51
|
Lampropoulou-Adamidou K, Karlafti E, Argyrou C, Makris K, Trovas G, Dontas IA, Tournis S, Triantafyllopoulos IK. Effect of Calcium and Vitamin D Supplementation With and Without Collagen Peptides on Volumetric and Areal Bone Mineral Density, Bone Geometry and Bone Turnover in Postmenopausal Women With Osteopenia. J Clin Densitom 2022; 25:357-372. [PMID: 34980546 DOI: 10.1016/j.jocd.2021.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/30/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
Collagen peptides (CPs) have been shown to potentially have a role as a treatment option in osteopenia. In the present randomized prospective study, we examined the effect of calcium, vitamin D with and without CPs supplementation on changes in volumetric bone mineral density (vBMD) and bone geometry assessed by peripheral quantitative computed tomography at the tibia, areal bone mineral density (aBMD) assessed by dual-energy X-ray absorptiometry at the lumbar spine and the hip and bone turnover markers over 12-mo. Fifty-one postmenopausal women with osteopenia were allocated to Group A who received orally 5 g CPs, 500 mg calcium and 400 IU vitamin D3 and Group B who received the same dose of calcium and vitamin D3 per day. The primary endpoint was the change of trabecular bone mineral content (BMC) and vBMD after 12-mo supplementation in Groups A and B. At the trabecular site (4% of the tibia length), Group A had a significant increase of total BMC by 1.96 ± 2.41% and cross-sectional area by 2.58 ± 3.91%, trabecular BMC by 5.24 ± 6.48%, cross-sectional area by 2.58 ± 3.91% and vBMD by 2.54 ± 3.43% and a higher % change of these parameters at 12 mo in comparison to Group B (p < 0.01, p = 0.04, p < 0.01, p = 0.04, p = 0.02, respectively). At the cortical site (38% of the tibia length), total and cortical vBMD increased by 1.01 ± 2.57% and 0.67 ± 1.71%. Furthermore, the mean aBMD at the spine was higher (p = 0.01), while bone markers decreased in Group A compared to Group B. The present study shows improvement of trabecular and cortical parameters as assessed by peripheral quantitative computed tomography at the tibia, prevention of aBMD decline and decrease of bone turnover after 12-mo supplementation with calcium, vitamin D with CPs.
Collapse
Affiliation(s)
- Kalliopi Lampropoulou-Adamidou
- Laboratory for Research of the Musculoskeletal System "Th. Garofalidis", Medical School, National and Kapodistrian University of Athens, KAT General Hospital of Athens, Athens, Greece.
| | - Efthymia Karlafti
- Laboratory for Research of the Musculoskeletal System "Th. Garofalidis", Medical School, National and Kapodistrian University of Athens, KAT General Hospital of Athens, Athens, Greece
| | - Chrysoula Argyrou
- Laboratory for Research of the Musculoskeletal System "Th. Garofalidis", Medical School, National and Kapodistrian University of Athens, KAT General Hospital of Athens, Athens, Greece
| | - Konstantinos Makris
- Clinical Biochemistry Department, KAT General Hospital of Athens, Athens, Greece
| | - George Trovas
- Laboratory for Research of the Musculoskeletal System "Th. Garofalidis", Medical School, National and Kapodistrian University of Athens, KAT General Hospital of Athens, Athens, Greece
| | - Ismene A Dontas
- Laboratory for Research of the Musculoskeletal System "Th. Garofalidis", Medical School, National and Kapodistrian University of Athens, KAT General Hospital of Athens, Athens, Greece
| | - Symeon Tournis
- Laboratory for Research of the Musculoskeletal System "Th. Garofalidis", Medical School, National and Kapodistrian University of Athens, KAT General Hospital of Athens, Athens, Greece
| | - Ioannis K Triantafyllopoulos
- Laboratory for Research of the Musculoskeletal System "Th. Garofalidis", Medical School, National and Kapodistrian University of Athens, KAT General Hospital of Athens, Athens, Greece; 5th Orthopaedic Department, HYGEIA Hospital, Athens, Greece
| |
Collapse
|
52
|
Anderson PSL, Kawano SM. Different traits at different rates: The effects of dynamic strain rate on structural traits in biology. Integr Comp Biol 2022; 62:icac066. [PMID: 35640914 DOI: 10.1093/icb/icac066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Phenotypic diversity is influenced by physical laws that govern how an organism's morphology relates to functional performance. To study comparative organismal biology, we need to quantify this diversity using biological traits (definable aspects of the morphology, behavior, and/or life history of an organism). Traits are often assumed to be immutable properties that need only be measured a single time in each adult. However, organisms often experience changes in their biotic and abiotic environments that can alter trait function. In particular, structural traits represent the physical capabilities of an organism and may be heavily influenced by the rate at which they are exposed to physical demands ('loads'). For instance, materials tend to become more brittle when loaded at faster rates which could negatively affect structures trying to resist those loads (e.g., brittle materials are more likely to fracture). In the following perspective piece, we address the dynamic properties of structural traits and present case studies that demonstrate how dynamic strain rates affect the function of these traits in diverse groups of organisms. First, we review how strain rate affects deformation and fracture in biomaterials and demonstrate how these effects alter puncture mechanics in systems such as snake strikes. Second, we discuss how different rates of bone loading affect the locomotor biomechanics of vertebrates and their ecology. Through these examinations of diverse taxa and ecological functions, we aim to highlight how rate-dependent properties of structural traits can generate dynamic form-function relationships in response to changing environmental conditions. Findings from these studies serve as a foundation to develop more nuanced ecomechanical models that can predict how complex traits emerge and, thereby, advance progress on outlining the Rules of Life.
Collapse
Affiliation(s)
- Philip S L Anderson
- Department of Evolution, Ecology, and Behavior; University of Illinois Urbana-Champaign, Champaign, IL 61820, U.S.A
| | - Sandy M Kawano
- Department of Biological Sciences, The George Washington University, Washington, D.C. 20052, U.S.A
| |
Collapse
|
53
|
Micro-computed tomography assessment of bone structure in aging mice. Sci Rep 2022; 12:8117. [PMID: 35581227 PMCID: PMC9114112 DOI: 10.1038/s41598-022-11965-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/20/2022] [Indexed: 11/30/2022] Open
Abstract
High-resolution computed tomography (CT) is widely used to assess bone structure under physiological and pathological conditions. Although the analytic protocols and parameters for micro-CT (μCT) analyses in mice are standardized for long bones, vertebrae, and the palms in aging mice, they have not yet been established for craniofacial bones. In this study, we conducted a morphometric assessment of craniofacial bones, in comparison with long bones, in aging mice. Although age-related changes were observed in the microarchitecture of the femur, tibia, vertebra, and basisphenoid bone, and were more pronounced in females than in males, the microarchitecture of both the interparietal bone and body of the mandible, which develop by intramembranous ossification, was less affected by age and sex. By contrast, the condyle of the mandible was more affected by aging in males compared to females. Taken together, our results indicate that mouse craniofacial bones are uniquely affected by age and sex.
Collapse
|
54
|
Bailey S, Stadelmann MA, Zysset PK, Vashishth D, Alkalay RN. Influence of Metastatic Bone Lesion Type and Tumor Origin on Human Vertebral Bone Architecture, Matrix Quality, and Mechanical Properties. J Bone Miner Res 2022; 37:896-907. [PMID: 35253282 PMCID: PMC9158727 DOI: 10.1002/jbmr.4539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/19/2021] [Accepted: 01/26/2022] [Indexed: 11/10/2022]
Abstract
Metastatic spine disease is incurable, causing increased vertebral fracture risk and severe patient morbidity. Here, we demonstrate that osteolytic, osteosclerotic, and mixed bone metastasis uniquely modify human vertebral bone architecture and quality, affecting vertebral strength and stiffness. Multivariable analysis showed bone metastasis type dominates vertebral strength and stiffness changes, with neither age nor gender having an independent effect. In osteolytic vertebrae, bone architecture rarefaction, lower tissue mineral content and connectivity, and accumulation of advanced glycation end-products (AGEs) affected low vertebral strength and stiffness. In osteosclerotic vertebrae, high trabecular number and thickness but low AGEs, suggesting a high degree of bone remodeling, yielded high vertebral strength. Our study found that bone metastasis from prostate and breast primary cancers differentially impacted the osteosclerotic bone microenvironment, yielding altered bone architecture and accumulation of AGEs. These findings indicate that therapeutic approaches should target the restoration of bone structural integrity. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Stacyann Bailey
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA
| | - Marc A. Stadelmann
- ARTORG Center for Biomedical Engineering Research, University of Bern, Freiburgstrasse 3, 3010 Bern, Switzerland
| | - Philippe K. Zysset
- ARTORG Center for Biomedical Engineering Research, University of Bern, Freiburgstrasse 3, 3010 Bern, Switzerland
| | - Deepak Vashishth
- Center for Biotechnology and Interdisciplinary Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY
| | - Ron N. Alkalay
- Center for Advanced Orthopedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| |
Collapse
|
55
|
Jia S, Gong H, Zhang Y, Liu H, Cen H, Zhang R, Fan Y. Prediction of Femoral Strength Based on Bone Density and Biochemical Markers in Elderly Men With Type 2 Diabetes Mellitus. Front Bioeng Biotechnol 2022; 10:855364. [PMID: 35419355 PMCID: PMC8995504 DOI: 10.3389/fbioe.2022.855364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose: Effects of bone density, bone turnover and advanced glycation end products (AGEs) on femoral strength (FS) are still unclear in patients with type 2 diabetes mellitus (T2DM). This study aims to assess and predict femoral strength and its influencing factors in elderly men with T2DM. Methods: T2DM patients (n = 10, mean age, 66.98 years) and age-matched controls (n = 8, mean age, 60.38 years) were recruited. Femoral bone mineral density (BMD) and serum biochemical indices of all subjects were measured. FS was evaluated through finite element analysis based on quantitative computed tomography. Multiple linear regression was performed to obtain the best predictive models of FS and to analyze the ability of predictors of FS in both groups. Results: FS (p = 0.034), HbA1c (p = 0.000) and fasting blood glucose (p = 0.000) levels of T2DM group were significantly higher than those of control group; however, the P1NP level (p = 0.034) was significantly lower. FS was positively correlated with femoral neck T score (FNTS) (r = 0.794, p < 0.01; r = 0.881, p < 0.01) in both groups. FS was correlated with age (r = -0.750, p < 0.05) and pentosidine (r = -0.673, p < 0.05) in T2DM group. According to multiple linear regression, FNTS and P1NP both contributed to FS in two groups. P1NP significantly improved the prediction of FS in both groups, but significant effect of FNTS on predicting FS was only presented in control group. Furthermore, pentosidine, age and HbA1c all played significant roles in predicting FS of T2DM. Conclusion: Femoral strength was higher in elderly men with T2DM, which might be caused by higher BMD and lower bone turnover rate. Moreover, besides BMD and bone formation level, AGEs, blood glucose and age might significantly impact the prediction of femoral strength in T2DM.
