51
|
Jiang X, Shi Y, Fu Z, Li WW, Lai S, Wu Y, Wang Y, Liu Y, Gao L, Xia T. Functional characterization of three flavonol synthase genes from Camellia sinensis: Roles in flavonol accumulation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 300:110632. [PMID: 33180711 DOI: 10.1016/j.plantsci.2020.110632] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 05/27/2023]
Abstract
Flavonol derivatives are a group of flavonoids benefiting human health. Their abundant presence in tea is associated with astringent taste. To date, mechanism pertaining to the biosynthesis of flavonols in tea plants remains unknown. In this study, we used bioinformatic analysis mining the tea genome and obtained three cDNAs that were annotated to encode flavonol synthases (FLS). Three cDNAs, namely CsFLSa, b, and c, were heterogenously expressed in E. coli to induce recombinant proteins, which were further used to incubate with three substrates, dihydrokampferol (DHK), dihydroquercetin (DHQ), and dihydromyricetin (DHM). The resulting data showed that three rCsFLSs preferred to catalyze (DHK). Overexpression of each cDNA in tobacco led to the increase of kampferol and the reduction of anthocyanins in flowers. Further metabolic profiling of flavan-3-ols in young tea shoots characterized that kaempferol derivatives were the most abundant, followed by quercetin and then myricetin derivatives. Taken together, these data characterized the key step committed to the biosynthesis of flavonols in tea leaves. Moreover, these data enhance understanding the metabolic accumulation relevance between flavonols and other main flavonoids such as flavan-3-ols in tea leaves.
Collapse
Affiliation(s)
- Xiaolan Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, and International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, Anhui, China
| | - Yufeng Shi
- State Key Laboratory of Tea Plant Biology and Utilization, and International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, Anhui, China
| | - Zhouping Fu
- State Key Laboratory of Tea Plant Biology and Utilization, and International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, Anhui, China
| | - Wei-Wei Li
- State Key Laboratory of Tea Plant Biology and Utilization, and International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, Anhui, China
| | - Sanyan Lai
- State Key Laboratory of Tea Plant Biology and Utilization, and International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, Anhui, China
| | - Yahui Wu
- State Key Laboratory of Tea Plant Biology and Utilization, and International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, Anhui, China
| | - Yunsheng Wang
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, China
| | - Yajun Liu
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, China
| | - Liping Gao
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, China.
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization, and International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, Anhui, China.
| |
Collapse
|
52
|
It takes two to tango - The case of thebaine 6-O-demethylase. Int J Biol Macromol 2020; 163:718-729. [DOI: 10.1016/j.ijbiomac.2020.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/26/2020] [Accepted: 07/02/2020] [Indexed: 11/21/2022]
|
53
|
Khan A, Schofield CJ, Claridge TDW. Reducing Agent-Mediated Nonenzymatic Conversion of 2-Oxoglutarate to Succinate: Implications for Oxygenase Assays. Chembiochem 2020; 21:2898-2902. [PMID: 32478965 PMCID: PMC7693218 DOI: 10.1002/cbic.202000185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/26/2020] [Indexed: 11/06/2022]
Abstract
l-Ascorbate (l-Asc) is often added to assays with isolated FeII - and 2-oxoglutarate (2OG)-dependent oxygenases to enhance activity. l-Asc is proposed to be important in catalysis by some 2OG oxygenases in vivo. We report observations on the nonenzymatic conversion of 2OG to succinate, which is mediated by hydrogen peroxide generated by the reaction of l-Asc and dioxygen. Slow nonenzymatic oxidation of 2OG to succinate occurs with some, but not all, other reducing agents commonly used in 2OG oxygenase assays. We intend these observations will help in the robust assignment of substrates and inhibitors for 2OG oxygenases.
Collapse
Affiliation(s)
- Amjad Khan
- Department of ChemistryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | | | | |
Collapse
|
54
|
Yoshida K, Teppabut Y, Sawaguchi R, Nakane Y, Hayashi E, Oyama KI, Nishizaki Y, Goda Y, Kondo T. 5,7,3',4'-Tetrahydroxyflav-2-en-3-ol 3-O-glucoside, a new biosynthetic precursor of cyanidin 3-O-glucoside in the seed coat of black soybean, Glycine max. Sci Rep 2020; 10:17184. [PMID: 33057015 PMCID: PMC7560818 DOI: 10.1038/s41598-020-74098-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/23/2020] [Indexed: 11/12/2022] Open
Abstract
The seed coat of mature black soybean, Glycine max, accumulates a high amount of cyanidin 3-O-glucoside (Cy3G), which is the most abundant anthocyanin in nature. In the pod, it takes two months for the seed coat color change from green to black. However, immature green beans rapidly adopt a black color within one day when the shell is removed. We analyzed the components involved in the color change of the seed coat and detected a new precursor of Cy3G, namely 5,7,3',4'-tetrahydroxyflav-2-en-3-ol 3-O-glucoside (2F3G). Through quantitative analysis using purified and synthetic standard compounds, it was clarified that during this rapid color change, an increase in the Cy3G content was observed along with the corresponding decrease in the 2F3G content. Chemical conversion from 2F3G to Cy3G at pH 5 with air and ferrous ion was observed. Our findings allowed us to propose a new biosynthetic pathway of Cy3G via a colorless glucosylated compound, 2F3G, which was oxidized to give Cy3G.
Collapse
Affiliation(s)
- Kumi Yoshida
- Graduate School of Informatics, Nagoya University, Chikusa, Nagoya, 464-8601, Japan.
| | - Yada Teppabut
- Graduate School of Informatics, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Reo Sawaguchi
- Graduate School of Informatics, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Yuhsuke Nakane
- Graduate School of Information Science, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Emi Hayashi
- Graduate School of Information Science, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Kin-Ichi Oyama
- Research Center for Materials Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Yuzo Nishizaki
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Yukihiro Goda
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Tadao Kondo
- Graduate School of Informatics, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| |
Collapse
|
55
|
Guan Y, Greenberg EF, Hasipek M, Chen S, Liu X, Kerr CM, Gackowski D, Zarakowska E, Radivoyevitch T, Gu X, Willard B, Visconte V, Makishima H, Nazha A, Mukherji M, Sekeres MA, Saunthararajah Y, Oliński R, Xu M, Maciejewski JP, Jha BK. Context dependent effects of ascorbic acid treatment in TET2 mutant myeloid neoplasia. Commun Biol 2020; 3:493. [PMID: 32895473 PMCID: PMC7477582 DOI: 10.1038/s42003-020-01220-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
Loss-of-function TET2 mutations (TET2MT) are common in myeloid neoplasia. TET2, a DNA dioxygenase, requires 2-oxoglutarate and Fe(II) to oxidize 5-methylcytosine. TET2MT thus result in hypermethylation and transcriptional repression. Ascorbic acid (AA) increases dioxygenase activity by facilitating Fe(III)/Fe(II) redox reaction and may alleviate some biological consequences of TET2MT by restoring dioxygenase activity. Here, we report the utility of AA in the prevention of TET2MT myeloid neoplasia (MN), clarify the mechanistic underpinning of the TET2-AA interactions, and demonstrate that the ability of AA to restore TET2 activity in cells depends on N- and C-terminal lysine acetylation and nature of TET2MT. Consequently, pharmacologic modulation of acetyltransferases and histone deacetylases may regulate TET dioxygenase-dependent AA effects. Thus, our study highlights the contribution of factors that may enhance or attenuate AA effects on TET2 and provides a rationale for novel therapeutic approaches including combinations of AA with class I/II HDAC inhibitor or sirtuin activators in TET2MT leukemia. Using TET2- and ascorbic acid deficient model systems Guan et al show that long term treatment with ascorbic acid delays myeloid neoplasia in mice and reveal a complex interplay of post-translational modification of lysine residues that modulate TET2 activity in neoplastic evolution.
Collapse
Affiliation(s)
- Yihong Guan
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Edward F Greenberg
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.,Leukemia Program, Department of Hematologic Oncology and Blood Disorders, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Metis Hasipek
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Shi Chen
- Department of Cell System & Anatomy, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA.,Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Xiaochen Liu
- Department of Cell System & Anatomy, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA
| | - Cassandra M Kerr
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Daniel Gackowski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-095, Bydgoszcz, Poland
| | - Ewelina Zarakowska
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-095, Bydgoszcz, Poland
| | - Tomas Radivoyevitch
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Xiaorong Gu
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Belinda Willard
- Proteomics and Metabolomics Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Valeria Visconte
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Hideki Makishima
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Aziz Nazha
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.,Leukemia Program, Department of Hematologic Oncology and Blood Disorders, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Mikkael A Sekeres
- Leukemia Program, Department of Hematologic Oncology and Blood Disorders, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Yogen Saunthararajah
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ryszard Oliński
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-095, Bydgoszcz, Poland
| | - Mingjiang Xu
- Department of Cell System & Anatomy, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA.,Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA. .,Leukemia Program, Department of Hematologic Oncology and Blood Disorders, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Babal K Jha
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
56
|
A common allosteric mechanism regulates homeostatic inactivation of auxin and gibberellin. Nat Commun 2020; 11:2143. [PMID: 32358569 PMCID: PMC7195466 DOI: 10.1038/s41467-020-16068-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/23/2020] [Indexed: 01/07/2023] Open
Abstract
Allosteric regulation is protein activation by effector binding at a site other than the active site. Here, we show via X-ray structural analysis of gibberellin 2-oxidase 3 (GA2ox3), and auxin dioxygenase (DAO), that such a mechanism maintains hormonal homeostasis in plants. Both enzymes form multimers by interacting via GA4 and indole-3-acetic acid (IAA) at their binding interface. Via further functional analyses we reveal that multimerization of these enzymes gradually proceeds with increasing GA4 and IAA concentrations; multimerized enzymes have higher specific activities than monomer forms, a system that should favour the maintenance of homeostasis for these phytohormones. Molecular dynamic analysis suggests a possible mechanism underlying increased GA2ox3 activity by multimerization-GA4 in the interface of oligomerized GA2ox3s may be able to enter the active site with a low energy barrier. In summary, homeostatic systems for maintaining GA and IAA levels, based on a common allosteric mechanism, appear to have developed independently.
Collapse
|
57
|
Maeda H, Murata K, Sakuma N, Takei S, Yamazaki A, Karim MR, Kawata M, Hirose S, Kawagishi-Kobayashi M, Taniguchi Y, Suzuki S, Sekino K, Ohshima M, Kato H, Yoshida H, Tozawa Y. A rice gene that confers broad-spectrum resistance to β-triketone herbicides. Science 2020; 365:393-396. [PMID: 31346065 DOI: 10.1126/science.aax0379] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 06/28/2019] [Indexed: 01/08/2023]
Abstract
The genetic variation of rice cultivars provides a resource for further varietal improvement through breeding. Some rice varieties are sensitive to benzobicyclon (BBC), a β-triketone herbicide that inhibits 4-hydroxyphenylpyruvate dioxygenase (HPPD). Here we identify a rice gene, HIS1 (HPPD INHIBITOR SENSITIVE 1), that confers resistance to BBC and other β-triketone herbicides. We show that HIS1 encodes an Fe(II)/2-oxoglutarate-dependent oxygenase that detoxifies β-triketone herbicides by catalyzing their hydroxylation. Genealogy analysis revealed that BBC-sensitive rice variants inherited a dysfunctional his1 allele from an indica rice variety. Forced expression of HIS1 in Arabidopsis conferred resistance not only to BBC but also to four additional β-triketone herbicides. HIS1 may prove useful for breeding herbicide-resistant crops.
