51
|
HLA-E: Presentation of a Broader Peptide Repertoire Impacts the Cellular Immune Response-Implications on HSCT Outcome. Stem Cells Int 2015; 2015:346714. [PMID: 26366178 PMCID: PMC4549550 DOI: 10.1155/2015/346714] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 05/14/2015] [Accepted: 05/20/2015] [Indexed: 01/28/2023] Open
Abstract
The HLA-E locus encodes a nonclassical class Ib molecule that serves many immune functions from inhibiting NK cells to activating CTLs. Structural analysis of HLA-E/NKG2A complexes visualized fine-tuning of protective immune responses through AA interactions between HLA-E, the bound peptide, and NKG2A/CD94. A loss of cellular protection through abrogation of the HLA-E/NKG2A engagement is dependent on the HLA-E bound peptide. The role of HLA-E in posttransplant outcomes is not well understood but might be attributed to its peptide repertoire.
To investigate the self-peptide repertoire of HLA-E∗01:01 in the absence of protective HLA class I signal peptides, we utilized soluble HLA technology in class I negative LCL cells in order to characterize HLA-E∗01:01-bound ligands by mass-spectrometry. To understand the immunological impact of these analyzed ligands on NK cell reactivity, we performed cellular assays. Synthesized peptides were loaded onto recombinant T2 cells expressing HLA-E∗01:01 molecules and applied in cytotoxicity assays using the leukemia derived NK cell line (NKL) as effector. HLA-E in complex with the self-peptides demonstrated a shift towards cytotoxicity and a loss of cell protection.
Our data highlights the fact that the HLA-E-peptidome is not as restricted as previously thought and support the suggestion of a posttransplant role for HLA-E.
Collapse
|
52
|
Caccamo N, Pietra G, Sullivan LC, Brooks AG, Prezzemolo T, La Manna MP, Di Liberto D, Joosten SA, van Meijgaarden KE, Di Carlo P, Titone L, Moretta L, Mingari MC, Ottenhoff THM, Dieli F. Human CD8 T lymphocytes recognize Mycobacterium tuberculosis antigens presented by HLA-E during active tuberculosis and express type 2 cytokines. Eur J Immunol 2015; 45:1069-81. [PMID: 25631937 DOI: 10.1002/eji.201445193] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/01/2014] [Accepted: 01/13/2015] [Indexed: 11/12/2022]
Abstract
CD8 T cells contribute to protective immunity against Mycobacterium tuberculosis. In humans, M. tuberculosis reactive CD8 T cells typically recognize peptides associated to classical MHC class Ia molecules, but little information is available on CD8 T cells recognizing M. tuberculosis Ags presented by nonclassical MHC class Ib molecules. We show here that CD8 T cells from tuberculosis (TB) patients recognize HLA-E-binding M. tuberculosis peptides in a CD3/TCR αβ mediated and CD8-dependent manner, and represent an additional type of effector cells playing a role in immune response to M. tuberculosis during active infection. HLA-E-restricted recognition of M. tuberculosis peptides is detectable by a significant enhanced ex vivo frequency of tetramer-specific circulating CD8 T cells during active TB. These CD8 T cells produce type 2 cytokines upon antigenic in vitro stimulation, help B cells for Ab production, and mediate limited TRAIL-dependent cytolytic and microbicidal activity toward M. tuberculosis infected target cells. Our results, together with the finding that HLA-E/M. tuberculosis peptide specific CD8 T cells are detected in TB patients with or without HIV coinfection, suggest that this is a new human T-cell population that participates in immune response in TB.
Collapse
Affiliation(s)
- Nadia Caccamo
- Central Laboratory for Advanced Diagnostic and Biomedical Research (CLADIBIOR), Università di Palermo, Palermo, Italy; Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Palermo, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Djurisic S, Hviid TVF. HLA Class Ib Molecules and Immune Cells in Pregnancy and Preeclampsia. Front Immunol 2014; 5:652. [PMID: 25566263 PMCID: PMC4274990 DOI: 10.3389/fimmu.2014.00652] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 12/05/2014] [Indexed: 01/14/2023] Open
Abstract
Despite decades of research, the highly prevalent pregnancy complication preeclampsia, “the disease of theories,” has remained an enigma. Indeed, the etiology of preeclampsia is largely unknown. A compiling amount of studies indicates that the pathological basis involves a complex array of genetic predisposition and immunological maladaptation, and that a contribution from the mother, the father, and the fetus is likely to be important. The Human Leukocyte Antigen (HLA)-G is an increasing focus of research in relation to preeclampsia. The HLA-G molecule is primarily expressed by the extravillous trophoblast cells lining the placenta together with the two other HLA class Ib molecules, HLA-E and HLA-F. Soluble isoforms of HLA-G have been detected in the early endometrium, the matured cumulus–oocyte complex, maternal blood of pregnant women, in umbilical cord blood, and lately, in seminal plasma. HLA-G is believed to be involved in modulating immune responses in the context of vascular remodeling during pregnancy as well as in dampening potential harmful immune attacks raised against the semi-allogeneic fetus. In addition, HLA-G genetic variants are associated with both membrane-bound and soluble forms of HLA-G, and, in some studies, with preeclampsia. In this review, a genetic contribution from the mother, the father, and the fetus, together with the presence and function of various immune cells of relevance in pregnancy are reviewed in relation to HLA-G and preeclampsia.
Collapse
Affiliation(s)
- Snezana Djurisic
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), Copenhagen University Hospital (Roskilde), University of Copenhagen , Roskilde , Denmark
| | - Thomas Vauvert F Hviid
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), Copenhagen University Hospital (Roskilde), University of Copenhagen , Roskilde , Denmark
| |
Collapse
|
54
|
Wieten L, Mahaweni NM, Voorter CEM, Bos GMJ, Tilanus MGJ. Clinical and immunological significance of HLA-E in stem cell transplantation and cancer. TISSUE ANTIGENS 2014; 84:523-35. [PMID: 25413103 DOI: 10.1111/tan.12478] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Human leukocyte antigen-E (HLA-E) is a nonclassical HLA class I molecule that canonically binds peptides derived from the leader sequence of classical HLA class I. HLA-E can also bind peptides from stress protein [e.g. heat shock protein 60 (Hsp60)] and pathogens, illustrating the importance of HLA-E for anti-viral and anti-tumor immunity. Like classical HLA class I molecules, HLA-E is ubiquitously expressed, however, it is characterized by only a very limited sequence variability and two dominant protein forms have been described (HLA-E*01:01 and HLA-E*01:03). HLA-E influences both the innate and the adaptive arms of the immune system by the engagement of inhibitory (e.g. NKG2A) and activating receptors [e.g. αβ T cell receptor (αβTCR) or NKG2C] on NK cells and CD8 T cells. The effects of HLA-E on the cellular immune response are therefore complex and not completely understood yet. Here, we aim to provide an overview of the immunological and clinical relevance of HLA-E and HLA-E polymorphism in stem cell transplantation and in cancer. We review novel insights in the mechanism via which HLA-E expression levels are controlled and how the cellular immune response in transplantation and cancer is influenced by HLA-E.
Collapse
Affiliation(s)
- L Wieten
- Department of Transplantation Immunology, Maastricht University Medical Center, Maastricht, the Netherlands
| | | | | | | | | |
Collapse
|
55
|
Edholm ES, Grayfer L, Robert J. Evolution of nonclassical MHC-dependent invariant T cells. Cell Mol Life Sci 2014; 71:4763-80. [PMID: 25117267 DOI: 10.1007/s00018-014-1701-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/02/2014] [Accepted: 08/04/2014] [Indexed: 12/23/2022]
Abstract
TCR-mediated specific recognition of antigenic peptides in the context of classical MHC molecules is a cornerstone of adaptive immunity of jawed vertebrate. Ancillary to these interactions, the T cell repertoire also includes unconventional T cells that recognize endogenous and/or exogenous antigens in a classical MHC-unrestricted manner. Among these, the mammalian nonclassical MHC class I-restricted invariant T cell (iT) subsets, such as iNKT and MAIT cells, are now believed to be integral to immune response initiation as well as in orchestrating subsequent adaptive immunity. Until recently the evolutionary origins of these cells were unknown. Here we review our current understanding of a nonclassical MHC class I-restricted iT cell population in the amphibian Xenopus laevis. Parallels with the mammalian iNKT and MAIT cells underline the crucial biological roles of these evolutionarily ancient immune subsets.
Collapse
Affiliation(s)
- Eva-Stina Edholm
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | | | | |
Collapse
|
56
|
Chen L, Reyes-Vargas E, Dai H, Escobar H, Rudd B, Fairbanks J, Ho A, Cusick MF, Kumánovics A, Delgado J, He X, Jensen PE. Expression of the mouse MHC class Ib H2-T11 gene product, a paralog of H2-T23 (Qa-1) with shared peptide-binding specificity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:1427-39. [PMID: 24958902 PMCID: PMC4211609 DOI: 10.4049/jimmunol.1302048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mouse MHC class Ib gene H2-T11 is 95% identical at the DNA level to H2-T23, which encodes Qa-1, one of the most studied MHC class Ib molecules. H2-T11 mRNA was observed to be expressed widely in tissues of C57BL/6 mice, with the highest levels in thymus. To circumvent the availability of a specific mAb, cells were transduced with cDNA encoding T11 with a substituted α3 domain. Hybrid T11D3 protein was expressed at high levels similar to control T23D3 molecules on the surface of both TAP(+) and TAP(-) cells. Soluble T11D3 was generated by folding in vitro with Qa-1 determinant modifier, the dominant peptide presented by Qa-1. The circular dichroism spectrum of this protein was similar to that of other MHC class I molecules, and it was observed to bind labeled Qa-1 determinant modifier peptide with rapid kinetics. By contrast to the Qa-1 control, T11 tetramers did not react with cells expressing CD94/NKG2A, supporting the conclusion that T11 cannot replace Qa-1 as a ligand for NK cell inhibitory receptors. T11 also failed to substitute for Qa-1 in the presentation of insulin to a Qa-1-restricted T cell hybridoma. Despite divergent function, T11 was observed to share peptide-loading specificity with Qa-1. Direct analysis by tandem mass spectrometry of peptides eluted from T11D3 and T23D3 isolated from Hela cells demonstrated a diversity of peptides with a clear motif that was shared between the two molecules. Thus, T11 is a paralog of T23 encoding an MHC class Ib molecule that shares peptide-binding specificity with Qa-1 but differs in function.
