51
|
Hanuscheck N, Thalman C, Domingues M, Schmaul S, Muthuraman M, Hetsch F, Ecker M, Endle H, Oshaghi M, Martino G, Kuhlmann T, Bozek K, van Beers T, Bittner S, von Engelhardt J, Vogt J, Vogelaar CF, Zipp F. Interleukin-4 receptor signaling modulates neuronal network activity. J Exp Med 2022; 219:213227. [PMID: 35587822 PMCID: PMC9123307 DOI: 10.1084/jem.20211887] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/13/2021] [Accepted: 04/29/2022] [Indexed: 11/25/2022] Open
Abstract
Evidence is emerging that immune responses not only play a part in the central nervous system (CNS) in diseases but may also be relevant for healthy conditions. We discovered a major role for the interleukin-4 (IL-4)/IL-4 receptor alpha (IL-4Rα) signaling pathway in synaptic processes, as indicated by transcriptome analysis in IL-4Rα–deficient mice and human neurons with/without IL-4 treatment. Moreover, IL-4Rα is expressed presynaptically, and locally available IL-4 regulates synaptic transmission. We found reduced synaptic vesicle pools, altered postsynaptic currents, and a higher excitatory drive in cortical networks of IL-4Rα–deficient neurons. Acute effects of IL-4 treatment on postsynaptic currents in wild-type neurons were mediated via PKCγ signaling release and led to increased inhibitory activity supporting the findings in IL-4Rα–deficient neurons. In fact, the deficiency of IL-4Rα resulted in increased network activity in vivo, accompanied by altered exploration and anxiety-related learning behavior; general learning and memory was unchanged. In conclusion, neuronal IL-4Rα and its presynaptic prevalence appear relevant for maintaining homeostasis of CNS synaptic function.
Collapse
Affiliation(s)
- Nicholas Hanuscheck
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Carine Thalman
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Micaela Domingues
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Samantha Schmaul
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Muthuraman Muthuraman
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Florian Hetsch
- Institute for Pathophysiology, Focus Program Translational Neuroscience, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Manuela Ecker
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Heiko Endle
- Department of Molecular and Translational Neuroscience, Cluster of Excellence-Cellular Stress Response in Aging-Associated Diseases and Center of Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Mohammadsaleh Oshaghi
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Gianvito Martino
- Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute and Vita Salute San Raffaele University, Milan, Italy
| | - Tanja Kuhlmann
- Institute for Neuropathology, University Hospital Münster, Münster, Germany
| | - Katarzyna Bozek
- Center for Molecular Medicine, Faculty of Medicine and University Hospital Cologne; University of Cologne, Cologne, Germany
| | - Tim van Beers
- Molecular Cell Biology, Institute I of Anatomy, University of Cologne, Cologne, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jakob von Engelhardt
- Institute for Pathophysiology, Focus Program Translational Neuroscience, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Johannes Vogt
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,Department of Molecular and Translational Neuroscience, Cluster of Excellence-Cellular Stress Response in Aging-Associated Diseases and Center of Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Christina Francisca Vogelaar
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
52
|
Sanin DE, Ge Y, Marinkovic E, Kabat AM, Castoldi A, Caputa G, Grzes KM, Curtis JD, Thompson EA, Willenborg S, Dichtl S, Reinhardt S, Dahl A, Pearce EL, Eming SA, Gerbaulet A, Roers A, Murray PJ, Pearce EJ. A common framework of monocyte-derived macrophage activation. Sci Immunol 2022; 7:eabl7482. [PMID: 35427180 DOI: 10.1126/sciimmunol.abl7482] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Macrophages populate every organ during homeostasis and disease, displaying features of tissue imprinting and heterogeneous activation. The disconnected picture of macrophage biology that has emerged from these observations is a barrier for integration across models or with in vitro macrophage activation paradigms. We set out to contextualize macrophage heterogeneity across mouse tissues and inflammatory conditions, specifically aiming to define a common framework of macrophage activation. We built a predictive model with which we mapped the activation of macrophages across 12 tissues and 25 biological conditions, finding a notable commonality and finite number of transcriptional profiles, in particular among infiltrating macrophages, which we modeled as defined stages along four conserved activation paths. These activation paths include a "phagocytic" regulatory path, an "inflammatory" cytokine-producing path, an "oxidative stress" antimicrobial path, or a "remodeling" extracellular matrix deposition path. We verified this model with adoptive cell transfer experiments and identified transient RELMɑ expression as a feature of monocyte-derived macrophage tissue engraftment. We propose that this integrative approach of macrophage classification allows the establishment of a common predictive framework of monocyte-derived macrophage activation in inflammation and homeostasis.
Collapse
Affiliation(s)
- David E Sanin
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany.,Department of Oncology, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Yan Ge
- Institute for Immunology, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Emilija Marinkovic
- Institute for Immunology, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Agnieszka M Kabat
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany.,Department of Oncology, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Angela Castoldi
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - George Caputa
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Katarzyna M Grzes
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany.,Department of Oncology, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jonathan D Curtis
- Department of Oncology, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Elizabeth A Thompson
- Department of Oncology, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sebastian Willenborg
- Department of Dermatology, University of Cologne, Kerpenerstr. 62, 50937 Cologne, Germany
| | - Stefanie Dichtl
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Susanne Reinhardt
- DRESDEN-concept Genome Center, TU Dresden, Fetscherstr. 105, 01307 Dresden, Germany
| | - Andreas Dahl
- DRESDEN-concept Genome Center, TU Dresden, Fetscherstr. 105, 01307 Dresden, Germany
| | - Erika L Pearce
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany.,Department of Oncology, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA
| | - Sabine A Eming
- Department of Dermatology, University of Cologne, Kerpenerstr. 62, 50937 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany
| | - Alexander Gerbaulet
- Institute for Immunology, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Axel Roers
- Institute for Immunology, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Peter J Murray
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Edward J Pearce
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany.,Department of Oncology, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA
| |
Collapse
|
53
|
Vanderstichele S, Vranckx JJ. Anti-fibrotic effect of adipose-derived stem cells on fibrotic scars. World J Stem Cells 2022; 14:200-213. [PMID: 35432731 PMCID: PMC8963379 DOI: 10.4252/wjsc.v14.i2.200] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/01/2021] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Sustained injury, through radiotherapy, burns or surgical trauma, can result in fibrosis, displaying an excessive deposition of extracellular matrix (ECM), persisting inflammatory reaction, and reduced vascularization. The increasing recognition of fibrosis as a cause for disease and mortality, and increasing use of radiotherapy causing fibrosis, stresses the importance of a decent anti-fibrotic treatment.
AIM To obtain an in-depth understanding of the complex mechanisms underlying fibrosis, and more specifically, the potential mechanisms-of-action of adipose-derived stomal cells (ADSCs) in realizing their anti-fibrotic effect.
METHODS A systematic review of the literature using PubMed, Embase and Web of Science was performed by two independent reviewers.
RESULTS The injection of fat grafts into fibrotic tissue, releases ADSC into the environment. ADSCs’ capacity to directly differentiate into key cell types (e.g., ECs, fibroblasts), as well as to secrete multiple paracrine factors (e.g., hepatocyte growth factor, basis fibroblast growth factor, IL-10), allows them to alter different mechanisms underlying fibrosis in a combined approach. ADSCs favor ECM degradation by impacting the fibroblast-to-myofibroblast differentiation, favoring matrix metalloproteinases over tissue inhibitors of metalloproteinases, positively influencing collagen organization, and inhibiting the pro-fibrotic effects of transforming growth factor-β1. Furthermore, they impact elements of both the innate and adaptive immune response system, and stimulate angiogenesis on the site of injury (through secretion of pro-angiogenic cytokines like stromal cell-derived factor-1 and vascular endothelial growth factor).
CONCLUSION This review shows that understanding the complex interactions of ECM accumulation, immune response and vascularization, is vital to fibrosis treatments’ effectiveness like fat grafting. It details how ADSCs intelligently steer this complex system in an anti-fibrotic or pro-angiogenic direction, without falling into extreme dilation or stimulation of a single aspect. Detailing this combined approach, has brought fat grafting one step closer to unlocking its full potential as a non-anecdotal treatment for fibrosis.
Collapse
Affiliation(s)
| | - Jan Jeroen Vranckx
- Department of Plastic, Reconstructive Surgery, KU-Leuven University Hospitals, Leuven 3000, Belgium
| |
Collapse
|
54
|
ASK1 signaling regulates phase-specific glial interactions during neuroinflammation. Proc Natl Acad Sci U S A 2022; 119:2103812119. [PMID: 35101972 PMCID: PMC8832969 DOI: 10.1073/pnas.2103812119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2021] [Indexed: 01/08/2023] Open
Abstract
Neuroinflammation is associated with many neurodegenerative diseases such as Alzheimer’s disease and multiple sclerosis (MS). Thus, decreasing neuroinflammation may be a promising treatment for these diseases. Apoptosis signal-related kinase 1 (ASK1) has been shown to cause neuroinflammation in neurodegenerative disease models, but its mechanism of action has been unclear. Here, we generated conditional knockout mice that lack ASK1 in T cells, dendritic cells, microglia/macrophages, microglia, or astrocytes, to assess the roles of ASK1 during experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. We propose that ASK1 is required in microglia and astrocytes to cause and maintain neuroinflammation by a feedback loop between these two cell types. Neuroinflammation is well known to be associated with neurodegenerative diseases. Apoptosis signal-regulating kinase 1 (ASK1) is a mitogen-activated protein kinase kinase kinase that has been implicated in neuroinflammation, but its precise cellular and molecular mechanisms remain unknown. In this study, we generated conditional knockout (CKO) mice that lack ASK1 in T cells, dendritic cells, microglia/macrophages, microglia, or astrocytes, to assess the roles of ASK1 during experimental autoimmune encephalomyelitis (EAE). We found that neuroinflammation was reduced in both the early and later stages of EAE in microglia/macrophage-specific ASK1 knockout mice, whereas only the later-stage neuroinflammation was ameliorated in astrocyte-specific ASK1 knockout mice. ASK1 deficiency in T cells and dendritic cells had no significant effects on EAE severity. Further, we found that ASK1 in microglia/macrophages induces a proinflammatory environment, which subsequently activates astrocytes to exacerbate neuroinflammation. Microglia-specific ASK1 deletion was achieved using a CX3CR1CreER system, and we found that ASK1 signaling in microglia played a major role in generating and maintaining disease. Activated astrocytes produce key inflammatory mediators, including CCL2, that further activated and recruited microglia/macrophages, in an astrocytic ASK1-dependent manner. Astrocyte-specific analysis revealed CCL2 expression was higher in the later stage compared with the early stage, suggesting a greater proinflammatory role of astrocytes in the later stage. Our findings demonstrate cell-type–specific roles of ASK1 and suggest phase-specific ASK1-dependent glial cell interactions in EAE pathophysiology. We propose glial ASK1 as a promising therapeutic target for reducing neuroinflammation.
Collapse
|
55
|
Osero BO, Cele Z, Aruleba RT, Maine RA, Ozturk M, Lutz MB, Brombacher F, Hurdayal R. Interleukin-4 Responsive Dendritic Cells Are Dispensable to Host Resistance Against Leishmania mexicana Infection. Front Immunol 2022; 12:759021. [PMID: 35154068 PMCID: PMC8831752 DOI: 10.3389/fimmu.2021.759021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
IL-4 and IL-13 cytokines have been associated with a non-healing phenotype in murine leishmaniasis in L. mexicana -infected BALB/c mice as demonstrated in IL-4−/−, IL-13−/− and IL-4Rα-/- global knockout mouse studies. However, it is unclear from the studies which cell-type-specific IL-4/IL-13 signaling mediates protection to L. mexicana. Previous studies have ruled out a role for IL-4-mediated protection on CD4+ T cells during L. mexicana infections. A candidate for this role may be non-lymphocyte cells, particularly DCs, as was previously shown in L. major infections, where IL-4 production drives dendritic cell-IL-12 production thereby mediating a type 1 immune response. However, it is unclear if this IL-4-instruction of type 1 immunity also occurs in CL caused by L. mexicana, since the outcome of cutaneous leishmaniasis often depends on the infecting Leishmania species. Thus, BALB/c mice with cell-specific deletion of the IL-4Rα on CD11c+ DCs (CD11ccreIL-4Rα-/lox) were infected with L. mexicana promastigotes in the footpad and the clinical phenotype, humoral and cellular immune responses were investigated, compared to the littermate control. Our results show that CL disease progression in BALB/c mice is independent of IL-4Rα signaling on DCs as CD11ccreIL-4Rα-/lox mice had similar footpad lesion progression, parasite loads, humoral responses (IgE, IgG1, IgG 2a/b), and IFN-γ cytokine secretion in comparison to littermate controls. Despite this comparable phenotype, surprisingly, IL-4 production in CD11ccreIL-4Rα-/lox mice was significantly increased with an increasing trend of IL-13 when compared to littermate controls. Moreover, the absence of IL-4Rα signaling did not significantly alter the frequency of CD4 and CD8 lymphocytes nor their activation, or memory phenotype compared to littermate controls. However, these populations were significantly increased in CD11ccreIL-4Rα-/lox mice due to greater total cell infiltration into the lymph node. A similar trend was observed for B cells whereas the recruitment of myeloid populations (macrophages, DCs, neutrophils, and Mo-DCs) into LN was comparable to littermate IL-4Rα-/lox mice. Interestingly, IL-4Rα-deficient bone marrow-derived dendritic cells (BMDCs), stimulated with LPS or L. mexicana promastigotes in presence of IL-4, showed similar levels of IL-12p70 and IL-10 to littermate controls highlighting that IL-4-mediated DC instruction was not impaired in response to L. mexicana. Similarly, IL-4 stimulation did not affect the maturation or activation of IL-4Rα-deficient BMDCs during L. mexicana infection nor their effector functions in production of nitrite and arginine-derived metabolite (urea). Together, this study suggests that IL-4 Rα signaling on DCs is not key in the regulation of immune-mediated protection in mice against L. mexicana infection.
