis
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, Netherlands.
| | - Merijn R Kant
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, Netherlands.
| |
Collapse
|
84
|
Torrens-Spence MP, von Guggenberg R, Lazear M, Ding H, Li J. Diverse functional evolution of serine decarboxylases: identification of two novel acetaldehyde synthases that uses hydrophobic amino acids as substrates. BMC PLANT BIOLOGY 2014; 14:247. [PMID: 25230835 PMCID: PMC4177580 DOI: 10.1186/s12870-014-0247-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 09/10/2014] [Indexed: 05/10/2023]
Abstract
BACKGROUND Type II pyridoxal 5'-phosphate decarboxylases are an important group of phylogenetically diverse enzymes involved in amino acid metabolism. Within plants, this group of enzymes is represented by aromatic amino acid decarboxylases, glutamate decarboxylases and serine decarboxylases. Additional evolutionary divergence of plant aromatic amino acid decarboxylases has resulted in further subcategories with distinct substrate specificities and enzymatic activities. Despite shared homology, no such evolutionary divergence has been characterized within glutamate decarboxylases or serine decarboxylases (SDC). RESULTS Comparative analysis of two previously characterized serine decarboxylase-like (SDC-like) enzymes demonstrates distinct substrate specificities despite their highly conserved primary sequence. The alternate substrate preference of these homologous SDC-like proteins indicated that functional divergence might have occurred with in SDC-like proteins. In an effort to identify additional SDC-like functional divergence, two uncharacterized SDC-like enzymes were recombinantly expressed and characterized. CONCLUSIONS An extensive biochemical analysis of two serine decarboxylases-like recombinant proteins led to an interesting discovery; both proteins catalyze the formation of acetaldehyde derivatives from select hydrophobic amino acids substrates. Specifically, Medicago truncatula [GenBank: XP_003592128] and Cicer arietinum [GenBank: XP_004496485] catalyze the decarboxylation and oxidative deamination of phenylalanine, methionine, leucine and tryptophan to generate their corresponding acetaldehydes. The promiscuous aldehyde synthase activity of these proteins yields novel products of 4-(methylthio) butanal, 3-methylbutanal (isovaleraldehyde) and indole-3-acetaldehyde from methionine, leucine and tryptophan respectively. A comparative biochemical analysis of the Medicago truncatula and Cicer arietinum enzymes against two previously characterized SDC-like enzymes further emphasizes the unusual substrate specificity and activity of these novel aldehyde synthases. Due to the strong substrate preference towards phenylalanine, it is likely that both enzymes function as phenylacetaldehyde synthesis in vivo. However, due to their significant sequence divergence and unusual substrate promiscuity these enzymes are functionally and evolutionary divergent from canonical phenylacetaldehyde synthesis enzymes. This work further elaborates on the functional complexity of plant type II PLP decarboxylases and their roles in secondary metabolite biosynthesis.
Collapse
Affiliation(s)
- Michael P Torrens-Spence
- />Department of Biochemistry, Virginia Tech, Blacksburg, Virginia USA
- />Present address: Whitehead Institute for Biomedical Research, Cambridge, Massachusetts USA
| | | | - Michael Lazear
- />Department of Biochemistry, Virginia Tech, Blacksburg, Virginia USA
| | - Haizhen Ding
- />Department of Biochemistry, Virginia Tech, Blacksburg, Virginia USA
| | - Jianyong Li
- />Department of Biochemistry, Virginia Tech, Blacksburg, Virginia USA
| |
Collapse
|
85
|
Recent Advances in the Application of Metabolomics to Studies of Biogenic Volatile Organic Compounds (BVOC) Produced by Plant. Metabolites 2014; 4:699-721. [PMID: 25257996 PMCID: PMC4192688 DOI: 10.3390/metabo4030699] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 08/12/2014] [Accepted: 08/13/2014] [Indexed: 01/03/2023] Open
Abstract
In many plants, biogenic volatile organic compounds (BVOCs) are produced as specialized metabolites that contribute to the characteristics of each plant. The varieties and composition of BVOCs are chemically diverse by plant species and the circumstances in which the plants grow, and also influenced by herbivory damage and pathogen infection. Plant-produced BVOCs are receptive to many organisms, from microorganisms to human, as both airborne attractants and repellants. In addition, it is known that some BVOCs act as signals to prime a plant for the defense response in plant-to-plant communications. The compositional profiles of BVOCs can, thus, have profound influences in the physiological and ecological aspects of living organisms. Apart from that, some of them are commercially valuable as aroma/flavor compounds for human. Metabolomic technologies have recently revealed new insights in biological systems through metabolic dynamics. Here, the recent advances in metabolomics technologies focusing on plant-produced BVOC analyses are overviewed. Their application markedly improves our knowledge of the role of BVOCs in chemosystematics, ecological influences, and aroma research, as well as being useful to prove the biosynthetic mechanisms of BVOCs.
