51
|
Oka T, Yokota S, Tsumori T, Niu JG, Yasui Y. Glutamatergic neurons in the lateral periaqueductal gray innervate neurokinin-1 receptor-expressing neurons in the ventrolateral medulla of the rat. Neurosci Res 2012; 74:106-15. [DOI: 10.1016/j.neures.2012.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 07/13/2012] [Accepted: 07/23/2012] [Indexed: 02/07/2023]
|
52
|
Periaqueductal gray matter modulates the hypercapnic ventilatory response. Pflugers Arch 2012; 464:155-66. [PMID: 22665049 DOI: 10.1007/s00424-012-1119-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 05/16/2012] [Accepted: 05/22/2012] [Indexed: 01/15/2023]
Abstract
The periaqueductal gray (PAG) is a midbrain structure directly involved in the modulation of defensive behaviors. It has direct projections to several central nuclei that are involved in cardiorespiratory control. Although PAG stimulation is known to elicit respiratory responses, the role of the PAG in the CO(2)-drive to breathe is still unknown. The present study assessed the effect of chemical lesion of the dorsolateral and dorsomedial and ventrolateral/lateral PAG (dlPAG, dmPAG, and vPAG, respectively) on cardiorespiratory and thermal responses to hypercapnia. Ibotenic acid (IBO) or vehicle (PBS, Sham group) was injected into the dlPAG, dmPAG, or vPAG of male Wistar rats. Rats with lesions outside the dlPAG, dmPAG, or vPAG were considered as negative controls (NC). Pulmonary ventilation (VE: ), mean arterial pressure (MAP), heart rate (HR), and body temperature (Tb) were measured in unanesthetized rats during normocapnia and hypercapnic exposure (5, 15, 30 min, 7 % CO(2)). IBO lesioning of the dlPAG/dmPAG caused 31 % and 26.5 % reductions of the respiratory response to CO(2) (1,094.3 ± 115 mL/kg/min) compared with Sham (1,589.5 ± 88.1 mL/kg/min) and NC groups (1,488.2 ± 47.7 mL/kg/min), respectively. IBO lesioning of the vPAG caused 26.6 % and 21 % reductions of CO(2) hyperpnea (1,215.3 ± 108.6 mL/kg/min) compared with Sham (1,657.3 ± 173.9 mL/kg/min) and NC groups (1,537.6 ± 59.3). Basal VE: , MAP, HR, and Tb were not affected by dlPAG, dmPAG, or vPAG lesioning. The results suggest that dlPAG, dmPAG, and vPAG modulate hypercapnic ventilatory responses in rats but do not affect MAP, HR, or Tb regulation in resting conditions or during hypercapnia.
Collapse
|
53
|
Jones SE, Saad M, Lewis DI, Subramanian HH, Dutschmann M. The nucleus retroambiguus as possible site for inspiratory rhythm generation caudal to obex. Respir Physiol Neurobiol 2012; 180:305-10. [PMID: 22210466 PMCID: PMC3282833 DOI: 10.1016/j.resp.2011.12.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 12/14/2011] [Accepted: 12/14/2011] [Indexed: 11/17/2022]
Abstract
We investigated whether spinalized animals can produce inspiratory rhythm. We recorded spinal inspiratory phrenic (PNA) and cranial inspiratory hypoglossal (HNA) nerve activity in the perfused brainstem preparation of rat. Complete transverse transections were performed at 1.5 (pyramidal decussation) or 2mm (first cervical spinal segment) caudal to obex. Excitatory drive was enhanced by either extracellular potassium, hypercapnia or by stimulating arterial chemoreceptors. Caudal transections immediately eliminated descending network drive for PNA, while the cranial inspiratory HNA remained unaffected. After transection, PNA bursting remained sporadic even during enhanced excitatory drive. This implies, cervical spinal circuits lack intrinsic rhythmogenic capacity. Rostral transections also abolished PNA immediately. However, HNA also progressively lost its amplitude and rhythm. Chemoreceptor activation only triggered tonic, non-rhythmic HNA. Thus the integrity of ponto-medullary circuitry was maintained. Our results suggest that an area overlapping the caudal nucleus retroambiguus provides critical ascending input to the ponto-medullary respiratory network for inspiratory rhythm generation.
Collapse
Affiliation(s)
- Sarah E. Jones
- Institute of Membrane and Systems Biology, Garstang Building, University of Leeds, Leeds LS2 9JT
| | - Mona Saad
- Institute of Membrane and Systems Biology, Garstang Building, University of Leeds, Leeds LS2 9JT
| | - David I. Lewis
- Institute of Membrane and Systems Biology, Garstang Building, University of Leeds, Leeds LS2 9JT
| | - Hari H. Subramanian
- Florey Neurosciences Institutes, Gate 11, Royal Parade, University of Melbourne, Victoria, 3052, Australia
| | - Mathias Dutschmann
- Institute of Membrane and Systems Biology, Garstang Building, University of Leeds, Leeds LS2 9JT
- Florey Neurosciences Institutes, Gate 11, Royal Parade, University of Melbourne, Victoria, 3052, Australia
| |
Collapse
|
54
|
|
55
|
Martin EM, Devidze N, Shelley DN, Westberg L, Fontaine C, Pfaff DW. Molecular and neuroanatomical characterization of single neurons in the mouse medullary gigantocellular reticular nucleus. J Comp Neurol 2011; 519:2574-93. [PMID: 21456014 DOI: 10.1002/cne.22639] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Medullary gigantocellular reticular nucleus (mGi) neurons have been ascribed a variety of behaviors, many of which may fall under the concepts of either arousal or motivation. Despite this, many details of the connectivity of mGi neurons, particularly in reference to those neurons with ascending axons, remain unknown. To provide a neuroanatomical and molecular characterization of these cells, with reference to arousal and level-setting systems, large medullary reticular neurons were characterized with retrograde dye techniques and with real-time reverse transcriptase PCR (RT-PCR) analyses of single-neuron mRNA expression in the mouse. We have shown that receptors consistent with participation in generalized arousal are expressed by single mGi neurons and that receptors from different families of arousal-related neurotransmitters are rarely coexpressed. Through retrograde labeling, we have shown that neurons with ascending axons and neurons with descending axons tend to form like-with-like clusters, a finding that is consistent across age and gender. In comparing the two groups of retrogradely labeled neurons in neonatal animals, those neurons with axons that ascend to the midbrain show markers for GABAergic or coincident GABAergic and glutamatergic function; in contrast, approximately 60% of the neurons with axons that descend to the spinal cord are glutamatergic. We discuss the mGi's relationship to the voluntary and emotional motor systems and speculate that neurons in the mGi may represent a mammalian analogue to Mauthner cells, with a separation of function for neurons with ascending and descending axons.
Collapse
Affiliation(s)
- E M Martin
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, New York 10065, USA.
| | | | | | | | | | | |
Collapse
|
56
|
Luppi PH, Clément O, Sapin E, Gervasoni D, Peyron C, Léger L, Salvert D, Fort P. The neuronal network responsible for paradoxical sleep and its dysfunctions causing narcolepsy and rapid eye movement (REM) behavior disorder. Sleep Med Rev 2011; 15:153-63. [PMID: 21115377 DOI: 10.1016/j.smrv.2010.08.002] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 08/11/2010] [Accepted: 08/11/2010] [Indexed: 02/02/2023]
Affiliation(s)
- Pierre-Hervé Luppi
- UMR5167 CNRS, Institut Fédératif des Neurosciences de Lyon (IFR 19), Univ Lyon 1, Université de Lyon, Lyon, France.
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Subramanian HH, Holstege G. Midbrain and medullary control of postinspiratory activity of the crural and costal diaphragm in vivo. J Neurophysiol 2011; 105:2852-62. [DOI: 10.1152/jn.00168.2011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Studies on brain stem respiratory neurons suggest that eupnea consists of three phases: inspiration, postinspiration, and expiration. However, it is not well understood how postinspiration is organized in the diaphragm, i.e., whether postinspiration differs in the crural and costal segments of the diaphragm and what the influence is of postinspiratory neurons on diaphragm function during eupnea. In this in vivo study we investigated the postinspiratory activity of the two diaphragm segments during eupnea and the changes in diaphragm function following modulation of eupnea. Postinspiratory neurons in the medulla were stereotaxically localized extracellularly and neurochemically stimulated. We used three types of preparations: precollicularly decerebrated unanesthetized cats and rats and anesthetized rats. In all preparations, during eupnea, postinspiratory activity was found in the crural but not in the costal diaphragm. When eupnea was discontinued in decerebrate cats in which stimulation in the nucleus retroambiguus induced activation of laryngeal or abdominal muscles, all postinspiratory activity in the crural diaphragm was abolished. In decerebrate rats, stimulation of the midbrain periaqueductal gray abolished postinspiration in the crural diaphragm but induced activation in the costal diaphragm. In anesthetized rats, stimulation of medullary postinspiratory neurons abolished the postinspiratory activity of the crural diaphragm. Vagal nerve stimulation in these rats increased the intensity of postinspiratory neuronal discharge in the solitary nucleus, leading to decreased activity of the crural diaphragm. These data demonstrate that three-phase breathing in the crural diaphragm during eupnea exists in vivo and that postinspiratory neurons have an inhibitory effect on crural diaphragm function.