Collapse
Affiliation(s)
- Bernard Ong’ondo Osero
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine (IDM), South African Medical Research Council (SAMRC) on Immunology of Infectious Diseases, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
- Faculty of Health Sciences, Wellcome Centre for Infectious Diseases Research in Africa (CIDRI), Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya
| | - Zama Cele
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Raphael Taiwo Aruleba
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Rebeng A. Maine
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Mumin Ozturk
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine (IDM), South African Medical Research Council (SAMRC) on Immunology of Infectious Diseases, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
- Faculty of Health Sciences, Wellcome Centre for Infectious Diseases Research in Africa (CIDRI), Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Manfred B. Lutz
- Institute of Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Frank Brombacher
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine (IDM), South African Medical Research Council (SAMRC) on Immunology of Infectious Diseases, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
- Faculty of Health Sciences, Wellcome Centre for Infectious Diseases Research in Africa (CIDRI), Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- *Correspondence: Frank Brombacher, ; Ramona Hurdayal,
| | - Ramona Hurdayal
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine (IDM), South African Medical Research Council (SAMRC) on Immunology of Infectious Diseases, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
- Faculty of Health Sciences, Wellcome Centre for Infectious Diseases Research in Africa (CIDRI), Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
- *Correspondence: Frank Brombacher, ; Ramona Hurdayal,
| |
Collapse
|
56
|
Barr J, Gentile ME, Lee S, Kotas ME, Fernanda de Mello Costa M, Holcomb NP, Jaquish A, Palashikar G, Soewignjo M, McDaniel M, Matsumoto I, Margolskee R, Von Moltke J, Cohen NA, Sun X, Vaughan AE. Injury-induced pulmonary tuft cells are heterogenous, arise independent of key Type 2 cytokines, and are dispensable for dysplastic repair. eLife 2022; 11:78074. [PMID: 36073526 PMCID: PMC9553214 DOI: 10.7554/elife.78074] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 09/07/2022] [Indexed: 01/07/2023] Open
Abstract
While the lung bears significant regenerative capacity, severe viral pneumonia can chronically impair lung function by triggering dysplastic remodeling. The connection between these enduring changes and chronic disease remains poorly understood. We recently described the emergence of tuft cells within Krt5+ dysplastic regions after influenza injury. Using bulk and single-cell transcriptomics, we characterized and delineated multiple distinct tuft cell populations that arise following influenza clearance. Distinct from intestinal tuft cells which rely on Type 2 immune signals for their expansion, neither IL-25 nor IL-4ra signaling are required to drive tuft cell development in dysplastic/injured lungs. In addition, tuft cell expansion occurred independently of type I or type III interferon signaling. Furthermore, tuft cells were also observed upon bleomycin injury, suggesting that their development may be a general response to severe lung injury. While intestinal tuft cells promote growth and differentiation of surrounding epithelial cells, in the lungs of tuft cell deficient mice, Krt5+ dysplasia still occurs, goblet cell production is unchanged, and there remains no appreciable contribution of Krt5+ cells into more regionally appropriate alveolar Type 2 cells. Together, these findings highlight unexpected differences in signals necessary for murine lung tuft cell amplification and establish a framework for future elucidation of tuft cell functions in pulmonary health and disease.
Collapse
Affiliation(s)
- Justinn Barr
- Department of Pediatrics, University of California, San DiegoSan DiegoUnited States
| | - Maria Elena Gentile
- Department of Biomedical Sciences, School of Veterinary Medicine, University of PennsylvaniaPhiladelphiaUnited States,Institute for Regenerative Medicine, University of PennsylvaniaPhiladelphiaUnited States,Lung Biology Institute, University of PennsylvaniaPhiladelphiaUnited States
| | - Sunyoung Lee
- Department of Pediatrics, University of California, San DiegoSan DiegoUnited States
| | - Maya E Kotas
- Division of Pulmonary, Critical Care, Allergy & Sleep Medicine, University of California, San FranciscoSan FranciscoUnited States
| | - Maria Fernanda de Mello Costa
- Department of Biomedical Sciences, School of Veterinary Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Nicolas P Holcomb
- Department of Biomedical Sciences, School of Veterinary Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Abigail Jaquish
- Department of Pediatrics, University of California, San DiegoSan DiegoUnited States
| | - Gargi Palashikar
- Department of Biomedical Sciences, School of Veterinary Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Marcella Soewignjo
- Department of Biomedical Sciences, School of Veterinary Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Margaret McDaniel
- Department of Immunology, University of WashingtonSeattleUnited States
| | | | | | - Jakob Von Moltke
- Department of Immunology, University of WashingtonSeattleUnited States
| | - Noam A Cohen
- Monell Chemical Senses CenterPhiladelphiaUnited States,Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Perelman School of MedicinePhiladelphiaUnited States,Corporal Michael J. Crescenz Veterans Administration Medical Center Surgical ServicePhiladelphiaUnited States
| | - Xin Sun
- Division of Biological Sciences, University of California, San DiegoSan DiegoUnited States
| | - Andrew E Vaughan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of PennsylvaniaPhiladelphiaUnited States,Institute for Regenerative Medicine, University of PennsylvaniaPhiladelphiaUnited States,Lung Biology Institute, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
57
|
HOIL1 regulates group 2 innate lymphoid cell numbers and type 2 inflammation in the small intestine. Mucosal Immunol 2022; 15:642-655. [PMID: 35534698 PMCID: PMC9259497 DOI: 10.1038/s41385-022-00520-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 04/08/2022] [Accepted: 04/23/2022] [Indexed: 02/04/2023]
Abstract
Patients with mutations in HOIL1 experience a complex immune disorder including intestinal inflammation. To investigate the role of HOIL1 in regulating intestinal inflammation, we employed a mouse model of partial HOIL1 deficiency. The ileum of HOIL1-deficient mice displayed features of type 2 inflammation including tuft cell and goblet cell hyperplasia, and elevated expression of Il13, Il5 and Il25 mRNA. Inflammation persisted in the absence of T and B cells, and bone marrow chimeric mice revealed a requirement for HOIL1 expression in radiation-resistant cells to regulate inflammation. Although disruption of IL-4 receptor alpha (IL4Rα) signaling on intestinal epithelial cells ameliorated tuft and goblet cell hyperplasia, expression of Il5 and Il13 mRNA remained elevated. KLRG1hi CD90lo group 2 innate lymphoid cells were increased independent of IL4Rα signaling, tuft cell hyperplasia and IL-25 induction. Antibiotic treatment dampened intestinal inflammation indicating commensal microbes as a contributing factor. We have identified a key role for HOIL1, a component of the Linear Ubiquitin Chain Assembly Complex, in regulating type 2 inflammation in the small intestine. Understanding the mechanism by which HOIL1 regulates type 2 inflammation will advance our understanding of intestinal homeostasis and inflammatory disorders and may lead to the identification of new targets for treatment.
Collapse
|
58
|
Abstract
Schistosomes are long lived, intravascular parasitic platyhelminths that infect >200 million people globally. The molecular mechanisms used by these blood flukes to dampen host immune responses are described in this review. Adult worms express a collection of host-interactive tegumental ectoenzymes that can cleave host signaling molecules such as the "alarmin" ATP (cleaved by SmATPDase1), the platelet activator ADP (SmATPDase1, SmNPP5), and can convert AMP into the anti-inflammatory mediator adenosine (SmAP). SmAP can additionally cleave the lipid immunomodulator sphingosine-1-phosphate and the proinflammatory anionic polymer, polyP. In addition, the worms release a barrage of proteins (e.g., SmCB1, SjHSP70, cyclophilin A) that can impinge on immune cell function. Parasite eggs also release their own immunoregulatory proteins (e.g., IPSE/α1, omega1, SmCKBP) as do invasive cercariae (e.g., Sm16, Sj16). Some schistosome glycans (e.g., LNFPIII, LNnT) and lipids (e.g., Lyso-PS, LPC), produced by several life stages, likewise affect immune cell responses. The parasites not only produce eicosanoids (e.g., PGE2, PGD2-that can be anti-inflammatory) but can also induce host cells to release these metabolites. Finally, the worms release extracellular vesicles (EVs) containing microRNAs, and these too have been shown to skew host cell metabolism. Thus, schistosomes employ an array of biomolecules-protein, lipid, glycan, nucleic acid, and more, to bend host biochemistry to their liking. Many of the listed molecules have been individually shown capable of inducing aspects of the polarized Th2 response seen following infection (with the generation of regulatory T cells (Tregs), regulatory B cells (Bregs) and anti-inflammatory, alternatively activated (M2) macrophages). Precisely how host cells integrate the impact of these myriad parasite products following natural infection is not known. Several of the schistosome immunomodulators described here are in development as novel therapeutics against autoimmune, inflammatory, and other, nonparasitic, diseases.
Collapse
Affiliation(s)
- Sreemoyee Acharya
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Akram A. Da’dara
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Patrick J. Skelly
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
59
|
Ishitsuka Y, Roop DR. The Epidermis: Redox Governor of Health and Diseases. Antioxidants (Basel) 2021; 11:47. [PMID: 35052551 PMCID: PMC8772843 DOI: 10.3390/antiox11010047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 12/25/2021] [Indexed: 12/13/2022] Open
Abstract
A functional epithelial barrier necessitates protection against dehydration, and ichthyoses are caused by defects in maintaining the permeability barrier in the stratum corneum (SC), the uppermost protective layer composed of dead cells and secretory materials from the living layer stratum granulosum (SG). We have found that loricrin (LOR) is an essential effector of cornification that occurs in the uppermost layer of SG (SG1). LOR promotes the maturation of corneocytes and extracellular adhesion structure through organizing disulfide cross-linkages, albeit being dispensable for the SC permeability barrier. This review takes psoriasis and AD as the prototype of impaired cornification. Despite exhibiting immunological traits that oppose each other, both conditions share the epidermal differentiation complex as a susceptible locus. We also review recent mechanistic insights on skin diseases, focusing on the Kelch-like erythroid cell-derived protein with the cap "n" collar homology-associated protein 1/NFE2-related factor 2 signaling pathway, as they coordinate the epidermis-intrinsic xenobiotic metabolism. Finally, we refine the theoretical framework of thiol-mediated crosstalk between keratinocytes and leukocytes in the epidermis that was put forward earlier.
Collapse
Affiliation(s)
- Yosuke Ishitsuka
- Department of Dermatology Integrated Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Dennis R. Roop
- Charles C. Gates Center for Regenerative Medicine, Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| |
Collapse
|
60
|
Mitochondrial metabolism coordinates stage-specific repair processes in macrophages during wound healing. Cell Metab 2021; 33:2398-2414.e9. [PMID: 34715039 DOI: 10.1016/j.cmet.2021.10.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/07/2021] [Accepted: 10/05/2021] [Indexed: 12/27/2022]
Abstract
Wound healing is a coordinated process that initially relies on pro-inflammatory macrophages, followed by a pro-resolution function of these cells. Changes in cellular metabolism likely dictate these distinct activities, but the nature of these changes has been unclear. Here, we profiled early- versus late-stage skin wound macrophages in mice at both the transcriptional and functional levels. We found that glycolytic metabolism in the early phase is not sufficient to ensure productive repair. Instead, by combining conditional disruption of the electron transport chain with deletion of mitochondrial aspartyl-tRNA synthetase, followed by single-cell sequencing analysis, we found that a subpopulation of early-stage wound macrophages are marked by mitochondrial ROS (mtROS) production and HIF1α stabilization, which ultimately drives a pro-angiogenic program essential for timely healing. In contrast, late-phase, pro-resolving wound macrophages are marked by IL-4Rα-mediated mitochondrial respiration and mitohormesis. Collectively, we identify changes in mitochondrial metabolism as a critical control mechanism for macrophage effector functions during wound healing.
Collapse
|
61
|
Oxidative stress-induced FABP5 S-glutathionylation protects against acute lung injury by suppressing inflammation in macrophages. Nat Commun 2021; 12:7094. [PMID: 34876574 PMCID: PMC8651733 DOI: 10.1038/s41467-021-27428-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 11/19/2021] [Indexed: 11/26/2022] Open
Abstract
Oxidative stress contributes to the pathogenesis of acute lung injury. Protein S-glutathionylation plays an important role in cellular antioxidant defense. Here we report that the expression of deglutathionylation enzyme Grx1 is decreased in the lungs of acute lung injury mice. The acute lung injury induced by hyperoxia or LPS is significantly relieved in Grx1 KO and Grx1fl/flLysMcre mice, confirming the protective role of Grx1-regulated S-glutathionylation in macrophages. Using a quantitative redox proteomics approach, we show that FABP5 is susceptible to S-glutathionylation under oxidative conditions. S-glutathionylation of Cys127 in FABP5 promotes its fatty acid binding ability and nuclear translocation. Further results indicate S-glutathionylation promotes the interaction of FABP5 and PPARβ/δ, activates PPARβ/δ target genes and suppresses the LPS-induced inflammation in macrophages. Our study reveals a molecular mechanism through which FABP5 S-glutathionylation regulates macrophage inflammation in the pathogenesis of acute lung injury. Redox-dependent regulation plays a key role in the pathogenesis of acute lung injury, but its mechanism is unclear. Here the authors show Grx1-regulated S-glutathionylation of FABP5 controls macrophage inflammation and alleviates acute lung injury.
Collapse
|
62
|
Ackermann J, Arndt L, Kirstein M, Hobusch C, Brinker G, Klöting N, Braune J, Gericke M. Myeloid Cell-Specific IL-4 Receptor Knockout Partially Protects from Adipose Tissue Inflammation. THE JOURNAL OF IMMUNOLOGY 2021; 207:3081-3089. [PMID: 34789558 DOI: 10.4049/jimmunol.2100699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/18/2021] [Indexed: 11/19/2022]
Abstract
IL-4 receptor signaling is supposed to play a major role in anti-inflammatory polarization and proliferation of adipose tissue macrophages. In this study, we examined the metabolic and inflammatory phenotype of C57BL/6J mice (IIl4ra) with LysM-dependent knockout (IIl4ra Δmyel) of the IL-4 receptor α-chain (IL-4Rα), the mandatory signaling component of IL-4 and IL-13, on chow and high-fat diet. Lean IIl4ra Δmyel mice showed decreased insulin sensitivity, no divergent adipose tissue macrophage polarization, but an increased percentage of CD8+ T cells in visceral adipose tissue. After 20 wk of a high-fat diet, IIl4ra Δmyel mice exhibited higher glucose tolerance, no changes in the lymphocyte compartment and fewer M1 macrophages in visceral adipose tissue. In vivo adipose tissue macrophage proliferation measured by BrdU incorporation was unaffected by Il4ra knockout. Interestingly, we show that IL-4Rα signaling directly augmented Itgax (Cd11c) gene expression in bone marrow-derived macrophages and increased the amount of CD11c+ macrophages in adipose tissue explants. Myeloid cell-specific knockout of Il4ra deteriorated insulin sensitivity in lean mice but improved parameters of glucose homeostasis and partially protected from adipose tissue inflammation in obese mice. Hence, IL-4Rα signaling probably plays a minor role in maintaining the macrophage M2 population and proliferation rates in vivo. Moreover, our data indicate that IL-4 signaling plays a proinflammatory role in adipose tissue inflammation by directly upregulating CD11c on adipose tissue macrophages.
Collapse
Affiliation(s)
- Jan Ackermann
- Institute of Anatomy and Cell Biology, Martin-Luther-University Halle-Wittenberg, Halle, Germany.,Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Lilli Arndt
- Institute of Anatomy and Cell Biology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Michaela Kirstein
- Institute of Anatomy and Cell Biology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | | | - Georg Brinker
- Institute of Anatomy and Cell Biology, Martin-Luther-University Halle-Wittenberg, Halle, Germany.,Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Nora Klöting
- Helmholtz Institute for Metabolic, Obesity and Vascular Research of the Helmholtz Zentrum München at the University of Leipzig; and.,Medical Department III, Leipzig University, Leipzig, Germany
| | - Julia Braune
- Institute of Anatomy and Cell Biology, Martin-Luther-University Halle-Wittenberg, Halle, Germany.,Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Martin Gericke
- Institute of Anatomy and Cell Biology, Martin-Luther-University Halle-Wittenberg, Halle, Germany; .,Institute of Anatomy, Leipzig University, Leipzig, Germany
| |
Collapse
|
63
|
Medina-Andrade I, Olguín JE, Guerrero-García S, Espinosa JA, Garduño-Javier E, Hernández-Gómez V, Vaca-Paniagua F, Rodríguez-Sosa M, Terrazas LI. Recruitment of M1 Macrophages May Not Be Critical for Protection against Colitis-Associated Tumorigenesis. Int J Mol Sci 2021; 22:11204. [PMID: 34681866 PMCID: PMC8536994 DOI: 10.3390/ijms222011204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022] Open
Abstract
A close connection between inflammation and the risk of developing colon cancer has been suggested in the last few years. It has been estimated that patients diagnosed with some types of inflammatory bowel disease, such as ulcerative colitis or Crohn's disease, have up to a 30% increased risk of developing colon cancer. However, there is also evidence showing that the activation of anti-inflammatory pathways, such as the IL-4 receptor-mediated pathway, may favor the development of colon tumors. Using an experimental model of colitis-associated colon cancer (CAC), we found that the decrease in tumor development in global IL4Rα knockout mice (IL4RαKO) was apparently associated with an inflammatory response mediated by the infiltration of M1 macrophages (F480+TLR2+STAT1+) and iNOS expression in colon tissue. However, when we developed mice with a specific deletion of IL4Rα in macrophages (LysMcreIL4Rα-/lox mice) and subjected them to CAC, it was found that despite presenting a large infiltration of M1 macrophages into the colon, these mice were as susceptible to colon-tumorigenesis as WT mice. These data suggest that in the tumor microenvironment the absence of IL4Rα expression on macrophages, as well as the recruitment of M1 macrophages, may not be directly associated with resistance to developing colon tumors. Therefore, it is possible that IL4Rα expression in other cell types, such as colonic epithelial cells, could have an important role in promoting the development of colitis-associated colon tumorigenesis.
