51
|
Prusty BK, Böhme L, Bergmann B, Siegl C, Krause E, Mehlitz A, Rudel T. Imbalanced oxidative stress causes chlamydial persistence during non-productive human herpes virus co-infection. PLoS One 2012; 7:e47427. [PMID: 23077614 PMCID: PMC3471814 DOI: 10.1371/journal.pone.0047427] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 09/17/2012] [Indexed: 01/24/2023] Open
Abstract
Both human herpes viruses and Chlamydia are highly prevalent in the human population and are detected together in different human disorders. Here, we demonstrate that co-infection with human herpes virus 6 (HHV6) interferes with the developmental cycle of C. trachomatis and induces persistence. Induction of chlamydial persistence by HHV6 is independent of productive virus infection, but requires the interaction and uptake of the virus by the host cell. On the other hand, viral uptake is strongly promoted under co-infection conditions. Host cell glutathione reductase activity was suppressed by HHV6 causing NADPH accumulation, decreased formation of reduced glutathione and increased oxidative stress. Prevention of oxidative stress restored infectivity of Chlamydia after HHV6-induced persistence. We show that co-infection with Herpes simplex virus 1 or human Cytomegalovirus also induces chlamydial persistence by a similar mechanism suggesting that Chlamydia -human herpes virus co-infections are evolutionary shaped interactions with a thus far unrecognized broad significance.
Collapse
Affiliation(s)
- Bhupesh K Prusty
- Biocenter, Chair of Microbiology, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
52
|
Anti-angiogenic and anti-tumor activity of Bavachinin by targeting hypoxia-inducible factor-1α. Eur J Pharmacol 2012; 691:28-37. [DOI: 10.1016/j.ejphar.2012.06.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Revised: 06/15/2012] [Accepted: 06/21/2012] [Indexed: 12/25/2022]
|
53
|
Ge RL, Simonson TS, Cooksey RC, Tanna U, Qin G, Huff CD, Witherspoon DJ, Xing J, Zhengzhong B, Prchal JT, Jorde LB, McClain DA. Metabolic insight into mechanisms of high-altitude adaptation in Tibetans. Mol Genet Metab 2012; 106:244-7. [PMID: 22503288 PMCID: PMC3437309 DOI: 10.1016/j.ymgme.2012.03.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 03/09/2012] [Accepted: 03/09/2012] [Indexed: 11/26/2022]
Abstract
Recent studies have identified genes involved in high-altitude adaptation in Tibetans. Genetic variants/haplotypes within regions containing three of these genes (EPAS1, EGLN1, and PPARA) are associated with relatively decreased hemoglobin levels observed in Tibetans at high altitude, providing corroborative evidence for genetic adaptation to this extreme environment. The mechanisms that afford adaptation to high-altitude hypoxia, however, remain unclear. Considering the strong metabolic demands imposed by hypoxia, we hypothesized that a shift in fuel preference to glucose oxidation and glycolysis at the expense of fatty acid oxidation would improve adaptation to decreased oxygen availability. Correlations between serum free fatty acid and lactate concentrations in Tibetan groups living at high altitude and putatively selected haplotypes provide insight into this hypothesis. An EPAS1 haplotype that exhibits a signal of positive selection is significantly associated with increased lactate concentration, the product of anaerobic glycolysis. Furthermore, the putatively advantageous PPARA haplotype is correlated with serum free fatty acid concentrations, suggesting a possible decrease in the activity of fatty acid oxidation. Although further studies are required to assess the molecular mechanisms underlying these patterns, these associations suggest that genetic adaptation to high altitude involves alteration in energy utilization pathways.
Collapse
Affiliation(s)
- Ri-Li Ge
- Research Center for High-Altitude Medicine, Qinghai University Medical School, Xining, Qinghai 810001, People’s Republic of China
| | - Tatum S. Simonson
- University of Utah School of Medicine, Department of Human Genetics and Divisions of Endocrinology, Metabolism, and Diabetes and Division of Hematology, Salt Lake City, UT 84112, USA
| | - Robert C. Cooksey
- University of Utah School of Medicine, Department of Human Genetics and Divisions of Endocrinology, Metabolism, and Diabetes and Division of Hematology, Salt Lake City, UT 84112, USA
| | - Uran Tanna
- Research Center for High-Altitude Medicine, Qinghai University Medical School, Xining, Qinghai 810001, People’s Republic of China
| | - Ga Qin
- Research Center for High-Altitude Medicine, Qinghai University Medical School, Xining, Qinghai 810001, People’s Republic of China
| | - Chad D. Huff
- University of Utah School of Medicine, Department of Human Genetics and Divisions of Endocrinology, Metabolism, and Diabetes and Division of Hematology, Salt Lake City, UT 84112, USA
| | - David J. Witherspoon
- University of Utah School of Medicine, Department of Human Genetics and Divisions of Endocrinology, Metabolism, and Diabetes and Division of Hematology, Salt Lake City, UT 84112, USA
| | - Jinchuan Xing
- University of Utah School of Medicine, Department of Human Genetics and Divisions of Endocrinology, Metabolism, and Diabetes and Division of Hematology, Salt Lake City, UT 84112, USA
| | - Bai Zhengzhong
- Research Center for High-Altitude Medicine, Qinghai University Medical School, Xining, Qinghai 810001, People’s Republic of China
| | - Josef T. Prchal
- University of Utah School of Medicine, Department of Human Genetics and Divisions of Endocrinology, Metabolism, and Diabetes and Division of Hematology, Salt Lake City, UT 84112, USA
| | - Lynn B. Jorde
- University of Utah School of Medicine, Department of Human Genetics and Divisions of Endocrinology, Metabolism, and Diabetes and Division of Hematology, Salt Lake City, UT 84112, USA
| | - Donald A. McClain
- University of Utah School of Medicine, Department of Human Genetics and Divisions of Endocrinology, Metabolism, and Diabetes and Division of Hematology, Salt Lake City, UT 84112, USA
- Address for correspondence: Donald McClain, Division of Endocrinology, University of Utah, 30 N. 2030 E, Salt Lake City, UT 84132, Tel.: (801) 581-7755, Fax: (801) 585-0956,
| |
Collapse
|
54
|
Yasumura EG, Stilhano RS, Samoto VY, Matsumoto PK, de Carvalho LP, Valero Lapchik VB, Han SW. Treatment of mouse limb ischemia with an integrative hypoxia-responsive vector expressing the vascular endothelial growth factor gene. PLoS One 2012; 7:e33944. [PMID: 22470498 PMCID: PMC3309937 DOI: 10.1371/journal.pone.0033944] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 02/21/2012] [Indexed: 01/22/2023] Open
Abstract
Constitutive vascular endothelial growth factor (VEGF) gene expression systems have been extensively used to treat peripheral arterial diseases, but most of the results have not been satisfactory. In this study, we designed a plasmid vector with a hypoxia-responsive element sequence incorporated into it with the phiC31 integrative system (pVHAVI) to allow long-term VEGF gene expression and to be activated under hypoxia. Repeated activations of VEGF gene expression under hypoxia were confirmed in HEK293 and C2C12 cells transfected with pVHAVI. In limb ischemic mice, the local administration of pVHAVI promoted gastrocnemius mass and force recovery and ameliorated limb necrosis much better than the group treated with hypoxia-insensitive vector, even this last group had produced more VEGF in muscle. Histological analyses carried out after four weeks of gene therapy showed increased capillary density and matured vessels, and reduced number of necrotic cells and fibrosis in pVHAVI treated group. By our study, we demonstrate that the presence of high concentration of VEGF in ischemic tissue is not beneficial or is less beneficial than maintaining a lower but sufficient and long-term concentration of VEGF locally.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sang Won Han
- Research Center for Gene Therapy, Department of Biophysics, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
55
|
Komatsu S, Hiraga S, Yanagawa Y. Proteomics techniques for the development of flood tolerant crops. J Proteome Res 2012; 11:68-78. [PMID: 22029422 DOI: 10.1021/pr2008863] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Proteomics is a useful analytical approach for investigating crop responses to stress. Recent remarkable advances in proteomic techniques allow for the identification of a wider range of proteins than was previously possible. The application of proteomic techniques to clarify the molecular mechanisms underlying crop responses to flooding stress may facilitate the development of flood tolerant crops. Flooding is an environmental stress found worldwide and may increase in frequency due to changes in global climate. Waterlogging resulting from flooding causes significant reductions in the growth and yield of several crops. Transient flooding displaces gases in soil pores and often causes hypoxia in plants grown on land with poor drainage. Changes in protein expression and post-translational modification of proteins occur as plants activate their defense system in response to flooding stress. In this review, we discuss the contributions that proteomic studies have made toward increasing our understanding of the well-organized cellular response to flooding in soybean and other crops. The biological relevance of the proteins identified using proteomic techniques in regard to crop stress tolerance will be discussed as well.
