51
|
Leergaard TB, Hilgetag CC, Sporns O. Mapping the connectome: multi-level analysis of brain connectivity. Front Neuroinform 2012; 6:14. [PMID: 22557964 PMCID: PMC3340894 DOI: 10.3389/fninf.2012.00014] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 04/03/2012] [Indexed: 02/03/2023] Open
Affiliation(s)
- Trygve B Leergaard
- Centre for Molecular Biology and Neuroscience, Institute of Basic Medical Sciences, University of Oslo Oslo, Norway
| | | | | |
Collapse
|
52
|
Willette AA, Bendlin BB, Colman RJ, Kastman EK, Field AS, Alexander AL, Sridharan A, Allison DB, Anderson R, Voytko ML, Kemnitz JW, Weindruch RH, Johnson SC. Calorie restriction reduces the influence of glucoregulatory dysfunction on regional brain volume in aged rhesus monkeys. Diabetes 2012; 61:1036-42. [PMID: 22415875 PMCID: PMC3331743 DOI: 10.2337/db11-1187] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Insulin signaling dysregulation is related to neural atrophy in hippocampus and other areas affected by neurovascular and neurodegenerative disorders. It is not known if long-term calorie restriction (CR) can ameliorate this relationship through improved insulin signaling or if such an effect might influence task learning and performance. To model this hypothesis, magnetic resonance imaging was conducted on 27 CR and 17 control rhesus monkeys aged 19-31 years from a longitudinal study. Voxel-based regression analyses were used to associate insulin sensitivity with brain volume and microstructure cross-sectionally. Monkey motor assessment panel (mMAP) performance was used as a measure of task performance. CR improved glucoregulation parameters and related indices. Higher insulin sensitivity predicted more gray matter in parietal and frontal cortices across groups. An insulin sensitivity × dietary condition interaction indicated that CR animals had more gray matter in hippocampus and other areas per unit increase relative to controls, suggesting a beneficial effect. Finally, bilateral hippocampal volume adjusted by insulin sensitivity, but not volume itself, was significantly associated with mMAP learning and performance. These results suggest that CR improves glucose regulation and may positively influence specific brain regions and at least motor task performance. Additional studies are warranted to validate these relationships.
Collapse
Affiliation(s)
- Auriel A. Willette
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, Wisconsin
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Barbara B. Bendlin
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Ricki J. Colman
- Wisconsin National Primate Research Center, Madison, Wisconsin
| | - Erik K. Kastman
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Aaron S. Field
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Andrew L. Alexander
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, Wisconsin
| | - Aadhavi Sridharan
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin
| | - David B. Allison
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Rozalyn Anderson
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
- Wisconsin National Primate Research Center, Madison, Wisconsin
| | - Mary-Lou Voytko
- Department of Neurobiology and Anatomy Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina
| | - Joseph W. Kemnitz
- Wisconsin National Primate Research Center, Madison, Wisconsin
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- Institute for Clinical and Translational Research, University of Wisconsin-Madison, Madison, Wisconsin
| | - Richard H. Weindruch
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | - Sterling C. Johnson
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, Wisconsin
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- Wisconsin National Primate Research Center, Madison, Wisconsin
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin
- Corresponding author: Sterling C. Johnson,
| |
Collapse
|
53
|
Gutman DA, Magnuson M, Majeed W, Keifer OP, Davis M, Ressler KJ, Keilholz S. Mapping of the mouse olfactory system with manganese-enhanced magnetic resonance imaging and diffusion tensor imaging. Brain Struct Funct 2012; 218:527-37. [PMID: 22527121 DOI: 10.1007/s00429-012-0413-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 04/03/2012] [Indexed: 12/29/2022]
Abstract
As the power of studying mouse genetics and behavior advances, research tools to examine systems level connectivity in the mouse are critically needed. In this study, we compared statistical mapping of the olfactory system in adult mice using manganese-enhanced MRI (MEMRI) and diffusion tensor imaging (DTI) with probabilistic tractography. The primary goal was to determine whether these complementary techniques can determine mouse olfactory bulb (OB) connectivity consistent with known anatomical connections. For MEMRI, 3D T1-weighted images were acquired before and after bilateral nasal administration of MnCl(2) solution. Concomitantly, high-resolution diffusion-tensor images were obtained ex vivo from a second group of mice and processed with a probabilistic tractography algorithm originating in the OB. Incidence maps were created by co-registering and overlaying data from the two scan modalities. The resulting maps clearly show pathways between the OB and amygdala, piriform cortex, caudate putamen, and olfactory cortex in both the DTI and MEMRI techniques that are consistent with the known anatomical connections. These data demonstrate that MEMRI and DTI are complementary, high-resolution neuroimaging tools that can be applied to mouse genetic models of olfactory and limbic system connectivity.
Collapse
Affiliation(s)
- David A Gutman
- Department of Biomedical Informatics, School of Medicine, Emory University, Atlanta, GA 30329, USA
| | | | | | | | | | | | | |
Collapse
|
54
|
Mishra A, Joshi R, Engelmann J, Logothetis NK. Synthesis and in vitro evaluation of a biotinylated dextran-derived probe for molecular imaging. ACS Chem Neurosci 2012; 3:268-73. [PMID: 22860193 DOI: 10.1021/cn200112v] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 01/16/2012] [Indexed: 11/30/2022] Open
Abstract
Herein we report the design, synthesis, and in vitro evaluation of a gadolinium-containing biotinylated dextran-derived molecular imaging probe as a prospective neuroanatomical tracer by means of magnetic resonance imaging (MRI). The probe was effectively taken up by cultured differentiated murine neuroblastoma cells and significantly enhanced the contrast in T(1)- and T(2)-weighted MR images of labeled cells under physiological conditions. A significant longitudinal relaxation rate enhancement in the presence of avidin was observed allowing the verification of the results in the end of noninvasive longitudinal MRI connectivity studies by post-mortem histology. The in vitro results indicate that the probe has the potential to be used in vivo to identify the organization of global neuronal networks in the brain with MRI.
Collapse
Affiliation(s)
| | | | | | - Nikos K. Logothetis
- Imaging Science and Biomedical
Engineering, University of Manchester,
Manchester M13 9PL, England
| |
Collapse
|
55
|
Gallagher JJ, Zhang X, Ziomek GJ, Jacobs RE, Bearer EL. Deficits in axonal transport in hippocampal-based circuitry and the visual pathway in APP knock-out animals witnessed by manganese enhanced MRI. Neuroimage 2012; 60:1856-66. [PMID: 22500926 DOI: 10.1016/j.neuroimage.2012.01.132] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 01/24/2012] [Accepted: 01/25/2012] [Indexed: 02/02/2023] Open
Abstract
Mounting evidence implicates axonal transport defects, typified by the presence of axonal varicosities with aberrant accumulations of cargo, as an early event in Alzheimer's disease (AD) pathogenesis. Work identifying amyloid precursor protein (APP) as a vesicular motor receptor for anterograde axonal transport further implicates axonal transport in AD. Manganese-enhanced MRI (MEMRI) detects axonal transport dynamics in preclinical studies. Here we pursue an understanding of the role of APP in axonal transport in the central nervous system by applying MEMRI to hippocampal circuitry and to the visual pathway in living mice homozygous for either wild type or a deletion in the APP gene (n=12 for each genotype). Following intra-ocular or stereotaxic hippocampal injection, we performed time-lapse MRI to detect Mn(2+) transport. Three dimensional whole brain datasets were compared on a voxel-wise basis using within-group pair-wise analysis. Quantification of transport to structures connected to injection sites via axonal fiber tracts was also performed. Histology confirmed consistent placement of hippocampal injections and no observable difference in glial-response to the injections. APP-/- mice had significantly reduced transport from the hippocampus to the septal nuclei and amygdala after 7h and reduced transport to the contralateral hippocampus after 25 h; axonal transport deficits in the APP-/- animals were also identified in the visual pathway. These data support a system-wide role for APP in axonal transport within the central nervous system and demonstrate the power of MEMRI for assessing neuronal circuitry involved in memory and learning.
