51
|
Agarwal C, Dhanalakshmi S, Singh RP, Agarwal R. Inositol hexaphosphate inhibits growth and induces G1 arrest and apoptotic death of androgen-dependent human prostate carcinoma LNCaP cells. Neoplasia 2005; 6:646-59. [PMID: 15548374 PMCID: PMC1531669 DOI: 10.1593/neo.04232] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Prostate cancer (PCA) is the most common invasive malignancy and the second leading cause of cancer-related deaths in the US male population. One approach to control this malignancy is its preventive intervention by dietary agents. Inositol hexaphosphate (IP6), a dietary constituent, has shown promising efficacy against various cancers; however, limited studies have been performed with IP6 against PCA. Here, we investigated the growth-inhibitory effect and associated mechanisms of IP6 in androgen-dependent human prostate carcinoma LNCaP cells. IP6 treatment of cells resulted in a strong growth inhibition and an increase in G1 cell population. In mechanistic studies, IP6 resulted in an increase in cyclin-dependent kinase inhibitors (CDKIs) Cip1/p21 and Kip1/p27 levels, together with a decrease in cyclin-dependent kinase (CDK) 4 and cyclin D1 protein levels. An increase in CDKI levels by IP6 also led to a concomitant increase in their interactions with CDK2 and CDK4, together with a strong decrease in the kinase activity of both CDKs. Downstream in CDKI-CDK-cyclin cascade, consistent with its inhibitory effect on CDK kinase activity, IP6 treatment of cells increased hypophosphorylated levels of retinoblastoma (Rb) with a decrease in Rb phosphorylation at serine 780, 807, and 811 sites, and caused a moderate to strong decrease in the levels of transcription factors E2F1, E2F4, and E2F5. In other studies, IP6 caused a dose- and a time-dependent apoptotic death of LNCaP cells, and a decrease in Bcl2 levels, causing a strong increase in Bax versus Bcl2 ratio, as well as an inhibition of constitutively active AKT phosphorylation. Taken together, these molecular alterations provide an insight into IP6-caused growth inhibition, G1 arrest, and apoptotic death of human prostate carcinoma LNCaP cells. Because early clinical PCA growth is an androgen-dependent response, the results of the present study employing androgen-dependent LNCaP cells suggest that IP6 has promise and potential to be effective against PCA.
Collapse
Affiliation(s)
- Chapla Agarwal
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Cancer Center, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | | | |
Collapse
|
52
|
Naderi S, Wang JYJ, Chen TT, Gutzkow KB, Blomhoff HK. cAMP-mediated inhibition of DNA replication and S phase progression: involvement of Rb, p21Cip1, and PCNA. Mol Biol Cell 2005; 16:1527-42. [PMID: 15647383 PMCID: PMC551513 DOI: 10.1091/mbc.e04-06-0501] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
cAMP exerts an antiproliferative effect on a number of cell types including lymphocytes. This effect of cAMP is proposed to be mediated by its ability to inhibit G1/S transition. In this report, we provide evidence for a new mechanism whereby cAMP might inhibit cellular proliferation. We show that elevation of intracellular levels of cAMP inhibits DNA replication and arrests the cells in S phase. The cAMP-induced inhibition of DNA synthesis was associated with the increased binding of p21Cip1 to Cdk2-cyclin complexes, inhibition of Cdk2 kinase activity, dephosphorylation of Rb, and dissociation of PCNA from chromatin in S phase cells. The ability of cAMP to inhibit DNA replication and trigger release of PCNA from chromatin required Rb and p21Cip1 proteins, since both processes were only marginally affected by increased levels of cAMP in Rb-/- and p21Cip1-/- 3T3 fibroblasts. Importantly, the implications of cAMP-induced inhibition of DNA synthesis in cancer treatment was demonstrated by the ability of cAMP to reduce apoptosis induced by S phase-specific cytotoxic drugs. Taken together, these results demonstrate a novel role for cAMP in regulation of DNA synthesis and support a model in which activation of cAMP-dependent signaling protects cells from the effect of S phase-specific antitumor agents.
Collapse
Affiliation(s)
- Soheil Naderi
- Institute of Basic Medical Sciences, Department of Biochemistry, University of Oslo, Oslo N-0317, Norway.
| | | | | | | | | |
Collapse
|
53
|
Angus SP, Mayhew CN, Solomon DA, Braden WA, Markey MP, Okuno Y, Cardoso MC, Gilbert DM, Knudsen ES. RB reversibly inhibits DNA replication via two temporally distinct mechanisms. Mol Cell Biol 2004; 24:5404-20. [PMID: 15169903 PMCID: PMC419877 DOI: 10.1128/mcb.24.12.5404-5420.2004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2003] [Revised: 11/25/2003] [Accepted: 03/22/2004] [Indexed: 01/12/2023] Open
Abstract
The retinoblastoma (RB) tumor suppressor is a critical negative regulator of cellular proliferation. Repression of E2F-dependent transcription has been implicated as the mechanism through which RB inhibits cell cycle progression. However, recent data have suggested that the direct interaction of RB with replication factors or sites of DNA synthesis may contribute to its ability to inhibit S phase. Here we show that RB does not exert a cis-acting effect on DNA replication. Furthermore, the localization of RB was distinct from replication foci in proliferating cells. While RB activation strongly attenuated the RNA levels of multiple replication factors, their protein expression was not diminished coincident with cell cycle arrest. During the first 24 h of RB activation, components of the prereplication complex, initiation factors, and the clamp loader complex (replication factor C) remained tethered to chromatin. In contrast, the association of PCNA and downstream components of the processive replication machinery was specifically disrupted. This signaling from RB occurred in a manner dependent on E2F-mediated transcriptional repression. Following long-term activation of RB, we observed the attenuation of multiple replication factors, the complete cessation of DNA synthesis, and impaired replicative capacity in vitro. Therefore, functional distinctions exist between the "chronic" RB-mediated arrest state and the "acute" arrest state. Strikingly, attenuation of RB activity reversed both acute and chronic replication blocks. Thus, continued RB action is required for the maintenance of two kinetically and functionally distinct modes of replication inhibition.
Collapse
Affiliation(s)
- Steven P Angus
- Department of Cell Biology, University of Cincinnati College of Medicine, OH 45267, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Affiliation(s)
- V P Collins
- Department of Histopathology, University of Cambridge, Addenbrooke's Hospital, UK.
| |
Collapse
|
55
|
Garnovskaya MN, Mukhin YV, Vlasova TM, Grewal JS, Ullian ME, Tholanikunnel BG, Raymond JR. Mitogen-induced Rapid Phosphorylation of Serine 795 of the Retinoblastoma Gene Product in Vascular Smooth Muscle Cells Involves ERK Activation. J Biol Chem 2004; 279:24899-905. [PMID: 15069084 DOI: 10.1074/jbc.m311622200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We examined the relationship between mitogen-activated MEK (mitogen and extracellular signal-regulated protein kinase kinase) and phosphorylation of the gene product encoded by retinoblastoma (hereafter referred to as Rb) in vascular smooth muscle cells. Brief treatment of the cells with 100 nm angiotensin II or 1 microm serotonin resulted in serine phosphorylation of Rb that was equal in magnitude to that induced by treating cells for 20 h with 10% fetal bovine serum ( approximately 3 x basal). There was no detectable rapid phosphorylation of two close cousins of Rb, p107 and p130. Phosphorylation state-specific antisera demonstrated that the rapid phosphorylation occurred on Ser(795), but not on Ser(249), Thr(252), Thr(373), Ser(780), Ser(807), or Ser(811). Phosphorylation of Rb Ser(795) peaked at 10 min, lagging behind phosphorylation of MEK and ERK (extracellular signal-regulated protein kinase). Rb Ser(795) phosphorylation could be blocked by PD98059, a MEK inhibitor, and greatly attenuated by apigenin, an inhibitor of the Ras --> Raf --> MEK --> ERK pathway. The effect also appears to be mediated by CDK4. Immunoprecipitation/immunoblot studies revealed that serotonin and angiotensin II induced complex formation between CDK4, cyclin D1, and phosphorylated ERK. These studies show a rapid, novel, and selective phosphorylation of Rb Ser(795) by mitogens and demonstrate an unexpected rapid linkage between the actions of the Ras --> Raf --> MEK --> ERK pathway and the phosphorylation state of Rb.
Collapse
Affiliation(s)
- Maria N Garnovskaya
- Medical and Research Services of the Ralph H. Johnson Veterans Affairs Medical Center and Department of Medicine (Nephrology Division) of the Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| | | | | | | | | | | | | |
Collapse
|
56
|
Zhang Z, Huong SM, Wang X, Huang DY, Huang ES. Interactions between human cytomegalovirus IE1-72 and cellular p107: functional domains and mechanisms of up-regulation of cyclin E/cdk2 kinase activity. J Virol 2004; 77:12660-70. [PMID: 14610188 PMCID: PMC262583 DOI: 10.1128/jvi.77.23.12660-12670.2003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous work has demonstrated that the human cytomegalovirus IE1-72 protein is able to bind to the N terminus of p107, and IE1-72 alone is sufficient for alleviation of p107-mediated cell growth suppression. However, the mechanism of this alleviation is unclear. Here, we show that IE1-72 can alleviate p107 inhibition of cyclin E/cdk2 kinase activity. We cotransfected various IE1-72 and p107 constructs into C33A cells and demonstrated that IE1-72 could activate the kinase activity of cyclin E/cdk2. Conversely, IE2-86 did not activate this activity, suggesting that the interaction between p107 and IE1-72 and the subsequent kinase activation are specific. By the use of a series of deletion and point mutants of IE1-72 and p107, we observed that a mutation of the loop region of helix-loop-helix-turn-helix in exon 3 of IE1-72 as well as a mutation of the leucine zipper-2 region in exon 4 of IE1-72 abolished binding to p107. In addition, these two IE1-72 mutants did not alleviate p107 inhibition of cyclin E/cdk2 kinase activity and also failed to alleviate p107 inhibition of the E2F-responsive promoter. Meanwhile, deletion of the N-terminal aa 1 to 175 of p107 abolished both p107 binding with IE1-72 and p107 inhibition of cyclin E/cdk2 kinase activity. This result confirms that the N-terminus aa 1 to 175 region of p107 is a common region where both IE1-72 protein and cyclin E/cdk2 bind. We propose a mechanism in which binding of IE1-72 to p107 displaces cyclin E/cdk2 from p107. Once released from p107, cyclin E/cdk2 is able to function as an active kinase.