Collapse
Affiliation(s)
- Itzel Medina-Andrade
- Laboratorio Nacional en Salud FES-Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, Mexico; (I.M.-A.); (J.E.O.); (S.G.-G.); (J.A.E.); (E.G.-J.); (V.H.-G.); (F.V.-P.); (M.R.-S.)
| | - Jonadab E. Olguín
- Laboratorio Nacional en Salud FES-Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, Mexico; (I.M.-A.); (J.E.O.); (S.G.-G.); (J.A.E.); (E.G.-J.); (V.H.-G.); (F.V.-P.); (M.R.-S.)
| | - Stephanie Guerrero-García
- Laboratorio Nacional en Salud FES-Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, Mexico; (I.M.-A.); (J.E.O.); (S.G.-G.); (J.A.E.); (E.G.-J.); (V.H.-G.); (F.V.-P.); (M.R.-S.)
| | - Jossael A. Espinosa
- Laboratorio Nacional en Salud FES-Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, Mexico; (I.M.-A.); (J.E.O.); (S.G.-G.); (J.A.E.); (E.G.-J.); (V.H.-G.); (F.V.-P.); (M.R.-S.)
| | - Elizabeth Garduño-Javier
- Laboratorio Nacional en Salud FES-Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, Mexico; (I.M.-A.); (J.E.O.); (S.G.-G.); (J.A.E.); (E.G.-J.); (V.H.-G.); (F.V.-P.); (M.R.-S.)
| | - Victoria Hernández-Gómez
- Laboratorio Nacional en Salud FES-Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, Mexico; (I.M.-A.); (J.E.O.); (S.G.-G.); (J.A.E.); (E.G.-J.); (V.H.-G.); (F.V.-P.); (M.R.-S.)
| | - Felipe Vaca-Paniagua
- Laboratorio Nacional en Salud FES-Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, Mexico; (I.M.-A.); (J.E.O.); (S.G.-G.); (J.A.E.); (E.G.-J.); (V.H.-G.); (F.V.-P.); (M.R.-S.)
- Unidad de Biomedicina, Facultad de Estudios Superiores (FES)-Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, Mexico
| | - Miriam Rodríguez-Sosa
- Laboratorio Nacional en Salud FES-Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, Mexico; (I.M.-A.); (J.E.O.); (S.G.-G.); (J.A.E.); (E.G.-J.); (V.H.-G.); (F.V.-P.); (M.R.-S.)
| | - Luis I. Terrazas
- Laboratorio Nacional en Salud FES-Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, Mexico; (I.M.-A.); (J.E.O.); (S.G.-G.); (J.A.E.); (E.G.-J.); (V.H.-G.); (F.V.-P.); (M.R.-S.)
- Unidad de Biomedicina, Facultad de Estudios Superiores (FES)-Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, Mexico
| |
Collapse
|
64
|
Duan L, Liu D, Chen H, Mintz MA, Chou MY, Kotov DI, Xu Y, An J, Laidlaw BJ, Cyster JG. Follicular dendritic cells restrict interleukin-4 availability in germinal centers and foster memory B cell generation. Immunity 2021; 54:2256-2272.e6. [PMID: 34555336 PMCID: PMC8516727 DOI: 10.1016/j.immuni.2021.08.028] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/02/2021] [Accepted: 08/27/2021] [Indexed: 11/24/2022]
Abstract
B cells within germinal centers (GCs) enter cycles of antibody affinity maturation or exit the GC as memory cells or plasma cells. Here, we examined the contribution of interleukin (IL)-4 on B cell fate decisions in the GC. Single-cell RNA-sequencing identified a subset of light zone GC B cells expressing high IL-4 receptor-a (IL4Ra) and CD23 and lacking a Myc-associated signature. These cells could differentiate into pre-memory cells. B cell-specific deletion of IL4Ra or STAT6 favored the pre-memory cell trajectory, and provision of exogenous IL-4 in a wild-type context reduced pre-memory cell frequencies. IL-4 acted during antigen-specific interactions but also influenced bystander cells. Deletion of IL4Ra from follicular dendritic cells (FDCs) increased the availability of IL-4 in the GC, impaired the selection of affinity-matured B cells, and reduced memory cell generation. We propose that GC FDCs establish a niche that limits bystander IL-4 activity, focusing IL-4 action on B cells undergoing selection and enhancing memory cell differentiation.
Collapse
Affiliation(s)
- Lihui Duan
- Department of Microbiology and Immunology and Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Dan Liu
- Department of Microbiology and Immunology and Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hsin Chen
- Department of Microbiology and Immunology and Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michelle A Mintz
- Department of Microbiology and Immunology and Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Marissa Y Chou
- Department of Microbiology and Immunology and Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Dmitri I Kotov
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, and Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ying Xu
- Department of Microbiology and Immunology and Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jinping An
- Department of Microbiology and Immunology and Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Brian J Laidlaw
- Department of Microbiology and Immunology and Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jason G Cyster
- Department of Microbiology and Immunology and Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
65
|
Liu L, Peng S, Duan M, Liu C, Li L, Zhang X, Ren B, Tian H. The role of C/EBP homologous protein (CHOP) in regulating macrophage polarization in RAW264.7 cells. Microbiol Immunol 2021; 65:531-541. [PMID: 34491597 DOI: 10.1111/1348-0421.12937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/20/2021] [Accepted: 09/05/2021] [Indexed: 11/27/2022]
Abstract
Schistosomiasis is a zoonotic parasitic disease that is endemic in Asia. Macrophages are mainly involved in the inflammatory response of late schistosoma infection. Our previous study found that C/EBP homologous protein (CHOP) expression is significantly increased, and M2 macrophages are activated in schistosome-induced liver fibrosis mice. However, the role of CHOP in the regulation of macrophage polarization remains to be further studied. Western blotting or quantitative PCR revealed that IL-4 increased the expression of arginase-1, macrophage mannose receptor 1, phosphorylation signal transducer and activator of transcription 6 (p-STAT6), Krüppel-like factor 4 (KLF4), CHOP, and IL-13 receptor alpha (IL-13Rα) and induced M2 polarization in RAW264.7 as measured by flow cytometry. Inhibiting STAT6 phosphorylation (AS1517499) reduced the IL-4-induced expression of KLF4, CHOP, and IL-13Rα and also the number of M2 macrophages. The overexpression of CHOP stimulated M2 polarization, but AS1517499 inhibited this effect. CHOP increased the protein expression of KLF4 but did not change the expression of p-STAT6. Soluble egg antigen (SEA) could promote the IL-4-induced protein expression of p-STAT6, CHOP, and KLF4. Overall, the findings show that SEA can promote the activation of M2 macrophages by causing increased CHOP-induced KLF4 levels and activation of STAT6 phosphorylation.
Collapse
Affiliation(s)
- Lian Liu
- Department of Pharmacology, Medical School of Yangtze University, Jingzhou, China
| | - Shuang Peng
- Department of Medical Imaging, Medical School of Yangtze University, Jingzhou, China.,Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengyun Duan
- Department of Medical Imaging, Medical School of Yangtze University, Jingzhou, China
| | - Cuiliu Liu
- Department of Medical Imaging, Medical School of Yangtze University, Jingzhou, China
| | - Lingrui Li
- Department of Medical Imaging, Medical School of Yangtze University, Jingzhou, China
| | - Xing Zhang
- Department of Medical Imaging, Medical School of Yangtze University, Jingzhou, China
| | - Boxu Ren
- Department of Medical Imaging, Medical School of Yangtze University, Jingzhou, China
| | - Hongyang Tian
- Department of Hepatobiliary Surgery, Wusan Hospital, Jingmen, China
| |
Collapse
|
66
|
Zhang Y, Li J, Li H, Zhou Z, Guo C, Jiang J, Ming Y. A preliminary investigation into the immune cell landscape of schistosome-associated liver fibrosis in humans. Immunol Cell Biol 2021; 99:803-813. [PMID: 34355810 PMCID: PMC8456952 DOI: 10.1111/imcb.12490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/05/2021] [Accepted: 07/02/2021] [Indexed: 11/26/2022]
Abstract
Schistosomiasis is a widespread helminth disease that poses a heavy social and economic burden on people worldwide. Advanced schistosomiasis often develops into schistosome‐associated liver fibrosis, the pathogenesis of which remains unclear. This study aimed preliminarily to profile immune cells of schistosome‐associated liver fibrosis using single‐cell RNA sequencing. Three patient groups were enrolled, including an Schistosomiasis japonicum (SJ) group (n = 1), a chronic liver failure (CLF) group (n = 3) and a healthy control (HC) group (n = 2), revealing 17 cell clusters out of 20 093 cells. From these limited datasets, it was observed that T cell(1), mononuclear phagocytes‐1 and dendritic cells (DCs) were higher in the SJ group. CAVIN2+ MP(2) was the predominant cell type in the MP subset of the SJ group (53%), and was higher than that in both the CLF (8%) and HC (1%) groups. Kupffer cell marker genes (CD163, MARCO and TIMD4) were enriched in caveolae‐associated protein 2 (CAVIN2)+ MP(2), which was also an important source of TGFB1. The KEGG pathways of CAVIN2+ MP(2) indicated that they were associated with lysosome, endocytosis, phagosome and antigen processing and presentation. The preliminary study showed that granzyme B (GZMB)+ T cell(1) and ankyrin repeat domain‐containing protein 36B+ T cell(3) were the most common T cells in the SJ group (50% and 32%, respectively). The KEGG pathways of GZMB+ T cell(1) were mainly related to natural killer cell‐mediated cytotoxicity. The percentage of ring1 and YY1 binding protein (RYBP)+ DC(1) was higher in the SJ group (57%) than in the CLF (16%) and HC (6%) groups. The KEGG pathway of RYBP+ DC(1) was related to Fc gamma R‐mediated phagocytosis and antigen processing and presentation. Overall, CAVIN2+ Kupffer cells were the main source of TGFB1, consisting primarily of mononuclear phagocytes in the livers of the SJ group subjects and potentially playing an irreplaceable role in hepatic fibrosis of schistosomiasis.
Collapse
Affiliation(s)
- Yu Zhang
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Junhui Li
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao Li
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoqin Zhou
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chen Guo
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Jiang
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yingzi Ming
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.,Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, Hunan, China
| |
Collapse
|
67
|
The relationship between Schistosoma and glycolipid metabolism. Microb Pathog 2021; 159:105120. [PMID: 34358648 DOI: 10.1016/j.micpath.2021.105120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 02/02/2023]
Abstract
Diabetes and obesity have become the most popular metabolic diseases in the world. A large number of previous studies have shown that glucose and lipid metabolism disorder is an important risk factor and a main cause of diabetes and obesity. Schistosoma is a parasite transmitted by freshwater snails. It can induce a series of inflammatory and immune reactions after infecting the human body, causing schistosomiasis. However, in recent years, studies have found that Schistosoma infection or Schistosoma related products can improve or prevent some immune and inflammatory diseases, such as severe asthma, inflammatory bowel disease, diabetes and so on. Further experiments have also revealed that Schistosoma can promote the secretion of anti-inflammatory factors and regulate the glucose and lipid metabolism in the host body by polarizing immune cells such as T cells, B cells and dendritic cells (DCs). In this review, we summarize studies that investigated Schistosoma and Schistosoma-derived products and their relationship with glycolipid metabolism and related diseases, highlighting potential protective mechanisms.
Collapse
|
68
|
Forman R, Logunova L, Smith H, Wemyss K, Mair I, Boon L, Allen JE, Muller W, Pennock JL, Else KJ. Trichuris muris infection drives cell-intrinsic IL4R alpha independent colonic RELMα+ macrophages. PLoS Pathog 2021; 17:e1009768. [PMID: 34329367 PMCID: PMC8357096 DOI: 10.1371/journal.ppat.1009768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/11/2021] [Accepted: 06/29/2021] [Indexed: 01/24/2023] Open
Abstract
The intestinal nematode parasite Trichuris muris dwells in the caecum and proximal colon driving an acute resolving intestinal inflammation dominated by the presence of macrophages. Notably, these macrophages are characterised by their expression of RELMα during the resolution phase of the infection. The RELMα+ macrophage phenotype associates with the presence of alternatively activated macrophages and work in other model systems has demonstrated that the balance of classically and alternatively activated macrophages is critically important in enabling the resolution of inflammation. Moreover, in the context of type 2 immunity, RELMα+ alternatively activated macrophages are associated with the activation of macrophages via the IL4Rα. Despite a breadth of inflammatory pathologies associated with the large intestine, including those that accompany parasitic infection, it is not known how colonic macrophages are activated towards an alternatively activated phenotype. Here, we address this important knowledge gap by using Trichuris muris infection, in combination with transgenic mice (IL4Rαfl/fl.CX3CR1Cre) and IL4Rα-deficient/wild-type mixed bone marrow chimaeras. We make the unexpected finding that education of colonic macrophages towards a RELMα+, alternatively activated macrophage phenotype during T. muris infection does not require IL4Rα expression on macrophages. Further, this independence is maintained even when the mice are treated with an anti-IFNγ antibody during infection to create a strongly polarised Th2 environment. In contrast to RELMα, PD-L2 expression on macrophages post infection was dependent on IL4Rα signalling in the macrophages. These novel data sets are important, revealing a surprising cell-intrinsic IL4R alpha independence of the colonic RELMα+ alternatively activated macrophage during Trichuris muris infection. Infection of mice with Trichuris muris, a whipworm parasite results in inflammation of the large intestine. Inflammation is temporary; once the parasite has been cleared, damage to the intestinal tissue heals. During inflammation white blood cells move in to the gut tissue. These cells are dominated by a cell type called the macrophage. Macrophages which accumulate in the intestine post-infection express a protein called RELMα. These RELMα-expressing macrophages are thought to help resolve inflammation and have traditionally been associated with IL-4 and IL-13-driven activation. We set out to determine whether the macrophages which emerge during T. muris infection need to respond to IL-4 and/or IL-13 in order to express RELMα. We did this by creating a transgenic mouse where the common IL4Rα chain of the IL-4 and IL-13 receptor was absent from macrophages. To our surprise, macrophages were able to express RELMα regardless of whether the macrophage could or could not respond to IL-14/IL-13. This new knowledge is important as in some inflammatory conditions, treatments seeking to encourage alternatively activated macrophages have been proposed. Such treatments require an understanding of both the important and the redundant signals as well as recognition that activating signals may be disparate in different tissue environments.