Collapse
Affiliation(s)
- Joseph J Gallagher
- Biological Imaging Center, Beckman Institute, m/c 139-74, California Institute of Technology, Pasadena, California 91125, USA.
| | | | | | | | | |
Collapse
|
56
|
Eschenko O, Evrard HC, Neves RM, Beyerlein M, Murayama Y, Logothetis NK. Tracing of noradrenergic projections using manganese-enhanced MRI. Neuroimage 2012; 59:3252-65. [DOI: 10.1016/j.neuroimage.2011.11.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 10/08/2011] [Accepted: 11/09/2011] [Indexed: 11/29/2022] Open
|
57
|
Alexander AL, Hurley SA, Samsonov AA, Adluru N, Hosseinbor AP, Mossahebi P, Tromp DPM, Zakszewski E, Field AS. Characterization of cerebral white matter properties using quantitative magnetic resonance imaging stains. Brain Connect 2012; 1:423-46. [PMID: 22432902 DOI: 10.1089/brain.2011.0071] [Citation(s) in RCA: 342] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The image contrast in magnetic resonance imaging (MRI) is highly sensitive to several mechanisms that are modulated by the properties of the tissue environment. The degree and type of contrast weighting may be viewed as image filters that accentuate specific tissue properties. Maps of quantitative measures of these mechanisms, akin to microstructural/environmental-specific tissue stains, may be generated to characterize the MRI and physiological properties of biological tissues. In this article, three quantitative MRI (qMRI) methods for characterizing white matter (WM) microstructural properties are reviewed. All of these measures measure complementary aspects of how water interacts with the tissue environment. Diffusion MRI, including diffusion tensor imaging, characterizes the diffusion of water in the tissues and is sensitive to the microstructural density, spacing, and orientational organization of tissue membranes, including myelin. Magnetization transfer imaging characterizes the amount and degree of magnetization exchange between free water and macromolecules like proteins found in the myelin bilayers. Relaxometry measures the MRI relaxation constants T1 and T2, which in WM have a component associated with the water trapped in the myelin bilayers. The conduction of signals between distant brain regions occurs primarily through myelinated WM tracts; thus, these methods are potential indicators of pathology and structural connectivity in the brain. This article provides an overview of the qMRI stain mechanisms, acquisition and analysis strategies, and applications for these qMRI stains.
Collapse
Affiliation(s)
- Andrew L Alexander
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin 53705, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Logothetis NK. Intracortical recordings and fMRI: an attempt to study operational modules and networks simultaneously. Neuroimage 2012; 62:962-9. [PMID: 22248575 DOI: 10.1016/j.neuroimage.2012.01.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 12/22/2011] [Accepted: 01/01/2012] [Indexed: 11/26/2022] Open
Abstract
The brain can be envisaged as a complex adaptive system. It is characterized by a very high structural complexity and by massive connectivity, both of which change and evolve in response to experience. Information related to sensors and effectors is processed in both a parallel and a hierarchical fashion; the connectivity between different hierarchical levels is bidirectional, and its effectiveness is continuously controlled by specific associational and neuromodulatory centers. When questions are addressed at the level of a distributed, large-scale whole system such as that underlying perception and cognition, it is not clear what should be considered as an elementary operational unit because the behavior of integral, aggregate systems is always emergent and most often remains unpredicted by the behaviors of single cells. To localize and comprehend the neural mechanisms underlying our perceptual or cognitive capacities, concurrent studies of microcircuits, of local and long-range interconnectivity between small assemblies, and of the synergistic activity of larger neuronal populations are called for. In other words, multimodal methodologies that include invasive neuroscientific methods as well as global neuroimaging techniques are required, such as the various functional aspects of magnetic resonance imaging. These facts were the driving force behind the decision to begin animal-MRI in my lab. The wonderful idea of the editors of NeuroImage to publish a Special Issue commemorating 20years of functional fMRI provides me with the opportunity of sharing not only our first moments of frustration with the readers, but also our successful results.
Collapse
|
59
|
Lehallier B, Coureaud G, Maurin Y, Bonny JM. Effects of manganese injected into rat nostrils: implications for in vivo functional study of olfaction using MEMRI. Magn Reson Imaging 2012; 30:62-9. [DOI: 10.1016/j.mri.2011.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 07/05/2011] [Accepted: 08/13/2011] [Indexed: 10/15/2022]
|
60
|
Sourani D, Goelman G. The interaction between the dopaminergic and the serotonergic systems in the 6-OHDA rat model of Parkinson’s disease. Health (London) 2012. [DOI: 10.4236/health.2012.431179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
61
|
Bendlin B, Canu E, Willette A, Kastman E, McLaren D, Kosmatka K, Xu G, Field A, Colman R, Coe C, Weindruch R, Alexander A, Johnson S. Effects of aging and calorie restriction on white matter in rhesus macaques. Neurobiol Aging 2011; 32:2319.e1-11. [PMID: 20541839 PMCID: PMC2939965 DOI: 10.1016/j.neurobiolaging.2010.04.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 03/12/2010] [Accepted: 04/09/2010] [Indexed: 01/31/2023]
Abstract
Rhesus macaques on a calorie restricted diet (CR) develop less age-related disease, have virtually no indication of diabetes, are protected against sarcopenia, and potentially live longer. Beneficial effects of caloric restriction likely include reductions in age-related inflammation and oxidative damage. Oligodendrocytes are particularly susceptible to inflammation and oxidative stress, therefore, we hypothesized that CR would have a beneficial effect on brain white matter and would attenuate age-related decline in this tissue. CR monkeys and controls underwent diffusion tensor imaging (DTI). A beneficial effect of CR indexed by DTI was observed in superior longitudinal fasciculus, fronto-occipital fasciculus, external capsule, and brainstem. Aging effects were observed in several regions, although CR appeared to attenuate age-related alterations in superior longitudinal fasciculus, frontal white matter, external capsule, right parahippocampal white matter, and dorsal occipital bundle. The results, however, were regionally specific and also suggested that CR is not salutary across all white matter. Further evaluation of this unique cohort of elderly primates to mortality will shed light on the ultimate benefits of an adult-onset, moderate CR diet for deferring brain aging.
Collapse
Affiliation(s)
- B.B. Bendlin
- Geriatric Research Educational and Clinical Center, Wm. S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- University of Wisconsin School of Medicine and Public Health, Department of Medicine, Madison, WI, USA
| | - E. Canu
- Geriatric Research Educational and Clinical Center, Wm. S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- University of Wisconsin School of Medicine and Public Health, Department of Medicine, Madison, WI, USA
| | - A.A. Willette
- Harlow Primate Laboratory, Department of Psychology, Madison, WI, USA
- Wisconsin National Primate Research Center, Madison, WI
| | - E.K. Kastman
- Geriatric Research Educational and Clinical Center, Wm. S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- University of Wisconsin School of Medicine and Public Health, Department of Medicine, Madison, WI, USA
| | - D.G. McLaren
- Geriatric Research Educational and Clinical Center, Wm. S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- University of Wisconsin School of Medicine and Public Health, Department of Medicine, Madison, WI, USA
| | - K.J. Kosmatka
- Geriatric Research Educational and Clinical Center, Wm. S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- University of Wisconsin School of Medicine and Public Health, Department of Medicine, Madison, WI, USA
| | - G. Xu
- Geriatric Research Educational and Clinical Center, Wm. S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- University of Wisconsin School of Medicine and Public Health, Department of Medicine, Madison, WI, USA
| | - A.S. Field
- University of Wisconsin School of Medicine and Public Health, Department of Radiology, Madison, WI, USA
| | - R.J. Colman
- Wisconsin National Primate Research Center, Madison, WI
| | - C.L. Coe
- Harlow Primate Laboratory, Department of Psychology, Madison, WI, USA
- Wisconsin National Primate Research Center, Madison, WI
| | - R.H. Weindruch
- Geriatric Research Educational and Clinical Center, Wm. S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- University of Wisconsin School of Medicine and Public Health, Department of Medicine, Madison, WI, USA
- Wisconsin National Primate Research Center, Madison, WI
| | - A.L. Alexander
- University of Wisconsin School of Medicine and Public Health, Departments of Psychiatry and Medical Physics, Madison, WI, USA
- Waisman Laboratory for Brain Imaging and Behavior, Madison, WI, USA
| | - S.C. Johnson
- Geriatric Research Educational and Clinical Center, Wm. S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- University of Wisconsin School of Medicine and Public Health, Department of Medicine, Madison, WI, USA
| |
Collapse
|
62
|
Inoue T, Majid T, Pautler RG. Manganese enhanced MRI (MEMRI): neurophysiological applications. Rev Neurosci 2011; 22:675-94. [PMID: 22098448 DOI: 10.1515/rns.2011.048] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Manganese ion (Mn(2+)) is a calcium (Ca(2+)) analog that can enter neurons and other excitable cells through voltage gated Ca(2+) channels. Mn(2+) is also a paramagnetic that shortens the spin-lattice relaxation time constant (T(1)) of tissues where it has accumulated, resulting in positive contrast enhancement. Mn(2+) was first investigated as a magnetic resonance imaging (MRI) contrast agent approximately 20 years ago to assess the toxicity of the metal in rats. In the late 1990s, Alan Koretsky and colleagues pioneered the use of manganese enhanced MRI (MEMRI) towards studying brain activity, tract tracing and enhancing anatomical detail. This review will describe the methodologies and applications of MEMRI in the following areas: monitoring brain activity in animal models, in vivo neuronal tract tracing and using MEMRI to assess in vivo axonal transport rates.