Collapse
Affiliation(s)
- Hideo Maeda
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8518, Japan
| | - Kazumasa Murata
- Toyama Prefectural Agricultural, Forestry and Fisheries Research Center, Toyama 939-8153, Japan
| | - Nozomi Sakuma
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Satomi Takei
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Akihiko Yamazaki
- Tsukuba Research and Technology Center, SDS Biotech K.K., Tsukuba 300-2646, Japan
| | - Md Rezaul Karim
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8518, Japan
| | - Motoshige Kawata
- Institute of Agrobiological Sciences, NARO, Tsukuba 305-8634, Japan
| | - Sakiko Hirose
- Institute of Agrobiological Sciences, NARO, Tsukuba 305-8634, Japan
| | | | - Yojiro Taniguchi
- Institute of Agrobiological Sciences, NARO, Tsukuba 305-8634, Japan
| | - Satoru Suzuki
- Tsukuba Research and Technology Center, SDS Biotech K.K., Tsukuba 300-2646, Japan
| | - Keisuke Sekino
- Tsukuba Research and Technology Center, SDS Biotech K.K., Tsukuba 300-2646, Japan
| | - Masahiro Ohshima
- Institute of Agrobiological Sciences, NARO, Tsukuba 305-8634, Japan
| | - Hiroshi Kato
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8518, Japan
| | - Hitoshi Yoshida
- Institute of Agrobiological Sciences, NARO, Tsukuba 305-8634, Japan
| | - Yuzuru Tozawa
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan.
| |
Collapse
|
58
|
Groszmann M, Chandler PM, Ross JJ, Swain SM. Manipulating Gibberellin Control Over Growth and Fertility as a Possible Target for Managing Wild Radish Weed Populations in Cropping Systems. FRONTIERS IN PLANT SCIENCE 2020; 11:190. [PMID: 32265944 PMCID: PMC7096587 DOI: 10.3389/fpls.2020.00190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/07/2020] [Indexed: 05/22/2023]
Abstract
Wild radish is a major weed of Australian cereal crops. A rapid establishment, fast growth, and abundant seed production are fundamental to its success as an invasive species. Wild radish has developed resistance to a number of commonly used herbicides increasing the problem. New innovative approaches are needed to control wild radish populations. Here we explore the possibility of pursuing gibberellin (GA) biosynthesis as a novel molecular target for controlling wild radish, and in doing so contribute new insights into GA biology. By characterizing ga 3-oxidase (ga3ox) mutants in Arabidopsis, a close taxonomic relative to wild radish, we showed that even mild GA deficiencies cause considerable reductions in growth and fecundity. This includes an explicit requirement for GA biosynthesis in successful female fertility. Similar defects were reproducible in wild radish via chemical inhibition of GA biosynthesis, confirming GA action as a possible new target for controlling wild radish populations. Two possible targeting approaches are considered; the first would involve developing a species-specific inhibitor that selectively inhibits GA production in wild radish over cereal crops. The second, involves making crop species insensitive to GA repression, allowing the use of existing broad spectrum GA inhibitors to control wild radish populations. Toward the first concept, we cloned and characterized two wild radish GA3OX genes, identifying protein differences that appear sufficient for selective inhibition of dicot over monocot GA3OX activity. We developed a novel yeast-based approach to assay GA3OX activity as part of the molecular characterization, which could be useful for future screening of inhibitory compounds. For the second approach, we demonstrated that a subset of GA associated sln1/Rht-1 overgrowth mutants, recently generated in cereals, are insensitive to GA reductions brought on by the general GA biosynthesis inhibitor, paclobutrazol. The location of these mutations within sln1/Rht-1, offers additional insight into the functional domains of these important GA signaling proteins. Our early assessment suggests that targeting the GA pathway could be a viable inclusion into wild radish management programs that warrants further investigation. In drawing this conclusion, we provided new insights into GA regulated reproductive development and molecular characteristics of GA metabolic and signaling proteins.
Collapse
Affiliation(s)
- Michael Groszmann
- Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT, Australia
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Peter M. Chandler
- Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - John J. Ross
- School of Biological Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Steve M. Swain
- Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
59
|
Mohammadi M, Mashayekh T, Rashidi-Monfared S, Ebrahimi A, Abedini D. New insights into diosgenin biosynthesis pathway and its regulation in Trigonella foenum-graecum L. PHYTOCHEMICAL ANALYSIS : PCA 2020; 31:229-241. [PMID: 31469464 DOI: 10.1002/pca.2887] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/17/2019] [Accepted: 07/21/2019] [Indexed: 05/05/2023]
Abstract
INTRODUCTION Throughout history, thousands of medicinal and aromatic plants have been widely utilised by people worldwide. Owing to them possessing of valuable compounds with little side effects in comparison with chemical drugs, herbs have been of interest to humans for a number of purposes. Diosgenin, driven from fenugreek, Trigonella foenum-graecum L., has extensively drawn scientist's attention owing to having curable properties and being a precursor of steroid hormones synthesis. Nonetheless, complete knowledge about the biosynthesis pathway of this metabolite is still elusive. OBJECTIVE In the present research, we isolated the full-length CDS of 14 genes involving in diosgenin formation and measured their expression rate in various genotypes, which had illustrated different amount of diosgenin. METHODOLOGY The genes were successfully isolated, and functional motifs were also assessed using in silico approaches. RESULTS Moreover, combining transcript and metabolite analysis revealed that there are many genes playing the role in diosgenin formation, some of which are highly influential. Among them, ∆24 -reductase, which converts cycloartenol to cycloartanol, is the first-committed and rate-limiting enzyme in this pathway. Additionally, no transcripts indicating to the presence or expression of lanosterol synthase were detected, contradicting the previous hypothesis about the biosynthetic pathway of diosgenin in fenugreek. CONCLUSION Considering all these, therefore, we propose the most possible pathway of diosgenin. This knowledge will then pave the way toward cloning the genes as well as engineering the diosgenin biosynthesis pathway.
Collapse
Affiliation(s)
- Mohammad Mohammadi
- Agricultural Biotechnology Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Tooba Mashayekh
- Agricultural Biotechnology Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Sajad Rashidi-Monfared
- Agricultural Biotechnology Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Amin Ebrahimi
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran
| | - Davar Abedini
- Agricultural Biotechnology Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
60
|
Chaturvedi S, Ramanan R, Lehnert N, Schofield CJ, Karabencheva-Christova TG, Christov CZ. Catalysis by the Non-Heme Iron(II) Histone Demethylase PHF8 Involves Iron Center Rearrangement and Conformational Modulation of Substrate Orientation. ACS Catal 2020; 10:1195-1209. [PMID: 31976154 PMCID: PMC6970271 DOI: 10.1021/acscatal.9b04907] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/10/2019] [Indexed: 02/07/2023]
Abstract
PHF8 (KDM7B) is a human non-heme 2-oxoglutarate (2OG) JmjC domain oxygenase that catalyzes the demethylation of the di/mono-Nε-methylated K9 residue of histone H3. Altered PHF8 activity is linked to genetic diseases and cancer; thus, it is an interesting target for epigenetic modulation. We describe the use of combined quantum mechanics/molecular mechanics (QM/MM) and molecular dynamics (MD) simulations to explore the mechanism of PHF8, including dioxygen activation, 2OG binding modes, and substrate demethylation steps. A PHF8 crystal structure manifests the 2OG C-1 carboxylate bound to iron in a nonproductive orientation, i.e., trans to His247. A ferryl-oxo intermediate formed by activating dioxygen bound to the vacant site in this complex would be nonproductive, i.e., "off-line" with respect to reaction with Nε-methylated K9. We show rearrangement of the "off-line" ferryl-oxo intermediate to a productive "in-line" geometry via a solvent exchange reaction (called "ferryl-flip") is energetically unfavorable. The calculations imply that movement of the 2OG C-1 carboxylate prior to dioxygen binding at a five-coordination stage in catalysis proceeds with a low barrier, suggesting that two possible 2OG C-1 carboxylate geometries can coexist at room temperature. We explored alternative mechanisms for hydrogen atom transfer and show that second sphere interactions orient the Nε-methylated lysine in a conformation where hydrogen abstraction from a methyl C-H bond is energetically more favorable than hydrogen abstraction from the N-H bond of the protonated Nε-methyl group. Using multiple HAT reaction path calculations, we demonstrate the crucial role of conformational flexibility in effective hydrogen transfer. Subsequent hydroxylation occurs through a rebound mechanism, which is energetically preferred compared to desaturation, due to second sphere interactions. The overall mechanistic insights reveal the crucial role of iron-center rearrangement, second sphere interactions, and conformational flexibility in PHF8 catalysis and provide knowledge useful for the design of mechanism-based PHF8 inhibitors.
Collapse
Affiliation(s)
- Shobhit
S. Chaturvedi
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Rajeev Ramanan
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Nicolai Lehnert
- Department
of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | | | - Christo Z. Christov
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
61
|
Metabolome and Transcriptome Analysis Reveals Putative Genes Involved in Anthocyanin Accumulation and Coloration in White and Pink Tea ( Camellia sinensis) Flower. Molecules 2020; 25:molecules25010190. [PMID: 31906542 PMCID: PMC6983220 DOI: 10.3390/molecules25010190] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/25/2019] [Accepted: 12/31/2019] [Indexed: 12/12/2022] Open
Abstract
A variant of tea tree (Camellia sinensis (L.)) with purple buds and leaves and pink flowers can be used as a unique ornamental plant. However, the mechanism of flower coloration remains unclear. To elucidate the molecular mechanism of coloration, as well as anthocyanin accumulation in white and pink tea flowers, metabolite profiling and transcriptome sequencing was analyzed in various tea flower developmental stages. Results of metabolomics analysis revealed that three specific anthocyanin substances could be identified, i.e., cyanidin O-syringic acid, petunidin 3-O-glucoside, and pelargonidin 3-O-β-d-glucoside, which only accumulated in pink tea flowers, and were not able to be detected in white flowers. RNA-seq and weighted gene co-expression network analysis revealed eight highly expressed structural genes involved in anthocyanin biosynthetic pathway, and particularly, different expression patterns of flavonol synthase and dihydroflavonol-4-reductase genes were observed. We deduced that the disequilibrium of expression levels in flavonol synthases and dihydroflavonol-4-reductases resulted in different levels of anthocyanin accumulation and coloration in white and pink tea flowers. Results of qRT-PCR performed for 9 key genes suggested that the expression profiles of differentially expressed genes were generally consistent with the results of high-throughput sequencing. These findings provide insight into anthocyanin accumulation and coloration mechanisms during tea flower development, which will contribute to the breeding of pink-flowered and anthocyanin-rich tea cultivars.
Collapse
|
62
|
Zhang L, Sun X, Wilson IW, Shao F, Qiu D. Identification of the Genes Involved in Anthocyanin Biosynthesis and Accumulation in Taxus chinensis. Genes (Basel) 2019; 10:E982. [PMID: 31795268 PMCID: PMC6947853 DOI: 10.3390/genes10120982] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 01/04/2023] Open
Abstract
Taxus chinensis is a precious woody species with significant economic value. Anthocyanin as flavonoid derivatives plays a crucial role in plant biology and human health. However, the genes involved in anthocyanin biosynthesis have not been identified in T. chinensis. In this study, twenty-five genes involved in anthocyanin biosynthesis were identified, including chalcone synthase, chalcone isomerase, flavanone 3-hydroxylase, anthocyanidin synthase, flavonoid 3'-hydroxylase, flavonoid 3',5'-hydroxylase, dihydroflavonol 4-reductase, anthocyanidin reductase, and leucoanthocyanidin reductase. The conserved domains and phylogenetic relationships of these genes were characterized. The expression levels of these genes in different tissues and different ages of xylem were investigated. Additionally, the anthocyanin accumulation in xylem of different ages of T. chinensis was measured. The results showed the anthocyanin accumulation was correlated with the expression levels of dihydroflavonol 4-reductase, anthocyanidin synthase, flavonoid 3'-hydroxylase, and flavonoid 3',5'-hydroxylase. Our results provide a basis for studying the regulation of the biosynthetic pathway for anthocyanins and wood color formation in T. chinensis.
Collapse
Affiliation(s)
- Lisha Zhang
- State Key Laboratory of Tree Genetics and Breeding &Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, The Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (L.Z.); (X.S.); (D.Q.)
| | - Xiaomei Sun
- State Key Laboratory of Tree Genetics and Breeding &Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, The Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (L.Z.); (X.S.); (D.Q.)
| | - Iain W. Wilson
- CSIRO Agriculture and Food, P.O. Box 1600, Canberra, ACT 2601, Australia;
| | - Fenjuan Shao
- State Key Laboratory of Tree Genetics and Breeding &Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, The Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (L.Z.); (X.S.); (D.Q.)
| | - Deyou Qiu
- State Key Laboratory of Tree Genetics and Breeding &Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, The Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (L.Z.); (X.S.); (D.Q.)
| |
Collapse
|
63
|
Plant Fibers and Phenolics: A Review on Their Synthesis, Analysis and Combined Use for Biomaterials with New Properties. FIBERS 2019. [DOI: 10.3390/fib7090080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Devising environmental-friendly processes in biotechnology is a priority in the current economic scenario. We are witnessing a constant and steady push towards finding sustainable solutions to societal challenges by promoting innovation-driven activities minimizing the environmental impact and valorizing natural resources. In bioeconomy, plants are among the most important renewable sources of both fibers (woody and cellulosic) and phytochemicals, which find applications in many industrial sectors, spanning from the textile, to the biocomposite, medical, nutraceutical, and pharma sectors. Given the key role of plants as natural sources of (macro)molecules, we here provide a compendium on the use of plant fibers functionalized/impregnated with phytochemicals (in particular phenolic extracts). The goal is to review the various applications of natural fibers functionalized with plant phenolics and to valorize those plants that are source of both fibers and phytochemicals.