Collapse
Affiliation(s)
- Ruth Forman
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- * E-mail: (RF); (KJE)
| | - Larisa Logunova
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Hannah Smith
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Kelly Wemyss
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Iris Mair
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Louis Boon
- Polpharma Biologics, Utrecht, The Netherlands
| | - Judith E. Allen
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Werner Muller
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Joanne L. Pennock
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Kathryn J. Else
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- * E-mail: (RF); (KJE)
| |
Collapse
|
69
|
Myeloid-IL4Rα is an indispensable link in IL-33-ILCs-IL-13-IL4Rα axis of eosinophil recruitment in murine lungs. Sci Rep 2021; 11:15465. [PMID: 34326406 PMCID: PMC8322172 DOI: 10.1038/s41598-021-94843-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 07/16/2021] [Indexed: 11/15/2022] Open
Abstract
Increased eosinophil recruitment is a hallmark feature of eosinophilic disorders. Here, we delineated the key molecular and cellular players involved in physiological eosinophilic recruitment during normal postnatal lung development in mice. Physiological eosinophilic recruitment was consistently present in 7-, 10-, and 15-day-old neonatal mice, but not in 42-day-old mice. This feature was completely abolished in interleukin 33 (IL-33)-, interleukin 2 receptor gamma chain (IL2rγ)-, and interleukin 4 receptor alpha (IL4Rα)-knockout mice, but not in recombination activating gene 1 (Rag1)-knockout mice demonstrating an indispensable role for IL-33, innate lymphoid cells (ILCs), and IL4Rα in eosinophil recruitment. Interestingly, myeloid-specific IL4Rα-deficient (mye-IL4Rα−/−) mice had significantly reduced eosinophilia in the airspaces that was associated with reduced levels of IL-4 and IL-5 in the bronchoalveolar lavage fluid (BALF). Further, we tested the effect of myeloid-specific IL4Rα deficiency on IL-13-induced eosinophil recruitment into adult lung airspaces. Eosinophil recruitment into the airspaces was elevated in IL-13-treated WT mice but not in IL-13-treated mye-IL4Rα−/− mice. Consistent with the degree of eosinophilia, the BALF levels of eosinophil recruitment-associated cytokines were significantly elevated in IL-13-treated WT but not in IL-13-treated mye-IL4Rα−/− mice. These data establish that myeloid-IL4Rα is an indispensable component of the IL-33-ILCsIL-13-IL4Rα axis of eosinophil recruitment.
Collapse
|
70
|
Ho CH, Cheng CH, Huang TW, Peng SY, Lee KM, Cheng PC. Switched phenotypes of macrophages during the different stages of Schistosoma japonicum infection influenced the subsequent trends of immune responses. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2021; 55:503-526. [PMID: 34330662 DOI: 10.1016/j.jmii.2021.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/28/2021] [Accepted: 06/24/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Macrophages play crucial roles in immune responses during the course of schistosomal infections. METHODS We currently investigated influence of immunocompetent changes in macrophages via microarray-based analysis, mRNA expression analysis, detection of serum cytokines, and subsequent evaluation of the immune phenotypes following the differentiation of infection-induced lymphocytes in a unique T1/T2 double-transgenic mouse model. RESULTS The gradual upregulation of genes encoding YM1, YM2, and interleukin (IL)-4/IL-13 receptors in infected mice indicated the role of type 2 alternatively activated macrophages (M2, AAMφs) in immune responses after Schistosoma japonicum egg production. FACS analysis showed that surface markers MHC class II (IA/IE) and CD8α+ of the macrophages also exhibited a dramatic change at the various time points before and after egg-production. The transgenic mouse experiments further demonstrated that the shifting of macrophage phenotypes influenced the percentage of helper T (Th)-2 cells, which was observed to be higher than that of Th1 cells, which increased only at 3 and 5 weeks post-infection. The differentiation of effector B cells showed a similar but more significant trend toward type-2 immunity. CONCLUSION These results suggest that the infection of mice with S. japonicum resulted in a final Th2- and Be2-skewed immune response. This may be due to phenotypic changes in the macrophages. The influence of alternatively activated macrophages was also activated by S. japonicum egg production. This study elucidated the existence of variations in immune mechanisms at the schistosome infection stages.
Collapse
Affiliation(s)
- Chen-Hsun Ho
- Division of Urology, Department of Surgery, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chia-Hsiung Cheng
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Wen Huang
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shih-Yi Peng
- Department of Biochemistry, College of Medicine, Tzu Chi University, Hualien, Taiwan.
| | - Kin-Mu Lee
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Po-Ching Cheng
- Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Center for International Tropical Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
71
|
Oliveira NF, Silva CLM. Unveiling the Potential of Purinergic Signaling in Schistosomiasis Treatment. Curr Top Med Chem 2021; 21:193-204. [PMID: 32972342 DOI: 10.2174/1568026620666200924115113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/15/2020] [Accepted: 08/24/2020] [Indexed: 11/22/2022]
Abstract
Schistosomiasis is a neglected tropical disease. It is related to long-lasting granulomatous fibrosis and inflammation of target organs, and current sub-optimal pharmacological treatment creates global public health concerns. Intravascular worms and eggs release antigens and extracellular vesicles that target host endothelial cells, modulate the immune system, and stimulate the release of damageassociated molecular patterns (DAMPs). ATP, one of the most studied DAMPs, triggers a cascade of autocrine and paracrine actions through purinergic P2X and P2Y receptors, which are shaped by ectonucleotidases (CD39). Both P2 receptor families, and in particular P2Y1, P2Y2, P2Y12, and P2X7 receptors, have been attracting increasing interest in several inflammatory diseases and drug development. Current data obtained from the murine model unveiled a CD39-ADP-P2Y1/P2Y12 receptors signaling pathway linked to the liver and mesenteric exacerbations of schistosomal inflammation. Therefore, we proposed that members of this purinergic signaling could be putative pharmacological targets to reduce schistosomal morbidity.
Collapse
Affiliation(s)
- Nathália Ferreira Oliveira
- Laboratory of Molecular and Biochemical Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudia Lucia Martins Silva
- Laboratory of Molecular and Biochemical Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
72
|
Douglas B, Wei Y, Li X, Ferguson A, Hung LY, Pastore C, Kurtz JR, McLachlan JB, Nolan TJ, Lok J, Herbert DR. Transgenic expression of a T cell epitope in Strongyloides ratti reveals that helminth-specific CD4+ T cells constitute both Th2 and Treg populations. PLoS Pathog 2021; 17:e1009709. [PMID: 34237106 PMCID: PMC8291758 DOI: 10.1371/journal.ppat.1009709] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/20/2021] [Accepted: 06/11/2021] [Indexed: 01/10/2023] Open
Abstract
Helminths are distinct from microbial pathogens in both size and complexity, and are the likely evolutionary driving force for type 2 immunity. CD4+ helper T cells can both coordinate worm clearance and prevent immunopathology, but issues of T cell antigen specificity in the context of helminth-induced Th2 and T regulatory cell (Treg) responses have not been addressed. Herein, we generated a novel transgenic line of the gastrointestinal nematode Strongyloides ratti expressing the immunodominant CD4+ T cell epitope 2W1S as a fusion protein with green fluorescent protein (GFP) and FLAG peptide in order to track and study helminth-specific CD4+ T cells. C57BL/6 mice infected with this stable transgenic line (termed Hulk) underwent a dose-dependent expansion of activated CD44hiCD11ahi 2W1S-specific CD4+ T cells, preferentially in the lung parenchyma. Transcriptional profiling of 2W1S-specific CD4+ T cells isolated from mice infected with either Hulk or the enteric bacterial pathogen Salmonella expressing 2W1S revealed that pathogen context exerted a dominant influence over CD4+ T cell phenotype. Interestingly, Hulk-elicited 2W1S-specific CD4+ T cells exhibited both Th2 and Treg phenotypes and expressed high levels of the EGFR ligand amphiregulin, which differed greatly from the phenotype of 2W1S-specific CD4+ T cells elicited by 2W1S-expressing Salmonella. While immunization with 2W1S peptide did not enhance clearance of Hulk infection, immunization did increase total amphiregulin production as well as the number of amphiregulin-expressing CD3+ cells in the lung following Hulk infection. Altogether, this new model system elucidates effector as well as immunosuppressive and wound reparative roles of helminth-specific CD4+ T cells. This report establishes a new resource for studying the nature and function of helminth-specific T cells.
Collapse
Affiliation(s)
- Bonnie Douglas
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Yun Wei
- Department of Oncology and Inflammation, Amgen Research, South San Francisco, California, United States of America
| | - Xinshe Li
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Annabel Ferguson
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Li-Yin Hung
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Christopher Pastore
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jonathan R Kurtz
- Flagship Labs 72, Inc., Cambridge, Massachusetts, United States of America
| | - James B. McLachlan
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Thomas J. Nolan
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - James Lok
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - De’Broski R. Herbert
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
73
|
Song J, Frieler RA, Vigil TM, Ma J, Brombacher F, Goonewardena SN, Goldstein DR, Mortensen RM. Inactivation of Interleukin-4 Receptor α Signaling in Myeloid Cells Protects Mice From Angiotensin II/High Salt-Induced Cardiovascular Dysfunction Through Suppression of Fibrotic Remodeling. J Am Heart Assoc 2021; 10:e017329. [PMID: 34132103 PMCID: PMC8403318 DOI: 10.1161/jaha.120.017329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background Hypertension‐induced cardiovascular remodeling is characterized by chronic low‐grade inflammation. Interleukin‐4 receptor α (IL‐4Rα) signaling is importantly involved in cardiovascular remodeling, however, the target cell type(s) is unclear. Here, we investigated the role of myeloid‐specific IL‐4Rα signaling in cardiovascular remodeling induced by angiotensin II and high salt. Methods and Results Myeloid IL‐4Rα deficiency suppressed both the in vitro and in vivo expression of alternatively activated macrophage markers including Arg1 (arginase 1), Ym1 (chitinase 3‐like 3), and Relmα/Fizz1 (resistin‐like molecule α). After angiotensin II and high salt treatment, myeloid‐specific IL‐4Rα deficiency did not change hypertrophic remodeling within the heart and aorta. However, myeloid IL‐4Rα deficiency resulted in a substantial reduction in fibrosis through the suppression of profibrotic pathways and the enhancement of antifibrotic signaling. Decreased fibrosis was associated with significant preservation of myocardial function in MyIL4RαKO mice and was mediated by attenuated alternative macrophage activation. Conclusions Myeloid IL‐4Rα signaling is substantially involved in fibrotic cardiovascular remodeling by controlling alternative macrophage activation and regulating fibrosis‐related signaling. Inhibiting myeloid IL‐4Rα signaling may be a potential strategy to prevent hypertensive cardiovascular diseases.
Collapse
Affiliation(s)
- Jianrui Song
- Department of Cell and Developmental Biology University of Michigan Medical School Ann Arbor MI.,Department of Molecular and Integrative Physiology University of Michigan Ann Arbor MI
| | - Ryan A Frieler
- Department of Molecular and Integrative Physiology University of Michigan Ann Arbor MI
| | - Thomas M Vigil
- Department of Molecular and Integrative Physiology University of Michigan Ann Arbor MI
| | - Jun Ma
- Department of Thoracic Surgery Shanxi Province People's Hospital Taiyuan P.R. China
| | - Frank Brombacher
- International Center for Genetic Engineering and Biotechnology University of Cape TownDivision of Immunology and South African Medical Research Council (SAMRC) Cape Town South Africa
| | - Sascha N Goonewardena
- Division of Cardiovascular Medicine Department of Internal Medicine University of Michigan Ann Arbor MI
| | - Daniel R Goldstein
- Division of Cardiovascular Medicine Department of Internal Medicine University of Michigan Ann Arbor MI.,Institute of Gerontology University of Michigan Ann Arbor MI.,Department of Microbiology and Immunology University of Michigan Ann Arbor MI
| | - Richard M Mortensen
- Department of Molecular and Integrative Physiology University of Michigan Ann Arbor MI.,Division of Metabolism, Endocrinology, and Diabetes Department of Internal Medicine University of Michigan Ann Arbor MI.,Department of Pharmacology University of Michigan Ann Arbor MI
| |
Collapse
|
74
|
Tao Y, Wang F, Xu Z, Lu X, Yang Y, Wu J, Yao C, Yi F, Li J, Huang Z, Liu Y. Gasdermin D in peripheral nerves: the pyroptotic microenvironment inhibits nerve regeneration. Cell Death Discov 2021; 7:144. [PMID: 34127647 PMCID: PMC8203780 DOI: 10.1038/s41420-021-00529-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/24/2021] [Accepted: 05/23/2021] [Indexed: 12/02/2022] Open
Abstract
Wallerian degeneration (WD) involves the recruitment of macrophages for debris clearance and nerve regeneration, and the cause of the foamy macrophages that are frequently observed in peripheral transection injuries is unknown. Recent studies indicated that these foamy cells are generated by gasdermin D (GSDMD) via membrane perforation. However, whether these foamy cells are pyroptotic macrophages and whether their cell death elicits immunogenicity in peripheral nerve regeneration (PNR) remain unknown. Therefore, we used GSDMD-deficient mice and mice with deficiencies in other canonical inflammasomes to establish a C57BL/6 J mouse model of sciatic nerve transection and microanastomosis (SNTM) and evaluate the role of GSDMD-executed pyroptosis in PNR. In our study, the GSDMD−/− mice with SNTM showed a significantly diminished number of foamy cells, better axon regeneration, and a favorable functional recovery, whereas irregular axons or gaps in the fibers were found in the wild-type (WT) mice with SNTM. Furthermore, GSDMD activation in the SNTM model was dependent on the NLRP3 inflammasome and caspase-1 activation, and GSDMD-executed pyroptosis resulted in a proinflammatory environment that polarized monocytes/macrophages toward the M1 (detrimental) but not the M2 (beneficial) phenotype. In contrast, depletion of GSDMD reversed the proinflammatory microenvironment and facilitated M2 polarization. Our results suggested that inhibition of GSDMD may be a potential treatment option to promote PNR.
Collapse
Affiliation(s)
- Ye Tao
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Fang Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Zhaohui Xu
- Department of Disease prevention and control, Xijing 986 Hospital, The Fourth Military Medical University, Shanxi, 710000, China
| | - Xianfu Lu
- Department of Anesthesiology (High-Tech Branch), The First Affiliated Hospital of Anhui Medical University, Hefei, 230080, China
| | - Yanqing Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Jing Wu
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Changyu Yao
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Fangzheng Yi
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Jiajia Li
- The Center for Scientific Research of the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Zhigang Huang
- Department of Otolaryngology-Head and Neck Surgery, Key Laboratory of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| | - Yehai Liu
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| |
Collapse
|
75
|
Wang N, Bai X, Jin X, Tang B, Yang Y, Sun Q, Li S, Wang C, Chang Q, Liu M, Liu X. The dynamics of select cellular responses and cytokine expression profiles in mice infected with juvenile Clonorchis sinensis. Acta Trop 2021; 217:105852. [PMID: 33548205 DOI: 10.1016/j.actatropica.2021.105852] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 01/22/2021] [Accepted: 01/29/2021] [Indexed: 01/01/2023]
Abstract
Clonorchiasis is a zoonotic disease that can result in chronic infection in humans. The causative agent, Clonorchis sinensis (C. sinensis), is believed to primarily induce a Th2 immune response in infected mice. However, few studies have profiled host immune responses to C. sinensis infection during the juvenile phase. In the present study, the dynamics of select cellular responses and cytokine expression profiles during juvenile C. sinensis infection were investigated. The flow cytometry results showed that the CD4+ T cells percentage was significantly decreased between 12 days post-infection (dpi) and 24 dpi in the peripheral blood, and the CD8+ T cells percentage was significantly elevated after 3 dpi. The ratio of CD4+/CD8+ T cells was also significantly decreased after 3 dpi. Furthermore, we observed that the proportion of CD14+ monocyte-macrophages in the peripheral blood was significantly increased between 1 dpi and 12 dpi and peaked at 6 dpi. The percentage of classically activated macrophages (M1) and alternatively activated macrophages (M2) in the liver was significantly increased between 18 dpi and 30 dpi. qRT-PCR results showed that the expression levels of iNOS in the liver were significantly elevated after 3 dpi, and Arg-1 expression was significantly increased beginning at 12 dpi. ELISA results showed that the serum levels of the Th1 cytokines IFN-γ and IL-2 peaked at 6 dpi and decreased thereafter. Furthermore, the Th2 cytokines IL-4 and IL-13 began to be expressed and peaked at 24 dpi and 30 dpi, respectively. In addition, the levels of the Treg cytokines IL-10 and TGF-β1 were significantly increased beginning at 6 dpi until 30 dpi. In the liver homogenate, the expression of IFN-γ, IL-2, and IL-4 mainly occurred before 6 dpi. IL-13 expression was significantly increased at 30 dpi. IL-10 and TGF-β1 levels were significantly increased at 12 dpi and 24 dpi, and expression peaked at 24 dpi and 30 dpi, respectively. This study provides a fundamental characterization for the future analysis of host-parasite interactions and immune responses in hosts infected with juvenile C. sinensis.