Collapse
Affiliation(s)
- Taeko Inoue
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | | | | |
Collapse
|
63
|
Lehallier B, Andrey P, Maurin Y, Bonny JM. Iterative algorithm for spatial and intensity normalization of MEMRI images. Application to tract-tracing of rat olfactory pathways. Magn Reson Imaging 2011; 29:1304-16. [DOI: 10.1016/j.mri.2011.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 07/05/2011] [Accepted: 07/06/2011] [Indexed: 11/28/2022]
|
64
|
Mishra A, Schüz A, Engelmann J, Beyerlein M, Logothetis NK, Canals S. Biocytin-derived MRI contrast agent for longitudinal brain connectivity studies. ACS Chem Neurosci 2011; 2:578-87. [PMID: 22860157 DOI: 10.1021/cn200022m] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 08/03/2011] [Indexed: 11/28/2022] Open
Abstract
To investigate the connectivity of brain networks noninvasively and dynamically, we have developed a new strategy to functionalize neuronal tracers and designed a biocompatible probe that can be visualized in vivo using magnetic resonance imaging (MRI). Furthermore, the multimodal design used allows combined ex vivo studies with microscopic spatial resolution by conventional histochemical techniques. We present data on the functionalization of biocytin, a well-known neuronal tract tracer, and demonstrate the validity of the approach by showing brain networks of cortical connectivity in live rats under MRI, together with the corresponding microscopic details, such as fibers and neuronal morphology under light microscopy. We further demonstrate that the developed molecule is the first MRI-visible probe to preferentially trace retrograde connections. Our study offers a new platform for the development of multimodal molecular imaging tools of broad interest in neuroscience, that capture in vivo the dynamics of large scale neural networks together with their microscopic characteristics, thereby spanning several organizational levels.
Collapse
Affiliation(s)
| | | | | | | | - Nikos K. Logothetis
- Imaging Science and Biomedical Engineering, University of Manchester, Manchester M13 9PL, England
| | - Santiago Canals
- Instituto de Neurociencias CSIC-UMH, Campus de San Juan, 03550 San Juan de Alicante, Spain
| |
Collapse
|
65
|
Duyn JH, Koretsky AP. Novel frontiers in ultra-structural and molecular MRI of the brain. Curr Opin Neurol 2011; 24:386-93. [PMID: 21734576 DOI: 10.1097/wco.0b013e328348972a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Recent developments in the MRI of the brain continue to expand its use in basic and clinical neuroscience. This review highlights some areas of recent progress. RECENT FINDINGS Higher magnetic field strengths and improved signal detectors have allowed improved visualization of the various properties of the brain, facilitating the anatomical definition of function-specific areas and their connections. For example, by sensitizing the MRI signal to the magnetic susceptibility of tissue, it is starting to become possible to reveal the laminar structure of the cortex and identify millimeter-scale fiber bundles. Using exogenous contrast agents, and innovative ways to manipulate contrast, it is becoming possible to highlight specific fiber tracts and cell populations. These techniques are bringing us closer to understanding the evolutionary blueprint of the brain, improving the detection and characterization of disease, and help to guide treatment. SUMMARY Recent MRI techniques are leading to more detailed and more specific contrast in the study of the brain.
Collapse
Affiliation(s)
- Jeff H Duyn
- Laboratory of Functional and Molecular Imaging, National Institutes of Health, Bethesda, Maryland 20892-1060, USA.
| | | |
Collapse
|
66
|
Ziegler A, Kunth M, Mueller S, Bock C, Pohmann R, Schröder L, Faber C, Giribet G. Application of magnetic resonance imaging in zoology. ZOOMORPHOLOGY 2011. [DOI: 10.1007/s00435-011-0138-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
67
|
Yokawa T. [phMRI (pharmacological MRI): application in drug development]. Nihon Yakurigaku Zasshi 2011; 138:117-121. [PMID: 21908939 DOI: 10.1254/fpj.138.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
|
68
|
Zakiewicz IM, van Dongen YC, Leergaard TB, Bjaalie JG. Workflow and atlas system for brain-wide mapping of axonal connectivity in rat. PLoS One 2011; 6:e22669. [PMID: 21829640 PMCID: PMC3148247 DOI: 10.1371/journal.pone.0022669] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Accepted: 07/03/2011] [Indexed: 11/22/2022] Open
Abstract
Detailed knowledge about the anatomical organization of axonal connections is important for understanding normal functions of brain systems and disease-related dysfunctions. Such connectivity data are typically generated in neuroanatomical tract-tracing experiments in which specific axonal connections are visualized in histological sections. Since journal publications typically only accommodate restricted data descriptions and example images, literature search is a cumbersome way to retrieve overviews of brain connectivity. To explore more efficient ways of mapping, analyzing, and sharing detailed axonal connectivity data from the rodent brain, we have implemented a workflow for data production and developed an atlas system tailored for online presentation of axonal tracing data. The system is available online through the Rodent Brain WorkBench (www.rbwb.org; Whole Brain Connectivity Atlas) and holds experimental metadata and high-resolution images of histological sections from experiments in which axonal tracers were injected in the primary somatosensory cortex. We here present the workflow and the data system, and exemplify how the online image repository can be used to map different aspects of the brain-wide connectivity of the rat primary somatosensory cortex, including not only presence of connections but also morphology, densities, and spatial organization. The accuracy of the approach is validated by comparing results generated with our system with findings reported in previous publications. The present study is a contribution to a systematic mapping of rodent brain connections and represents a starting point for further large-scale mapping efforts.
Collapse
Affiliation(s)
- Izabela M. Zakiewicz
- Centre for Molecular Biology and Neuroscience, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Yvette C. van Dongen
- Centre for Molecular Biology and Neuroscience, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Trygve B. Leergaard
- Centre for Molecular Biology and Neuroscience, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Jan G. Bjaalie
- Centre for Molecular Biology and Neuroscience, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
69
|
Rivera-Mancía S, Ríos C, Montes S. Manganese accumulation in the CNS and associated pathologies. Biometals 2011; 24:811-25. [PMID: 21533671 DOI: 10.1007/s10534-011-9454-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 04/13/2011] [Indexed: 12/13/2022]
Abstract
Manganese (Mn) is an essential metal for life. It is a key constituent of clue enzymes in the central nervous system, contributing to antioxidant defenses, energetic metabolism, ammonia detoxification, among other important functions. Until now, Mn transport mechanisms are partially understood; however, it is known that it shares some mechanisms of transport with iron. CNS is susceptible to Mn toxicity because it possesses mechanisms that allow Mn entry and favor its accumulation. Cases of occupational Mn exposure have been extensively reported in the literature; however, there are other ways of exposure, such as long-term parental nutrition and liver failure. Manganism and hepatic encephalopathy are the most common pathologies associated with the effects of Mn exposure. Both pathologies are associated with motor and psychiatric disturbances, related in turn to mechanisms of damage such as oxidative stress and neurotransmitters alterations, the dopaminergic system being one of the most affected. Although manganism and Parkinson's disease share some characteristics, they differ in many aspects that are discussed here. The mechanisms for Mn transport and its participation in manganism and hepatic encephalopathy are also considered in this review. It is necessary to find an effective therapeutic strategy to decrease Mn levels in exposed individuals and to treat Mn long term effects. In the case of patients with chronic liver failure it would be worthwhile to test a low-Mn diet in order to ameliorate symptoms of hepatic encephalopathy possibly related to Mn accumulation.
Collapse
Affiliation(s)
- Susana Rivera-Mancía
- Neurochemistry Department, National Institute of Neurology and Neurosurgery 'Manuel Velasco Suárez', Insurgentes Sur 3877, La Fama, Tlalpan, Mexico City 14269, Mexico
| | | | | |
Collapse
|
70
|
Wu CWH, Vasalatiy O, Liu N, Wu H, Cheal S, Chen DY, Koretsky AP, Griffiths GL, Tootell RBH, Ungerleider LG. Development of a MR-visible compound for tracing neuroanatomical connections in vivo. Neuron 2011; 70:229-43. [PMID: 21521610 PMCID: PMC3419536 DOI: 10.1016/j.neuron.2011.03.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2011] [Indexed: 10/18/2022]
Abstract
Traditional studies of neuroanatomical connections require injection of tracer compounds into living brains, then histology of the postmortem tissue. Here, we describe and validate a compound that reveals neuronal connections in vivo, using MRI. The classic anatomical tracer CTB (cholera-toxin subunit-B) was conjugated with a gadolinium-chelate to form GdDOTA-CTB. GdDOTA-CTB was injected into the primary somatosensory cortex (S1) or the olfactory pathway of rats. High-resolution MR images were collected at a range of time points at 11.7T and 7T. The transported GdDOTA-CTB was visible for at least 1 month post-injection, clearing within 2 months. Control injections of non-conjugated GdDOTA into S1 were not transported and cleared within 1-2 days. Control injections of Gd-Albumin were not transported either, clearing within 7 days. These MR results were verified by classic immunohistochemical staining for CTB, in the same animals. The GdDOTA-CTB neuronal transport was target specific, monosynaptic, stable for several weeks, and reproducible.