Collapse
|
64
|
Hagel JM, Facchini PJ. Expanding the roles for 2-oxoglutarate-dependent oxygenases in plant metabolism. Nat Prod Rep 2019; 35:721-734. [PMID: 29488530 DOI: 10.1039/c7np00060j] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Covering: up to 2018 2-Oxoglutarate-dependent oxygenases (2ODOs) comprise a large enzyme superfamily in plant genomes, second in size only to the cytochromes P450 monooxygenase (CYP) superfamily. 2ODOs participate in both primary and specialized plant pathways, and their occurrence across all life kingdoms points to an ancient origin. Phylogenetic evidence supports substantial expansion and diversification of 2ODOs following the split from the common ancestor of land plants. More conserved roles for these enzymes include oxidation within hormone metabolism, such as the recently described capacity of Dioxygenase for Auxin Oxidation (DAO) for governing auxin homeostasis. Conserved structural features among 2ODOs has provided a basis for continued investigation into their mechanisms, and recent structural work is expected to illuminate intriguing reactions such as that of 1-aminocyclopropane-1-carboxylic acid oxidase (ACCO). Phylogenetic radiation among this superfamily combined with neo- and subfunctionalization has enabled recruitment to highly specialized pathways, including those yielding medicines, flavours, dyes, poisons, and compounds important for plant-environment interactions. Catalytic versatility of 2ODOs in plants and across broader taxa continues to inspire biochemists tasked with the discovery of new enzymes. This highlight article summarizes recent reports up to 2018 of 2ODOs within plant metabolism. Furthermore, the respective contributions of 2ODOs and other oxidases to natural product biosynthesis are discussed as a framework for continued discovery.
Collapse
Affiliation(s)
- J M Hagel
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada.
| | - P J Facchini
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
65
|
Park S, Kim DH, Park BR, Lee JY, Lim SH. Molecular and Functional Characterization of Oryza sativa Flavonol Synthase (OsFLS), a Bifunctional Dioxygenase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7399-7409. [PMID: 31244203 DOI: 10.1021/acs.jafc.9b02142] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Flavonol synthase (FLS) belongs to the 2-oxoglutarate-dependent dioxygenase (2-ODD) superfamily. We isolated OsFLS from the rice ( Oryza sativa) cultivar "Ilmi" OsFLS includes highly conserved 2-ODD-specific motifs and FLS-specific regions. Recombinant OsFLS exhibited both FLS and flavanone 3β-hydroxylase (F3H) activities, converting dihydroflavonols into flavonols and flavanones into dihydroflavonols, respectively, and more efficiently used dihydrokaempferol than dihydroquercetin as a substrate. OsFLS was expressed in both nonpigmented and pigmented rice seeds and was developmentally regulated during seed maturation. Transgenic tobacco ( Nicotiana tabacum) plants expressing OsFLS produced pale pink or white flowers with significantly increased levels of kaempferol-3- O-rutinoside and dramatically reduced levels of anthocyanin in their petals. Additionally, pod size and weight were reduced compared to the wild type. Several early and late biosynthetic genes of flavonoid were downregulated in the transgenic flowers. We demonstrated that OsFLS is a bifunctional 2-ODD enzyme and functions in flavonol production in planta.
Collapse
Affiliation(s)
- Sangkyu Park
- National Institute of Agricultural Sciences , Rural Development Administration , JeonJu , 54874 , Republic of Korea
| | - Da-Hye Kim
- National Institute of Agricultural Sciences , Rural Development Administration , JeonJu , 54874 , Republic of Korea
| | - Bo-Ra Park
- National Institute of Agricultural Sciences , Rural Development Administration , JeonJu , 54874 , Republic of Korea
| | - Jong-Yeol Lee
- National Institute of Agricultural Sciences , Rural Development Administration , JeonJu , 54874 , Republic of Korea
| | - Sun-Hyung Lim
- National Institute of Agricultural Sciences , Rural Development Administration , JeonJu , 54874 , Republic of Korea
| |
Collapse
|
66
|
Solopova A, van Tilburg AY, Foito A, Allwood JW, Stewart D, Kulakauskas S, Kuipers OP. Engineering Lactococcus lactis for the production of unusual anthocyanins using tea as substrate. Metab Eng 2019; 54:160-169. [PMID: 30978503 DOI: 10.1016/j.ymben.2019.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 11/30/2022]
Abstract
Plant material rich in anthocyanins has been historically used in traditional medicines, but only recently have the specific pharmacological properties of these compounds been the target of extensive studies. In addition to their potential to modulate the development of various diseases, coloured anthocyanins are valuable natural alternatives commonly used to replace synthetic colourants in food industry. Exploitation of microbial hosts as cell factories is an attractive alternative to extraction of anthocyanins and other flavonoids from plant sources or chemical synthesis. In this study, we present the lactic acid bacterium Lactococcus lactis as an ideal host for the production of high-value plant-derived bioactive anthocyanins using green tea as substrate. Besides the anticipated red-purple compounds cyanidin and delphinidin, orange and yellow pyranoanthocyanidins with unexpected methylation patterns were produced from green tea by engineered L. lactis strains. The pyranoanthocyanins are currently attracting significant interest as one of the most important classes of anthocyanin derivatives and are mainly formed during the aging of wine, contributing to both colour and sensory experience.
Collapse
Affiliation(s)
- Ana Solopova
- Molecular Genetics, University of Groningen, Groningen, Netherlands.
| | | | - Alexandre Foito
- Environmental and Biochemical Sciences Group, The James Hutton Institute, Dundee, UK.
| | - J William Allwood
- Environmental and Biochemical Sciences Group, The James Hutton Institute, Dundee, UK.
| | - Derek Stewart
- Environmental and Biochemical Sciences Group, The James Hutton Institute, Dundee, UK; School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh, UK.
| | - Saulius Kulakauskas
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | - Oscar P Kuipers
- Molecular Genetics, University of Groningen, Groningen, Netherlands.
| |
Collapse
|
67
|
Tunisian Table Olive Oil Traceability and Quality Using SNP Genotyping and Bioinformatics Tools. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8291341. [PMID: 30881998 PMCID: PMC6381586 DOI: 10.1155/2019/8291341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/10/2019] [Indexed: 11/17/2022]
Abstract
To enhance and highlight the authentication and traceability of table olive oil, we considered the analysis of 11 Tunisian table olive cultivars based on seven SNP molecular markers (SOD, CALC, FAD2.1, FAD2.3, PAL70, ANTHO3, and SAD.1) localized in six different genes. Accordingly, we assessed the potential genotype-phenotypes links between the seven SNPs, on the one hand, and the quantitative and qualitative parameters, on the other. The obtained genotypes were analyzed with computational biology tools based on bivariate analysis, multinomial logistic regression, and the Bayesian networks modeling. Obtained results showed that PAL70 SNP marker was negatively influenced by the phenol rate (r = -0.886; p <0.001), the oxidative stability (r = -0.884; p <0.001), traducing a direct effect of the PAL70 genotype deviations on the proportion of total phenol for each variety. Additionally, we revealed a significant association of SAD.1 marker with the content of the linolenic unsaturated fatty acids (C18:3; p=0.046). Moreover, SAD.1 was positively correlated with the saturated stearic acid C18:0 (r = 0.644; p = 0.032) based on multinomial logistic regression and Bayesian networks modeling, respectively. This research work provides better understanding and characterization of the quality of Tunisian table olive and supplies a significant knowledge and data information for table olive traceability and breeding.
Collapse
|
68
|
Shrestha B, Pandey RP, Darsandhari S, Parajuli P, Sohng JK. Combinatorial approach for improved cyanidin 3-O-glucoside production in Escherichia coli. Microb Cell Fact 2019; 18:7. [PMID: 30654816 PMCID: PMC6335687 DOI: 10.1186/s12934-019-1056-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/07/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Multi-monocistronic and multi-variate vectors were designed, built, and tested for the improved production of cyanidin 3-O-glucoside (C3G) in Escherichia coli BL21 (DE3). The synthetic bio-parts were designed in such a way that multiple genes can be assembled using the bio-brick system, and expressed under different promoters in a single vector. The vectors harbor compatible cloning sites, so that the genes can be shuffled from one vector to another in a single step, and assembled into a single vector. The two required genes: anthocyanidin synthase (PhANS) from Petunia hybrida, and cyanidin 3-O-glucosyltransferase (At3GT) from Arabidopsis thaliana, were individually cloned under PT7, Ptrc, and PlacUV5 promoters. Both PhANS and At3GT were shuffled back and forth, so as to generate a combinatorial system for C3G production. The constructed systems were further coupled with the genes for UDP-D-glucose synthesis, all cloned in a multi-monocistronic fashion under PT7. Finally, the production of C3G was checked and confirmed using the modified M9 media, and analyzed through various chromatography and spectrometric analyses. RESULTS The engineered strains endowed with newly generated vectors and the genes for C3G biosynthesis and UDP-D-glucose synthesis were fed with 2 mM (+)-catechin and D-glucose for the production of cyanidin, and its subsequent conversion to C3G. One of the engineered strains harboring At3GT and PhANS under Ptrc promoter and UDP-D-glucose biosynthesis genes under PT7 promoter led to the production of ~ 439 mg/L of C3G within 36 h of incubation, when the system was exogenously fed with 5% (w/v) D-glucose. This system did not require exogenous supplementation of UDP-D-glucose. CONCLUSION A synthetic vector system using different promoters has been developed and used for the synthesis of C3G in E. coli BL21 (DE3) by directing the metabolic flux towards the UDP-D-glucose. This system has the potential of generating better strains for the synthesis of valuable natural products.
Collapse
Affiliation(s)
- Biplav Shrestha
- Department of Life Science and Biochemical Engineering, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460 Republic of Korea
| | - Ramesh Prasad Pandey
- Department of Life Science and Biochemical Engineering, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460 Republic of Korea
- Department of BT-Convergent Pharmaceutical Engineering, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460 Republic of Korea
| | - Sumangala Darsandhari
- Department of Life Science and Biochemical Engineering, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460 Republic of Korea
| | - Prakash Parajuli
- Department of Life Science and Biochemical Engineering, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460 Republic of Korea
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460 Republic of Korea
- Department of BT-Convergent Pharmaceutical Engineering, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460 Republic of Korea
| |
Collapse
|
69
|
Parker MJ, Weigele PR, Saleh L. Insights into the Biochemistry, Evolution, and Biotechnological Applications of the Ten-Eleven Translocation (TET) Enzymes. Biochemistry 2019; 58:450-467. [PMID: 30571101 DOI: 10.1021/acs.biochem.8b01185] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A tight link exists between patterns of DNA methylation at carbon 5 of cytosine and differential gene expression in mammalian tissues. Indeed, aberrant DNA methylation results in various human diseases, including neurologic and immune disorders, and contributes to the initiation and progression of various cancers. Proper DNA methylation depends on the fidelity and control of the underlying mechanisms that write, maintain, and erase these epigenetic marks. In this Perspective, we address one of the key players in active demethylation: the ten-eleven translocation enzymes or TETs. These enzymes belong to the Fe2+/α-ketoglutarate-dependent dioxygenase superfamily and iteratively oxidize 5-methylcytosine (5mC) in DNA to produce 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxycytosine. The latter three bases may convey additional layers of epigenetic information in addition to being intermediates in active demethylation. Despite the intense interest in understanding the physiological roles TETs play in active demethylation and cell regulation, less has been done, in comparison, to illuminate details of the chemistry and factors involved in regulating the three-step oxidation mechanism. Herein, we focus on what is known about the biochemical features of TETs and explore questions whose answers will lead to a more detailed understanding of the in vivo modus operandi of these enzymes. We also summarize the membership and evolutionary history of the TET/JBP family and highlight the prokaryotic homologues as a reservoir of potentially diverse functionalities awaiting discovery. Finally, we spotlight sequencing methods that utilize TETs for mapping 5mC and its oxidation products in genomic DNA and comment on possible improvements in these approaches.
Collapse
Affiliation(s)
- Mackenzie J Parker
- Research Department , New England Biolabs, Inc. , 240 County Road , Ipswich , Massachusetts 01938 , United States
| | - Peter R Weigele
- Research Department , New England Biolabs, Inc. , 240 County Road , Ipswich , Massachusetts 01938 , United States
| | - Lana Saleh
- Research Department , New England Biolabs, Inc. , 240 County Road , Ipswich , Massachusetts 01938 , United States
| |
Collapse
|
70
|
Jun JH, Xiao X, Rao X, Dixon RA. Proanthocyanidin subunit composition determined by functionally diverged dioxygenases. NATURE PLANTS 2018; 4:1034-1043. [PMID: 30478357 DOI: 10.1038/s41477-018-0292-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/27/2018] [Indexed: 05/14/2023]
Abstract
Proanthocyanidins (PAs) are primarily composed of the flavan-3-ol subunits (-)-epicatechin and/or (+)-catechin, but the basis for their different starter and extension unit compositions remains unclear. Genetic and biochemical analyses show that, in the model legume Medicago truncatula, two 2-oxoglutarate-dependent dioxygenases, anthocyanidin synthase (ANS) and its homologue leucoanthocyanidin dioxygenase (LDOX), are involved in parallel pathways to generate, respectively, the (-)-epicatechin extension and starter units of PAs, with (+) catechin being an intermediate in the formation of the (-)-epicatechin starter unit. The presence/absence of the LDOX pathway accounts for natural differences in PA compositions across species, and engineering loss of function of ANS or LDOX provides a means to obtain PAs with different compositions and degrees of polymerization for use in food and feed.