Collapse
|
86
|
Du F, Alam MN, Pawliszyn J. Aptamer-functionalized solid phase microextraction-liquid chromatography/tandem mass spectrometry for selective enrichment and determination of thrombin. Anal Chim Acta 2014; 845:45-52. [PMID: 25201271 DOI: 10.1016/j.aca.2014.08.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/10/2014] [Accepted: 08/11/2014] [Indexed: 11/27/2022]
Abstract
In this publication, a novel solid phase microextraction (SPME) coating functionalized with a DNA aptamer for selective enrichment of a low abundance protein from diluted human plasma is described. This approach is based on the covalent immobilization of an aptamer ligand on electrospun microfibers made with the hydrophilic polymer poly(acrylonitrile-co-maleic acid) (PANCMA) on stainless steel rods. A plasma protein, human α-thrombin, was employed as a model protein for selective extraction by the developed Apt-SPME probe, and the detection was carried out with liquid chromatography/tandem mass spectrometry (LC-MS/MS). The SPME probe exhibited highly selective capture, good binding capacity, high stability and good repeatability for the extraction of thrombin. The protein selective probe was employed for direct extraction of thrombin from 20-fold diluted human plasma samples without any other purification. The Apt-SPME method coupled with LC-MS/MS provided a good linear dynamic range of 0.5-50 nM in diluted human plasma with a good correlation coefficient (R(2)=0.9923), and the detection limit of the proposed method was found to be 0.30 nM. Finally, the Apt-SPME coupled with LC-MS/MS method was successfully utilized for the determination of thrombin in clinical human plasma samples. One shortcoming of the method is its reduced efficiency in undiluted human plasma compared to the standard solution. Nevertheless, this new aptamer affinity-based SPME probe opens up the possibility of selective enrichment of a given targeted protein from complex sample either in vivo or ex vivo.
Collapse
Affiliation(s)
- Fuyou Du
- Department of Chemistry, University of Waterloo, Ontario N2L 3G1, Canada
| | - Md Nazmul Alam
- Department of Chemistry, University of Waterloo, Ontario N2L 3G1, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
87
|
Yoo H, Widhalm JR, Qian Y, Maeda H, Cooper BR, Jannasch AS, Gonda I, Lewinsohn E, Rhodes D, Dudareva N. An alternative pathway contributes to phenylalanine biosynthesis in plants via a cytosolic tyrosine:phenylpyruvate aminotransferase. Nat Commun 2014; 4:2833. [PMID: 24270997 DOI: 10.1038/ncomms3833] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 10/29/2013] [Indexed: 02/06/2023] Open
Abstract
Phenylalanine is a vital component of proteins in all living organisms, and in plants is a precursor for thousands of additional metabolites. Animals are incapable of synthesizing phenylalanine and must primarily obtain it directly or indirectly from plants. Although plants can synthesize phenylalanine in plastids through arogenate, the contribution of an alternative pathway via phenylpyruvate, as occurs in most microbes, has not been demonstrated. Here we show that plants also utilize a microbial-like phenylpyruvate pathway to produce phenylalanine, and flux through this route is increased when the entry point to the arogenate pathway is limiting. Unexpectedly, we find the plant phenylpyruvate pathway utilizes a cytosolic aminotransferase that links the coordinated catabolism of tyrosine to serve as the amino donor, thus interconnecting the extra-plastidial metabolism of these amino acids. This discovery uncovers another level of complexity in the plant aromatic amino acid regulatory network, unveiling new targets for metabolic engineering.