Collapse
Affiliation(s)
- Carolyn W-H Wu
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Abstract
The use of manganese ions (Mn(2+)) as an MRI contrast agent was introduced over 20 years ago in studies of Mn(2+) toxicity in anesthetized rats (1). Manganese-enhanced MRI (MEMRI) evolved in the late nineties when Koretsky and associates pioneered the use of MEMRI for brain activity measurements (2) as well as neuronal tract tracing (3). Currently, MEMRI has three primary applications in biological systems: (1) contrast enhancement for anatomical detail, (2) activity-dependent assessment and (3) tracing of neuronal connections or tract tracing. MEMRI relies upon the following three main properties of Mn(2+): (1) it is a paramagnetic ion that shortens the spin lattice relaxation time constant (T(1)) of tissues, where it accumulates and hence functions as an excellent T(1) contrast agent; (2) it is a calcium (Ca(2+)) analog that can enter excitable cells, such as neurons and cardiac cells via voltage-gated Ca(2+) channels; and (3) once in the cells Mn(2+) can be transported along axons by microtubule-dependent axonal transport and can also cross synapses trans-synaptically to neighboring neurons. This chapter will emphasize the methodological approaches towards the use of MEMRI in biological systems.
Collapse
Affiliation(s)
- Cynthia A Massaad
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA.
| | | |
Collapse
|
72
|
Febo M. Technical and conceptual considerations for performing and interpreting functional MRI studies in awake rats. Front Psychiatry 2011; 2:43. [PMID: 21808625 PMCID: PMC3137945 DOI: 10.3389/fpsyt.2011.00043] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 06/29/2011] [Indexed: 01/12/2023] Open
Abstract
Functional neuroimaging studies in rodents have the potential to provide insight into neurodevelopmental and psychiatric conditions. The strength of the technique lies in its non-invasive nature that can permit longitudinal functional studies in the same animal over its adult life. The relatively good spatial and temporal resolution and the ever-growing database on the biological and biophysical basis of the blood oxygen level dependent (BOLD) signal make it a unique technique in preclinical neuroscience research. Our laboratory has used imaging to investigate brain activation in awake rats following cocaine administration and during the presentation of lactation-associated sensory stimuli. Factors that deserve attention when planning functional magnetic resonance imaging studies in rats include technical issues, animal physiology and interpretability of the resulting data. The present review discusses the pros and cons of animal imaging with a particular focus on the technical aspects of studies with awake rats. Overall, the benefits of the technique outweigh its limitations and the rapidly evolving methods will open the way for more laboratories to employ the technique in neuroscience research.
Collapse
Affiliation(s)
- Marcelo Febo
- Department of Psychiatry, The McKnight Brain Institute, University of Florida College of Medicine Gainesville, FL, USA
| |
Collapse
|
73
|
Abstract
Manganese-enhanced magnetic resonance imaging (MEMRI) relies on contrasts that are due to the shortening of the T (1) relaxation time of tissue water protons that become exposed to paramagnetic manganese ions. In experimental animals, the technique combines the high spatial resolution achievable by MRI with the biological information gathered by tissue-specific or functionally induced accumulations of manganese. After in vivo administration, manganese ions may enter cells via voltage-gated calcium channels. In the nervous system, manganese ions are actively transported along the axon. Based on these properties, MEMRI is increasingly used to delineate neuroanatomical structures, assess differences in functional brain activity, and unravel neuronal connectivities in both healthy animals and models of neurological disorders. Because of the cellular toxicity of manganese, a major challenge for a successful MEMRI study is to achieve the lowest possible dose for a particular biological question. Moreover, the interpretation of MEMRI findings requires a profound knowledge of the behavior of manganese in complex organ systems under physiological and pathological conditions. Starting with an overview of manganese pharmacokinetics and mechanisms of toxicity, this chapter covers experimental methods and protocols for applications in neuroscience.
Collapse
Affiliation(s)
- Susann Boretius
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, 37077 Göttingen, Germany.
| | | |
Collapse
|
74
|
Zheng W, Fu SX, Dydak U, Cowan DM. Biomarkers of manganese intoxication. Neurotoxicology 2010; 32:1-8. [PMID: 20946915 DOI: 10.1016/j.neuro.2010.10.002] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 10/04/2010] [Accepted: 10/04/2010] [Indexed: 01/30/2023]
Abstract
Manganese (Mn), upon absorption, is primarily sequestered in tissue and intracellular compartments. For this reason, blood Mn concentration does not always accurately reflect Mn concentration in the targeted tissue, particularly in the brain. The discrepancy between Mn concentrations in tissue or intracellular components means that blood Mn is a poor biomarker of Mn exposure or toxicity under many conditions and that other biomarkers must be established. For group comparisons of active workers, blood Mn has some utility for distinguishing exposed from unexposed subjects, although the large variability in mean values renders it insensitive for discriminating one individual from the rest of the study population. Mn exposure is known to alter iron (Fe) homeostasis. The Mn/Fe ratio (MIR) in plasma or erythrocytes reflects not only steady-state concentrations of Mn or Fe in tested individuals, but also a biological response (altered Fe homeostasis) to Mn exposure. Recent human studies support the potential value for using MIR to distinguish individuals with Mn exposure. Additionally, magnetic resonance imaging (MRI), in combination with noninvasive assessment of γ-aminobutyric acid (GABA) by magnetic resonance spectroscopy (MRS), provides convincing evidence of Mn exposure, even without clinical symptoms of Mn intoxication. For subjects with long-term, low-dose Mn exposure or for those exposed in the past but not the present, neither blood Mn nor MRI provides a confident distinction for Mn exposure or intoxication. While plasma or erythrocyte MIR is more likely a sensitive measure, the cut-off values for MIR among the general population need to be further tested and established. Considering the large accumulation of Mn in bone, developing an X-ray fluorescence spectroscopy or neutron-based spectroscopy method may create yet another novel non-invasive tool for assessing Mn exposure and toxicity.
Collapse
Affiliation(s)
- Wei Zheng
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | |
Collapse
|
75
|
Olsen Ø, Kristoffersen A, Thuen M, Sandvig A, Brekken C, Haraldseth O, Goa PE. Manganese transport in the rat optic nerve evaluated with spatial- and time-resolved magnetic resonance imaging. J Magn Reson Imaging 2010; 32:551-60. [DOI: 10.1002/jmri.22284] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
76
|
Willette AA, Gallagher C, Bendlin BB, McLaren DG, Kastman EK, Canu E, Kosmatka KJ, Field AS, Alexander AL, Colman RJ, Voytko MLL, Weindruch RH, Coe CL, Johnson SC. Homocysteine, neural atrophy, and the effect of caloric restriction in rhesus monkeys. Neurobiol Aging 2010; 33:670-80. [PMID: 20691506 DOI: 10.1016/j.neurobiolaging.2010.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 05/08/2010] [Accepted: 06/05/2010] [Indexed: 11/28/2022]
Abstract
Higher serum homocysteine (Hcy) levels in humans are associated with vascular pathology and greater risk for dementia, as well as lower global and regional volumes in frontal lobe and hippocampus. Calorie restriction (CR) in rhesus monkeys (Macaca mulatta) may confer neural protection against age- or Hcy-related vascular pathology. Hcy was collected proximal to a magnetic resonance imaging (MRI) acquisition in aged rhesus monkeys and regressed against volumetric and diffusion tensor imaging indexes using voxel-wise analyses. Higher Hcy was associated with lower white matter volume in pons and corpus callosum. Hcy was correlated with lower gray matter volume and density in prefrontal cortices and striatum. CR did not influence Hcy levels. However, control monkeys exhibited a strong negative correlation between Hcy and global gray matter, whereas no relationship was evident for the CR monkeys. Similar group differences were also seen across modalities in the splenium of the corpus callosum, prefrontal cortices, hippocampus, and somatosensory areas. The data suggest that CR may ameliorate the influence of Hcy on several important age-related parameters of parenchymal health.