Collapse
Affiliation(s)
- Ji Hyung Jun
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Xirong Xiao
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Xiaolan Rao
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, USA.
| |
Collapse
|
71
|
Buchs N, Braga-Lagache S, Uldry AC, Brodard J, Debonneville C, Reynard JS, Heller M. Absolute Quantification of Grapevine Red Blotch Virus in Grapevine Leaf and Petiole Tissues by Proteomics. FRONTIERS IN PLANT SCIENCE 2018; 9:1735. [PMID: 30555495 PMCID: PMC6281998 DOI: 10.3389/fpls.2018.01735] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 11/08/2018] [Indexed: 05/17/2023]
Abstract
Grapevine red blotch is a recently identified viral disease that was first recognized in the Napa Valley of California. Infected plants showed foliar symptoms similar to leafroll, another grapevine viral disease, on vines testing negative for known grapevine leafroll-associated virus. Later, the Grapevine red blotch virus (GRBV) was independently discovered in the US states of California and New York and was demonstrated to be the causal agent of red blotch disease. Due to its wide occurrence in the United States, vector transmission, and impacts on grape industry, this virus has the potential to cause serious economic losses. Despite numerous attempts, it has yet not been possible to isolate or visualize viral particles from GRBV-infected plants, thereby hampering the development of a serological assay that would facilitate GRBV detection in grapevine. In this work, mass spectrometry approaches were applied in order to quantify GRBV in infected plants and identify potential biomarkers for viral infection. We present for the first time the physical detection on the protein level of the two GRBV genes V1 (coat protein) and V2 in grapevine tissue lysates. The GRBV coat protein load in petioles was determined to be in the range of 100-900 million copies per milligram wet weight by using three heavy isotope labeled reference peptides as internal standards. In leaves on the other hand, the V1 copy number per unit wet tissue weight appeared to be about six times lower than in petioles, and about 300 times lower in terms of protein concentration in the extractable protein mass, albeit these estimations could only be made with one reference peptide detectable in leaf extracts. Moreover, we found in leaf and petiole extracts of GRBV-infected plants a consistent upregulation of several enzymes involved in flavonoid biosynthesis by label-free shotgun proteomics, indicating the activation of a defense mechanism against GRBV, a plant response already described for Grapevine leafroll-associated virus infection on the transcriptome level. Finally and importantly, we identified some other microorganisms belonging to the grapevine leaf microbiota, two bacterial species (Novosphingobium sp. Rr 2-17 and Methylobacterium) and one virus, Grapevine rupestris stem pitting-associated virus.
Collapse
Affiliation(s)
- Natasha Buchs
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Sophie Braga-Lagache
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Anne-Christine Uldry
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Justine Brodard
- Institute for Plant Production Science, Agroscope, Nyon, Switzerland
| | | | | | - Manfred Heller
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| |
Collapse
|
72
|
Tu Y, Li D, Fan L, Jia X, Guo D, Xin H, Guo M. DOXC-class 2-oxoglutarate-dependent dioxygenase in safflower: Gene characterization, transcript abundance, and correlation with flavonoids. BIOCHEM SYST ECOL 2018. [DOI: 10.1016/j.bse.2018.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
73
|
Yu Z, Liao Y, Teixeira da Silva JA, Yang Z, Duan J. Differential Accumulation of Anthocyanins in Dendrobium officinale Stems with Red and Green Peels. Int J Mol Sci 2018; 19:ijms19102857. [PMID: 30241372 PMCID: PMC6212978 DOI: 10.3390/ijms19102857] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 09/17/2018] [Accepted: 09/17/2018] [Indexed: 11/16/2022] Open
Abstract
Dendrobium officinale stems, including red and green stems, are widely used as a dietary supplement to develop nutraceutical beverages and food products. However, there is no detailed information on pigment composition of red and green stems. Here, we investigated the content and composition of pigments in red and green stems by Ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry and assessed the differential accumulation of anthocyanins at the molecular level. The color of peels in red stems was caused by the presence of anthocyanins in epidermal cells unlike the peels of green stems. The glucoside derivatives delphinidin and cyanidin are responsible for the red color. Within the D. officinale anthocyanidin biosynthetic pathway, DoANS and DoUFGT, coding for anthocyanidin synthase and UDP-glucose flavonoid-3-O-glucosyltransferase, respectively, are critical regulatory genes related to the differential accumulation of anthocyanidin. These findings provide a more complete profile of pigments, especially anthocyanin, in D. officinale stems, and lay a foundation for producing functional foods.
Collapse
Affiliation(s)
- Zhenming Yu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China.
| | - Yinyin Liao
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| | | | - Ziyin Yang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| | - Jun Duan
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
74
|
Biochemical and genetic characterization of fungal proline hydroxylase in echinocandin biosynthesis. Appl Microbiol Biotechnol 2018; 102:7877-7890. [PMID: 29987385 DOI: 10.1007/s00253-018-9179-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 10/28/2022]
Abstract
An intriguing structural feature of echinocandins is the incorporation of hydroxylated amino acids. Elucidation of the machinery and the mechanism responsible for this modification is critical to generate new echinocandin derivatives with enhanced antifungal activity. In our present study, we biochemically characterized the α-ketoglutarate/Fe2+-dependent proline hydroxylase (HtyE) from two Aspergillus species, Aspergillus pachycristatus and Aspergillus aculeatus, in the respective echinocandin B and aculeacin A biosynthetic gene clusters. Our results showed that both Ap- and Aa-HtyE converted L-proline to trans-4- and trans-3-hydroxyproline, but at different ratios. Both enzymes also effectively hydroxylated C-3 of 4R-methyl-proline, L-pipecolic acid, and D-proline. Our homology modeling and site-directed mutagenesis studies identified Leu182 of Ap-HtyE as a key residue in determining the regioselectivity of Ap-HtyE. Notably, we found that the efficiency in C-3 hydroxylation of 4R-methyl-proline has no direct correlation with the ratio of trans-4-hydroxylproline to trans-3-hydroxylproline catalyzed by HtyE. Deletion of Ap-htyE abolished A. pachycristatus anti-Candida activity and the production of echinocandin B, demonstrating that HtyE is the enzyme responsible for the hydroxylation of L-proline and 4R-methyl-proline in vivo and is essential for the anti-Candida activity of echinocandin B. Our present study thus sheds light on the biochemical basis for the selective hydroxylation of L-proline and 4R-methyl-proline and reveals a new type of biocatalyst with potential for the custom production of hydroxylated proline and pipecolic acid derivatives.
Collapse
|
75
|
Levisson M, Patinios C, Hein S, de Groot PA, Daran JM, Hall RD, Martens S, Beekwilder J. Engineering de novo anthocyanin production in Saccharomyces cerevisiae. Microb Cell Fact 2018; 17:103. [PMID: 29970082 PMCID: PMC6029064 DOI: 10.1186/s12934-018-0951-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/27/2018] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Anthocyanins are polyphenolic pigments which provide pink to blue colours in fruits and flowers. There is an increasing demand for anthocyanins, as food colorants and as health-promoting substances. Plant production of anthocyanins is often seasonal and cannot always meet demand due to low productivity and the complexity of the plant extracts. Therefore, a system of on-demand supply is useful. While a number of other (simpler) plant polyphenols have been successfully produced in the yeast Saccharomyces cerevisiae, production of anthocyanins has not yet been reported. RESULTS Saccharomyces cerevisiae was engineered to produce pelargonidin 3-O-glucoside starting from glucose. Specific anthocyanin biosynthetic genes from Arabidopsis thaliana and Gerbera hybrida were introduced in a S. cerevisiae strain producing naringenin, the flavonoid precursor of anthocyanins. Upon culturing, pelargonidin and its 3-O-glucoside were detected inside the yeast cells, albeit at low concentrations. A number of related intermediates and side-products were much more abundant and were secreted into the culture medium. To optimize titers of pelargonidin 3-O-glucoside further, biosynthetic genes were stably integrated into the yeast genome, and formation of a major side-product, phloretic acid, was prevented by engineering the yeast chassis. Further engineering, by removing two glucosidases which are known to degrade pelargonidin 3-O-glucoside, did not result in higher yields of glycosylated pelargonidin. In aerated, pH controlled batch reactors, intracellular pelargonidin accumulation reached 0.01 µmol/gCDW, while kaempferol and dihydrokaempferol were effectively exported to reach extracellular concentration of 20 µM [5 mg/L] and 150 µM [44 mg/L], respectively. CONCLUSION The results reported in this study demonstrate the proof-of-concept that S. cerevisiae is capable of de novo production of the anthocyanin pelargonidin 3-O-glucoside. Furthermore, while current conversion efficiencies are low, a number of clear bottlenecks have already been identified which, when overcome, have huge potential to enhance anthocyanin production efficiency. These results bode very well for the development of fermentation-based production systems for specific and individual anthocyanin molecules. Such systems have both great scientific value for identifying and characterising anthocyanin decorating enzymes as well as significant commercial potential for the production of, on-demand, pure bioactive compounds to be used in the food, health and even pharma industries.
Collapse
Affiliation(s)
- Mark Levisson
- Laboratory of Plant Physiology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Constantinos Patinios
- Laboratory of Plant Physiology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Sascha Hein
- Department of Food Quality and Nutrition, Fondazione Edmund Mach, Centro Ricerca e Innovazione, Via E. Mach, 1, 38010 San Michele all’Adige, TN Italy
| | - Philip A. de Groot
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jean-Marc Daran
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Robert D. Hall
- Laboratory of Plant Physiology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Wageningen Plant Research, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Stefan Martens
- Department of Food Quality and Nutrition, Fondazione Edmund Mach, Centro Ricerca e Innovazione, Via E. Mach, 1, 38010 San Michele all’Adige, TN Italy
| | - Jules Beekwilder
- Wageningen Plant Research, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
76
|
Deng Y, Li C, Li H, Lu S. Identification and Characterization of Flavonoid Biosynthetic Enzyme Genes in Salvia miltiorrhiza (Lamiaceae). Molecules 2018; 23:E1467. [PMID: 29914175 PMCID: PMC6099592 DOI: 10.3390/molecules23061467] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 11/16/2022] Open
Abstract
Flavonoids are a class of important secondary metabolites with a broad spectrum of pharmacological functions. Salviamiltiorrhiza Bunge (Danshen) is a well-known traditional Chinese medicinal herb with a broad diversity of flavonoids. However, flavonoid biosynthetic enzyme genes have not been systematically and comprehensively analyzed in S.miltiorrhiza. Through genome-wide prediction and molecular cloning, twenty six flavonoid biosynthesis-related gene candidates were identified, of which twenty are novel. They belong to nine families potentially encoding chalcone synthase (CHS), chalcone isomerase (CHI), flavone synthase (FNS), flavanone 3-hydroxylase (F3H), flavonoid 3'-hydroxylase (F3'H), flavonoid 3',5'-hydroxylase (F3'5'H), flavonol synthase (FLS), dihydroflavonol 4-reductase (DFR), and anthocyanidin synthase (ANS), respectively. Analysis of intron/exon structures, features of deduced proteins and phylogenetic relationships revealed the conservation and divergence of S.miltiorrhiza flavonoid biosynthesis-related proteins and their homologs from other plant species. These genes showed tissue-specific expression patterns and differentially responded to MeJA treatment. Through comprehensive and systematic analysis, fourteen genes most likely to encode flavonoid biosynthetic enzymes were identified. The results provide valuable information for understanding the biosynthetic pathway of flavonoids in medicinal plants.
Collapse
Affiliation(s)
- Yuxing Deng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151 Malianwa North Road, Haidian District, Beijing 100193, China.
| | - Caili Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151 Malianwa North Road, Haidian District, Beijing 100193, China.
| | - Heqin Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151 Malianwa North Road, Haidian District, Beijing 100193, China.