Collapse
Affiliation(s)
- Heejin Yoo
- Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Dr, West Lafayette, Indiana 47907, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Langer KM, Jones CR, Jaworski EA, Rushing GV, Kim JY, Clark DG, Colquhoun TA. PhDAHP1 is required for floral volatile benzenoid/phenylpropanoid biosynthesis in Petunia × hybrida cv 'Mitchell Diploid'. PHYTOCHEMISTRY 2014; 103:22-31. [PMID: 24815009 DOI: 10.1016/j.phytochem.2014.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 03/28/2014] [Accepted: 04/10/2014] [Indexed: 06/03/2023]
Abstract
Floral volatile benzenoid/phenylpropanoid (FVBP) biosynthesis consists of numerous enzymatic and regulatory processes. The initial enzymatic step bridging primary metabolism to secondary metabolism is the condensation of phosphoenolpyruvate (PEP) and erythrose-4-phosphate (E4P) carried out via 3-DEOXY-D-ARABINO-HEPTULOSONATE-7-PHOSPHATE (DAHP) synthase. Here, identified, cloned, localized, and functionally characterized were two DAHP synthases from the model plant species Petunia × hybrida cv 'Mitchell Diploid' (MD). Full-length transcript sequences for PhDAHP1 and PhDAHP2 were identified and cloned using cDNA SMART libraries constructed from pooled MD corolla and leaf total RNA. Predicted amino acid sequence of PhDAHP1 and PhDAHP2 proteins were 76% and 80% identical to AtDAHP1 and AtDAHP2 from Arabidopsis, respectively. PhDAHP1 transcript accumulated to relatively highest levels in petal limb and tube tissues, while PhDAHP2 accumulated to highest levels in leaf and stem tissues. Through floral development, PhDAHP1 transcript accumulated to highest levels during open flower stages, and PhDAHP2 transcript remained constitutive throughout. Radiolabeled PhDAHP1 and PhDAHP2 proteins localized to plastids, however, PhDAHP2 localization appeared less efficient. PhDAHP1 RNAi knockdown petunia lines were reduced in total FVBP emission compared to MD, while PhDAHP2 RNAi lines emitted 'wildtype' FVBP levels. These results demonstrate that PhDAHP1 is the principal DAHP synthase protein responsible for the coupling of metabolites from primary metabolism to secondary metabolism, and the ultimate biosynthesis of FVBPs in the MD flower.
Collapse
Affiliation(s)
- Kelly M Langer
- Plant Innovation Program, Department of Environmental Horticulture, University of Florida, Gainesville, FL 32611, USA
| | - Correy R Jones
- Plant Innovation Program, Department of Environmental Horticulture, University of Florida, Gainesville, FL 32611, USA
| | - Elizabeth A Jaworski
- Plant Innovation Program, Department of Environmental Horticulture, University of Florida, Gainesville, FL 32611, USA
| | - Gabrielle V Rushing
- Plant Innovation Program, Department of Environmental Horticulture, University of Florida, Gainesville, FL 32611, USA
| | - Joo Young Kim
- Plant Innovation Program, Department of Environmental Horticulture, University of Florida, Gainesville, FL 32611, USA
| | - David G Clark
- Plant Innovation Program, Department of Environmental Horticulture, University of Florida, Gainesville, FL 32611, USA
| | - Thomas A Colquhoun
- Plant Innovation Program, Department of Environmental Horticulture, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
89
|
Lin CY, Chen YH, Chang TC, Chen YJ, Cheng SS, Chang ST. Characteristic aroma-active compounds of floral scent in situ from Barringtonia racemosa and their dynamic emission rates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:12531-12538. [PMID: 24369104 DOI: 10.1021/jf404505p] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Barringtonia racemosa is a nocturnal flowering plant. Information on its floral volatiles and the dynamic emission profiles was very limited. In this study, the floral volatiles of B. racemosa were monitored hourly during its florescence via detached and in situ collection for the first time. The dynamic odor activity value (OAV) was calculated to elucidate the active aroma components of floral scent. Results of compositional analyses showed that the predominant floral volatiles were linalool and phenylacetaldehyde. Their emission started around 8:00 p.m., and the peak emissions were 20541 and 18234 ng h(-1) flower(-1), respectively, during 10:00 p.m.-2:00 a.m. Results from dynamic OAV profiling revealed that linalool (409 min(-1)) and phenylacetaldehyde (547 min(-1)) had higher OAVs than other components (<10 min(-1)), indicating that linalool and phenylacetaldehyde contributed mainly to the floral scent with a strong, sweet, and pleasant aroma.