Collapse
Affiliation(s)
- Setsuko Komatsu
- National Institute of Crop Science, Tsukuba, Ibaraki, 305-8518, Japan.
| | | | | |
Collapse
|
56
|
López-Hernández B, Posadas I, Podlesniy P, Abad MA, Trullas R, Ceña V. HIF-1α is neuroprotective during the early phases of mild hypoxia in rat cortical neurons. Exp Neurol 2011; 233:543-54. [PMID: 22173319 DOI: 10.1016/j.expneurol.2011.11.040] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 11/22/2011] [Accepted: 11/25/2011] [Indexed: 10/14/2022]
Abstract
Hypoxia-inducible factor 1α (HIF-1α) is a transcription factor that plays a key role in regulating the adaptive response to hypoxia. HIF-1α is stabilised during hypoxia and, after dimerisation with hypoxia-inducible factor 1β (HIF-1β), triggers the expression of various genes involved in cell cycle control and energy metabolism associated with cell survival. However, HIF-1α also regulates the expression of proapoptotic genes. The aim of this study was to ascertain the influence of HIF-1α on neurotoxicity evoked by hypoxia in rat cortical neurons. We found that mild hypoxia induces time-dependent neuronal death involving free radical production, mitochondrial depolarisation, cytochrome c release and caspase-3 activation. Lentivirus-mediated HIF-1α knockdown markedly strengthened all of these effects during the initial 24h of hypoxia, which suggests that HIF-1α plays a neuroprotective role in hypoxia-mediated neuronal death. After this initial period, the protective actions of HIF-1α disappeared over the course of the hypoxia-mediated HIF-1α stabilisation. Moreover, lentiviral-mediated overexpression of HIF-1α increased lactate dehydrogenase (LDH) A, one of the target genes for HIF-1α, but did not show protective actions on hypoxia-mediated neuronal death, indicating that the level of endogenous HIF-1α stabilisation achieved during hypoxia was already the maximum required for HIF-1α transcription activities. These results indicate that HIF-1α is neuroprotective in the early phases of hypoxia.
Collapse
Affiliation(s)
- Beatriz López-Hernández
- Unidad Asociada Neurodeath, Facultad de Medicina, Universidad de Castilla-La Mancha, 02071 Albacete, Spain
| | | | | | | | | | | |
Collapse
|
57
|
Zhang Y, Du Y, Le W, Wang K, Kieffer N, Zhang J. Redox control of the survival of healthy and diseased cells. Antioxid Redox Signal 2011; 15:2867-908. [PMID: 21457107 DOI: 10.1089/ars.2010.3685] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract Cellular redox homeostasis is the first line of defense against diverse stimuli and is crucial for various biological processes. Reactive oxygen species (ROS), byproducts of numerous cellular events, may serve in turn as signaling molecules to regulate cellular processes such as proliferation, differentiation, and apoptosis. However, when overproduced ROS fail to be scavenged by the antioxidant system, they may damage cellular components, giving rise to senescent, degenerative, or fatal lesions in cells. Accordingly, this review not only covers general mechanisms of ROS production under different conditions, but also focuses on various types of ROS-involved diseases, including atherosclerosis, ischemia/reperfusion injury, diabetes mellitus, neurodegenerative diseases, and cancer. In addition, potentially therapeutic agents and approaches are reviewed in a relatively comprehensive manner. However, due to the complexity of ROS and their cellular impacts, we believe that the goal to design more effective approaches or agents may require a better understanding of mechanisms of ROS production, particularly their multifaceted impacts in disease at biochemical, molecular, genetic, and epigenetic levels. Thus, it requires additional tools of omics in systems biology to achieve such a goal. Antioxid. Redox Signal. 15, 2867-2908.
Collapse
Affiliation(s)
- Yuxing Zhang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | | | | | | | | | | |
Collapse
|
58
|
Stamati K, Mudera V, Cheema U. Evolution of oxygen utilization in multicellular organisms and implications for cell signalling in tissue engineering. J Tissue Eng 2011; 2:2041731411432365. [PMID: 22292107 PMCID: PMC3258841 DOI: 10.1177/2041731411432365] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Oxygen is one of the critically defining elements resulting in the existence of eukaryotic life on this planet. The rise and fall of this element can be tracked through time and corresponds with the evolution of diverse life forms, development of efficient energy production (oxidative phosphorylation) in single cell organisms, the evolution of multicellular organisms and the regulation of complex cell phenotypes. By understanding these events, we can plot the effect of oxygen on evolution and its direct influence on different forms of life today, from the whole organism to specific cells within multicellular organisms. In the emerging field of tissue engineering, understanding the role of different levels of oxygen for normal cell function as well as control of complex signalling cascades is paramount to effectively build 3D tissues in vitro and their subsequent survival when implanted.
Collapse
|
59
|
Simonson TS, McClain DA, Jorde LB, Prchal JT. Genetic determinants of Tibetan high-altitude adaptation. Hum Genet 2011; 131:527-33. [PMID: 22068265 DOI: 10.1007/s00439-011-1109-3] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Accepted: 10/25/2011] [Indexed: 12/31/2022]
Abstract
Some highland populations have genetic adaptations that enable their successful existence in a hypoxic environment. Tibetans are protected against many of the harmful responses exhibited by non-adapted populations upon exposure to severe hypoxia, including elevated hemoglobin concentration (i.e., polycythemia). Recent studies have highlighted several genes subject to natural selection in native high-altitude Tibetans. Three of these genes, EPAS1, EGLN1 and PPARA, regulate or are regulated by hypoxia inducible factor, a principal controller of erythropoiesis and other organismal functions. Uncovering the molecular basis of hypoxic adaptation should have implications for understanding hematological and other adaptations involved in hypoxia tolerance. Because the hypoxia response involves a variety of cardiovascular, pulmonary and metabolic functions, this knowledge would improve our understanding of disease mechanisms and could ultimately be translated into targeted therapies for oxygen deprivation, cardiopulmonary and cerebral pathologies, and metabolic disorders such as diabetes and obesity.
Collapse
Affiliation(s)
- Tatum S Simonson
- Eccles Institute of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | | | | | | |
Collapse
|
60
|
Cui Y, Oh YJ, Lim J, Youn M, Lee I, Pak HK, Park W, Jo W, Park S. AFM study of the differential inhibitory effects of the green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) against Gram-positive and Gram-negative bacteria. Food Microbiol 2011; 29:80-7. [PMID: 22029921 DOI: 10.1016/j.fm.2011.08.019] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 08/22/2011] [Accepted: 08/25/2011] [Indexed: 11/19/2022]
Abstract
(-)-Epigallocatechin-3-gallate (EGCG), a main constituent of tea catechins, affects Gram-positive and Gram-negative bacteria differently; however, the underlying mechanisms are not clearly understood. Atomic force microscopy (AFM) was used to compare morphological alterations in Gram-positive and Gram-negative bacteria induced by EGCG and by H(2)O(2) at sub-minimum inhibitory concentrations (MICs). EGCG initially induced aggregates in the cell envelopes of Staphylococcus aureus and eventually caused cell lysis, which was not observed in cells treated with H(2)O(2). It initially induced nanoscale perforations or microscale grooves in the cell envelopes of Escherichia coli O157:H7 which eventually disappeared, similar to E. coli cells treated with H(2)O(2). An E. coli O157:H7 tpx mutant, with a defect in thioredoxin-dependent thiol peroxidase (Tpx), was more severely damaged by EGCG when compared with its wild type. Similar differing effects were observed in other Gram-positive and Gram-negative bacteria when exposed to EGCG; it caused aggregated in Streptococcus mutans, while it caused grooves in Pseudomonas aeruginosa. AFM results suggest that the major morphological changes of Gram-negative bacterial cell walls induced by EGCG depend on H(2)O(2) release. This is not the case for Gram-positive bacteria. Oxidative stress in Gram-negative bacteria induced by EGCG was confirmed by flow cytometry.
Collapse
Affiliation(s)
- Y Cui
- Department of Chemistry and Nano Sciences, Ewha Womans University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Interplay of hypoxia and A2B adenosine receptors in tissue protection. ADVANCES IN PHARMACOLOGY 2011; 61:145-86. [PMID: 21586359 DOI: 10.1016/b978-0-12-385526-8.00006-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
That adenosine signaling can elicit adaptive tissue responses during conditions of limited oxygen availability (hypoxia) is a long-suspected notion that recently gained general acceptance from genetic and pharmacologic studies of the adenosine signaling pathway. As hypoxia and inflammation share an interdependent relationship, these studies have demonstrated that adenosine signaling events can be targeted to dampen hypoxia-induced inflammation. Here, we build on the hypothesis that particularly the A(2B) adenosine receptor (ADORA(2B)) plays a central role in tissue adaptation to hypoxia. In fact, the ADORA(2B) requires higher adenosine concentrations than any of the other adenosine receptors. However, during conditions of hypoxia or ischemia, the hypoxia-elicited rise in extracellular adenosine is sufficient to activate the ADORA(2B). Moreover, several studies have demonstrated very robust induction of the ADORA(2B) elicited by transcriptional mechanisms involving hypoxia-dependent signaling pathways and the transcription factor "hypoxia-induced factor" 1. In the present chapter, genetic and pharmacologic evidence is presented to support our hypothesis of a tissue protective role of ADORA(2B) signaling during hypoxic conditions, including hypoxia-elicited vascular leakage, organ ischemia, or acute lung injury. All these disease models are characterized by hypoxia-elicited tissue inflammation. As such, the ADORA(2B) has emerged as a therapeutic target for dampening hypoxia-induced inflammation and tissue adaptation to limited oxygen availability.