Collapse
Affiliation(s)
- Hari H. Subramanian
- Institute for Membrane and Systems Biology, University of Leeds, Leeds, United Kingdom; and
| | - Gert Holstege
- Center for Uroneurology, UMCG, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
58
|
Shimizu T, Hayashi M, Kawata A, Mizutani T, Watabe K, Matsubara S. A morphometric study of the vagus nerve in amyotropic lateral sclerosis with circulatory collapse. ACTA ACUST UNITED AC 2011; 12:356-62. [PMID: 21434813 DOI: 10.3109/17482968.2011.566342] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) shows peculiar abnormalities of the autonomic nervous system, including sympathetic hyperactivity, which might result in sudden death. In general, the sympathetic hyperactivity could be caused by disruption of vagal inhibition. Our objective was to evaluate the vagus nerve morphometrically in autopsy cases of ALS with sympathetic hyperactivity and circulatory collapse (CC). We investigated 10 autopsied ALS patients, six of whom had exhibited autonomic storms or CC. We also examined 10 patients without ALS as controls, and one patient with Guillain-Barré syndrome (GBS) who died from CC, for comparison. After obtaining the visceral branch of the left vagus nerve at necropsy, we analyzed the density of the myelinated and unmyelinated fibers, and the fiber diameter distribution for each fiber. Results showed that the densities of both myelinated and unmyelinated fibers in ALS patients with or without CC were not significantly different from those in control patients. In contrast, the GBS patient showed marked reduction in the whole myelinated and large unmyelinated fiber density. In conclusion, the autonomic storms or CC due to sympathetic hyperactivity in ALS could not be ascribed to the deafferentation of the baroreflex, and more central neural pathophysiology should be investigated.
Collapse
Affiliation(s)
- Toshio Shimizu
- Department of Neurology, Tokyo Metropolitan Neurological Hospital , Tokyo.
| | | | | | | | | | | |
Collapse
|
59
|
Abstract
The lower urinary tract (LUT), which consists of the urinary bladder and its outlet, the urethra, is responsible for the storage and periodic elimination of bodily waste in the form of urine. The LUT is controlled by a complex set of peripheral autonomic and somatic nerves, which in turn are controlled through neural pathways in the spinal cord and brain. This influence of the central nervous system allows for the conscious control of the bladder, allowing the individual to choose an appropriate place to urinate. Defects in the CNS pathways that control the LUT can lead to incontinence, an embarrassing condition that affects over 200 million people worldwide. As a first step in understanding the neural control of the bladder, we will discuss the neuroanatomy of the LUT, focusing first on the peripheral neural pathways, including the sensory pathways that transmit information on bladder filling and the motoneurons that control LUT muscle contractility. We will also discuss the organization of the central pathways in the spinal cord and brainstem that are responsible for coordinating bladder activity, promoting continuous storage of urine except for a few short minutes per day when micturition takes place. To conclude, we will discuss current studies underway that aim to elucidate the higher areas of the brain that control the voluntary nature of micturition in higher organisms.
Collapse
Affiliation(s)
- Jonathan M Beckel
- Department of Anatomy and Cell Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
60
|
Abstract
This article reviews developmental processes in the human brain and basic principles underlying typical and atypical motor development. The Neuronal Group Selection Theory is used as theoretical frame of reference. Evidence is accumulating that abundance in cerebral connectivity is the neural basis of human behavioral variability (ie, the ability to select, from a large repertoire of behavioral solutions, the one most appropriate for a specific situation). Indeed, typical human motor development is characterized by variation and the development of adaptive variability. Atypical motor development is characterized by a limited variation (a limited repertoire of motor strategies) and a limited ability to vary motor behavior according to the specifics of the situation (ie, limited variability). Limitations in variation are related to structural anomalies in which disturbances of cortical connectivity may play a prominent role, whereas limitations in variability are present in virtually all children with atypical motor development. The possible applications of variation and variability in diagnostics in children with or at risk for a developmental motor disorder are discussed.
Collapse
|
61
|
Yoshino-Saito K, Nishimura Y, Oishi T, Isa T. Quantitative inter-segmental and inter-laminar comparison of corticospinal projections from the forelimb area of the primary motor cortex of macaque monkeys. Neuroscience 2010; 171:1164-79. [PMID: 20933586 DOI: 10.1016/j.neuroscience.2010.10.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 09/30/2010] [Accepted: 10/01/2010] [Indexed: 10/19/2022]
Abstract
Corticospinal projections from the forelimb area of the primary motor cortex to the C2-Th2 spinal cord segments were quantitatively analyzed using the high resolution anterograde tracer, biotinylated dextran amine (BDA), in rhesus monkeys (n=5). The majority of descending axons were located in the contralateral dorsolateral funiculus (DLF) (85-98%), but a minor portion was observed in the ipsilateral DLF (1-12%) and ventromedial funiculus (VMF) (1-7%). In the gray matter, axon collaterals and terminal buttons were found mainly in the contralateral laminae VI-VII and IX and ipsilateral lamina VIII. The majority of projections to the contralateral gray matter originated from the contralateral DLF, but a minority originated from the ipsilateral DLF. Axons from the ipsilateral DLF were not found to project collaterals on the ipsilateral side, but directly entered the contralateral side after crossing the midline. On the other hand, projections to the ipsilateral lamina VIII were from the ipsilateral VMF, and commissural axons were from the contralateral DLF. Terminal buttons in the motoneuron pool in the contralateral lamina IX were found mainly at the C7-Th1 spinal cord segments, whereas the projections to the contralateral laminae VI-VII, ipsilateral lamina VIII, and commissural axons were also found in more rostral segments, abundantly at the C4-C8 segments, 1-3 segments rostral to the motoneuronal projections. These results suggest that cortical control of contralateral forelimb motoneurons accompanies regulation of interneuronal systems in the contralateral laminae VI-VII and the ipsilateral lamina VIII located a few segments rostral to the motoneurons.
Collapse
Affiliation(s)
- K Yoshino-Saito
- Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | | | | | | |
Collapse
|
62
|
Sasabe J, Aiso S. Aberrant Control of Motoneuronal Excitability in Amyotrophic Lateral Sclerosis: Excitatory Glutamate / D-Serine vs. Inhibitory Glycine/γ-Aminobutanoic Acid (GABA). Chem Biodivers 2010; 7:1479-90. [DOI: 10.1002/cbdv.200900306] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
63
|
Drake MJ, Fowler CJ, Griffiths D, Mayer E, Paton JFR, Birder L. Neural control of the lower urinary and gastrointestinal tracts: supraspinal CNS mechanisms. Neurourol Urodyn 2010; 29:119-27. [PMID: 20025025 DOI: 10.1002/nau.20841] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Normal urinary function is contingent upon a complex hierarchy of CNS regulation. Lower urinary tract afferents synapse in the dorsal horn of the spinal cord and ascend to the midbrain periaqueductal gray (PAG), with a separate nociception path to the thalamus. A spino-thalamo-cortical sensory pathway is present in some primates, including humans. In the brainstem, the pontine micturition center (PMC) is a convergence point of multiple influences, representing a co-ordinating center for voiding. Many PMC neurones have characteristics necessary to categorize the center as a pre-motor micturition nucleus. In the lateral pontine brainstem, a separate region has some characteristics to suggest a "continence center." Cerebral control determines that voiding is permitted if necessary, socially acceptable and in a safe setting. The frontal cortex is crucial for decision making in an emotional and social context. The anterior cingulate gyrus and insula co-ordinate processes of autonomic arousal and visceral sensation. The influence of these centers on the PMC is primarily mediated via the PAG, which also integrates bladder sensory information, thereby moderating voiding and storage of urine, and the transition between the two phases. The parabrachial nucleus in the pons is also important in behavioral motivation of waste evacuation. Lower urinary tract afferents can be modulated at multiple levels by corticolimbic centers, determining the interoception of physiological condition and the consequent emotional motor responses. Alterations in cognitive modulation, descending modulation, and hypervigilance are important in functional (symptom-based) clinical disorders.
Collapse
Affiliation(s)
- M J Drake
- Bristol Urological Institute, Southmead Hospital, Bristol, UK.
| | | | | | | | | | | |
Collapse
|
64
|
Limbic, hypothalamic and periaqueductal gray circuitry and mechanisms controlling rage and vocalization in the cat. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/b978-0-12-374593-4.00024-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
65
|
|
66
|
Sakai ST, Davidson AG, Buford JA. Reticulospinal neurons in the pontomedullary reticular formation of the monkey (Macaca fascicularis). Neuroscience 2009; 163:1158-70. [PMID: 19631726 DOI: 10.1016/j.neuroscience.2009.07.036] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 07/15/2009] [Accepted: 07/16/2009] [Indexed: 10/20/2022]
Abstract
Recent neurophysiological studies indicate a role for reticulospinal neurons of the pontomedullary reticular formation (PMRF) in motor preparation and goal-directed reaching in the monkey. Although the macaque monkey is an important model for such investigations, little is known regarding the organization of the PMRF in the monkey. In the present study, we investigated the distribution of reticulospinal neurons in the macaque. Bilateral injections of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) were made into the cervical spinal cord. A wide band of retrogradely labeled cells was found in the gigantocellular reticular nucleus (Gi) and labeled cells continued rostrally into the caudal pontine reticular nucleus (PnC) and into the oral pontine reticular nucleus (PnO). Additional retrograde tracing studies following unilateral cervical spinal cord injections of cholera toxin subunit B revealed that there were more ipsilateral (60%) than contralateral (40%) projecting cells in Gi, while an approximately 50:50 ratio contralateral to ipsilateral split was found in PnC and more contralateral projections arose from PnO. Reticulospinal neurons in PMRF ranged widely in size from over 50 microm to under 25 microm across the major somatic axis. Labeled giant cells (soma diameters greater than 50 microm) comprised a small percentage of the neurons and were found in Gi, PnC and PnO. The present results define the origins of the reticulospinal system in the monkey and provide an important foundation for future investigations of the anatomy and physiology of this system in primates.