Collapse
Affiliation(s)
- Auriel A Willette
- Harlow Primate Laboratory, Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Sung JH, Kim CY, Yang SO, Khang HS, Cheong HK, Lee JS, Song CW, Park JD, Han JH, Chung YH, Choi BS, Kwon IH, Cho MH, Yu IJ. Changes in Blood Manganese Concentration and MRI T1 Relaxation Time During 180 Days of Stainless Steel Welding-Fume Exposure in Cynomolgus Monkeys. Inhal Toxicol 2010; 19:47-55. [PMID: 17127642 DOI: 10.1080/08958370600985834] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Welders are at risk of being exposed to high concentrations of welding fumes and developing pneumoconiosis or other welding-fume exposure-related diseases. Among such diseases, manganism resulting from welding-fume exposure remains a controversial issue, as although the movement of manganese into specific brain regions has been established, the similar movement of manganese presented with other metals, such as welding fumes, has not been clearly demonstrated as being similar to that of manganese alone. Meanwhile, the competition between Mn and iron for iron transporters, such as transferrin and DMT-1, to the brain has also been implicated in the welding-fume exposure. Thus, the increased signal intensities in the basal ganglia, including the globus pallidus and subcortical frontal white matter, based on T1-weighted magnetic resonances in welders, require further examination as regards the correspondence with an increased manganese concentration. Accordingly, to investigate the movement of manganese after welding-fume exposure, 6 cynomolgus monkeys were acclimated for 1 mo and assigned to 3 dose groups: unexposed, low dose of (total suspended particulate [TSP] 31 mg/m3, 0.9 mg/m3 of Mn), and high dose of total suspended particulate (62 mg/m3 TSP, 1.95 mg/m3 of Mn). The primates were exposed to manual metal-arc stainless steel (MMA-SS) welding fumes for 2 h/day in an inhalation chamber system equipped with an automatic fume generator for 6 mo. Magnetic resonance imaging (MRI) studies of the basal ganglia were conducted before the initiation of exposure and thereafter every month. During the exposure, the blood chemistry was monitored every 2 wk and the concentrations of metal components in the blood were measured every 2 wk and compared with ambient manganese concentrations. The manganese concentrations in the blood did not show any significant increase until after 2 mo of exposure, and then reached a plateau after 90 days of exposure, showing that an exposure period of at least 60 days was required to build up the blood Mn concentration. Furthermore, as the blood Mn concentration continued to build, a continued decrease in the MRI T1 relaxation time in the basal ganglia was also detected. These data suggested that prolonged inhalation of welding fumes induces a high MRI T1 signal intensity with an elevation of the blood manganese level. The presence of a certain amount of iron or other metals, such as Cr and Ni, in the inhaled welding fumes via inhalation was not found to have a significant effect on the uptake of Mn into the brain or the induction of a high MRI T1 signal intensity.
Collapse
Affiliation(s)
- Jae Hyuck Sung
- Center for Occupational Toxicology, Occupational Safety and Health Research Institute, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Abstract
The parieto-insular vestibular cortex (PIVC) is thought to contain an important representation of vestibular information. Here we describe responses of macaque PIVC neurons to three-dimensional (3D) vestibular and optic flow stimulation. We found robust vestibular responses to both translational and rotational stimuli in the retroinsular (Ri) and adjacent secondary somatosensory (S2) cortices. PIVC neurons did not respond to optic flow stimulation, and vestibular responses were similar in darkness and during visual fixation. Cells in the upper bank and tip of the lateral sulcus (Ri and S2) responded to sinusoidal vestibular stimuli with modulation at the first harmonic frequency and were directionally tuned. Cells in the lower bank of the lateral sulcus (mostly Ri) often modulated at the second harmonic frequency and showed either bimodal spatial tuning or no tuning at all. All directions of 3D motion were represented in PIVC, with direction preferences distributed approximately uniformly for translation, but showing a preference for roll rotation. Spatiotemporal profiles of responses to translation revealed that half of PIVC cells followed the linear velocity profile of the stimulus, one-quarter carried signals related to linear acceleration (in the form of two peaks of direction selectivity separated in time), and a few neurons followed the derivative of linear acceleration (jerk). In contrast, mainly velocity-coding cells were found in response to rotation. Thus, PIVC comprises a large functional region in macaque areas Ri and S2, with robust responses to 3D rotation and translation, but is unlikely to play a significant role in visual/vestibular integration for self-motion perception.
Collapse
|
79
|
Retrograde axonal tracing using manganese enhanced magnetic resonance imaging. Neuroimage 2010; 50:366-74. [DOI: 10.1016/j.neuroimage.2010.01.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 12/20/2009] [Accepted: 01/06/2010] [Indexed: 11/23/2022] Open
|
80
|
Willette AA, Bendlin BB, McLaren DG, Canu E, Kastman EK, Kosmatka KJ, Xu G, Field AS, Alexander AL, Colman RJ, Weindruch RH, Coe CL, Johnson SC. Age-related changes in neural volume and microstructure associated with interleukin-6 are ameliorated by a calorie-restricted diet in old rhesus monkeys. Neuroimage 2010; 51:987-94. [PMID: 20298794 DOI: 10.1016/j.neuroimage.2010.03.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 03/02/2010] [Accepted: 03/04/2010] [Indexed: 11/24/2022] Open
Abstract
Systemic levels of proinflammatory cytokines such as interleukin-6 (IL-6) increase in old age and may contribute to neural atrophy in humans. We investigated IL-6 associations with age in T1-weighted segments and microstructural diffusion indices using MRI in aged rhesus monkeys (Macaca mulatta). Further, we determined if long-term 30% calorie restriction (CR) reduced IL-6 and attenuated its association with lower tissue volume and density. Voxel-based morphometry (VBM) and diffusion-weighted voxelwise analyses were conducted. IL-6 was associated with less global gray and white matter (GM and WM), as well as smaller parietal and temporal GM volumes. Lower fractional anisotropy (FA) was associated with higher IL-6 levels along the corpus callosum and various cortical and subcortical tracts. Higher IL-6 concentrations across subjects were also associated with increased mean diffusivity (MD) throughout many brain regions, particularly in corpus callosum, cingulum, and parietal, frontal, and prefrontal areas. CR monkeys had significantly lower IL-6 and less associated atrophy. An IL-6xCR interaction across modalities also indicated that CR mitigated IL-6 related changes in several brain regions compared to controls. Peripheral IL-6 levels were correlated with atrophy in regions sensitive to aging, and this relationship was decreased by CR.
Collapse
Affiliation(s)
- A A Willette
- Harlow Primate Laboratory, Department of Psychology, Madison, WI 53715, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Eschenko O, Canals S, Simanova I, Beyerlein M, Murayama Y, Logothetis N. Mapping of functional brain activity in freely behaving rats during voluntary running using manganese-enhanced MRI: Implication for longitudinal studies. Neuroimage 2010; 49:2544-55. [DOI: 10.1016/j.neuroimage.2009.10.079] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2009] [Revised: 10/28/2009] [Accepted: 10/29/2009] [Indexed: 10/20/2022] Open
|
82
|
|
83
|
Doron O, Goelman G. Evidence for asymmetric intra substantia nigra functional connectivity-application to basal ganglia processing. Neuroimage 2009; 49:2940-6. [PMID: 19944765 DOI: 10.1016/j.neuroimage.2009.11.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 11/02/2009] [Accepted: 11/13/2009] [Indexed: 11/30/2022] Open
Abstract
The growing uses of deep brain stimulation for various basal ganglia (BG) abnormalities have reinforced the need to better understand its functional circuitry and organization. Here we focus on cortico-basal-ganglia pathways to test the "parallel, segregated" versus "funneling, integrated" theories. Using manganese-enhanced MRI (MEMRI) together with principal component spatiotemporal analysis, we previously described two patterns of caudomedial striatum efferent connectivity to the substantia nigra pars reticulata (SNr) that were hypothesized to represent the coexistence of integrated and segregated processes. These patterns corresponded to a direct mono-synaptic projection to the dorsolateral core of the SN and to a di-synaptic projection covering the entire nucleus. In the current study, MEMRI of the rostrolateral striatum was carried out to test whether this coexistence remains in the mirror pathway, by measuring rostrolateral striatum efferent connectivity that is known to connect to the ventromedial SNr. Only one spatiotemporal pattern of manganese accumulation, corresponding to projections from the striatum, was observed. It corresponds to a mono-synaptic projection to the ventromedial SNr covering SNr laminas, but no manganese was observed at the dorsolateral SNr core. Together with our previous findings, this suggests functional asymmetry along the SNr which is consistent with the known anatomical organization of dendrite and axonal 3D arborization. Consequently, the polarized connectivity along the dorsolateral-ventromedial axis implies that funneling and integration occur in the core (dorsolateral SNr) to the lamina (ventromedial SNr) direction, whereas in the other direction, and within other parts of the SNr, segregation predominates.