Collapse
|
62
|
Kirches E. Mitochondrial and nuclear genes of mitochondrial components in cancer. Curr Genomics 2011; 10:281-93. [PMID: 19949549 PMCID: PMC2709939 DOI: 10.2174/138920209788488517] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 04/29/2009] [Accepted: 04/30/2009] [Indexed: 11/22/2022] Open
Abstract
Although the observation of aerobic glycolysis of tumor cells by Otto v. Warburg had demonstrated abnormalities of mitochondrial energy metabolism in cancer decades ago, there was no clear evidence for a functional role of mutant mitochondrial proteins in cancer development until the early years of the 21(st) century. In the year 2000, a major breakthrough was achieved by the observation, that several genes coding for subunits of the respiratory chain (ETC) complex II, succinate dehydrogenase (SDH) are tumor suppressor genes in heritable paragangliomas, fulfilling Knudson's classical two-hit hypothesis. A functional inactivation of both alleles by germline mutations and chromosomal losses in the tumor tissue was found in the patients. Later, SDH mutations were also identified in sporadic paragangliomas and pheochromocytomas. Genes of the mitochondrial ATP-synthase and of mitochondrial iron homeostasis have been implicated in cancer development at the level of cell culture and mouse experiments. In contrast to the well established role of some nuclear SDH genes, a functional impact of the mitochondrial genome itself (mtDNA) in cancer development remains unclear. Nevertheless, the extremely high frequency of mtDNA mutations in solid tumors raises the question, whether this small circular genome might be applicable to early cancer detection. This is a meaningful approach, especially in cancers, which tend to spread tumor cells early into bodily fluids or faeces, which can be screened by non-invasive methods.
Collapse
Affiliation(s)
- E Kirches
- Department of Neuropathology, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
63
|
Anju TR, Korah PK, Jayanarayanan S, Paulose CS. Enhanced brain stem 5HT₂A receptor function under neonatal hypoxic insult: role of glucose, oxygen, and epinephrine resuscitation. Mol Cell Biochem 2011; 354:151-60. [PMID: 21484469 DOI: 10.1007/s11010-011-0814-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 04/05/2011] [Indexed: 01/23/2023]
Abstract
Molecular processes regulating brain stem serotonergic receptors play an important role in the control of respiration. We evaluated 5-HT(2A) receptor alterations in the brain stem of neonatal rats exposed to hypoxic insult and the effect of glucose, oxygen, and epinephrine resuscitation in ameliorating these alterations. Hypoxic stress increased the total 5-HT and 5-HT(2A) receptor number along with an up regulation of 5-HT Transporter and 5-HT(2A) receptor gene in the brain stem of neonates. These serotonergic alterations were reversed by glucose supplementation alone and along with oxygen to hypoxic neonates. The enhanced brain stem 5-HT(2A) receptors act as a modulator of ventilatory response to hypoxia, which can in turn result in pulmonary vasoconstriction and cognitive dysfunction. The adverse effects of 100% oxygenation and epinephrine administration to hypoxic neonates were also reported. This has immense clinical significance in neonatal care.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Binding, Competitive
- Brain Stem/metabolism
- Epinephrine/pharmacology
- Epinephrine/therapeutic use
- Glucose/pharmacology
- Glucose/therapeutic use
- Hypoxia/drug therapy
- Hypoxia/metabolism
- Hypoxia, Brain/drug therapy
- Hypoxia, Brain/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Ketanserin/pharmacology
- Maze Learning
- Memory
- Oxygen/pharmacology
- Oxygen/therapeutic use
- Rats
- Rats, Wistar
- Receptor, Serotonin, 5-HT2A/genetics
- Receptor, Serotonin, 5-HT2A/metabolism
- Resuscitation
- Serotonin/pharmacology
- Serotonin 5-HT2 Receptor Agonists/pharmacology
- Serotonin Antagonists/pharmacology
- Serotonin Plasma Membrane Transport Proteins/genetics
- Serotonin Plasma Membrane Transport Proteins/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- T R Anju
- Molecular Neurobiology and Cell Biology Unit, Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin, 682022 Kerala, India
| | | | | | | |
Collapse
|
64
|
Saito K, Kondo E, Matsushita M. MicroRNA 130 family regulates the hypoxia response signal through the P-body protein DDX6. Nucleic Acids Res 2011; 39:6086-99. [PMID: 21486751 PMCID: PMC3152344 DOI: 10.1093/nar/gkr194] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The transcription factor HIF-1α (hypoxia inducible factor 1α) has an essential role in the maintenance of oxygen homeostasis in metazoans. HIF-1α expression and activity in the hypoxic response is regulated at the translation and post-translational levels. However, the mechanism and modulator of HIF-1α translation during hypoxia is not fully understood. We found that HIF-1α expression during hypoxia was upregulated by the microRNA 130 (miR-130) family. Levels of the miR-130 family are elevated under hypoxia, and their target is DDX6 mRNA, which is a component of the P-bodies. Furthermore, we found that a decrease of DDX6 expression by the miR-130 family enhanced the translation of HIF-1α in an internal ribosome entry site element-dependent manner. These results reveal a new HIF-1α translational mechanism and a role for P-bodies in hypoxic stress.
Collapse
Affiliation(s)
- Ken Saito
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan
| | | | | |
Collapse
|
65
|
Abstract
Erythrocytosis is present when there is an increase in the red cell mass, usually accompanied by an elevated hemoglobin and hematocrit. This occurs when there is an intrinsic defect in the erythroid component of the bone marrow or for secondary reasons when an increase in erythropoietin production drives red cell production. In normoxic conditions, HIF-α interacts with the other proteins in the HIF pathway and is destroyed, but in hypoxic conditions, HIF-α binds to HIF-β and alters the expression of downstream genes, including the erythropoietin gene. The end result is an increase in erythropoietin production. Mutations in any of the genes in the HIF pathway could lead to changed proteins, abnormalities in the degradation of HIF-α and, ultimately, result in increased erythropoietin levels. A number of mutations in the VHL, PHD2, and HIF2A genes have been identified in individuals. These mutations lead to erythrocytosis. The clinical results of these mutations may include some major thromboembolic events in young patients.
Collapse
Affiliation(s)
- Mary Frances McMullin
- Department of Haematology, Belfast City Hospital, Queen's University Belfast, Northern Ireland, UK.
| |
Collapse
|
66
|
|
67
|
The Basic Science of Vascular Biology: Implications for the Practicing Surgeon. Plast Reconstr Surg 2010; 126:1528-1538. [DOI: 10.1097/prs.0b013e3181ef8ccf] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
68
|
Lemoine Y, Schoefs B. Secondary ketocarotenoid astaxanthin biosynthesis in algae: a multifunctional response to stress. PHOTOSYNTHESIS RESEARCH 2010; 106:155-77. [PMID: 20706789 DOI: 10.1007/s11120-010-9583-3] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 07/05/2010] [Indexed: 05/03/2023]
Abstract
Under stressful environments, many green algae such as Haematococcus pluvialis accumulate secondary ketocarotenoids such as canthaxanthin and astaxanthin. The carotenogenesis, responsible for natural phenomena such as red snows, generally accompanies larger metabolic changes as well as morphological modifications, i.e., the conversion of the green flagellated macrozoids into large red cysts. Astaxanthin accumulation constitutes a convenient way to store energy and carbon, which will be used for further synthesis under less stressful conditions. Besides this, the presence of high amount of astaxanthin enhances the cell resistance to oxidative stress generated by unfavorable environmental conditions including excess light, UV-B irradiation, and nutrition stress and, therefore, confers a higher survival capacity to the cells. This better resistance results from the quenching of oxygen atoms for the synthesis itself as well as from the antioxidant properties of the astaxanthin molecules. Therefore, astaxanthin synthesis corresponds to a multifunctional response to stress. In this contribution, the various biochemical, genetic, and molecular data related to the biosynthesis of ketocarotenoids by Haematococcus pluvialis and other taxa are reviewed and compared. A tentative regulatory model of the biochemical network driving astaxanthin production is proposed.
Collapse
Affiliation(s)
- Yves Lemoine
- University Lille Nord de France, UMR 8187 LOG CNRS/University Lille 1, Bât SN2, 59655 Villeneuve d'Ascq Cedex, France
| | | |
Collapse
|
69
|
Kajimura M, Fukuda R, Bateman RM, Yamamoto T, Suematsu M. Interactions of multiple gas-transducing systems: hallmarks and uncertainties of CO, NO, and H2S gas biology. Antioxid Redox Signal 2010; 13:157-92. [PMID: 19939208 PMCID: PMC2925289 DOI: 10.1089/ars.2009.2657] [Citation(s) in RCA: 219] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The diverse physiological actions of the "biologic gases," O2, CO, NO, and H2S, have attracted much interest. Initially viewed as toxic substances, CO, NO, and H2S play important roles as signaling molecules. The multiplicity of gas actions and gas targets and the difficulty in measuring local gas concentrations obscures detailed mechanisms whereby gases exert their actions, and many questions remain unanswered. It is now readily apparent, however, that heme-based proteins play central roles in gas-generation/reception mechanisms and provide a point where multiple gases can interact. In this review, we consider a number of key issues related to "gas biology," including the effective tissue concentrations of these gases and the importance and significance of the physical proximity of gas-producing and gas-receptor/sensors. We also take an integrated approach to the interaction of gases by considering the physiological significance of CO, NO, and H2S on mitochondrial cytochrome c oxidase, a key target and central mediator of mitochondrial respiration. Additionally, we consider the effects of biologic gases on mitochondrial biogenesis and "suspended animation." By evaluating gas-mediated control functions from both in vitro and in vivo perspectives, we hope to elaborate on the complex multiple interactions of O2, NO, CO, and H2S.