Collapse
Affiliation(s)
- Shaowei Jia
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - He Gong
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yingying Zhang
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Hongmei Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Rehabilitation Hospital, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Haipeng Cen
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Rui Zhang
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
56
|
Wang F, Zheng L, Theopold J, Schleifenbaum S, Heyde CE, Osterhoff G. Methods for bone quality assessment in human bone tissue: a systematic review. J Orthop Surg Res 2022; 17:174. [PMID: 35313901 PMCID: PMC8935787 DOI: 10.1186/s13018-022-03041-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
Background For biomechanical investigations on bone or bone implants, bone quality represents an important potential bias. Several techniques for assessing bone quality have been described in the literature. This study aims to systematically summarize the methods currently available for assessing bone quality in human bone tissue, and to discuss the advantages and limitations of these techniques. Methods A systematic review of the literature was carried out by searching the PubMed and Web of Science databases from January 2000 to April 2021. References will be screened and evaluated for eligibility by two independent reviewers as per PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Studies must apply to bone quality assessment with imaging techniques, mechanical testing modalities, and compositional characterization. The terms used for the systematic search were: “(bone quality”. Ti,ab.) AND “(human bone specimens)”. Results The systematic review identified 502 relevant articles in total. Sixty-eight articles met the inclusion criteria. Among them, forty-seven articles investigated several imaging modalities, including radiography, dual-energy X-ray absorptiometry (DEXA), CT-based techniques, and MRI-based methods. Nineteen articles dealt with mechanical testing approaches, including traditional testing modalities and novel indentation techniques. Nine articles reported the correlation between bone quality and compositional characterization, such as degree of bone mineralization (DBM) and organic composition. A total of 2898 human cadaveric bone specimens were included. Conclusions Advanced techniques are playing an increasingly important role due to their multiple advantages, focusing on the assessment of bone morphology and microarchitecture. Non-invasive imaging modalities and mechanical testing techniques, as well as the assessment of bone composition, need to complement each other to provide comprehensive and ideal information on the bone quality of human bone specimens. Supplementary Information The online version contains supplementary material available at 10.1186/s13018-022-03041-4.
Collapse
Affiliation(s)
- Fangxing Wang
- ZESBO - Center for Research On Musculoskeletal Systems, Department of Orthopedic Surgery, Traumatology and Plastic Surgery, Leipzig University, Semmelweisstraße 14, 04103, Leipzig, Germany. .,Department of Orthopedic Surgery, Traumatology and Plastic Surgery, Leipzig University, Liebigstraße 20 Haus 4, 04103, Leipzig, Germany.
| | - Leyu Zheng
- Department of Orthopedic Surgery, Traumatology and Plastic Surgery, Leipzig University, Liebigstraße 20 Haus 4, 04103, Leipzig, Germany
| | - Jan Theopold
- Department of Orthopedic Surgery, Traumatology and Plastic Surgery, Leipzig University, Liebigstraße 20 Haus 4, 04103, Leipzig, Germany
| | - Stefan Schleifenbaum
- ZESBO - Center for Research On Musculoskeletal Systems, Department of Orthopedic Surgery, Traumatology and Plastic Surgery, Leipzig University, Semmelweisstraße 14, 04103, Leipzig, Germany
| | - Christoph-Eckhard Heyde
- Department of Orthopedic Surgery, Traumatology and Plastic Surgery, Leipzig University, Liebigstraße 20 Haus 4, 04103, Leipzig, Germany
| | - Georg Osterhoff
- Department of Orthopedic Surgery, Traumatology and Plastic Surgery, Leipzig University, Liebigstraße 20 Haus 4, 04103, Leipzig, Germany
| |
Collapse
|
57
|
Ebeling PR, Nguyen HH, Aleksova J, Vincent AJ, Wong P, Milat F. Secondary Osteoporosis. Endocr Rev 2022; 43:240-313. [PMID: 34476488 DOI: 10.1210/endrev/bnab028] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Indexed: 02/07/2023]
Abstract
Osteoporosis is a global public health problem, with fractures contributing to significant morbidity and mortality. Although postmenopausal osteoporosis is most common, up to 30% of postmenopausal women, > 50% of premenopausal women, and between 50% and 80% of men have secondary osteoporosis. Exclusion of secondary causes is important, as treatment of such patients often commences by treating the underlying condition. These are varied but often neglected, ranging from endocrine to chronic inflammatory and genetic conditions. General screening is recommended for all patients with osteoporosis, with advanced investigations reserved for premenopausal women and men aged < 50 years, for older patients in whom classical risk factors for osteoporosis are absent, and for all patients with the lowest bone mass (Z-score ≤ -2). The response of secondary osteoporosis to conventional anti-osteoporosis therapy may be inadequate if the underlying condition is unrecognized and untreated. Bone densitometry, using dual-energy x-ray absorptiometry, may underestimate fracture risk in some chronic diseases, including glucocorticoid-induced osteoporosis, type 2 diabetes, and obesity, and may overestimate fracture risk in others (eg, Turner syndrome). FRAX and trabecular bone score may provide additional information regarding fracture risk in secondary osteoporosis, but their use is limited to adults aged ≥ 40 years and ≥ 50 years, respectively. In addition, FRAX requires adjustment in some chronic conditions, such as glucocorticoid use, type 2 diabetes, and HIV. In most conditions, evidence for antiresorptive or anabolic therapy is limited to increases in bone mass. Current osteoporosis management guidelines also neglect secondary osteoporosis and these existing evidence gaps are discussed.
Collapse
Affiliation(s)
- Peter R Ebeling
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia.,Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia
| | - Hanh H Nguyen
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia.,Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia.,Department of Endocrinology and Diabetes, Western Health, Victoria 3011, Australia
| | - Jasna Aleksova
- Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia.,Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Amanda J Vincent
- Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia.,Monash Centre for Health Research and Implementation, School of Public Health and Preventative Medicine, Monash University, Clayton, Victoria 3168, Australia
| | - Phillip Wong
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia.,Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia.,Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Frances Milat
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia.,Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia.,Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| |
Collapse
|
58
|
Impact of test environment on the fracture resistance of cortical bone. J Mech Behav Biomed Mater 2022; 129:105155. [DOI: 10.1016/j.jmbbm.2022.105155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 11/22/2022]
|
59
|
Kumar A, Ghosh R. A review on experimental and numerical investigations of cortical bone fracture. Proc Inst Mech Eng H 2022; 236:297-319. [DOI: 10.1177/09544119211070347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This paper comprehensively reviews the various experimental and numerical techniques, which were considered to determine the fracture characteristics of the cortical bone. This study also provides some recommendations along with the critical review, which would be beneficial for future research of fracture analysis of cortical bone. Cortical bone fractures due to sports activities, climbing, running, and engagement in transport or industrial accidents. Individuals having different diseases are also at high risk of cortical bone fracture. It has been observed that osteon orientation influences cortical bone fracture toughness and fracture mechanisms. Apart from this, recent studies indicate that fracture parameters of cortical bone also depend on many factors such as age, sex, temperature, osteoporosis, orientation, location, loading condition, strain rate, and storage facility, etc. The cortical bone regains its fracture toughness due to various toughening mechanisms. Owing to these factors, several experimental, clinical, and numerical investigations have been carried out to determine the fracture parameters of the cortical bone. Cortical bone is the dense outer surface of the bone and contributes to 80%–82% of the skeleton mass. Cortical bone experiences load far exceeding body weight due to muscle contraction and the dynamics of motion. It is very important to know the fracture pattern, direction of fracture, location of the fracture, and toughening mechanism of cortical bone. A basic understanding of the different factors that affect the fracture parameters and fracture mechanisms of the cortical bone is necessary to prevent the failure and fracture of cortical bone. This review has summarized the advancement considered in the various experimental techniques and numerical methods to get complete information about the fracture mechanisms of cortical bone.