Collapse
Affiliation(s)
- Lili Chen
- Department of Pathology, University of Utah, Salt Lake City, UT 84112; and
| | | | - Hu Dai
- Department of Pathology, University of Utah, Salt Lake City, UT 84112; and
| | | | - Brant Rudd
- Department of Pathology, University of Utah, Salt Lake City, UT 84112; and
| | - Jared Fairbanks
- Department of Pathology, University of Utah, Salt Lake City, UT 84112; and
| | - Alexander Ho
- Department of Pathology, University of Utah, Salt Lake City, UT 84112; and
| | - Mathew F Cusick
- Department of Pathology, University of Utah, Salt Lake City, UT 84112; and
| | - Attila Kumánovics
- Department of Pathology, University of Utah, Salt Lake City, UT 84112; and ARUP Laboratories, Salt Lake City, UT 84112
| | - Julio Delgado
- Department of Pathology, University of Utah, Salt Lake City, UT 84112; and ARUP Laboratories, Salt Lake City, UT 84112
| | - Xiao He
- Department of Pathology, University of Utah, Salt Lake City, UT 84112; and
| | - Peter E Jensen
- Department of Pathology, University of Utah, Salt Lake City, UT 84112; and ARUP Laboratories, Salt Lake City, UT 84112
| |
Collapse
|
57
|
Heatley SL, Pietra G, Lin J, Widjaja JML, Harpur CM, Lester S, Rossjohn J, Szer J, Schwarer A, Bradstock K, Bardy PG, Mingari MC, Moretta L, Sullivan LC, Brooks AG. Polymorphism in human cytomegalovirus UL40 impacts on recognition of human leukocyte antigen-E (HLA-E) by natural killer cells. J Biol Chem 2013; 288:8679-8690. [PMID: 23335510 PMCID: PMC3605686 DOI: 10.1074/jbc.m112.409672] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 12/20/2012] [Indexed: 11/06/2022] Open
Abstract
Natural killer (NK) cell recognition of the nonclassical human leukocyte antigen (HLA) molecule HLA-E is dependent on the presentation of a nonamer peptide derived from the leader sequence of other HLA molecules to CD94-NKG2 receptors. However, human cytomegalovirus can manipulate this central innate interaction through the provision of a "mimic" of the HLA-encoded peptide derived from the immunomodulatory glycoprotein UL40. Here, we analyzed UL40 sequences isolated from 32 hematopoietic stem cell transplantation recipients experiencing cytomegalovirus reactivation. The UL40 protein showed a "polymorphic hot spot" within the region that encodes the HLA leader sequence mimic. Although all sequences that were identical to those encoded within HLA-I genes permitted the interaction between HLA-E and CD94-NKG2 receptors, other UL40 polymorphisms reduced the affinity of the interaction between HLA-E and CD94-NKG2 receptors. Furthermore, functional studies using NK cell clones expressing either the inhibitory receptor CD94-NKG2A or the activating receptor CD94-NKG2C identified UL40-encoded peptides that were capable of inhibiting target cell lysis via interaction with CD94-NKG2A, yet had little capacity to activate NK cells through CD94-NKG2C. The data suggest that UL40 polymorphisms may aid evasion of NK cell immunosurveillance by modulating the affinity of the interaction with CD94-NKG2 receptors.
Collapse
Affiliation(s)
- Susan L Heatley
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Gabriella Pietra
- Department of Experimental Medicine, University of Genova, Genova 16132, Italy
| | - Jie Lin
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jacqueline M L Widjaja
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christopher M Harpur
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Sue Lester
- Department of Rheumatology, The Queen Elizabeth Hospital, South Australia 5011, Australia
| | - Jamie Rossjohn
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Jeff Szer
- Department of Clinical Haematology and Bone Marrow Transplant Service, Royal Melbourne Hospital, Victoria 3050, Australia
| | - Anthony Schwarer
- Malignant Haematology and Stem Cell Transplantation Service, The Alfred Hospital, Victoria 3004, Australia
| | - Kenneth Bradstock
- Department of Haematology, Westmead Hospital, New South Wales 2145, Australia
| | - Peter G Bardy
- Director of Cancer Services, Royal Adelaide Hospital, South Australia 5000, Australia
| | - Maria Cristina Mingari
- Department of Experimental Medicine, University of Genova, Genova 16132, Italy; IRCCS AOU San Martino-IST, Genova 16132, Italy
| | | | - Lucy C Sullivan
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andrew G Brooks
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
58
|
Bhanusali DG, Sachdev A, Rahmanian A, Gerlach JA, Tong JC, Seiffert-Sinha K, Sinha AA. HLA-E*0103X is associated with susceptibility to Pemphigus vulgaris. Exp Dermatol 2013; 22:108-12. [PMID: 23362868 DOI: 10.1111/exd.12077] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2012] [Indexed: 11/29/2022]
Abstract
Non-classical human leucocyte antigen-E (HLA-E) mediates natural killer and CD8+ T-cell activity, suggesting a role in the regulation of autoimmunity. HLA-E*0103X/*0103X has been associated with Behcet's disease and HLA-E *0101/*0103X with childhood onset diabetes. We investigated HLA-E allele status in 52 Caucasian and Ashkenazi Jewish Pemphigus vulgaris (PV) patients and 51 healthy controls by restriction fragment length polymorphism-polymerase chain reaction and amplification refractory mutation system. Associations were determined via chi-square test, Fisher's exact test and logistical regression analysis. HLA-E outcomes included presumed homozygous *0101/*0101 or *0103X/*0103X genotype status or *0101/*0103X heterozygous status. PV did not significantly associate with either *0101/*0101 or *0101/*0103X genotypes. HLA-E*0103X/*0103X (presumed homozygote) is significantly increased in patients with PV versus controls (P = 0.0146, OR = 3.730, 95%CI = 1.241-11.213). Our data provide the first evidence that HLA-E*0103X is a marker for genetic risk in PV.
Collapse
Affiliation(s)
- Dhaval G Bhanusali
- Department of Dermatology, University at Buffalo and Roswell Park Cancer Institute, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | | | | | | | | | | | | |
Collapse
|
59
|
Adams EJ, Luoma AM. The adaptable major histocompatibility complex (MHC) fold: structure and function of nonclassical and MHC class I-like molecules. Annu Rev Immunol 2013; 31:529-61. [PMID: 23298204 DOI: 10.1146/annurev-immunol-032712-095912] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The MHC fold is found in proteins that have a range of functions in the maintenance of an organism's health, from immune regulation to fat metabolism. Well adapted for antigen presentation, as seen for peptides in the classical MHC molecules and for lipids in CD1 molecules, the MHC fold has also been modified to perform Fc-receptor activity (e.g., FcRn) and for roles in host homeostasis (e.g., with HFE and ZAG). The more divergent MHC-like molecules, such as some of those that interact with the NKG2D receptor, represent the minimal MHC fold, doing away with the α3 domain and β2m while maintaining the α1/α2 platform domain for receptor engagement. Viruses have also co-opted the MHC fold for immune-evasive functions. The variations on the theme of a β-sheet topped by two semiparallel α-helices are discussed in this review, highlighting the fantastic adaptability of this fold for good and for bad.
Collapse
Affiliation(s)
- Erin J Adams
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA.
| | | |
Collapse
|
60
|
Lampen MH, Hassan C, Sluijter M, Geluk A, Dijkman K, Tjon JM, de Ru AH, van der Burg SH, van Veelen PA, van Hall T. Alternative peptide repertoire of HLA-E reveals a binding motif that is strikingly similar to HLA-A2. Mol Immunol 2013; 53:126-31. [PMID: 22898188 DOI: 10.1016/j.molimm.2012.07.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Revised: 07/09/2012] [Accepted: 07/21/2012] [Indexed: 12/31/2022]
Abstract
The non-classical HLA-E is a conserved class I molecule that mainly presents monomorphic leader peptides derived from other HLA class I molecules. These leader peptides comprise an optimized sequence for tight and deep binding into the HLA-E groove. In a TAP-deficient environment, as it can be generated during viral infection or in tumor tissue, loading of the classical leader peptide sequences is hampered leading to an alternative HLA-E peptide repertoire. In this study, we characterized this alternative peptide repertoire using cells in which TAP activity is inhibited. We identified more than 500 unique peptide sequences carried by HLA-E and found that their binding motif is different from the dominant leader peptides. Hydrophobic amino acids were only found at positions 2 and 9, in close resemblance to the peptide binding motif of HLA-A*0201. HLA-E-eluted peptides were indeed able to bind this classical HLA class I molecule. Our findings suggest that the dominant leader peptides uniquely conform to HLA-E, but that in their absence a peptide pool is presented like that of HLA-A*0201.
Collapse
Affiliation(s)
- Margit H Lampen
- Department of Clinical Oncology, Leiden University Medical Center, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Dynamics of free versus complexed β2-microglobulin and the evolution of interfaces in MHC class I molecules. Immunogenetics 2012; 65:157-72. [PMID: 23229474 DOI: 10.1007/s00251-012-0667-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 11/03/2012] [Indexed: 10/27/2022]
Abstract
In major histocompatibility complex (MHC) class I molecules, monomorphic β(2)-microglobulin (β(2)m) is non-covalently bound to a heavy chain (HC) exhibiting a variable degree of polymorphism. β(2)M can stabilize a wide variety of complexes ranging from classical peptide binding to nonclassical lipid presenting MHC class I molecules as well as to MHC class I-like molecules that do not bind small ligands. Here we aim to assess the dynamics of individual regions in free as well as complexed β(2)m and to understand the evolution of the interfaces between β(2)m and different HC. Using human β(2)m and the HLA-B*27:09 complex as a model system, a comparison of free and HC-bound β(2)m by nuclear magnetic resonance spectroscopy was initially carried out. Although some regions retain their flexibility also after complex formation, these studies reveal that most parts of β(2)m gain rigidity upon binding to the HC. Sequence analyses demonstrate that some of the residues exhibiting flexibility participate in evolutionarily conserved β(2)m-HC contacts which are detectable in diverse vertebrate species or characterize a particular group of MHC class I complexes such as peptide- or lipid-binding molecules. Therefore, the spectroscopic experiments and the interface analyses demonstrate that β(2)m fulfills its role of interacting with diverse MHC class I HC as well as effector cell receptors not only by engaging in conserved intermolecular contacts but also by falling back upon key interface residues that exhibit a high degree of flexibility.
Collapse
|
62
|
Kim HJ, Cantor H. Regulation of self-tolerance by Qa-1-restricted CD8(+) regulatory T cells. Semin Immunol 2012; 23:446-52. [PMID: 22136694 DOI: 10.1016/j.smim.2011.06.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 06/07/2011] [Indexed: 10/14/2022]
Abstract
Mounting an efficient immune response to pathogens while avoiding damage to host tissues is the central task of the immune system. Emerging evidence has highlighted the contribution of the CD8(+) lineage of regulatory T cells to the maintenance of self-tolerance. Specific recognition of the MHC class Ib molecule Qa-1 complexed to peptides expressed by activated CD4(+) T cells by regulatory CD8(+) T cells triggers an inhibitory interaction that prevents autoimmune responses. Conversely, defective Qa-1-restricted CD8(+) regulatory activity can result in development of systemic autoimmune disease. Here, we review recent research into the cellular and molecular basis of these regulatory T cells, their mechanism of suppressive activity and the potential application of these insights into new treatments for autoimmune disease and cancer.