Collapse
Affiliation(s)
- S T Sakai
- Department of Psychology and Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA.
| | | | | |
Collapse
|
67
|
Kurjak A, Carrera J, Medic M, Azumendi G, Andonotopo W, Stanojevic M. The antenatal development of fetal behavioral patterns assessed by four-dimensional sonography. J Matern Fetal Neonatal Med 2009; 17:401-16. [PMID: 16009643 DOI: 10.1080/14767050400029657] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The investigation of fetal intrauterine activities has been enabled by the development of two-dimensional ultrasound. It has been shown that the earliest signs of fetal motor activity can be in the late embryonic period, and that the characteristics of fetal motor patterns change constantly throughout gestation. During the first trimester of pregnancy, the repertoire and frequency fetal movement patterns constantly expand, whereas the second and third trimesters are characterized by the progressive organization of fetal activities into complex and clearly distinct behavioral patterns. The comparison of real time ultrasonic studies of fetal behavior with the morphological studies of fetal brains has revealed that the appearance of new behavioral patterns or the transition of existing patterns directly reflect the complex neurodevelopment processes. It has been suggested that the assessment of fetal behavioral patterns could give us insight into the integrity of fetal central nervous system and enable the early detection of cerebral dysfunctions. The development of a new ultrasonic technique, four dimensional sonography, could represent a significant improvement in the assessment of fetal behavior. According to the preliminary results, this new technique could open a new perspective for the investigations of fetal behavioral patterns and contribute significantly to our better understanding of complex neurodevelopmental events. The most important neurodevelopmental events, the basic technology of 4D ultrasound and its application in the assessment of functional development of fetal central nervous system will be the subject of this review.
Collapse
Affiliation(s)
- A Kurjak
- Department of Obstetrics and Gynecology, Medical School, University of Zagreb, Sveti Duh Hospital, Zagreb, Croatia.
| | | | | | | | | | | |
Collapse
|
68
|
Abstract
The midbrain periaqueductal gray (PAG) organizes basic survival behavior, which includes respiration. How the PAG controls respiration is not known. We studied the PAG control of respiration by injecting D,L-homocysteic acid in the PAG in unanesthetized precollicularly decerebrated cats. Injections in different parts of the PAG caused different respiratory effects. Stimulation in the dorsomedial PAG induced slow and deep breathing and dyspnea. Stimulation in the dorsolateral PAG resulted in active breathing and tachypnea consistent with the respiratory changes during fright and flight. Stimulation in the medial part of lateral PAG caused inspiratory apneusis. Stimulation in lateral parts of the lateral and ventrolateral PAG produced respiratory changes associated with vocalization (mews, alternating mews and hisses, or hisses). D,L-homocysteic acid injections in the caudal ventrolateral PAG induced irregular breathing. These results demonstrate that the PAG exerts a strong influence on respiration, suggesting that it serves as the behavioral modulator of breathing.
Collapse
|
69
|
Yoshida A, Taki I, Chang Z, Iida C, Haque T, Tomita A, Seki S, Yamamoto S, Masuda Y, Moritani M, Shigenaga Y. Corticofugal projections to trigeminal motoneurons innervating antagonistic jaw muscles in rats as demonstrated by anterograde and retrograde tract tracing. J Comp Neurol 2009; 514:368-86. [DOI: 10.1002/cne.22013] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
70
|
From rapid place learning to behavioral performance: a key role for the intermediate hippocampus. PLoS Biol 2009; 7:e1000089. [PMID: 19385719 PMCID: PMC2671558 DOI: 10.1371/journal.pbio.1000089] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 03/06/2009] [Indexed: 11/19/2022] Open
Abstract
Rapid place encoding by hippocampal neurons, as reflected by place-related firing, has been intensely studied, whereas the substrates that translate hippocampal place codes into behavior have received little attention. A key point relevant to this translation is that hippocampal organization is characterized by functional–anatomical gradients along the septotemporal axis: Whereas the ability of hippocampal neurons to encode accurate place information declines from the septal to temporal end, hippocampal connectivity to prefrontal and subcortical sites that might relate such place information to behavioral-control processes shows an opposite gradient. We examined in rats the impact of selective lesions to relevant parts of the hippocampus on behavioral tests requiring place learning (watermaze procedures) and on in vivo electrophysiological models of hippocampal encoding (long-term potentiation [LTP], place cells). We found that the intermediate hippocampus is necessary and largely sufficient for behavioral performance based on rapid place learning. In contrast, a residual septal pole of the hippocampus, although displaying intact electrophysiological indices of rapid information encoding (LTP, precise place-related firing, and rapid remapping), failed to sustain watermaze performance based on rapid place learning. These data highlight the important distinction between hippocampal encoding and the behavioral performance based on such encoding, and suggest that the intermediate hippocampus, where substrates of rapid accurate place encoding converge with links to behavioral control, is critical to translate rapid (one-trial) place learning into navigational performance. The ability to remember locations in space is dependent on an area of the brain called the hippocampus. A much-studied property of neurons in the hippocampus is that they rapidly come to represent or code for specific places—i.e., the hippocampus “learns” places—as animals or humans move through an environment. Here, we identified in rats the hippocampal substrate enabling the translation of place learning into appropriate search and approach behavior (similar to the task of returning to a novel place where you parked your car). We examined the impact of selective lesions to distinct parts of the hippocampus on behavior requiring rapid place learning and on in vivo electrophysiological models of hippocampal learning such as place-related neuronal activity. We showed that translation of rapid place learning into efficient search behavior requires the “intermediate” region of the hippocampus, a region that likely combines anatomical links to visuospatial information processed by the neocortex with links to behavioral control through prefrontal cortex and subcortical sites. In contrast, the so-called “septal” region of the hippocampus, which features the relevant anatomical links to visuospatial information processing, can sustain rapid place learning (as reflected by formation of place-related neuronal firing), but not translate such learning into appropriate search and approach behavior. The translation of hippocampal rapid place learning into successful search behavior requires the intermediate region of the hippocampus, which integrates accurate visuo-spatial processing with behavioral control.
Collapse
|
71
|
Holstege G. The mesopontine rostromedial tegmental nucleus and the emotional motor system: role in basic survival behavior. J Comp Neurol 2009; 513:559-65. [PMID: 19235226 DOI: 10.1002/cne.21990] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
72
|
Jhou TC, Geisler S, Marinelli M, Degarmo BA, Zahm DS. The mesopontine rostromedial tegmental nucleus: A structure targeted by the lateral habenula that projects to the ventral tegmental area of Tsai and substantia nigra compacta. J Comp Neurol 2009; 513:566-96. [PMID: 19235216 DOI: 10.1002/cne.21891] [Citation(s) in RCA: 363] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Prior studies revealed that aversive stimuli and psychostimulant drugs elicit Fos expression in neurons clustered above and behind the interpeduncular nucleus that project strongly to the ventral tegmental area (VTA) and substantia nigra (SN) compacta (C). Other reports suggest that these neurons modulate responses to aversive stimuli. We now designate the region containing them as the "mesopontine rostromedial tegmental nucleus" (RMTg) and report herein on its neuroanatomy. Dense micro-opioid receptor and somatostatin immunoreactivity characterize the RMTg, as do neurons projecting to the VTA/SNC that are enriched in GAD67 mRNA. Strong inputs to the RMTg arise in the lateral habenula (LHb) and, to a lesser extent, the SN. Other inputs come from the frontal cortex, ventral striatopallidum, extended amygdala, septum, preoptic region, lateral, paraventricular and posterior hypothalamus, zona incerta, periaqueductal gray, intermediate layers of the contralateral superior colliculus, dorsal raphe, mesencephalic, pontine and medullary reticular formation, and the following nuclei: parafascicular, supramammillary, mammillary, ventral lateral geniculate, deep mesencephalic, red, pedunculopontine and laterodorsal tegmental, cuneiform, parabrachial, and deep cerebellar. The RMTg has meager outputs to the forebrain, mainly to the ventral pallidum, preoptic-lateral hypothalamic continuum, and midline-intralaminar thalamus, but much heavier outputs to the brainstem, including, most prominently, the VTA/SNC, as noted above, and to medial tegmentum, pedunculopontine and laterodorsal tegmental nuclei, dorsal raphe, and locus ceruleus and subceruleus. The RMTg may integrate multiple forebrain and brainstem inputs in relation to a dominant LHb input. Its outputs to neuromodulatory projection systems likely converge with direct LHb projections to those structures.