Collapse
Affiliation(s)
- Zhigang Zhang
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7295, USA
| | | | | | | | | |
Collapse
|
57
|
Bosco EE, Mayhew CN, Hennigan RF, Sage J, Jacks T, Knudsen ES. RB signaling prevents replication-dependent DNA double-strand breaks following genotoxic insult. Nucleic Acids Res 2004; 32:25-34. [PMID: 14704340 PMCID: PMC373257 DOI: 10.1093/nar/gkg919] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Cell cycle checkpoints induced by DNA damage play an integral role in preservation of genomic stability by allowing cells to limit the propagation of deleterious mutations. The retinoblastoma tumor suppressor (RB) is crucial for the maintenance of the DNA damage checkpoint function because it elicits cell cycle arrest in response to a variety of genotoxic stresses. Although sporadic loss of RB is characteristic of most cancers and results in the bypass of the DNA damage checkpoint, the consequence of RB loss upon chemotherapeutic responsiveness has been largely uninvestigated. Here, we employed a conditional knockout approach to ablate RB in adult fibroblasts. This system enabled us to examine the DNA damage response of adult cells following acute RB deletion. Using this system, we demonstrated that loss of RB disrupted the DNA damage checkpoint elicited by either cisplatin or camptothecin exposure. Strikingly, this bypass was not associated with enhanced repair, but rather the accumulation of phosphorylated H2AX (gammaH2AX) foci, which indicate DNA double-strand breaks. The formation of gammaH2AX foci was due to ongoing replication following chemotherapeutic treatment in the RB-deficient cells. Additionally, peak gammaH2AX accumulation occurred in S-phase cells undergoing DNA replication in the presence of damage, and these gammaH2AX foci co-localized with replication foci. These results demonstrate that acute RB loss abrogates DNA damage-induced cell cycle arrest to induce gammaH2AX foci formation. Thus, secondary genetic lesions induced by RB loss have implications for the chemotherapeutic response and the development of genetic instability.
Collapse
Affiliation(s)
- Emily E Bosco
- Department of Cell Biology, Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | | | | | | | | |
Collapse
|
58
|
Siddiqui H, Solomon DA, Gunawardena RW, Wang Y, Knudsen ES. Histone deacetylation of RB-responsive promoters: requisite for specific gene repression but dispensable for cell cycle inhibition. Mol Cell Biol 2003; 23:7719-31. [PMID: 14560017 PMCID: PMC207566 DOI: 10.1128/mcb.23.21.7719-7731.2003] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The retinoblastoma tumor suppressor protein (RB) is targeted for inactivation in the majority of human tumors, underscoring its critical role in attenuating cellular proliferation. RB inhibits proliferation by repressing the transcription of genes that are essential for cell cycle progression. To repress transcription, RB assembles multiprotein complexes containing chromatin-modifying enzymes, including histone deacetylases (HDACs). However, the extent to which HDACs participate in transcriptional repression and are required for RB-mediated repression has not been established. Here, we investigated the role of HDACs in RB-dependent cell cycle inhibition and transcriptional repression. We find that active RB mediates histone deacetylation on cyclin A, Cdc2, topoisomerase IIalpha, and thymidylate synthase promoters. We also demonstrate that this deacetylation is HDAC dependent, since the HDAC inhibitor trichostatin A (TSA) prevented histone deacetylation at each promoter. However, TSA treatment blocked RB repression of only a specific subset of genes, thereby demonstrating that the requirement of HDACs for RB-mediated transcriptional repression is promoter specific. The HDAC-independent repression was not associated with DNA methylation or gene silencing but was readily reversible. We show that this form of repression resulted in altered chromatin structure and was dependent on SWI/SNF chromatin remodeling activity. Importantly, we find that cell cycle inhibitory action of RB is not intrinsically dependent on the ability to recruit HDAC activity. Thus, while HDACs do play a major role in RB-mediated repression, they are dispensable for the repression of critical targets leading to cell cycle arrest.
Collapse
Affiliation(s)
- Hasan Siddiqui
- Department of Cell Biology, Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0521, USA
| | | | | | | | | |
Collapse
|
59
|
Angus SP, Solomon DA, Kuschel L, Hennigan RF, Knudsen ES. Retinoblastoma tumor suppressor: analyses of dynamic behavior in living cells reveal multiple modes of regulation. Mol Cell Biol 2003; 23:8172-88. [PMID: 14585976 PMCID: PMC262398 DOI: 10.1128/mcb.23.22.8172-8188.2003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2003] [Revised: 06/19/2003] [Accepted: 08/06/2003] [Indexed: 12/20/2022] Open
Abstract
The retinoblastoma tumor suppressor, RB, assembles multiprotein complexes to mediate cell cycle inhibition. Although many RB binding partners have been suggested to underlie these functions, the validity of these interactions on the behavior of RB complexes in living cells has not been investigated. Here, we studied the dynamic behavior of RB by using green fluorescent protein-RB fusion proteins. Although these proteins were universally nuclear, phosphorylation or oncoprotein binding mediated their active exclusion from the nucleolus. In vivo imaging approaches revealed that RB exists in dynamic equilibrium between a highly mobile and a slower diffusing species, and genetic lesions associated with tumorigenesis increased the fraction of RB in a highly mobile state. The RB complexes dictating cell cycle arrest were surprisingly dynamic and harbored a relatively short residence time on chromatin. In contrast, this rapid exchange was attenuated in cells that are hypersensitive to RB, suggesting that responsiveness may inversely correlate with mobility. The stability of RB dynamics within the cell was additionally modified by the presence and function of critical corepressors. Last, the RB-assembled complexes present in living cells were primarily associated with E2F binding sites in chromatin. In contrast to RB, E2F1 consistently maintained a stable association with E2F sites regardless of cell type. Together, these results elucidate the kinetic framework of RB tumor suppressor action in transcriptional repression and cell cycle regulation.
Collapse
Affiliation(s)
- Steven P Angus
- Department of Cell Biology, Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA.
| | | | | | | | | |
Collapse
|
60
|
Solomon DA, Wang Y, Fox SR, Lambeck TC, Giesting S, Lan Z, Senderowicz AM, Conti CJ, Knudsen ES. Cyclin D1 splice variants. Differential effects on localization, RB phosphorylation, and cellular transformation. J Biol Chem 2003; 278:30339-47. [PMID: 12746453 DOI: 10.1074/jbc.m303969200] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclin D1 is a proto-oncogene that functions by inactivation of the retinoblastoma tumor suppressor protein, RB. A common polymorphism in the cyclin D1 gene is associated with the production of an alternate transcript of cyclin D1, termed cyclin D1b. Both the polymorphism and the variant transcript are associated with increased risk for multiple cancers and the severity of a given cancer; however, the underlying activities of cyclin D1b have not been elucidated relative to the canonical cyclin D1a. Because cyclin D1b does not possess the threonine 286 phosphorylation site required for nuclear export and regulated degradation, it has been hypothesized to encode a stable nuclear protein that would constitutively inactivate the RB pathway. Surprisingly, we find that cyclin D1b protein does not inappropriately accumulate in cells and exhibits stability comparable to cyclin D1a. As expected, the cyclin D1b protein was constitutively localized in the nucleus, whereas cyclin D1a was exported to the cytoplasm in S-phase. Despite enhanced nuclear localization, we find that cyclin D1b is a poor catalyst of RB phosphorylation/inactivation. However, cyclin D1b potently induced cellular transformation in contrast to cyclin D1a. In summary, we demonstrate that cyclin D1b specifically disrupts contact inhibition in a manner distinct from cyclin D1a. These data reveal novel roles for d-type cyclins in tumorigenesis.
Collapse
Affiliation(s)
- David A Solomon
- Department of Cell Biology, University of Cincinnati, Vontz Center for Molecular Studies, Cincinnati, Ohio 45267-0521, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Puga A, Marlowe J, Barnes S, Chang CY, Maier A, Tan Z, Kerzee JK, Chang X, Strobeck M, Knudsen ES. Role of the aryl hydrocarbon receptor in cell cycle regulation. Toxicology 2002; 181-182:171-7. [PMID: 12505305 DOI: 10.1016/s0300-483x(02)00276-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
One of the most puzzling aspects of the biological impact of polycyclic aromatic hydrocarbon compounds is that they elicit an apparently unrelated variety of toxic, teratogenic, and carcinogenic responses in exposed animals and in humans. At the cellular level, these environmental toxicants affect cell cycle regulatory mechanisms and signal transduction pathways in ways that are equally diverse and often contradictory. For example, depending on the particular cell lines studied, exposure to these compounds may lead to cell proliferation, to terminal differentiation, or to apoptosis. These effects are mediated by the aryl hydrocarbon receptor, a ligand-activated transcription factor well known for its regulatory activity on the expression of several phase I detoxification cytochrome P450 genes. Research into the molecular mechanisms of aryl hydrocarbon receptor function has uncovered a novel role for this protein during cell cycle progression. The activated receptor acts as an environmental sensor and cell cycle checkpoint that commits cells exposed to adverse environmental stimuli to arrest before the onset of DNA replication.
Collapse
Affiliation(s)
- Alvaro Puga
- Department of Environmental Health, University of Cincinnati Medical Center, P.O. Box 670056, 123 E. Shields Street, Cincinnati, OH 45267-0056, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Abstract
Astrocytomas are the commonest type of primary brain tumour. Four malignancy grades are recognized with very different prognosis. The most malignant and commonest form in adults is called glioblastoma and has a median survival with modern treatment of less than one year. Over the last 20 years, molecular genetic and cell biological data have helped identify some of the genes affected during oncogenesis and progression. This will be briefly reviewed. Many significant observations have been made but we are still far from understanding the neoplastic astrocyte at the molecular level. This is reflected in inconclusive attempts to date to use current molecular knowledge in providing additional prognostic information and in the design of molecular based treatments. However, it seems reasonable to assume that further understanding of oncogenesis and progression at the molecular level will provide a basis for improved clinical assessment and individually tailored treatment.
Collapse
Affiliation(s)
- V Peter Collins
- Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Box 235, Hills Road, CB2 2QQ, Cambridge, UK.
| |
Collapse
|
63
|
Markiewicz E, Dechat T, Foisner R, Quinlan RA, Hutchison CJ. Lamin A/C binding protein LAP2alpha is required for nuclear anchorage of retinoblastoma protein. Mol Biol Cell 2002; 13:4401-13. [PMID: 12475961 PMCID: PMC138642 DOI: 10.1091/mbc.e02-07-0450] [Citation(s) in RCA: 200] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2002] [Revised: 07/31/2002] [Accepted: 08/29/2002] [Indexed: 11/11/2022] Open
Abstract
The phosphorylation-dependent anchorage of retinoblastoma protein Rb in the nucleus is essential for its function. We show that its pocket C domain is both necessary and sufficient for nuclear anchorage by transiently expressing green fluorescent protein (GFP) chimeras of Rb fragments in tissue culture cells and by extracting the cells with hypotonic solutions. Solid phase binding assays using glutathione S-transferase-fusion of Rb pockets A, B, and C revealed a direct association of lamin C exclusively to pocket C. Lamina-associated polypeptide (LAP) 2alpha, a binding partner of lamins A/C, bound strongly to pocket C and weakly to pocket B. When LAP2alpha was immunoprecipitated from soluble nuclear fractions, lamins A/C and hypophosphorylated Rb were coprecipitated efficiently. Similarly, immunoprecipitation of expressed GFP-Rb fragments by using anti-GFP antibodies coprecipitated LAP2alpha, provided that pocket C was present in the GFP chimeras. On redistribution of endogenous lamin A/C and LAP2alpha into nuclear aggregates by overexpressing dominant negative lamin mutants in tissue culture cells, Rb was also sequestered into these aggregates. In primary skin fibroblasts, LAP2alpha is expressed in a growth-dependent manner. Anchorage of hypophosphorylated Rb in the nucleus was weakened significantly in the absence of LAP2alpha. Together, these data suggest that hypophosphorylated Rb is anchored in the nucleus by the interaction of pocket C with LAP2alpha-lamin A/C complexes.