Collapse
|
76
|
Tissue-resident macrophages mediate neutrophil recruitment and kidney injury in shiga toxin-induced hemolytic uremic syndrome. Kidney Int 2021; 100:349-363. [PMID: 33930412 DOI: 10.1016/j.kint.2021.03.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 01/01/2023]
Abstract
Enterohaemorrhagic E. coli cause major epidemics worldwide with significant organ damage and very high percentages of death. Due to the ability of enterohaemorrhagic E. coli to produce shiga toxin these bacteria damage the kidney leading to the hemolytic uremic syndrome. A therapy against this serious kidney disease has not been developed yet and the impact and mechanism of leukocyte activation and recruitment are unclear. Tissue-resident macrophages represent the main leukocyte population in the healthy kidney, but the role of this important cell population in shiga toxin-producing E. coli-hemolytic uremic syndrome is incompletely understood. Using state of the art microscopy and mass spectrometry imaging, our preclinical study demonstrated a phenotypic and functional switch of tissue-resident macrophages after disease induction in mice. Kidney macrophages produced the inflammatory molecule TNFα and depletion of tissue-resident macrophages via the CSF1 receptor abolished TNFα levels in the kidney and significantly diminished disease severity. Furthermore, macrophage depletion did not only attenuate endothelial damage and thrombocytopenia, but also activation of thrombocytes and neutrophils. Moreover, we observed that neutrophils infiltrated the kidney cortex and depletion of macrophages significantly reduced the recruitment of neutrophils and expression of the neutrophil-attracting chemokines CXCL1 and CXCL2. Intravital microscopy revealed that inhibition of CXCR2, the receptor for CXCL1 and CXCL2, significantly reduced the infiltration of neutrophils and reduced kidney injury. Thus, our study shows activation of tissue-resident macrophages during shiga toxin-producing E. coli-hemolytic uremic syndrome leading to the production of disease-promoting TNFα and CXCR2-dependent recruitment of neutrophils.
Collapse
|
77
|
Wang G, Zarek C, Chang T, Tao L, Lowe A, Reese TA. Th2 Cytokine Modulates Herpesvirus Reactivation in a Cell Type Specific Manner. J Virol 2021; 95:JVI.01946-20. [PMID: 33536178 PMCID: PMC8103696 DOI: 10.1128/jvi.01946-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/26/2021] [Indexed: 12/14/2022] Open
Abstract
Gammaherpesviruses, such as Epstein-Barr virus (EBV), Kaposi's sarcoma associated virus (KSHV), and murine γ-herpesvirus 68 (MHV68), establish latent infection in B cells, macrophages, and non-lymphoid cells, and can induce both lymphoid and non-lymphoid cancers. Research on these viruses has relied heavily on immortalized B cell and endothelial cell lines. Therefore, we know very little about the cell type specific regulation of virus infection. We have previously shown that treatment of MHV68-infected macrophages with the cytokine interleukin-4 (IL-4) or challenge of MHV68-infected mice with an IL-4-inducing parasite leads to virus reactivation. However, we do not know if all latent reservoirs of the virus, including B cells, reactivate the virus in response to IL-4. Here we used an in vivo approach to address the question of whether all latently infected cell types reactivate MHV68 in response to a particular stimulus. We found that IL-4 receptor expression on macrophages was required for IL-4 to induce virus reactivation, but that it was dispensable on B cells. We further demonstrated that the transcription factor, STAT6, which is downstream of the IL-4 receptor and binds virus gene 50 N4/N5 promoter in macrophages, did not bind to the virus gene 50 N4/N5 promoter in B cells. These data suggest that stimuli that promote herpesvirus reactivation may only affect latent virus in particular cell types, but not in others.Importance Herpesviruses establish life-long quiescent infections in specific cells in the body, and only reactivate to produce infectious virus when precise signals induce them to do so. The signals that induce herpesvirus reactivation are often studied only in one particular cell type infected with the virus. However, herpesviruses establish latency in multiple cell types in their hosts. Using murine gammaherpesvirus-68 (MHV68) and conditional knockout mice, we examined the cell type specificity of a particular reactivation signal, interleukin-4 (IL-4). We found that IL-4 only induced herpesvirus reactivation from macrophages, but not from B cells. This work indicates that regulation of virus latency and reactivation is cell type specific. This has important implications for therapies aimed at either promoting or inhibiting reactivation for the control or elimination of chronic viral infections.
Collapse
Affiliation(s)
- Guoxun Wang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Christina Zarek
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tyron Chang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lili Tao
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Alexandria Lowe
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tiffany A Reese
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
78
|
Avni D, Avni O. Extracellular Vesicles: Schistosomal Long-Range Precise Weapon to Manipulate the Immune Response. Front Cell Infect Microbiol 2021; 11:649480. [PMID: 33869080 PMCID: PMC8044974 DOI: 10.3389/fcimb.2021.649480] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
Schistosomiasis (Bilharziasis), a neglected tropical disease that affects more than 240 million people around the world, is caused by infection with the helminth parasite Schistosoma. As part of their secretome, schistosomes release extracellular vesicles (EVs) that modulate the host immune response. The EV-harbored miRNAs upregulate the innate immune response of the M1 pathway and downregulate the differentiation toward the adaptive Th2 immunity. A schistosomal egg-derived miRNA increases the percentage of regulatory T cells. This schistosomal-inducible immunoediting process generates ultimately a parasitic friendly environment that is applied carefully as restrained Th2 response is crucial for the host survival and successful excretion of the eggs. Evidence indicates a selective targeting of schistosomal EVs, however, the underlying mechanisms are unclear yet. The effects of the schistosomes on the host immune system is in accordance with the hygiene hypothesis, attributing the dramatic increase in recent decades in allergy and other diseases associated with imbalanced immune response, to the reduced exposure to infectious agents that co-evolved with humans during evolution. Deciphering the bioactive cargo, function, and selective targeting of the parasite-secreted EVs may facilitate the development of novel tools for diagnostics and delivered therapy to schistosomiasis, as well as to immune-associated disorders.
Collapse
Affiliation(s)
- Dror Avni
- Laboratory of Molecular Cell Biology, Sheba Medical Center, Tel Hashomer, Israel.,Laboratory for the Study of Tropical Diseases, Sheba Medical Center, Tel Hashomer, Israel.,Department of Medicine C, Sheba Medical Center, Tel Hashomer, Israel
| | - Orly Avni
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
79
|
Douglas B, Oyesola O, Cooper MM, Posey A, Tait Wojno E, Giacomin PR, Herbert DR. Immune System Investigation Using Parasitic Helminths. Annu Rev Immunol 2021; 39:639-665. [PMID: 33646858 DOI: 10.1146/annurev-immunol-093019-122827] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Coevolutionary adaptation between humans and helminths has developed a finely tuned balance between host immunity and chronic parasitism due to immunoregulation. Given that these reciprocal forces drive selection, experimental models of helminth infection are ideally suited for discovering how host protective immune responses adapt to the unique tissue niches inhabited by these large metazoan parasites. This review highlights the key discoveries in the immunology of helminth infection made over the last decade, from innate lymphoid cells to the emerging importance of neuroimmune connections. A particular emphasis is placed on the emerging areas within helminth immunology where the most growth is possible, including the advent of genetic manipulation of parasites to study immunology and the use of engineered T cells for therapeutic options. Lastly,we cover the status of human challenge trials with helminths as treatment for autoimmune disease, which taken together, stand to keep the study of parasitic worms at the forefront of immunology for years to come.
Collapse
Affiliation(s)
- Bonnie Douglas
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; ,
| | - Oyebola Oyesola
- Department of Immunology, University of Washington, Seattle, Washington 98109, USA; ,
| | - Martha M Cooper
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland 4878, Australia; ,
| | - Avery Posey
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; .,Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania 19104, USA
| | - Elia Tait Wojno
- Department of Immunology, University of Washington, Seattle, Washington 98109, USA; ,
| | - Paul R Giacomin
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland 4878, Australia; ,
| | - De'Broski R Herbert
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; ,
| |
Collapse
|
80
|
Llanwarne F, Helmby H. Granuloma formation and tissue pathology in Schistosoma japonicum versus Schistosoma mansoni infections. Parasite Immunol 2021; 43:e12778. [PMID: 32692855 PMCID: PMC11478942 DOI: 10.1111/pim.12778] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022]
Abstract
Schistosomiasis is the most important helminth disease in the world from a public health perspective. S mansoni and S japonicum account for the majority of global intestinal schistosomiasis cases, and the pathogenesis is widely assumed to be fundamentally similar. However, the majority of research on schistosomiasis has been carried out on S mansoni and comparisons between the two species are rarely made. Here, we will discuss aspects of both older and recent literature where such comparisons have been made, with a particular focus on the pathological agent, the host granulomatous response to the egg. Major differences between the two species are apparent in features such as egg production patterns and cellular infiltration; however, it is also clear that even subtle differences in the cascade of various cytokines and chemokines contribute to the different levels of pathology observed between these two main species of intestinal schistosomiasis. A better understanding of such differences at species level will be vital when it comes to the development of new treatment strategies and vaccines.
Collapse
Affiliation(s)
- Felix Llanwarne
- Department of Infection BiologyFaculty of Infectious and Tropical DiseaseLondon School of Hygiene and Tropical MedicineLondonUK
| | - Helena Helmby
- Department of Infection BiologyFaculty of Infectious and Tropical DiseaseLondon School of Hygiene and Tropical MedicineLondonUK
| |
Collapse
|
81
|
Cortes‐Selva D, Fairfax K. Schistosome and intestinal helminth modulation of macrophage immunometabolism. Immunology 2021; 162:123-134. [PMID: 32614982 PMCID: PMC7808165 DOI: 10.1111/imm.13231] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
Macrophages are fundamental to sustain physiological equilibrium and to regulate the pathogenesis of parasitic and metabolic processes. The functional heterogeneity and immune responses of macrophages are shaped by cellular metabolism in response to the host's intrinsic factors, environmental cues and other stimuli during disease. Parasite infections induce a complex cascade of cytokines and metabolites that profoundly remodel the metabolic status of macrophages. In particular, helminths polarize macrophages to an M2 state and induce a metabolic shift towards reliance on oxidative phosphorylation, lipid oxidation and amino acid metabolism. Accumulating data indicate that helminth-induced activation and metabolic reprogramming of macrophages underlie improvement in overall whole-body metabolism, denoted by improved insulin sensitivity, body mass in response to high-fat diet and atherogenic index in mammals. This review aims to highlight the metabolic changes that occur in human and murine-derived macrophages in response to helminth infections and helminth products, with particular interest in schistosomiasis and soil-transmitted helminths.
Collapse
Affiliation(s)
- Diana Cortes‐Selva
- Division of Microbiology and ImmunologyDepartment of PathologyUniversity of UtahSalt Lake CityUTUSA
- Janssen BiotherapeuticsJanssen R&DSpring HousePAUSA
| | - Keke Fairfax
- Division of Microbiology and ImmunologyDepartment of PathologyUniversity of UtahSalt Lake CityUTUSA
| |
Collapse
|
82
|
Mukendi JPK, Nakamura R, Uematsu S, Hamano S. Interleukin (IL)-33 is dispensable for Schistosoma mansoni worm maturation and the maintenance of egg-induced pathology in intestines of infected mice. Parasit Vectors 2021; 14:70. [PMID: 33482904 PMCID: PMC7821721 DOI: 10.1186/s13071-020-04561-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Schistosomes are trematode worms that dwell in their definitive host's blood vessels, where females lay eggs that need to be discharged into the environment with host excreta to maintain their life-cycle. Both worms and eggs require type 2 immunity for their maturation and excretion, respectively. However, the immune molecules that orchestrate such immunity remain unclear. Interleukin (IL)-33 is one of the epithelium-derived cytokines that induce type 2 immunity in tissues. The aim of this study was to determine the role of IL-33 in the maturation, reproduction and excretion of Schistosoma mansoni eggs, and in the maintenance of egg-induced pathology in the intestines of mice. METHODS The morphology of S. mansoni worms and the number of eggs in intestinal tissues were studied at different time points post-infection in S. mansoni-infected IL-33-deficient (IL-33-/-) and wild-type (WT) mice. IL-5 and IL-13 production in the spleens and mesenteric lymph nodes were measured. Tissue histology was performed on the terminal ilea of both infected and non-infected mice. RESULTS Worms from IL-33-/- and WT mice did not differ morphologically at 4 and 6 weeks post-infection (wpi). The number of eggs in intestinal tissues of IL-33-/- and WT mice differed only slightly. At 6 wpi, IL-33-/- mice presented impaired type 2 immunity in the intestines, characterized by a decreased production of IL-5 and IL-13 in mesenteric lymph nodes and fewer inflammatory infiltrates with fewer eosinophils in the ilea. There was no difference between IL-33-/- and WT mice in the levels of IL-25 and thymic stromal lymphopoietin (TSLP) in intestinal tissues. CONCLUSIONS Despite its ability to initiate type 2 immunity in tissues, IL-33 alone seems dispensable for S. mansoni maturation and its absence may not affect much the accumulation of eggs in intestinal tissues. The transient impairment of type 2 immunity observed in the intestines, but not spleens, highlights the importance of IL-33 over IL-25 and TSLP in initiating, but not maintaining, locally-induced type 2 immunity in intestinal tissues during schistosome infection. Further studies are needed to decipher the role of each of these molecules in schistosomiasis and clarify the possible interactions that might exist between them.