Collapse
Affiliation(s)
- Ajay Kumar
- School of Engineering, Indian Institute of Technology Mandi (IIT Mandi), Kamand, Mandi 175005, Himachal Pradesh, India
| | - Rajesh Ghosh
- School of Engineering, Indian Institute of Technology Mandi (IIT Mandi), Kamand, Mandi 175005, Himachal Pradesh, India
| |
Collapse
|
60
|
Castillo EJ, Croft S, Jiron JM, Aguirre JI. Bone Structural, Biomechanical and Histomorphometric Characteristics of the Hindlimb Skeleton in the Marsh Rice Rat (Oryzomys palustris). Anat Rec (Hoboken) 2022; 305:3133-3149. [PMID: 35090092 PMCID: PMC10394686 DOI: 10.1002/ar.24876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/30/2021] [Accepted: 12/21/2021] [Indexed: 11/12/2022]
Abstract
INTRODUCTION The rice rat (Oryzomys palustris) is a non-conventional laboratory rodent species used to model some human bone disorders. However, no studies have been conducted to characterize the postcranial skeleton. Therefore, we aimed to investigate age- and gender-related features of the hindlimb skeleton of this species. METHODS We used femurs and tibiae from 94 rats of both genders aged 4-28 wks. Bone mineral content (BMC), volumetric bone mineral density (vBMD), and biomechanical properties were determined in femurs. In addition, bone histomorphometry of tibiae was conducted to assess bone cell activities and bone turnover over time. RESULTS Bone length, total metaphysis BMC and vBMD, mid-diaphyseal BMC and vBMD, cortical thickness, and cortical area progressively augmented with age. Whereas the increase in these parameters plateaued at age 16-22 wks in female rats, they continued to rise to age 28 wks in male rats. Furthermore, bone strength parameters increased with age, with few differences between genders. We also observed a rapid decrease in longitudinal growth between ages 4-16 wks. Whereas young rats had a greater bone formation rate and bone turnover, older rice rats had greater bone volume and trabecular thickness, with no differences between genders. CONCLUSIONS 1) Sexual dimorphism in the rice rat becomes grossly evident at age 16 wks; 2) the age-related increases in bone mass, structural cortical parameters, and in some biomechanical property parameters plateau at an older age in male than in female rats; and 3) bone growth and remodeling significantly decreased with age irrespective of the gender.
Collapse
Affiliation(s)
- E J Castillo
- Department of Physiological Sciences, University of Florida (UF), Gainesville, FL
| | - S Croft
- Department of Physiological Sciences, University of Florida (UF), Gainesville, FL
| | - J M Jiron
- Department of Physiological Sciences, University of Florida (UF), Gainesville, FL
| | - J I Aguirre
- Department of Physiological Sciences, University of Florida (UF), Gainesville, FL
| |
Collapse
|
61
|
Bone mineral density and oxidative stress in adolescent girls with anorexia nervosa. Eur J Pediatr 2022; 181:311-321. [PMID: 34292351 DOI: 10.1007/s00431-021-04199-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
Oxidative stress appears to be involved in the pathogenesis of osteoporosis-a serious complication of anorexia nervosa (AN). We evaluated the oxidative status in adolescent girls with AN and its potential relationship with bone mineral density (BMD). Girls with AN (n = 43) and age-matched healthy controls (n = 20) underwent anthropometric and BMD examination. Markers of bone turnover, oxidative stress, and antioxidant status were measured. Participants with AN and controls did not differ in BMD at the lumbar spine (p = 0.17) and total body less head BMD (p = 0.08). BMD at the total hip was lower (p < 0.001) in the AN group compared with the controls. Levels of antioxidant status markers-ferric reduction antioxidant power, total antioxidant capacity, and reduced and oxidized glutathione ratio (all p < 0.001)-were significantly lower, whereas those of advanced oxidation protein products (AOPP), fructosamines, and advanced glycation end products (AGEs) (all p < 0.001) were higher in AN patients than in healthy controls. BMD and bone turnover markers were positively correlated with antioxidant status markers, while they were negatively correlated with AOPP, fructosamines, and AGEs levels. Conclusion: This is the first study to assess a potential association between oxidative status and BMD in adolescents with AN. We demonstrated that in young girls, the imbalance of oxidative status and reduced BMD are concurrently manifested at the time of the diagnosis of AN. Disturbance of oxidative status could play a pathogenetic role in AN-associated decreased BMD. What is Known: • Osteoporosis is a serious complication of AN, and in affected adolescents may result in a permanent deficit in bone mass. • Oxidative and carbonyl stress may be involved in the development of bone loss. What is New: • Adolescents girls with AN have impaired antioxidant defense and increased oxidative damage to biomolecules. • Disturbance of oxidative status could affect bone loss and could contribute to decreased BMD in adolescent females with AN.
Collapse
|
62
|
Berman AG, Damrath JG, Hatch J, Pulliam AN, Powell KM, Hinton M, Wallace JM. Effects of Raloxifene and tibial loading on bone mass and mechanics in male and female mice. Connect Tissue Res 2022; 63:3-15. [PMID: 33427519 PMCID: PMC8272732 DOI: 10.1080/03008207.2020.1865938] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: Raloxifene (RAL) is a selective estrogen receptor modulator (SERM) that has previously been shown to cause acellular benefits to bone tissue. Due to these improvements, RAL was combined with targeted tibial loading to assess if RAL treatment during periods of active bone formation would allow for further mechanical enhancements.Methods: Structural, mechanical, and microstructural effects were assessed in bone from C57BL/6 mice that were treated with RAL (0.5 mg/kg), tibial loading, or both for 6 weeks, beginning at 10 weeks of age.Results:Ex vivo microcomputed tomography (CT) images indicated RAL and loading work together to improve bone mass and architecture, especially within the cancellous region of males. Increases in cancellous bone volume fraction were heavily driven by increases in trabecular thickness, though there were some effects on trabecular spacing and number. In the cortical regions, RAL and loading both increased cross-sectional area, cortical area, and cortical thickness. Whole-bone mechanical testing primarily indicated the effects of loading. Further characterization through Raman spectroscopy and nanoindentation showed load-based changes in mineralization and micromechanics, while both loading and RAL caused changes in the secondary collagen structure. In contrast to males, in females, there were large load-based effects in the cancellous and cortical regions, resulting in increased whole-bone mechanical properties. RAL had less of an effect on cancellous and cortical architecture, though some effects were still present.Conclusion: RAL and loading work together to impact bone architecture and mechanical integrity, leading to greater improvements than either treatment individually.
Collapse
Affiliation(s)
- Alycia G. Berman
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - John G. Damrath
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Jennifer Hatch
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA
| | - Alexis N. Pulliam
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA
| | - Katherine M. Powell
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA
| | - Madicyn Hinton
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA
| | - Joseph M. Wallace
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA,Corresponding Author Joseph M. Wallace, Ph.D., Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA, , +1-317-274-2448
| |
Collapse
|
63
|
Pendleton MM, Emerzian SR, Sadoughi S, Li A, Liu JW, Tang SY, O'Connell GD, Sibonga JD, Alwood JS, Keaveny TM. Relations Between Bone Quantity, Microarchitecture, and Collagen Cross-links on Mechanics Following In Vivo Irradiation in Mice. JBMR Plus 2021; 5:e10545. [PMID: 34761148 PMCID: PMC8567491 DOI: 10.1002/jbm4.10545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 08/20/2021] [Indexed: 01/22/2023] Open
Abstract
Humans are exposed to ionizing radiation via spaceflight or cancer radiotherapy, and exposure from radiotherapy is known to increase risk of skeletal fractures. Although irradiation can reduce trabecular bone mass, alter trabecular microarchitecture, and increase collagen cross‐linking, the relative contributions of these effects to any loss of mechanical integrity remain unclear. To provide insight, while addressing both the monotonic strength and cyclic‐loading fatigue life, we conducted total‐body, acute, gamma‐irradiation experiments on skeletally mature (17‐week‐old) C57BL/6J male mice (n = 84). Mice were administered doses of either 0 Gy (sham), 1 Gy (motivated by cumulative exposures from a Mars mission), or 5 Gy (motivated by clinical therapy regimens) with retrieval of the lumbar vertebrae at either a short‐term (11‐day) or long‐term (12‐week) time point after exposure. Micro‐computed tomography was used to assess trabecular and cortical quantity and architecture, biochemical composition assays were used to assess collagen quality, and mechanical testing was performed to evaluate vertebral compressive strength and fatigue life. At 11 days post‐exposure, 5 Gy irradiation significantly reduced trabecular mass (p < 0.001), altered microarchitecture (eg, connectivity density p < 0.001), and increased collagen cross‐links (p < 0.001). Despite these changes, vertebral strength (p = 0.745) and fatigue life (p = 0.332) remained unaltered. At 12 weeks after 5 Gy exposure, the trends in trabecular bone persisted; in addition, regardless of irradiation, cortical thickness (p < 0.01) and fatigue life (p < 0.01) decreased. These results demonstrate that the highly significant effects of 5 Gy total‐body irradiation on the trabecular bone morphology and collagen cross‐links did not translate into detectable effects on vertebral mechanics. The only mechanical deficits observed were associated with aging. Together, these vertebral results suggest that for spaceflight, irradiation alone will likely not alter failure properties, and for radiotherapy, more investigations that include post‐exposure time as a positive control and testing of both failure modalities are needed to determine the cause of increased fracture risk. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Megan M Pendleton
- Department of Mechanical Engineering University of California Berkeley CA USA
| | - Shannon R Emerzian
- Department of Mechanical Engineering University of California Berkeley CA USA
| | - Saghi Sadoughi
- Department of Mechanical Engineering University of California Berkeley CA USA
| | - Alfred Li
- Endocrine Research Unit University of California and Veteran Affairs Medical Center San Francisco CA USA
| | - Jennifer W Liu
- Department of Orthopaedic Surgery Washington University St. Louis MO USA
| | - Simon Y Tang
- Department of Orthopaedic Surgery Washington University St. Louis MO USA.,Department of Biomedical Engineering Washington University St. Louis MO USA.,Department of Mechanical Engineering and Materials Science Washington University St. Louis MO USA
| | - Grace D O'Connell
- Department of Mechanical Engineering University of California Berkeley CA USA.,Department of Orthopaedic Surgery University of California San Francisco CA USA
| | - Jean D Sibonga
- Biomedical Research and Environmental Sciences Division NASA Johnson Space Center Houston TX USA
| | - Joshua S Alwood
- Space Biosciences Division NASA Ames Research Center Moffett Field CA USA
| | - Tony M Keaveny
- Department of Mechanical Engineering University of California Berkeley CA USA.,Department of Bioengineering University of California Berkeley CA USA
| |
Collapse
|
64
|
Szabo E, Rimnac C. Biomechanics of immature human cortical bone: A systematic review. J Mech Behav Biomed Mater 2021; 125:104889. [PMID: 34736022 DOI: 10.1016/j.jmbbm.2021.104889] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/10/2021] [Accepted: 10/06/2021] [Indexed: 12/31/2022]
Abstract
The whole bone geometry, microstructure, and mechanical properties of mature human bone are widely reported; however, immature bone (0-18 years) has not been similarly robustly characterized. There is an interest in analyzing and predicting the mechanical loading conditions associated with long bone diaphyseal fractures attributed to trauma in children. Thus, understanding the mechanical properties of immature bone in a temporal reference frame is an essential first step to understand diaphyseal fractures of pediatric long bones. The purpose of this systematic review was to ask, what is the state of knowledge regarding the 1) evolution of whole bone geometry and microstructure of immature pediatric bone as a function of maturation and 2) cortical bone density and experimental quasi-static mechanical properties at the tissue level in the diaphyseal region of immature pediatric long bones? The systematic search yielded 36 studies of the whole bone geometry, microstructure, and mechanical properties of immature pediatric long bones. The elastic modulus, yield stress, and ultimate stress were shown to generally increase with maturation, whereas the yield strain was approximately invariant; however, the specific year-to-year progression of these properties could not be characterized from the limited studies available. The results of this systematic search indicate there is a dearth of knowledge associated with the biomechanics of cortical bone from immature pediatric long bones; it also provides a basis for computational studies of immature human long bones. Additional biomechanical studies of immature human bone are necessary to develop a robust catalogue, which can be used in broad applications to understand fracture mechanics, bone pathologies, and athletic injury in the pediatric setting.