Collapse
Affiliation(s)
- Omer Doron
- MRI/MRS Lab, the Human Biology Research Center Department of Medical Biophysics Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | | |
Collapse
|
84
|
Chuang KH, Koretsky AP. Accounting for nonspecific enhancement in neuronal tract tracing using manganese enhanced magnetic resonance imaging. Magn Reson Imaging 2009; 27:594-600. [PMID: 19144489 PMCID: PMC2766048 DOI: 10.1016/j.mri.2008.10.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2008] [Revised: 09/24/2008] [Accepted: 10/28/2008] [Indexed: 10/21/2022]
Abstract
Manganese enhanced MRI (MEMRI) is an emerging technique for tracing neuronal pathways in vivo. However, manganese may leak into blood vessels or cerebrospinal fluid (CSF) after local injection and can be circulated to and taken up by brain regions that may not have connections to the targeted pathways. Comparing enhancement time courses after intranasal injection with intravenous infusion of MnCl(2) in rats, the early enhancements in the pituitary gland (Pit) and hippocampus indicate the contrasts in those regions in the olfactory tract-tracing experiment were caused by such systemic effects. Since the Pit has easy access to manganese from the blood and its signal is proportional to other brain regions after intravenous infusion, it was used as an internal reference for the systemic effects. Applying intensity normalization by the Pit signal to tract-tracing data from the olfactory bulb led to reduced contrast in the hippocampus. These results demonstrate that nonspecific enhancements in MEMRI tract-tracing studies may have to be taken into account and that normalization by the Pit signal can compensate these effects.
Collapse
Affiliation(s)
- Kai-Hsiang Chuang
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
85
|
Bearer EL, Zhang X, Janvelyan D, Boulat B, Jacobs RE. Reward circuitry is perturbed in the absence of the serotonin transporter. Neuroimage 2009; 46:1091-104. [PMID: 19306930 DOI: 10.1016/j.neuroimage.2009.03.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Revised: 03/10/2009] [Accepted: 03/11/2009] [Indexed: 10/21/2022] Open
Abstract
The serotonin transporter (SERT) modulates the entire serotonergic system in the brain and influences both the dopaminergic and norepinephrinergic systems. These three systems are intimately involved in normal physiological functioning of the brain and implicated in numerous pathological conditions. Here we use high-resolution magnetic resonance imaging (MRI) and spectroscopy to elucidate the effects of disruption of the serotonin transporter in an animal model system: the SERT knock-out mouse. Employing manganese-enhanced MRI, we injected Mn(2+) into the prefrontal cortex and obtained 3D MR images at specific time points in cohorts of SERT and normal mice. Statistical analysis of co-registered datasets demonstrated that active circuitry originating in the prefrontal cortex in the SERT knock-out is dramatically altered, with a bias towards more posterior areas (substantia nigra, ventral tegmental area, and Raphé nuclei) directly involved in the reward circuit. Injection site and tracing were confirmed with traditional track tracers by optical microscopy. In contrast, metabolite levels were essentially normal in the SERT knock-out by in vivo magnetic resonance spectroscopy and little or no anatomical differences between SERT knock-out and normal mice were detected by MRI. These findings point to modulation of the limbic cortical-ventral striatopallidal by disruption of SERT function. Thus, molecular disruptions of SERT that produce behavioral changes also alter the functional anatomy of the reward circuitry in which all the monoamine systems are involved.
Collapse
Affiliation(s)
- Elaine L Bearer
- Biological Imaging Center, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | |
Collapse
|
86
|
Tucciarone J, Chuang KH, Dodd SJ, Silva A, Pelled G, Koretsky AP. Layer specific tracing of corticocortical and thalamocortical connectivity in the rodent using manganese enhanced MRI. Neuroimage 2009; 44:923-31. [PMID: 18755280 PMCID: PMC6329463 DOI: 10.1016/j.neuroimage.2008.07.036] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 07/03/2008] [Accepted: 07/09/2008] [Indexed: 11/20/2022] Open
Abstract
Information about layer specific connections in the brain comes mainly from classical neuronal tracers that rely on histology. Manganese Enhanced MRI (MEMRI) has mapped connectivity along a number of brain pathways in several animal models. It is not clear at what level of specificity neuronal connectivity measured using MEMRI tracing can resolve. The goal of this work was to determine if neural tracing using MEMRI could distinguish layer inputs of major pathways of the cortex. To accomplish this, tracing was performed between hemispheres of the somatosensory (S1) cortex and between the thalamus and S1 cortex. T(1) mapping and T(1) weighted pulse sequences detected layer specific tracing after local injection of MnCl(2). Approximately 12 h following injections into S1 cortex, maximal T(1) reductions were observed at 0.6+/-0.07 and 1.1+/-0.12 mm from the brain surface in the contralateral S1. These distances correspond to the positions of layer 3 and 5 consistent with the known callosal inputs along this pathway. Four to six hours following injection of MnCl(2) into the thalamus there were maximal T(1) reductions between 0.7+/-0.08 and 0.8+/-0.08 mm from the surface of the brain, which corresponds to layer 4. This is consistent with terminations of the known thalamocortical projections. In order to observe the first synapse projection, it was critical to perform MRI at the right time after injections to detect layer specificity with MEMRI. At later time points, tracing through the cortical network led to more uniform contrast throughout the cortex due to its complex neuronal connections. These results are consistent with well established neuronal pathways within the somatosensory cortex and demonstrate that layer specific somatosensory connections can be detected in vivo using MEMRI.
Collapse
Affiliation(s)
- Jason Tucciarone
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1065, USA
| | | | | | | | | | | |
Collapse
|
87
|
The globus pallidus sends reward-related signals to the lateral habenula. Neuron 2009; 60:720-9. [PMID: 19038227 DOI: 10.1016/j.neuron.2008.09.035] [Citation(s) in RCA: 235] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 08/25/2008] [Accepted: 09/25/2008] [Indexed: 11/21/2022]
Abstract
As a major output station of the basal ganglia, the globus pallidus internal segment (GPi) projects to the thalamus and brainstem nuclei thereby controlling motor behavior. A less well known fact is that the GPi also projects to the lateral habenula (LHb) which is often associated with the limbic system. Using the monkey performing a saccade task with positionally biased reward outcomes, we found that antidromically identified LHb-projecting neurons were distributed mainly in the dorsal and ventral borders of the GPi and that their activity was strongly modulated by expected reward outcomes. A majority of them were excited by the no-reward-predicting target and inhibited by the reward-predicting target. These reward-dependent modulations were similar to those in LHb neurons but started earlier than those in LHb neurons. These results suggest that GPi may initiate reward-related signals through its effects on the LHb, which then influences the dopaminergic and serotonergic systems.
Collapse
|
88
|
Field CB, Johnston K, Gati JS, Menon RS, Everling S. Connectivity of the primate superior colliculus mapped by concurrent microstimulation and event-related FMRI. PLoS One 2008; 3:e3928. [PMID: 19079541 PMCID: PMC2592545 DOI: 10.1371/journal.pone.0003928] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 11/13/2008] [Indexed: 11/30/2022] Open
Abstract
Background Neuroanatomical studies investigating the connectivity of brain areas have heretofore employed procedures in which chemical or viral tracers are injected into an area of interest, and connected areas are subsequently identified using histological techniques. Such experiments require the sacrifice of the animals and do not allow for subsequent electrophysiological studies in the same subjects, rendering a direct investigation of the functional properties of anatomically identified areas impossible. Methodology/Principal Findings Here, we used a combination of microstimulation and fMRI in an anesthetized monkey preparation to study the connectivity of the superior colliculus (SC). Microstimulation of the SC resulted in changes in the blood oxygenation level-dependent (BOLD) signals in the SC and in several cortical and subcortical areas consistent with the known connectivity of the SC in primates. Conclusions/Significance These findings demonstrates that the concurrent use of microstimulation and fMRI can be used to identify brain networks for further electrophysiological or fMRI investigation.