Collapse
Affiliation(s)
- Mayumi Kajimura
- Department of Biochemistry and Integrative Medical Biology, School of Medicine, Keio University , Tokyo, Japan.
| | | | | | | | | |
Collapse
|
70
|
Xue W, Cai L, Tan Y, Thistlethwaite P, Kang YJ, Li X, Feng W. Cardiac-specific overexpression of HIF-1{alpha} prevents deterioration of glycolytic pathway and cardiac remodeling in streptozotocin-induced diabetic mice. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:97-105. [PMID: 20566749 PMCID: PMC2893654 DOI: 10.2353/ajpath.2010.091091] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/24/2010] [Indexed: 12/15/2022]
Abstract
Defective glycolysis and angiogenesis in the heart of diabetic patients and in experimental diabetic animal models have been reported. The aim of this study was to determine whether overexpression of hypoxia-inducible factor (HIF)-1alpha protects from myocardial injury in diabetic mice by increasing myocardial glycolysis and angiogenesis. Cardiac-specific HIF-1alpha-overexpressing transgenic and age-matched wild-type control mice were treated with streptozotocin to induce diabetes. Changes in glucose transporters, glycolytic enzymes, angiogenic factors and cardiac morphology were examined in the hearts by real-time RT-PCR, Western blotting, enzymatic assay, and histological assays. HIF-1alpha overexpression elevated hexokinase II (HK-II) protein level and total HK activity in nondiabetic heart and prevented the decreases in HK-II mRNA, protein, and total HK activity in diabetic heart. In addition, the reduction of glucose transporter I, but not glucose transporter 4, was restored in HIF transgenic mouse heart along with a recovery of myocardium ATP production. HIF-1alpha overexpression also normalized diabetes-reduced vascular endothelial growth factor concentration along with a sustained myocardial capillary density and an inhibition of cardiomyocyte hypertrophy and cardiac fibrosis. Therefore, elevation of HIF-1alpha provides a cardiac protection from diabetic-induced impairment in glucose metabolism and angiogenesis via up-regulation of HIF-1 target genes.
Collapse
Affiliation(s)
- Wanli Xue
- Departments of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | | | | | | | | | | | | |
Collapse
|
71
|
Cerebellar 5HT2A receptor function under hypoxia in neonatal rats: Role of glucose, oxygen, and epinephrine resuscitation. Respir Physiol Neurobiol 2010; 172:147-53. [DOI: 10.1016/j.resp.2010.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 05/07/2010] [Accepted: 05/07/2010] [Indexed: 11/20/2022]
|
72
|
Saito K, Adachi N, Koyama H, Matsushita M. OGFOD1, a member of the 2-oxoglutarate and iron dependent dioxygenase family, functions in ischemic signaling. FEBS Lett 2010; 584:3340-7. [PMID: 20579638 DOI: 10.1016/j.febslet.2010.06.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 06/10/2010] [Accepted: 06/11/2010] [Indexed: 01/26/2023]
Abstract
The 2-oxoglutarate and iron dependent dioxygenase family are crucial for cellular adaptation to changes in oxygen concentration. We found that cells with OGFOD1 gene silencing in this family showed resistance to cell death under ischemia, and cDNA microarray analysis of OGFOD1 knockout human cells revealed downregulation of ATPAF1. Although reintroduction of the OGFOD1 wild-type gene to OGFOD1 KO cells restored ATPAF1 mRNA levels, the catalytically inactive OGFOD1 mutants did not. Furthermore, introduction of ATPAF1 gene to OGFOD1 KO cells induced ischemic cell death. Thus, OGFOD1 plays an important role in ischemic cell survival and an OGFOD1 iron binding residue is required for ATPAF1 gene expression.
Collapse
Affiliation(s)
- Ken Saito
- Mitsubishi Kagaku Institute of Life Sciences (MITILS), 11 Minamiooya, Machida, Tokyo 194-8511, Japan
| | | | | | | |
Collapse
|
73
|
Alexander PG, Tuan RS. Role of environmental factors in axial skeletal dysmorphogenesis. ACTA ACUST UNITED AC 2010; 90:118-32. [DOI: 10.1002/bdrc.20179] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
74
|
Yeom J, Imlay JA, Park W. Iron homeostasis affects antibiotic-mediated cell death in Pseudomonas species. J Biol Chem 2010; 285:22689-95. [PMID: 20479007 DOI: 10.1074/jbc.m110.127456] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Antibiotics can induce cell death via a variety of action modes, including the inhibition of transcription, ribosomal function, and cell wall biosynthesis. In this study, we demonstrated directly that iron availability is important to the action of antibiotics, and the ferric reductases of Pseudomonas putida and Pseudomonas aeruginosa could accelerate antibiotic-mediated cell death by promoting the Fenton reaction. The modulation of reduced nicotinamide-adenine dinucleotide (NADH) levels and iron chelation affected the actions of antibiotics. Interestingly, the deletion of the ferric reductase gene confers more antibiotic resistance upon cells, and its overexpression accelerates antibiotic-mediated cell death. The results of transcriptome analysis showed that both Pseudomonas species induce many oxidative stress genes under antibiotic conditions, which could not be observed in ferric reductase mutants. Our results indicate that iron homeostasis is crucial for bacterial cell survival under antibiotics and should constitute a significant target for boosting the action of antibiotics.
Collapse
Affiliation(s)
- Jinki Yeom
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 136-713, South Korea
| | | | | |
Collapse
|
75
|
Anokhina EB, Buravkova LB. Mechanisms of regulation of transcription factor HIF under hypoxia. BIOCHEMISTRY (MOSCOW) 2010; 75:151-8. [DOI: 10.1134/s0006297910020057] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
76
|
Abstract
Diabetes and its complications are a major public health burden in the developed world. The major cause of diabetic complications is abnormal growth of new blood vessels. This dysfunctional neovascularization results in significant morbidity and mortality in patients with diabetes and, as such, is a major focus of basic and clinical investigation. It has become clear that hyperglycemia disrupts tissue-level signaling in response to hypoxia and ischemia, impairs the vasculogenic potential of circulating stem cells and fundamentally alters the structure and function of key neovascularization proteins, including hypoxia-inducible factor-1. These mechanistic and pathophysiologic studies have revealed new therapeutic targets to restore normal neovascularization and to ameliorate and prevent diabetic vascular complications.
Collapse
Affiliation(s)
- Jason P Glotzbach
- a Postdoctoral Research Fellow, Stanford University School of Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, 257 Campus Drive West, Hagey Building GK-201, Stanford, CA, 94305-5148, USA.
| | - Victor W Wong
- b Postdoctoral Research Fellow, Stanford University School of Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, 257 Campus Drive West, Hagey Building GK-201, Stanford, CA, 94305-5148, USA.
| | - Geoffrey C Gurtner
- c Professor of Surgery, Stanford University School of Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, 257 Campus Drive West, Hagey Building GK-201, Stanford, CA, 94305-5148, USA.
| |
Collapse
|
77
|
Moldovan D, Spriggs A, Yang J, Pogson BJ, Dennis ES, Wilson IW. Hypoxia-responsive microRNAs and trans-acting small interfering RNAs in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:165-77. [PMID: 19815687 PMCID: PMC2791121 DOI: 10.1093/jxb/erp296] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 09/03/2009] [Accepted: 09/07/2009] [Indexed: 05/18/2023]
Abstract
Low-oxygen (hypoxia) stress associated with natural phenomena such as waterlogging, results in widespread transcriptome changes and a metabolic switch from aerobic respiration to anaerobic fermentation. High-throughput sequencing of small RNA libraries obtained from hypoxia-treated and control root tissue identified a total of 65 unique microRNA (miRNA) sequences from 46 families, and 14 trans-acting small interfering RNA (tasiRNA) from three families. Hypoxia resulted in changes to the abundance of 46 miRNAs from 19 families, and all three tasiRNA families. Chemical inhibition of mitochondrial respiration caused similar changes in expression in a majority of the hypoxia-responsive small RNAs analysed. Our data indicate that miRNAs and tasiRNAs play a role in gene regulation and possibly developmental responses to hypoxia, and that a major signal for these responses is likely to be dependent on mitochondrial function.