Collapse
Affiliation(s)
- Chun-Ya Lin
- School of Forest, Resource Conservation, National Taiwan University , Taipei 10617, Taiwan
| | | | | | | | | | | |
Collapse
|
90
|
Reiche N, Mothes F, Fiedler P, Borsdorf H. A solid-phase microextraction method for the in vivo sampling of MTBE in common reed (Phragmites australis). ENVIRONMENTAL MONITORING AND ASSESSMENT 2013; 185:7133-7144. [PMID: 23329197 DOI: 10.1007/s10661-013-3089-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 01/09/2013] [Indexed: 06/01/2023]
Abstract
Phytoscreening of phytoremediation-based plantings is discussed as a promising monitoring tool in literature. We developed and applied an analytical procedure for the in vivo sampling of methyl tert-butyl ether (MTBE) in the common reed (Phragmites australis) from a phytoremediation site highly polluted with MTBE. The approach uses solid-phase microextraction (SPME) with the SPME fibre directly introduced into the aerenchyma of the plant stem. For optimising the analytical procedure and estimating the capability of the proposed method, laboratory tests on the microcosm scale and field studies over one vegetation period were carried out. Furthermore, the results of in vivo SPME sampling were compared with those obtained with the traditional approach for analysing plants using dynamic headspace analysis. The MTBE signals detected within the plants were also correlated with the concentration in the water phase. The discussion of results showed the feasibility of the proposed method for a qualitative phytoscreening of volatile organic compounds present in wetland plants.
Collapse
Affiliation(s)
- Nils Reiche
- Department of Monitoring and Exploration Technologies, Helmholtz Centre for Environmental Research-UFZ, Permoserstr 15, 04318 Leipzig, Germany.
| | | | | | | |
Collapse
|
91
|
Applications of in vivo and in vitro solid-phase microextraction techniques in plant analysis: A review. Anal Chim Acta 2013; 794:1-14. [DOI: 10.1016/j.aca.2013.05.016] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 05/04/2013] [Accepted: 05/07/2013] [Indexed: 12/11/2022]
|
92
|
Citrus leaf volatiles as affected by developmental stage and genetic type. Int J Mol Sci 2013; 14:17744-66. [PMID: 23994837 PMCID: PMC3794751 DOI: 10.3390/ijms140917744] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 08/19/2013] [Accepted: 08/21/2013] [Indexed: 11/16/2022] Open
Abstract
Major volatiles from young and mature leaves of different citrus types were analyzed by headspace-solid phase microextraction (HS-SPME)-GC-MS. A total of 123 components were identified form nine citrus cultivars, including nine aldehydes, 19 monoterpene hydrocarbons, 27 oxygenated monoterpenes, 43 sesquiterpene hydrocarbons, eight oxygenated sesquiterpenes, two ketones, six esters and nine miscellaneous. Young leaves produced higher amounts of volatiles than mature leaves in most cultivars. The percentage of aldehyde and monoterpene hydrocarbons increased, whilst oxygenated monoterpenes and sesquiterpenes compounds decreased during leaf development. Linalool was the most abundant compound in young leaves, whereas limonene was the chief component in mature ones. Notably, linalool content decreased, while limonene increased, during leaf development in most cultivars. Leaf volatiles were also affected by genetic types. A most abundant volatile in one or several genotypes can be absent in another one(s), such as limonene in young leaves of lemon vs. Satsuma mandarin and β-terpinene in mature leaves of three genotypes vs. the other four. Compositional data was subjected to multivariate statistical analysis, and variations in leaf volatiles were identified and clustered into six groups. This research determining the relationship between production of major volatiles from different citrus varieties and leaf stages could be of use for industrial and culinary purposes.
Collapse
|
93
|
Du X, Zeisel SH. Spectral deconvolution for gas chromatography mass spectrometry-based metabolomics: current status and future perspectives. Comput Struct Biotechnol J 2013; 4:e201301013. [PMID: 24688694 PMCID: PMC3962095 DOI: 10.5936/csbj.201301013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 06/20/2013] [Accepted: 06/23/2013] [Indexed: 12/28/2022] Open
Abstract
Mass spectrometry coupled to gas chromatography (GC-MS) has been widely applied in the field of metabolomics. Success of this application has benefited greatly from computational workflows that process the complex raw mass spectrometry data and extract the qualitative and quantitative information of metabolites. Among the computational algorithms within a workflow, deconvolution is critical since it reconstructs a pure mass spectrum for each component that the mass spectrometer observes. Based on the pure spectrum, the corresponding component can be eventually identified and quantified. Deconvolution is challenging due to the existence of co-elution. In this review, we focus on progress that has been made in the development of deconvolution algorithms and provide thoughts on future developments that will expand the application of GC-MS in metabolomics.