Collapse
Affiliation(s)
- Emily Szabo
- Case Western Reserve University, Department of Mechanical and Aerospace Engineering, 2123 Martin Luther King Jr Dr, Cleveland, OH, 44106, USA.
| | - Clare Rimnac
- Case Western Reserve University, Department of Mechanical and Aerospace Engineering, 2123 Martin Luther King Jr Dr, Cleveland, OH, 44106, USA.
| |
Collapse
|
65
|
Han Y, Gomez J, Hua R, Xiao P, Gao W, Jiang JX, Wang X. Removal of glycosaminoglycans affects the in situ mechanical behavior of extrafibrillar matrix in bone. J Mech Behav Biomed Mater 2021; 123:104766. [PMID: 34392037 PMCID: PMC8440485 DOI: 10.1016/j.jmbbm.2021.104766] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/15/2022]
Abstract
Previous studies have shown that glycosaminoglycans (GAGs) in bone matrix, coupling with water in bone matrix, may play a significant role in toughening bone tissues. Since GAGs are most likely present only in the extrafibrillar matrix (EFM) of bone, we hypothesized that GAGs in EFM would have a major impact on bone tissue toughness. To confirm this conjecture, we removed GAGs ex vivo from human cadaveric bone samples using a protein deglycosylation mix kit and then examined the in situ mechanical behavior of mineralized collagen fibrils (MCFs) and the surrounding EFM of the samples, using a high-resolution atomic force microscopy (AFM). By testing the bone samples before and after removal of GAGs, we found that under the wet condition removal of GAGs resulted in an increase in the elastic modulus of both EFM and MCFs, whereas a significant decrease in plastic energy dissipation was observed mainly in EFM. In contrast, under the dry condition the removal of GAGs had little effects on the mechanical properties of either MCFs or EFM. These results suggest that both MCFs and EFM contribute to the plastic energy dissipation of bone, whereas in the presence of matrix water removal of GAGs significantly reduces the capacity of EFM in plastic energy dissipation, but not MCFs. In addition, GAGs may affect the elastic modulus of both EFM and MCFs. These findings give rise to new understanding to the underlying mechanism of GAGs in toughening of bone tissues.
Collapse
Affiliation(s)
- Yan Han
- Department of Mechanical Engineering, University of Texas at San Antonio, Texas, USA
| | - Joel Gomez
- Department of Mechanical Engineering, University of Texas at San Antonio, Texas, USA
| | - Rui Hua
- Department of Biochemistry and Structural Biology, UT Health San Antonio, Texas, USA
| | - Pengwei Xiao
- Department of Mechanical Engineering, University of Texas at San Antonio, Texas, USA
| | - Wei Gao
- Department of Mechanical Engineering, University of Texas at San Antonio, Texas, USA
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, UT Health San Antonio, Texas, USA.
| | - Xiaodu Wang
- Department of Mechanical Engineering, University of Texas at San Antonio, Texas, USA.
| |
Collapse
|
66
|
Karim L, Kwaczala A, Vashishth D, Judex S. Dose-dependent effects of pharmaceutical treatments on bone matrix properties in ovariectomized rats. Bone Rep 2021; 15:101137. [PMID: 34660852 PMCID: PMC8503587 DOI: 10.1016/j.bonr.2021.101137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 01/22/2023] Open
Abstract
As both anabolic and anti-catabolic osteoporosis drugs affect bone formation and resorption processes, they may contribute to bone's overall mechanical behavior by altering the quality of the bone matrix. We used an ovariectomized rat model and a novel fracture mechanics approach to investigate whether treatment with an anabolic (parathyroid hormone) or anti-catabolic (alendronate) osteoporosis drugs will alter the organic and mineral matrix components and consequently cortical bone fracture toughness. Ovariectomized (at 5 months age) rats were treated with either parathyroid hormone or alendronate at low and high doses for 6 months (age 6–12 months). Specifically, treatment groups included untreated ovariectomized controls (n = 9), high-dose alendronate (n = 10), low-dose alendronate (n = 9), high-dose parathyroid hormone (n = 10), and low-dose parathyroid hormone (n = 9). After euthanasia, cortical microbeams from the lateral quadrant were extracted, notched, and tested in 3-point bending to measure fracture toughness. Portions of the bone were used to measure changes in the 1) organic matrix through quantification of advanced glycation end-products (AGEs) and non-collagenous proteins, and 2) mineral matrix through assessment of mineral crystallinity. Compared to the ovariectomized group, rats treated with high doses of parathyroid hormone and alendronate had significantly increased cortical bone fracture toughness, which corresponded primarily to increased non-collagenous proteins while there was no change in AGEs. Additionally, low-dose PTH treatment increased matrix crystallinity and decreased AGE levels. In summary, ovariectomized rats treated with pharmaceutical drugs had increased non-collagenous matrix proteins and improved fracture toughness compared to controls. Further investigation is required for different doses and longer treatment periods. Alendronate increases non-collagenous proteins and improves fracture toughness. Parathyroid hormone also increases collagen maturity and mineral crystallinity. Both treatments minimize accumulation of advanced glycation end-products.
Collapse
Affiliation(s)
- Lamya Karim
- Department of Bioengineering, University of Massachusetts Dartmouth, Dartmouth, MA, USA
| | - Andrea Kwaczala
- Department of Biomedical Engineering, Western New England University, Springfield, MA, USA
| | - Deepak Vashishth
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Stefan Judex
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
67
|
Ghomashchi S, Whyne CM, Chinnery T, Habach F, Akens MK. Impact of radiofrequency ablation (RFA) on bone quality in a murine model of bone metastases. PLoS One 2021; 16:e0256076. [PMID: 34495961 PMCID: PMC8425524 DOI: 10.1371/journal.pone.0256076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/30/2021] [Indexed: 01/22/2023] Open
Abstract
Thermal therapies such as radiofrequency ablation (RFA) are gaining widespread clinical adoption in the local treatment of skeletal metastases. RFA has been shown to successfully destroy tumor cells, yet the impact of RFA on the quality of the surrounding bone has not been well characterized. RFA treatment was performed on femora of rats with bone metastases (osteolytic and osteoblastic) and healthy age matched rats. Histopathology, second harmonic generation imaging and backscatter electron imaging were used to characterize changes in the structure, organic and mineral components of the bone after RFA. RFA treatment was shown to be effective in targeting tumor cells and promoting subsequent new bone formation without impacting the surrounding bone negatively. Mineralization profiles of metastatic models were significantly improved post-RFA treatment with respect to mineral content and homogeneity, suggesting a positive impact of RFA treatment on the quality of cancer involved bone. Evaluating the impact of RFA on bone quality is important in directing the growth of this minimally invasive therapeutic approach with respect to fracture risk assessment, patient selection, and multimodal treatment planning.
Collapse
Affiliation(s)
- Soroush Ghomashchi
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Cari M. Whyne
- Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Tricia Chinnery
- Techna Institute, University Health Network, Toronto, Ontario, Canada
| | - Fayez Habach
- Department of Physics, University of Toronto, Ontario, Canada
| | - Margarete K. Akens
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Techna Institute, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
68
|
Eren ED, Nijhuis WH, van der Weel F, Dede Eren A, Ansari S, Bomans PHH, Friedrich H, Sakkers RJ, Weinans H, de With G. Multiscale characterization of pathological bone tissue. Microsc Res Tech 2021; 85:469-486. [PMID: 34490967 PMCID: PMC9290679 DOI: 10.1002/jemt.23920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/16/2021] [Accepted: 08/18/2021] [Indexed: 11/09/2022]
Abstract
Bone is a complex natural material with a complex hierarchical multiscale organization, crucial to perform its functions. Ultrastructural analysis of bone is crucial for our understanding of cell to cell communication, the healthy or pathological composition of bone tissue, and its three‐dimensional (3D) organization. A variety of techniques has been used to analyze bone tissue. This article describes a combined approach of optical, scanning electron, and transmission electron microscopy for the ultrastructural analysis of bone from the nanoscale to the macroscale, as illustrated by two pathological bone tissues. By following a top‐down approach to investigate the multiscale organization of pathological bones, quantitative estimates were made in terms of calcium content, nearest neighbor distances of osteocytes, canaliculi diameter, ordering, and D‐spacing of the collagen fibrils, and the orientation of intrafibrillar minerals which enable us to observe the fine structural details. We identify and discuss a series of two‐dimensional (2D) and 3D imaging techniques that can be used to characterize bone tissue. By doing so we demonstrate that, while 2D imaging techniques provide comparable information from pathological bone tissues, significantly different structural details are observed upon analyzing the pathological bone tissues in 3D. Finally, particular attention is paid to sample preparation for and quantitative processing of data from electron microscopic analysis.