Collapse
Affiliation(s)
- Dov Moldovan
- CSIRO Plant Industry, GPO Box 1600, Canberra ACT 2601, Australia
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Australia
| | - Andrew Spriggs
- CSIRO Plant Industry, GPO Box 1600, Canberra ACT 2601, Australia
| | - Jun Yang
- CSIRO Plant Industry, GPO Box 1600, Canberra ACT 2601, Australia
| | - Barry J. Pogson
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Australia
| | | | - Iain W. Wilson
- CSIRO Plant Industry, GPO Box 1600, Canberra ACT 2601, Australia
| |
Collapse
|
78
|
de Frutos S, Nitta CH, Caldwell E, Friedman J, González Bosc LV. Regulation of soluble guanylyl cyclase-alpha1 expression in chronic hypoxia-induced pulmonary hypertension: role of NFATc3 and HuR. Am J Physiol Lung Cell Mol Physiol 2009; 297:L475-86. [PMID: 19592461 DOI: 10.1152/ajplung.00060.2009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The nitric oxide/soluble guanylyl cyclase (sGC) signal transduction pathway plays an important role in smooth muscle relaxation and phenotypic regulation. However, the transcriptional regulation of sGC gene expression is largely unknown. It has been shown that sGC expression increases in pulmonary arteries from chronic hypoxia-induced pulmonary hypertensive animals. Since the transcription factor NFATc3 is required for the upregulation of the smooth muscle hypertrophic/differentiation marker alpha-actin in pulmonary artery smooth muscle cells from chronically hypoxic mice, we hypothesized that NFATc3 is required for the regulation of sGC-alpha1 expression during chronic hypoxia. Exposure to chronic hypoxia for 2 days induced a decrease in sGC-alpha1 expression in mouse pulmonary arteries. This reduction was independent of NFATc3 but mediated by nuclear accumulation of the mRNA-stabilizing protein human antigen R (HuR). Consistent with our hypothesis, chronic hypoxia (21 days) upregulated pulmonary artery sGC-alpha1 expression, bringing it back to the level of the normoxic controls. This response was prevented in NFATc3 knockout and cyclosporin (calcineurin/NFATc inhibitor)-treated mice. Furthermore, we identified effective binding sites for NFATc in the mouse sGC-alpha1 promoter. Activation of NFATc3 increased sGC-alpha1 promoter activity in human embryonic derived kidney cells, rat aortic-derived smooth muscle cells, and human pulmonary artery smooth muscle cells. Our results suggest that NFATc3 and HuR are important regulators of sGC-alpha1 expression in pulmonary vascular smooth muscle cells during chronic hypoxia-induced pulmonary hypertension.
Collapse
Affiliation(s)
- Sergio de Frutos
- Vascular Physiology Group, Department of Cell Biology and Physiology, School of Medicine, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | | | | | | | | |
Collapse
|
79
|
Zhang K, Zhao T, Huang X, Liu ZH, Xiong L, Li MM, Wu LY, Zhao YQ, Zhu LL, Fan M. Preinduction of HSP70 promotes hypoxic tolerance and facilitates acclimatization to acute hypobaric hypoxia in mouse brain. Cell Stress Chaperones 2009; 14:407-15. [PMID: 19105051 PMCID: PMC2728275 DOI: 10.1007/s12192-008-0094-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Accepted: 11/25/2008] [Indexed: 11/24/2022] Open
Abstract
It has been shown that induction of HSP70 by administration of geranylgeranylacetone (GGA) leads to protection against ischemia/reperfusion injury. The present study was performed to determine the effect of GGA on the survival of mice and on brain damage under acute hypobaric hypoxia. The data showed that the mice injected with GGA survived significantly longer than control animals (survival time of 9.55 +/- 3.12 min, n = 16 vs. controls at 4.28 +/- 4.29 min, n = 15, P < 0.005). Accordingly, the cellular necrosis or degeneration of the hippocampus and the cortex induced by sublethal hypoxia for 6 h could be attenuated by preinjection with GGA, especially in the CA2 and CA3 regions of the hippocampus. In addition, the activity of nitric oxide synthase (NOS) of the hippocampus and the cortex was increased after exposure to sublethal hypoxia for 6 h but could be inhibited by the preinjection of GGA. Furthermore, the expression of HSP70 was significantly increased at 1 h after GGA injection. These results suggest that administration of GGA improved survival rate and prevented acute hypoxic damage to the brain and that the underlying mechanism involved induction of HSP70 and inhibition of NOS activity.
Collapse
Affiliation(s)
- Kuan Zhang
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Beijing, 100850 China
| | - Tong Zhao
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Beijing, 100850 China
| | - Xin Huang
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Beijing, 100850 China
| | - Zhao-hui Liu
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Beijing, 100850 China
| | - Lei Xiong
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Beijing, 100850 China
| | - Ming-ming Li
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Beijing, 100850 China
| | - Li-ying Wu
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Beijing, 100850 China
| | - Yong-qi Zhao
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Beijing, 100850 China
| | - Ling-ling Zhu
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Beijing, 100850 China
| | - Ming Fan
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Beijing, 100850 China
| |
Collapse
|
80
|
Chen J, Kobayashi M, Darmanin S, Qiao Y, Gully C, Zhao R, Yeung SC, Lee MH. Pim-1 plays a pivotal role in hypoxia-induced chemoresistance. Oncogene 2009; 28:2581-92. [PMID: 19483729 DOI: 10.1038/onc.2009.124] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hypoxia changes the responses of cancer cells to many chemotherapy agents, resulting in chemoresistance. The underlying molecular mechanism of hypoxia-induced drug resistance remains unclear. Pim-1 is a survival kinase, which phosphorylates Bad at serine 112 to antagonize drug-induced apoptosis. Here we show that hypoxia increases Pim-1 in a hypoxia-inducible factor-1alpha-independent manner. Inhibition of Pim-1 function by dominant-negative Pim-1 dramatically restores the drug sensitivity to apoptosis induced by chemotherapy under hypoxic conditions in both in vitro and in vivo tumor models. Introduction of siRNAs for Pim-1 also resensitizes cancer cells to chemotherapy drugs under hypoxic conditions, whereas forced overexpression of Pim-1 endows solid tumor cells with resistance to cisplatin, even under normoxia. Dominant-negative Pim-1 prevents a decrease in mitochondrial transmembrane potential in solid tumor cells, which is normally induced by cisplatin (CDDP), followed by the reduced activity of Caspase-3 and Caspase-9, indicating that Pim-1 participates in hypoxia-induced drug resistance through the stabilization of mitochondrial transmembrane potential. Our results demonstrate that Pim-1 is a pivotal regulator involved in hypoxia-induced chemoresistance. Targeting Pim-1 may improve the chemotherapeutic strategy for solid tumors.
Collapse
Affiliation(s)
- J Chen
- Division of Cancer-Related Genes, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Mounier R, Pialoux V, Schmitt L, Richalet JP, Robach P, Coudert J, Clottes E, Fellmann N. Effects of acute hypoxia tests on blood markers in high-level endurance athletes. Eur J Appl Physiol 2009; 106:713-20. [PMID: 19430946 DOI: 10.1007/s00421-009-1072-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2009] [Indexed: 10/20/2022]
Abstract
The aim of this study was to determine the response of blood markers to acute hypoxia in high-level endurance athletes before training based on "living high-training low" model. Thirty endurance athletes performed a hypoxic cycling test and spent 3 h at rest in a simulated altitude of 3,000 m. At the end of the hypoxic cycling test, the quantity of the natural antisense transcript of HIF-1alpha mRNA (aHIF) transcript increased significantly (+37%, P = 0.024). After 3-h exposure, at a simulated altitude of 3,000 m, the amount of HIF-1alpha mRNA increased significantly (+57%, P = 0.012). Moreover, a large inter-subject range was observed in response to the hypoxic cycling test and to the prolonged hypoxic exposure: -133%/+79% and -82%/+653% for HIF-1alpha mRNA, 69%/+324% and -76%/+229% for aHIF. This study shows a large inter-variability of blood markers in elite athletes in response to acute hypoxic exposure corroborating previous observations made in other populations.
Collapse
Affiliation(s)
- Rémi Mounier
- Laboratoire de Biologie des Activités Physiques et Sportives, Faculté de Médecine, 63000 Clermont-Ferrand, France.
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Singh S, Manda SM, Sikder D, Birrer MJ, Rothermel BA, Garry DJ, Mammen PPA. Calcineurin activates cytoglobin transcription in hypoxic myocytes. J Biol Chem 2009; 284:10409-21. [PMID: 19203999 PMCID: PMC2667728 DOI: 10.1074/jbc.m809572200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 01/30/2009] [Indexed: 01/19/2023] Open
Abstract
Cardiac hypertrophy develops in response to a variety of cardiovascular stresses and results in activation of numerous signaling cascades and proteins. In the present study, we demonstrate that cytoglobin is a stress-responsive hemoprotein in the hypoxia-induced hypertrophic myocardium and it is transcriptionally regulated by calcineurin-dependent transcription factors. The cytoglobin transcript level is abundantly expressed in the adult heart and in response to hypoxia cytoglobin expression is markedly up-regulated within the hypoxia-induced hypertrophic heart. To define the molecular mechanism resulting in the induction of cytoglobin, we undertook a transcriptional analysis of the 5' upstream regulatory region of the cytoglobin gene. Evolutionarily conserved binding elements for transcription factors HIF-1, AP-1, and NFAT are located within the upstream region of the cytoglobin gene. Transcriptional assays demonstrated that calcineurin activity modulates cytoglobin transcription. Increased calcineurin activity enhances the ability of NFAT and AP-1 to bind to the putative cytoglobin promoter, especially under hypoxic conditions. In addition, inhibition of calcineurin, NFAT, and/or AP-1 activities decreases endogenous cytoglobin transcript and protein levels. Thus, the regulation of cytoglobin transcription by calcineurin-dependent transcription factors suggests that cytoglobin may have a functional role in calcium-dependent events accompanying cardiac remodeling.