Collapse
Affiliation(s)
- Thomas C Jhou
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland 21218, USA.
| | | | | | | | | |
Collapse
|
73
|
Jhou TC, Fields HL, Baxter MG, Saper CB, Holland PC. The rostromedial tegmental nucleus (RMTg), a GABAergic afferent to midbrain dopamine neurons, encodes aversive stimuli and inhibits motor responses. Neuron 2009; 61:786-800. [PMID: 19285474 DOI: 10.1016/j.neuron.2009.02.001] [Citation(s) in RCA: 493] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 01/27/2009] [Accepted: 02/02/2009] [Indexed: 12/12/2022]
Abstract
Separate studies have implicated the lateral habenula (LHb) or amygdala-related regions in processing aversive stimuli, but their relationships to each other and to appetitive motivational systems are poorly understood. We show that neurons in the recently identified GABAergic rostromedial tegmental nucleus (RMTg), which receive a major LHb input, project heavily to midbrain dopamine neurons, and show phasic activations and/or Fos induction after aversive stimuli (footshocks, shock-predictive cues, food deprivation, or reward omission) and inhibitions after rewards or reward-predictive stimuli. RMTg lesions markedly reduce passive fear behaviors (freezing, open-arm avoidance) dependent on the extended amygdala, periaqueductal gray, or septum, all regions that project directly to the RMTg. In contrast, RMTg lesions spare or enhance active fear responses (treading, escape) in these same paradigms. These findings suggest that aversive inputs from widespread brain regions and stimulus modalities converge onto the RMTg, which opposes reward and motor-activating functions of midbrain dopamine neurons.
Collapse
Affiliation(s)
- Thomas C Jhou
- Behavioral Neuroscience Branch, National Institute on Drug Abuse, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
74
|
Subramanian HH, Holstege G. The nucleus retroambiguus control of respiration. J Neurosci 2009; 29:3824-32. [PMID: 19321779 PMCID: PMC6665025 DOI: 10.1523/jneurosci.0607-09.2009] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 02/20/2009] [Indexed: 12/13/2022] Open
Abstract
The role of the nucleus retroambiguus (NRA) in the context of respiration control has been subject of debate for considerable time. To solve this problem, we chemically (using d, l-homocysteic acid) stimulated the NRA in unanesthetized precollicularly decerebrated cats and studied the respiratory effect via simultaneous measurement of tracheal pressure and electromyograms of diaphragm, internal intercostal (IIC), cricothyroid (CT), and external oblique abdominal (EO) muscles. NRA-stimulation 0-1 mm caudal to the obex resulted in recruitment of IIC muscle and reduction in respiratory frequency. NRA-stimulation 1-3 mm caudal to the obex produced vocalization along with CT activation and slight increase in tracheal pressure, but no change in respiratory frequency. NRA-stimulation 3-5 mm caudal to the obex produced CT muscle activation and an increase in respiratory frequency, but no vocalization. NRA-stimulation 5-8 mm caudal to the obex produced EO muscle activation and reduction in respiratory frequency. A change to the inspiratory effort was never observed, regardless of which NRA part was stimulated. The results demonstrate that NRA does not control eupneic inspiration but consists of topographically separate groups of premotor interneurons each producing detailed motor actions. These motor activities have in common that they require changes to eupneic breathing. Different combination of activation of these premotor neurons determines the final outcome, e.g., vocalization, vomiting, coughing, sneezing, mating posture, or child delivery. Higher brainstem regions such as the midbrain periaqueductal gray (PAG) decides which combination of NRA neurons are excited. In simple terms, the NRA is the piano, the PAG one of the piano players.
Collapse
Affiliation(s)
- Hari H. Subramanian
- Center for Uroneurology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Gert Holstege
- Center for Uroneurology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| |
Collapse
|
75
|
Castro A, Andrade A, Vergara P, Segovia J, Aguilar J, Felix R, Delgado-Lezama R. Involvement of R-type Ca2+channels in neurotransmitter release from spinal dorsolateral funiculus terminals synapsing motoneurons. J Comp Neurol 2009; 513:188-96. [DOI: 10.1002/cne.21952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
76
|
Abstract
AbstractAlthough the construct of regulation is usually applied to ongoing behavior, it also has implications for ongoing cognition and the development of cognitive representations. We propose that subcortical motivational systems influence cortical representations in two general ways. First, they regulate response processes, promoting a general selection of information to which the child is exposed. Second, motivational systems regulate attention, promoting a more selective stabilization of representations for motivationally relevant sources of information. Together with the environment, these regulatory processes shape the child's developing representations. Individual differences in these processes result in cortical representational systems that enhance the motivational systems* ability to detect relevant inputs and to guide behavior in light of them. Examples are provided that focus on fearful children, discussing how their self-representation may contribute to anxious psychopathology.
Collapse
|
77
|
Wild JM, Kubke MF, Mooney R. Avian nucleus retroambigualis: cell types and projections to other respiratory-vocal nuclei in the brain of the zebra finch (Taeniopygia guttata). J Comp Neurol 2009; 512:768-83. [PMID: 19067354 DOI: 10.1002/cne.21932] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In songbirds song production requires the intricate coordination of vocal and respiratory muscles under the executive influence of the telencephalon, as for speech in humans. In songbirds the site of this coordination is suspected to be the nucleus retroambigualis (RAm), because it contains premotor neurons projecting upon both vocal motoneurons and spinal motoneurons innervating expiratory muscles, and because it receives descending inputs from the telencephalic vocal control nucleus robustus archopallialis (RA). Here we used tract-tracing techniques to provide a more comprehensive account of the projections of RAm and to identify the different populations of RAm neurons. We found that RAm comprises diverse projection neuron types, including: 1) bulbospinal neurons that project, primarily contralaterally, upon expiratory motoneurons; 2) a separate group of neurons that project, primarily ipsilaterally, upon vocal motoneurons in the tracheosyringeal part of the hypoglossal nucleus (XIIts); 3) neurons that project throughout the ipsilateral and contralateral RAm; 4) another group that sends reciprocal, ascending projections to all the brainstem sources of afferents to RAm, namely, nucleus parambigualis, the ventrolateral nucleus of the rostral medulla, nucleus infra-olivarus superior, ventrolateral parabrachial nucleus, and dorsomedial nucleus of the intercollicular complex; and 5) a group of relatively large neurons that project their axons into the vagus nerve. Three morphological classes of RAm cells were identified by intracellular labeling, the dendritic arbors of which were confined to RAm, as defined by the terminal field of RA axons. Together the ascending and descending projections of RAm confirm its pivotal role in the mediation of respiratory-vocal control.
Collapse
Affiliation(s)
- J M Wild
- Department of Anatomy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | | | | |
Collapse
|
78
|
Al-Izki S, Kirkwood PA, Lemon RN, Enríquez Denton M. Electrophysiological actions of the rubrospinal tract in the anaesthetised rat. Exp Neurol 2008; 212:118-31. [PMID: 18501352 DOI: 10.1016/j.expneurol.2008.03.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 03/06/2008] [Accepted: 03/12/2008] [Indexed: 10/22/2022]
Abstract
The rubrospinal tract (RST) of the rat is widely used in studies of regeneration and plasticity, but the electrophysiology of its spinal actions has not been described. In anaesthetised rats with neuromuscular blockade, a tungsten microelectrode was located in the region of the red nucleus (RN) by combining stereotaxis with recording of antidromic potentials evoked from the contralateral spinal cord. Single stimuli through this electrode typically elicited two descending volleys in the contralateral dorsolateral funiculus (DLF) separated by about 1 ms, and one volley recorded from the ipsilateral DLF. Latencies of the ipsilateral and the early contralateral volley were similar. The activation of these volleys depended on the location of the stimulation site in or near the RN. Evidence is adduced to show that: (a) the late contralateral volley is carried by fibres of RST neurones, synaptically activated; (b) the early contralateral volley is mostly carried by RST fibres stimulated directly; (c) the ipsilateral volley is sometimes carried by RST fibres from the RN on the side contralateral to the stimulus; (d) otherwise, either early volley may derive from fibres in other tracts. Synaptic potentials related to the volleys were recorded within the cervical enlargement and their distribution plotted on cross-sections of the spinal cord. These measurements suggest that the great majority of RST terminations are on interneurones in the intermediate region contralateral to the RN. Direct synaptic actions on motoneurones are likely to be weak. Stimulation parameters appropriate for specific activation of the RST in future studies are suggested.