- College of Agronomy, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao 266109, China.
| | - Shanfa Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151 Malianwa North Road, Haidian District, Beijing 100193, China.
| |
Collapse
|
77
|
Siwinska J, Siatkowska K, Olry A, Grosjean J, Hehn A, Bourgaud F, Meharg AA, Carey M, Lojkowska E, Ihnatowicz A. Scopoletin 8-hydroxylase: a novel enzyme involved in coumarin biosynthesis and iron-deficiency responses in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1735-1748. [PMID: 29361149 PMCID: PMC5888981 DOI: 10.1093/jxb/ery005] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/12/2018] [Indexed: 05/06/2023]
Abstract
Iron deficiency is a serious agricultural problem, particularly in alkaline soils. Secretion of coumarins by Arabidopsis thaliana roots is induced under iron deficiency. An essential enzyme for the biosynthesis of the major Arabidopsis coumarins, scopoletin and its derivatives, is Feruloyl-CoA 6'-Hydroxylase1 (F6'H1), which belongs to a large enzyme family of the 2-oxoglutarate and Fe2+-dependent dioxygenases. We have functionally characterized another enzyme of this family, which is a close homologue of F6'H1 and is encoded by a strongly iron-responsive gene, At3g12900. We purified At3g12900 protein heterologously expressed in Escherichia coli and demonstrated that it is involved in the conversion of scopoletin into fraxetin, via hydroxylation at the C8 position, and that it thus functions as a scopoletin 8-hydroxylase (S8H). Its function in plant cells was confirmed by the transient expression of S8H protein in Nicotiana benthamiana leaves, followed by metabolite profiling and biochemical and ionomic characterization of Arabidopsis s8h knockout lines grown under various iron regimes. Our results indicate that S8H is involved in coumarin biosynthesis, as part of mechanisms used by plants to assimilate iron.
Collapse
Affiliation(s)
- Joanna Siwinska
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Abrahama, Gdansk, Poland
| | - Kinga Siatkowska
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Abrahama, Gdansk, Poland
| | - Alexandre Olry
- Université de Lorraine, INRA, UMR 1121 Laboratoire Agronomie et Environnement Nancy-Colmar, Vandœuvre-lès-Nancy, France
| | - Jeremy Grosjean
- Université de Lorraine, INRA, UMR 1121 Laboratoire Agronomie et Environnement Nancy-Colmar, Vandœuvre-lès-Nancy, France
| | - Alain Hehn
- Université de Lorraine, INRA, UMR 1121 Laboratoire Agronomie et Environnement Nancy-Colmar, Vandœuvre-lès-Nancy, France
| | - Frederic Bourgaud
- Université de Lorraine, INRA, UMR 1121 Laboratoire Agronomie et Environnement Nancy-Colmar, Vandœuvre-lès-Nancy, France
| | - Andrew A Meharg
- Institute for Global Food Security, Queen’s University Belfast, David Keir Building, Malone Road, Belfast, UK
| | - Manus Carey
- Institute for Global Food Security, Queen’s University Belfast, David Keir Building, Malone Road, Belfast, UK
| | - Ewa Lojkowska
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Abrahama, Gdansk, Poland
| | - Anna Ihnatowicz
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Abrahama, Gdansk, Poland
| |
Collapse
|
78
|
Kluza A, Niedzialkowska E, Kurpiewska K, Wojdyla Z, Quesne M, Kot E, Porebski PJ, Borowski T. Crystal structure of thebaine 6-O-demethylase from the morphine biosynthesis pathway. J Struct Biol 2018; 202:229-235. [PMID: 29408320 DOI: 10.1016/j.jsb.2018.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/24/2018] [Accepted: 01/28/2018] [Indexed: 11/17/2022]
Abstract
Thebaine 6-O-demethylase (T6ODM) from Papaver somniferum (opium poppy), which belongs to the non-heme 2-oxoglutarate/Fe(II)-dependent dioxygenases (ODD) family, is a key enzyme in the morphine biosynthesis pathway. Initially, T6ODM was characterized as an enzyme catalyzing O-demethylation of thebaine to neopinone and oripavine to morphinone. However, the substrate range of T6ODM was recently expanded to a number of various benzylisoquinoline alkaloids. Here, we present crystal structures of T6ODM in complexes with 2-oxoglutarate (T6ODM:2OG, PDB: 5O9W) and succinate (T6ODM:SIN, PDB: 5O7Y). Both metal and 2OG binding sites display similarity to other proteins from the ODD family, but T6ODM is characterized by an exceptionally large substrate binding cavity, whose volume can partially explain the promiscuity of this enzyme. Moreover, the size of the cavity allows for binding of multiple molecules at once, posing a question about the substrate-driven specificity of the enzyme.
Collapse
Affiliation(s)
- Anna Kluza
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland
| | - Ewa Niedzialkowska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland
| | - Katarzyna Kurpiewska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland; Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, PL-30387 Krakow, Poland
| | - Zuzanna Wojdyla
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland
| | - Matthew Quesne
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland
| | - Ewa Kot
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland
| | - Przemyslaw J Porebski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland.
| | - Tomasz Borowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland.
| |
Collapse
|
79
|
Structural and functional characterization of the Vindoline biosynthesis pathway enzymes of Catharanthus roseus. J Mol Model 2018; 24:53. [DOI: 10.1007/s00894-018-3590-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 01/15/2018] [Indexed: 01/10/2023]
|
80
|
Liu W, Xiao Z, Fan C, Jiang N, Meng X, Xiang X. Cloning and Characterization of a Flavonol Synthase Gene From Litchi chinensis and Its Variation Among Litchi Cultivars With Different Fruit Maturation Periods. FRONTIERS IN PLANT SCIENCE 2018; 9:567. [PMID: 29922308 PMCID: PMC5996885 DOI: 10.3389/fpls.2018.00567] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 04/11/2018] [Indexed: 05/20/2023]
Abstract
Litchi (Litchi chinensis) is an important subtropical fruit tree with high commercial value. However, the short and centralized fruit maturation period of litchi cultivars represents a bottleneck for litchi production. Therefore, the development of novel cultivars with extremely early fruit maturation period is critical. Previously, we showed that the genotypes of extremely early-maturing (EEM), early-maturing (EM), and middle-to-late-maturing (MLM) cultivars at a specific locus SNP51 (substitution type C/T) were consistent with their respective genetic background at the whole-genome level; a homozygous C/C genotype at SNP51 systematically differentiated EEM cultivars from others. The litchi gene on which SNP51 was located was annotated as flavonol synthase (FLS), which catalyzes the formation of flavonols. Here, we further elucidate the variation of the FLS gene from L. chinensis (LcFLS) among EEM, EM, and MLM cultivars. EEM cultivars with a homozygous C/C genotype at SNP51 all contained the same 2,199-bp sequence of the LcFLS gene. For MLM cultivars with a homozygous T/T genotype at SNP51, the sequence lengths of the LcFLS gene were 2,202-2,222 bp. EM cultivars with heterozygous C/T genotypes at SNP51 contained two different alleles of the LcFLS gene: a 2,199-bp sequence identical to that in EEM cultivars and a 2,205-bp sequence identical to that in MLM cultivar 'Heiye.' Moreover, the coding regions of LcFLS genes of other MLM cultivars were almost identical to that of 'Heiye.' Therefore, the LcFLS gene coding region may be used as a source of diagnostic SNP markers to discriminate or identify genotypes with the EEM trait. The expression pattern of the LcFLS gene and accumulation pattern of flavonol from EEM, EM, and MLM cultivars were analyzed and compared using quantitative real-time PCR (qRT-PCR) and high-performance liquid chromatography (HPLC) for mature leaves, flower buds, and fruits, 15, 30, 45, and 60 days after anthesis. Flavonol content and LcFLS gene expression levels were positively correlated in all three cultivars: both decreased from the EEM to MLM cultivars, with moderate levels in the EM cultivars. LcFLS gene function could be further analyzed to elucidate its correlation with phenotype variation among litchi cultivars with different fruit maturation periods.
Collapse
Affiliation(s)
- Wei Liu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, China
- Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Zhidan Xiao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Chao Fan
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, China
- Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Nonghui Jiang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, China
- Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Xiangchun Meng
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, China
- Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Xu Xiang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, China
- Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
- *Correspondence: Xu Xiang,
| |
Collapse
|
81
|
Lukat P, Katsuyama Y, Wenzel S, Binz T, König C, Blankenfeldt W, Brönstrup M, Müller R. Biosynthesis of methyl-proline containing griselimycins, natural products with anti-tuberculosis activity. Chem Sci 2017; 8:7521-7527. [PMID: 29163906 PMCID: PMC5676206 DOI: 10.1039/c7sc02622f] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/01/2017] [Indexed: 11/21/2022] Open
Abstract
Griselimycins (GMs) are depsidecapeptides with superb anti-tuberculosis activity. They contain up to three (2S,4R)-4-methyl-prolines (4-MePro), of which one blocks oxidative degradation and increases metabolic stability in animal models. The natural congener with this substitution is only a minor component in fermentation cultures. We showed that this product can be significantly increased by feeding the reaction with 4-MePro and we investigated the molecular basis of 4-MePro biosynthesis and incorporation. We identified the GM biosynthetic gene cluster as encoding a nonribosomal peptide synthetase and a sub-operon for 4-MePro formation. Using heterologous expression, gene inactivation, and in vitro experiments, we showed that 4-MePro is generated by leucine hydroxylation, oxidation to an aldehyde, and ring closure with subsequent reduction. The crystal structures of the leucine hydroxylase GriE have been determined in complex with substrates and products, providing insight into the stereospecificity of the reaction.
Collapse
Affiliation(s)
- Peer Lukat
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) , Helmholtz Center for Infection Research and Pharmaceutical Biotechnology , Saarland University Campus , Building C2.3 , 66123 Saarbrücken , Germany . .,Structure and Function of Proteins , Helmholtz Centre for Infection Research , Inhoffenstr. 7 , 38124 Braunschweig , Germany
| | - Yohei Katsuyama
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) , Helmholtz Center for Infection Research and Pharmaceutical Biotechnology , Saarland University Campus , Building C2.3 , 66123 Saarbrücken , Germany . .,German Centre for Infection Research Association (DZIF) , Partner site Hannover-Braunschweig , Germany
| | - Silke Wenzel
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) , Helmholtz Center for Infection Research and Pharmaceutical Biotechnology , Saarland University Campus , Building C2.3 , 66123 Saarbrücken , Germany . .,German Centre for Infection Research Association (DZIF) , Partner site Hannover-Braunschweig , Germany
| | - Tina Binz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) , Helmholtz Center for Infection Research and Pharmaceutical Biotechnology , Saarland University Campus , Building C2.3 , 66123 Saarbrücken , Germany . .,German Centre for Infection Research Association (DZIF) , Partner site Hannover-Braunschweig , Germany
| | - Claudia König
- Sanofi Aventis Deutschland , Industriepark Höchst , 65926 Frankfurt , Germany
| | - Wulf Blankenfeldt
- Structure and Function of Proteins , Helmholtz Centre for Infection Research , Inhoffenstr. 7 , 38124 Braunschweig , Germany.,Institute of Biochemistry, Biotechnology and Bioinformatics , Technische Universität Braunschweig , Spielmannstr. 7 , 38106 Braunschweig , Germany
| | - Mark Brönstrup
- Department for Chemical Biology , Helmholtz Centre for Infection Research , Inhoffenstr. 7 , 38124 Braunschweig , Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) , Helmholtz Center for Infection Research and Pharmaceutical Biotechnology , Saarland University Campus , Building C2.3 , 66123 Saarbrücken , Germany . .,German Centre for Infection Research Association (DZIF) , Partner site Hannover-Braunschweig , Germany
| |
Collapse
|
82
|
Chen C, Wei K, Wang L, Ruan L, Li H, Zhou X, Lin Z, Shan R, Cheng H. Expression of Key Structural Genes of the Phenylpropanoid Pathway Associated with Catechin Epimerization in Tea Cultivars. FRONTIERS IN PLANT SCIENCE 2017; 8:702. [PMID: 28515736 PMCID: PMC5413559 DOI: 10.3389/fpls.2017.00702] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/18/2017] [Indexed: 05/10/2023]
Abstract
Catechin epimerization is an important factor affecting tea catechin compositions and thereby tea quality. However, a lack of tea germplasms with high non-epicatechins limits relative research. Here, a tea cultivar Y510 with high non-epicatechins was firstly reported and used for catechin and RNA sequencing (RNA-Seq) analysis. Results showed that the (-)-gallocatechin gallate and (+)-catechin (C) contents in Y510 were at least 136 and 6 times higher than those in Fudingdabaicha and 0306I, but the epicatechins (-)-epigallocatechin and (-)-epicatechin (EC) were significantly lower. Eleven unigenes potentially involved in catechin epimerization were identified by RNA-Seq analysis. Based on a combination of catechin and gene expression analysis, it was hypothesized that two anthocyanidin reductase genes (CsANR1, CsANR2) and an anthocyanidin synthase gene (CsANS) are the key genes affecting catechin epimerization in tea. Non-epicatechin formations were hypothesized to be mainly influenced by the expression ratio of CsANR2 to CsANR1 and the expression of CsANS. Overexpression of CsANS in an Arabidopsis mutant tds4-2 led to a significant increase of EC accumulation in seeds, revealing CsANS is important for catechin epimerization. These results shed new light on breeding tea cultivars with special catechin compositions.