Collapse
Affiliation(s)
- E Deniz Eren
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Wouter H Nijhuis
- Department of Orthopedic Surgery, University Medical Centre Utrecht, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Freek van der Weel
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Aysegul Dede Eren
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands.,Eindhoven University of Technology, Department of Biomedical Engineering, Biointerface Science, Eindhoven, The Netherlands
| | - Sana Ansari
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands.,Orthopedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Paul H H Bomans
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Heiner Friedrich
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Ralph J Sakkers
- Department of Orthopedic Surgery, University Medical Centre Utrecht, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Harrie Weinans
- Department of Orthopedic Surgery, University Medical Centre Utrecht, Wilhelmina Children's Hospital, Utrecht, The Netherlands.,TU Delft, Department of Biomechanical Engineering, Delft, The Netherlands
| | - Gijsbertus de With
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
69
|
Frank M, Grabos A, Reisinger AG, Burr DB, Pahr DH, Allen MR, Thurner PJ. Effects of anti-resorptive treatment on the material properties of individual canine trabeculae in cyclic tensile tests. Bone 2021; 150:115995. [PMID: 33940224 DOI: 10.1016/j.bone.2021.115995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/25/2021] [Accepted: 04/28/2021] [Indexed: 01/22/2023]
Abstract
Osteoporosis is defined as a decrease of bone mass and strength, as well as an increase in fracture risk. It is conventionally treated with antiresorptive drugs, such as bisphosphonates (BPs) and selective estrogen receptor modulators (SERMs). Although both drug types successfully decrease the risk of bone fractures, their effect on bone mass and strength is different. For instance, BP treatment causes an increase of bone mass, stiffness and strength of whole bones, whereas SERM treatment causes only small (4%) increases of bone mass, but increased bone toughness. Such improved mechanical behavior of whole bones can be potentially related to the bone mass, bone structure or material changes. While bone mass and architecture have already been investigated previously, little is known about the mechanical behavior at the tissue/material level, especially of trabecular bone. As such, the goal of the work presented here was to fill this gap by performing cyclic tensile tests in a wet, close to physiologic environment of individual trabeculae retrieved from the vertebrae of beagle dogs treated with alendronate (a BP), raloxifene (a SERM) or without treatments. Identification of material properties was performed with a previously developed rheological model and of mechanical properties via fitting of envelope curves. Additionally, tissue mineral density (TMD) and microdamage formation were analyzed. Alendronate treatment resulted in a higher trabecular tissue stiffness and strength, associated with higher levels of TMD. In contrast, raloxifene treatment caused a higher trabecular toughness, pre-dominantly in the post-yield region. Microdamage formation during testing was not affected by either anti-resorptive treatment regimens. These findings highlight that the improved mechanical behavior of whole bones after anti-resorptive treatment is at least partly caused by improved material properties, with different mechanisms for alendronate and raloxifene. This study further shows the power of performing a mechanical characterization of trabecular bone at the level of individual trabeculae for better understanding of clinically relevant mechanical behavior of bone.
Collapse
Affiliation(s)
- Martin Frank
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Gumpendorfer Straße 7, 1060 Vienna, Austria.
| | - Andreas Grabos
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Gumpendorfer Straße 7, 1060 Vienna, Austria; Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, 340 West 10th Street Fairbanks Hall, Suite 6200, Indianapolis, USA
| | - Andreas G Reisinger
- Department of Anatomy and Biomechanics, Division Biomechanics, Karl Landsteiner University of Health Sciences, Dr.-Karl-Dorrek-Straße 30, 3500 Krems an der Donau, Austria.
| | - David B Burr
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, 340 West 10th Street Fairbanks Hall, Suite 6200, Indianapolis, USA.
| | - Dieter H Pahr
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Gumpendorfer Straße 7, 1060 Vienna, Austria; Department of Anatomy and Biomechanics, Division Biomechanics, Karl Landsteiner University of Health Sciences, Dr.-Karl-Dorrek-Straße 30, 3500 Krems an der Donau, Austria.
| | - Matthew R Allen
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, 340 West 10th Street Fairbanks Hall, Suite 6200, Indianapolis, USA.
| | - Philipp J Thurner
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Gumpendorfer Straße 7, 1060 Vienna, Austria.
| |
Collapse
|
70
|
Hua R, Jiang JX. Small leucine-rich proteoglycans in physiological and biomechanical function of bone. Matrix Biol Plus 2021; 11:100063. [PMID: 34435181 PMCID: PMC8377002 DOI: 10.1016/j.mbplus.2021.100063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/10/2021] [Accepted: 04/14/2021] [Indexed: 12/19/2022] Open
Abstract
Proteoglycans (PGs) and glycosaminoglycans (GAGs) play vital roles in key signaling pathways to regulate bone homeostasis. The highly negatively charged GAGs are crucial in retaining bound water and modulating mechanical properties of bone. Age-related changes of PGs, GAGs, and bound water contribute to deterioration of bone quality during aging.
Proteoglycans (PGs) contain long unbranched glycosaminoglycan (GAG) chains attached to core proteins. In the bone extracellular matrix, PGs represent a class of non-collagenous proteins, and have high affinity to minerals and collagen. Considering the highly negatively charged character of GAGs and their interfibrillar positioning interconnecting with collagen fibrils, PGs and GAGs play pivotal roles in maintaining hydrostatic and osmotic pressure in the matrix. In this review, we will discuss the role of PGs, especially the small leucine-rich proteoglycans, in regulating the bioactivity of multiple cytokines and growth factors, and the bone turnover process. In addition, we focus on the coupling effects of PGs and GAGs in the hydration status of bone extracellular matrix, thus modulating bone biomechanical properties under physiological and pathological conditions.
Collapse
Affiliation(s)
- Rui Hua
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
71
|
Ur Rahman W, Khan R, Rahman N, Alrowaili ZA, Bibi B, Us Sama N. Experimental evaluation of fracture properties of bovine hip cortical bone using elastic-plastic fracture mechanics. Biomed Mater Eng 2021; 33:91-99. [PMID: 34366315 DOI: 10.3233/bme-211220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Understanding the fracture mechanics of bone is very important in both the medical and bioengineering field. Bone is a hierarchical natural composite material of nanoscale collagen fibers and inorganic material. OBJECTIVE This study investigates and presents the fracture toughness of bovine cortical bone by using elastic plastic fracture mechanics. METHODS The J-integral was used as a parameter to calculate the energies utilized in both elastic deformation (Jel) and plastic deformation (Jpl) of the hipbone fracture. Twenty four different types of specimens, i.e. longitudinal compact tension (CT) specimens, transverse CT specimens, and also rectangular unnotched specimens for tension in longitudinal and transverse orientation, were cut from the bovine hip bone of the middle diaphysis. All CT specimens were prepared according to the American Society for Testing and Materials (ASTM) E1820 standard and were tested at room temperature. RESULTS The results showed that the average total J-integral in transverse CT fracture specimens is 26% greater than that of longitudinal CT fracture specimens. For longitudinal-fractured and transverse-fractured cortical specimens, the energy used in the elastic deformation was found to be 2.8-3 times less than the energy used in the plastic deformation. CONCLUSION The findings indicate that the overall fracture toughness measured using the J-integral is significantly higher than the toughness calculated by the stress intensity factor. Therefore, J-integral should be employ to compute the fracture toughness of cortical bone.
Collapse
Affiliation(s)
- Waseem Ur Rahman
- Department of Mechanical Engineering, International Islamic University, Islamabad, Pakistan.,School of Mechanical Engineering, Dalian University of Technology, Dalian, China
| | - Rafiullah Khan
- Department of Mechanical Engineering, International Islamic University, Islamabad, Pakistan
| | - Noor Rahman
- Department of Mechanical Engineering, International Islamic University, Islamabad, Pakistan
| | | | - Baseerat Bibi
- School of Physics, Dalian University of Technology, Dalian, China
| | - Najm Us Sama
- Deanship of Common First Year, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
72
|
Jähn-Rickert K, Zimmermann EA. Potential Role of Perilacunar Remodeling in the Progression of Osteoporosis and Implications on Age-Related Decline in Fracture Resistance of Bone. Curr Osteoporos Rep 2021; 19:391-402. [PMID: 34117624 DOI: 10.1007/s11914-021-00686-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/22/2021] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW We took an interdisciplinary view to examine the potential contribution of perilacunar/canalicular remodeling to declines in bone fracture resistance related to age or progression of osteoporosis. RECENT FINDINGS Perilacunar remodeling is most prominent as a result of lactation; recent advances further elucidate the molecular players involved and their effect on bone material properties. Of these, vitamin D and calcitonin could be active during aging or osteoporosis. Menopause-related hormonal changes or osteoporosis therapies affect bone material properties and mechanical behavior. However, investigations of lacunar size or osteocyte TRAP activity with age or osteoporosis do not provide clear evidence for or against perilacunar remodeling. While the occurrence and potential role of perilacunar remodeling in aging and osteoporosis progression are largely under-investigated, widespread changes in bone matrix composition in OVX models and following osteoporosis therapies imply osteocytic maintenance of bone matrix. Perilacunar remodeling-induced changes in bone porosity, bone matrix composition, and bone adaptation could have significant implications for bone fracture resistance.
Collapse
Affiliation(s)
- Katharina Jähn-Rickert
- Heisenberg Research Group, Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 55a, 22529, Hamburg, Germany.