Collapse
Affiliation(s)
- Jean Pierre Kambala Mukendi
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- The Joint Usage/Research Center on Tropical Disease, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Risa Nakamura
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- The Joint Usage/Research Center on Tropical Disease, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Satoshi Uematsu
- Department of Immunology and Genomics, Osaka City University Graduate School of Medicine, Osaka, Japan
- Division of Innate Immune Regulation, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shinjiro Hamano
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- The Joint Usage/Research Center on Tropical Disease, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| |
Collapse
|
83
|
Shenderov K, Collins SL, Powell JD, Horton MR. Immune dysregulation as a driver of idiopathic pulmonary fibrosis. J Clin Invest 2021; 131:143226. [PMID: 33463535 DOI: 10.1172/jci143226] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) affects hundreds of thousands of people worldwide, reducing their quality of life and leading to death from respiratory failure within years of diagnosis. Treatment options remain limited, with only two FDA-approved drugs available in the United States, neither of which reverse the lung damage caused by the disease or prolong the life of individuals with IPF. The only cure for IPF is lung transplantation. In this review, we discuss recent major advances in our understanding of the role of the immune system in IPF that have revealed immune dysregulation as a critical driver of disease pathophysiology. We also highlight ways in which an improved understanding of the immune system's role in IPF may enable the development of targeted immunomodulatory therapies that successfully halt or potentially even reverse lung fibrosis.
Collapse
Affiliation(s)
- Kevin Shenderov
- Department of Medicine, Division of Pulmonary and Critical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Samuel L Collins
- Department of Medicine, Division of Pulmonary and Critical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jonathan D Powell
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Maureen R Horton
- Department of Medicine, Division of Pulmonary and Critical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
84
|
Cortes-Selva D, Gibbs L, Maschek JA, Nascimento M, Van Ry T, Cox JE, Amiel E, Fairfax KC. Metabolic reprogramming of the myeloid lineage by Schistosoma mansoni infection persists independently of antigen exposure. PLoS Pathog 2021; 17:e1009198. [PMID: 33417618 PMCID: PMC7819610 DOI: 10.1371/journal.ppat.1009198] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/21/2021] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
Macrophages have a defined role in the pathogenesis of metabolic disease and cholesterol metabolism where alternative activation of macrophages is thought to be beneficial to both glucose and cholesterol metabolism during high fat diet induced disease. It is well established that helminth infection protects from metabolic disease, but the mechanisms underlying protection are not well understood. Here, we investigated the effects of Schistosoma mansoni infection and cytokine activation in the metabolic signatures of bone marrow derived macrophages using an approach that integrated transcriptomics, metabolomics, and lipidomics in a metabolic disease prone mouse model. We demonstrate that bone marrow derived macrophages (BMDM) from S. mansoni infected male ApoE-/- mice have dramatically increased mitochondrial respiration compared to those from uninfected mice. This change is associated with increased glucose and palmitate shuttling into TCA cycle intermediates, increased accumulation of free fatty acids, and decreased accumulation of cellular cholesterol esters, tri and diglycerides, and is dependent on mgll activity. Systemic injection of IL-4 complexes is unable to recapitulate either reductions in systemic glucose AUC or the re-programing of BMDM mitochondrial respiration seen in infected males. Importantly, the metabolic reprogramming of male myeloid cells is transferrable via bone marrow transplantation to an uninfected host, indicating maintenance of reprogramming in the absence of sustained antigen exposure. Finally, schistosome induced metabolic and bone marrow modulation is sex-dependent, with infection protecting male, but not female mice from glucose intolerance and obesity. Our findings identify a transferable, long-lasting sex-dependent reprograming of the metabolic signature of macrophages by helminth infection, providing key mechanistic insight into the factors regulating the beneficial roles of helminth infection in metabolic disease.
Collapse
Affiliation(s)
- Diana Cortes-Selva
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City Utah, United States of America.,Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette Indiana, United States of America
| | - Lisa Gibbs
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City Utah, United States of America
| | - J Alan Maschek
- Metabolomics, Proteomics and Mass Spectrometry Cores, University of Utah, Salt Lake City, Utah, United States of America.,Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, United States of America
| | - Marcia Nascimento
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City Utah, United States of America
| | - Tyler Van Ry
- Metabolomics, Proteomics and Mass Spectrometry Cores, University of Utah, Salt Lake City, Utah, United States of America.,Department of Biochemistry, University of Utah, Salt Lake City Utah, United States of America
| | - James E Cox
- Metabolomics, Proteomics and Mass Spectrometry Cores, University of Utah, Salt Lake City, Utah, United States of America.,Department of Biochemistry, University of Utah, Salt Lake City Utah, United States of America
| | - Eyal Amiel
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, Vermont, United States of America
| | - Keke C Fairfax
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City Utah, United States of America.,Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette Indiana, United States of America
| |
Collapse
|
85
|
Song J, Frieler RA, Whitesall SE, Chung Y, Vigil TM, Muir LA, Ma J, Brombacher F, Goonewardena SN, Lumeng CN, Goldstein DR, Mortensen RM. Myeloid interleukin-4 receptor α is essential in postmyocardial infarction healing by regulating inflammation and fibrotic remodeling. Am J Physiol Heart Circ Physiol 2021; 320:H323-H337. [PMID: 33164548 PMCID: PMC7847075 DOI: 10.1152/ajpheart.00251.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 10/23/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023]
Abstract
Interleukin-4 receptor α (IL4Rα) signaling plays an important role in cardiac remodeling during myocardial infarction (MI). However, the target cell type(s) of IL4Rα signaling during this remodeling remains unclear. Here, we investigated the contribution of endogenous myeloid-specific IL4Rα signaling in cardiac remodeling post-MI. We established a murine myeloid-specific IL4Rα knockout (MyIL4RαKO) model with LysM promoter-driven Cre recombination. Macrophages from MyIL4RαKO mice showed significant downregulation of alternatively activated macrophage markers but an upregulation of classical activated macrophage markers both in vitro and in vivo, indicating the successful inactivation of IL4Rα signaling in macrophages. To examine the role of myeloid IL4Rα during MI, we subjected MyIL4RαKO and littermate floxed control (FC) mice to MI. We found that cardiac function was significantly impaired as a result of myeloid-specific IL4Rα deficiency. This deficiency resulted in a dysregulated inflammatory response consisting of decreased production of anti-inflammatory cytokines. Myeloid IL4Rα deficiency also led to reduced collagen 1 deposition and an imbalance of matrix metalloproteinases (MMPs)/tissue inhibitors of metalloproteinases (TIMPs), with upregulated MMPs and downregulated TIMPs, which resulted in insufficient fibrotic remodeling. In conclusion, this study identifies that myeloid-specific IL4Rα signaling regulates inflammation and fibrotic remodeling during MI. Therefore, myeloid-specific activation of IL4Rα signaling could offer protective benefits after MI.NEW & NOTEWORTHY This study showed, for the first time, the role of endogenous IL4Rα signaling in myeloid cells during cardiac remodeling and the underlying mechanisms. We identified myeloid cells are the critical target cell types of IL4Rα signaling during cardiac remodeling post-MI. Deficiency of myeloid IL4Rα signaling causes deteriorated cardiac function post-MI, due to dysregulated inflammation and insufficient fibrotic remodeling. This study sheds light on the potential of activating myeloid-specific IL4Rα signaling to modify remodeling post-MI. This brings hope to patients with MI and diminishes side effects by cell type-specific instead of whole body treatment.
Collapse
Affiliation(s)
- Jianrui Song
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Ryan A Frieler
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Steven E Whitesall
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Yutein Chung
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Thomas M Vigil
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Lindsey A Muir
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan
| | - Jun Ma
- Department of Thoracic Surgery, Shanxi Province People's Hospital, Taiyuan, People's Republic of China
| | - Frank Brombacher
- International Center for Genetic Engineering and Biotechnology, University of Cape Town, Cape Town, South Africa
| | - Sascha N Goonewardena
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Carey N Lumeng
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan
| | - Daniel R Goldstein
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Institute of Gerontology, University of Michigan, Ann Arbor, Michigan
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan
| | - Richard M Mortensen
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
86
|
Hadebe S, Khumalo J, Mangali S, Mthembu N, Ndlovu H, Scibiorek M, Ngomti A, Kirstein F, Brombacher F. Deletion of IL-4Rα signaling on B cells limits hyperresponsiveness depending on antigen load. J Allergy Clin Immunol 2020; 148:99-109.e5. [PMID: 33383090 PMCID: PMC8253118 DOI: 10.1016/j.jaci.2020.12.635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND B cells play an important role in allergies through secretion of IgE. IL-4 receptor α (IL-4Rα) is key in allergic asthma and regulates type 2 cytokine production, IgE secretion, and airway hyperresponsiveness. IL-4 activation of B cells is essential for class switching and contributes to the induction of B effector 2 (Be2) cells. The role of Be2 cells and signaling via IL-4Rα in B cells is not clearly defined. OBJECTIVE We sought to find out whether IL-4Rα-responsive B cells or Be2 function was essential in experimental allergic asthma. METHODS Mice lacking IL-4Rα on B cells (mb1creIL-4Rα-/lox) or littermate controls (IL-4Rα-/lox) and mice lacking IL-4 or IL-4/IL-13 on B cells were sensitized and challenged with high-dose house dust mite (>10 μg) or with low-dose house dust mite (<3 μg). We also adoptively transferred naive IL-4Rα-/lox or IL-4Rα-/- B cells into μMT-/- mice a day before sensitization or a day before challenge. We analyzed lung inflammation, cellular infiltrate, and airway hyperresponsiveness. RESULTS We found that IL-4Rα signaling on B cells was important for optimal TH2 allergic immune responses mainly when the load of antigen is limited. IL-4Rα signaling on B cells was essential for germinal centers and in the effector phase of allergic responses. Be2 cells were essential in airway hyperresponsiveness, but not in other parameters. CONCLUSIONS IL-4Rα signaling on B cells is deleterious in allergic asthma because it is required for optimal TH2 responses, Be2 function, germinal center formation, and T follicular helper cells, especially when the load of the antigen is limiting.
Collapse
Affiliation(s)
- Sabelo Hadebe
- Division of Immunology, and South African Medical Research Council Immunology of Infectious Diseases, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| | - Jermaine Khumalo
- Division of Immunology, and South African Medical Research Council Immunology of Infectious Diseases, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; International Centre for Genetic Engineering and Biotechnology (ICGEB) and Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology, Health Science Faculty, University of Cape Town, Cape Town, South Africa
| | - Sandisiwe Mangali
- Division of Immunology, and South African Medical Research Council Immunology of Infectious Diseases, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; International Centre for Genetic Engineering and Biotechnology (ICGEB) and Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology, Health Science Faculty, University of Cape Town, Cape Town, South Africa
| | - Nontobeko Mthembu
- Division of Immunology, and South African Medical Research Council Immunology of Infectious Diseases, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; International Centre for Genetic Engineering and Biotechnology (ICGEB) and Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology, Health Science Faculty, University of Cape Town, Cape Town, South Africa
| | - Hlumani Ndlovu
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Martyna Scibiorek
- Division of Immunology, and South African Medical Research Council Immunology of Infectious Diseases, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; International Centre for Genetic Engineering and Biotechnology (ICGEB) and Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology, Health Science Faculty, University of Cape Town, Cape Town, South Africa
| | - Amkele Ngomti
- Division of Immunology, and South African Medical Research Council Immunology of Infectious Diseases, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; International Centre for Genetic Engineering and Biotechnology (ICGEB) and Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology, Health Science Faculty, University of Cape Town, Cape Town, South Africa
| | - Frank Kirstein
- Division of Immunology, and South African Medical Research Council Immunology of Infectious Diseases, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Frank Brombacher
- Division of Immunology, and South African Medical Research Council Immunology of Infectious Diseases, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; International Centre for Genetic Engineering and Biotechnology (ICGEB) and Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology, Health Science Faculty, University of Cape Town, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
87
|
Maggi L, Rocha IC, Camelo GMA, Fernandes VR, Negrão-Corrêa D. The IL-33/ST2 pathway is not essential to Th2 stimulation but is key for modulation and survival during chronic infection with Schistosoma mansoni in mice. Cytokine 2020; 138:155390. [PMID: 33341001 DOI: 10.1016/j.cyto.2020.155390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/11/2020] [Accepted: 11/25/2020] [Indexed: 12/30/2022]
Abstract
Morbidity during chronic schistosomiasis has been associated with the induction and modulation of type-2 granulomatous inflammatory response induced by antigens secreted by the eggs, which become trapped in capillary venules of the host tissues, especially in the liver and intestines. IL-33, an alarmin released after cell damage, binds to its ST2 (suppressor of tumorigenicity 2) receptor, expressed in an variety of immune cells, including ILC2 and macrophages, and stimulates the early production of IL-5 and IL-13, which leads to eosinophil infiltration and activation of a Th2 response. However, the role of IL-33/ST2 activation on Schistosoma-induced granuloma formation and modulation is mostly unknown. In the current work, we comparatively evaluated the immune response and granuloma formation in wild-type BALB/c (WT) and BALB/c mice genetically deficient in the IL-33 receptor (ST2-/-) experimentally infected with Schistosoma mansoni. Mice were infected with 25 or 50 S. mansoni cercariae and followed for up to 14 weeks to assess mortality. Mice from each experimental group were comparatively evaluated for parasite burden, liver immune response, and granuloma appearance during acute and chronic schistosomiasis. Our data showed that the number of circulating worms and eggs retained in the liver and eliminated in the feces was similar in WT and ST2-/- infected mice, but infected ST2-/- mice presented an enhanced rate of mortality. Interestingly, the production of type-2 cytokines by soluble egg antigens (SEA)-stimulated spleen cells, the serum concentrations of IL-5 and Immunoglobulin (Ig)-E, and the level of parasite-reactive IgG1 were similar in infected mice of both experimental groups. The concentrations of IL-4, IL-5, IL-13, and IFN-γ in liver homogenate of infected mice also did not differ between the strains at acute schistosomiasis, but there was a significant increase in IL-17 levels in ST2-/- infected mice at this phase. On the other hand, IL-4, IL-13, IL-10, IL-17, and IFN-γ concentrations were reduced and the ratios of IL-4/IFN-γ and IL-17/IFN-γ were higher in liver homogenate of chronically infected ST2-/- mice, suggesting unbalanced Th2 and Th17 responses. Moreover, liver granulomas of ST2-/- mice were larger and disorganized, showing an intense cellular infiltrate, rich in eosinophils and neutrophils. Our results suggest that the absence of the IL-33/ST2 pathway is not essential for the Schistosoma-induced Th2 response, but is necessary to prevent host mortality by modulating granuloma-mediated pathology.