Collapse
Affiliation(s)
- Hye-Jung Kim
- Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| | | |
Collapse
|
63
|
Veiga-Castelli LC, Castelli EC, Mendes CT, da Silva WA, Faucher MC, Beauchemin K, Roger M, Moreau P, Donadi EA. Non-classical HLA-E gene variability in Brazilians: a nearly invariable locus surrounded by the most variable genes in the human genome. TISSUE ANTIGENS 2012; 79:15-24. [PMID: 22050290 DOI: 10.1111/j.1399-0039.2011.01801.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The non-classical human leukocyte antigen (HLA) class I genes present a very low rate of variation. So far, only 10 HLA-E alleles encoding three proteins have been described, but only two are frequently found in worldwide populations. Because of its historical background, Brazilians are very suitable for population genetic studies. Therefore, 104 bone marrow donors from Brazil were evaluated for HLA-E exons 1-4. Seven variation sites were found, including two known single nucleotide polymorphisms (SNPs) at positions +424 and +756 and five new SNPs at positions +170 (intron 1), +1294 (intron 3), +1625, +1645 and +1857 (exon 4). Haplotyping analysis did show eight haplotypes, three of them known as E*01:01:01, E*01:03:01 and E*01:03:02:01 and five HLA-E new alleles that carry the new variation sites. The HLA-E*01:01:01 allele was the predominant haplotype (62.50%), followed by E*01:03:02:01 (24.52%). Selective neutrality tests have disclosed an interesting pattern of selective pressures in which balancing selection is probably shaping allele frequency distributions at an SNP at exon 3 (codon 107), sequence diversity at exon 4 and the non-coding regions is facing significant purifying pressure. Even in an admixed population such as the Brazilian one, the HLA-E locus is very conserved, presenting few polymorphic SNPs in the coding region.
Collapse
Affiliation(s)
- L C Veiga-Castelli
- Divisão de Imunologia Clínica, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de São Paulo (USP), Ribeirão Preto, SP, Brasil.
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Zeng L, Sullivan LC, Vivian JP, Walpole NG, Harpur CM, Rossjohn J, Clements CS, Brooks AG. A structural basis for antigen presentation by the MHC class Ib molecule, Qa-1b. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 188:302-10. [PMID: 22131332 DOI: 10.4049/jimmunol.1102379] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The primary function of the monomorphic MHC class Ib molecule Qa-1(b) is to present peptides derived from the leader sequences of other MHC class I molecules for recognition by the CD94-NKG2 receptors expressed by NK and T cells. Whereas the mode of peptide presentation by its ortholog HLA-E, and subsequent recognition by CD94-NKG2A, is known, the molecular basis of Qa-1(b) function is unclear. We have assessed the interaction between Qa-1(b) and CD94-NKG2A and shown that they interact with an affinity of 17 μM. Furthermore, we have determined the structure of Qa-1(b) bound to the leader sequence peptide, Qdm (AMAPRTLLL), to a resolution of 1.9 Å and compared it with that of HLA-E. The crystal structure provided a basis for understanding the restricted peptide repertoire of Qa-1(b). Whereas the Qa-1(b-AMAPRTLLL) complex was similar to that of HLA-E, significant sequence and structural differences were observed between the respective Ag-binding clefts. However, the conformation of the Qdm peptide bound by Qa-1(b) was very similar to that of peptide bound to HLA-E. Although a number of conserved innate receptors can recognize heterologous ligands from other species, the structural differences between Qa-1(b) and HLA-E manifested in CD94-NKG2A ligand recognition being species specific despite similarities in peptide sequence and conformation. Collectively, our data illustrate the structural homology between Qa-1(b) and HLA-E and provide a structural basis for understanding peptide repertoire selection and the specificity of the interaction of Qa-1(b) with CD94-NKG2 receptors.
Collapse
Affiliation(s)
- Li Zeng
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Watson AA, O’Callaghan CA. Molecular analysis of the interaction of the snake venom rhodocytin with the platelet receptor CLEC-2. Toxins (Basel) 2011; 3:991-1003. [PMID: 22069753 PMCID: PMC3202865 DOI: 10.3390/toxins3080991] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 07/21/2011] [Accepted: 08/08/2011] [Indexed: 01/27/2023] Open
Abstract
The Malayan pit viper, Calloselasma rhodostoma, produces a potent venom toxin, rhodocytin (aggretin) which causes platelet aggregation. Rhodocytin is a ligand for the receptor CLEC-2 on the surface of platelets. The interaction of these two molecules initiates a signaling pathway which results in platelet activation and aggregation. We have previously solved the crystal structures of CLEC-2 and of rhodocytin, and have proposed models by which tetrameric rhodocytin may interact with either two monomers of CLEC-2, or with one or two copies of dimeric CLEC-2. In the current study we use a range of approaches to analyze the molecular interfaces and dynamics involved in the models of the interaction of rhodocytin with either one or two copies of dimeric CLEC-2, and their implications for clustering of CLEC-2 on the platelet surface.
Collapse
Affiliation(s)
- Aleksandra A. Watson
- Department of Biochemistry, University of Cambridge/ 80 Tennis Court Road, Cambridge, CB2 1GA, UK;
| | - Christopher A. O’Callaghan
- Henry Wellcome Building for Molecular Physiology, University of Oxford/ Roosevelt Drive, Oxford, OX3 7BN, UK
- Author to whom correspondence should be addressed; ; Tel.: +44-1865-287789; Fax: +44-1865-287787
| |
Collapse
|
66
|
Gooden M, Lampen M, Jordanova ES, Leffers N, Trimbos JB, van der Burg SH, Nijman H, van Hall T. HLA-E expression by gynecological cancers restrains tumor-infiltrating CD8⁺ T lymphocytes. Proc Natl Acad Sci U S A 2011; 108:10656-61. [PMID: 21670276 PMCID: PMC3127933 DOI: 10.1073/pnas.1100354108] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
HLA-E is a nonclassical HLA class I molecule, which differs from classical HLA molecules by its nonpolymorphic, conserved nature. Expression and function of HLA-E in normal tissues and solid tumors is not fully understood. We investigated HLA-E protein expression on tissue sections of 420 ovarian and cervical cancers and found equal or higher levels than normal counterpart epithelia in 80% of the tumors. Expression was strongly associated with components of the antigen presentation pathway, e.g., transporter associated with antigen processing (TAP), endoplasmic reticulum aminopeptide (ERAP), β2 microglobulin (β2m), HLA classes I and II, and for ovarian cancer with tumor infiltrating CD8(+) T lymphocytes (CTLs). This association argues against the idea that HLA-E would compensate for the loss of classical HLA in tumors. In situ detection of HLA-E interacting receptors revealed a very low infiltrate of natural killer (NK) cells, but up to 50% of intraepithelial CTLs expressed the inhibiting CD94/NKG2A receptor. In cervical cancer, HLA-E expression did not alter the prognostic effect of CTLs, most likely due to very high infiltrating CTL numbers in this virus-induced tumor. Overall survival of ovarian cancer patients, however, was strongly influenced by HLA-E, because the beneficial effect of high CTL infiltration was completely neutralized in the subpopulation with strong HLA-E expression. Interestingly, these results indicate that CTL infiltration in ovarian cancer is associated with better survival only when HLA-E expression is low and that intratumoral CTLs are inhibited by CD94/NKG2A receptors on CTLs in the tumor microenvironment.
Collapse
Affiliation(s)
- Marloes Gooden
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; and
| | | | | | - Ninke Leffers
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; and
| | - J. Baptist Trimbos
- Gynecology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | | | - Hans Nijman
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; and
| | | |
Collapse
|
67
|
Varthaman A, Clement M, Khallou-Laschet J, Fornasa G, Gaston AT, Dussiot M, Caligiuri G, Cantor H, Kaveri S, Nicoletti A. Physiological induction of regulatory Qa-1-restricted CD8+ T cells triggered by endogenous CD4+ T cell responses. PLoS One 2011; 6:e21628. [PMID: 21738737 PMCID: PMC3124544 DOI: 10.1371/journal.pone.0021628] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 06/03/2011] [Indexed: 11/19/2022] Open
Abstract
T cell-dependent autoimmune diseases are characterized by the expansion of T cell clones that recognize immunodominant epitopes on the target antigen. As a consequence, for a given autoimmune disorder, pathogenic T cell clones express T cell receptors with a limited number of variable regions that define antigenic specificity. Qa-1, a MHC class I-like molecule, presents peptides from the variable region of TCRs to Qa-1-restricted CD8+ T cells. The induction of Vß-specific CD8+ T cells has been harnessed in an immunotherapeutic strategy known as the “T cell vaccination” (TCV) that comprises the injection of activated and attenuated CD4+ T cell clones so as to induce protective CD8+ T cells. We hypothesized that Qa-1-restricted CD8+ regulatory T cells could also constitute a physiologic regulatory arm of lymphocyte responses upon expansion of endogenous CD4+ T cells, in the absence of deliberate exogenous T cell vaccination. We immunized mice with two types of antigenic challenges in order to sequentially expand antigen-specific endogenous CD4+ T cells with distinct antigenic specificities but characterized by a common Vß chain in their TCR. The first immunization was performed with a non-self antigen while the second challenge was performed with a myelin-derived peptide known to drive experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis. We show that regulatory Vß-specific Qa-1-restricted CD8+ T cells induced during the first endogenous CD4+ T cell responses are able to control the expansion of subsequently mobilized pathogenic autoreactive CD4+ T cells. In conclusion, apart from the immunotherapeutic TCV, Qa-1-restricted specialized CD8+ regulatory T cells can also be induced during endogenous CD4+ T cell responses. At variance with other regulatory T cell subsets, the action of these Qa-1-restricted T cells seems to be restricted to the immediate re-activation of CD4+ T cells.