Collapse
Affiliation(s)
- Ewa Markiewicz
- Department of Biological Sciences, The University of Durham, Durham DH1 3LE, United Kingdom
| | | | | | | | | |
Collapse
|
64
|
Angus SP, Wheeler LJ, Ranmal SA, Zhang X, Markey MP, Mathews CK, Knudsen ES. Retinoblastoma tumor suppressor targets dNTP metabolism to regulate DNA replication. J Biol Chem 2002; 277:44376-84. [PMID: 12221087 DOI: 10.1074/jbc.m205911200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The retinoblastoma tumor suppressor, RB, is a negative regulator of the cell cycle that is inactivated in the majority of human tumors. Cell cycle inhibition elicited by RB has been attributed to the attenuation of CDK2 activity. Although ectopic cyclins partially overcome RB-mediated S-phase arrest at the replication fork, DNA replication remains inhibited and cells fail to progress to G(2) phase. These data suggest that RB regulates an additional execution point in S phase. We observed that constitutively active RB attenuates the expression of specific dNTP synthetic enzymes: dihydrofolate reductase, ribonucleotide reductase (RNR) subunits R1/R2, and thymidylate synthase (TS). Activation of endogenous RB and related proteins by p16ink4a yielded similar effects on enzyme expression. Conversely, targeted disruption of RB resulted in increased metabolic protein levels (dihydrofolate reductase, TS, RNR-R2) and conferred resistance to the effect of TS or RNR inhibitors that diminish available dNTPs. Analysis of dNTP pools during RB-mediated cell cycle arrest revealed significant depletion, concurrent with the loss of TS and RNR protein. Importantly, the effect of active RB on cell cycle position and available dNTPs was comparable to that observed with specific antimetabolites. Together, these results show that RB-mediated transcriptional repression attenuates available dNTP pools to control S-phase progression. Thus, RB employs both canonical cyclin-dependent kinase/cyclin regulation and metabolic regulation as a means to limit proliferation, underscoring its potency in tumor suppression.
Collapse
Affiliation(s)
- Steven P Angus
- Department of Cell Biology, Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, Ohio, 45267-0521, USA.
| | | | | | | | | | | | | |
Collapse
|
65
|
Decary S, Decesse JT, Ogryzko V, Reed JC, Naguibneva I, Harel-Bellan A, Cremisi CE. The retinoblastoma protein binds the promoter of the survival gene bcl-2 and regulates its transcription in epithelial cells through transcription factor AP-2. Mol Cell Biol 2002; 22:7877-88. [PMID: 12391156 PMCID: PMC134726 DOI: 10.1128/mcb.22.22.7877-7888.2002] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The retinoblastoma (RB) gene product has been shown to restrict cell proliferation, promote cell differentiation, and inhibit apoptosis. Loss of RB function can induce both p53-dependent apoptosis and p53-independent apoptosis; little is known about the mechanisms of RB-regulated p53-independent apoptosis. Here we show that RB specifically activates transcription of the survival gene bcl-2 in epithelial cells but not in NIH 3T3 mesenchymal cells. This transcriptional activity is mediated by the transcription factor AP-2. By monitoring protein-DNA interactions in living cells using formaldehyde cross-linking and chromatin immunoprecipitation, we show that endogenous RB and AP-2 both bind to the same bcl-2 promoter sequence. In addition, we demonstrate that RB and AP-2 also bind to the E-cadherin gene promoter in vivo, consistent with regulation of this promoter by both AP-2 and RB in epithelial cells. This study provides evidence that RB activates bcl-2 and E-cadherin by binding directly to the respective promoter sequences and not indirectly by repressing an inhibitor. This recruitment is mediated by a transcription factor, in this case AP-2. For the first time, our results suggest a direct molecular mechanism by which RB might inhibit apoptosis independently of p53. The results are discussed in a context where RB and Bcl-2 contribute under nonpathological conditions to the maintenance of cell viability in association with a differentiated phenotype, contributing to the tumor suppressor function of RB and playing important roles in normal development.
Collapse
Affiliation(s)
- Stephanie Decary
- Laboratoire Oncogenese, Differenciation et Transduction du Signal, CNRS UPR 9079, Institut Andre Lwoff, 94801 Villejuif, France. The Burnham Institute, La JollaCalifornia 92037, USA
| | | | | | | | | | | | | |
Collapse
|
66
|
Galteland E, Smedshammer L, Suo Z, DeAngelis P, Stokke T. Proliferation-dependent expression and phosphorylation of pRB in B cell non-Hodgkin's lymphomas: dependence on RB1 copy number. Leukemia 2002; 16:1549-55. [PMID: 12145697 DOI: 10.1038/sj.leu.2402644] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2001] [Accepted: 01/15/2002] [Indexed: 11/09/2022]
Abstract
Some studies have suggested that a significant fraction of non-Hodgkin's lymphomas (NHL) do not express pRB protein, possibly due to deletions of RB1. We examined RB1/centromere 17 copy number by fluorescent in situ hybridisation, and pRB expression/phosphorylation by immunohistochemistry (IHC) and immunoblotting (IB) in 66 cases of B cell NHL. Thirteen cases had lost one RB1 copy relative to centromere 17 copy number and total DNA content. Case 458/88 had no RB1 copies. pRB levels were heterogeneous as assessed by IB (0.04-1.12 relative units), but all tumours, except for case 458/88, expressed pRB localised to the nucleus in >75% of the tumour cells by IHC. The fraction of phosphorylated pRB was correlated with pRB expression (r(2)= 0.56, P < 0.001). The 14 cases with loss of RB1 had lower pRB expression (median 0.25) than those without (median 0.48, P < 0.001), but a correlation with S phase fraction (r(2) = 0.43, P < 0.001; previously published data for tumour-specific S phase and apoptotic fractions) indicated that the variation in pRB expression was due to differences in proliferative activity. Furthermore, the regression lines for pRB expression vs S phase fraction were not different for the cases with or without loss of one RB1 copy (P = 0.5). Cases 154/88 (one RB1 copy) and 258/88 (two RB1 copies), in addition to case 458/88, had low expression of (hypophosphorylated) pRB (0.04, 0.08 and 0.04), despite their high S phase fractions (21%, 17% and 21%). There was no association between pRB expression/RB1 copy number and apoptotic fraction. Neither pRB expression nor loss of RB1 had prognostic value, but cases 154/88, 258/88, and 458/88 had short survival times (5, 3 and 46 months, respectively) compared to the others (median survival: 44 months, P = 0.03). It is suggested that pRB expression and function are normal in 63 of 66 NHL cases, including 12 of 13 lymphomas with loss of one RB1 allele.
Collapse
MESH Headings
- Alleles
- Apoptosis
- Blotting, Western
- Cell Cycle
- Cell Division
- Cell Nucleus/metabolism
- Chromosomes, Human/genetics
- Cyclin D1/genetics
- Gene Deletion
- Gene Dosage
- Gene Expression Regulation, Neoplastic
- Genes, Retinoblastoma
- Genes, p16
- Humans
- Immunoenzyme Techniques
- In Situ Hybridization, Fluorescence
- Lymphoma, Non-Hodgkin/genetics
- Lymphoma, Non-Hodgkin/metabolism
- Lymphoma, Non-Hodgkin/mortality
- Lymphoma, Non-Hodgkin/pathology
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Phosphorylation
- Prognosis
- Protein Processing, Post-Translational
- Retinoblastoma Protein/biosynthesis
- Retinoblastoma Protein/physiology
Collapse
Affiliation(s)
- E Galteland
- Department of Biophysics, The Norwegian Radium Hospital, Oslo, Norway
| | | | | | | | | |
Collapse
|
67
|
Farkas T, Hansen K, Holm K, Lukas J, Bartek J. Distinct phosphorylation events regulate p130- and p107-mediated repression of E2F-4. J Biol Chem 2002; 277:26741-52. [PMID: 12006580 DOI: 10.1074/jbc.m200381200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The "pocket proteins" pRb (retinoblastoma tumor suppressor protein), p107, and p130 regulate cell proliferation via phosphorylation-sensitive interactions with E2F transcription factors and other proteins. We previously identified 22 in vivo phosphorylation sites in human p130, including three sites selectively targeted by cyclin D-Cdk4(6) kinases. Here we assessed the effects of alanine substitution at the individual or combined Cdk4(6)-specific sites in p130, compared with homologous sites in p107 (Thr(369)/Ser(650)/Ser(964)). In U-2-OS cells, the triple p107(DeltaCdk4)* mutant strongly inhibited E2F-4 activity and imposed a G(1) arrest resistant to cyclin D1 coexpression. In contrast, the p130(DeltaCdk4) mutant still responded to cyclin D1, suggesting the existence of additional phosphorylation sites critical for E2F-4 regulation. Extensive mutagenesis, sensitive E2F reporter assays, and cell cycle analyses allowed the identification of six such residues (serines 413, 639, 662, 1044, 1080, and 1112) that, in addition to the Cdk4-specific sites, are necessary and sufficient for the regulation of E2F-4 and the cell cycle by p130. Surprisingly, 12 of the in vivo phosphorylation sites seem dispensable for E2F regulation and probably modulate other functions of p130. These results further elucidate the complex regulation of p130 and provide a molecular mechanism to explain the differential control of p107 and p130 by cyclin-dependent kinases.