- Mildred Scheel Cancer Career Center Hamburg, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Elizabeth A Zimmermann
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, 3640 Rue University, Montreal, Canada.
| |
Collapse
|
73
|
Moseley KF, Du Z, Sacher SE, Ferguson VL, Donnelly E. Advanced glycation endproducts and bone quality: practical implications for people with type 2 diabetes. Curr Opin Endocrinol Diabetes Obes 2021; 28:360-370. [PMID: 34183538 DOI: 10.1097/med.0000000000000641] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Individuals with type 2 diabetes (T2D) are at increased risk of fracture, often despite normal bone density. This observation suggests deficits in bone quality in the setting of abnormal glucose homeostasis. The goal of this article is to review recent developments in our understanding of how advanced glycation end products (AGEs) are incorporated into the skeleton with resultant deleterious effects on bone health and structural integrity in patients with T2D. RECENT FINDINGS The adverse effects of skeletal AGE accumulation on bone remodeling and the ability of the bone to deform and absorb energy prior to fracture have been demonstrated both at the bench as well as in small human studies; however, questions remain as to how these findings might be better explored in large, population-based investigations. SUMMARY Hyperglycemia drives systemic, circulating AGE formation with subsequent accumulation in the bone tissue. In those with T2D, studies suggest that AGEs diminish fracture resistance, though larger clinical studies are needed to better define the direct role of longstanding AGE accumulation on bone strength in humans as well as to motivate potential interventions to reverse or disrupt skeletal AGE deposition with the goal of fracture prevention.
Collapse
Affiliation(s)
- Kendall F Moseley
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, Johns Hopkins University, Baltimore, Maryland
| | - Zexu Du
- Department of Materials Science and Engineering, Cornell University, Ithaca
| | - Sara E Sacher
- Department of Materials Science and Engineering, Cornell University, Ithaca
| | - Virginia L Ferguson
- Department of Mechanical Engineering, UCB 427
- Biomedical Engineering Program, UCB 422, University of Colorado, Boulder, Colorado, USA
| | - Eve Donnelly
- Department of Materials Science and Engineering, Cornell University, Ithaca
- Research Division, Hospital for Special Surgery, New York, New York
| |
Collapse
|
74
|
Singleton RC, Pharr GM, Nyman JS. Increased tissue-level storage modulus and hardness with age in male cortical bone and its association with decreased fracture toughness. Bone 2021; 148:115949. [PMID: 33862261 PMCID: PMC8102428 DOI: 10.1016/j.bone.2021.115949] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 11/19/2022]
Abstract
The incidence of bone fracture increases with age, due to both declining bone quantity and quality. Toward the goal of an improved understanding of the causes of the age-related decline in the fracture toughness of male cortical bone, nanoindentation experiments were performed on femoral diaphysis specimens from men aged 21-98 years. Because aged bone has less matrix-bound water and dry bone is less viscoelastic, we used a nanoindentation method that is sensitive to changes in viscoelasticity. Given the anisotropy of bone stiffness, longitudinal (n = 26) and transverse (n = 25) specimens relative to the long axis of the femur diaphysis were tested both dry in air and immersed in phosphate buffered saline solution. Indentation stiffness (storage modulus) and hardness increased with age, while viscoelasticity (loss modulus) was independent of donor age. The increases in indentation stiffness and hardness with age were best explained by increased mineralization with age. Indentation stiffness and hardness were negatively correlated with previously acquired fracture toughness parameters, which is consistent with a tradeoff between material strength and toughness. In keeping with the complex structure of bone, a combination of tissue-level storage modulus or hardness, bound water, and osteonal area in regression models best explained the variance in the fracture toughness of male human cortical bone. On the other hand, viscoelasticity was unchanged with age and was not associated with fracture toughness. In conclusion, the age-related increase in stiffness and hardness of male cortical bone may be one of the multiple tissue-level characteristics that contributes to decreased fracture toughness.
Collapse
Affiliation(s)
- Robert C Singleton
- Materials Science and Engineering Department, University of Tennessee, Knoxville, TN 37996, USA
| | - George M Pharr
- Materials Science and Engineering Department, University of Tennessee, Knoxville, TN 37996, USA; Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843-3003, USA
| | - Jeffry S Nyman
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, USA.
| |
Collapse
|
75
|
Damrath JG, Creecy A, Wallace JM, Moe SM. The impact of advanced glycation end products on bone properties in chronic kidney disease. Curr Opin Nephrol Hypertens 2021; 30:411-417. [PMID: 33928911 PMCID: PMC8154706 DOI: 10.1097/mnh.0000000000000713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE OF REVIEW Chronic kidney disease (CKD) affects over 15% of Americans and results in an increased risk of skeletal fractures and fracture-related mortality. However, there remain great challenges in estimating fracture risk in CKD patients, as conventional metrics such as bone density assess bone quantity without accounting for the material quality of the bone tissue. The purpose of this review is to highlight the detrimental effects of advanced glycation end products (AGEs) on the structural and mechanical properties of bone, and to demonstrate the importance of including bone quality when assessing fracture risk in CKD patients. RECENT FINDINGS Increased oxidative stress and inflammation drive the production of AGEs in CKD patients that form nonenzymatic crosslinks between type I collagen fibrils in the bone matrix. Nonenzymatic crosslinks stiffen and embrittle the bone, reducing its ability to absorb energy and resist fracture. Clinical measurement of AGEs is typically indirect and fails to distinguish the identity and properties of the various AGEs. SUMMARY Accounting for the impact of AGEs on the skeleton in CKD patients may improve our estimation of overall bone quality, fracture risk, and treatments to improve both bone quantity and quality by reducing AGEs in patients with CKD merit investigation in order to improve our understanding of the etiology of increased fracture risk.
Collapse
Affiliation(s)
- John G. Damrath
- Purdue University Weldon School of Biomedical Engineering, West Lafayette, IN, United States
| | - Amy Creecy
- Indiana University – Purdue University at Indianapolis Department of Biomedical Engineering, Indianapolis, IN, United States
| | - Joseph M. Wallace
- Indiana University – Purdue University at Indianapolis Department of Biomedical Engineering, Indianapolis, IN, United States
| | - Sharon M. Moe
- Indiana University School of Medicine, Division of Nephrology, Indianapolis, IN, United States
| |
Collapse
|
76
|
Yan J, He J, Spear A, Coats B. The Effect of Impact Angle and Fall Height on Skull Fracture Patterns in Infants. J Biomech Eng 2021; 143:071004. [PMID: 33704377 DOI: 10.1115/1.4050460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Indexed: 11/08/2022]
Abstract
Skull fracture is a common finding for both accidental and abusive head trauma in infants and young children, and may provide important clues as to the energy and directionality of the event leading to the skull fracture. However, little is understood regarding the mechanics of skull fracture in the pediatric skull, and how accidental fall parameters contribute to skull fracture patterns. The objectives of this research were to utilize a newly developed linear elastic fracture mechanics finite element model of infant skull fracture to investigate the effect of impact angle and fall height on the predictions of skull fracture patterns in infants. Nine impact angles of right parietal bone impacts were simulated from three different heights onto a rigid plate. The average ± standard deviation of the distance between the impact location and fracture initiation site was 8.0 ± 5.9 mm. Impact angle significantly affected the fracture initiation site (p < 0.0001) and orientation (p < 0.0001). A 15 deg variation in impact angle changed the initiation site up to 47 mm. The orientation of the fracture pattern was dependent on the impact location and ran either horizontal or vertical toward the ossification center of the bone. Fall height significantly affected the fracture length (p = 0.0356). Specifically, at the same impact angle, a 0.3 m increase in fall height increased the skull fracture length by 21.39 ± 34.26 mm. These data indicate that environmental variability needs to be carefully considered when evaluating infant skull fracture patterns from low-height falls.
Collapse
Affiliation(s)
- Jiawei Yan
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112
| | - Junyan He
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112
| | - Ashely Spear
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112
| | - Brittany Coats
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
77
|
Albert DL, Katzenberger MJ, Agnew AM, Kemper AR. A comparison of rib cortical bone compressive and tensile material properties: Trends with age, sex, and loading rate. J Mech Behav Biomed Mater 2021; 122:104668. [PMID: 34265671 DOI: 10.1016/j.jmbbm.2021.104668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/16/2021] [Accepted: 06/26/2021] [Indexed: 11/18/2022]
Abstract
The objectives of this study were to develop novel methods for quantifying human rib cortical bone material properties in compression and to compare the compressive material property data to existing tensile data for matched subjects. Cylindrical coupons were obtained from the rib cortical bone of 30 subjects (M = 19, F = 11) ranging from 18 to 95 years of age (Avg. = 48.5 ± 24.3). Two coupons were obtained from each subject. One coupon was tested in compression at 0.005 strain/s, while the other coupon was tested in compression at 0.5 strain/s. Load and displacement data were recorded so that the elastic modulus, yield stress, yield strain, ultimate stress, ultimate strain, elastic strain energy density (SED), plastic SED, and total SED could be calculated. All compressive material properties were significantly different between the two loading rates. An ANOVA revealed that sex alone had no significant effect on the compressive material properties. The interaction between sex and age was significant for some material properties, but this may have been a consequence of the lack of older females in the subject pool. None of the compressive material properties were significantly correlated with age, but were more correlated with sample density. This finding differed for the tensile material properties, which showed stronger correlations with age. When comparing between tension and compression, significant differences were observed for all material properties except for the total SED, once the effects of loading rate and age had been accounted for. This was the first study to quantify the material properties of human rib cortical bone in compression. The results of this study demonstrated that rib and thorax finite element models should consider the effects of loading rate, loading mode, and age when incorporating material properties published in the literature.