Collapse
Affiliation(s)
- Aditi Varthaman
- UMRS698 INSERM, Univ Denis Diderot, Sorbonne Paris Cité, Paris, France
- UMRS872 INSERM, Centre de Recherche des Cordeliers, Equipe 16, Univ Pierre et Marie Curie, Paris, France
| | - Marc Clement
- UMRS698 INSERM, Univ Denis Diderot, Sorbonne Paris Cité, Paris, France
- UMRS872 INSERM, Centre de Recherche des Cordeliers, Equipe 16, Univ Pierre et Marie Curie, Paris, France
| | - Jamila Khallou-Laschet
- UMRS698 INSERM, Univ Denis Diderot, Sorbonne Paris Cité, Paris, France
- UMRS872 INSERM, Centre de Recherche des Cordeliers, Equipe 16, Univ Pierre et Marie Curie, Paris, France
| | - Giulia Fornasa
- UMRS698 INSERM, Univ Denis Diderot, Sorbonne Paris Cité, Paris, France
- UMRS872 INSERM, Centre de Recherche des Cordeliers, Equipe 16, Univ Pierre et Marie Curie, Paris, France
| | - Anh-Thu Gaston
- UMRS698 INSERM, Univ Denis Diderot, Sorbonne Paris Cité, Paris, France
- UMRS872 INSERM, Centre de Recherche des Cordeliers, Equipe 16, Univ Pierre et Marie Curie, Paris, France
| | - Michael Dussiot
- UMRS698 INSERM, Univ Denis Diderot, Sorbonne Paris Cité, Paris, France
- UMRS872 INSERM, Centre de Recherche des Cordeliers, Equipe 16, Univ Pierre et Marie Curie, Paris, France
| | - Giuseppina Caligiuri
- UMRS698 INSERM, Univ Denis Diderot, Sorbonne Paris Cité, Paris, France
- UMRS872 INSERM, Centre de Recherche des Cordeliers, Equipe 16, Univ Pierre et Marie Curie, Paris, France
| | - Harvey Cantor
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Srinivas Kaveri
- UMRS872 INSERM, Centre de Recherche des Cordeliers, Equipe 16, Univ Pierre et Marie Curie, Paris, France
| | - Antonino Nicoletti
- UMRS698 INSERM, Univ Denis Diderot, Sorbonne Paris Cité, Paris, France
- UMRS872 INSERM, Centre de Recherche des Cordeliers, Equipe 16, Univ Pierre et Marie Curie, Paris, France
- * E-mail:
| |
Collapse
|
68
|
Hassan I, Ahmad F. Structural diversity of class I MHC-like molecules and its implications in binding specificities. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2011; 83:223-70. [PMID: 21570669 DOI: 10.1016/b978-0-12-381262-9.00006-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The binding groove of class I major histocompatibility complex (MHC) class is essentially important for antigen binding and presentation on T cells. There are several molecules that have analogous conformations to class I MHC. However, they bind specifically to varying types of ligands and cell-surface receptors in order to elicit an immune response. To elucidate how such recognition is achieved in classical MHC-I like molecules, we have extensively analyzed the structure of human leukocyte antigen (HLA-1), neonatal Fc receptor (FcRn), hereditary hemochromatosis protein (HFE), cluster of differentiation 1 (CD1), gamma delta T cell receptor ligand (Τ22), zinc-α2-glycoprotein (ZAG), and MHC class I chain-related (MIC-A) proteins. All these molecules have analogous structural anatomy, divided into three distinct domains, where α1-α2 superdomains form a groove-like structure that potentially bind to certain ligand, while the α3 domain adopts a fold resembling immunoglobulin constant domains, and holds this α1-α2 platform and the light chain. We have observed many remarkable features of α1-α2 platform, which provide specificities to these proteins toward a particular class of ligands. The relative orientation of α1, α2, and α3 domains is primarily responsible for the specificity to the light chain. Interestingly, light chain of all these proteins is β₂-microglobulin (β₂M), except ZAG which has prolactin-induced protein (PIP). However, MIC-A is devoid of any light chain. Residues on β₂M recognize a sequence motif on the α3 domain that is essentially restricted to specific heavy chain of MHC class I molecules. Our analysis suggests that the structural features of class I molecules determine the recognition of different ligands and light chains, which are responsible for their corresponding functions through an inherent mechanism.
Collapse
Affiliation(s)
- Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | | |
Collapse
|
69
|
van Hall T, Oliveira CC, Joosten SA, Ottenhoff THM. The other Janus face of Qa-1 and HLA-E: diverse peptide repertoires in times of stress. Microbes Infect 2010; 12:910-8. [PMID: 20670688 DOI: 10.1016/j.micinf.2010.07.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 07/15/2010] [Indexed: 10/19/2022]
Abstract
The non-polymorphic MHC molecule Qa-1 and its human counterpart HLA-E present monomorphic signal peptides to innate receptors and thereby regulate lymphocyte activity. Under stress, this peptide content is replaced with a surprisingly diverse repertoire of novel peptides that are associated with heat-shock proteins, infectious agents or antigen processing defects.
Collapse
Affiliation(s)
- Thorbald van Hall
- Department of Clinical Oncology, Leiden University Medical Center, K1-P, Albinusdreef 2, 2333 ZA Leiden, Netherlands.
| | | | | | | |
Collapse
|
70
|
Pietra G, Romagnani C, Manzini C, Moretta L, Mingari MC. The emerging role of HLA-E-restricted CD8+ T lymphocytes in the adaptive immune response to pathogens and tumors. J Biomed Biotechnol 2010; 2010:907092. [PMID: 20634877 PMCID: PMC2896910 DOI: 10.1155/2010/907092] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 05/04/2010] [Indexed: 11/18/2022] Open
Abstract
Human leukocyte antigen (HLA)-E is a nonclassical major histocompatibility complex (MHC) class I molecule of limited sequence variability that is expressed by most tissues albeit at low levels. HLA-E has been first described as the ligand of CD94/NKG2 receptors expressed mainly by natural killer (NK) cells, thus confining its role to the regulation of NK-cell function. However, recent evidences obtained by our and other groups indicate that HLA-E complexed with peptides can interact with alphabeta T-cell receptor (TCR) expressed on CD8(+) T cells. Although, HLA-E displays a selective preference for nonameric peptides, derived from the leader sequence of various HLA class I alleles, several reports indicate that it can present also "noncanonical" peptides derived from both stress-related and pathogen-associated proteins. Because HLA-E displays binding specificity for innate CD94/NKG2 receptors, as well as all the features of an antigen-presenting molecule, its role in both natural and acquired immune responses has recently been re-evaluated.
Collapse
Affiliation(s)
- Gabriella Pietra
- Dipartimento di Medicina Sperimentale and Centro di Eccellenza per le Ricerche Biomediche, Università degli Studi di Genova, 16132 Genova, Italy
| | - Chiara Romagnani
- Clinical Immunology Group, German Rheumatism Research Centre, 10117 Berlin, Germany
| | - Claudia Manzini
- Dipartimento di Medicina Sperimentale and Centro di Eccellenza per le Ricerche Biomediche, Università degli Studi di Genova, 16132 Genova, Italy
| | - Lorenzo Moretta
- Dipartimento di Medicina Sperimentale and Centro di Eccellenza per le Ricerche Biomediche, Università degli Studi di Genova, 16132 Genova, Italy
- Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Maria Cristina Mingari
- Dipartimento di Medicina Sperimentale and Centro di Eccellenza per le Ricerche Biomediche, Università degli Studi di Genova, 16132 Genova, Italy
- Istituto Nazionale per la Ricerca sul Cancro, 16132 Genova, Italy
| |
Collapse
|
71
|
Goodridge JP, Burian A, Lee N, Geraghty DE. HLA-F complex without peptide binds to MHC class I protein in the open conformer form. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:6199-208. [PMID: 20483783 PMCID: PMC3777411 DOI: 10.4049/jimmunol.1000078] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
HLA-F has low levels of polymorphism in humans and is highly conserved among primates, suggesting a conserved function in the immune response. In this study, we probed the structure of HLA-F on the surface of B lymphoblastoid cell lines and activated lymphocytes by direct measurement of peptide binding to native HLA-F. Our findings suggested that HLA-F is expressed independently of bound peptide, at least in regard to peptide complexity profiles similar to those of either HLA-E or classical MHC class I (MHC-I). As a further probe of native HLA-F structure, we used a number of complementary approaches to explore the interactions of HLA-F with other molecules, at the cell surface, intracellularly, and in direct physical biochemical measurements. This analysis demonstrated that HLA-F surface expression was coincident with MHC-I H chain (HC) expression and was downregulated upon perturbation of MHC-I HC structure. It was further possible to directly demonstrate that MHC-I would interact with HLA-F only when in the form of an open conformer free of peptide and not as a trimeric complex. This interaction was directly observed by coimmunoprecipitation and by surface plasmon resonance and indirectly on the surface of cells through coincident tetramer and MHC-I HC colocalization. These data suggest that HLA-F is expressed independently of peptide and that a physical interaction specific to MHC-I HC plays a role in the function of MHC-I HC expression in activated lymphocytes.
Collapse
Affiliation(s)
- Jodie P. Goodridge
- The Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle WA 98109
| | - Aura Burian
- The Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle WA 98109
| | - Ni Lee
- The Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle WA 98109
| | | |
Collapse
|
72
|
HLA-E monoclonal antibody MEM-E/02 binds to discontinuous but shared peptide sequences on HLA B & C heavy chains not treated by acid. Mol Immunol 2010. [DOI: 10.1016/j.molimm.2010.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
73
|
Ravindranath MH, Taniguchi M, Chen CW, Ozawa M, Kaneku H, El-Awar N, Cai J, Terasaki PI. HLA-E monoclonal antibodies recognize shared peptide sequences on classical HLA class Ia: relevance to human natural HLA antibodies. Mol Immunol 2010; 47:1121-31. [PMID: 19944464 DOI: 10.1016/j.molimm.2009.10.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 10/20/2009] [Accepted: 10/25/2009] [Indexed: 01/15/2023]
Abstract
The non-classical HLA-Ib molecule, HLA-E share several peptide sequence similarities with the heavy chains of classical HLA class Ia (-B and -C) molecules. Therefore, the antibodies to HLA-E, that recognize shared sequences, may bind to HLA-Ia alleles. This hypothesis is tested by examining the affinity of HLA-E monoclonal antibodies (HLA-E-MAbs) to HLA-Ia molecules and by inhibiting the antibody binding to both HLA-E and HLA-Ia with the shared peptide sequence(s). Single recombinant HLA molecule-coated beads are used for antibody binding. The antibody binding is evaluated by measuring mean fluorescence index [MFI] with Luminex multiplex flow-cytometric technology. The peptide-inhibition experiments are carried out with synthetic shared peptides, most prevalent to HLA-E and HLA-Ia alleles. The number of HLA-Ia alleles recognized by the HLA-E-MAbs varies with the density of the antigen (quantity of antigen-coated beads) and dilution of MAb. Binding of HLA-E-MAbs to beta2 microglobulin (beta(2)m)-free HLA-Ia antigens confirms the location of the epitopes on the heavy chain (HC) of the antigens. Strikingly, the nature of alleles of HLA-Ia recognized by different HLA-E-MAbs is identical. The binding of HLA-E-MAbs to the HLA-Ia is inhibited dosimetrically by the adjacent peptides, (115)QFAYDGKDY(123) and (137)DTAAQI(142), but not by (126)LNEDLRSWTA(135), another closer shared peptide sequence. The inhibitory peptide sequences in HLA-E are at the alpha2-helix terminal facing beta(2)m. The HLA-Ia alleles recognized by HLA-E-MAb (e.g., MEM-E/02) are similar to those recognized by the natural anti-HLA antibodies found in the sera of healthy non-alloimmunized males. This study postulates that some, if not all, of the natural HLA-Ia antibodies seen in healthy males could be anti-HLA-E antibodies cross-reacting with HLA-Ia alleles.