Collapse
Affiliation(s)
- Sarah Al-Izki
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom
| | | | | | | |
Collapse
|
79
|
Lefler Y, Arzi A, Reiner K, Sukhotinsky I, Devor M. Bulbospinal neurons of the rat rostromedial medulla are highly collateralized. J Comp Neurol 2008; 506:960-78. [DOI: 10.1002/cne.21586] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
80
|
Yeo JE, Kim JH, Kang SK. Selenium attenuates ROS-mediated apoptotic cell death of injured spinal cord through prevention of mitochondria dysfunction; in vitro and in vivo study. Cell Physiol Biochem 2008; 21:225-38. [PMID: 18209489 DOI: 10.1159/000113764] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2007] [Indexed: 11/19/2022] Open
Abstract
The primary objective of this study was to determine the possible apoptotic cell death preventive effects of the antioxidant selenium using an experimental rat spinal cord injury (SCI) model and cultured spinal cord-derived neural progenitor cells (NPCs). Sodium selenite treatment exerted a profound preventive effect on apoptotic cell death, including p-P38, p-SAPK/JNK, caspases, and PARP activity, and ameliorated astrogliosis and hypomyelination, which occurs in regions of active cell death in the spinal cords of SCI rats. The foremost protective effect of selenite in SCI would therefore be manifested in the suppression of acute secondary apoptotic cell death. However, selenite does not appear to exert an anti-inflammatory function associated with active microglia and macrophage propagation or infiltration into the lesion site. Selenite-mediated neuroprotection has been linked to selenite's attenuation or inhibition of p38 mitogen-activated protein kinase, pSAPK/JNK, and Bax activation in in vitro and in vivo SCI lesion sites. Selenite also attenuated cell death via the prevention of cytochrome c release, caspase activation, and ROS accumulation in the cytosol. Also, our study showed that selenite administered immediately after SCI significantly diminishes functional deficits. The selenite-treated group recovered hind limb reflexes more rapidly, and a higher percentage of these rats regained responses to a greater degree than was seen in the untreated injured rats. Our data indicate that the therapeutic outcome of selenite is most likely the consequence of its comprehensive apoptotic cell death blocking effects, resulting in the protection of white matter, oligodendrocytes, and neurons, and the inhibition of astrogliosis. The finding that the administration of selenite prevents secondary pathological events in traumatic spinal cord injuries, and promotes the recovery of motor function in an animal model. Its efficacy may facilitate the development of novel drug targets for the treatment of SCI.
Collapse
Affiliation(s)
- Jee Eun Yeo
- Department of Physiology, College of Medicine, Pusan National University, Busan, South Korea
| | | | | |
Collapse
|
81
|
Bast T. Toward an integrative perspective on hippocampal function: from the rapid encoding of experience to adaptive behavior. Rev Neurosci 2007; 18:253-81. [PMID: 18019609 DOI: 10.1515/revneuro.2007.18.3-4.253] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The mammalian hippocampus has been associated with learning and memory, as well as with many other behavioral processes. In this article, these different perspectives are brought together, and it is pointed out that integration of diverse functional domains may be a key feature enabling the hippocampus to support not only the encoding and retrieval of certain memory representations, but also their translation into adaptive behavior. The hippocampus appears to combine: (i) sensory afferents and synaptic mechanisms underlying certain types of rapid learning; and (ii) links to motivational, emotional, executive, and sensorimotor functions. Recent experiments are highlighted, indicating that the induction of hippocampal synaptic plasticity is required to encode rapidly aspects of experience, such as places, into memory representations; subsequent retrieval of these representations requires transmission through the previously modified hippocampal synapses, but no further plasticity. In contrast, slow incremental place learning may not absolutely require hippocampal contributions. The neocortical sensory inputs, especially visuo-spatial information, necessary for hippocampus-dependent rapid learning, are preferentially associated with the septal to intermediate hippocampus. In contrast, connectivity with the prefrontal cortex and subcortical sites, which link the hippocampus to motivational, emotional, executive, and sensorimotor functions, is primarily associated with the intermediate to temporal hippocampus. A model of functional differentiation and integration along the septo-temporal axis of the hippocampus is proposed, describing key hippocampal contributions to adaptive behavior based on information encoded during a single or a few past experiences.
Collapse
Affiliation(s)
- Tobias Bast
- Centre for Cognitive and Neural Systems (CCNS), School of Biomedical Sciences, The University of Edinburgh, Edinburgh, Scotland, UK.
| |
Collapse
|
82
|
Ikemoto S. Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. BRAIN RESEARCH REVIEWS 2007; 56:27-78. [PMID: 17574681 PMCID: PMC2134972 DOI: 10.1016/j.brainresrev.2007.05.004] [Citation(s) in RCA: 1065] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Revised: 05/03/2007] [Accepted: 05/04/2007] [Indexed: 01/17/2023]
Abstract
Anatomical and functional refinements of the meso-limbic dopamine system of the rat are discussed. Present experiments suggest that dopaminergic neurons localized in the posteromedial ventral tegmental area (VTA) and central linear nucleus raphe selectively project to the ventromedial striatum (medial olfactory tubercle and medial nucleus accumbens shell), whereas the anteromedial VTA has few if any projections to the ventral striatum, and the lateral VTA largely projects to the ventrolateral striatum (accumbens core, lateral shell and lateral tubercle). These findings complement the recent behavioral findings that cocaine and amphetamine are more rewarding when administered into the ventromedial striatum than into the ventrolateral striatum. Drugs such as nicotine and opiates are more rewarding when administered into the posterior VTA or the central linear nucleus than into the anterior VTA. A review of the literature suggests that (1) the midbrain has corresponding zones for the accumbens core and medial shell; (2) the striatal portion of the olfactory tubercle is a ventral extension of the nucleus accumbens shell; and (3) a model of two dopamine projection systems from the ventral midbrain to the ventral striatum is useful for understanding reward function. The medial projection system is important in the regulation of arousal characterized by affect and drive and plays a different role in goal-directed learning than the lateral projection system, as described in the variation-selection hypothesis of striatal functional organization.
Collapse
Affiliation(s)
- Satoshi Ikemoto
- Behavioral Neuroscience Research Branch, National Institute on Drug Abuse, National Institutes of Health, US Department of Health and Human Services, Baltimore, Maryland 21224, USA.
| |
Collapse
|
83
|
Castro A, Aguilar J, Elias D, Felix R, Delgado-Lezama R. G-protein-coupled GABAB receptors inhibit Ca2+ channels and modulate transmitter release in descending turtle spinal cord terminal synapsing motoneurons. J Comp Neurol 2007; 503:642-54. [PMID: 17559099 DOI: 10.1002/cne.21421] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Presynaptic gamma-aminobutyric acid type B receptors (GABA(B)Rs) regulate transmitter release at many central synapses by inhibiting Ca(2+) channels. However, the mechanisms by which GABA(B)Rs modulate neurotransmission at descending terminals synapsing on motoneurons in the spinal cord remain unexplored. To address this issue, we characterized the effects of baclofen, an agonist of GABA(B)Rs, on the monosynaptic excitatory postsynaptic potentials (EPSPs) evoked in motoneurons by stimulation of the dorsolateral funiculus (DLF) terminals in a slice preparation from the turtle spinal cord. We found that baclofen depressed neurotransmission in a dose-dependent manner (IC(50) of approximately 2 microM). The membrane time constant of the motoneurons did not change, whereas the amplitude ratio of the evoked EPSPs in response to a paired pulse was altered in the presence of the drug, suggesting a presynaptic mechanism. Likewise, the use of N- and P/Q-type Ca(2+) channel antagonists (omega-conotoxin GVIA and omega-agatoxin IVA, respectively) also depressed EPSPs significantly. Therefore, these channels are likely involved in the Ca(2+) influx that triggers transmitter release from DLF terminals. To determine whether the N and P/Q channels were regulated by GABA(B)R activation, we analyzed the action of the toxins in the presence of baclofen. Interestingly, baclofen occluded omega-conotoxin GVIA action by approximately 50% without affecting omega-agatoxin IVA inhibition, indicating that the N-type channels are the target of GABA(B)Rs. Lastly, the mechanism underlying this effect was further assessed by inhibiting G-proteins with N-ethylmaleimide (NEM). Our data show that EPSP depression caused by baclofen was prevented by NEM, suggesting that GABA(B)Rs inhibit N-type channels via G-protein activation.
Collapse
Affiliation(s)
- Alberto Castro
- Department of Physiology, Biophysics, and Neuroscience, Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Mexico City, CP 07300, Mexico
| | | | | | | | | |
Collapse
|
84
|
Kang SK, Yeo JE, Kang KS, Phinney DG. Cytoplasmic extracts from adipose tissue stromal cells alleviates secondary damage by modulating apoptosis and promotes functional recovery following spinal cord injury. Brain Pathol 2007; 17:263-75. [PMID: 17465991 PMCID: PMC8095508 DOI: 10.1111/j.1750-3639.2007.00070.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injury (SCI) typically results from sustained trauma to the spinal cord, resulting in loss of neurologic function at the level of the injury. However, activation of various physiological mechanisms secondary to the initial trauma including edema, inflammation, excito-toxicity, excessive cytokine release and apoptosis may exacerbate the injury and/or retard natural repair mechanisms. Herein, we demonstrate that cytoplasmic extracts prepared from adipose tissue stromal cells (ATSCs) inhibits H(2)O(2)-mediated apoptosis of cultured spinal cord-derived neural progenitor cells (NPCs) resulting in increased cell survival. The ATSC extracts mediated this effect by decreasing caspase-3 and c-Jun-NH2-terminal kinase (SAPK/JNK) activity, inhibiting cytochrome c release from mitochondria and reducing Bax expression levels in cells. Direct injection of ATSC extracts mixed with Matrigel into the spinal cord immediately after SCI also resulted in reduced apoptotic cell death, astrogliosis and hypo-myelination but did not reduce the extent of microglia infiltration. Moreover, animals injected with the ATSC extract showed significant functional improvement of hind limbs as measured by the BBB (Basso, Beattie and Bresnahan) scale. Collectively, these studies show a prominent therapeutic effect of ATSC cytoplasmic extracts on SCI principally caused by an inhibition of apoptosis-mediated cell death, which spares white matter, oligodendrocytes and neurons at the site of injury. The ability of ATSC extracts to prevent secondary pathological events and improve neurologic function after SCI suggests that extracts prepared from autologous cells harvested from SCI patients may have clinical utility.