Collapse
Affiliation(s)
- Laura Maggi
- Laboratório de Esquistossomose e Imunohelmintologia, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Izabella Chrystina Rocha
- Laboratório de Esquistossomose e Imunohelmintologia, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Curso de Enfermagem, Instituto de Ciências Biológicas e Saúde, Universidade Federal de Mato Grosso, Barra do Garça, Brazil
| | - Genil Mororó Araújo Camelo
- Laboratório de Esquistossomose e Imunohelmintologia, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vanessa Rodrigues Fernandes
- Laboratório de Esquistossomose e Imunohelmintologia, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Deborah Negrão-Corrêa
- Laboratório de Esquistossomose e Imunohelmintologia, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
88
|
Marku M, Verstraete N, Raynal F, Madrid-Mencía M, Domagala M, Fournié JJ, Ysebaert L, Poupot M, Pancaldi V. Insights on TAM Formation from a Boolean Model of Macrophage Polarization Based on In Vitro Studies. Cancers (Basel) 2020; 12:cancers12123664. [PMID: 33297362 PMCID: PMC7762229 DOI: 10.3390/cancers12123664] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 12/24/2022] Open
Abstract
Simple Summary The recent success of immunotherapy treatments against cancer relies on helping our own body’s defenses in the fight against tumours, namely reinvigorating the cancer killing action of T cells. Unfortunately, in a large proportion of patients these therapies are ineffective, in part due to the presence of other immune cells, macrophages, which are mis-educated by the cancer cells into promoting tumour growth. Here we start from an existing model of macrophage polarization and extend it to the specific conditions encountered inside a tumour by adding signals, receptors, transcription factors and cytokines that are known to be the key components in establishing the cancer cell-macrophage interaction. Then we use a mathematical Boolean model applied to a gene regulatory network of this biological process to simulate its temporal behaviour and explore scenarios that have not been experimentally tested so far. Additionally, the KO and overexpression simulations successfully reproduce the known experimental results while predicting the potential role of regulators (such as STAT1 and EGF) in preventing the formation of pro-tumoural macrophages, which can be tested experimentally. Abstract The tumour microenvironment is the surrounding of a tumour, including blood vessels, fibroblasts, signaling molecules, the extracellular matrix and immune cells, especially neutrophils and monocyte-derived macrophages. In a tumour setting, macrophages encompass a spectrum between a tumour-suppressive (M1) or tumour-promoting (M2) state. The biology of macrophages found in tumours (Tumour Associated Macrophages) remains unclear, but understanding their impact on tumour progression is highly important. In this paper, we perform a comprehensive analysis of a macrophage polarization network, following two lines of enquiry: (i) we reconstruct the macrophage polarization network based on literature, extending it to include important stimuli in a tumour setting, and (ii) we build a dynamical model able to reproduce macrophage polarization in the presence of different stimuli, including the contact with cancer cells. Our simulations recapitulate the documented macrophage phenotypes and their dependencies on specific receptors and transcription factors, while also unravelling the formation of a special type of tumour associated macrophages in an in vitro model of chronic lymphocytic leukaemia. This model constitutes the first step towards elucidating the cross-talk between immune and cancer cells inside tumours, with the ultimate goal of identifying new therapeutic targets that could control the formation of tumour associated macrophages in patients.
Collapse
Affiliation(s)
- Malvina Marku
- INSERM, Centre de Recherches en Cancérologie de Toulouse, 2 Avenue Hubert Curien, 31037 Toulouse, France; (N.V.); (F.R.); (M.M.-M.); (M.D.); (J.-J.F.); (L.Y.); (M.P.)
- Université III Toulouse Paul Sabatier, Route de Narbonne, 31330 Toulouse, France
- Correspondence: (M.M.); (V.P.); Tel.: +33-5-82-74-17-74 (M.M.)
| | - Nina Verstraete
- INSERM, Centre de Recherches en Cancérologie de Toulouse, 2 Avenue Hubert Curien, 31037 Toulouse, France; (N.V.); (F.R.); (M.M.-M.); (M.D.); (J.-J.F.); (L.Y.); (M.P.)
- Université III Toulouse Paul Sabatier, Route de Narbonne, 31330 Toulouse, France
| | - Flavien Raynal
- INSERM, Centre de Recherches en Cancérologie de Toulouse, 2 Avenue Hubert Curien, 31037 Toulouse, France; (N.V.); (F.R.); (M.M.-M.); (M.D.); (J.-J.F.); (L.Y.); (M.P.)
- Université III Toulouse Paul Sabatier, Route de Narbonne, 31330 Toulouse, France
| | - Miguel Madrid-Mencía
- INSERM, Centre de Recherches en Cancérologie de Toulouse, 2 Avenue Hubert Curien, 31037 Toulouse, France; (N.V.); (F.R.); (M.M.-M.); (M.D.); (J.-J.F.); (L.Y.); (M.P.)
- Université III Toulouse Paul Sabatier, Route de Narbonne, 31330 Toulouse, France
| | - Marcin Domagala
- INSERM, Centre de Recherches en Cancérologie de Toulouse, 2 Avenue Hubert Curien, 31037 Toulouse, France; (N.V.); (F.R.); (M.M.-M.); (M.D.); (J.-J.F.); (L.Y.); (M.P.)
- Université III Toulouse Paul Sabatier, Route de Narbonne, 31330 Toulouse, France
| | - Jean-Jacques Fournié
- INSERM, Centre de Recherches en Cancérologie de Toulouse, 2 Avenue Hubert Curien, 31037 Toulouse, France; (N.V.); (F.R.); (M.M.-M.); (M.D.); (J.-J.F.); (L.Y.); (M.P.)
- Université III Toulouse Paul Sabatier, Route de Narbonne, 31330 Toulouse, France
| | - Loïc Ysebaert
- INSERM, Centre de Recherches en Cancérologie de Toulouse, 2 Avenue Hubert Curien, 31037 Toulouse, France; (N.V.); (F.R.); (M.M.-M.); (M.D.); (J.-J.F.); (L.Y.); (M.P.)
- Université III Toulouse Paul Sabatier, Route de Narbonne, 31330 Toulouse, France
- Service d’Hématologie, Institut Universitaire du Cancer de Toulouse-Oncopole, 31330 Toulouse, France
| | - Mary Poupot
- INSERM, Centre de Recherches en Cancérologie de Toulouse, 2 Avenue Hubert Curien, 31037 Toulouse, France; (N.V.); (F.R.); (M.M.-M.); (M.D.); (J.-J.F.); (L.Y.); (M.P.)
- Université III Toulouse Paul Sabatier, Route de Narbonne, 31330 Toulouse, France
| | - Vera Pancaldi
- INSERM, Centre de Recherches en Cancérologie de Toulouse, 2 Avenue Hubert Curien, 31037 Toulouse, France; (N.V.); (F.R.); (M.M.-M.); (M.D.); (J.-J.F.); (L.Y.); (M.P.)
- Université III Toulouse Paul Sabatier, Route de Narbonne, 31330 Toulouse, France
- Barcelona Supercomputing Center, Carrer de Jordi Girona, 29, 31, 08034 Barcelona, Spain
- Correspondence: (M.M.); (V.P.); Tel.: +33-5-82-74-17-74 (M.M.)
| |
Collapse
|
89
|
Hung LY, Tanaka Y, Herbine K, Pastore C, Singh B, Ferguson A, Vora N, Douglas B, Zullo K, Behrens EM, Li Hui Tan T, Kohanski MA, Bryce P, Lin C, Kambayashi T, Reed DR, Brown BL, Cohen NA, Herbert DR. Cellular context of IL-33 expression dictates impact on anti-helminth immunity. Sci Immunol 2020; 5:5/53/eabc6259. [PMID: 33188058 DOI: 10.1126/sciimmunol.abc6259] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022]
Abstract
Interleukin-33 (IL-33) is a pleiotropic cytokine that can promote type 2 inflammation but also drives immunoregulation through Foxp3+Treg expansion. How IL-33 is exported from cells to serve this dual role in immunosuppression and inflammation remains unclear. Here, we demonstrate that the biological consequences of IL-33 activity are dictated by its cellular source. Whereas IL-33 derived from epithelial cells stimulates group 2 innate lymphoid cell (ILC2)-driven type 2 immunity and parasite clearance, we report that IL-33 derived from myeloid antigen-presenting cells (APCs) suppresses host-protective inflammatory responses. Conditional deletion of IL-33 in CD11c-expressing cells resulted in lowered numbers of intestinal Foxp3+Treg cells that express the transcription factor GATA3 and the IL-33 receptor ST2, causing elevated IL-5 and IL-13 production and accelerated anti-helminth immunity. We demonstrate that cell-intrinsic IL-33 promoted mouse dendritic cells (DCs) to express the pore-forming protein perforin-2, which may function as a conduit on the plasma membrane facilitating IL-33 export. Lack of perforin-2 in DCs blocked the proliferative expansion of the ST2+Foxp3+Treg subset. We propose that perforin-2 can provide a plasma membrane conduit in DCs that promotes the export of IL-33, contributing to mucosal immunoregulation under steady-state and infectious conditions.
Collapse
Affiliation(s)
- Li-Yin Hung
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yukinori Tanaka
- Department of Dental Anesthesiology and Pain Management, Tohoku University Hospital, Sendai, Miyagi 980-8574, Japan
| | - Karl Herbine
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher Pastore
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brenal Singh
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Annabel Ferguson
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nisha Vora
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bonnie Douglas
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kelly Zullo
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward M Behrens
- Division of Rheumatology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Tiffany Li Hui Tan
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael A Kohanski
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul Bryce
- Immunology and Inflammation Therapeutic Area, Sanofi US, Cambridge, MA 02319, USA
| | - Cailu Lin
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Breann L Brown
- Department of Biochemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Noam A Cohen
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA 19104, USA.,Monell Chemical Senses Center, Philadelphia, PA 19104, USA.,Michael J. Crescenz Veterans Affairs Medical Center Surgical Service, Philadelphia, PA 19104, USA
| | - De'Broski R Herbert
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
90
|
The therapeutic potential of galectin-3 inhibition in fibrotic disease. Int J Biochem Cell Biol 2020; 130:105881. [PMID: 33181315 DOI: 10.1016/j.biocel.2020.105881] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 12/20/2022]
Abstract
Galectin-3 is a beta-galactoside-binding mammalian lectin and part of the 15 member galectin family that are evolutionarily highly conserved. It is the only chimeric protein with a C-terminal carbohydrate recognition domain (CRD) linked to a proline, glycine, and tyrosine rich additional N-terminal domain. Galectin-3 binds several cell surface glycoproteins via its CRD domain as well as undergoing oligomerization, via binding at the N-terminal or the CRD, resulting in the formation of a galectin-3 lattice on the cell surface. The galectin-3 lattice has been regarded as being a crucial mechanism whereby extracellular galectin-3 modulates cellular signalling by prolonging retention time or retarding lateral movement of cell surface receptors in the plasma membrane. As such galectin-3 can regulate various cellular functions such as diffusion, compartmentalization and endocytosis of plasma membrane glycoproteins and glycolipids and the functionality of membrane receptors. In multiple models of organ fibrosis, it has been demonstrated that galectin-3 is potently pro-fibrotic and modulates the activity of fibroblasts and macrophages in chronically inflamed organs. Increased galectin-3 expression also activates myofibroblasts resulting in scar formation and may therefore impact common fibrotic pathways leading to fibrosis in multiple organs. Over the last decade there has been a marked increase in the scientific literature investigating galectin-3 in a range of fibrotic diseases as well as the clinical development of new galectin-3 inhibitors. In this review we will examine the role of galectin-3 in fibrosis, the therapeutic strategies for inhibiting galectin-3 in fibrotic disease and the clinical landscape to date.
Collapse
|
91
|
Chang H, He KY, Li C, Ni YY, Li MN, Chen L, Hou M, Zhou Z, Xu ZP, Ji MJ. P21 activated kinase-1 (PAK1) in macrophages is required for promotion of Th17 cell response during helminth infection. J Cell Mol Med 2020; 24:14325-14338. [PMID: 33124146 PMCID: PMC7753984 DOI: 10.1111/jcmm.16050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/30/2020] [Accepted: 10/12/2020] [Indexed: 12/24/2022] Open
Abstract
CD4+T cells differentiate into distinct functional effector and inhibitory subsets are facilitated by distinct cytokine cues present at the time of antigen recognition. Maintaining a balance between T helper 17 (Th17) and regulatory T (Treg) cells are critical for the control of the immunopathogenesis of liver diseases. Here, by using the mouse model of helminth Schistosoma japonicum (Sjaponicum) infection, we show that the hepatic mRNA levels of P21‐activated kinase 1 (PAK1), a key regulator of the actin cytoskeleton, adhesion and cell motility, are significantly increased and associated with the development of liver pathology during Sjaponicum infection. In addition, PAK1‐deficient mice are prone to suppression of Th17 cell responses but increased Treg cells. Furthermore, PAK1 enhances macrophage activation through promoting IRF1 nuclear translocation in an NF‐κB‐dependent pathway, resulting in promoting Th17 cell differentiation through inducing IL‐6 production. These findings highlight the importance of PAK1 in macrophages fate determination and suggest that PAK1/IRF1 axis‐dependent immunomodulation can ameliorate certain T cell–based immune pathologies.
Collapse
Affiliation(s)
- Hao Chang
- Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Kai-Yue He
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Chen Li
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Yang-Yue Ni
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Mai-Ning Li
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Lin Chen
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Min Hou
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Zikai Zhou
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi-Peng Xu
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Min-Jun Ji
- Center for Global Health, Nanjing Medical University, Nanjing, China.,Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
92
|
Khumalo J, Kirstein F, Hadebe S, Brombacher F. IL-4Rα signaling in CD4+CD25+FoxP3+ T regulatory cells restrains airway inflammation via limiting local tissue IL-33. JCI Insight 2020; 5:136206. [PMID: 32931477 PMCID: PMC7605533 DOI: 10.1172/jci.insight.136206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 09/09/2020] [Indexed: 01/05/2023] Open
Abstract
Impaired tolerance to innocuous particles during allergic asthma has been linked to increased plasticity of FoxP3+ regulatory T cells (Tregs) reprogramming into pathogenic effector cells, thus exacerbating airway disease. However, failure of tolerance mechanisms is driven by Th2 inflammatory signals. Therefore, the in vivo role of canonical IL-4 receptor α (IL-4Rα) signaling, an essential driver of Th2-type airway responses to allergens, on the regulatory function of FoxP3+ Tregs in allergic asthma was explored. Here, we used transgenic Foxp3cre IL-4Rα-/lox and littermate control mice to investigate the role of IL-4 and IL-13 signaling via Tregs in house dust mite-induced (HDM-induced) allergic airway disease. We sensitized mice intratracheally on day 0, challenged them on days 6-10, and analyzed airway hyperresponsiveness (AHR), airway inflammation, mucus production, and cellular profile on day 14. In the absence of IL-4Rα responsiveness on FoxP3+ Tregs, exacerbated AHR and airway inflammation were shown in HDM-sensitized mice. Interestingly, reduced induction of FoxP3+ Tregs accompanied increased IL-33 alarmin production and type 2 innate lymphoid cell activation in the lung, exacerbating airway hyperreactivity and lung eosinophilia. Taken together, our findings indicate that IL-4Rα-unresponsive FoxP3+ Tregs result in exaggerated innate Th2-type, IL-33-dependent airway inflammation and a break in tolerance during allergic asthma.
Collapse
Affiliation(s)
- Jermaine Khumalo
- Division of Immunology, and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Department of Pathology.,International Centre for Genetic Engineering and Biotechnology (ICGEB), and
| | - Frank Kirstein
- Division of Immunology, and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Department of Pathology
| | - Sabelo Hadebe
- Division of Immunology, and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Department of Pathology
| | - Frank Brombacher
- Division of Immunology, and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Department of Pathology.,International Centre for Genetic Engineering and Biotechnology (ICGEB), and.,Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
93
|
Wiedemann M, Voehringer D. Immunomodulation and Immune Escape Strategies of Gastrointestinal Helminths and Schistosomes. Front Immunol 2020; 11:572865. [PMID: 33042153 PMCID: PMC7527441 DOI: 10.3389/fimmu.2020.572865] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
Parasitic worms (helminths) developed various immunoregulatory mechanisms to counteract the immune system of their host. The increasing identification and characterization of helminth-derived factors with strong immune modulatory activity provides novel insights into immune escape strategies of helminths. Such factors might be good targets to enhance anti-helminthic immune responses. In addition, immunosuppressive helminth-derived factors could be useful to develop new therapeutic strategies for treatment of chronic inflammatory conditions. This review will take an in depth look at the effects of immunomodulatory molecules produced by different helminths with a focus on schistosomes and mouse models of hookworm infections.