Collapse
Affiliation(s)
- Xiuxia Du
- Department of Bioinformatics, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Steven H Zeisel
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
| |
Collapse
|
94
|
Oyama-Okubo N, Sakai T, Ando T, Nakayama M, Soga T. Metabolome profiling of floral scent production in Petunia axillaris. PHYTOCHEMISTRY 2013; 90:37-42. [PMID: 23562394 DOI: 10.1016/j.phytochem.2013.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 02/02/2013] [Accepted: 03/05/2013] [Indexed: 06/02/2023]
Abstract
Emission of floral scent benzenoid/phenylpropanoid compounds in Petunia axillaris increases significantly at night, a change that is primarily determined by the endogenous concentration of these compounds in the corolla. Among wild type P. axillaris plants, there are lines that emit different amounts of scent. To understand how the nocturnal rhythm of floral scent concentrations is controlled, the concentration profiles of metabolites in the scent biosynthetic pathway in two lines of P. axillaris, a strongly scented line and a weakly scented line, are reported. In the strongly scented line, the concentration of a series of compounds from glucose-6-phosphate (G6P) to the scent compounds changed synchronously. In the weakly scented lines, the concentrations of some metabolites including 6-phosphogluconate (6PG) and downstream metabolites of shikimic acid were remarkably lower, suggesting a reduction in metabolism of G6P to 6PG and the metabolism of shikimic acid in the weakly scented line. Nocturnal increases in the concentrations of sucrose, fructose, and glucose were not found in strongly scented line. Nocturnal increases in concentrations of S-adenosylhomocysteine (SAH) and methionine and reductions in the concentrations of S-adenosylmethionine (SAM), a methylation donor to benzenoid-skeletons, were observed only in strongly scented line. It is concluded that the biosynthetic regulation of each step from G6P to the volatile scent benzenoids is performed by, at least in part, concentrations of substrates, and the regulation also affects concentrations of SAM cycle compounds.
Collapse
Affiliation(s)
- Naomi Oyama-Okubo
- Institute of Floricultural Science, National Agriculture and Food Research Organization, 2-1 Fujimoto, Tsukuba, Ibaraki 305-8519, Japan.
| | | | | | | | | |
Collapse
|
95
|
Kusano M, Iizuka Y, Kobayashi M, Fukushima A, Saito K. Development of a Direct Headspace Collection Method from Arabidopsis Seedlings Using HS-SPME-GC-TOF-MS Analysis. Metabolites 2013; 3:223-42. [PMID: 24957989 PMCID: PMC3901263 DOI: 10.3390/metabo3020223] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 03/21/2013] [Accepted: 03/26/2013] [Indexed: 12/27/2022] Open
Abstract
Plants produce various volatile organic compounds (VOCs), which are thought to be a crucial factor in their interactions with harmful insects, plants and animals. Composition of VOCs may differ when plants are grown under different nutrient conditions, i.e., macronutrient-deficient conditions. However, in plants, relationships between macronutrient assimilation and VOC composition remain unclear. In order to identify the kinds of VOCs that can be emitted when plants are grown under various environmental conditions, we established a conventional method for VOC profiling in Arabidopsis thaliana (Arabidopsis) involving headspace-solid-phase microextraction-gas chromatography-time-of-flight-mass spectrometry (HS-SPME-GC-TOF-MS). We grew Arabidopsis seedlings in an HS vial to directly perform HS analysis. To maximize the analytical performance of VOCs, we optimized the extraction method and the analytical conditions of HP-SPME-GC-TOF-MS. Using the optimized method, we conducted VOC profiling of Arabidopsis seedlings, which were grown under two different nutrition conditions, nutrition-rich and nutrition-deficient conditions. The VOC profiles clearly showed a distinct pattern with respect to each condition. This study suggests that HS-SPME-GC-TOF-MS analysis has immense potential to detect changes in the levels of VOCs in not only Arabidopsis, but other plants grown under various environmental conditions.