Collapse
Affiliation(s)
- Thomas Farkas
- Danish Cancer Society, Institute of Cancer Biology, Strandboulevarden 49, Copenhagen DK-2100, Denmark
| | | | | | | | | |
Collapse
|
68
|
Angus SP, Fribourg AF, Markey MP, Williams SL, Horn HF, DeGregori J, Kowalik TF, Fukasawa K, Knudsen ES. Active RB elicits late G1/S inhibition. Exp Cell Res 2002; 276:201-13. [PMID: 12027450 DOI: 10.1006/excr.2002.5510] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The retinoblastoma tumor suppressor protein (RB) is activated/dephosphorylated to mediate cell cycle inhibition in response to antimitogenic signals. To elucidate the mode of RB action at this critical transition, we utilized cell lines that can be induced to express a constitutively active allele of RB (PSM-RB). As expected, induction of PSM-RB, but not wild-type protein (WT), inhibited progression into S phase. It has been well documented that active RB inhibits E2F reporter activity, and this observation was confirmed upon induction of PSM-RB. Additionally, active RB inhibited E2F-2-mediated stimulation of cyclin E. By contrast, PSM-RB did not affect the mRNA or protein levels of endogenous cyclin E when mediating cell cycle inhibition. Similarly, there was no observable effect on cyclin E protein levels when p16ink4a was utilized to activate endogenous RB. CDK2/cyclin E complex formation was not disrupted and cyclin E-associated kinase activity was retained in the presence of PSM-RB. Additionally, centrosome duplication, a CDK2/cyclin E-dependent event, was not altered in the presence of active RB. Together, these data indicate that active RB does not block the G1/S transition through inhibition of cyclin E expression or activity. In contrast, PSM-RB leads to a dramatic reduction in cyclin A protein levels by coordinate transcriptional repression and degradation. This attenuation of cyclin A protein correlates with cell cycle inhibition. These studies indicate that RB inhibits cell cycle progression by targeting CDK2/cyclin A-dependent events at the G1/S transition to inhibit cell cycle progression.
Collapse
Affiliation(s)
- Steven P Angus
- Department of Cell Biology, University of Cincinnati College of Medicine, Vontz Center for Molecular Studies, Cincinnati, Ohio 45267-0521, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Yang H, Williams BO, Hinds PW, Shih TS, Jacks T, Bronson RT, Livingston DM. Tumor suppression by a severely truncated species of retinoblastoma protein. Mol Cell Biol 2002; 22:3103-10. [PMID: 11940667 PMCID: PMC133747 DOI: 10.1128/mcb.22.9.3103-3110.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rb(+/+):Rb(-/-) chimeric mice are healthy until early in adulthood when they develop lethal pituitary tumors composed solely of Rb(-/-) cells. In an effort to delineate the minimal structures of the retinoblastoma protein necessary for RB tumor suppression function, chimeric animals derived from stably transfected RB(-/-) embryonic stem (ES) cells were generated. One such ES cell transfectant expressed a human RB allele encoding a stable, truncated nuclear derivative lacking residues 1 to 378 (Delta 1-378). Others encoded either wild-type human RB or an internally deleted derivative of the Delta 1-378 mutant. All gave rise to viable chimeric animals with comparable degrees of chimerism. However, unlike control mice derived, in part, from naive Rb(-/-) ES cells or from ES cells transformed by the double RB mutant, Delta 1-378/Delta exon22, animals derived from either wild-type RB- or Delta 1-378 RB-producing ES cells failed to develop pituitary tumors. Thus, in this setting, a substantial fraction of the RB sequence is unnecessary for RB-mediated tumor suppression.
Collapse
Affiliation(s)
- Hong Yang
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
70
|
Lan Z, Sever-Chroneos Z, Strobeck MW, Park CH, Baskaran R, Edelmann W, Leone G, Knudsen ES. DNA damage invokes mismatch repair-dependent cyclin D1 attenuation and retinoblastoma signaling pathways to inhibit CDK2. J Biol Chem 2002; 277:8372-81. [PMID: 11726663 DOI: 10.1074/jbc.m108906200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA-damage evokes cell cycle checkpoints, which function to maintain genomic integrity. The retinoblastoma tumor suppressor (RB) and mismatch repair complexes are known to contribute to the appropriate cellular response to specific types of DNA damage. However, the signaling pathways through which these proteins impact the cell cycle machinery have not been explicitly determined. RB-deficient murine embryo fibroblasts continued a high degree of DNA replication following the induction of cisplatin damage, but were inhibited for G(2)/M progression. This damage led to RB dephosphorylation/activation and subsequent RB-dependent attenuation of cyclin A and CDK2 activity. In both Rb+/+ and Rb -/- cells, cyclin D1 expression was attenuated following DNA damage. As cyclin D1 is a critical determinant of RB phosphorylation and cell cycle progression, we probed the pathway through which cyclin D1 degradation occurs in response to DNA damage. We found that attenuation of endogenous cyclin D1 is dependent on multiple mismatch repair proteins. We demonstrate that the mismatch repair-dependent attenuation of endogenous cyclin D1 is critical for attenuation of CDK2 activity and induction of cell cycle checkpoints. Together, these studies couple the activity of the retinoblastoma and mismatch repair tumor suppressor pathways through the degradation of cyclin D1 and dual attenuation of CDK2 activity.
Collapse
Affiliation(s)
- Zhengdao Lan
- Department of Cell Biology, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Strobeck MW, Reisman DN, Gunawardena RW, Betz BL, Angus SP, Knudsen KE, Kowalik TF, Weissman BE, Knudsen ES. Compensation of BRG-1 function by Brm: insight into the role of the core SWI-SNF subunits in retinoblastoma tumor suppressor signaling. J Biol Chem 2002; 277:4782-9. [PMID: 11719516 DOI: 10.1074/jbc.m109532200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The BRG-1 subunit of the SWI-SNF complex is involved in chromatin remodeling and has been implicated in the action of the retinoblastoma tumor suppressor (RB). Given the importance of BRG-1 in RB function, germ line BRG-1 mutations in tumorigenesis may be tantamount to RB inactivation. Therefore, in this study we assessed the behavior of cells harboring discrete BRG-1 alleles for the RB-signaling pathway. Using p16ink4a, an upstream activator of endogenous RB, or a constitutively active RB construct (PSM-RB), we determined that the majority of tumor lines with germ line defects in BRG-1 were sensitive to RB-mediated cell cycle arrest. By contrast, A427 (lung carcinoma) cells were resistant to expression of p16ink4a and PSM-RB. Analysis of the SWI-SNF subunits in the different tumor lines revealed that A427 are deficient for BRG-1 and its homologue, Brm, whereas RB-sensitive cell lines retained Brm expression. Similarly, the RB-resistant SW13 and C33A cell lines were also deficient for both BRG-1/Brm. Reintroduction of either BRG-1 or Brm into A427 or C33A cells restored RB-mediated signaling to cyclin A to cause cell cycle arrest. Consistent with this compensatory role, we observed that Brm could also drive expression of CD44. We also determined that loss of these core SWI-SNF subunits renders SW13 cells resistant to activation of the RB pathway by the chemotherapeutic agent cisplatin, since reintroduction of either BRG-1 or Brm into SW13 cells restored the cisplatin DNA-damage checkpoint. Together, these data demonstrate that Brm can compensate for BRG-1 loss as pertains to RB sensitivity.
Collapse
Affiliation(s)
- Matthew W Strobeck
- Department of Cell Biology, University of Cincinnati College of Medicine, Vontz Center for Molecular Studies, Cincinnati, Ohio 45267-0521, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Chapter 3 Interactions between the cell cycle and the myogenic program. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s1569-1799(02)11003-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
73
|
Sever-Chroneos Z, Angus SP, Fribourg AF, Wan H, Todorov I, Knudsen KE, Knudsen ES. Retinoblastoma tumor suppressor protein signals through inhibition of cyclin-dependent kinase 2 activity to disrupt PCNA function in S phase. Mol Cell Biol 2001; 21:4032-45. [PMID: 11359910 PMCID: PMC87065 DOI: 10.1128/mcb.21.12.4032-4045.2001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2000] [Accepted: 03/13/2001] [Indexed: 11/20/2022] Open
Abstract
The retinoblastoma tumor suppressor protein (RB) is a negative regulator of the cell cycle that inhibits both G(1) and S-phase progression. While RB-mediated G(1) inhibition has been extensively studied, the mechanism utilized for S-phase inhibition is unknown. To delineate the mechanism through which RB inhibits DNA replication, we generated cells which inducibly express a constitutively active allele of RB (PSM-RB). We show that RB-mediated S-phase inhibition does not inhibit the chromatin binding function of MCM2 or RPA, suggesting that RB does not regulate the prereplication complex or disrupt early initiation events. However, activation of RB in S-phase cells disrupts the chromatin tethering of PCNA, a requisite component of the DNA replication machinery. The action of RB was S phase specific and did not inhibit the DNA damage-mediated association of PCNA with chromatin. We also show that RB-mediated PCNA inhibition was dependent on downregulation of CDK2 activity, which was achieved through the downregulation of cyclin A. Importantly, restoration of cyclin-dependent kinase 2 (CDK2)-cyclin A and thus PCNA activity partially restored S-phase progression in the presence of active RB. Therefore, the data presented identify RB-mediated regulation of PCNA activity via CDK2 attenuation as a mechanism through which RB regulates S-phase progression. Together, these findings identify a novel pathway of RB-mediated replication inhibition.
Collapse
Affiliation(s)
- Z Sever-Chroneos
- Department of Cell Biology, Vontz Center for Molecular Studies, University of Cincinnati, College of Medicine, Cincinnati, Ohio 45267-0521, USA
| | | | | | | | | | | | | |
Collapse
|
74
|
Gewirtz DA, Di YM, Randolph JK, Jain PT, Valerie K, Bullock S, Nath N, Chellappan SP. Rb dephosphorylation and suppression of E2F activity in human breast tumor cells exposed to a pharmacological concentration of estradiol. Arch Biochem Biophys 2001; 388:243-52. [PMID: 11368161 DOI: 10.1006/abbi.2000.2278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This report characterizes the influence of a pharmacological concentration of estradiol on growth arrest and cell death in MCF-7 breast tumor cells, with a focus on elements of the Rb-E2F cell-cycle regulatory pathway. Continuous exposure of MCF-7 breast tumor cells to 100 microM estradiol produces a marked reduction in the G1 and S phase populations and a corresponding increase in the G2/M population within 24 h; after 48 h, accumulation of cells in G1 becomes evident while after 72 h the cells appear to be equally distributed between the G1 and G2/M phases. The accumulation of cells in G1 is temporally associated with dephosphorylation of the Rb protein and suppression of E2F activity. Estradiol also produces an initial burst of cell death with loss of approximately 40% of the tumor cell population within 24 h; however, there is no tangible evidence for the occurrence of apoptosis based on terminal transferase end-labeling of DNA, DNA fragmentation analysis by alkaline unwinding, cell-cycle analysis or cell morphology. In addition to the lack of caspase-3 in MCF-7 cells, the absence of apoptosis could be related, at least in part, to the fact that estradiol promotes a rapid reduction in levels of the E2F-1 and Myc proteins. Overall, these studies are consistent with the concept that alterations in the levels and/or activity of the E2F family of proteins as well as proteins interacting with the E2F family may influence the nature of the antiproliferative and cytotoxic responses of the breast tumor cell.