Collapse
Affiliation(s)
- Sarvjeet Singh
- Departments of Internal Medicine and Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | | | | | |
Collapse
|
83
|
Hernández C, Santamatilde E, McCreath KJ, Cervera AM, Díez I, Ortiz-Masiá D, Martínez N, Calatayud S, Esplugues JV, Barrachina MD. Induction of trefoil factor (TFF)1, TFF2 and TFF3 by hypoxia is mediated by hypoxia inducible factor-1: implications for gastric mucosal healing. Br J Pharmacol 2008; 156:262-72. [PMID: 19076725 DOI: 10.1111/j.1476-5381.2008.00044.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Mucosal microcirculation is compromised during gastric damage induced by non-steroidal anti-inflammatory drugs, such as aspirin. Consequently, oxygen supply to epithelial cells is decreased. The trefoil factor (TFF) peptides are involved in mechanisms of defence and repair in the gastrointestinal tract but their regulation at sites of gastric injury is unknown. EXPERIMENTAL APPROACH Hypoxia and expression of TFF genes and peptides were measured in the damaged stomach of aspirin-treated rats. In a human gastric cell line (AGS cells), the effects of hypoxia and of hypoxia inducible factor (HIF)-1 (through transient transfection of HIF-1alpha siRNA or over-expression of HIF-1alpha) on TFF gene expression were evaluated. KEY RESULTS Hypoxyprobe immunostaining, up-regulation of TFF2 (1.9-fold) and TFF3 (1.8-fold) and a non-significant increase of TFF1 (1.5-fold) mRNA were observed in the damaged stomach of aspirin-treated rats, compared with control animals. Hypoxia (3% O(2), 16 h) induced mRNA for TFF1 (5.8-fold), TTF2 (9.1-fold) and TFF3 (9.3-fold) in AGS cells, an effect mediated by HIF-1, as transient transfection of HIF-1alpha siRNA reduced the effects of hypoxia. Over-expression of HIF-1alpha by transfection in non-hypoxic epithelial cells produced a similar pattern of TFF induction to that observed with hypoxia and transactivated a TFF1 reporter construct. CONCLUSIONS AND IMPLICATIONS Hypoxia inducible factor-1 mediated the induction of TFF gene expression by hypoxia in gastric epithelial cells. Low oxygen levels and up-regulation of TFF gene expression in the damaged stomach of aspirin-treated rats suggest that hypoxia induced expression of TFF genes at sites of gastric injury.
Collapse
Affiliation(s)
- C Hernández
- Departamento de Farmacología and CIBEREHD, Valencia, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Li Y, Huang J, Sandmann G, Chen F. Glucose sensing and the mitochondrial alternative pathway are involved in the regulation of astaxanthin biosynthesis in the dark-grown Chlorella zofingiensis (Chlorophyceae). PLANTA 2008; 228:735-43. [PMID: 18597111 DOI: 10.1007/s00425-008-0775-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 06/17/2008] [Indexed: 05/03/2023]
Abstract
The biosynthesis of the ketocarotenoid astaxanthin is a subject of scientific and industrial interest. The unicellular green alga Chlorella zofingiensis Dönz is able to grow and accumulate astaxanthin in the dark with exogenous glucose as sole carbon and energy source. In this study, the transcription of beta-carotenoid ketolase (BKT) and beta-carotenoid hydroxylase (CHYb) genes were surveyed to reveal the regulation of astaxanthin biosynthesis in dark-grown Chlorella zofingiensis. Coupled with glucose analogs and the hexokinase inhibitor glucosamine, we found that phosphorylation of glucose (glucose sensing) was essential to the increased transcription of BKT and CHYb genes and the accumulation of astaxanthin in the dark-grown cells. However, phosphorylation of glucose per se only up-regulated the transcription of CHYb and stimulated the synthesis of zeaxanthin. Blockage of the mitochondrial alternative pathway eliminated the glucose effects on the increased transcription of BKT and astaxanthin accumulation, suggesting that signals from alternative pathway was involved in the up-regulation of BKT transcription. In addition, citrate was shown to up-regulate the transcription of BKT independent of reactive oxygen species formation. Taken altogether, we conclude that in dark-grown Chlorella zofingiensis, the transcription of BKT and CHYb genes are differently regulated by the metabolism of glucose, through which the biosynthesis of astaxanthin is regulated.
Collapse
Affiliation(s)
- Yantao Li
- School of Biological Sciences, University of Hong Kong, Hong Kong, China.
| | | | | | | |
Collapse
|
85
|
Yeom CJ, Chung JK, Kang JH, Jeon YH, Kim KI, Jin YN, Lee YM, Jeong JM, Lee DS. Visualization of hypoxia-inducible factor-1 transcriptional activation in C6 glioma using luciferase and sodium iodide symporter genes. J Nucl Med 2008; 49:1489-97. [PMID: 18703592 DOI: 10.2967/jnumed.107.044461] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Hypoxia-inducible factor-1 (HIF-1) is a transcription factor of hypoxic response in cancer cells and is associated with tumor progression, angiogenesis, metastasis, and resistance to therapy. We assessed whether the human sodium iodide symporter (NIS) reporter systems can be used to visualize transcriptional activation of HIF-1 in C6 glioma. METHODS Two types of plasmid-expressing human NIS or luciferase (Luc) genes, controlled by 5 copies of hypoxia response element (5HRE), were constructed: p5HRE-NIS or p5HRE-Luc. C6 glioma cells were stably transfected with p5HRE-NIS or p5HRE-Luc plasmids (C6-5HRE-NIS or C6-5HRE-Luc). Hypoxic conditions were modeled by exposing culture medium to desferrioxamine (DFO) or a low oxygen atmosphere (<1% O(2)) in a hypoxic chamber. HIF-1 transcription activity was assessed by measuring cellular (125)I uptake and luminescent intensities. Reverse-transcription polymerase chain reaction and Western blotting were performed to observe the messenger RNA and protein levels of reporter and target genes under hypoxic or normoxic conditions. C6, C6-cytomegalovirus (CMV)-NIS, or C6-CMV-Luc and C6-5HRE-NIS or C6-5HRE-Luc cells were injected subcutaneously into nude mice (the NIS and Luc groups, respectively). Two weeks after tumor challenge, bioluminescence and (99m)Tc scintigraphic images were acquired before and after intraperitoneal DFO administration. Natural hypoxia in tumors was induced by growing tumors for 3 wk. Ex vivo studies, such as biodistribution, immunohistochemistry, and (99m)Tc autoradiography, were performed. RESULTS Time- and concentration-dependent increases of (125)I uptake and bioluminescence were observed in hypoxically stressed reporter cells. Also, messenger RNA and protein levels of reporter and target genes increased under hypoxic conditions. (99m)Tc uptake and bioluminescence signals from C6-5HRE-NIS and C6-5HRE-Luc tumors increased during hypoxia. In the biodistribution study, a larger amount of (99m)Tc accumulated in C6-5HRE-NIS tumors than in the other tumors not containing 5HRE (P<0.005). In the Luc group, immunostaining showed similar distribution patterns for luciferase and pimonidazole, and in the NIS group, autoradiography of C6-5HRE-NIS tumors showed a distribution similar to that observed for pimonidazole immunostaining. CONCLUSION The transcriptional activation of HIF-1 induced by hypoxia or DFO was visualized by both bioluminescence and scintigraphic reporter gene systems.
Collapse
Affiliation(s)
- Chan Joo Yeom
- Department of Nuclear Medicine, Tumor Immunity Medical Research Center, Laboratory of Molecular Imaging and Therapy of Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Shui YB, Arbeit JM, Johnson RS, Beebe DC. HIF-1: an age-dependent regulator of lens cell proliferation. Invest Ophthalmol Vis Sci 2008; 49:4961-70. [PMID: 18586877 DOI: 10.1167/iovs.08-2118] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The lens grows throughout life, and lens size is a major risk factor for nuclear and cortical cataracts. A previous study showed that the hypoxic environment around the lens suppressed lens growth in older rats. The present study was conducted to investigate the mechanism responsible for the age-dependent decline in lens cell proliferation. METHODS Transgenic mice expressing Cre recombinase in the lens were bred to mice containing floxed Hif1a alleles. Transgenic mice expressing oxygen insensitive forms of HIF-1alpha in lens epithelial cells were exposed to room air or 60% oxygen. Proliferation was measured by BrdU labeling and cell death by using the TUNEL assay. Morphology was assessed in histologic sections. HIF-1alpha and p27(KIP1) levels were determined by Western blot. The expression of HIF-regulated genes was assessed on microarrays. RESULTS Lenses lacking Hif1a degenerated, precluding study in older animals. Breathing 60% oxygen reduced HIF-1alpha levels and HIF-1-regulated transcripts in lens epithelial cells from young and older lenses. Overexpression of oxygen-insensitive HIF-1alpha had no effect on lens size, but suppressed increased proliferation in response to oxygen. Systemic injection of the iron chelator, 1,10-phenanthroline prevented the degradation of HIF-1alpha and reduced oxygen-induced proliferation. Increasing oxygen decreased levels of p27(KIP1) in the epithelial cells of older mice, which was prevented by expressing oxygen-insensitive forms of HIF-1alpha. CONCLUSIONS HIF-1alpha is present and HIF-1 is transcriptionally active throughout life, but suppresses growth only in older lenses. Maintaining elevated levels of p27(KIP1) in older lenses requires HIF-1. p27(KIP1) and other growth regulators may selectively suppress the proliferation of older lens epithelial cells.