Collapse
Affiliation(s)
- Courtney B. Field
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | | | | | | | - Stefan Everling
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
- Robarts Research Institute, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
89
|
Madsen KS, Holm DA, Søgaard LV, Rowland IJ. Effect of paramagnetic manganese cations on (1)H MRS of the brain. NMR IN BIOMEDICINE 2008; 21:1087-1093. [PMID: 18574854 DOI: 10.1002/nbm.1285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Manganese cations (Mn(2+)) can be used as an intracellular contrast agent for structural, functional and neural pathway imaging applications. However, at high concentrations, Mn(2+) is neurotoxic and may influence the concentration of (1)H MR-detectable metabolites. Furthermore, the paramagnetic Mn(2+) cations may also influence the relaxation of the metabolites under investigation. Consequently, the purpose of this study was to investigate the effect of paramagnetic Mn(2+) cations on (1)H-MR spectra of the brain using in vivo and phantom models at 4.7 T. To investigate the direct paramagnetic effects of Mn(2+) cations on the relaxation of N-acetylaspartate (NAA), creatine and choline, T(1) relaxation times of metabolite solutions, with and without 5% albumin, and containing different Mn(2+) concentrations were determined. Relaxivity values with/without 5% albumin for NAA (4.8/28.1 s(-1) mM(-1)), creatine (2.8/2.8 s(-1) mM(-1)) and choline (1.8/1.1 s(-1) mM(-1)) showed NAA to be the most sensitive metabolite to the relaxation effects of the cations. Using an in vivo optic tract tracing imaging model, we obtained two adjacent regions of interest in the superior colliculi with different water T(1) values (Mn(2+)-enhanced = 1.01 s; unenhanced = 1.14 s) 24 h after intravitreal injection of 3 microL 50 mM MnCl(2). Using phantom and in vivo water relaxation time data, we estimated the in vivo Mn(2+) concentration to be 2-8 microM. The phantom data suggest that limited metabolite relaxation effects would be expected at this concentration. Consequently, this study indicates that, in this model, the presence of Mn(2+) cations does not significantly affect (1)H-MR spectra despite possible toxic and paramagnetic effects.
Collapse
Affiliation(s)
- Kathrine Skak Madsen
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital, Hvidovre, Denmark.
| | | | | | | |
Collapse
|
90
|
Lowe AS, Thompson ID, Sibson NR. Quantitative manganese tract tracing: dose-dependent and activity-independent terminal labelling in the mouse visual system. NMR IN BIOMEDICINE 2008; 21:859-867. [PMID: 18613265 DOI: 10.1002/nbm.1272] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
At concentrations sufficient for visualisation using MRI, manganese (Mn) is believed to behave as a calcium analogue. This study examines different concentrations of Mn for enhanced MR tract tracing. The premise of activity-dependent axonal transport was also examined by partial or complete blockade of retinal ganglion cell activity. Quantitative T(1) maps and semi-quantitative normalised signal intensities in the superior colliculi facilitated assessment of applied intraocular concentrations and activity dependence, respectively. Varying the concentration of applied Mn revealed a non-monotonic profile, with optimal, unfavourable and undesirable effects noted: 25 mM proved optimal, showing a maximal decrease in T(1), whereas 400 mM was associated with no terminal-field enhancement. The estimated vitreal concentration for optimal transport of Mn (2 mM) is substantially lower than that used in previous studies of the mouse. Both the partial blockade of inputs to 50% of retinal ganglion cells by a mGluR6 glutamate agonist and the complete blockade of all retinal ganglion cell activity with tetrodotoxin failed to decrease the relative enhancement in the superior colliculus. The failure to prevent axonal transport of Mn by blocking activity (and therefore theoretically the intracellular influx) appeared to be paradoxical. The optimal vitreal concentration of Mn has previously been shown to facilitate massive intracellular uptake of Mn, competitively blocking calcium, and 1 mM Mn blocks neurotransmission pre-synaptically. These results suggest that, at concentrations required for optimal Mn-enhanced MRI tract tracing in the visual system of the mouse, the uptake and transport of Mn may be dominated by passive mechanisms, which may also block neurotransmission.
Collapse
Affiliation(s)
- Andrew S Lowe
- Experimental Neuroimaging Group, Department of Physiology, Anatomy and Genetics, Oxford, UK.
| | | | | |
Collapse
|
91
|
Thuen M, Berry M, Pedersen TB, Goa PE, Summerfield M, Haraldseth O, Sandvig A, Brekken C. Manganese-enhanced MRI of the rat visual pathway: Acute neural toxicity, contrast enhancement, axon resolution, axonal transport, and clearance of Mn2+. J Magn Reson Imaging 2008; 28:855-65. [PMID: 18821627 DOI: 10.1002/jmri.21504] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Marte Thuen
- Department of Circulation and Medical Imaging, NTNU, Trondheim, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Li Y, Fang F, Wang X, Lei H. Neuronal projections from ventral tegmental area to forebrain structures in rat studied by manganese-enhanced magnetic resonance imaging. Magn Reson Imaging 2008; 27:293-9. [PMID: 18786796 DOI: 10.1016/j.mri.2008.07.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 05/05/2008] [Accepted: 07/13/2008] [Indexed: 10/21/2022]
Abstract
Manganese-enhanced magnetic resonance imaging (MEMRI) has been widely applied to trace neuronal tracts and to monitor morphological and functional responses of specific brain circuits to changes in physiological and/or environmental conditions. In this study, we traced the efferent axonal projections from ventral tegmental area (VTA) to forebrain structures, an integrating part of the reward circuit implicated in drug addiction, in rats using MEMRI. Urethane- and chloral hydrate-anesthetized rats received injection of 100 nl of 200 mM MnCl(2) solution into the right VTA. Mn(2+)-induced signal enhancements were monitored 24 h after injection. The dose of MnCl(2) injection was shown, by histological evaluation, to have minor toxic effects to the neurons in/near the injection site. Dynamic Mn(2+)-induced signal intensity changes in urethane-anesthetized rats during a 24-h period were fit to a sigmoidal function to obtain parameters slope and t(50), which describe the dynamics of apparent Mn(2+)accumulation. The results showed that most of the forebrain structures known to receive neuronal projections from the VTA, including prefrontal cortex, nucleus accumbens, globus pallidus and caudate putaman, were enhanced at 24 h after injection of MnCl(2) into the ipsilateral VTA, and anesthesia seemed have little effects on the amount of Mn(2+)being transported from the VTA to these structures.
Collapse
Affiliation(s)
- Yingxia Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | | | | | | |
Collapse
|
93
|
Mapping prefrontal circuits in vivo with manganese-enhanced magnetic resonance imaging in monkeys. J Neurosci 2008; 28:7637-47. [PMID: 18650340 DOI: 10.1523/jneurosci.1488-08.2008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Manganese-enhanced magnetic resonance imaging (MEMRI) provides a powerful tool to study multisynaptic circuits in vivo and thereby to link information about neural structure and function within individual subjects. Making the best use of MEMRI in monkeys requires minimizing manganese-associated neurotoxicity, maintaining sensitivity to manganese-dependent signal changes and mapping transport throughout the brain without a priori anatomical hypotheses. Here, we performed intracortical injections of isotonic MnCl(2), comparisons of preinjection and postinjection scans, and voxelwise statistical mapping. Isotonic MnCl(2) did not cause cell death at the injection site, damage to downstream targets of manganese transport, behavioral deficits, or changes in neuronal responsiveness. We detected and mapped manganese transport throughout cortical-subcortical circuits by using voxelwise statistical comparisons of at least 10 preinjection and two postinjection scans. We were able to differentiate between focal and diffuse projection fields and to distinguish between the topography of striatal projections from orbitofrontal and anterior cingulate cortex in a single animal. This MEMRI approach provides a basis for combining circuit-based anatomical analyses with simultaneous single-unit recordings and/or functional magnetic resonance imaging in individual monkeys. Such studies will enhance our interpretations of functional data and our understanding of how neuronal activity is transformed as it propagates through a circuit.
Collapse
|
94
|
Evidence for segregated and integrative connectivity patterns in the human Basal Ganglia. J Neurosci 2008; 28:7143-52. [PMID: 18614684 DOI: 10.1523/jneurosci.1486-08.2008] [Citation(s) in RCA: 603] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Detailed knowledge of the anatomy and connectivity pattern of cortico-basal ganglia circuits is essential to an understanding of abnormal cortical function and pathophysiology associated with a wide range of neurological and neuropsychiatric diseases. We aim to study the spatial extent and topography of human basal ganglia connectivity in vivo. Additionally, we explore at an anatomical level the hypothesis of coexistent segregated and integrative cortico-basal ganglia loops. We use probabilistic tractography on magnetic resonance diffusion weighted imaging data to segment basal ganglia and thalamus in 30 healthy subjects based on their cortical and subcortical projections. We introduce a novel method to define voxel-based connectivity profiles that allow representation of projections from a source to more than one target region. Using this method, we localize specific relay nuclei within predefined functional circuits. We find strong correlation between tractography-based basal ganglia parcellation and anatomical data from previously reported invasive tracing studies in nonhuman primates. Additionally, we show in vivo the anatomical basis of segregated loops and the extent of their overlap in prefrontal, premotor, and motor networks. Our findings in healthy humans support the notion that probabilistic diffusion tractography can be used to parcellate subcortical gray matter structures on the basis of their connectivity patterns. The coexistence of clearly segregated and also overlapping connections from cortical sites to basal ganglia subregions is a neuroanatomical correlate of both parallel and integrative networks within them. We believe that this method can be used to examine pathophysiological concepts in a number of basal ganglia-related disorders.