Collapse
Affiliation(s)
- Marie Wiedemann
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| |
Collapse
|
94
|
Bai X, Li M, Wang X, Chang H, Ni Y, Li C, He K, Wang H, Yang Y, Tian T, Hou M, Ji M, Xu Z. Therapeutic potential of fucoidan in the reduction of hepatic pathology in murine schistosomiasis japonica. Parasit Vectors 2020; 13:451. [PMID: 32894174 PMCID: PMC7487607 DOI: 10.1186/s13071-020-04332-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/30/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Hepatic granuloma formation and fibrosis as the consequence of tissue entrapped eggs produced by female schistosomes characterize the pathology of Schistosoma japonicum infection. It has been proposed that fucoidan, a sulfated polysaccharide existing naturally in brown seaweed Fucus vesiculosus, plays a diversified role to perform immunomodulatory activities. However, whether fucoidan functions in the host hepatic pathology is unknown and identifying the potential mechanism that is responsible for hepatic improvement is still necessary. METHODS We evaluated the hepatic pathology from S. japonicum-infected mice after treatment with fucoidan. qRT-PCR and immunofluorescence were used to detect the pro- or anti-inflammatory factors and the phosphorylated p65 in the livers. In addition, flow cytometry was also performed to investigate the T cell subsets in the S. japonicum-infected mice after treatment with fucoidan, and functional molecules relatively specific to Treg cells were detected in vitro. Furthermore, macrophages were treated with fucoidan in vitro and to detect the inflammatory cytokines. RESULTS Treatment with fucoidan significantly reduced the hepatic granuloma size and fibrosis response during S. japonicum infection. The attenuated phospho-p65 protein levels and the mRNA levels of pro-inflammatory cytokines (IL-6, IL-12 and TNF-α) were observed in the livers from fucoidan-treated S. japonicum-infected mice; however, the mRNA levels of anti-inflammatory cytokines (IL-4 and IL-13) were increased. In addition, the infiltration of Treg cells was significantly enhanced both in the livers and spleens from fucoidan-treated S. japonicum-infected mice. Consistent with this, the mRNA levels of IL-10 and TGF-β were dramatically increased in the livers from S. japonicum-infected mice after fucoidan treatment. Furthermore, in vitro stimulated splenocytes with fucoidan resulted in increasing Treg cells in splenocytes as well as the functional expression of CC chemokine receptor type 4 (CCR4) and CXC chemokine receptor type 5 (CXCR5) in Treg cells. Additionally, fucoidan promoted the mRNA levels of IL-4 and IL-13 in macrophages. CONCLUSIONS These findings suggest an important role of natural fucoidan in reducing hepatic pathology in the progress of S. japonicum infection with a stronger Treg response, which may reveal a new potential therapeutic strategy for hepatic disease caused by parasitic chronic infection.
Collapse
Affiliation(s)
- Xueqi Bai
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 211166 China
| | - Maining Li
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 211166 China
| | - Xinyue Wang
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 211166 China
| | - Hao Chang
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 211166 China
| | - Yangyue Ni
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 211166 China
| | - Chen Li
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 211166 China
| | - Kaiyue He
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 211166 China
| | - Huiquan Wang
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 211166 China
| | - Yuxuan Yang
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 211166 China
| | - Tian Tian
- Department of Dermatology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, Jiangsu 211100 China
| | - Min Hou
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 211166 China
| | - Minjun Ji
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 211166 China
| | - Zhipeng Xu
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 211166 China
| |
Collapse
|
95
|
Cleenewerk L, Garssen J, Hogenkamp A. Clinical Use of Schistosoma mansoni Antigens as Novel Immunotherapies for Autoimmune Disorders. Front Immunol 2020; 11:1821. [PMID: 32903582 PMCID: PMC7438586 DOI: 10.3389/fimmu.2020.01821] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022] Open
Abstract
The hygiene hypothesis states that improved hygiene and the resulting disappearance of once endemic diseases is at the origin of the enormous increase in immune related disorders such as autoimmune diseases seen in the industrialized world. Helminths, such as Schistosoma mansoni, are thought to provide protection against the development of autoimmune diseases by regulating the host's immune response. This modulation primarily involves induction of regulatory immune responses, such as generation of tolerogenic dendritic cells and alternatively activated macrophages. This points toward the potential of employing helminths or their products/metabolites as therapeutics for autoimmune diseases that are characterized by an excessive inflammatory state, such as multiple sclerosis (MS), type I diabetes (T1D) and inflammatory bowel disease (IBD). In this review, we examine the known mechanisms of immune modulation by S. mansoni, explore preclinical and clinical studies that investigated the use of an array helminthic products in these diseases, and propose that helminthic therapy opens opportunities in the treatment of chronic inflammatory disorders.
Collapse
Affiliation(s)
- L Cleenewerk
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Beta Sciences, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Beta Sciences, Utrecht University, Utrecht, Netherlands.,Division of Immunology, Danone Nutricia Research B.V., Utrecht, Netherlands
| | - Astrid Hogenkamp
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Beta Sciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
96
|
Souza COS, Gardinassi LG, Rodrigues V, Faccioli LH. Monocyte and Macrophage-Mediated Pathology and Protective Immunity During Schistosomiasis. Front Microbiol 2020; 11:1973. [PMID: 32922381 PMCID: PMC7456899 DOI: 10.3389/fmicb.2020.01973] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
Infection by Schistosoma parasites culminates in a chronic granulomatous disease characterized by intense tissue fibrosis. Along the course of schistosomiasis, diverse leukocytes are recruited for inflammatory foci. Innate immune cell accumulation in Th2-driven granulomas around Schistosoma eggs is associated with increased collagen deposition, while monocytes and macrophages exert critical roles during this process. Monocytes are recruited to damaged tissues from blood, produce TGF-β and differentiate into monocyte-derived macrophages (MDMs), which become alternatively activated by IL-4/IL-13 signaling via IL-4Rα (AAMs). AAMs are key players of tissue repair and wound healing in response to Schistosoma infection. Alternative activation of macrophages is characterized by the activation of STAT6 that coordinates the transcription of Arg1, Chi3l3, Relma, and Mrc1. In addition to these markers, monocyte-derived AAMs also express Raldh2 and Pdl2. AAMs produce high levels of IL-10 and TGF-β that minimizes tissue damage caused by Schistosoma egg accumulation in tissues. In this review, we provide support to previous findings about the host response to Schistosoma infection reusing public transcriptome data. Importantly, we discuss the role of monocytes and macrophages with emphasis on the mechanisms of alternative macrophage activation during schistosomiasis.
Collapse
Affiliation(s)
- Camila Oliveira Silva Souza
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Luiz Gustavo Gardinassi
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | - Vanderlei Rodrigues
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Lúcia Helena Faccioli
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
97
|
Tang MS, Miraldi ER, Girgis NM, Bonneau RA, Loke P. Alternative Activation of Macrophages Is Accompanied by Chromatin Remodeling Associated with Lineage-Dependent DNA Shape Features Flanking PU.1 Motifs. THE JOURNAL OF IMMUNOLOGY 2020; 205:1070-1083. [PMID: 32661179 DOI: 10.4049/jimmunol.2000258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/17/2020] [Indexed: 01/04/2023]
Abstract
IL-4 activates macrophages to adopt distinct phenotypes associated with clearance of helminth infections and tissue repair, but the phenotype depends on the cellular lineage of these macrophages. The molecular basis of chromatin remodeling in response to IL-4 stimulation in tissue-resident and monocyte-derived macrophages is not understood. In this study, we find that IL-4 activation of different lineages of peritoneal macrophages in mice is accompanied by lineage-specific chromatin remodeling in regions enriched with binding motifs of the pioneer transcription factor PU.1. PU.1 motif is similarly associated with both tissue-resident and monocyte-derived IL-4-induced accessible regions but has different lineage-specific DNA shape features and predicted cofactors. Mutation studies based on natural genetic variation between C57BL/6 and BALB/c mouse strains indicate that accessibility of these IL-4-induced regions can be regulated through differences in DNA shape without direct disruption of PU.1 motifs. We propose a model whereby DNA shape features of stimulation-dependent genomic elements contribute to differences in the accessible chromatin landscape of alternatively activated macrophages on different genetic backgrounds that may contribute to phenotypic variations in immune responses.
Collapse
Affiliation(s)
- Mei San Tang
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016
| | - Emily R Miraldi
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229.,Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Natasha M Girgis
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016
| | - Richard A Bonneau
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003.,Simons Center for Data Analysis, Simons Foundation, New York, NY 10011; and
| | - P'ng Loke
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016; .,Simons Center for Data Analysis, Simons Foundation, New York, NY 10011; and.,Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814
| |
Collapse
|
98
|
In situ evidence of collagen V and signaling pathway of found inflammatory zone 1 (FIZZ1) is associated with silicotic granuloma in lung mice. Pathol Res Pract 2020; 216:153094. [PMID: 32825961 DOI: 10.1016/j.prp.2020.153094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/21/2020] [Accepted: 06/27/2020] [Indexed: 11/21/2022]
Abstract
Inhalation of silica particles causes silicosis: an occupational lung disease characterized by persistent inflammation with granuloma formation that leads to tissue remodeling and impairment of lung function. Although silicosis has been studied intensely, little is known about the crucial cellular mechanisms that initiate and drive the process of inflammation and fibrosis. Recently, found in inflammatory zone 1 (FIZZ1) protein, produced by alveolar macrophages and fibroblasts have been shown to induce the proliferation of myofibroblasts and their transdifferentiation, causing tissue fibrosis. Moreover, autoimmunogenic collagen V, produced by alveolar epithelial cells and fibroblasts, is involved in the pathophysiology of interstitial pulmonary fibrosis and bleomycin-induced lung fibrosis. Based on the aforementioned we hypothesized that FIZZ1 and collagen V may be involved in the silicotic granuloma process in mice lungs. Male C57BL/6 mice (N = 20) received intratracheal administration of silica particles (Silica; 20 mg in 50 μL saline) or saline (Control; 50 μL). After 15 days, the lung histology was performed through immunohistochemistry and morphometric analysis. Within silicotic granulomas, collagen V and FIZZ1 increased, while peroxisome proliferator-activated receptor gamma (PPARγ) positive cells decreased. In addition, the expression of proteins Notch-1, alpha smooth muscle actin (α-SMA) and macrophages163 (CD163) were higher in silicotic granulomas than control lungs. A significant positive correlation was found between collagen V and FIZZ1 (r = 0.70; p < 0.05), collagen V and Notch-1 (r = 0.72; p < 0.05), whereas Collagen V was inversely associated with peroxisome proliferator-activated receptor gamma (r=-0.69; p < 0.05). These findings suggested that collagen V association with FIZZ1, Notch-1 and PPARγ might be a key pathogenic mechanism for silicotic granulomas in mice lungs.
Collapse
|
99
|
Angeles JMM, Mercado VJP, Rivera PT. Behind Enemy Lines: Immunomodulatory Armamentarium of the Schistosome Parasite. Front Immunol 2020; 11:1018. [PMID: 32582161 PMCID: PMC7295904 DOI: 10.3389/fimmu.2020.01018] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 04/28/2020] [Indexed: 12/11/2022] Open
Abstract
The deeply rooted, intricate relationship between the Schistosoma parasite and the human host has enabled the parasite to successfully survive within the host and surreptitiously evade the host's immune attacks. The parasite has developed a variety of strategies in its immunomodulatory armamentarium to promote infection without getting harmed or killed in the battlefield of immune responses. These include the production of immunomodulatory molecules, alteration of membranes, and the promotion of granuloma formation. Schistosomiasis thus serves as a paradigm for understanding the Th2 immune responses seen in various helminthiases. This review therefore aims to summarize the immunomodulatory mechanisms of the schistosome parasites to survive inside the host. Understanding these immunomodulatory strategies not only provides information on parasite-host interactions, but also forms the basis in the development of novel drugs and vaccines against the schistosome infection, as well as various types of autoimmune and inflammatory conditions.
Collapse
Affiliation(s)
- Jose Ma M Angeles
- Department of Parasitology, College of Public Health, University of the Philippines Manila, Manila, Philippines
| | - Van Jerwin P Mercado
- Department of Parasitology, College of Public Health, University of the Philippines Manila, Manila, Philippines
| | - Pilarita T Rivera
- Department of Parasitology, College of Public Health, University of the Philippines Manila, Manila, Philippines
| |
Collapse
|
100
|
Liu C, Zhang YS, Chen F, Wu XY, Zhang BB, Wu ZD, Lei JX. Immunopathology in schistosomiasis is regulated by TLR2,4- and IFN-γ-activated MSC through modulating Th1/Th2 responses. Stem Cell Res Ther 2020; 11:217. [PMID: 32503644 PMCID: PMC7275460 DOI: 10.1186/s13287-020-01735-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/02/2020] [Accepted: 05/18/2020] [Indexed: 01/14/2023] Open
Abstract
Background and aims A marked egg-induced CD4+ T cell programmed inflammation and subsequent hepatic fibrosis characterize the pathogenesis of schistosomiasis. Mesenchymal stem cell (MSC) has been extensively studied for the treatment of schistosomiasis. However, the mechanism by which MSCs modulate the pathogenesis of schistosomiasis has not been clarified. Furthermore, the local inflammatory milieu may greatly influence the immunoregulatory properties of MSCs, and our early experiments demonstrated that Toll-like receptor (TLR)2/TLR4 agonist effected immune modulation of MSC. Here, we further investigated their modulation on the pathogenesis of schistosomiasis. Methods Adult BALB/c male mice were percutaneously infected with 16 ± 2 pairs S. japonicum cercariae and received intravenously pretreated MSC at 1 week and 3 weeks post-infection, respectively. At 8 weeks post-infection, effects of MSC on liver histology were shown by hematoxylin and eosin (H&E) staining and Masson staining and quantitatively compared by the hepatic hydroxyproline content; α-smooth muscle actin (α-SMA), collagen type I(Col-1), transforming growth factor β (TGF-β), and tumor necrosis factor-α (TNF-α) gene expression in the liver were assessed by semi-quantitative polymerase chain reaction (PCR); the Th1/Th2 dominance among different groups was compared by analyzing CD4+ interferon-γ (IFN-γ)+ and CD4+interleukin-4 (IL-4)+T cells in the liver by flow cytometry and serum level of IFN-γ and IL-5 using enzyme-linked immunosorbent assay (ELISA). Effects of different kinds of MSC were further evaluated in vitro by the coculture system. Results Results showed TLR4- and IFN-γ-activated MSC alleviated liver fibrosis in infected mice, without a significant increase of mortality, and unpretreated MSC showed no clear improvement; however, TLR2- and IFN-γ-activated MSC displayed aggravated immunopathology. In accord with the pathological results, TLR4- and IFN-γ-activated MSC groups showed moderate enhancement of Th1 response in vitro and clear Th1 dominance in vivo without leading to extreme inflammation, whereas TLR2- and IFN-γ-activated MSC not only induced Th1 response, but also triggered excessive inflammation as evidenced by atrophy of the thymus and higher TNF level in the coculture system. Conclusions This study demonstrates that TLR4 combined with IFN-γ can activate the MSC group with positive effects on the pathology of schistosomiasis by modulating Th subsets at some degree. This result suggests that when MSC is being used to treat different immuno-disturbance complications, subtle pretreatment methods should be seriously considered.
Collapse
Affiliation(s)
- Chao Liu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yi-Shu Zhang
- Department of Parasitology of Guilin Medical University, Guilin, China
| | - Fang Chen
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiao-Ying Wu
- The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bei-Bei Zhang
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhong-Dao Wu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jun-Xia Lei
- School of Medicine, South China University of Technology, Guangzhou, China.
| |
Collapse
|