Collapse
Affiliation(s)
- Ying-Bo Shui
- Department of Ophthalmology and Visual Sciences, Washington University, St Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
87
|
Ke HL, Wei YC, Yang SF, Li CC, Wu DC, Huang CH, Wu WJ. Overexpression of hypoxia-inducible factor-1alpha predicts an unfavorable outcome in urothelial carcinoma of the upper urinary tract. Int J Urol 2008; 15:200-5. [PMID: 18304212 DOI: 10.1111/j.1442-2042.2007.01978.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Hypoxia-inducible factor-1 (HIF-1) is a transcription factor that plays an important role in cell hypoxia adaptation. Overexpression of HIF-1alpha subunit has been reported to be involved in the carcinogenesis, progression and metastasis of many human cancers. We evaluated the clinical significance of HIF-1alpha expression in urothelial carcinoma (UC) of the upper urinary tract. METHODS Ninety-eight cases (mean age = 63.5 +/- 11.7, range = 23-84 years) of renal pelvic or ureter UC were included in the present study. Those who had distant metastasis at diagnosis, other cancer, urolithiasis, incomplete clinical information or had received radiotherapy or chemotherapy before surgery were excluded. Nuclear HIF-1alpha expression were evaluated by immunohistochemistry staining on a paraffin-embedded section of the tumor and non-malignant upper urinary tract specimens and scored by two qualified pathologists. Clinical data were collected retrospectively. RESULTS Positive HIF-1alpha expression was found in 65 (66.3%) of the cancer specimens. No HIF-1alpha expression was found in normal urothelial specimens. Tumor HIF-1alpha expression score was significantly correlated with tumor T stage (P < 0.001), N stage (P < 0.001) and grade (P = 0.004). Tumor necrosis was associated with high tumor T stage (P < 0.001), N stage (P = 0.002) and grade (P < 0.001). Higher HIF-1alpha score (negative vs 3-5 vs 6-7) was a significant predictor for cancer-specific survival (Cox regression hazard ratio = 2.23, P = 0.004), and tumor recurrence (Cox regression hazard ratio = 1.58, P = 0.036). CONCLUSION Our findings indicate that HIF-1alpha immunostaining may have an important role in predicting prognosis in upper urinary tract urothelial carcinoma.
Collapse
Affiliation(s)
- Hung-Lung Ke
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
88
|
Gao L, Laude K, Cai H. Mitochondrial pathophysiology, reactive oxygen species, and cardiovascular diseases. Vet Clin North Am Small Anim Pract 2008; 38:137-55, vi. [PMID: 18249246 DOI: 10.1016/j.cvsm.2007.10.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This article discusses mitochondrial pathophysiology, reactive oxygen species, and cardiovascular diseases. Mitochondrial respiratory chains are responsible for energy metabolism/ATP production through the tricyclic antidepressant cycle, coupling of oxidative phosphorylation, and electron transfer. The mitochondrion produces reactive oxygen species as "side products" of respiration. The mitochondrial derived reactive oxygen species is involved in the pathogenesis of various clinical disorders including heart failure, hypoxia, ischemia/reperfusion injury, diabetes, neurodegenerative diseases, and the physiologic process of aging. Observational and mechanistical studies of these pathologic roles of mitochondria are discussed in depth in this article.
Collapse
Affiliation(s)
- Ling Gao
- Division of Molecular Medicine, Department of Anesthesiology, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| | | | | |
Collapse
|
89
|
Fei GH, Feng ZP. Chronic hypoxia-induced alteration of presynaptic protein profiles and neurobehavioral dysfunction are averted by supplemental oxygen in Lymnaea stagnalis. Neuroscience 2008; 153:318-28. [DOI: 10.1016/j.neuroscience.2008.01.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 01/16/2008] [Accepted: 01/28/2008] [Indexed: 11/28/2022]
|
90
|
Chua ACG, Graham RM, Trinder D, Olynyk JK. The regulation of cellular iron metabolism. Crit Rev Clin Lab Sci 2008; 44:413-59. [PMID: 17943492 DOI: 10.1080/10408360701428257] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
While iron is an essential trace element required by nearly all living organisms, deficiencies or excesses can lead to pathological conditions such as iron deficiency anemia or hemochromatosis, respectively. A decade has passed since the discovery of the hemochromatosis gene, HFE, and our understanding of hereditary hemochromatosis (HH) and iron metabolism in health and a variety of diseases has progressed considerably. Although HFE-related hemochromatosis is the most widespread, other forms of HH have subsequently been identified. These forms are not attributed to mutations in the HFE gene but rather to mutations in genes involved in the transport, storage, and regulation of iron. This review is an overview of cellular iron metabolism and regulation, describing the function of key proteins involved in these processes, with particular emphasis on the liver's role in iron homeostasis, as it is the main target of iron deposition in pathological iron overload. Current knowledge on their roles in maintaining iron homeostasis and how their dysregulation leads to the pathogenesis of HH are discussed.
Collapse
Affiliation(s)
- Anita C G Chua
- School of Medicine and Pharmacology, University of Western Australia, Fremantle, Western Australia, Australia
| | | | | | | |
Collapse
|
91
|
Abstract
Decreases in oxygen levels are observed in physiological processes, such as development, and pathological situations, such as tumorigenesis and ischemia. In the complete absence of oxygen (anoxia), mammalian cells are unable to generate sufficient energy for survival, so a mechanism for sensing a decrease in the oxygen level (hypoxia) before it reaches a critical point is crucial for the survival of the organism. In response to decreased oxygen levels, cells activate the transcription factors hypoxia-inducible factors (HIFs), which lead to metabolic adaptation to hypoxia, as well as to generate new vasculature to increase oxygen supply. How cells sense decreases in oxygen levels to regulate HIF activation has been hotly debated. Emerging evidence indicates that reactive oxygen species (ROS) generated by mitochondrial complex III are required for hypoxic activation of HIF. This review examines the current knowledge about the role of mitochondrial ROS in HIF activation, as well as implications of ROS-level regulation in pathological processes such as cancer.
Collapse
|
92
|
HSP70 reduces chronic hypoxia-induced neural suppression via regulating expression of syntaxin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008. [PMID: 18085243 DOI: 10.1007/978-0-387-73693-8_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Long-term exposure to modest hypoxia conditions may result in neural dysfunction; however, the involvement of presynaptic proteins has not been tested directly. Here, we reported that adult snails, Lymnaea stagnalis, developed a slow righting movement after placement in low O2 (approximately 5%) for 4 days. Semi-quantitative Western blot analysis showed that hypoxia induced heat shock protein 70 (HSP70) up-regulation and a reduction of syntaxin I. The inducible HSP70 occurs within 6 hours preceding the down-regulation of syntaxin I, suggesting that HSP70 may be involved in regulation of syntaxin expression. Injecting directly double-stranded RNAs (dsRNA) into the center ganglia region, we found that dsRNA HSP70, not the scrambled RNA, prevented the hypoxia-induced HSP70 expression, enhanced the hypoxia-dependent down-regulation of syntaxin I, and aggravated motor suppression. We thus provided the first evidence that early induction of HSP70 by chronic hypoxia is critical for maintaining expression levels of presynaptic proteins and neural function. These findings implicate a new molecular mechanism underlying chronic hypoxia-induced neurobehavioral adaptation and impairment.
Collapse
|
93
|
Esteve JM, Launay JM, Kellermann O, Maroteaux L. Functions of serotonin in hypoxic pulmonary vascular remodeling. Cell Biochem Biophys 2008; 47:33-44. [PMID: 17406058 DOI: 10.1385/cbb:47:1:33] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/11/2022]
Abstract
In lung vasculature, reversible constriction of smooth muscle cells exists in response to acute decrease in oxygen levels (hypoxia). Progressive and irreversible structural remodeling that reduces blood vessel lumen takes place in response to chronic hypoxia and results in pulmonary hypertension. Several studies have shown a role of serotonin in regulating acute and chronic hypoxic responses. In this review the contribution of serotonin, its receptors and transporter in lung hypoxic responses is discussed. Hypoxic conditions modify plasma levels of serotonin, serotonin transporter activity, and expression of 5-HT1B and 5-HT2B receptors. These appear to be required for pulmonary vascular cell proliferation, which depends on the ratio between reactive oxygen species and nitric oxide. A heterozygous mutation was identified in the 5-HT2B receptor gene of a patient who developed pulmonary hypertension after fenfluramines anorexigen treatment. This C-terminus truncated 5-HT2B mutant receptor presents lower nitric oxide coupling, and higher cell proliferation capacity than the wild-type receptor. Under low oxygen tension, cells increase the transcription of specific genes via stabilization of the transcription factor hypoxia-inducible factor (HIF)-1. Factors such as angiotensin II or thrombin that can also control HIF-1 pathway contribute to pulmonary vascular remodeling. The 5-HT2B receptor via phosphatidylinositol-3 kinase/Akt activates nuclear factor-kappaB, which is involved in the regulation of HIF-1 expression. Acontrol of HIF- 1 by 5-HT2B receptors explains why expression of pulmonary vascular remodeling factors, such as endothelin-1 or transforming growth factor-beta, which is HIF-1-alpha regulated, is not modified in hypoxic 5-HT2B receptor mutant mice. Understanding the detailed mechanisms involved in lung hypoxic responses may provide general insight into pulmonary hypertension pathogenesis.