Collapse
|
74
|
The structure and stability of the monomorphic HLA-G are influenced by the nature of the bound peptide. J Mol Biol 2010; 397:467-80. [PMID: 20122941 DOI: 10.1016/j.jmb.2010.01.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 01/22/2010] [Accepted: 01/22/2010] [Indexed: 11/21/2022]
Abstract
The highly polymorphic major histocompatibility complex class Ia (MHC-Ia) molecules present a broad array of peptides to the clonotypically diverse alphabeta T-cell receptors. In contrast, MHC-Ib molecules exhibit limited polymorphism and bind a more restricted peptide repertoire, in keeping with their major role in innate immunity. Nevertheless, some MHC-Ib molecules do play a role in adaptive immunity. While human leukocyte antigen E (HLA-E), the MHC-Ib molecule, binds a very restricted repertoire of peptides, the peptide binding preferences of HLA-G, the class Ib molecule, are less stringent, although the basis by which HLA-G can bind various peptides is unclear. To investigate how HLA-G can accommodate different peptides, we compared the structure of HLA-G bound to three naturally abundant self-peptides (RIIPRHLQL, KGPPAALTL and KLPQAFYIL) and their thermal stabilities. The conformation of HLA-G(KGPPAALTL) was very similar to that of the HLA-G(RIIPRHLQL) structure. However, the structure of HLA-G(KLPQAFYIL) not only differed in the conformation of the bound peptide but also caused a small shift in the alpha2 helix of HLA-G. Furthermore, the relative stability of HLA-G was observed to be dependent on the nature of the bound peptide. These peptide-dependent effects on the substructure of the monomorphic HLA-G are likely to impact on its recognition by receptors of both innate and adaptive immune systems.
Collapse
|
75
|
Oliveira CC, van Veelen PA, Querido B, de Ru A, Sluijter M, Laban S, Drijfhout JW, van der Burg SH, Offringa R, van Hall T. The nonpolymorphic MHC Qa-1b mediates CD8+ T cell surveillance of antigen-processing defects. ACTA ACUST UNITED AC 2009; 207:207-21. [PMID: 20038604 PMCID: PMC2812552 DOI: 10.1084/jem.20091429] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The nonclassical major histocompatibility complex (MHC) Qa-1b accommodates monomorphic leader peptides and functions as a ligand for germ line receptors CD94/NKG2, which are expressed by natural killer cells and CD8+ T cells. We here describe that the conserved peptides are replaced by a novel peptide repertoire of surprising diversity as a result of impairments in the antigen-processing pathway. This novel peptide repertoire represents immunogenic neoantigens for CD8+ T cells, as we found that these Qa-1b–restricted T cells dominantly participated in the response to tumors with processing deficiencies. A surprisingly wide spectrum of target cells, irrespective of transformation status, MHC background, or type of processing deficiency, was recognized by this T cell subset, complying with the conserved nature of Qa-1b. Target cell recognition depended on T cell receptor and Qa-1b interaction, and immunization with identified peptide epitopes demonstrated in vivo priming of CD8+ T cells. Our data reveal that Qa-1b, and most likely its human homologue human leukocyte antigen-E, is important for the defense against processing-deficient cells by displacing the monomorphic leader peptides, which relieves the inhibition through CD94/NKG2A on lymphocytes, and by presenting a novel repertoire of immunogenic peptides, which recruits a subset of cytotoxic CD8+ T cells.
Collapse
Affiliation(s)
- Cláudia C Oliveira
- Department of Clinical Oncology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Boysen P, Storset AK. Bovine natural killer cells. Vet Immunol Immunopathol 2009; 130:163-77. [PMID: 19339058 DOI: 10.1016/j.vetimm.2009.02.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 02/11/2009] [Accepted: 02/20/2009] [Indexed: 01/23/2023]
Abstract
Natural killer (NK) cells have received much attention due to their cytotoxic abilities, often with a focus on their implications for cancer and transplantation. But despite their name, NK cells are also potent producers of cytokines like interferon-gamma. Recent discoveries of their interplay with dendritic cells and T-cells have shown that NK cells participate significantly in the onset and shaping of adaptive cellular immune responses, and increasingly these cells have become associated with protection from viral, bacterial and parasitic infections. Furthermore, they are substantially present in the placenta, apparently participating in the establishment of normal pregnancy. Consequently, NK cells have entered arenas of particular relevance in veterinary immunology. Limited data still exist on these cells in domestic animal species, much due to the lack of specific markers. However, bovine NK cells can be identified as NKp46 (CD335) expressing, CD3(-) lymphocytes. Recent studies have indicated a role for NK cells in important infectious diseases of cattle, and identified important bovine NK receptor families, including multiple KIRs and a single Ly49. In this review we will briefly summarize the current understanding of general NK cell biology, and then present the knowledge obtained thus far in the bovine species.
Collapse
Affiliation(s)
- Preben Boysen
- Norwegian School of Veterinary Science, Department of Food Safety and Infection Biology, PO Box 8146 Dep, Oslo NO-0033, Norway.
| | | |
Collapse
|
77
|
Antoun A, Jobson S, Cook M, Moss P, Briggs D. Ethnic variability in human leukocyte antigen-E haplotypes. TISSUE ANTIGENS 2009; 73:39-45. [PMID: 19140831 DOI: 10.1111/j.1399-0039.2008.01170.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human leukocyte antigen-E (HLA-E) is an important nonclassical major histocompatibility complex (MHC) class I (Ib) molecule that acts as the ligand for NKG2A/B/C receptors expressed on natural killer (NK) cells and T cells. Unlike the classical class I molecules, HLA-E is highly conserved in evolution and the biological significance of polymorphism is therefore unclear. Our aim was to investigate the polymorphism in HLA-E gene in three ethnic groups in the UK and to obtain population data relating to any variations observed at this locus. We developed a polymerase chain reaction-sequence-specific primer (PCR-SSP) method for identifying HLA-E single nucleotide polymorphisms (SNPs) in genomic DNA. This was used to investigate the genotype distribution and allele frequency of nine published SNPs in the coding region of HLA-E in 223 Euro-Caucasoid, 60 Afro-Caribbean and 52 Asian healthy individuals. Genotype frequencies were in Hardy-Weinberg equilibrium. No polymorphism was observed for seven previously reported SNPs and these should not be considered polymorphic. However, positions 1114 and 1446 were confirmed as polymorphic and different genotype frequencies were identified at nucleotide position 1114 between the three studied ethnic groups. We present these data together with the intragene haplotype frequencies in these populations. To our knowledge, this is the first description of population frequencies of nine different SNPs in HLA-E in three main large ethnic groups. The data generated from this study will be of importance in the context of describing the effect of HLA-E polymorphism in clinical settings such as transplantation and autoimmune diseases.
Collapse
Affiliation(s)
- A Antoun
- Institute for Cancer Studies, Medical School, Birmingham University, Birmingham, UK.
| | | | | | | | | |
Collapse
|
78
|
The crystal structure of avian CD1 reveals a smaller, more primordial antigen-binding pocket compared to mammalian CD1. Proc Natl Acad Sci U S A 2008; 105:17925-30. [PMID: 19004781 DOI: 10.1073/pnas.0809814105] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The molecular details of glycolipid presentation by CD1 antigen-presenting molecules are well studied in mammalian systems. However, little is known about how these non-classical MHC class I (MHCI) molecules diverged from the MHC locus to create a more complex, hydrophobic binding groove that binds lipids rather than peptides. To address this fundamental question, we have determined the crystal structure of an avian CD1 (chCD1-2) that shares common ancestry with mammalian CD1 from approximately 310 million years ago. The chCD1-2 antigen-binding site consists of a compact, narrow, central hydrophobic groove or pore rather than the more open, 2-pocket architecture observed in mammalian CD1s. Potential antigens then would be restricted in size to single-chain lipids or glycolipids. An endogenous ligand, possibly palmitic acid, serves to illuminate the mode and mechanism of ligand interaction with chCD1-2. The palmitate alkyl chain is inserted into the relatively shallow hydrophobic pore; its carboxyl group emerges at the receptor surface and is stabilized by electrostatic and hydrogen bond interactions with an arginine residue that is conserved in all known CD1 proteins. In addition, other novel features, such as an A' loop that interrupts and segments the normally long, continuous alpha1 helix, are unique to chCD1-2 and contribute to the unusually narrow binding groove, thereby limiting its size. Because birds and mammals share a common ancestor, but the rate of evolution is slower in birds than in mammals, the chCD1-2-binding groove probably represents a more primordial CD1-binding groove.
Collapse
|
79
|
Sullivan LC, Clements CS, Rossjohn J, Brooks AG. The major histocompatibility complex class Ib molecule HLA-E at the interface between innate and adaptive immunity. TISSUE ANTIGENS 2008; 72:415-24. [PMID: 18946929 DOI: 10.1111/j.1399-0039.2008.01138.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The non-classical major histocompatibility complex (MHC) class I molecule human leucocyte antigen (HLA)-E is the least polymorphic of all the MHC class I molecules and acts as a ligand for receptors of both the innate and the adaptive immune systems. The recognition of self-peptides complexed to HLA-E by the CD94-NKG2A receptor expressed by natural killer (NK) cells represents a crucial checkpoint for immune surveillance by NK cells. However, HLA-E can also be recognised by the T-cell receptor expressed by alphabeta CD8 T cells and therefore can play a role in the adaptive immune response to invading pathogens. The recent resolution of HLA-E in complex with both innate and adaptive ligands has provided insight into the dual role of this molecule in immunity.
Collapse
MESH Headings
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- HLA Antigens/chemistry
- HLA Antigens/immunology
- HLA Antigens/metabolism
- Hematopoietic Stem Cell Transplantation
- Histocompatibility Antigens Class I/chemistry
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class I/metabolism
- Humans
- Immunity, Active/immunology
- Immunity, Innate/immunology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- NK Cell Lectin-Like Receptor Subfamily D/immunology
- NK Cell Lectin-Like Receptor Subfamily D/metabolism
- Polymorphism, Genetic
- Protein Interaction Domains and Motifs/physiology
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Natural Killer Cell/immunology
- Receptors, Natural Killer Cell/metabolism
- HLA-E Antigens
Collapse
Affiliation(s)
- L C Sullivan
- Department of Microbiology and Immunology, University of Melbourne, Parkville, VIC 3010, Australia
| | | | | | | |
Collapse
|
80
|
Lo Monaco E, Sibilio L, Melucci E, Tremante E, Suchànek M, Horejsi V, Martayan A, Giacomini P. HLA-E: strong association with beta2-microglobulin and surface expression in the absence of HLA class I signal sequence-derived peptides. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:5442-50. [PMID: 18832701 DOI: 10.4049/jimmunol.181.8.5442] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The nonclassical class I HLA-E molecule folds in the presence of peptide ligands donated by the signal sequences of permissive class I HLA alleles, with the aid of TAP and tapasin. To identify HLA-E-specific Abs, four monoclonals of the previously described MEM series were screened by isoelectric focusing (IEF) blot and immunoprecipitation/IEF on >30 single-allele class I transfectants and HLA-homozygous B lymphoid cells coexpressing HLA-E and HLA-A, -B, -C, -F, or -G. Despite their HLA-E-restricted reactivity patterns (MEM-E/02 in IEF blot; MEM-E/07 and MEM-E/08 in immunoprecipitation), all of the MEM Abs unexpectedly reacted with beta(2)-microglobulin (beta(2)m)-free and denatured (but not beta(2)m-associated and folded) HLA-E H chains. Remarkably, other HLA-E-restricted Abs were also reactive with free H chains. Immunodepletion, in vitro assembly, flow cytometry, and three distinct surface-labeling methods, including a modified (conformation-independent) biotin-labeling assay, revealed the coexistence of HLA-E conformers with unusual and drastically antithetic features. MEM-reactive conformers were thermally unstable and poorly surface expressed, as expected, whereas beta(2)m-associated conformers were either unstable and weakly reactive with the prototypic conformational Ab W6/32, or exceptionally stable and strongly reactive with Abs to beta(2)m even in cells lacking permissive alleles (721.221), TAP (T2), or tapasin (721.220). Noncanonical, immature (endoglycosidase H-sensitive) HLA-E glycoforms were surface expressed in these cells, whereas mature glycoforms were exclusively expressed (and at much lower levels) in cells carrying permissive alleles. Thus, HLA-E is a good, and not a poor, beta(2)m assembler, and TAP/tapasin-assisted ligand donation is only one, and possibly not even the major, pathway leading to its stabilization and surface expression.