Collapse
Affiliation(s)
- Miyako Kusano
- RIKEN Plant Science Center, Tsurumi, Yokohama 230-0045, Japan.
| | - Yumiko Iizuka
- RIKEN Plant Science Center, Tsurumi, Yokohama 230-0045, Japan.
| | | | | | - Kazuki Saito
- RIKEN Plant Science Center, Tsurumi, Yokohama 230-0045, Japan.
| |
Collapse
|
96
|
Lange BM, Ahkami A. Metabolic engineering of plant monoterpenes, sesquiterpenes and diterpenes--current status and future opportunities. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:169-96. [PMID: 23171352 DOI: 10.1111/pbi.12022] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/05/2012] [Accepted: 10/08/2012] [Indexed: 05/03/2023]
Abstract
Terpenoids (a.k.a. isoprenoids) represent the most diverse class of natural products found in plants, with tens of thousands of reported structures. Plant-derived terpenoids have a multitude of pharmaceutical and industrial applications, but the natural resources for their extraction are often limited and, in many cases, synthetic routes are not commercially viable. Some of the most valuable terpenoids are not accumulated in model plants or crops, and genetic resources for breeding of terpenoid natural product traits are thus poorly developed. At present, metabolic engineering, either in the native producer or a heterologous host, is the only realistic alternative to improve yield and accessibility. In this review article, we will evaluate the state of the art of modulating the biosynthetic pathways for the production of mono-, sesqui- and diterpenes in plants.
Collapse
Affiliation(s)
- B Markus Lange
- Institute of Biological Chemistry and MJ Murdock Metabolomics Laboratory, Washington State University, Pullman, WA, USA.
| | | |
Collapse
|
97
|
Kessler D, Diezel C, Clark DG, Colquhoun TA, Baldwin IT. Petunia flowers solve the defence/apparency dilemma of pollinator attraction by deploying complex floral blends. Ecol Lett 2012; 16:299-306. [PMID: 23173705 DOI: 10.1111/ele.12038] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 07/29/2012] [Accepted: 10/21/2012] [Indexed: 11/28/2022]
Abstract
Flowers recruit floral visitors for pollination services by emitting fragrances. These scent signals can be intercepted by antagonists such as florivores to locate host plants. Hence, as a consequence of interactions with both mutualists and antagonists, floral bouquets likely consist of both attractive and defensive components. While the attractive functions of floral bouquets have been studied, their defensive function has not, and field-based evidence for the deterrence of floral-scent constituents is lacking. In field and glasshouse experiments with five lines of transgenic Petunia x hybrida plants specifically silenced in their ability to release particular components of their floral volatile bouquet, we demonstrate that the emission of single floral-scent compounds can dramatically decrease damage from generalist florivores. While some compounds are used in host location, others prevent florivory. We conclude that the complex blends that comprise floral scents are likely sculpted by the selective pressures of both pollinators and herbivores.
Collapse
Affiliation(s)
- Danny Kessler
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Str. 8, DE-07745, Jena, Germany
| | | | | | | | | |
Collapse
|
98
|
Completion of the core β-oxidative pathway of benzoic acid biosynthesis in plants. Proc Natl Acad Sci U S A 2012; 109:16383-8. [PMID: 22988098 DOI: 10.1073/pnas.1211001109] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Despite the importance of benzoic acid (BA) as a precursor for a wide array of primary and secondary metabolites, its biosynthesis in plants has not been fully elucidated. BA formation from phenylalanine requires shortening of the C(3) side chain by two carbon units, which can occur by a non-β-oxidative route and/or a β-oxidative pathway analogous to the catabolism of fatty acids. Enzymes responsible for the first and last reactions of the core BA β-oxidative pathway (cinnamic acid → cinnamoyl-CoA → 3-hydroxy-3-phenylpropanoyl-CoA → 3-oxo-3-phenylpropanoyl-CoA → BA-CoA) have previously been characterized in petunia, a plant with flowers rich in phenylpropanoid/benzenoid volatile compounds. Using a functional genomics approach, we have identified a petunia gene encoding cinnamoyl-CoA hydratase-dehydrogenase (PhCHD), a bifunctional peroxisomal enzyme responsible for two consecutively occurring unexplored intermediate steps in the core BA β-oxidative pathway. PhCHD spatially, developmentally, and temporally coexpresses with known genes in the BA β-oxidative pathway, and correlates with emission of benzenoid volatiles. Kinetic analysis of recombinant PhCHD revealed it most efficiently converts cinnamoyl-CoA to 3-oxo-3-phenylpropanoyl-CoA, thus forming the substrate for the final step in the pathway. Down-regulation of PhCHD expression in petunia flowers resulted in reduced CHD enzyme activity, as well as decreased formation of BA-CoA, BA and their derived volatiles. Moreover, transgenic lines accumulated the PhCHD substrate cinnamoyl-CoA and the upstream pathway intermediate cinnamic acid. Discovery of PhCHD completes the elucidation of the core BA β-oxidative route in plants, and together with the previously characterized CoA-ligase and thiolase enzymes, provides evidence that the whole pathway occurs in peroxisomes.