Collapse
Affiliation(s)
- Devon L Albert
- Virginia Tech - Wake Forest, Center for Injury Biomechanics, USA
| | | | - Amanda M Agnew
- The Ohio State University, Injury Biomechanics Research Center, USA
| | - Andrew R Kemper
- Virginia Tech - Wake Forest, Center for Injury Biomechanics, USA.
| |
Collapse
|
78
|
Fang L, Zhong S, Ma D, Li C, Hao Y, Gao Y, Zhang L, Shen L. A cross-sectional study: an assessment of low muscle mass and osteoporosis in type 2 diabetes mellitus patients with a high glycated hemoglobin level. Ther Adv Chronic Dis 2021; 12:20406223211026762. [PMID: 34262679 PMCID: PMC8246566 DOI: 10.1177/20406223211026762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 06/02/2021] [Indexed: 12/05/2022] Open
Abstract
Background: Low muscle mass and osteoporosis are commonly observed in individuals with type 2 diabetes mellitus (T2DM). We investigated the prevalence of low muscle mass and osteoporosis in patients with T2DM who had high glycated hemoglobin (HbA1c) levels. Methods: We included 187 Chinese patients with T2DM who were aged ⩾50 years and evaluated their body composition using dual-energy X-ray absorptiometry. We measured levels of fasting blood glucose, HbA1c, B collagen-specific sequences (B-CTX), osteocalcin (OC), propeptide of type 1 procollagen (P1NP), and 25-hydroxy vitamin D. Results: Of the total patients, 82 were men and 105 were women. The prevalence rates of low muscle mass, osteopenia, and osteoporosis were 35.8%, 38.0%, and 31.0%, respectively. The prevalence rate of low muscle mass was significantly higher in women with HbA1c levels >9.0% than in those with HbA1c levels <9.0%. The prevalence rates of osteopenia and osteoporosis in men with HbA1c levels >9.0% differed significantly from those with HbA1c levels <9.0%. The appendicular skeletal muscle mass index (ASMI), trunk muscle mass, lumbar spinal bone mineral content (BMC), lumbar spine BMD, femoral BMC, and femoral BMD were significantly decreased, and the serum levels of B-CTX, OC, and P1NP were significantly increased in patients with T2DM who had osteoporosis. The ASMI was associated with osteopenia/osteoporosis in men and women with T2DM. Conclusions: In patients with T2DM, high HbA1c levels were associated with higher prevalence rates of low muscle mass in women and osteoporosis in men, and ASMI was a risk factor of osteoporosis.
Collapse
Affiliation(s)
- Lingna Fang
- Department of Endocrinology and Metabolism, Kunshan Hospital Affiliated with Jiangsu University, Qianjin Road 91#, Kunshan, 215300, China
| | - Shao Zhong
- Department of Endocrinology and Metabolism, Kunshan Hospital Affiliated with Jiangsu University, Kunshan, China
| | - Dan Ma
- Department of Endocrinology and Metabolism, Kunshan Hospital Affiliated with Jiangsu University, Kunshan, China
| | - Chong Li
- Department of Orthopaedics, Kunshan Hospital Affiliated with Jiangsu University, Kunshan, China
| | - Yanmin Hao
- Department of Orthopaedics, Kunshan Hospital Affiliated with Jiangsu University, Kunshan, China
| | - Yan Gao
- Department of Orthopaedics, Kunshan Hospital Affiliated with Jiangsu University, Kunshan, China
| | - Li Zhang
- Department of Endocrinology and Metabolism, Kunshan Hospital Affiliated with Jiangsu University, Kunshan, China
| | - Liwen Shen
- Department of Endocrinology and Metabolism, Kunshan Hospital Affiliated with Jiangsu University, Kunshan, China
| |
Collapse
|
79
|
Biomechanical Behavior Characterization and Constitutive Models of Porcine Trabecular Tibiae. BIOLOGY 2021; 10:biology10060532. [PMID: 34203633 PMCID: PMC8232288 DOI: 10.3390/biology10060532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022]
Abstract
Customizing any trauma surgery requires prior planning by surgeons. Nowadays, the use of numerical tools is increasingly needed to facilitate this planning. The success of this analysis begins with the definition of all the mechanical constitutive models of the materials implied. Our target is the trabecular bone because almost all trauma surgeries are closely related to it. This work focuses on the experimental characterization of porcine trabecular tibiae and defining its best constitutive model. Therefore, different types of compression tests were performed with tibia samples. Once the potential constitutive models were defined, stress-strain state from numerical approaches were compared with the corresponding experimental results. Experimental results from uniaxial compression tests showed than trabecular bone exhibits clear anisotropy with more stiffness and strength when it is loaded in the tibia longitudinal direction. Results from confined compression tests confirmed that the plastic behavior of trabecular bone depends on the hydrostatic and deviatoric invariants, so an alternative formulation (crushable foam volumetric (CFV)) has been proposed to describe its behavior. A new method to obtain CFV characteristic parameters has been developed and validated. Predictions of the CFV model better describe trabecular bone mechanical behavior under confined conditions. In other cases, classical plasticity formulations work better.
Collapse
|
80
|
Eby MR, Cristino DM, Counihan M, Masada KM, Ahn J, Hast MW. Immersion in Raloxifene does not significantly improve bone toughness or screw pull-out strength in multiple in vitro models. BMC Musculoskelet Disord 2021; 22:468. [PMID: 34022860 PMCID: PMC8141119 DOI: 10.1186/s12891-021-04342-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/04/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Failure of surgical fixation in orthopaedic fractures occurs at a significantly higher rate in osteoporotic patients due to weakened osteoporotic bone. A therapy to acutely improve the mechanical properties of bone during fracture repair would have profound clinical impact. A previous study has demonstrated an increase in mechanical properties of acellular cortical canine bone after immersion in raloxifene. The goal of this study was to determine if similar treatment yields the same results in cancellous fetal bovine bone and whether this translates into a difference in screw pull-out strength in human cadaveric tissue. METHODS Cancellous bone from fetal bovine distal femora underwent quasi-static four-point bending tests after being immersed in either raloxifene (20 μM) or phosphate-buffered saline as a control for 7 days (n = 10). Separately, 5 matched pairs of human osteoporotic cadaveric humeral heads underwent the same procedure. Five 3.5 mm unicortical cancellous screws were then inserted at standard surgical fixation locations to a depth of 30 mm and quasi-static screw pull-out tests were performed. RESULTS In the four-point bending tests, there were no significant differences between the raloxifene and control groups for any of the mechanical properties - including stiffness (p = 0.333) and toughness (p = 0.546). In the screw pull-out tests, the raloxifene soaked samples and control samples had pullout strengths of 122 ± 74.3 N and 89.5 ± 63.8 N, respectively. CONCLUSIONS Results from this study indicate that cancellous fetal bovine samples did not demonstrate an increase in toughness with raloxifene treatment, which is in contrast to previously published data that studied canine cortical bone. In vivo experiments are likely required to determine whether raloxifene will improve implant fixation.
Collapse
Affiliation(s)
- Michael R Eby
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Danielle M Cristino
- Biedermann Lab for Orthopaedic Research, University of Pennsylvania, 3450 Hamilton Walk, 373A Stemmler Hall, Philadelphia, PA, 19104, USA
| | - Matthew Counihan
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Kendall M Masada
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Jaimo Ahn
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Michael W Hast
- Biedermann Lab for Orthopaedic Research, University of Pennsylvania, 3450 Hamilton Walk, 373A Stemmler Hall, Philadelphia, PA, 19104, USA.
| |
Collapse
|
81
|
Napoli N, Incalzi RA, De Gennaro G, Marcocci C, Marfella R, Papalia R, Purrello F, Ruggiero C, Tarantino U, Tramontana F, Conte C. Bone fragility in patients with diabetes mellitus: A consensus statement from the working group of the Italian Diabetes Society (SID), Italian Society of Endocrinology (SIE), Italian Society of Gerontology and Geriatrics (SIGG), Italian Society of Orthopaedics and Traumatology (SIOT). Nutr Metab Cardiovasc Dis 2021; 31:1375-1390. [PMID: 33812734 DOI: 10.1016/j.numecd.2021.01.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 02/08/2023]
Abstract
Bone fragility is one of the possible complications of diabetes, either type 1 (T1D) or type 2 (T2D). Bone fragility can affect patients of different age and with different disease severity depending on type of diabetes, disease duration and the presence of other complications. Fracture risk assessment should be started at different stages in the natural history of the disease depending on the type of diabetes and other risk factors. The risk of fracture in T1D is higher than in T2D, imposing a much earlier screening and therapeutic intervention that should also take into account a patient's life expectancy, diabetes complications etc. The therapeutic armamentarium for T2D has been enriched with drugs that may influence bone metabolism, and clinicians should be aware of these effects. Considering the complexity of diabetes and osteoporosis and the range of variables that influence treatment choices in a given individual, the Working Group on bone fragility in patients with diabetes mellitus has identified and issued recommendations based on the variables that should guide screening of bone fragility and management of diabetes and bone fragility: (A)ge, (B)MD, (C)omplications, (D)uration of disease, & (F)ractures (ABCD&F). Consideration of these parameters may help clinicians identify the best time for screening, the appropriate glycaemic target and anti-osteoporosis drug for patients with diabetes at risk of or with bone fragility.
Collapse
Affiliation(s)
- Nicola Napoli
- Unit of Endocrinology and Diabetes, Departmental Faculty of Medicine and Surgery, Campus Bio-Medico University of Rome, Rome, Italy; Division of Bone and Mineral Diseases, Washington University in St. Louis, St. Louis, MO, USA.
| | - Raffaele A Incalzi
- Unit of Geriatrics, Departmental Faculty of Medicine and Surgery, Campus Bio-Medico University of Rome, Rome, Italy.