Collapse
Affiliation(s)
- Soo Kyung Kang
- Department of Physiology, College of Medicine, Pusan National University, 1-10 Ami-Dong, Busan 602-739, South Korea.
| | | | | | | |
Collapse
|
85
|
Pecoraro N, Dallman MF, Warne JP, Ginsberg AB, Laugero KD, la Fleur SE, Houshyar H, Gomez F, Bhargava A, Akana SF. From Malthus to motive: how the HPA axis engineers the phenotype, yoking needs to wants. Prog Neurobiol 2006; 79:247-340. [PMID: 16982128 DOI: 10.1016/j.pneurobio.2006.07.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Revised: 07/17/2006] [Accepted: 07/24/2006] [Indexed: 01/28/2023]
Abstract
The hypothalamo-pituitary-adrenal (HPA) axis is the critical mediator of the vertebrate stress response system, responding to environmental stressors by maintaining internal homeostasis and coupling the needs of the body to the wants of the mind. The HPA axis has numerous complex drivers and highly flexible operating characterisitics. Major drivers include two circadian drivers, two extra-hypothalamic networks controlling top-down (psychogenic) and bottom-up (systemic) threats, and two intra-hypothalamic networks coordinating behavioral, autonomic, and neuroendocrine outflows. These various networks jointly and flexibly control HPA axis output of periodic (oscillatory) functions and a range of adventitious systemic or psychological threats, including predictable daily cycles of energy flow, actual metabolic deficits over many time scales, predicted metabolic deficits, and the state-dependent management of post-prandial responses to feeding. Evidence is provided that reparation of metabolic derangement by either food or glucocorticoids results in a metabolic signal that inhibits HPA activity. In short, the HPA axis is intimately involved in managing and remodeling peripheral energy fluxes, which appear to provide an unidentified metabolic inhibitory feedback signal to the HPA axis via glucocorticoids. In a complementary and perhaps a less appreciated role, adrenocortical hormones also act on brain to provide not only feedback, but feedforward control over the HPA axis itself and its various drivers, as well as coordinating behavioral and autonomic outflows, and mounting central incentive and memorial networks that are adaptive in both appetitive and aversive motivational modes. By centrally remodeling the phenotype, the HPA axis provides ballistic and predictive control over motor outflows relevant to the type of stressor. Evidence is examined concerning the global hypothesis that the HPA axis comprehensively induces integrative phenotypic plasticity, thus remodeling the body and its governor, the brain, to yoke the needs of the body to the wants of the mind. Adverse side effects of this yoking under conditions of glucocorticoid excess are discussed.
Collapse
Affiliation(s)
- Norman Pecoraro
- Department of Physiology, University of California, San Francisco, CA 94143-0444, United States.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Kyung KS, Gon JH, Geun KY, Sup JJ, Suk WJ, Ho KJ. 6-Shogaol, a natural product, reduces cell death and restores motor function in rat spinal cord injury. Eur J Neurosci 2006; 24:1042-52. [PMID: 16930431 DOI: 10.1111/j.1460-9568.2006.04908.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Spinal cord injury (SCI) results in progressive waves of secondary injuries, which via the activation of a barrage of noxious pathological mechanisms exacerbate the injury to the spinal cord. Secondary injuries are associated with edema, inflammation, excitotoxicity, excessive cytokine release, caspase activation and cell apoptosis. This study was aimed at investigating the possible neuroprotective effects of 6-shogaol purified from Zingiber officinale by comparing an experimental SCI rat group with SCI control rats. Shogaol attenuated apoptotic cell death, including poly(ADP-ribose) polymerase activity, and reduced astrogliosis and hypomyelination which occurs in areas of active cell death in the spinal cords of SCI rats. The foremost protective effect of shogaol in SCI would therefore be manifested in the suppression of the acute secondary apoptotic cell death. However, it does not attenuate active microglia and macrophage infiltration. This finding is supported by a lack of histopathological changes in the areas of the lesion in the shogaol-treated SCI rats. Moreover, shogaol-mediated neuroprotection has been linked with shogaol's attenuation of p38 mitogen-activated protein kinase, p-SAPK/JNK and signal transducer, and with transcription-3 activation. Our results demonstrate that shogaol administrated immediately after SCI significantly diminishes functional deficits. The shogaol-treated group recovered hindlimb reflexes more rapidly and a higher percentage of these rats regained responses compared with the untreated injured rats. The overall hindlimb functional improvement of hindlimbs, as measured by the Basso, Beattie and Bresnahan scale, was significantly enhanced in the shogaol-treated group relative to the SCI control rats. Our data show that the therapeutic outcome of shogaol probably results from its comprehensive effects of blocking apoptotic cell death, resulting in the protection of white matter, oligodendrocytes and neurons, and inhibiting astrogliosis. Our finding that the administration of shogaol prevents secondary pathological events in traumatic SCIs and promotes recovery of motor functions in an animal model raises the issue of whether shogaol could be used therapeutically in humans after SCI.
Collapse
Affiliation(s)
- Kang Soo Kyung
- Department of Physiology, School of Medicine, Pusan National University, 1-10 Ami-Dong, Seo-Gu, Busan, South Korea.
| | | | | | | | | | | |
Collapse
|
87
|
Kuipers R, Mensinga GM, Boers J, Klop EM, Holstege G. Infralimbic cortex projects to all parts of the pontine and medullary lateral tegmental field in cat. Eur J Neurosci 2006; 23:3014-24. [PMID: 16819990 DOI: 10.1111/j.1460-9568.2006.04843.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The infralimbic cortex (ILc) in cat is the ventralmost part of the anterior cingulate gyrus. The ILc, together with the amygdala, bed nucleus of the stria terminalis and lateral hypothalamus, is involved in the regulation of fear behavior. The latter three structures are thought to take part in triggering the fear response by means of their projections to the pontine and medullary lateral tegmental field (LTF). The LTF is a large region extending from the parabrachial nuclei rostrally to the spinal cord caudally. It contains almost all the premotor interneurons for the brainstem and for some upper spinal cord motoneurons innervating the muscles of face, head and throat. The question is whether ILc also projects to the LTF. Such a pathway would allow the ILc to influence the fear response by acting directly on these premotor interneurons. Anterograde tracer injections were made in the medial surface of the cortex in four cats. Only when the injection sites involved ILc were anterogradely labeled fibers observed throughout the rostrocaudal extent of the LTF. To verify whether these projections indeed originated from ILc, in two other cases retrograde tracer injections were made in the pontomedullary LTF. The results showed many retrogradely labeled neurons in ILc, but none in adjacent cortical regions. These results show that the ILc projects to the LTF in cat and can possibly modulate the fear response not only via indirect but also via direct routes to the premotor interneurons in the brainstem.
Collapse
Affiliation(s)
- Rutger Kuipers
- Department of Anatomy and Embryology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, bldg 3215, PO Box 196, 9713 AV Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
88
|
Reynolds SM, Zahm DS. Specificity in the projections of prefrontal and insular cortex to ventral striatopallidum and the extended amygdala. J Neurosci 2006; 25:11757-67. [PMID: 16354934 PMCID: PMC6726011 DOI: 10.1523/jneurosci.3432-05.2005] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The basal forebrain functional-anatomical macrosystems, ventral striatopallidum, and extended amygdala are innervated by substantially coextensive distributions of neurons in the prefrontal and insular cortex. This suggests two alternative organizational schemes: convergent, in which a given cortical area projects exclusively to only one of these macrosystems and divergent, in which a given cortical area innervates both forebrain macrosystems. To examine the underlying organization and possibly discriminate between these alternatives, rats were injected with two retrograde tracers in different parts of ventral striatopallidum or extended amygdala (homotypic injection pairs) or with one tracer in each macrosystem (heterotypic). The prefrontal and insular cortex was evaluated microscopically for overlap of retrograde labeling and double labeling of neurons. Homotypic injection pairs in the ventral striatum and extended amygdala produced extensive overlap of retrogradely labeled neurons and significant double labeling, suggesting that cortical projections spread broadly within macrosystems. In contrast, heterotypic injection pairs produced significant overlap of retrograde labeling but negligible double labeling, indicating that ventral striatopallidum and extended amygdala receive inputs from separate sets of prefronto- and insular cortical neurons. The caudomedial shell of the nucleus accumbens, a supposed "transition" zone between striatopallidum and extended amygdala, had extended amygdala-like afferents but produced few double-labeled neurons and these only when paired with ventral striatopallidum. The data suggest that a modular organization of the basal forebrain, with postulated independent information processing by the ventral striatopallidal and extended amygdala macrosystems, is reflected in a corresponding segregation of output neurons in the prefrontal and insular cortices.