Collapse
|
99
|
Colquhoun TA, Marciniak DM, Wedde AE, Kim JY, Schwieterman ML, Levin LA, Van Moerkercke A, Schuurink RC, Clark DG. A peroxisomally localized acyl-activating enzyme is required for volatile benzenoid formation in a Petuniaxhybrida cv. 'Mitchell Diploid' flower. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4821-33. [PMID: 22771854 PMCID: PMC3428004 DOI: 10.1093/jxb/ers153] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Floral volatile benzenoid/phenylpropanoid (FVBP) biosynthesis is a complex and coordinate cellular process executed by petal limb cells of a Petunia×hybrida cv. 'Mitchell Diploid' (MD) plant. In MD flowers, the majority of benzenoid volatile compounds are derived from a core phenylpropanoid pathway intermediate by a coenzyme A (CoA) dependent, β-oxidative scheme. Metabolic flux analysis, reverse genetics, and biochemical characterizations of key enzymes in this pathway have supported this putative concept. However, the theoretical first enzymatic reaction, which leads to the production of cinnamoyl-CoA, has only been physically demonstrated in a select number of bacteria like Streptomyces maritimus through mutagenesis and recombinant protein production. A transcript has been cloned and characterized from MD flowers that shares high homology with an Arabidopsis thaliana transcript ACYL-ACTIVATING ENZYME11 (AtAAE11) and the S. maritimus ACYL-COA:LIGASE (SmEncH). In MD, the PhAAE transcript accumulates in a very similar manner as bona fide FVBP network genes, i.e. high levels in an open flower petal and ethylene regulated. In planta, PhAAE is localized to the peroxisome. Upon reduction of PhAAE transcript through a stable RNAi approach, transgenic flowers emitted a reduced level of all benzenoid volatile compounds. Together, the data suggest that PhAAE may be responsible for the activation of t-cinnamic acid, which would be required for floral volatile benzenoid production in MD.
Collapse
Affiliation(s)
- Thomas A. Colquhoun
- Plant Innovation Program, Department of Environmental Horticulture, University of Florida, Gainesville, Florida 32611, USA
| | - Danielle M. Marciniak
- Plant Innovation Program, Department of Environmental Horticulture, University of Florida, Gainesville, Florida 32611, USA
| | - Ashlyn E. Wedde
- Plant Innovation Program, Department of Environmental Horticulture, University of Florida, Gainesville, Florida 32611, USA
| | - Joo Young Kim
- Plant Innovation Program, Department of Environmental Horticulture, University of Florida, Gainesville, Florida 32611, USA
| | - Michael L. Schwieterman
- Plant Innovation Program, Department of Environmental Horticulture, University of Florida, Gainesville, Florida 32611, USA
| | - Laura A. Levin
- Plant Innovation Program, Department of Environmental Horticulture, University of Florida, Gainesville, Florida 32611, USA
| | - Alex Van Moerkercke
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Robert C. Schuurink
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - David G. Clark
- Plant Innovation Program, Department of Environmental Horticulture, University of Florida, Gainesville, Florida 32611, USA
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|
100
|
Van Moerkercke A, Haring MA, Schuurink RC. A model for combinatorial regulation of the petunia R2R3-MYB transcription factor ODORANT1. PLANT SIGNALING & BEHAVIOR 2012; 7:518-20. [PMID: 22499185 PMCID: PMC3419043 DOI: 10.4161/psb.19311] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The emission of floral volatiles requires coordinated expression of biosynthetic genes. In the regulatory network of the volatile benzenoid/phenylpropanoid pathway in Petunia hybrida two master regulators of the pathway have been identified. The R2R3-MYB transcription factor EMISSION OF BENZENOIDS II (EOBII) utilizes a specific MYB binding site to activate the expression of the R2R3-MYB ODORANT1 (ODO1). However, because EOBII is expressed early in flower development, when ODO1 is not, there must be other factors that play a role in regulating expression of ODO1. Through functional analyses of ODO1 promoter fragments from fragrant and non-fragrant flowers, we provide evidence for additional players and present a model for combinatorial regulation of ODO1 expression in Petunia.
Collapse
|