Collapse
Affiliation(s)
- Elisa Lo Monaco
- Laboratory of Immunology, Regina Elena Cancer Institute Centro Ricerco Sperimentale, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Hassan MI, Waheed A, Yadav S, Singh TP, Ahmad F. Zinc alpha 2-glycoprotein: a multidisciplinary protein. Mol Cancer Res 2008; 6:892-906. [PMID: 18567794 DOI: 10.1158/1541-7786.mcr-07-2195] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Zinc alpha 2-glycoprotein (ZAG) is a protein of interest because of its ability to play many important functions in the human body, including fertilization and lipid mobilization. After the discovery of this molecule, during the last 5 decades, various studies have been documented on its structure and functions, but still, it is considered as a protein with an unknown function. Its expression is regulated by glucocorticoids. Due to its high sequence homology with lipid-mobilizing factor and high expression in cancer cachexia, it is considered as a novel adipokine. On the other hand, structural organization and fold is similar to MHC class I antigen-presenting molecule; hence, ZAG may have a role in the expression of the immune response. The function of ZAG under physiologic and cancerous conditions remains mysterious but is considered as a tumor biomarker for various carcinomas. There are several unrelated functions that are attributed to ZAG, such as RNase activity, regulation of melanin production, hindering tumor proliferation, and transport of nephritic by-products. This article deals with the discussion of the major aspects of ZAG from its gene structure to function and metabolism.
Collapse
Affiliation(s)
- Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | | | | | | | | |
Collapse
|
82
|
Sun PD, Boyington JC. Overview of protein folds in the immune system. ACTA ACUST UNITED AC 2008; Appendix 1:Appendix 1N. [PMID: 18432648 DOI: 10.1002/0471142735.ima01ns44] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The rapid advancement of X-ray crystallography and nuclear magnetic resonance techniques in recent years has resulted in the solution of macromolecular structures at an unprecedented rate. This review aims at providing a comprehensive description of structures and folds related to the function of the immune system. Focus is placed on immunologically relevant proteins such as immunoreceptors and major histocompatibility complexes. Information is also provided regarding protein structure data banks.
Collapse
Affiliation(s)
- P D Sun
- National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland, USA
| | | |
Collapse
|
83
|
Abstract
This overview provides an illustrated, comprehensive survey of some commonly observed protein‐fold families and structural motifs, chosen for their functional significance. It opens with descriptions and definitions of the various elements of protein structure and associated terminology. Following is an introduction into web‐based structural bioinformatics that includes surveys of interactive web servers for protein fold or domain annotation, protein‐structure databases, protein‐structure‐classification databases, structural alignments of proteins, and molecular graphics programs available for personal computers. The rest of the overview describes selected families of protein folds in terms of their secondary, tertiary, and quaternary structural arrangements, including ribbon‐diagram examples, tables of representative structures with references, and brief explanations pointing out their respective biological and functional significance.
Collapse
Affiliation(s)
- Peter D Sun
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | | | | |
Collapse
|
84
|
Abstract
The NKG2x/CD94 (x = A, C, E) natural killer-cell receptors perform an important role in immunosurveillance by binding to HLA-E complexes that exclusively present peptides derived from MHC class I leader sequences, thereby monitoring MHC class I expression. We have determined the crystal structure of the NKG2A/CD94/HLA-E complex at 4.4-A resolution, revealing two critical aspects of this interaction. First, the C-terminal region of the peptide, which displays the most variability among class I leader sequences, interacts entirely with CD94, the invariant component of these receptors. Second, residues 167-170 of NKG2A/C account for the approximately 6-fold-higher affinity of the inhibitory NKG2A/CD94 receptor compared to its activating NKG2C/CD94 counterpart. These residues do not contact HLA-E or peptide directly but instead form part of the heterodimer interface with CD94. An evolutionary analysis across primates reveals that whereas CD94 is evolving under purifying selection, both NKG2A and NKG2C are evolving under positive selection. Specifically, residues at the CD94 interface have evolved under positive selection, suggesting that the evolution of these genes is driven by an interaction with pathogen-derived ligands. Consistent with this possibility, we show that NKG2C/CD94, but not NKG2A/CD94, weakly but specifically binds to the CMV MHC-homologue UL18. Thus, the evolution of the NKG2x/CD94 family of receptors has likely been shaped both by the need to bind the invariant HLA-E ligand and the need to avoid subversion by pathogen-derived decoys.
Collapse
|
85
|
Hoare HL, Sullivan LC, Clements CS, Ely LK, Beddoe T, Henderson KN, Lin J, Reid HH, Brooks AG, Rossjohn J. Subtle changes in peptide conformation profoundly affect recognition of the non-classical MHC class I molecule HLA-E by the CD94-NKG2 natural killer cell receptors. J Mol Biol 2008; 377:1297-303. [PMID: 18339401 DOI: 10.1016/j.jmb.2008.01.098] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 01/18/2008] [Accepted: 01/22/2008] [Indexed: 11/28/2022]
Abstract
Human leukocyte antigen (HLA)-E is a non-classical major histocompatibility complex class I molecule that binds peptides derived from the leader sequences of other HLA class I molecules. Natural killer cell recognition of these HLA-E molecules, via the CD94-NKG2 natural killer family, represents a central innate mechanism for monitoring major histocompatibility complex expression levels within a cell. The leader sequence-derived peptides bound to HLA-E exhibit very limited polymorphism, yet subtle differences affect the recognition of HLA-E by the CD94-NKG2 receptors. To better understand the basis for this peptide-specific recognition, we determined the structure of HLA-E in complex with two leader peptides, namely, HLA-Cw*07 (VMAPRALLL), which is poorly recognised by CD94-NKG2 receptors, and HLA-G*01 (VMAPRTLFL), a high-affinity ligand of CD94-NKG2 receptors. A comparison of these structures, both of which were determined to 2.5-A resolution, revealed that allotypic variations in the bound leader sequences do not result in conformational changes in the HLA-E heavy chain, although subtle changes in the conformation of the peptide within the binding groove of HLA-E were evident. Accordingly, our data indicate that the CD94-NKG2 receptors interact with HLA-E in a manner that maximises the ability of the receptors to discriminate between subtle changes in both the sequence and conformation of peptides bound to HLA-E.
Collapse
Affiliation(s)
- Hilary L Hoare
- The Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Hansen TH, Huang S, Arnold PL, Fremont DH. Patterns of nonclassical MHC antigen presentation. Nat Immunol 2007; 8:563-8. [PMID: 17514210 DOI: 10.1038/ni1475] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The identification of pattern-recognition receptors that selectively respond to evolutionarily conserved chemical (often pathogen-derived) moieties has provided key insight into how innate immune cells facilitate rapid and relatively specific antimicrobial immune activity. In contrast, relatively slower adaptive immune responses rely on T cell clonal expansion that develops in response to variable peptides bound to the groove of classical major histocompatibility complex (MHC) proteins. For certain nonclassical 'MHC-like' class Ib proteins, such as H2-M3 and CD1d, their respective binding grooves seem to have been adapted to present to T cells unique molecular patterns analogous to those involved in innate signaling. Here we propose that another MHC class Ib protein, MR1, which is required for the gut flora-dependent development of mucosa-associated invariant T cells, presents either a microbe-produced or a microbe-induced pattern.
Collapse
Affiliation(s)
- Ted H Hansen
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA.
| | | | | | | |
Collapse
|
87
|
Perera L, Shao L, Patel A, Evans K, Meresse B, Blumberg R, Geraghty D, Groh V, Spies T, Jabri B, Mayer L. Expression of nonclassical class I molecules by intestinal epithelial cells. Inflamm Bowel Dis 2007; 13:298-307. [PMID: 17238179 DOI: 10.1002/ibd.20026] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It is well recognized that the nature of the immune response is different in the intestinal tract than in peripheral lymphoid organs. The immunologic tone of the gut-associated lymphoid tissue is one of suppression rather than active immunity, distinguishing pathogens from normal flora. Failure to control mucosal immune responses may lead to inflammatory diseases such as Crohn's disease (CD) and ulcerative colitis (UC) and celiac disease. It has been suggested that this normally immunosuppressed state may relate to unique antigen-presenting cells and unique T-cell populations. The intestinal epithelial cell (IEC) has been proposed to act as a nonprofessional antigen-presenting cell (APC). Previous studies have suggested that antigens presented by IECs result in the activation a CD8(+) regulatory T-cell subset in a nonclassical MHC I molecule restricted manner. We therefore analyzed the expression of nonclassical MHC I molecules by normal IECs and compared this to those expressed by inflammatory bowel disease (IBD) IECs. Normal surface IEC from the colon and, to a much lesser extent, the small bowel express nonclassical MHC I molecules on their surface. In contrast, mRNA is expressed in all intestinal epithelial cells. Surface IEC express CD1d, MICA/B, and HLA-E protein. In contrast, crypt IECs express less or no nonclassical MHC I molecules but do express mRNA for these molecules. Furthermore, the regulation of expression of distinct nonclassical class I molecules is different depending on the molecule analyzed. Interestingly, IECs derived from patients with UC fail to express any nonclassical MHC I molecules (protein and HLA-E mRNA). IECs from CD patients express HLA-E and MICA/B comparable to that seen in normal controls but fail to express CD1d. Thus, in UC there may be a failure to activate any nonclassical MHC I molecule restricted regulatory T cells that may result in unopposed active inflammatory responses. In CD only the CD1d-regulated T cells would be affected.