Collapse
|
95
|
Abstract
The metal manganese is a potent magnetic resonance imaging (MRI) contrast agent that is essential in cell biology. Manganese-enhanced magnetic resonance imaging (MEMRI) is providing unique information in an ever-growing number of applications aimed at understanding the anatomy, the integration, and the function of neural circuits both in normal brain physiology as well as in translational models of brain disease. A major drawback to the use of manganese as a contrast agent, however, is its cellular toxicity. Therefore, paramount to the successful application of MEMRI is the ability to deliver Mn2+ to the site of interest using as low a dose as possible while preserving detectability by MRI. In the present work, the different approaches to MEMRI in translational neuroimaging are reviewed and challenges for future identified from a practical standpoint.
Collapse
Affiliation(s)
- Afonso C. Silva
- Cerebral Microcirculation Unit, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA,To whom correspondence should be addressed: Cerebral Microcirculation Unit, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive MSC1065, Building 10, Room B1D106, Bethesda, MD 20892-1065; tel: 301-402-9703, fax: 301-480-2558, e-mail:
| | - Nicholas A. Bock
- Cerebral Microcirculation Unit, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
96
|
Manganese Enhanced Magnetic Resonance Imaging in a Contusion Model of Spinal Cord Injury in Rats: Correlation With Motor Function. Invest Radiol 2008; 43:277-83. [DOI: 10.1097/rli.0b013e318162f1bd] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
97
|
Manganese-enhanced MRI of brain plasticity in relation to functional recovery after experimental stroke. J Cereb Blood Flow Metab 2008; 28:832-40. [PMID: 17987047 DOI: 10.1038/sj.jcbfm.9600576] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Restoration of function after stroke may be associated with structural remodeling of neuronal connections outside the infarcted area. However, the spatiotemporal profile of poststroke alterations in neuroanatomical connectivity in relation to functional recovery is still largely unknown. We performed in vivo magnetic resonance imaging (MRI)-based neuronal tract tracing with manganese in combination with immunohistochemical detection of the neuronal tracer wheat-germ agglutinin horseradish peroxidase (WGA-HRP), to assess changes in intra- and interhemispheric sensorimotor network connections from 2 to 10 weeks after unilateral stroke in rats. In addition, functional recovery was measured by repetitive behavioral testing. Four days after tracer injection in perilesional sensorimotor cortex, manganese enhancement and WGA-HRP staining were decreased in subcortical areas of the ipsilateral sensorimotor network at 2 weeks after stroke, which was restored at later time points. At 4 to 10 weeks after stroke, we detected significantly increased manganese enhancement in the contralateral hemisphere. Behaviorally, sensorimotor functions were initially disturbed but subsequently recovered and plateaued 17 days after stroke. This study shows that manganese-enhanced MRI can provide unique in vivo information on the spatiotemporal pattern of neuroanatomical plasticity after stroke. Our data suggest that the plateau stage of functional recovery is associated with restoration of ipsilateral sensorimotor pathways and enhanced interhemispheric connectivity.
Collapse
|
98
|
Bock NA, Paiva FF, Nascimento GC, Newman JD, Silva AC. Cerebrospinal fluid to brain transport of manganese in a non-human primate revealed by MRI. Brain Res 2008; 1198:160-70. [PMID: 18243167 PMCID: PMC2276322 DOI: 10.1016/j.brainres.2007.12.065] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 12/18/2007] [Accepted: 12/18/2007] [Indexed: 01/01/2023]
Abstract
Manganese overexposure in non-human primates and humans causes a neurodegenerative disorder called manganism thought to be related to an accumulation of the metal in the basal ganglia. Here, we assess changes in the concentration of manganese in regions of the brain of a non-human primate (the common marmoset, Callithrix jacchus) following four systemic injections of 30 mg/kg MnCl2 H2O in the tail vein using T1-weighted magnetic resonance imaging (MRI) and compare these to changes in the rat following the same exposure route and dose. The doses were spaced 48 h apart and we imaged the animals 48 h after the final dose. We find that marmosets have significantly larger T1-weighted image enhancements in regions of the brain compared to rats, notably in the basal ganglia and the visual cortex. To confirm this difference across species reflects actual differences in manganese concentrations and not variations in the MRI properties of manganese, we measured the longitudinal relaxivity of manganese (chi1) in the in vivo brain and found no significant species' difference. The high manganese uptake in the marmoset basal ganglia and visual cortex can be explained by CSF-brain transport from the large lateral ventricles and we confirm this route of uptake with time-course MRI during a tail-vein infusion of manganese. There is also high uptake in the substructures of the hippocampus that are adjacent to the ventricles. The large manganese accumulation in these structures on overexposure may be common to all primates, including humans.
Collapse
Affiliation(s)
- Nicholas A Bock
- Cerebral Microcirculation Unit, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1065, USA.
| | | | | | | | | |
Collapse
|
99
|
Hsu YH, Chen CCV, Zechariah A, Yen CC, Yang LC, Chang C. Neuronal dysfunction of a long projecting multisynaptic pathway in response to methamphetamine using manganese-enhanced MRI. Psychopharmacology (Berl) 2008; 196:543-53. [PMID: 18000655 DOI: 10.1007/s00213-007-0990-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Accepted: 10/15/2007] [Indexed: 01/19/2023]
Abstract
RATIONALE Manganese (Mn2+)-enhanced magnetic resonance imaging (MEMRI) is an emerging in vivo MR approach for pharmacological research. One new application of MEMRI in this area is to characterize functional changes of a specific neural circuit that is essential to the central effects of a drug challenge. OBJECTIVES To develop and validate such use of MEMRI in neuropharmacology, the current study applied MEMRI to visualize functional changes within a multisynaptic pathway originating from fasciculus retroflexus (FR) that is central to a commonly abused psychostimulant, methamphetamine (MA). METHODS Twelve rats were injected intraperitoneally with MA (10 mg/kg) or saline every 2 h for a total of four injections. After 6 days, Mn2+ was injected into the habenular nucleus (FR origin) of all animals, and MEMRI was repeatedly performed at certain points in time over 48 h. The evolution of Mn2+-induced signal enhancement was assessed across the FR tract, the ventral tegmental area (VTA), the striatum, the nucleus accumbens, and the prefrontal cortex (PFC), in both MA-injected animals and controls. RESULTS MA treatment was found to affect the complexity and efficiency of Mn2+ uptake in the VTA, via the FR tract, with significantly increased Mn2+ accumulation in the VTA, the dorsomedial part of the striatum, and the PFC. CONCLUSIONS MEMRI successfully visualizes disruptions in the multisynaptic pathway as the consequences of repeated MA exposure. MEMRI is potentially an important method in the future to investigate functional changes within a specific pathway under the influences of pharmacological agents, given its excellent functional, in vivo, spatial, and temporal properties.
Collapse
Affiliation(s)
- Yi-Hua Hsu
- Functional and Micro-Magnetic Resonance Imaging Center, Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
100
|
Bonny JM, Mailly P, Renou JP, Orsal D, Benmoussa A, Stettler O. Analysis of laminar activity in normal and injured rat spinal cord by manganese enhanced MRI. Neuroimage 2008; 40:1542-51. [PMID: 18339560 DOI: 10.1016/j.neuroimage.2008.01.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 01/25/2008] [Accepted: 01/25/2008] [Indexed: 11/16/2022] Open
Abstract
The present study provides an account of a sensitive and rapid experimental approach for MRI visualization and analysis of spinal cord (SC) laminar activity in normal and injured animals. This approach is based upon neuronal activity-dependant manganese (Mn) uptake after focal SC injection of MnCl(2), and subsequent ex-vivo magnetic resonance imaging (MRI) of activated SC pathways. The method was designed as an alternative to time-intensive histochemical and behavioral approaches typically used for analysis of spinal cord injury (SCI) and our results provide both anatomical and functional insights. We show that ex vivo imaging can determine layer-specific activity over an extended region of the rat SC. In addition, we demonstrate that the Mn concentration profile along the SC axis accurately reflects the type of SC injury. The approach is flexible since MRI analysis can be done immediately after animal sacrifice, or alternatively several days later, without a loss of sensitivity. Moreover, the integrity and functional state of SC circuitry can be analyzed in less than 1 h whereas several days and weeks are necessary to perform classical histochemical and behavioral analysis. Thus our method can be used for precise assessment of the extent of dysfunction or change in SC disorders and may facilitate the screening of molecules with therapeutic potential after SC injury.
Collapse
|