Collapse
Affiliation(s)
- D A Gewirtz
- Department of Pharmacology, Toxicology and Medicine, Medical College of Virginia, Virginia Commonwealth University, Richmond, USA.
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Singh P, Chan SW, Hong W. Retinoblastoma protein is functionally distinct from its homologues in affecting glucocorticoid receptor-mediated transcription and apoptosis. J Biol Chem 2001; 276:13762-70. [PMID: 11279017 DOI: 10.1074/jbc.m100137200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cell cycle regulator, retinoblastoma protein, is known to potentiate glucocorticoid receptor-activated transcription through the interaction of its pocket domain with the transcription coactivator, hBRM. We now show that glucocorticoid receptor-induced apoptosis is also dependent on both the retinoblastoma protein and hBRM. p107 and p130, which share extensive sequence homology with the pocket domain of the retinoblastoma protein but not its N-terminal region, also interact with hBRM but do not support either glucocorticoid receptor-dependent activity. This difference arises from the divergent N-terminal domain of the retinoblastoma protein, which, when fused to the pocket domains, confers upon p107 and p130 the ability to influence glucocorticoid receptor activities. This effect probably results from the promotion of glucocorticoid receptor-targeted chromatin remodeling by the hBRM-containing SWI/SNF complex because the N-terminal domain of the retinoblastoma protein enhances glucocorticoid receptor-hBRM interactions. These results highlight that, besides the interaction between hBRM and the pocket domain of RB, the N-terminal region of the retinoblastoma protein is also essential for glucocorticoid receptor-induced apoptosis and the potentiation of glucocorticoid receptor-mediated transcription and provide a basis for functional distinction between the retinoblastoma protein and its homologues.
Collapse
Affiliation(s)
- P Singh
- Membrane Biology Laboratory, Institute of Molecular and Cell Biology, Singapore 117609
| | | | | |
Collapse
|
76
|
Soni R, O'Reilly T, Furet P, Muller L, Stephan C, Zumstein-Mecker S, Fretz H, Fabbro D, Chaudhuri B. Selective in vivo and in vitro effects of a small molecule inhibitor of cyclin-dependent kinase 4. J Natl Cancer Inst 2001; 93:436-46. [PMID: 11259469 DOI: 10.1093/jnci/93.6.436] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Cyclin-dependent kinase 4 (Cdk4) represents a prime target for the treatment of cancer because most human cancers are characterized by overexpression of its activating partner cyclin D1, loss of the natural Cdk4-specific inhibitor p16, or mutation(s) in Cdk4's catalytic subunit. All of these can cause deregulated cell growth, resulting in tumor formation. We sought to identify a small molecule that could inhibit the kinase activity of Cdk4 in vitro and to then ascertain the effects of that inhibitor on cell growth and tumor volume in vivo. METHODS A triaminopyrimidine derivative, CINK4 (a chemical inhibitor of Cdk4), was identified by screening for compounds that could inhibit Cdk4 enzyme activity in vitro. Kinase assays were performed on diverse human Cdks and on other kinases that were expressed in and purified from insect cells to determine the specificity of CINK4. Cell cycle effects of CINK4 on tumor and normal cells were studied by flow cytometry, and changes in phosphorylation of the retinoblastoma protein (pRb), a substrate of Cdk4, were determined by western blotting. The effect of the inhibitor on tumor growth in vivo was studied by use of tumors established through xenografts of HCT116 colon carcinoma cells in mice. Statistical tests were two-sided. RESULTS CINK4 specifically inhibited Cdk4/cyclin D1 in vitro. It caused growth arrest in tumor cells and in normal cells and prevented pRb phosphorylation. CINK4 treatment resulted in statistically significantly (P: =.031) smaller mean tumor volumes in a mouse xenograft model. CONCLUSIONS Like p16, the natural inhibitor of Cdk4, CINK4 inhibits Cdk4 activity in vitro and slows tumor growth in vivo. The specificity of CINK4 for Cdk4 raises the possibility that this small molecule or one with a similar structure could have therapeutic value.
Collapse
Affiliation(s)
- R Soni
- Oncology Research, Novartis Pharma AG, Basel, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Joyce D, Albanese C, Steer J, Fu M, Bouzahzah B, Pestell RG. NF-kappaB and cell-cycle regulation: the cyclin connection. Cytokine Growth Factor Rev 2001; 12:73-90. [PMID: 11312120 DOI: 10.1016/s1359-6101(00)00018-6] [Citation(s) in RCA: 295] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The cyclins are a family of proteins that are centrally involved in cell cycle regulation and which are structurally identified by conserved "cyclin box" regions. They are regulatory subunits of holoenzyme cyclin-dependent kinase (CDK) complexes controlling progression through cell cycle checkpoints by phosphorylating and inactivating target substrates. CDK activity is controlled by cyclin abundance and subcellular location and by the activity of two families of inhibitors, the cyclin-dependent kinase inhibitors (CKI). Many hormones and growth factors influence cell growth through signal transduction pathways that modify the activity of the cyclins. Dysregulated cyclin activity in transformed cells contributes to accelerated cell cycle progression and may arise because of dysregulated activity in pathways that control the abundance of a cyclin or because of loss-of-function mutations in inhibitory proteins.Analysis of transformed cells and cells undergoing mitogen-stimulated growth implicate proteins of the NF-kappaB family in cell cycle regulation, through actions on the CDK/CKI system. The mammalian members of this family are Rel-A (p65), NF-kappaB(1) (p50; p105), NF-kappaB(2) (p52; p100), c-Rel and Rel-B. These proteins are structurally identified by an amino-terminal region of about 300 amino acids, known as the Rel-homology domain. They exist in cytoplasmic complexes with inhibitory proteins of the IkappaB family, and translocate to the nucleus to act as transcription factors when activated. NF-kappaB pathway activation occurs during transformation induced by a number of classical oncogenes, including Bcr/Abl, Ras and Rac, and is necessary for full transforming potential. The avian viral oncogene, v-Rel is an NF-kappaB protein. The best explored link between NF-kappaB activation and cell cycle progression involves cyclin D(1), a cyclin which is expressed relatively early in the cell cycle and which is crucial to commitment to DNA synthesis. This review examines the interactions between NF-kappaB signaling and the CDK/CKI system in cell cycle progression in normal and transformed cells. The growth-promoting actions of NF-kappaB factors are accompanied, in some instances, by inhibition of cellular differentiation and by inhibition of programmed cell death, which involve related response pathways and which contribute to the overall increase in mass of undifferentiated tissue.
Collapse
Affiliation(s)
- D Joyce
- Department of Pharmacology, The University of Western Australia, Nedlands, WA 6907, Australia
| | | | | | | | | | | |
Collapse
|
78
|
Decesse JT, Medjkane S, Datto MB, Crémisi CE. RB regulates transcription of the p21/WAF1/CIP1 gene. Oncogene 2001; 20:962-71. [PMID: 11314031 DOI: 10.1038/sj.onc.1204169] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2000] [Revised: 12/05/2000] [Accepted: 12/12/2000] [Indexed: 01/24/2023]
Abstract
We have previously shown that RB plays an important role in the maintenance of the epithelial phenotype. p21 is also involved in several terminal differentiation systems including keratinocytes. We report here that p21 is an RB target gene in epithelial cells, but not in fibroblasts where RB is unable to transactivate p21 transcriptional expression. In epithelial cells, when RB family factors were inactivated by SV40 T antigen (LT), p21 expression was strongly repressed, whereas its expression was not affected when the cells were transformed by a mutated LT leaving RB active but inactivating p53. Moreover, retransformation by RB of LT transformed epithelial cells totally restored p21 expression. By cotransfection experiments and using deletions and point mutations of the p21 promoter, we show that the minimal region required for the RB-mediated transcriptional activation maps to a GC-rich region located between -83 and -74. This region is shown to interact specifically with the transcription factor Sp1 and Sp3. Thus for the first time, we show a positive transcriptional relationship between RB and p21 in epithelial cells. Since p21 keeps RB in a hypophosphorylated state important for its transcriptional activity during differentiation, our results imply an auto-loop of regulation between RB and p21 that may be essential for the maintenance of the differentiation state. We propose that this transcriptional relationship might be necessary of their roles in cell cycle arrest and in several differentiation pathways.
Collapse
Affiliation(s)
- J T Decesse
- Laboratoire Oncogénèse, Différenciation et Transduction du Signal, CNRS UPR 9079, Institut André Lwoff, 7 rue Guy Moquet, 94801 Villejuif, France
| | | | | | | |
Collapse
|
79
|
Hirsch HA, Gu L, Henry RW. The retinoblastoma tumor suppressor protein targets distinct general transcription factors to regulate RNA polymerase III gene expression. Mol Cell Biol 2000; 20:9182-91. [PMID: 11094070 PMCID: PMC102176 DOI: 10.1128/mcb.20.24.9182-9191.2000] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The retinoblastoma protein (RB) represses RNA polymerase III transcription effectively both in vivo and in vitro. Here we demonstrate that the general transcription factors snRNA-activating protein complex (SNAP(c)) and TATA binding protein (TBP) are important for RB repression of human U6 snRNA gene transcription by RNA polymerase III. RB is associated with SNAP(c) as detected by both coimmunoprecipitation of endogenous RB with SNAP(c) and cofractionation of RB and SNAP(c) during chromatographic purification. RB also interacts with two SNAP(c) subunits, SNAP43 and SNAP50. TBP or a combination of TBP and SNAP(c) restores efficient U6 transcription from RB-treated extracts, indicating that TBP is also involved in RB regulation. In contrast, the TBP-containing complex TFIIIB restores adenovirus VAI but not human U6 transcription in RB-treated extracts, suggesting that TFIIIB is important for RB regulation of tRNA-like genes. These results suggest that different classes of RNA polymerase III-transcribed genes have distinct general transcription factor requirements for repression by RB.