Collapse
Affiliation(s)
- Lilani Perera
- Immunobiology Center, Mount Sinai Medical Center, New York, New York 10029, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
van Hall T, Laban S, Koppers-Lalic D, Koch J, Precup C, Asmawidjaja P, Offringa R, Wiertz EJHJ. The varicellovirus-encoded TAP inhibitor UL49.5 regulates the presentation of CTL epitopes by Qa-1b1. THE JOURNAL OF IMMUNOLOGY 2007; 178:657-62. [PMID: 17202325 DOI: 10.4049/jimmunol.178.2.657] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Impairment of MHC class I Ag processing is a commonly observed mechanism that allows viruses and tumors to escape immune destruction by CTL. The peptide transporter TAP that is responsible for the delivery of MHC class I-binding peptides into the endoplasmic reticulum is a pivotal target of viral-immune evasion molecules, and expression of this transporter is frequently lost in advanced cancers. We recently described a novel population of CTL that intriguingly exhibits reactivity against such tumor-immune escape variants and that recognizes self-peptides emerging at the cell surface due to defects in the processing machinery. Investigations of this new type of CTL epitopes are hampered by the lack of an efficient inhibitor for peptide transport in mouse cells. In this article, we demonstrate that the varicellovirus protein UL49.5, in contrast to ICP47 and US6, strongly impairs the activity of the mouse transporter and mediates degradation of mouse TAP1 and TAP2. Inhibition of TAP was witnessed by a strong reduction of surface MHC class I display and a decrease in recognition of conventional tumor-specific CTL. Analysis of CTL reactivity through the nonclassical molecule Qa-1(b) revealed that the presentation of the predominant leader peptide was inhibited. Interestingly, expression of UL49.5 in processing competent tumor cells induced the presentation of the new category of peptides. Our data show that the varicellovirus UL49.5 protein is a universal TAP inhibitor that can be exploited for preclinical studies on CTL-based immune intervention.
Collapse
Affiliation(s)
- Thorbald van Hall
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, Leiden, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Birch J, Ellis SA. Complexity in the cattle CD94/NKG2 gene families. Immunogenetics 2007; 59:273-80. [PMID: 17285285 DOI: 10.1007/s00251-006-0189-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Accepted: 12/12/2006] [Indexed: 10/23/2022]
Abstract
Natural killer cell responses are controlled to a large extent by the interaction of an array of inhibitory and activating receptors with their ligands. The mostly nonpolymorphic CD94/NKG2 receptors in both humans and mice were shown to recognize a single nonclassical MHC class I molecule in each case. In this paper, we describe the CD94/NKG2 gene family in cattle. NKG2 and CD94 sequences were amplified from cDNA derived from four animals. Four CD94 sequences, ten NKG2A, and three NKG2C sequences were identified in total. In contrast to human, we show that cattle have multiple distinct NKG2A genes, some of which show minor allelic variation. All of the sequences designated NKG2A have two tyrosine-based inhibitory motifs in the cytoplasmic domain and one putative gene has, in addition, a charged residue in the transmembrane domain. NKG2C appears to be essentially monomorphic in cattle. All of the NKG2A sequences are similar apart from NKG2A-01, which, in contrast, shares the majority of its carbohydrate recognition domain with NKG2-C. Most of the genes appear to generate multiple alternatively spliced forms. These findings suggest that the CD94/NKG2A heterodimers in cattle, in contrast to other species, are binding several different ligands. Because NKG2C is not polymorphic, this raises questions as to the combined functional capacity of the CD94/NKG2 gene families in cattle.
Collapse
Affiliation(s)
- James Birch
- Immunology Division, Institute for Animal Health, Compton, RG20 7NN, UK
| | | |
Collapse
|
90
|
Borrego F, Masilamani M, Marusina AI, Tang X, Coligan JE. The CD94/NKG2 family of receptors: from molecules and cells to clinical relevance. Immunol Res 2007; 35:263-78. [PMID: 17172651 DOI: 10.1385/ir:35:3:263] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/21/2022]
Abstract
Immune responses must be tightly regulated to avoid hyporesponsiveness on one hand or excessive inflammation and the development of autoimmunity (hyperresponsiveness) on the other hand. This balance is attained through the throttling of activating signals by inhibitory signals that ideally leads to an adequate immune response against an invader without excessive and extended inflammatory signals that promote the development of autoimmunity. The CD94/NKG2 family of receptors is composed of members with activating or inhibitory potential. These receptors are expressed predominantly on NK cells and a subset of CD8+ T cells, and they have been shown to play an important role in regulating responses against infected and tumorigenic cells. In this review, we discuss the current knowledge about this family of receptors, including ligand and receptor interaction, signaling, membrane dynamics, regulation of gene expression and their roles in disease regulation, infections, and cancer, and bone marrow transplantation.
Collapse
Affiliation(s)
- Francisco Borrego
- Receptor Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | | | | | | | | |
Collapse
|
91
|
Matsunami K, Kusama T, Okura E, Shirakura R, Fukuzawa M, Miyagawa S. Involvement of position-147 for HLA-E expression. Biochem Biophys Res Commun 2006; 347:692-7. [PMID: 16844086 DOI: 10.1016/j.bbrc.2006.06.146] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Accepted: 06/23/2006] [Indexed: 11/22/2022]
Abstract
HLA-E functions as an inhibitory signaling molecule of natural killer (NK) cell-mediated cytolysis. However, the cell surface expression of HLA-E molecules is quite restricted because of the limited repertoire of binding peptide sequences, such as signal peptides of other HLA molecules, especially on xenogeneic cells. In this study, we successfully determined that position-147 is an important amino acid position for cell surface expression by producing point substitutions. For further studies concerning transplantation therapy, the point substitution, Ser147Cys, that resulted in a single atom change, oxygen to sulfur, designated as HLA-Ev(147), led to a much higher expression on the human and pig cell surface and a greater inhibitory function against human NK cells than wild type HLA-E in an in vitro model system of pig to human xenotransplantation. Consequently, HLA-Ev(147) might be a promising alternative gene tool for future transplantation therapy such as xenotransplantation.
Collapse
Affiliation(s)
- Katsuyoshi Matsunami
- Division of Organ Transplantation, Department of Molecular Therepeutics, Osaka University Graduate School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
92
|
Sullivan LC, Hoare HL, McCluskey J, Rossjohn J, Brooks AG. A structural perspective on MHC class Ib molecules in adaptive immunity. Trends Immunol 2006; 27:413-20. [PMID: 16860610 DOI: 10.1016/j.it.2006.07.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 06/26/2006] [Accepted: 07/12/2006] [Indexed: 10/24/2022]
Abstract
The highly polymorphic MHC class Ia molecules have a central role in adaptive immunity. By contrast, the closely related MHC class Ib molecules, which show limited polymorphism, are best known for regulating innate immune responses. Nevertheless, a recent area of interest is the emerging role of class Ib molecules in adaptive immunity, particularly in response to tumours and pathogens such as Mycobacteria, Listeria and Salmonella. Here, we review recent findings in this area, highlighting the structure of a T-cell receptor complexed with a cytomegalovirus peptide bound to the class Ib molecule, HLA-E. Collectively, these findings have implications for immunity, transplantation and autoimmunity, and our understanding of the evolution and plasticity of the molecular interactions mediating adaptive immunity.
Collapse
Affiliation(s)
- Lucy C Sullivan
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | | | | | | | | |
Collapse
|
93
|
Hoare HL, Sullivan LC, Pietra G, Clements CS, Lee EJ, Ely LK, Beddoe T, Falco M, Kjer-Nielsen L, Reid HH, McCluskey J, Moretta L, Rossjohn J, Brooks AG. Structural basis for a major histocompatibility complex class Ib-restricted T cell response. Nat Immunol 2006; 7:256-64. [PMID: 16474394 DOI: 10.1038/ni1312] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Accepted: 01/19/2006] [Indexed: 12/24/2022]
Abstract
In contrast to antigen-specific immunity orchestrated by major histocompatibility complex (MHC) class Ia molecules, the ancestrally related nonclassical MHC class Ib molecules generally mediate innate immune responses. Here we have demonstrated the structural basis by which the MHC class Ib molecule HLA-E mediates an adaptive MHC-restricted cytotoxic T lymphocyte response to human cytomegalovirus. Highly constrained by host genetics, the response showed notable fine specificity for position 8 of the viral peptide, which is the sole discriminator of self versus nonself. Despite the evolutionary divergence of MHC class Ia and class Ib molecules, the structure of the T cell receptor-MHC class Ib complex was very similar to that of conventional T cell receptor-MHC class Ia complexes. These results emphasize the evolutionary 'ambiguity' of HLA-E, which not only interacts with innate immune receptors but also has the functional capacity to mediate virus-specific cytotoxic T lymphocyte responses during adaptive immunity.
Collapse
Affiliation(s)
- Hilary L Hoare
- The Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Shiroishi M, Kuroki K, Ose T, Rasubala L, Shiratori I, Arase H, Tsumoto K, Kumagai I, Kohda D, Maenaka K. Efficient leukocyte Ig-like receptor signaling and crystal structure of disulfide-linked HLA-G dimer. J Biol Chem 2006; 281:10439-47. [PMID: 16455647 DOI: 10.1074/jbc.m512305200] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
HLA-G is a nonclassical major histocompatibility complex class I (MHCI) molecule, which is expressed in trophoblasts and confers immunological tolerance in the maternal-fetal interface by binding to leukocyte Ig-like receptors (LILRs, also called as LIR/ILT/CD85) and CD8. HLA-G is expressed in disulfide-linked dimer form both in solution and at the cell surface. Interestingly, MHCI dimer formations have been involved in pathogenesis and T cell activation. The structure and receptor binding characteristics of MHCI dimers have never been evaluated. Here we performed binding studies showing that the HLA-G dimer exhibited higher overall affinity to LILRB1/2 than the monomer by significant avidity effects. Furthermore, the cell reporter assay demonstrated that the dimer formation remarkably enhanced the LILRB1-mediated signaling at the cellular level. We further determined the crystal structure of the wild-type dimer of HLA-G with the intermolecular Cys(42)-Cys(42) disulfide bond. This dimer structure showed the oblique configuration to expose two LILR/CD8-binding sites upward from the membrane easily accessible for receptors, providing plausible 1:2 (HLA-G dimer:receptors) complex models. These results indicated that the HLA-G dimer conferred increased avidity in a proper structural orientation to induce efficient LILR signaling, resulting in the dominant immunosuppressive effects. Moreover, structural and functional implications for other MHCI dimers observed in activated T cells and the pathogenic allele, HLA-B27, are discussed.