Collapse
Affiliation(s)
- Sheila M Reynolds
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri 63104, USA.
| | | |
Collapse
|
89
|
Winge K, Fowler CJ. Bladder dysfunction in Parkinsonism: Mechanisms, prevalence, symptoms, and management. Mov Disord 2006; 21:737-45. [PMID: 16570299 DOI: 10.1002/mds.20867] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The advent of functional imaging methods has increased our understanding of the neural control of the bladder. This review examines current concepts of the role of brain function in urinary control with particular emphasis on the putative role of dopamine receptors. Dopaminergic mechanisms play a profound role in normal bladder control and the dysfunction of these may result in symptoms of overactive bladder in Parkinsonism. The importance of this nonmotor disorder has been overlooked. We address the problem of bladder dysfunction as it presents to patients and their neurologist. The prevalence of bladder symptoms in Parkinson's disease is high; the most common complaint is nocturia followed by frequency and urgency. In multiple-system atrophy, the combination of urge and urge incontinence and poor emptying may result in a complex combination of complaints. The management of bladder dysfunction in Parkinsonism addresses treatment of overactive detrusor as well as incontinence.
Collapse
Affiliation(s)
- Kristian Winge
- Department of Neurology, Bispebjerg Hospital, Copenhagen, Denmark.
| | | |
Collapse
|
90
|
Dong HW, Swanson LW. Projections from bed nuclei of the stria terminalis, magnocellular nucleus: implications for cerebral hemisphere regulation of micturition, defecation, and penile erection. J Comp Neurol 2006; 494:108-41. [PMID: 16304682 PMCID: PMC2570190 DOI: 10.1002/cne.20789] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The basic structural organization of axonal projections from the small but distinct magnocellular and ventral nuclei (of the bed nuclei of the stria terminalis) was analyzed with the Phaseolus vulgaris leucoagglutinin anterograde tract tracing method in adult male rats. The former's overall projection pattern is complex, with over 80 distinct terminal fields ipsilateral to injection sites. Innervated regions in the cerebral hemisphere and brainstem fall into nine general functional categories: cerebral nuclei, behavior control column, orofacial motor-related, humorosensory/thirst-related, brainstem autonomic control network, neuroendocrine, hypothalamic visceromotor pattern-generator network, thalamocortical feedback loops, and behavioral state control. The most novel findings indicate that the magnocellular nucleus projects to virtually all known major parts of the brain network that controls pelvic functions, including micturition, defecation, and penile erection, as well as to brain networks controlling nutrient and body water homeostasis. This and other evidence suggests that the magnocellular nucleus is part of a corticostriatopallidal differentiation modulating and coordinating pelvic functions with the maintenance of nutrient and body water homeostasis. Projections of the ventral nucleus are a subset of those generated by the magnocellular nucleus, with the obvious difference that the ventral nucleus does not project detectably to Barrington's nucleus, the subfornical organ, the median preoptic and parastrial nuclei, the neuroendocrine system, and midbrain orofacial motor-related regions.
Collapse
Affiliation(s)
- Hong-Wei Dong
- Department of Biological Sciences, University of Southern California, Los Angeles, 90089-2520, USA
| | | |
Collapse
|
91
|
Abstract
There is a close connection between micturition and emotion. Several species use micturition to signal important messages as territorial demarcation and sexual attraction. For this reason, micturition is coordinated not in the spinal cord but in the brainstem, where it is closely connected with the limbic system. In cat, bladder afferents terminate in a cell group in the lateral dorsal horn and lateral part of the intermediate zone. Neurons in this cell group project to supraspinal levels, not to the thalamus but to the central periaqueductal gray (PAG). Neurons in the lateral PAG, not receiving direct sacral cord afferents, project to the pontine micturition center (PMC). The PMC projects directly to the parasympathetic bladder motoneurons and to sacral GABA-ergic and glycinergic premotor interneurons that inhibit motoneurons in Onuf's nucleus innervating the external striated bladder sphincter. Thus, PMC stimulation causes bladder contraction and bladder sphincter relaxation, i.e., complete micturition. Other than the PAG, only the preoptic area and a cell group in the caudal hypothalamus project directly to the PMC. The ventromedial upper medullary tegmentum also sends projections to the PMC, but they are diffuse and also involve structures that adjoin the PMC. Neuroimaging studies in humans suggest that the systems controlling micturition in cat and human are very similar. It seems that the many structures in the brain that are known to influence micturition use the PAG as relay to the PMC. This basic organization has to be kept in mind in the fight against overactive bladder (OAB) and urge-incontinence.
Collapse
Affiliation(s)
- Gert Holstege
- Department of Anatomy and Embryology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
92
|
Marson L, Murphy AZ. Identification of neural circuits involved in female genital responses in the rat: a dual virus and anterograde tracing study. Am J Physiol Regul Integr Comp Physiol 2006; 291:R419-28. [PMID: 16914428 PMCID: PMC2836019 DOI: 10.1152/ajpregu.00864.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The spinal and peripheral innervation of the clitoris and vagina are fairly well understood. However, little is known regarding supraspinal control of these pelvic structures. The multisynaptic tracer pseudorabies virus (PRV) was used to map the brain neurons that innervate the clitoris and vagina. To delineate forebrain input on PRV-labeled cells, the anterograde tracer biotinylated dextran amine was injected in the medial preoptic area (MPO), ventromedial nucleus of the hypothalamus (VMN), or the midbrain periaqueductal gray (PAG) 10 days before viral injections. These brain regions have been intimately linked to various aspects of female reproductive behavior. After viral injections (4 days) in the vagina and clitoris, PRV-labeled cells were observed in the paraventricular nucleus (PVN), Barrington's nucleus, the A5 region, and the nucleus paragigantocellularis (nPGi). At 5 days postviral administration, additional PRV-labeled cells were observed within the preoptic region, VMN, PAG, and lateral hypothalamus. Anterograde labeling from the MPO terminated among PRV-positive cells primarily within the dorsal PVN of the hypothalamus, ventrolateral VMN (VMNvl), caudal PAG, and nPGi. Anterograde labeling from the VMN terminated among PRV-positive cells in the MPO and lateral/ventrolateral PAG. Anterograde labeling from the PAG terminated among PRV-positive cells in the PVN, ventral hypothalamus, and nPGi. Transynaptically labeled cells in the lateral hypothalamus, Barrington's nucleus, and ventromedial medulla received innervation from all three sources. These studies, together, identify several central nervous system (CNS) sites participating in the neural control of female sexual responses. They also provide the first data demonstrating a link between the MPO, VMNvl, and PAG and CNS regions innervating the clitoris and vagina, providing support that these areas play a major role in female genital responses.
Collapse
Affiliation(s)
- L Marson
- Division of Urology, Department of Surgery, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
| | | |
Collapse
|
93
|
Abstract
Locomotion results from intricate dynamic interactions between a central program and feedback mechanisms. The central program relies fundamentally on a genetically determined spinal circuitry (central pattern generator) capable of generating the basic locomotor pattern and on various descending pathways that can trigger, stop, and steer locomotion. The feedback originates from muscles and skin afferents as well as from special senses (vision, audition, vestibular) and dynamically adapts the locomotor pattern to the requirements of the environment. The dynamic interactions are ensured by modulating transmission in locomotor pathways in a state- and phase-dependent manner. For instance, proprioceptive inputs from extensors can, during stance, adjust the timing and amplitude of muscle activities of the limbs to the speed of locomotion but be silenced during the opposite phase of the cycle. Similarly, skin afferents participate predominantly in the correction of limb and foot placement during stance on uneven terrain, but skin stimuli can evoke different types of responses depending on when they occur within the step cycle. Similarly, stimulation of descending pathways may affect the locomotor pattern in only certain phases of the step cycle. Section ii reviews dynamic sensorimotor interactions mainly through spinal pathways. Section iii describes how similar sensory inputs from the spinal or supraspinal levels can modify locomotion through descending pathways. The sensorimotor interactions occur obviously at several levels of the nervous system. Section iv summarizes presynaptic, interneuronal, and motoneuronal mechanisms that are common at these various levels. Together these mechanisms contribute to the continuous dynamic adjustment of sensorimotor interactions, ensuring that the central program and feedback mechanisms are congruous during locomotion.
Collapse
Affiliation(s)
- Serge Rossignol
- Department of Physiology, Centre for Research in Neurological Sciences, Faculty of Medicine, Université de Montréal, PO Box 6128, Station Centre-Ville, Montreal, Quebec, Canada H3C 3J7.
| | | | | |
Collapse
|
94
|
Moreno N, González A. The common organization of the amygdaloid complex in tetrapods: new concepts based on developmental, hodological and neurochemical data in anuran amphibians. Prog Neurobiol 2006; 78:61-90. [PMID: 16457938 DOI: 10.1016/j.pneurobio.2005.12.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Revised: 12/19/2005] [Accepted: 12/20/2005] [Indexed: 10/25/2022]
Abstract
Research over the last few years has demonstrated that the amygdaloid complex in amniotes shares basic developmental, hodological and neurochemical features. Furthermore, homolog territories of all main amygdaloid subdivisions have been recognized among amniotes, primarily highlighted by the common expression patterns for numerous developmental genes. With the achievement of new technical approaches, the study of the precise neuroanatomy of the telencephalon of the anuran amphibians has been possible, revealing that most of the structures present in amniotes are recognizable in these anamniotes. Thus, recent investigations have yielded enough results to support the notion that the organization of the anuran amygdaloid complex includes subdivisions with origin in ventral pallial and subpallial territories, a strong relationship with the vomeronasal and olfactory systems, abundant intra-amygdaloid connections, a main output center involved in the autonomic system, profuse amygdaloid fiber systems, and distinct chemoarchitecture. When all these new data about the development, connectivity and neurochemistry of the amygdaloid complex in anurans are taken into account, it becomes patent that a basic organization pattern is shared by both amniotic and anamniotic tetrapods.