Collapse
MESH Headings
- Adenoviruses, Human
- Autoradiography
- Cell Extracts
- Cell Nucleus/metabolism
- Chromatography
- Cloning, Molecular
- Electrophoresis, Polyacrylamide Gel
- HeLa Cells
- Humans
- Models, Genetic
- Precipitin Tests
- Promoter Regions, Genetic/genetics
- RNA Polymerase III/genetics
- RNA Polymerase III/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Retinoblastoma Protein/genetics
- Retinoblastoma Protein/metabolism
- Ribonucleoprotein, U4-U6 Small Nuclear/genetics
- Ribonucleoprotein, U4-U6 Small Nuclear/metabolism
- TATA Box
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- H A Hirsch
- Cell and Molecular Biology Program, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | |
Collapse
|
80
|
Knudsen KE, Booth D, Naderi S, Sever-Chroneos Z, Fribourg AF, Hunton IC, Feramisco JR, Wang JY, Knudsen ES. RB-dependent S-phase response to DNA damage. Mol Cell Biol 2000; 20:7751-63. [PMID: 11003670 PMCID: PMC86358 DOI: 10.1128/mcb.20.20.7751-7763.2000] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2000] [Accepted: 07/10/2000] [Indexed: 01/04/2023] Open
Abstract
The retinoblastoma tumor suppressor protein (RB) is a potent inhibitor of cell proliferation. RB is expressed throughout the cell cycle, but its antiproliferative activity is neutralized by phosphorylation during the G(1)/S transition. RB plays an essential role in the G(1) arrest induced by a variety of growth inhibitory signals. In this report, RB is shown to also be required for an intra-S-phase response to DNA damage. Treatment with cisplatin, etoposide, or mitomycin C inhibited S-phase progression in Rb(+/+) but not in Rb(-/-) mouse embryo fibroblasts. Dephosphorylation of RB in S-phase cells temporally preceded the inhibition of DNA synthesis. This S-phase dephosphorylation of RB and subsequent inhibition of DNA replication was observed in p21(Cip1)-deficient cells. The induction of the RB-dependent intra-S-phase arrest persisted for days and correlated with a protection against DNA damage-induced cell death. These results demonstrate that RB plays a protective role in response to genotoxic stress by inhibiting cell cycle progression in G(1) and in S phase.
Collapse
Affiliation(s)
- K E Knudsen
- Department of Cell Biology, University of Cincinnati, Cincinnati, Ohio 45267-0521, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Modi S, Kubo A, Oie H, Coxon AB, Rehmatulla A, Kaye FJ. Protein expression of the RB-related gene family and SV40 large T antigen in mesothelioma and lung cancer. Oncogene 2000; 19:4632-9. [PMID: 11030152 DOI: 10.1038/sj.onc.1203815] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mutational inactivation of the RB-related gene RBL2/p130 has been reported as a common and important prognostic factor in human lung cancer. To examine the role of the RB-related gene family in lung cancer we analysed the protein expression of the RB gene in cell lines obtained from 83 patients with small cell lung cancer (SCLC) and 114 patients with non-SCLC that included 21 novel lung tumor samples. While we detected five new SCLC with mutant RB expression (RB inactivation in 75/83; 90.4%), we did not detect any RB mutations in the new non-SCLC cell lines (RB inactivation in 13/114 non-SCLC and mesothelioma; 11.4%). In addition, we detected expression of a full-length RBL1/p107 and RBL2/p130 species in every sample tested (RBL1 or RBL2 inactivation in 0/69) and confirmed that both RB-related gene products retain functional binding activity to the E1A viral oncoprotein. Since expression of SV40 Large T antigen (Tag) has been reported in a subset of human lung tumors where it may inactivate RBL1 and RBL2, we also examined mesothelioma and non-mesothelioma lung tumors for Tag expression. Although we detected a faint 85 kDa protein species using specific anti-Tag antibodies, this signal migrated slightly faster than Tag extracted from Cos7 cells and did not exhibit binding activity to the RB or RBL1 proteins. Finally, we subjected 11 lung cancer cell lines to nucleotide sequencing and did not detect mutations within the C-terminal RBL2 exons 19-22 as recently reported. While the RB/p16 tumor suppressor pathway is targeted for mutations in 100% of lung cancers, mutational inactivation of the related RBL1 and RBL2 genes is a rare event.
Collapse
MESH Headings
- Adenovirus E1A Proteins/metabolism
- Animals
- Antigens, Polyomavirus Transforming/biosynthesis
- Antigens, Polyomavirus Transforming/genetics
- COS Cells
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Small Cell/genetics
- Carcinoma, Small Cell/metabolism
- Carcinoma, Small Cell/pathology
- Chlorocebus aethiops
- DNA Mutational Analysis
- DNA, Neoplasm/genetics
- Gene Expression Regulation, Neoplastic
- Genes, Retinoblastoma
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Mesothelioma/genetics
- Mesothelioma/metabolism
- Mesothelioma/pathology
- Mutation
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Phosphoproteins/biosynthesis
- Phosphoproteins/genetics
- Pleural Neoplasms/genetics
- Pleural Neoplasms/metabolism
- Pleural Neoplasms/pathology
- Protein Binding
- Proteins
- Recombinant Fusion Proteins/metabolism
- Retinoblastoma Protein/biosynthesis
- Retinoblastoma-Like Protein p130
- Simian virus 40/genetics
- Transfection
- Tumor Cells, Cultured/metabolism
Collapse
Affiliation(s)
- S Modi
- Medicine Branch, Division of Clinical Sciences, National Cancer Institute and the National Naval Medical Center, Bethesda, Maryland 20889, USA
| | | | | | | | | | | |
Collapse
|
82
|
Soni R, Muller L, Furet P, Schoepfer J, Stephan C, Zumstein-Mecker S, Fretz H, Chaudhuri B. Inhibition of cyclin-dependent kinase 4 (Cdk4) by fascaplysin, a marine natural product. Biochem Biophys Res Commun 2000; 275:877-84. [PMID: 10973815 DOI: 10.1006/bbrc.2000.3349] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Small chemical molecules that interfere with biological proteins could be useful for gaining insight into the complex biochemical processes in mammalian cells. Cdk4 is a key protein whose activity is required not only for emergence of cells from quiescence but also at the G1/S transition in the cell cycle and which is misregulated in 60-70% of human cancers. We set out to identify chemical inhibitors of Cdk4 and discovered that, in vitro, fascaplysin specifically inhibited Cdk4. Molecular modelling based on the crystal structure of Cdk2 suggests that fascaplysin inhibits Cdk4 by binding to the ATP pocket of the kinase. Treatment of tumour (p16(-), pRb(+)) and normal (p16(+), pRb(+)) cell lines with fascaplysin caused G1 arrest and prevented pRb phosphorylation at sites implicated as being specific for Cdk4 kinase. Fascaplysin will therefore prove to be a useful tool in studying the consequence of Cdk4 inhibition, especially in cells containing inactivated p16.
Collapse
Affiliation(s)
- R Soni
- Oncology Research, Novartis Pharma AG, Basel, CH 4002, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Gewirtz DA. Growth arrest and cell death in the breast tumor cell in response to ionizing radiation and chemotherapeutic agents which induce DNA damage. Breast Cancer Res Treat 2000; 62:223-35. [PMID: 11072787 DOI: 10.1023/a:1006414422919] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Breast tumor cells are relatively refractory to apoptosis in response to modalities which induce DNA damage such as ionizing radiation and the topoisomerase II inhibitor, adriamycin. Various factors which may modulate the apoptotic response to DNA damage include the p53 status of the cell, levels and activity of the Bax and Bcl-2 families of proteins, activation of NF-kappa B, relative levels of insulin like growth factor and insulin-like growth factor binding proteins, activation of MAP kinases and PI3/Akt kinases, (the absence of) ceramide generation and the CD95 (APO1/Fas) signaling pathway. Prolonged growth arrest associated with replicative senescence may represent an alternative and reciprocal response to DNA-damage induced apoptosis that is p53 and/or p21waf1/cip1 dependent while delayed apoptosis may occur in p53 mutant breast tumor cells which fail to maintain the growth-arrested state. Clearly, the absence of an immediate apoptotic response to DNA damage does not eliminate other avenues leading to cell death and loss of self-renewal capacity in the breast tumor cell. Nevertheless, prolonged growth arrest (even if ultimately succeeded by apoptotic or necrotic cell death) could provide an opportunity for subpopulations of breast tumor cells to recover proliferative capacity and to develop resistance to subsequent clinical intervention.
Collapse
Affiliation(s)
- D A Gewirtz
- Department of Pharmacology, Virginia Commonwealth University/Medical College of Virginia, Richmond 23298, USA.
| |
Collapse
|
84
|
Chen TT, Wang JY. Establishment of irreversible growth arrest in myogenic differentiation requires the RB LXCXE-binding function. Mol Cell Biol 2000; 20:5571-80. [PMID: 10891495 PMCID: PMC86015 DOI: 10.1128/mcb.20.15.5571-5580.2000] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The crystal structure of the A-B domain of RB has defined the binding pocket for the LXCXE peptide motif. Using the crystal structure as a guide, we have inactivated the LXCXE-binding pocket by replacing N757 with Phe [to obtain RB(N757F)]. RB(N757F) does not bind to viral oncoproteins but retains the ability to bind and inhibit E2F. RB(N757F) is less effective than the wild-type RB [RB(WT)] in repressing E2F-regulated transcription, and its repression activity is not affected by trichostatin A, an inhibitor of histone deacetylases. However, RB(N757F) is as effective as RB(WT) in suppressing cell growth. Interestingly, RB(N757F) cannot establish an irreversible growth arrest in differentiated myocytes. Differentiated myocytes with RB(WT) become refractory to serum. By contrast, differentiated myocytes with RB(N757F) undergo DNA synthesis and phosphorylate RB(N757F) in response to serum, despite a high level of p21Cip1 expression. Mutation of the phosphorylation sites in RB(N757F) rescued its defect and allowed myocytes to permanently withdraw from the cell cycle. These results demonstrate that it is possible to inactivate the LXCXE-binding pocket without compromising the overall integrity of RB. Moreover, the LXCXE-binding pocket is dispensable for the intrinsic growth suppression function of RB. However, the LXCXE-binding function is essential for RB to establish the serum-refractory state in differentiated myocytes.
Collapse
Affiliation(s)
- T T Chen
- Department of Biology and the Cancer Center, University of California, San Diego, La Jolla, California 92093-0322, USA
| | | |
Collapse
|
85
|
Hertel L, Rolle S, De Andrea M, Azzimonti B, Osello R, Gribaudo G, Gariglio M, Landolfo S. The retinoblastoma protein is an essential mediator that links the interferon-inducible 204 gene to cell-cycle regulation. Oncogene 2000; 19:3598-608. [PMID: 10951565 DOI: 10.1038/sj.onc.1203697] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have previously demonstrated that overexpression of p204, a member of the Ifi 200 gene family, inhibits growth, delays G0/G1 progression into S phase, and impairs E2F-mediated transcriptional activity. In this study, we show that p204 directly binds the retinoblastoma protein (pRb) in vivo to exert its activity. Transient p204 overexpression in Rb+/+ mouse embryo fibroblasts (MEF) inhibits cell proliferation, but does not affect cell growth in MEF derived from Rb-/- mice. Two human cell lines, Saos2 and C33A, bearing an inactive pRb, but not primary human embryo fibroblasts, are resistant to the p204 antiproliferative activity. p204 contains two 200 amino acid motifs, designated as type a or b domains, each containing a canonical Rb binding motif (LXCXE). When dominant-negative mutants at the Rb binding motif were transfected in Rb+/+ MEF, p204 lost its ability to inhibit cell growth, delay cell transition from G1 to S phase, and impair DNA synthesis. Moreover p204 overexpression in Rb+/+ MEF led to a significant decrease of both DHFR and PCNA proteins, two S phase markers. By contrast, this effect was not observed when Rb+/+ MEF were transfected with a p204 mutated at both Rb binding sites. Finally, overexpression of the LXCXE p204 mutant rendered Rb+/+ MEF resistant to the IFN-alpha antiproliferative activity, in comparison to the untransfected Rb+/+ MEF. As expected, Rb-/- cells were unsensitive to the IFN-alpha induced growth inhibition. Taken as a whole, these results suggest that (i) p204 contributes to the IFN-alpha antiproliferative activity and (ii) the primary target of p204 leading to efficient G1 arrest as well as to blockade of DNA replication from G1 phase is the pRb regulatory system.