Collapse
Affiliation(s)
- Changsong Chen
- Tea Research Institute, Fujian Academy of Agricultural SciencesFu’an, China
| | - Kang Wei
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural SciencesHangzhou, China
- *Correspondence: Kang Wei, Hao Cheng,
| | - Liyuan Wang
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural SciencesHangzhou, China
| | - Li Ruan
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural SciencesHangzhou, China
| | - Hailin Li
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural SciencesHangzhou, China
| | - Xiaogui Zhou
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural SciencesHangzhou, China
| | - Zhenghe Lin
- Tea Research Institute, Fujian Academy of Agricultural SciencesFu’an, China
| | - Ruiyang Shan
- Tea Research Institute, Fujian Academy of Agricultural SciencesFu’an, China
| | - Hao Cheng
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural SciencesHangzhou, China
- *Correspondence: Kang Wei, Hao Cheng,
| |
Collapse
|
83
|
Zhang LQ, Wei K, Cheng H, Wang LY, Zhang CC. Accumulation of catechins and expression of catechin synthetic genes in Camellia sinensis at different developmental stages. BOTANICAL STUDIES 2016; 57:31. [PMID: 28597441 PMCID: PMC5430556 DOI: 10.1186/s40529-016-0143-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 10/04/2016] [Indexed: 05/07/2023]
Abstract
BACKGROUND Catechins are the main polyphenol compounds in tea (Camellia sinensis). To understand the relationship between gene expression and product accumulation, the levels of catechins and relative expressions of key genes in tea leaves of different developmental stages were analyzed. RESULTS The amounts of catechins differed significantly in leaves of different stages, except for gallocatechin gallate. Close correlations between the expression of synthesis genes and the accumulation of catechins were identified. Correlation analysis showed that the expressions of chalcone synthase 1, chalcone synthase 3, anthocyanidin reductase 1, anthocyanidin reductase 2 and leucoanthocyanidin reductase genes were significantly and positively correlated with total catechin contents, suggesting their expression may largely affect total catechin accumulation. Anthocyanidin synthase was significantly correlated with catechin. While both ANRs and LAR were significantly and positively correlated with the contents of (-)-epigallocatechin gallate and (-)-epicatechin gallate. CONCLUSION Our results suggest synergistic changes between the expression of synthetic genes and the accumulation of catechins. Based on our findings, anthocyanidin synthase may regulate earlier steps in the conversion of catechin, while the anthocyanidin reductase and leucoanthocyanidin reductase genes may both play important roles in the biosynthesis of galloylated catechins.
Collapse
Affiliation(s)
- Li-Qun Zhang
- Key Laboratory of Tea Biology and Resources Utilization, Tea Research Institute Chinese Academy of Agricultural Sciences, National Center for Tea Improvement, Ministry of Agriculture, No. 9, Meiling South Road, Xihu District, Hangzhou, 310008 Zhejiang China
| | - Kang Wei
- Key Laboratory of Tea Biology and Resources Utilization, Tea Research Institute Chinese Academy of Agricultural Sciences, National Center for Tea Improvement, Ministry of Agriculture, No. 9, Meiling South Road, Xihu District, Hangzhou, 310008 Zhejiang China
| | - Hao Cheng
- Key Laboratory of Tea Biology and Resources Utilization, Tea Research Institute Chinese Academy of Agricultural Sciences, National Center for Tea Improvement, Ministry of Agriculture, No. 9, Meiling South Road, Xihu District, Hangzhou, 310008 Zhejiang China
| | - Li-Yuan Wang
- Key Laboratory of Tea Biology and Resources Utilization, Tea Research Institute Chinese Academy of Agricultural Sciences, National Center for Tea Improvement, Ministry of Agriculture, No. 9, Meiling South Road, Xihu District, Hangzhou, 310008 Zhejiang China
| | - Cheng-Cai Zhang
- Key Laboratory of Tea Biology and Resources Utilization, Tea Research Institute Chinese Academy of Agricultural Sciences, National Center for Tea Improvement, Ministry of Agriculture, No. 9, Meiling South Road, Xihu District, Hangzhou, 310008 Zhejiang China
| |
Collapse
|
84
|
Chen L, Huang Y, Xu M, Cheng Z, Zhang D, Zheng J. iTRAQ-Based Quantitative Proteomics Analysis of Black Rice Grain Development Reveals Metabolic Pathways Associated with Anthocyanin Biosynthesis. PLoS One 2016; 11:e0159238. [PMID: 27415428 PMCID: PMC4944901 DOI: 10.1371/journal.pone.0159238] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/29/2016] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Black rice (Oryza sativa L.), whose pericarp is rich in anthocyanins (ACNs), is considered as a healthier alternative to white rice. Molecular species of ACNs in black rice have been well documented in previous studies; however, information about the metabolic mechanisms underlying ACN biosynthesis during black rice grain development is unclear. RESULTS The aim of the present study was to determine changes in the metabolic pathways that are involved in the dynamic grain proteome during the development of black rice indica cultivar, (Oryza sativa L. indica var. SSP). Isobaric tags for relative and absolute quantification (iTRAQ) MS/MS were employed to identify statistically significant alterations in the grain proteome. Approximately 928 proteins were detected, of which 230 were differentially expressed throughout 5 successive developmental stages, starting from 3 to 20 days after flowering (DAF). The greatest number of differentially expressed proteins was observed on 7 and 10 DAF, including 76 proteins that were upregulated and 39 that were downregulated. The biological process analysis of gene ontology revealed that the 230 differentially expressed proteins could be sorted into 14 functional groups. Proteins in the largest group were related to metabolic process, which could be integrated into multiple biochemical pathways. Specifically, proteins with a role in ACN biosynthesis, sugar synthesis, and the regulation of gene expression were upregulated, particularly from the onset of black rice grain development and during development. In contrast, the expression of proteins related to signal transduction, redox homeostasis, photosynthesis and N-metabolism decreased during grain maturation. Finally, 8 representative genes encoding different metabolic proteins were verified via quantitative real-time polymerase chain reaction (qRT-PCR) analysis, these genes had differed in transcriptional and translational expression during grain development. CONCLUSIONS Expression analyses of metabolism-related protein groups belonging to different functional categories and subcategories indicated that significantly upregulated proteins were related to flavonoid and starch synthesis. On the other hand, the downregulated proteins were determined to be related to nitrogen metabolism, as well as other functional categories and subcategories, including photosynthesis, redox homeostasis, tocopherol biosynthetic, and signal transduction. The results provide valuable new insights into the characterization and understanding of ACN pigment production in black rice.
Collapse
Affiliation(s)
- Linghua Chen
- FujianAgriculture and Forestry University, Fuzhou Fujian, China
- Jinshan College of Fujian Agriculture and Forestry University, Fuzhou Fujian, China
| | - Yining Huang
- FujianAgriculture and Forestry University, Fuzhou Fujian, China
- Department of Food and Biology Engineering, Zhangzhou Institute of Technology, Zhangzhou Fujian, China
| | - Ming Xu
- FujianAgriculture and Forestry University, Fuzhou Fujian, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou Fujian, China
| | - Zuxin Cheng
- FujianAgriculture and Forestry University, Fuzhou Fujian, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou Fujian, China
| | - Dasheng Zhang
- Shanghai Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory for Plant Functional Genomics and Resources, Shanghai, China
| | - Jingui Zheng
- FujianAgriculture and Forestry University, Fuzhou Fujian, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou Fujian, China
| |
Collapse
|
85
|
LATERAL BRANCHING OXIDOREDUCTASE acts in the final stages of strigolactone biosynthesis in Arabidopsis. Proc Natl Acad Sci U S A 2016; 113:6301-6. [PMID: 27194725 DOI: 10.1073/pnas.1601729113] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Strigolactones are a group of plant compounds of diverse but related chemical structures. They have similar bioactivity across a broad range of plant species, act to optimize plant growth and development, and promote soil microbe interactions. Carlactone, a common precursor to strigolactones, is produced by conserved enzymes found in a number of diverse species. Versions of the MORE AXILLARY GROWTH1 (MAX1) cytochrome P450 from rice and Arabidopsis thaliana make specific subsets of strigolactones from carlactone. However, the diversity of natural strigolactones suggests that additional enzymes are involved and remain to be discovered. Here, we use an innovative method that has revealed a missing enzyme involved in strigolactone metabolism. By using a transcriptomics approach involving a range of treatments that modify strigolactone biosynthesis gene expression coupled with reverse genetics, we identified LATERAL BRANCHING OXIDOREDUCTASE (LBO), a gene encoding an oxidoreductase-like enzyme of the 2-oxoglutarate and Fe(II)-dependent dioxygenase superfamily. Arabidopsis lbo mutants exhibited increased shoot branching, but the lbo mutation did not enhance the max mutant phenotype. Grafting indicated that LBO is required for a graft-transmissible signal that, in turn, requires a product of MAX1. Mutant lbo backgrounds showed reduced responses to carlactone, the substrate of MAX1, and methyl carlactonoate (MeCLA), a product downstream of MAX1. Furthermore, lbo mutants contained increased amounts of these compounds, and the LBO protein specifically converts MeCLA to an unidentified strigolactone-like compound. Thus, LBO function may be important in the later steps of strigolactone biosynthesis to inhibit shoot branching in Arabidopsis and other seed plants.
Collapse
|
86
|
Wójcik A, Radoń M, Borowski T. Mechanism of O2 Activation by α-Ketoglutarate Dependent Oxygenases Revisited. A Quantum Chemical Study. J Phys Chem A 2016; 120:1261-74. [PMID: 26859709 DOI: 10.1021/acs.jpca.5b12311] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Four mechanisms previously proposed for dioxygen activation catalyzed by α-keto acid dependent oxygenases (α-KAO) were studied with dispersion-corrected DFT methods employing B3LYP and TPSSh functionals in combination with triple-ζ basis set (cc-pVTZ). The aim of this study was to revisit mechanisms suggested in the past decade and resolve remaining issues related to dioxygen activation. Mechanism A, which runs on the quintet potential energy surface (PES) and includes formation of an Fe(III)-superoxide radical anion complex, subsequent oxidative decarboxylation, and O-O bond cleavage, was found to be most likely. However, mechanism B taking place on the septet PES involves a rate limiting barrier comparable to the one found for mechanism A, and thus it cannot be excluded, though two other mechanisms (C and D) were ruled out. Mechanism C is a minor variation of mechanism A, whereas mechanism D proceeds through formation of a triplet Fe(IV)-alkyl peroxo bridged intermediate. The study covered also full optimization of relevant minimum energy crossing points (MECPs). The relative energy of critical intermediates was also studied with the CCSD(T) method in order to benchmark TPSSh and B3LYP functionals with respect to their credibility in predicting relative energies of septet and triplet spin states of the ternary enzyme-Fe-α-keto glutarate (α-KG)-O2 complex.
Collapse
Affiliation(s)
- Anna Wójcik
- Department of Computational Biophysics and Bioinformatics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , ul. Gronostajowa 7, 30-387 Cracow, Poland
| | - Mariusz Radoń
- Department of Chemistry, Jagiellonian University , ul. Ingardena 3, 30-060 Cracow, Poland
| | - Tomasz Borowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences , ul. Niezapominajek 8, 30-239 Cracow, Poland
| |
Collapse
|
87
|
Ben-Simhon Z, Judeinstein S, Trainin T, Harel-Beja R, Bar-Ya'akov I, Borochov-Neori H, Holland D. A "White" Anthocyanin-less Pomegranate (Punica granatum L.) Caused by an Insertion in the Coding Region of the Leucoanthocyanidin Dioxygenase (LDOX; ANS) Gene. PLoS One 2015; 10:e0142777. [PMID: 26581077 PMCID: PMC4651307 DOI: 10.1371/journal.pone.0142777] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 10/27/2015] [Indexed: 01/13/2023] Open
Abstract
Color is an important determinant of pomegranate fruit quality and commercial value. To understand the genetic factors controlling color in pomegranate, chemical, molecular and genetic characterization of a "white" pomegranate was performed. This unique accession is lacking the typical pomegranate color rendered by anthocyanins in all tissues of the plant, including flowers, fruit (skin and arils) and leaves. Steady-state gene-expression analysis indicated that none of the analyzed "white" pomegranate tissues are able to synthesize mRNA corresponding to the PgLDOX gene (leucoanthocyanidin dioxygenase, also called ANS, anthocyanidin synthase), which is one of the central structural genes in the anthocyanin-biosynthesis pathway. HPLC analysis revealed that none of the "white" pomegranate tissues accumulate anthocyanins, whereas other flavonoids, corresponding to biochemical reactions upstream of LDOX, were present. Molecular analysis of the "white" pomegranate revealed the presence of an insertion and an SNP within the coding region of PgLDOX. It was found that the SNP does not change amino acid sequence and is not fully linked with the "white" phenotype in all pomegranate accessions from the collection. On the other hand, genotyping of pomegranate accessions from the collection and segregating populations for the "white" phenotype demonstrated its complete linkage with the insertion, inherited as a recessive single-gene trait. Taken together, the results indicate that the insertion in PgLDOX is responsible for the "white" anthocyanin-less phenotype. These data provide the first direct molecular, genetic and chemical evidence for the effect of a natural modification in the LDOX gene on color accumulation in a fruit-bearing woody perennial deciduous tree. This modification can be further utilized to elucidate the physiological role of anthocyanins in protecting the tree organs from harmful environmental conditions, such as temperature and UV radiation.