Collapse
Affiliation(s)
- Nerea Moreno
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense, 28040 Madrid, Spain
| | | |
Collapse
|
95
|
Johnson RD. Descending pathways modulating the spinal circuitry for ejaculation: effects of chronic spinal cord injury. AUTONOMIC DYSFUNCTION AFTER SPINAL CORD INJURY 2006; 152:415-26. [PMID: 16198717 DOI: 10.1016/s0079-6123(05)52028-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Sexual dysfunction is a common complication in men with chronic spinal cord injury. In particular, ejaculation is severely compromised or absent and the resulting infertility issues are important to this group of predominantly young men. To investigate the neural circuits and descending spinal pathways involved in ejaculation, animal models have been developed in normal and spinal cord-injured preparations. Primarily through studies in rats, spinal ejaculatory circuits have been described including (i) autonomic circuits at the thoracolumbar and lumbosacral levels mediating the emission phase of ejaculation, (ii) somatic circuits at the lumbosacral level controlling the expulsion phase of ejaculation through sequential and rhythmic contraction of perineal striated muscles (e.g. bulbospongiosus), and (iii) a proposed ejaculatory pattern generator in the lumbar cord. Midthoracic incomplete chronic spinal cord injury has revealed the dependency of spinal ejaculatory circuits on bilateral spinal pathways from the brainstem via modulation of pudendal motor neuron reflexes and pudendal nerve autonomic fibers. Accordingly, sensory input from the dorsal nerve of the penis, required to trigger the ejaculatory response in animals and humans, is no longer inhibited from the lateral paragigantocellularis nucleus in the ventrolateral medulla. This inhibitory effect, likely presynaptic through a serotonergic pathway, is thought to be necessary to provide the rhythmic, bursting, and sequential contractions of the perineal muscles during ejaculation. Chronic lateral hemisection injury, which severs half of the descending lateral funiculus-located pathways, results in new functional connections of the pudendal reflex inhibitory and pudendal sympathetic activation pathways across the midline, above and below the lesion, respectively. Clinical correlations in spinal cord-injured men have demonstrated the validity of the rodent animal for the study of ejaculatory dysfunction after chronic injury.
Collapse
Affiliation(s)
- Richard D Johnson
- Department of Physiological Sciences, College of Veterinary Medicine and the McKnight Brain Institute, University of Florida, Gainesville, FL 32610-0144, USA.
| |
Collapse
|
96
|
Boers J, Kirkwood PA, de Weerd H, Holstege G. Ultrastructural evidence for direct excitatory retroambiguus projections to cutaneous trunci and abdominal external oblique muscle motoneurons in the cat. Brain Res Bull 2006; 68:249-56. [PMID: 16377430 DOI: 10.1016/j.brainresbull.2005.08.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 08/23/2005] [Accepted: 08/23/2005] [Indexed: 11/15/2022]
Abstract
The nucleus retroambiguus (NRA) is a group of neurons, located laterally in the caudal medulla oblongata. The NRA is thought to modulate abdominal pressure in the framework of respiration, vomiting, vocalization, probably parturition, and, in all likelihood mating behavior. The NRA exerts this control through its projections to motoneurons to the nucleus ambiguus in the lateral medulla (innervating pharynx, larynx), and spinal cord (innervating cutaneous trunci, intercostal, abdominal, pelvic floor, and lower limb muscles). The nature of these NRA-motoneuronal projections is unknown. In this study we have determined the ultrastructure of the NRA-motoneuronal projections, and especially those to the abdominal external oblique and cutaneous trunci muscles. In four cats 0.1% cholera toxin subunit b was injected in the external oblique and cutaneous trunci muscles to retrogradely label their motoneurons in the spinal cord. Wheat germ agglutinin-conjugated horseradish peroxidase was injected into the NRA to anterogradely label its contralaterally descending fibers to the motoneurons of both muscles. In order to prevent anterograde labeling of ipsilaterally descending systems not originating from the NRA, a hemisection was made at the level of C2 prior to the NRA injection. The ultrastructural results indicate that the majority (60-74%) of the anterogradely labeled NRA-terminals made monosynaptic contacts with retrogradely labeled dendrites of the external oblique and the cutaneous trunci muscle motoneurons. The majority (86-95%) of the NRA terminals made asymmetric synaptic contacts and 79-84% contained round vesicles. These results demonstrate the existence of direct, presumably excitatory, projections from NRA to external oblique and cutaneous trunci muscle motoneurons.
Collapse
Affiliation(s)
- J Boers
- Department of Anatomy and Embryology, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9700 AD Groningen, The Netherlands
| | | | | | | |
Collapse
|
97
|
Abstract
The reticular formation of the brainstem contains functional cell groups that are important for the control of eye, head, or lid movements. The mesencephalic reticular formation is primarily involved in the control of vertical gaze, the paramedian pontine reticular formation in horizontal gaze, and the medullary pontine reticular formation in head movements and gaze holding. In this chapter, the locations, connections, and histochemical properties of the functional cell groups are reviewed and correlated with specific subdivisions of the reticular formation.
Collapse
Affiliation(s)
- Anja K E Horn
- Institute of Anatomy, Ludwig-Maximilian University of Munich, Pettenkoferstrasse 11, 80336 Munich, Germany.
| |
Collapse
|
98
|
Abstract
In this review, we use data obtained primarily from humans to argue that sniffs are not merely a stimulus carrier but are rather a central component of the olfactory percept. We argue that sniffs 1) are necessary for the olfactory percept, 2) affect odorant intensity perception and identity perception, 3) drive activity in olfactory cortex, 4) are rapidly modulated in an odorant-dependent fashion by a dedicated olfactomotor system, and 5) are sufficient to generate an olfactory percept of some sort even in the absence of odor.
Collapse
Affiliation(s)
- Joel Mainland
- Helen Wills Neuroscience Institute and Department of Psychology, University of California at Berkeley, Berkeley, CA 94720, USA.
| | | |
Collapse
|
99
|
Zahm DS. The evolving theory of basal forebrain functional-anatomical 'macrosystems'. Neurosci Biobehav Rev 2005; 30:148-72. [PMID: 16125239 DOI: 10.1016/j.neubiorev.2005.06.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2005] [Revised: 06/03/2005] [Accepted: 06/10/2005] [Indexed: 11/24/2022]
Abstract
The conceptual basis and continuing development of Alheid and Heimer's [Alheid, G.F., Heimer, L., 1988. New perspectives in basal forebrain organization of special relevance for neuropsychiatric disorders: the striatopallidal, amygdaloid and corticopetal components of substantia innominata. Neuroscience 27, 1-39] theory of basal forebrain organization based on the description of basal forebrain functional-anatomical 'macrosytems' is reviewed. It is posed that the macrosystem theory leads to a hypothesis that different macrosystems cooperate and compete to exert distinct influences on motor and cognitive function. Emergent corollaries include, e.g. that the organization of the outputs of different macrosystems should differ. Consistent with these considerations, extant literature and some unpublished data indicate that the input nuclei of macrosystems are not abundantly interconnected and macrosystems systems have distinct neuroanatomical relationships with basal forebrain and brainstem cholinergic and dopaminergic ascending modulatory systems. Furthermore, macrosystem outputs appear to be directed almost exclusively at the reticular formation or structures intimately associated with it. The relative merits of the theory of functional-anatomical macrosystems are discussed in relation to Swanson's model of cerebral hemisphere control of motivated behavior.
Collapse
Affiliation(s)
- Daniel S Zahm
- Department of Pharmacological and Physiological Science, St Louis University School of Medicine, 1402 S. Grand Boulevard, St Louis, MO 63104, USA.
| |
Collapse
|
100
|
Holstege G. Central nervous system control of ejaculation. World J Urol 2005; 23:109-14. [PMID: 15875196 DOI: 10.1007/s00345-004-0484-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Accepted: 10/15/2004] [Indexed: 10/25/2022] Open
Abstract
An overview is given of the regions in the spinal cord that are active during ejaculation. Motoneurons involved are the preganglionic sympathetic motoneurons in the upper lumbar spinal cord and the motoneurons in the nucleus of Onuf, located in the upper sacral cord. The first group is involved in the so-called emission phase of ejaculation, the last group in the expulsion phase. Both groups receive afferents from premotor interneurons in the so-called intermediomedial cell groups located at about the same level as the motoneurons themselves. A concept is put forward in which these premotor cell groups represent the central spinal pattern generators for ejaculation, one for the emission phase and one for the expulsion phase. Clinical observations in patients suffering from transection of the spinal cord indicate that the ejaculation motoneurons as well as their spinal central pattern generators are under strong influence of descending pathways originating in supraspinal parts of the brain. The various pathways possibly involved in ejaculation control are reviewed. Finally, the results of the brain activation of a PET-scan study in human males, ejaculating after penile stimulation by their female partner are discussed. Especially the ventral tegmental area and the cerebellum seem to be activated during ejaculation, while the amygdala region is deactivated. Apparently, a general lack of fear is necessary for ejaculation to occur.
Collapse
Affiliation(s)
- Gert Holstege
- Department of Anatomy and Embryology, Faculty of Medical Sciences, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| |
Collapse
|