Collapse
Affiliation(s)
- L Hertel
- Department of Medical Sciences, Medical School of Novara, Italy
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Liu SL, Rand A, Kelm RJ, Getz MJ. The retinoblastoma gene family members pRB and p107 coactivate the AP-1-dependent mouse tissue factor promoter in fibroblasts. Oncogene 2000; 19:3352-62. [PMID: 10918592 DOI: 10.1038/sj.onc.1203675] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Serum-stimulation of quiescent mouse fibroblasts results in transcriptional activation of tissue factor (TF), the cellular initiator of blood coagulation. This requires the rapid entry of c-Fos into specific AP-1 DNA-binding complexes and can be strongly inhibited by the adenovirus EIA 12S gene product. In this study, we utilized a panel of E1A mutants deficient in cellular protein binding to analyse the molecular basis for EIA inhibition of a minimal, c-Fos-dependent TF promoter/ reporter construct in mouse AKR-2B fibroblasts. Mutations which impaired binding of the retinoblastoma tumor suppressor protein family members pRB, p107, and p130 relieved E1A-mediated inhibition of transcription in response to serum-stimulation or c-Fos overexpression. Inhibition was restricted to the G0 to G1 transition, consistent with the specificity of E1A for hypophosphorylated forms of RB proteins. Although E1A mutants deficient in CBP/p300 binding retained the ability to inhibit TF transcription, deletion of the amino-terminal portion of the CBP/p300 interaction domain was required to permit rescue of TF promoter activity by coexpression of pRB. Moreover, ectopic p107 could effectively substitute for pRB in relieving E1A-mediated repression. In primary mouse embryo fibroblasts, activity of the minimal AP-1-dependent TF promoter was suppressed in Rb(-/-) cells compared to parallel Rb(+/-) and Rb(+/+) transfectants. Ectopic expression of either pRB or p107 markedly enhanced TF promoter activity in Rb(-/-) fibroblasts. Collectively, these data imply that pRB and p107 can cooperate with c-Fos to activate TF gene transcription in fibroblasts and suggest a requirement for another, as yet unidentified, E1A-binding protein.
Collapse
Affiliation(s)
- S L Liu
- Department of Biochemistry and Molecular Biology, Mayo Clinic/Foundation, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
87
|
Strobeck MW, Knudsen KE, Fribourg AF, DeCristofaro MF, Weissman BE, Imbalzano AN, Knudsen ES. BRG-1 is required for RB-mediated cell cycle arrest. Proc Natl Acad Sci U S A 2000; 97:7748-53. [PMID: 10884406 PMCID: PMC16616 DOI: 10.1073/pnas.97.14.7748] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The antiproliferative action of the retinoblastoma tumor suppressor protein, RB, is disrupted in the majority of human cancers. Disruption of RB activity occurs through several disparate mechanisms, including viral oncoprotein binding, deregulated RB phosphorylation, and mutation of the RB gene. Here we report disruption of RB-signaling in tumor cells through loss of a critical cooperating factor. We have previously reported that C33A cells fail to undergo cell cycle inhibition in the presence of constitutively active RB (PSM-RB). To determine how C33A cells evade RB-mediated arrest, cell fusion experiments were performed with RB-sensitive cells. The resulting fusions were arrested by PSM-RB, indicating that C33A cells lack a factor required for RB-mediated cell cycle inhibition. C33A cells are deficient in BRG-1, a SWI/SNF family member known to stimulate RB activity. Consistent with BRG-1 deficiency underlying resistance to RB-mediated arrest, we identified two other BRG-1-deficient cell lines (SW13 and PANC-1) and demonstrate that these tumor lines are also resistant to cell cycle inhibition by PSM-RB and p16ink4a, which activates endogenous RB. In cell lines lacking BRG-1, we noted a profound defect in RB-mediated repression of the cyclin A promoter. This deficiency in RB-mediated transcriptional repression and cell cycle inhibition was rescued through ectopic coexpression of BRG-1. We also demonstrate that 3T3-derived cells, which inducibly express a dominant-negative BRG-1, arrest by PSM-RB and p16ink4a in the absence of dominant-negative BRG-1 expression; however, cell cycle arrest was abrogated on induction of dominant-negative BRG-1. These findings demonstrate that BRG-1 loss renders cells resistant to RB-mediated cell cycle progression, and that disruption of RB signaling through loss of cooperating factors occurs in cancer cells.
Collapse
Affiliation(s)
- M W Strobeck
- Department of Cell Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | | | | | | | | | | | | |
Collapse
|
88
|
Della Ragione F, Borriello A, Della Pietra V, Cucciolla V, Oliva A, Barbarisi A, Iolascon A, Zappia V. Cell division cycle alterations and human tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 472:73-88. [PMID: 10736618 DOI: 10.1007/978-1-4757-3230-6_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- F Della Ragione
- Institute of Biochemistry of Macromolecules, Medical School, Second University of Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Strobeck MW, Fribourg AF, Puga A, Knudsen ES. Restoration of retinoblastoma mediated signaling to Cdk2 results in cell cycle arrest. Oncogene 2000; 19:1857-67. [PMID: 10773875 DOI: 10.1038/sj.onc.1203510] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Phosphorylation/inactivation of RB is typically required for cell cycle progression. However, we have identified a tumor cell line, C33A, which progresses through the cell cycle in the presence of an active allele of RB (PSM-RB). To determine how C33A cells evade RB-mediated arrest, we compared RB signaling to downstream effectors in this resistant cell line to that of the RB-sensitive SAOS-2 cell line. Although introduction of PSM-RB repressed E2F-mediated transcription in both C33A and SAOS-2 cells, PSM-RB failed to repress Cyclin A promoter activity in C33A. Ectopic expression of PSM-RB in SAOS-2 cells resulted in a decrease in both Cyclin A and Cdk2 protein levels without affecting Cyclin E or Cdk4. In contrast, over-expression of PSM-RB in C33A cells did not alter endogenous Cyclin A, Cyclin E, or Cdk2 protein levels or impact Cdk2 kinase activity, indicating that signaling from RB to down-stream targets is abrogated in this cell line. The importance of Cdk2 activity was demonstrated by p27Kip1, which attenuated Cdk2 activity and inhibited cell cycle progression in C33A cells. Since RB signaling to Cdk2 is disrupted in these tumor cells, we co-expressed two proteins that cooperate with RB in transcriptional repression, AHR and BRG-1, in an attempt to correct this signaling dysfunction. Co-expression of AHR/BRG-1 with PSM-RB attenuated Cyclin A and Cdk2 expression as well as Cdk2-associated kinase activity, resulting in cell cycle inhibition of C33A cells. Importantly, ectopic expression of Cyclin A was able to reverse the arrest mediated by co-expression of AHR/BRG-1 with PSM-RB. These results indicate that down-regulation of Cdk2 activity is requisite for RB-mediated cell cycle arrest. Thus, this study reveals a new mechanism through which tumor cells evade anti-proliferative signals, and provides insight into how RB-signaling is mediated.
Collapse
Affiliation(s)
- M W Strobeck
- Department of Cell Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, OH 45267-0521, USA
| | | | | | | |
Collapse
|
90
|
Abstract
Cell fusion studies have demonstrated that malignancy can be suppressed by a single dose of malignancy suppressor genes (MSGs), indicating that malignancy is a recessive phenotype. Correspondingly, it is widely believed that mutational inactivation of both alleles of tumor suppressor genes (TSGs), in familial and sporadic tumors, is the formal proof of the recessive nature of malignancy. Evidence presented here, however, shows that unlike MSGs, identified solely through cell fusion studies with no gene of this class yet cloned, many well-known TSGs have gene dosage effects and inhibit cellular growth in vitro. Moreover, homozygous inactivation of a growth-inhibitory TSG (GITSG) is not directly correlated with malignancy. An alternative interpretation is provided for the loss of wild-type alleles of these genes in the tumors. It is concluded that the MSGs and the GITSGs do not belong to the same class of genes. The functional classification of tumor-suppressing genes has important implications for developing effective cancer therapies.
Collapse
Affiliation(s)
- M Q Islam
- Laboratory of Cancer Genetics, Division of Cell Biology, Department of Biomedicine, Faculty of Health Sciences, Linköping University, S-581 85 Linköping, Sweden.
| | | |
Collapse
|
91
|
Puga A, Barnes SJ, Dalton TP, Chang CY, Knudsen ES, Maier MA. Aromatic hydrocarbon receptor interaction with the retinoblastoma protein potentiates repression of E2F-dependent transcription and cell cycle arrest. J Biol Chem 2000; 275:2943-50. [PMID: 10644764 DOI: 10.1074/jbc.275.4.2943] [Citation(s) in RCA: 220] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Polyhalogenated aromatic hydrocarbons, of which 2,3,7, 8-tetrachloro-p-dioxin (TCDD) is the prototype compound, elicit a variety of toxic, teratogenic, and carcinogenic responses in exposed animals and in humans. In cultured cells, TCDD shows marked effects on the regulation of cell cycle progression, including thymocyte apoptosis, induction of keratinocyte proliferation and terminal differentiation, and inhibition of estrogen-dependent proliferation in breast cancer cells. The presence of an LXCXE domain in the dioxin aromatic hydrocarbon receptor (AHR), suggested that the effects of TCDD on cell cycle regulation might be mediated by protein-protein interactions between AHR and the retinoblastoma protein (RB). Using the yeast two-hybrid system, AHR and RB were in fact shown to bind to each other. In vitro pull-down experiments with truncated AHR peptides indicated that at least two separate AHR domains form independent complexes with hypophosphorylated RB. Coimmunoprecipitation of whole cell lysates from human breast carcinoma MCF-7 cells, which express both proteins endogenously, revealed that AHR associates with RB in vivo only after receptor transformation and nuclear translocation. However, the AHR nuclear translocator and transcriptional heterodimerization partner, is not required for (nor is it a part of) the AHR.RB complexes detected in vitro. Ectopic expression of AHR and RB in human osteosarcoma SAOS-2 cells, which lack endogenous expression of both proteins, showed that AHR synergizes with RB to repress E2F-dependent transcription and to induce cell cycle arrest. Furthermore, AHR partly blocked T-antigen-mediated reversal of RB-dependent transcriptional repression. These results uncover a potential function for the AHR in cell cycle regulation and suggest that this function may be that of serving as an environmental sensor that signals cell cycle arrest when cells are exposed to certain environmental toxicants.