Collapse
Affiliation(s)
- Zohar Ben-Simhon
- Unit of Deciduous Fruit Tree Sciences, Newe Ya’ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay, 30095, Israel
- Faculty of Biology, Technion- Israel Institute of Technology, Haifa, Israel
| | | | - Taly Trainin
- Unit of Deciduous Fruit Tree Sciences, Newe Ya’ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Rotem Harel-Beja
- Unit of Deciduous Fruit Tree Sciences, Newe Ya’ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Irit Bar-Ya'akov
- Unit of Deciduous Fruit Tree Sciences, Newe Ya’ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | | | - Doron Holland
- Unit of Deciduous Fruit Tree Sciences, Newe Ya’ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay, 30095, Israel
| |
Collapse
|
88
|
Vidak M, Rozman D, Komel R. Effects of Flavonoids from Food and Dietary Supplements on Glial and Glioblastoma Multiforme Cells. Molecules 2015; 20:19406-32. [PMID: 26512639 PMCID: PMC6332278 DOI: 10.3390/molecules201019406] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/21/2015] [Accepted: 10/14/2015] [Indexed: 11/24/2022] Open
Abstract
Quercetin, catechins and proanthocyanidins are flavonoids that are prominently featured in foodstuffs and dietary supplements, and may possess anti-carcinogenic activity. Glioblastoma multiforme is the most dangerous form of glioma, a malignancy of the brain connective tissue. This review assesses molecular structures of these flavonoids, their importance as components of diet and dietary supplements, their bioavailability and ability to cross the blood-brain barrier, their reported beneficial health effects, and their effects on non-malignant glial as well as glioblastoma tumor cells. The reviewed flavonoids appear to protect glial cells via reduction of oxidative stress, while some also attenuate glutamate-induced excitotoxicity and reduce neuroinflammation. Most of the reviewed flavonoids inhibit proliferation of glioblastoma cells and induce their death. Moreover, some of them inhibit pro-oncogene signaling pathways and intensify the effect of conventional anti-cancer therapies. However, most of these anti-glioblastoma effects have only been observed in vitro or in animal models. Due to limited ability of the reviewed flavonoids to access the brain, their normal dietary intake is likely insufficient to produce significant anti-cancer effects in this organ, and supplementation is needed.
Collapse
Affiliation(s)
- Marko Vidak
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, SI-1000 Ljubljana, Slovenia.
| | - Damjana Rozman
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, SI-1000 Ljubljana, Slovenia.
| | - Radovan Komel
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
89
|
Longbotham JE, Levy C, Johannissen LO, Tarhonskaya H, Jiang S, Loenarz C, Flashman E, Hay S, Schofield CJ, Scrutton NS. Structure and Mechanism of a Viral Collagen Prolyl Hydroxylase. Biochemistry 2015; 54:6093-105. [PMID: 26368022 PMCID: PMC4613865 DOI: 10.1021/acs.biochem.5b00789] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The
Fe(II)- and 2-oxoglutarate (2-OG)-dependent dioxygenases comprise
a large and diverse enzyme superfamily the members of which have multiple
physiological roles. Despite this diversity, these enzymes share a
common chemical mechanism and a core structural fold, a double-stranded
β-helix (DSBH), as well as conserved active site residues. The
prolyl hydroxylases are members of this large superfamily. Prolyl
hydroxylases are involved in collagen biosynthesis and oxygen sensing
in mammalian cells. Structural–mechanistic studies with prolyl
hydroxylases have broader implications for understanding mechanisms
in the Fe(II)- and 2-OG-dependent dioxygenase superfamily. Here, we
describe crystal structures of an N-terminally truncated viral collagen
prolyl hydroxylase (vCPH). The crystal structure shows that vCPH contains
the conserved DSBH motif and iron binding active site residues of
2-OG oxygenases. Molecular dynamics simulations are used to delineate
structural changes in vCPH upon binding its substrate. Kinetic investigations
are used to report on reaction cycle intermediates and compare them
to the closest homologues of vCPH. The study highlights the utility
of vCPH as a model enzyme for broader mechanistic analysis of Fe(II)-
and 2-OG-dependent dioxygenases, including those of biomedical interest.
Collapse
Affiliation(s)
- James E Longbotham
- Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester , Manchester M1 7DN, United Kingdom
| | - Colin Levy
- Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester , Manchester M1 7DN, United Kingdom
| | - Linus O Johannissen
- Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester , Manchester M1 7DN, United Kingdom
| | - Hanna Tarhonskaya
- Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Shuo Jiang
- Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Christoph Loenarz
- Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Emily Flashman
- Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Sam Hay
- Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester , Manchester M1 7DN, United Kingdom
| | - Christopher J Schofield
- Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Nigel S Scrutton
- Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester , Manchester M1 7DN, United Kingdom
| |
Collapse
|
90
|
Papaverine 7-O-demethylase, a novel 2-oxoglutarate/Fe2+-dependent dioxygenase from opium poppy. FEBS Lett 2015; 589:2701-6. [DOI: 10.1016/j.febslet.2015.07.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 07/24/2015] [Accepted: 07/27/2015] [Indexed: 11/23/2022]
|
91
|
Cao YD, He YC, Li H, Kai GY, Xu JH, Yu HL. Efficient biosynthesis of rare natural product scopolamine using E. coli cells expressing a S14P/K97A mutant of hyoscyamine 6β-hydroxylase AaH6H. J Biotechnol 2015; 211:123-9. [PMID: 26239231 DOI: 10.1016/j.jbiotec.2015.07.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 07/23/2015] [Accepted: 07/27/2015] [Indexed: 11/30/2022]
Abstract
Hyoscyamine 6β-hydroxylase (H6H, EC 1.14.11.11), an α-ketoglutarate dependent dioxygenase catalyzes the hydroxylation of (-)-hyoscyamine and the subsequent epoxidation of 6β-hydroxyhyoscyamine to form scopolamine, a valuable natural alkaloid. In this study, random mutagenesis and site-directed saturation mutagenesis were used to enhance the hydroxylation activity of H6H from Anisodus acutangulus (AaH6H). A double mutant, AaH6HM1 (S14P/K97A), showed a 3.4-fold improved hydroxylation activity compared with the wild-type enzyme, and the in vivo epoxidation activity was also improved by 2.3 times. After 34h cultivation of Escherichia coli cells harboring Aah6hm1 in a 5-L bioreactor with a working volume of 3L, scopolamine was produced via a single-enzyme-mediated two-step transformation from 500mgL(-1) (-)-hyoscyamine in 97% conversion, and 1.068g of the product were isolated, corresponding to a space-time yield of 251mgL(-1)d(-1). This study shows that the protein engineering of some key enzymes is a promising and effective way for improving the production of rare natural products such as scopolamine.
Collapse
Affiliation(s)
- Yue-De Cao
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yu-Cai He
- Laboratory of Biocatalysis and Bioprocessing, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou 213164, PR China
| | - Hao Li
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Guo-Yin Kai
- Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, PR China
| | - Jian-He Xu
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai Collaborative Innovation Center for Biomanufacturing, 130 Meilong Road, Shanghai 200237, PR China
| | - Hui-Lei Yu
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai Collaborative Innovation Center for Biomanufacturing, 130 Meilong Road, Shanghai 200237, PR China.
| |
Collapse
|
92
|
Kundu S. Co-operative intermolecular kinetics of 2-oxoglutarate dependent dioxygenases may be essential for system-level regulation of plant cell physiology. FRONTIERS IN PLANT SCIENCE 2015; 6:489. [PMID: 26236316 PMCID: PMC4502536 DOI: 10.3389/fpls.2015.00489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 06/19/2015] [Indexed: 05/24/2023]
Abstract
Can the stimulus-driven synergistic association of 2-oxoglutarate dependent dioxygenases be influenced by the kinetic parameters of binding and catalysis?In this manuscript, I posit that these indices are necessary and specific for a particular stimulus, and are key determinants of a dynamic clustering that may function to mitigate the effects of this trigger. The protein(s)/sequence(s) that comprise this group are representative of all major kingdoms of life, and catalyze a generic hydroxylation, which is, in most cases accompanied by a specialized conversion of the substrate molecule. Iron is an essential co-factor for this transformation and the response to waning levels is systemic, and mandates the simultaneous participation of molecular sensors, transporters, and signal transducers. Here, I present a proof-of-concept model, that an evolving molecular network of 2OG-dependent enzymes can maintain iron homeostasis in the cytosol of root hair cells of members of the family Gramineae by actuating a non-reductive compensatory chelation by the phytosiderophores. Regression models of empirically available kinetic data (iron and alpha-ketoglutarate) were formulated, analyzed, and compared. The results, when viewed in context of the superfamily responding as a unit, suggest that members can indeed, work together to accomplish system-level function. This is achieved by the establishment of transient metabolic conduits, wherein the flux is dictated by kinetic compatibility of the participating enzymes. The approach adopted, i.e., predictive mathematical modeling, is integral to the hypothesis-driven acquisition of experimental data points and, in association with suitable visualization aids may be utilized for exploring complex plant biochemical systems.
Collapse
Affiliation(s)
- Siddhartha Kundu
- *Correspondence: Siddhartha Kundu, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi 110067, India ;
| |
Collapse
|
93
|
Fedeles BI, Singh V, Delaney JC, Li D, Essigmann JM. The AlkB Family of Fe(II)/α-Ketoglutarate-dependent Dioxygenases: Repairing Nucleic Acid Alkylation Damage and Beyond. J Biol Chem 2015; 290:20734-20742. [PMID: 26152727 DOI: 10.1074/jbc.r115.656462] [Citation(s) in RCA: 283] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The AlkB family of Fe(II)- and α-ketoglutarate-dependent dioxygenases is a class of ubiquitous direct reversal DNA repair enzymes that remove alkyl adducts from nucleobases by oxidative dealkylation. The prototypical and homonymous family member is an Escherichia coli "adaptive response" protein that protects the bacterial genome against alkylation damage. AlkB has a wide variety of substrates, including monoalkyl and exocyclic bridged adducts. Nine mammalian AlkB homologs exist (ALKBH1-8, FTO), but only a subset functions as DNA/RNA repair enzymes. This minireview presents an overview of the AlkB proteins including recent data on homologs, structural features, substrate specificities, and experimental strategies for studying DNA repair by AlkB family proteins.
Collapse
Affiliation(s)
- Bogdan I Fedeles
- Departments of Chemistry and Biological Engineering and the Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Vipender Singh
- Departments of Chemistry and Biological Engineering and the Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - James C Delaney
- Departments of Chemistry and Biological Engineering and the Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Deyu Li
- Departments of Chemistry and Biological Engineering and the Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.
| | - John M Essigmann
- Departments of Chemistry and Biological Engineering and the Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.