Collapse
Affiliation(s)
- Mitsunori Shiroishi
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Gumá M, Angulo A, López-Botet M. NK cell receptors involved in the response to human cytomegalovirus infection. Curr Top Microbiol Immunol 2005; 298:207-23. [PMID: 16323417 DOI: 10.1007/3-540-27743-9_11] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human cytomegalovirus (HCMV) infection is a paradigm of the complexity reached by host-pathogen interactions. To avoid recognition by cytotoxic T lymphocytes (CTL) HCMV inhibits the expression of HLA class I molecules. As a consequence, engagement of inhibitory killer immunoglobulin-like receptors (KIR), CD94/NKG2A, and CD85j (ILT2 or LIR-1) natural killer cell receptors (NKR) specific for HLA class I molecules is impaired, and infected cells become vulnerable to an NK cell response driven by activating receptors. In addition to the well-defined role of the NKG2D lectin-like molecule, the involvement of other triggering receptors (i.e., activating KIR, CD94/NKG2C, NKp46, NKp44, and NKp30) in the response to HCMV is being explored. To escape from NK cell-mediated surveillance, HCMV interferes with the expression of NKG2D ligands in infected cells. In addition, the virus may keep NK inhibitory receptors engaged preserving HLA class I molecules with a limited role in antigen presentation (i.e., HLA-E) or, alternatively, displaying class I surrogates. Despite considerable progress in the field, a number of issues regarding the involvement of NKR in the innate immune response to HCMV remain uncertain.
Collapse
Affiliation(s)
- M Gumá
- Molecular Immunopathology Unit, DCEXS, Universitat Pompeu Fabra, Dr. Aiguader 80, 08003 Barcelona, Spain
| | | | | |
Collapse
|
96
|
Fagerberg T, Cerottini JC, Michielin O. Structural prediction of peptides bound to MHC class I. J Mol Biol 2005; 356:521-46. [PMID: 16368108 DOI: 10.1016/j.jmb.2005.11.059] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 11/16/2005] [Accepted: 11/17/2005] [Indexed: 11/29/2022]
Abstract
An ab initio structure prediction approach adapted to the peptide-major histocompatibility complex (MHC) class I system is presented. Based on structure comparisons of a large set of peptide-MHC class I complexes, a molecular dynamics protocol is proposed using simulated annealing (SA) cycles to sample the conformational space of the peptide in its fixed MHC environment. A set of 14 peptide-human leukocyte antigen (HLA) A0201 and 27 peptide-non-HLA A0201 complexes for which X-ray structures are available is used to test the accuracy of the prediction method. For each complex, 1000 peptide conformers are obtained from the SA sampling. A graph theory clustering algorithm based on heavy atom root-mean-square deviation (RMSD) values is applied to the sampled conformers. The clusters are ranked using cluster size, mean effective or conformational free energies, with solvation free energies computed using Generalized Born MV 2 (GB-MV2) and Poisson-Boltzmann (PB) continuum models. The final conformation is chosen as the center of the best-ranked cluster. With conformational free energies, the overall prediction success is 83% using a 1.00 Angstroms crystal RMSD criterion for main-chain atoms, and 76% using a 1.50 Angstroms RMSD criterion for heavy atoms. The prediction success is even higher for the set of 14 peptide-HLA A0201 complexes: 100% of the peptides have main-chain RMSD values < or =1.00 Angstroms and 93% of the peptides have heavy atom RMSD values < or =1.50 Angstroms. This structure prediction method can be applied to complexes of natural or modified antigenic peptides in their MHC environment with the aim to perform rational structure-based optimizations of tumor vaccines.
Collapse
Affiliation(s)
- Theres Fagerberg
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | | | | |
Collapse
|
97
|
Wooden SL, Kalb SR, Cotter RJ, Soloski MJ. Cutting edge: HLA-E binds a peptide derived from the ATP-binding cassette transporter multidrug resistance-associated protein 7 and inhibits NK cell-mediated lysis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2005; 175:1383-7. [PMID: 16034073 DOI: 10.4049/jimmunol.175.3.1383] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
HLA-E is an MHC class Ib molecule that binds nonamer peptides derived from the leader sequence of MHC class 1a molecules and is the major ligand for CD94/NKG2 receptors found on NK and T cells. Using the MHC class Ia-null cell line 721.221, we find that surface HLA-E increases following heat shock at 42 degrees C and NK cell-mediated lysis is inhibited using heat-stressed 721.221 targets. We have used mass spectrometry to identify and sequence a novel peptide from HLA-E following heat shock, ALALVRMLI, derived from the transmembrane domain of the human ATP-binding cassette protein, multidrug resistance-associated protein, MRP7. Pulsing 721.221 targets with synthetic MRP7 peptide results in strong inhibition of NK cell-mediated lysis that is reversible using anti-CD94 and anti-class I mAbs. This report is the first to identify a non-MHC leader inhibitory peptide bound to HLA-E and provides insight into the immunoregulatory role of HLA-E during cell stress.
Collapse
MESH Headings
- ATP-Binding Cassette Transporters/metabolism
- Antigens, CD/metabolism
- Cell Line
- Cytotoxicity Tests, Immunologic
- Cytotoxicity, Immunologic/immunology
- Epitopes, B-Lymphocyte/biosynthesis
- Epitopes, B-Lymphocyte/metabolism
- Epitopes, B-Lymphocyte/physiology
- HLA Antigens/biosynthesis
- HLA Antigens/metabolism
- HLA Antigens/physiology
- Histocompatibility Antigens Class I/biosynthesis
- Histocompatibility Antigens Class I/metabolism
- Histocompatibility Antigens Class I/physiology
- Hot Temperature
- Humans
- Immunologic Factors/biosynthesis
- Immunologic Factors/metabolism
- Immunologic Factors/physiology
- Killer Cells, Natural/immunology
- Lectins, C-Type/metabolism
- Multidrug Resistance-Associated Proteins/metabolism
- NK Cell Lectin-Like Receptor Subfamily C
- NK Cell Lectin-Like Receptor Subfamily D
- Osmotic Pressure
- Peptide Fragments/biosynthesis
- Peptide Fragments/metabolism
- Peptide Fragments/physiology
- Protein Binding/immunology
- Receptors, Immunologic/metabolism
- Receptors, Natural Killer Cell
- HLA-E Antigens
Collapse
Affiliation(s)
- Stacey L Wooden
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
98
|
Olson R, Huey-Tubman KE, Dulac C, Bjorkman PJ. Structure of a pheromone receptor-associated MHC molecule with an open and empty groove. PLoS Biol 2005; 3:e257. [PMID: 16089503 PMCID: PMC1174912 DOI: 10.1371/journal.pbio.0030257] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Accepted: 05/18/2005] [Indexed: 11/24/2022] Open
Abstract
Neurons in the murine vomeronasal organ (VNO) express a family of class Ib major histocompatibility complex (MHC) proteins (M10s) that interact with the V2R class of VNO receptors. This interaction may play a direct role in the detection of pheromonal cues that initiate reproductive and territorial behaviors. The crystal structure of M10.5, an M10 family member, is similar to that of classical MHC molecules. However, the M10.5 counterpart of the MHC peptide-binding groove is open and unoccupied, revealing the first structure of an empty class I MHC molecule. Similar to empty MHC molecules, but unlike peptide-filled MHC proteins and non-peptide–binding MHC homologs, M10.5 is thermally unstable, suggesting that its groove is normally occupied. However, M10.5 does not bind endogenous peptides when expressed in mammalian cells or when offered a mixture of class I–binding peptides. The F pocket side of the M10.5 groove is open, suggesting that ligands larger than 8–10-mer class I–binding peptides could fit by extending out of the groove. Moreover, variable residues point up from the groove helices, rather than toward the groove as in classical MHC structures. These data suggest that M10s are unlikely to provide specific recognition of class I MHC–binding peptides, but are consistent with binding to other ligands, including proteins such as the V2Rs. MHC-like protein M10.5 is expressed in the vomeronasal organ. The structure does not bind endogenous class I-binding peptides, but is thought to interact with a larger V2R pheromone receptor.
Collapse
Affiliation(s)
- Rich Olson
- 1 Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Kathryn E Huey-Tubman
- 1 Division of Biology, California Institute of Technology, Pasadena, California, United States of America
- 2 Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California, United States of America
| | - Catherine Dulac
- 3 Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, United States of America
| | - Pamela J Bjorkman
- 1 Division of Biology, California Institute of Technology, Pasadena, California, United States of America
- 2 Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California, United States of America
| |
Collapse
|
99
|
Abstract
Our understanding of the classical MHC class I molecules (MHC class Ia molecules) has long focused on their extreme polymorphism. These molecules present peptides to T cells and are central to discrimination between self and non-self. By contrast, the functions of the non-polymorphic MHC class I molecules (MHC class Ib molecules) have been elusive, but emerging evidence reveals that, in addition to antigen presentation, MHC class Ib molecules are involved in immunoregulation. As we discuss here, the subset of MHC class Ib molecules that presents peptides to T cells bridges innate and acquired immunity, and this provides insights into the origins of acquired immunity.
Collapse
Affiliation(s)
- John R Rodgers
- Department of Immunology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | |
Collapse
|
100
|
Kaiser BK, Barahmand-Pour F, Paulsene W, Medley S, Geraghty DE, Strong RK. Interactions between NKG2x immunoreceptors and HLA-E ligands display overlapping affinities and thermodynamics. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2005; 174:2878-84. [PMID: 15728498 DOI: 10.4049/jimmunol.174.5.2878] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The NKG2x/CD94 family of C-type lectin-like immunoreceptors (x = A, B, C, E, and H) mediates surveillance of MHC class Ia cell surface expression, often dysregulated during infection or tumorigenesis, by recognizing the MHC class Ib protein HLA-E that specifically presents peptides derived from class Ia leader sequences. In this study, we determine the affinities and interaction thermodynamics between three NKG2x/CD94 receptors (NKG2A, NKG2C, and NKG2E) and complexes of HLA-E with four representative peptides. Inhibitory NKG2A/CD94 and activating NKG2E/CD94 receptors bind HLA-E with indistinguishable affinities, but with significantly higher affinities than the activating NKG2C/CD94 receptor. Despite minor sequence differences, the peptide presented by HLA-E significantly influenced the affinities; HLA-E allelic differences had no effect. These results reveal important constraints on the integration of opposing activating and inhibitory signals driving NK cell effector functions.
Collapse
MESH Headings
- Alleles
- Amino Acid Sequence
- Amino Acid Substitution/genetics
- Antigen Presentation/genetics
- Antigen Presentation/immunology
- Antigens, CD/chemistry
- Antigens, CD/genetics
- Antigens, CD/metabolism
- HLA Antigens/chemistry
- HLA Antigens/genetics
- HLA Antigens/metabolism
- Histocompatibility Antigens Class I/chemistry
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/metabolism
- Humans
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Kinetics
- Lectins, C-Type/chemistry
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Ligands
- Molecular Sequence Data
- NK Cell Lectin-Like Receptor Subfamily C
- NK Cell Lectin-Like Receptor Subfamily D
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Protein Binding/genetics
- Protein Binding/immunology
- Protein Isoforms/chemistry
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, Natural Killer Cell
- Signal Transduction/genetics
- Signal Transduction/immunology
- Surface Plasmon Resonance
- Thermodynamics
- HLA-E Antigens
Collapse
Affiliation(s)
- Brett K Kaiser
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | | | |
Collapse
|