Collapse
Affiliation(s)
- A Puga
- Center for Environmental Genetics, Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, Ohio 45267-0056, USA.
| | | | | | | | | | | |
Collapse
|
92
|
Grossfeld GD, Muscheck M, Stein JP, Chew K, Cote RJ, Ginsberg DA, Waldman FM, Carroll PR. Cellular proliferation and cell-cell cycle regulatory proteins as prognostic markers for transitional cell carcinoma of the bladder. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 462:425-35. [PMID: 10599445 DOI: 10.1007/978-1-4615-4737-2_33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Affiliation(s)
- G D Grossfeld
- Department of Urology, University of California, San Francisco 94143, USA
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Miracco C, Pacenti L, Santopietro R, Biagioli M, Fimiani M, Perotti R, Rubegni P, Pirtoli L, Luzi P. Detection of telomerase activity and correlation with mitotic and apoptotic indices, Ki-67 and expression of cyclins D1 and A in cutaneous melanoma. Int J Cancer 2000. [DOI: 10.1002/1097-0215(20001101)88:3<411::aid-ijc13>3.0.co;2-p] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
94
|
Affiliation(s)
- E A Fortunato
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla 92093-0366, USA
| | | |
Collapse
|
95
|
Knudsen KE, Fribourg AF, Strobeck MW, Blanchard JM, Knudsen ES. Cyclin A is a functional target of retinoblastoma tumor suppressor protein-mediated cell cycle arrest. J Biol Chem 1999; 274:27632-41. [PMID: 10488103 DOI: 10.1074/jbc.274.39.27632] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although RB inhibits the G(1)-S transition, the mechanism through which RB prevents cell cycle advancement remains unidentified. To delineate the mechanism(s) utilized by RB to exert its anti-proliferative activity, constitutively active RB proteins (which cannot be inactivated by phosphorylation) or p16ink4a (which prevents RB inactivation) were utilized. Both proteins inhibited the G(1)-S transition, whereas wild-type RB did not. We show that active RB acts to attenuate cyclin A promoter activity, and that overexpression of cyclin E reverses RB-mediated repression of the cyclin A promoter. Although cyclin A is an E2F-regulated gene, and it has been long hypothesized that RB mediates cell cycle advancement through binding to E2F and attenuating its transactivation potential, cyclin E does not reverse dominant negative E2F-mediated repression of the cyclin A promoter. Although active RB repressed both cyclin A and two other paradigm E2F-regulated promoters, only cyclin A transcription was restored upon co-expression of cyclin E. Additionally, we show that RB but not dominant negative E2F regulates the cyclin A promoter through the CCRE element. These data identify cyclin A as a downstream target of RB-mediated arrest. Consistent with this idea, ectopic expression of cyclin A reversed RB-mediated G(1) arrest. The findings presented suggest a pathway wherein cyclin A is a downstream target of RB, and cyclin E functions to antagonize this aspect of RB-mediated G(1)-S inhibition.
Collapse
Affiliation(s)
- K E Knudsen
- Department of Cell Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0521, USA.
| | | | | | | | | |
Collapse
|
96
|
Knudsen KE, Weber E, Arden KC, Cavenee WK, Feramisco JR, Knudsen ES. The retinoblastoma tumor suppressor inhibits cellular proliferation through two distinct mechanisms: inhibition of cell cycle progression and induction of cell death. Oncogene 1999; 18:5239-45. [PMID: 10498874 DOI: 10.1038/sj.onc.1202910] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Studies aimed at examining the precise function(s) of the retinoblastoma tumor suppressor protein, RB, have been hindered by the rapid phosphorylation and inactivation of ectopically expressed RB which occurs in the majority of cell types. Therefore, ectopically expressed RB is a poor inhibitor of cellular proliferation. We have designed constitutively active RB proteins, PSM-RB, that cannot be inactivated by phosphorylation. Using these proteins, we show that unlike wild-type RB, PSM-RB proteins inhibit cell cycle progression in a broad range of tumor cell types. Furthermore, unlike p16ink4a, PSM-RB is also a potent inhibitor of cell cycle progression in RB-deficient tumor cells. Surprisingly, we identified a tumor cell line that is resistant to the cell cycle inhibitory effects of PSM-RB. This finding challenges the hypothesis that RB must be inactivated in all cells for cell cycle progression to occur. Further characterization of this 'resistant' tumor line revealed that proliferation of these cells is still inhibited by PSM-RB. We show that this is due to PSM-RB-induced cell death. As such, these studies are the first to show that RB inhibits cellular proliferation through at least two distinct mechanisms - inhibition of cell cycle progression and induction of cell death.
Collapse
Affiliation(s)
- K E Knudsen
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, California, CA 92093-0660, USA
| | | | | | | | | | | |
Collapse
|
97
|
Pestell RG, Albanese C, Reutens AT, Segall JE, Lee RJ, Arnold A. The cyclins and cyclin-dependent kinase inhibitors in hormonal regulation of proliferation and differentiation. Endocr Rev 1999; 20:501-34. [PMID: 10453356 DOI: 10.1210/edrv.20.4.0373] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- R G Pestell
- Albert Einstein Cancer Center, Department of Developmental and Molecular Biology, Morris Park, Bronx, New York 10461, USA.
| | | | | | | | | | | |
Collapse
|
98
|
Abstract
The last 10 years has seen major improvements in our understanding of the genetic anomalies that lie behind the development and progression of human astrocytic tumors. The least aggressive astrocytomas frequently show loss of wild type p53 as well as losses of alleles from a number of regions of the genome. The genes targeted have yet to be identified. The most aggressive tumors, the glioblastomas, show mutations affecting the cellular mechanisms controlling entry into the S-phase of the cell cycle. The picture has become more complex as regards the mechanisms targeted. The heterogeneous genetic abnormalities reported previously in individual tumors of the same type have become easier to understand with the realization that they represent the mutation of different genes that code for components of the same cellular control mechanisms. There remain many routes to explore before we understand in detail the molecular mechanisms behind the phenotype of these tumors.
Collapse
Affiliation(s)
- V P Collins
- Division of Clinical Molecular Pathology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 2QQ, UK
| |
Collapse
|
99
|
Bhat UG, Raychaudhuri P, Beck WT. Functional interaction between human topoisomerase IIalpha and retinoblastoma protein. Proc Natl Acad Sci U S A 1999; 96:7859-64. [PMID: 10393912 PMCID: PMC22152 DOI: 10.1073/pnas.96.14.7859] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/1999] [Accepted: 05/20/1999] [Indexed: 11/18/2022] Open
Abstract
DNA topoisomerase II-an essential nuclear enzyme in DNA replication and transcription, chromatin segregation, and cell cycle progression-is also a target of clinically useful anticancer drugs. Preliminary observations of a positive correlation between the expression of topoisomerase (topo) IIalpha and the retinoblastoma protein (Rb) in a series of rhabdomyosarcoma cells prompted us to ask whether these two proteins interact in vivo. Using human rhabdomyosarcoma and leukemic cell lines, we found a physical association between topo IIalpha and Rb protein by reciprocal immunoprecipitation and immunoblotting, in which topo IIalpha appeared to interact primarily with the underphosphorylated form of Rb. Experiments with truncated glutathione S-transferase-Rb fusion proteins and nuclear extracts of Rh1 rhabdomyosarcoma cells indicated that topo IIalpha binds avidly to the A/B pocket domain of Rb, which contains the intact spacer amino acid sequence. To determine whether this interaction has functional consequences in vivo, we expressed wild-type and mutant Rb in human cervical carcinoma cells lacking functional Rb. Wild-type, but not mutant, Rb inhibited topo II activity in nuclear extracts of these transfected cells. Moreover, purified wild-type Rb inhibited the activity of purified human topo IIalpha, indicating a direct interaction between these two proteins. We conclude that topo IIalpha associates physically with Rb in interactions that appear to have functional significance.
Collapse
Affiliation(s)
- U G Bhat
- Division of Molecular Pharmacology, Department of Molecular Genetics (M/C 669), College of Medicine, University of Illinois, Chicago, IL 60607-7173, USA
| | | | | |
Collapse
|
100
|
Doniger J, Muralidhar S, Rosenthal LJ. Human cytomegalovirus and human herpesvirus 6 genes that transform and transactivate. Clin Microbiol Rev 1999; 12:367-82. [PMID: 10398670 PMCID: PMC100243 DOI: 10.1128/cmr.12.3.367] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This review is an update on the transforming genes of human cytomegalovirus (HCMV) and human herpesvirus 6 (HHV-6). Both viruses have been implicated in the etiology of several human cancers. In particular, HCMV has been associated with cervical carcinoma and adenocarcinomas of the prostate and colon. In vitro transformation studies have established three HCMV morphologic transforming regions (mtr), i.e., mtrI, mtrII, and mtrIII. Of these, only mtrII (UL111A) is retained and expressed in both transformed and tumor-derived cells. The transforming and tumorigenic activities of the mtrII oncogene were localized to an open reading frame (ORF) encoding a 79-amino-acid (aa) protein. Furthermore, mtrII protein bound to the tumor suppressor protein p53 and inhibited its ability to transactivate a p53-responsive promoter. In additional studies, the HCMV immediate-early protein IE86 (IE2; UL122) was found to interact with cell cycle-regulatory proteins such as p53 and Rb. However, IE86 exhibited transforming activity in vitro only in cooperation with adenovirus E1A. HHV-6 is a T-cell-tropic virus associated with AIDS-related and other lymphoid malignancies. In vitro studies identified three transforming fragments, i.e., SalI-L, ZVB70, and ZVH14. Of these, only SalI-L (DR7) was retained in transformed and tumor-derived cells. The transforming and tumorigenic activities of SalI-L have been localized to a 357-aa ORF-1 protein. The ORF-1 protein was expressed in transformed cells and, like HCMV mtrII, bound to p53 and inhibited its ability to transactivate a p53-responsive promoter. HHV-6 has also been proposed to be a cofactor in AIDS because both HHV-6 and human immunodeficiency virus type 1 (HIV-1) have been demonstrated to coinfect human CD4(+) T cells, causing accelerated cytopathic effects. Interestingly, like the transforming proteins of DNA tumor viruses such as simian virus 40 and adenovirus, ORF-1 was also a transactivator and specifically up-regulated the HIV-1 long terminal repeat when cotransfected into CD4(+) T cells. Finally, based on the interactions of HCMV and HHV-6 transforming proteins with tumor suppressor proteins, a scheme is proposed for their role in oncogenesis.
Collapse
Affiliation(s)
- J Doniger
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, D.C. 20007, USA
| | | | | |
Collapse
|