| |
Collapse
|
94
|
Wang X, Wang X, Hu Q, Dai X, Tian H, Zheng K, Wang X, Mao T, Chen JG, Wang S. Characterization of an activation-tagged mutant uncovers a role of GLABRA2 in anthocyanin biosynthesis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:300-11. [PMID: 26017690 DOI: 10.1111/tpj.12887] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 05/13/2015] [Accepted: 05/18/2015] [Indexed: 05/21/2023]
Abstract
In Arabidopsis, anthocyanin biosynthesis is controlled by a MYB-bHLH-WD40 (MBW) transcriptional activator complex. The MBW complex activates the transcription of late biosynthesis genes in the flavonoid pathway, leading to the production of anthocyanins. A similar MBW complex regulates epidermal cell fate by activating the transcription of GLABRA2 (GL2), a homeodomain transcription factor required for trichome formation in shoots and non-hair cell formation in roots. Here we provide experimental evidence to show that GL2 also plays a role in regulating anthocyanin biosynthesis in Arabidopsis. From an activation-tagged mutagenized population of Arabidopsis plants, we isolated a dominant, gain-of-function mutant with reduced anthocyanins. Molecular cloning revealed that this phenotype is caused by an elevated expression of GL2, thus the mutant was named gl2-1D. Consistent with the view that GL2 acts as a negative regulator of anthocyanin biosynthesis, gl2-1D seedlings accumulated less whereas gl2-3 seedlings accumulated more anthocyanins in response to sucrose. Gene expression analysis indicated that expression of late, but not early, biosynthesis genes in the flavonoid pathway was dramatically reduced in gl2-1D but elevated in gl2-3 mutants. Further analysis showed that expression of some MBW component genes involved in the regulation of late biosynthesis genes was reduced in gl2-1D but elevated in gl2-3 mutants, and chromatin immunoprecipitation results indicated that some MBW component genes are targets of GL2. We also showed that GL2 functions as a transcriptional repressor. Taken together, these results indicate that GL2 negatively regulates anthocyanin biosynthesis in Arabidopsis by directly repressing the expression of some MBW component genes.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Key Laboratory of Molecular Epigenetics of MOE & Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xianling Wang
- Key Laboratory of Molecular Epigenetics of MOE & Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin 130024, China
| | - Qingnan Hu
- Key Laboratory of Molecular Epigenetics of MOE & Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xuemei Dai
- Key Laboratory of Molecular Epigenetics of MOE & Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin 130024, China
| | - Hainan Tian
- Key Laboratory of Molecular Epigenetics of MOE & Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin 130024, China
| | - Kaijie Zheng
- Key Laboratory of Molecular Epigenetics of MOE & Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xiaoping Wang
- Key Laboratory of Molecular Epigenetics of MOE & Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin 130024, China
| | - Tonglin Mao
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Shucai Wang
- Key Laboratory of Molecular Epigenetics of MOE & Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin 130024, China
| |
Collapse
|
95
|
Mai HJ, Lindermayr C, von Toerne C, Fink-Straube C, Durner J, Bauer P. Iron and FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR-dependent regulation of proteins and genes in Arabidopsis thaliana
roots. Proteomics 2015; 15:3030-47. [DOI: 10.1002/pmic.201400351] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 03/10/2015] [Accepted: 04/30/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Hans-Jörg Mai
- Institute of Botany; Heinrich Heine University Düsseldorf; Düsseldorf Germany
| | - Christian Lindermayr
- Helmholtz Zentrum München (GmbH); German Research Center for Environmental Health; Institute of Biochemical Plant Pathology (BIOP); Neuherberg Germany
| | - Christine von Toerne
- Research Unit Protein Science; Helmholtz Zentrum München (GmbH); German Research Center for Environmental Health; Neuherberg Germany
| | | | - Jörg Durner
- Helmholtz Zentrum München (GmbH); German Research Center for Environmental Health; Institute of Biochemical Plant Pathology (BIOP); Neuherberg Germany
| | - Petra Bauer
- Institute of Botany; Heinrich Heine University Düsseldorf; Düsseldorf Germany
- CEPLAS Cluster of Excellence on Plant Sciences; Heinrich Heine Universität Düsseldorf; Düsseldorf Germany
| |
Collapse
|
96
|
Structural Insights into Substrate Specificity of Feruloyl-CoA 6'-Hydroxylase from Arabidopsis thaliana. Sci Rep 2015; 5:10355. [PMID: 25993561 PMCID: PMC4438608 DOI: 10.1038/srep10355] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/09/2015] [Indexed: 01/13/2023] Open
Abstract
Coumarins belong to an important class of plant secondary metabolites. Feruloyl-CoA 6’-hydroxylase (F6’H), a 2-oxoglutarate dependent dioxygenase (2OGD), catalyzes a pivotal step in the biosynthesis of a simple coumarin scopoletin. In this study, we determined the 3-dimensional structure of the F6’H1 apo enzyme by X-ray crystallography. It is the first reported structure of a 2OGD enzyme involved in coumarin biosynthesis and closely resembles the structure of Arabidopsis thaliana anthocyanidin synthase. To better understand the mechanism of enzyme catalysis and substrate specificity, we also generated a homology model of a related ortho-hydroxylase (C2’H) from sweet potato. By comparing these two structures, we targeted two amino acid residues and verified their roles in substrate binding and specificity by site-directed mutagenesis.
Collapse
|
97
|
Andersson I, Valegård K. 2-Oxoglutarate-Dependent Oxygenases of Cephalosporin Synthesis. 2-OXOGLUTARATE-DEPENDENT OXYGENASES 2015. [DOI: 10.1039/9781782621959-00385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Central steps in the biosynthetic pathways of some of the most commonly used antibiotics, the cephalosporins, are catalysed by 2-oxoglutarate (2OG)-dependent oxygenases. Deacetoxycephalosporin C synthase (DAOCS) catalyses the 2OG-dependent oxidative expansion of the five-membered thiazolidine ring of the penicillin nucleus into the six-membered dihydrothiazine ring of the cephalosporin nucleus. DAOCS uses dioxygen to create a reactive iron–oxygen intermediate from ferrous ion to drive the reaction. In prokaryotic cephalosporin producers, the cephalosporin product, DAOC, is hydroxylated at the 3′-position to form deacetylcephalosporin C (DAC) as catalysed by a second 2OG-dependent enzyme, DAC synthase (DACS). In eukaryotic cephalosporin producers, the reaction is catalysed by a bifunctional enzyme, DAOC/DACS, that catalyses both the ring expansion and the 3′-hydroxylation reactions. The prokaryotic and eukaryotic enzymes are closely related to DAOCS by sequence, suggesting these enzymes may have evolved by gene duplication. Cephamycin C-producing microorganisms use two enzymes, encoded by the genes cmcI/J, to convert cephalosporins to their 7α-methoxy derivatives that are less vulnerable to β-lactam hydrolysing enzymes. The methoxylation reaction is dependent on Fe(ii), 2OG and S-adenosylmethionine, suggesting the involvement of another 2OG-dependent oxygenase. Herein, structural and mechanistic features are summarized for these 2OG enzymes that utilize this common and flexible mode of dioxygen activation.
Collapse
Affiliation(s)
- Inger Andersson
- Department of Cell and Molecular Biology, Uppsala University Box 596, S-751 24 Uppsala Sweden
| | - Karin Valegård
- Department of Cell and Molecular Biology, Uppsala University Box 596, S-751 24 Uppsala Sweden
| |
Collapse
|
98
|
Shah DD, Moran GR. 4-Hydroxyphenylpyruvate Dioxygenase and Hydroxymandelate Synthase: 2-Oxo Acid-Dependent Oxygenases of Importance to Agriculture and Medicine. 2-OXOGLUTARATE-DEPENDENT OXYGENASES 2015. [DOI: 10.1039/9781782621959-00438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Despite a separate evolutionary lineage, 4-hydroxyphenylpyruvate dioxygenase (HPPD) and hydroxymandelate synthase (HMS) are appropriately grouped with the 2-oxo acid-dependent oxygenase (2OADO) family of enzymes. HPPD and HMS accomplish highly similar overall chemistry to that observed in the majority of 2OADOs but require only two substrates rather than three. 2OADOs typically use the 2-oxo acid of 2-oxoglutarate (2OG) as a source of electrons to reduce and activate dioxygen in order to oxidize a third specific substrate. HPPD and HMS use instead the pyruvate substituent of 4-hydroxyphenylpyruvate to activate dioxygen and then proceed to also hydroxylate this substrate, each yielding a distinctly different aromatic product. HPPD catalyses the second and committed step of tyrosine catabolism, a pathway common to nearly all aerobes. Plants require the HPPD reaction to biosynthesize plastoquinones and therefore HPPD inhibitors can have potent herbicidal activity. The ubiquity of the HPPD reaction, however, has meant that HPPD-specific molecules developed as herbicides have other uses in different forms of life. In humans herbicidal HPPD inhibitors can be used therapeutically to alleviate specific inborn defects and also to retard the progress of certain bacterial and fungal infections. This review is intended as a concise overview of the contextual and catalytic chemistries of HPPD and HMS.
Collapse
Affiliation(s)
- Dhara D. Shah
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee 3210 N. Cramer St Milwaukee WI 53211-3209 USA
| | - Graham R. Moran
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee 3210 N. Cramer St Milwaukee WI 53211-3209 USA
| |
Collapse
|
99
|
Gupta V, Estrada AD, Blakley I, Reid R, Patel K, Meyer MD, Andersen SU, Brown AF, Lila MA, Loraine AE. RNA-Seq analysis and annotation of a draft blueberry genome assembly identifies candidate genes involved in fruit ripening, biosynthesis of bioactive compounds, and stage-specific alternative splicing. Gigascience 2015; 4:5. [PMID: 25830017 PMCID: PMC4379747 DOI: 10.1186/s13742-015-0046-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 01/22/2015] [Indexed: 12/29/2022] Open
Abstract
Background Blueberries are a rich source of antioxidants and other beneficial compounds that can protect against disease. Identifying genes involved in synthesis of bioactive compounds could enable the breeding of berry varieties with enhanced health benefits. Results Toward this end, we annotated a previously sequenced draft blueberry genome assembly using RNA-Seq data from five stages of berry fruit development and ripening. Genome-guided assembly of RNA-Seq read alignments combined with output from ab initio gene finders produced around 60,000 gene models, of which more than half were similar to proteins from other species, typically the grape Vitis vinifera. Comparison of gene models to the PlantCyc database of metabolic pathway enzymes identified candidate genes involved in synthesis of bioactive compounds, including bixin, an apocarotenoid with potential disease-fighting properties, and defense-related cyanogenic glycosides, which are toxic. Cyanogenic glycoside (CG) biosynthetic enzymes were highly expressed in green fruit, and a candidate CG detoxification enzyme was up-regulated during fruit ripening. Candidate genes for ethylene, anthocyanin, and 400 other biosynthetic pathways were also identified. Homology-based annotation using Blast2GO and InterPro assigned Gene Ontology terms to around 15,000 genes. RNA-Seq expression profiling showed that blueberry growth, maturation, and ripening involve dynamic gene expression changes, including coordinated up- and down-regulation of metabolic pathway enzymes and transcriptional regulators. Analysis of RNA-seq alignments identified developmentally regulated alternative splicing, promoter use, and 3′ end formation. Conclusions We report genome sequence, gene models, functional annotations, and RNA-Seq expression data that provide an important new resource enabling high throughput studies in blueberry. Electronic supplementary material The online version of this article (doi:10.1186/s13742-015-0046-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vikas Gupta
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, North Carolina Research Campus, Kannapolis, NC 28081 USA ; Centre for Carbohydrate Recognition and Signaling, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - April D Estrada
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, North Carolina Research Campus, Kannapolis, NC 28081 USA
| | - Ivory Blakley
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, North Carolina Research Campus, Kannapolis, NC 28081 USA
| | - Rob Reid
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, North Carolina Research Campus, Kannapolis, NC 28081 USA
| | - Ketan Patel
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, North Carolina Research Campus, Kannapolis, NC 28081 USA ; NMRC-Frederick, 8400 Research Plaza, Ft. Detrick, MD 21702 USA
| | - Mason D Meyer
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, North Carolina Research Campus, Kannapolis, NC 28081 USA
| | - Stig Uggerhøj Andersen
- Centre for Carbohydrate Recognition and Signaling, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Allan F Brown
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 28081 USA
| | - Mary Ann Lila
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 28081 USA
| | - Ann E Loraine
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, North Carolina Research Campus, Kannapolis, NC 28081 USA
| |
Collapse
|
100
|
Berim A, Kim MJ, Gang DR. Identification of a unique 2-oxoglutarate-dependent flavone 7-O-demethylase completes the elucidation of the lipophilic flavone network in basil. PLANT & CELL PHYSIOLOGY 2015; 56:126-136. [PMID: 25378691 DOI: 10.1093/pcp/pcu152] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Small molecule demethylation is considered unusual in plants. Of the studied instances, the N-demethylation of nicotine is catalyzed by a Cyt P450 monooxygenase, while the O-dealkylation of alkaloids in Papaver somniferum is mediated by 2-oxoglutarate-dependent dioxygenases (2-ODDs). This report describes a 2-ODD regiospecifically catalyzing the 7-O-demethylation of methoxylated flavones in peltate trichomes of sweet basil (Ocimum basilicum L.). Three candidate 2-ODDs were identified in the basil trichome transcriptome database. Only the candidate designated ObF7ODM1 was found to be active with and highly specific for the proposed natural substrates, gardenin B and 8-hydroxysalvigenin. Of the characterized 2-ODDs, ObF7ODM1 is most closely related to O-demethylases from Papaver. The demethylase activity in trichomes from four basil chemotypes matches well with the abundance of ObF7ODM1 peptides and transcripts in the same trichome preparations. Treatment of basil plants with a 2-ODD inhibitor prohexadione-calcium significantly reduced the accumulation of 7-O-demethylated flavone nevadensin, confirming the involvement of a 2-ODD in its formation. Notably, the full-length open reading frame of ObF7ODM1 contains a second in-frame AUG codon 57 nucleotides downstream of the first translation initiation codon. Both AUG codons are recognized by bacterial translation machinery during heterologous gene expression. The N-truncated ObF7ODM1 is nearly inactive. The N-terminus essential for activity is unique to ObF7ODM1 and does not align with the sequences of other 2-ODDs. Further studies will reveal whether alternative translation initiation plays a role in regulating the O-demethylase activity in planta. Molecular identification of the flavone 7-O-demethylase completes the biochemical elucidation of the lipophilic flavone network in basil.
Collapse
Affiliation(s)
- Anna Berim
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Min-Jeong Kim
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - David R Gang
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|