Collapse
|
94
|
Peltzer J, Colman L, Cebrian J, Musa H, Peckham M, Keller A. Novel murine clonal cell lines either express slow or mixed (fast and slow) muscle markers following differentiation in vitro. Dev Dyn 2008; 237:1412-23. [DOI: 10.1002/dvdy.21543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
95
|
Tarumoto T, Imagawa S, Kobayashi M, Hirayama A, Ozawa K, Nagasawa T. L-arginine administration reverses anemia associated with renal disease. Int J Hematol 2007; 86:126-9. [PMID: 17875525 DOI: 10.1532/ijh97.06212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recombinant human erythropoietin (rhEpo) has proved to be remarkably safe and effective for the treatment of anemia. Despite the use of rhEpo, concerns about its cost, the need for frequent parenteral administration, and the development of anti-Epo antibodies have prompted the development of improved agents to rescue anemia. Patients with anemia associated with renal disease are usually treated by intravenous or subcutaneous rhEpo administration; however, some patients do not respond well to rhEpo, because of the presence of Epo antibody or other unknown reasons. A new, orally administered drug is needed as an economical and effective method to treat such patients. We administered 1.3 g/day of L-arginine to 8 elderly patients with anemia associated with renal disease. All 8 patients responded to the treatment with increases in hemoglobin levels. Six of the patients showed improved renal function. There were no significant adverse effects. Our data show that oral administration of 1.3 g/day of L-arginine significantly improves Epo production and reverses anemia without adverse effects in elderly patients who have anemia associated with renal disease and are in the predialysis state of chronic renal failure.
Collapse
Affiliation(s)
- Takahisa Tarumoto
- Division of Hematology, Department of Medicine, Jichi Medical School, Shimotsuke, Japan
| | | | | | | | | | | |
Collapse
|
96
|
Loss of the SdhB, but Not the SdhA, subunit of complex II triggers reactive oxygen species-dependent hypoxia-inducible factor activation and tumorigenesis. Mol Cell Biol 2007; 28:718-31. [PMID: 17967865 DOI: 10.1128/mcb.01338-07] [Citation(s) in RCA: 334] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitochondrial complex II is a tumor suppressor comprised of four subunits (SdhA, SdhB, SdhC, and SdhD). Mutations in any of these should disrupt complex II enzymatic activity, yet defects in SdhA produce bioenergetic deficiency while defects in SdhB, SdhC, or SdhD induce tumor formation. The mechanisms underlying these differences are not known. We show that the inhibition of distal subunits of complex II, either pharmacologically or via RNA interference of SdhB, increases normoxic reactive oxygen species (ROS) production, increases hypoxia-inducible factor alpha (HIF-alpha) stabilization in an ROS-dependent manner, and increases growth rates in vitro and in vivo without affecting hypoxia-mediated activation of HIF-alpha. Proximal pharmacologic inhibition or RNA interference of complex II at SdhA, however, does not increase normoxic ROS production or HIF-alpha stabilization and results in decreased growth rates in vitro and in vivo. Furthermore, the enhanced growth rates resulting from SdhB suppression are inhibited by the suppression of HIF-1alpha and/or HIF-2alpha, indicating that the mechanism of SdhB-induced tumor formation relies upon ROS production and subsequent HIF-alpha activation. Therefore, differences in ROS production, HIF proliferation, and cell proliferation contribute to the differences in tumor phenotype in cells lacking SdhB as opposed to those lacking SdhA.
Collapse
|
97
|
Biron-Shental T, Schaiff WT, Rimon E, Shim TL, Nelson DM, Sadovsky Y. Hypoxia enhances the expression of follistatin-like 3 in term human trophoblasts. Placenta 2007; 29:51-7. [PMID: 17959243 DOI: 10.1016/j.placenta.2007.09.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 08/15/2007] [Accepted: 09/05/2007] [Indexed: 01/21/2023]
Abstract
Hypoxic injury hinders placental differentiation and alters trophoblast gene expression. We tested the hypothesis that the expression of follistatin-like 3 (FSTL3), a member of the follistatin family of proteins, is modulated by hypoxia in primary human trophoblast (PHT). Using immunofluorescence of human term placental villi we detected the expression of FSTL3 protein in placental villi, primarily in trophoblasts. We verified this finding in cultured term PHT cells. Basal expression of FSTL3 transcript in cultured PHT cells, determined using quantitative PCR, was stable over the culture period. Importantly, when compared to culture in FiO(2)=20% or FiO(2)=8%, PHT cells cultured in FiO(2) <1% exhibited a 4-6 fold increase in FSTL3 mRNA expression as early as 4h in hypoxia. Whereas cellular FSTL3 protein was unchanged in hypoxia, we found that hypoxia increased the level of FSTL3 in the medium. Lastly, the exposure of PHT cells to either the hypoxia-mimetic cobalt chloride or the proline hydroxylase inhibitor dimethyloxaloylglycine upregulated the expression of FSTL3 transcript. Our data indicate that hypoxia enhances the expression of FSTL3 and its release from PHT cells. Our finding that hypoxia-mimetic agents enhance FSTL3 expression implicates HIF1alpha in this process.
Collapse
Affiliation(s)
- T Biron-Shental
- Department of Obstetrics and Gynecology, Washington University, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
98
|
Abstract
Hypoxia, i.e. decreased availability of oxygen occurs under many different circumstances and can be either continuous or intermittent. Continuous hypoxia such as that experienced during periods of high altitude leads to physiological adaptations, whereas chronic IH (intermittent hypoxia) associated with sleep-disordered breathing manifested as recurrent apneas leads to morbidity. The purpose of the present chapter is to highlight recent findings on cellular responses to IH. Studies on cell culture models of IH revealed that for a given duration and intensity, IH is more potent than continuous hypoxia in evoking transcriptional activation. IH activates HIF-1 (hypoxia-inducible factor-1), the immediate early gene c-fos, activator protein-1, nuclear factor kappaB and cAMP-response-element-binding protein. Physiological studies showed that HIF-1 plays an important role in chronic IH-induced autonomic abnormalities in mice. IH affects expression of proteins associated with neuronal survival and apoptosis, as well as post-translational modifications of proteins resulting in increased biological activity. Comparisons between continuous hypoxia and IH revealed notable differences in the kinetics of protein kinase activation, type of protein kinase being activated and the downstream targets of protein kinases. IH increases ROS (reactive oxygen species) generation both in cell culture and in intact animals, and ROS-mediated signalling mechanisms contribute to cellular and systemic responses to IH. Future studies utilizing genomic and proteomic approaches may provide important clues to the mechanisms by which IH leads to morbidity as opposed to continuous hypoxia-induced adaptations. Cellular mechanisms associated with IH (other than recurrent apneas) such as repetitive, brief ascents to altitude, however, remain to be studied.
Collapse
Affiliation(s)
- Jayasri Nanduri
- Center for Systems Biology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|
99
|
Abstract
Since a constant supply of oxygen is essential to sustain life, organisms have evolved multiple defence mechanisms to ensure maintenance of the delicate balance between oxygen supply and demand. However, this homeostatic balance is perturbed in response to a severe impairment of oxygen supply, thereby activating maladaptive signalling cascades that result in cardiac damage. Past research efforts have largely focused on determining the pathophysiological effects of severe lack of oxygen. By contrast, and as reviewed here, exposure to moderate chronic hypoxia may induce cardioprotective properties. The hypothesis put forward is that chronic hypoxia triggers regulatory pathways that mediate long-term cardiac metabolic remodelling, particularly at the transcriptional level. The novel proposal is that exposure to chronic hypoxia triggers (a) oxygen-sensitive transcriptional modulators that induce a switch to increased carbohydrate metabolism (fetal gene programme) and (b) enhanced mitochondrial respiratory capacity to sustain and increase efficiency of mitochondrial energy production. These compensatory protective mechanisms preserve contractile function despite hypoxia.
Collapse
Affiliation(s)
- M Faadiel Essop
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
100
|
Tengan CH, Kiyomoto BH, Godinho RO, Gamba J, Neves AC, Schmidt B, Oliveira ASB, Gabbai AA. The role of nitric oxide in muscle fibers with oxidative phosphorylation defects. Biochem Biophys Res Commun 2007; 359:771-7. [PMID: 17560547 DOI: 10.1016/j.bbrc.2007.05.184] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Accepted: 05/25/2007] [Indexed: 11/30/2022]
Abstract
NO has been pointed as an important player in the control of mitochondrial respiration, especially because of its inhibitory effect on cytochrome c oxidase (COX). However, all the events involved in this control are still not completely elucidated. We demonstrate compartmentalized abnormalities on nitric oxide synthase (NOS) activity on muscle biopsies of patients with mitochondrial diseases. NOS activity was reduced in the sarcoplasmic compartment in COX deficient fibers, whereas increased activity was found in the sarcolemma of fibers with mitochondrial proliferation. We observed increased expression of neuronal NOS (nNOS) in patients and a correlation between nNOS expression and mitochondrial content. Treatment of skeletal muscle culture with an NO donor induced an increase in mitochondrial content. Our results indicate specific roles of NO in compensatory mechanisms of muscle fibers with mitochondrial deficiency and suggest the participation of nNOS in the signaling process of mitochondrial proliferation in human skeletal muscle.
Collapse
Affiliation(s)
- Célia H Tengan
- Department of Neurology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|