| | - Giovanni De Gennaro
- Diabetes Center, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Claudio Marcocci
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rocco Papalia
- Unit of Orthopedic and Trauma Surgery, Departmental Faculty of Medicine and Surgery, Campus Bio-Medico University of Rome, Rome, Italy
| | - Francesco Purrello
- Department of Clinical and Experimental Medicine, University of Catania, 95100 Catania, Italy; Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, Catania, Italy
| | - Carmelinda Ruggiero
- Institute of Gerontology and Geriatrics, Department of Medicine, University of Perugia, Perugia, Italy
| | - Umberto Tarantino
- Department of Clinical Sciences and Translational Medicine, Faculty of Medicine and Surgery, "Tor Vergata" University of Rome, Rome, Italy; Department of Orthopaedics and Traumatology, "Policlinico Tor Vergata" Foundation, Rome, Italy
| | - Flavia Tramontana
- Unit of Endocrinology and Diabetes, Departmental Faculty of Medicine and Surgery, Campus Bio-Medico University of Rome, Rome, Italy
| | - Caterina Conte
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy; Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| |
Collapse
|
82
|
Frank M, Reisinger AG, Pahr DH, Thurner PJ. Effects of Osteoporosis on Bone Morphometry and Material Properties of Individual Human Trabeculae in the Femoral Head. JBMR Plus 2021; 5:e10503. [PMID: 34189388 PMCID: PMC8216141 DOI: 10.1002/jbm4.10503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/30/2021] [Accepted: 04/10/2021] [Indexed: 12/02/2022] Open
Abstract
Osteoporosis is the most common bone disease and is conventionally classified as a decrease of total bone mass. Current diagnosis of osteoporosis is based on clinical risk factors and dual energy X‐ray absorptiometry (DEXA) scans, but changes in bone quantity (bone mass) and quality (trabecular structure, material properties, and tissue composition) are not distinguished. Yet, osteoporosis is known to cause a deterioration of the trabecular network, which might be related to changes at the tissue scale—the material properties. The goal of the current study was to use a previously established test method to perform a thorough characterization of the material properties of individual human trabeculae from femoral heads in cyclic tensile tests in a close to physiologic, wet environment. A previously developed rheological model was used to extract elastic, viscous, and plastic aspects of material behavior. Bone morphometry and tissue mineralization were determined with a density calibrated micro‐computed tomography (μCT) set‐up. Osteoporotic trabeculae neither showed a significantly changed material or mechanical behavior nor changes in tissue mineralization, compared with age‐matched healthy controls. However, donors with osteopenia indicated significantly reduced apparent yield strain and elastic work with respect to osteoporosis, suggesting possible initial differences at disease onset. Bone morphometry indicated a lower bone volume to total volume for osteoporotic donors, caused by a smaller trabecular number and a larger trabecular separation. A correlation of age with tissue properties and bone morphometry revealed a similar behavior as in osteoporotic bone. In the range studied, age does affect morphometry but not material properties, except for moderately increased tissue strength in healthy donors and moderately increased hardening exponent in osteoporotic donors. Taken together, the distinct changes of trabecular bone quality in the femoral head caused by osteoporosis and aging could not be linked to suspected relevant changes in material properties or tissue mineralization. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Martin Frank
- Institute of Lightweight Design and Structural Biomechanics TU Wien Gumpendorfer Straße 7 Vienna 1060 Austria
| | - Andreas G Reisinger
- Department of Anatomy and Biomechanics, Division Biomechanics Karl Landsteiner University of Health Sciences Dr. Karl-Dorrek-Straße 30 Krems 3500 Austria
| | - Dieter H Pahr
- Institute of Lightweight Design and Structural Biomechanics TU Wien Gumpendorfer Straße 7 Vienna 1060 Austria.,Department of Anatomy and Biomechanics, Division Biomechanics Karl Landsteiner University of Health Sciences Dr. Karl-Dorrek-Straße 30 Krems 3500 Austria
| | - Philipp J Thurner
- Institute of Lightweight Design and Structural Biomechanics TU Wien Gumpendorfer Straße 7 Vienna 1060 Austria
| |
Collapse
|
83
|
Influence of non-enzymatic glycation on the mechanical properties of cortical bone. J Mech Behav Biomed Mater 2021; 119:104553. [PMID: 33930651 DOI: 10.1016/j.jmbbm.2021.104553] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/01/2021] [Accepted: 04/19/2021] [Indexed: 01/22/2023]
Abstract
Poor bone quality induced by non-enzymatic glycation (NEG) of bone tissue in patients with type 2 diabetes mellitus (T2DM) is regarded as the major factor of bone fragility and affecting bone mechanical properties. A comprehensive and systemic mechanical investigation for evaluating the effect of NEG on bone was still lacking. In order to provide additional information for the bone quality of T2DM, the effects of NEG on mechanical properties of cortical bone were investigated in terms of elastoplasticity, fracture toughness and viscoelasticity. All samples of cortical bone, including the samples of strength test (n = 20), fracture toughness test (n = 40, quasi-static and fall-like conditions with displacement rates of 10-3 mm/s and 10 mm/s, respectively) and stress relaxation test (n = 20), were harvested from bovine tibiae. The samples of each test were equally divided into incubated-control group and ribose-incubated group. All mechanical tests were performed after incubating all samples for 15 days. Post-yield strain (p = 0.014), post-yield energy (p < 0.0001) and damage fraction (p = 0.040) of ribose-incubated group were significantly lower than those of incubated-control group, but secant modulus (p = 0.029) of ribose-incubated group was significantly higher than that of incubated-control group. In quasi-static condition, the plastic contribution Jpl of fracture toughness (p = 0.043) of ribose-incubated group was significantly lower than that of incubated-control group. In fall-like condition, there were no differences in Jpl, elastic contribution Jel and J-integral in both two groups. The quasi-static Jel (p < 0.0001, p < 0.0001) of incubated-control and ribose-incubated groups and J-integral (p = 0.007) of incubated-control group were all significantly higher than those of fall-like condition. In stress relaxation test, initial modulus E0 (p = 0.040) and equilibrium modulus (p = 0.029) of ribose-incubated group were significantly higher than those of incubated-control group. Reductions of relaxation modulus, which were the differences between two adjacent time points within 700 s-3000 s for ribose-incubated group, were significantly lower than those of incubated-control group. NEG could decrease the post-yield properties and quasi-static facture toughness of cortical bone, especially the plastic contribution of quasi-static fracture toughness. It could also decrease the viscoelasticity of cortical bone. The present study confirmed the negative effects of NEG on the mechanical properties of cortical bone in terms of elastoplasticity, fracture toughness and viscoelasticity, but NEG had no significant effect on the fracture toughness of cortical bone at fall-like loading. These results provided more evidence for increased fragility of cortical bone in patients with T2DM.
Collapse
|
84
|
Pang S, Su FY, Green A, Salim J, McKittrick J, Jasiuk I. Comparison of different protocols for demineralization of cortical bone. Sci Rep 2021; 11:7012. [PMID: 33782429 PMCID: PMC8007753 DOI: 10.1038/s41598-021-86257-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 03/03/2021] [Indexed: 11/09/2022] Open
Abstract
Bone is a biological composite material consisting of two main components: collagen and mineral. Collagen is the most abundant protein in vertebrates, which makes it of high clinical and scientific interest. In this paper, we compare the composition and structure of cortical bone demineralized using several protocols: ethylene-diamine-tetraacetic acid (EDTA), formic acid (CH2O2), hydrochloric acid (HCl), and HCl/EDTA mixture. The efficiencies of these four agents were investigated by assessing the remaining mineral quantities and collagen integrity with various experimental techniques. Raman spectroscopy results show that the bone demineralized by the CH2O2 agent has highest collagen quality parameter. The HCl/EDTA mixture removes the most mineral, but it affects the collagen secondary structure as amide II bands are shifted as observed by Fourier transform infrared spectroscopy. Thermogravimetric analysis reveals that HCl and EDTA are most effective in removing the mineral with bulk measurements. In summary, we conclude that HCl best demineralizes bone, leaving the well-preserved collagen structure in the shortest time. These findings guide on the best demineralization protocol to obtain high-quality collagen from bone for clinical and scientific applications.
Collapse
Affiliation(s)
- Siyuan Pang
- Department of Mechanical Science and Engineering, University of Illinois at Urbana Champaign, 1206 West Green Street, Urbana, IL, 61801, USA
| | - Frances Y Su
- Department of Mechanical and Aerospace Engineering and Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093-0411, USA
| | - Amesha Green
- Department of Chemical, Biological, and Bio Engineering, North Carolina Agricultural and Technical State University, 1601 E Market St, Greensboro, NC, 27401, USA
| | - Justin Salim
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0412, USA
| | - Joanna McKittrick
- Department of Mechanical and Aerospace Engineering and Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093-0411, USA
| | - Iwona Jasiuk
- Department of Mechanical Science and Engineering, University of Illinois at Urbana Champaign, 1206 West Green Street, Urbana, IL, 61801, USA.
| |
Collapse
|
85
|
Unal M. Raman spectroscopic determination of bone matrix quantity and quality augments prediction of human cortical bone mechanical properties. J Biomech 2021; 119:110342. [PMID: 33706105 DOI: 10.1016/j.jbiomech.2021.110342] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/27/2020] [Accepted: 02/12/2021] [Indexed: 01/22/2023]
Abstract
Being independent contributors to bone mechanical resistance at the apparent level, quality and quantity of bone primary constituents are essential factors in better fracture risk assessment. Raman spectroscopy (RS) holds great potential for being a clinical tool with providing quality and quantity measurements of the bone mineralized matrix. Beyond mineral quality and quantity, recent years have revealed newly developed RS-derived bone compositional measurements focusing on organic matrix and water though their associations with bone mechanics have not been fully established yet. Herein, the author reported first thorough characterization study investigating associations between twenty different RS-derived measurements and mechanical properties of human cortical bone (i.e., yield and ultimate strength, elastic modulus, toughness, post-yield toughness, and post-yield strain). Forty-five rectangular human cortical beams harvested from all four anatomical quadrants of two male donors were tested under three-point bending. Raman spectra of each specimen were collected at the spectral range of 800 to 4000 cm-1. While correlations were tested among RS-derived measurements via Spearman's rank correlations, multivariate linear regression using mixed effects were used to determine the best RS-derived measurement or the combination of RS-derived measurements in predicting various mechanical properties of human cortical bone. Most of the RS-derived measurements were associated with the mechanical properties (Rm2 ranges from 8.9 to 68.3%, p < 0.05). The various linear combinations of six RS-derived measurements focusing on different aspects of bone matrix (i.e., ν1PO4/Amide I, ν1PO4/Amide III, Carbonate/ν1PO4, ~I1670/I1640, ~I3453/I2949, ~I3584/I2949) improved the prediction (Rm2 = 43.5 to 70.2%, p < 0.05). While a causal relationship still needs to be investigated, RS has a great potential to establish a robust patient-specific fracture risk prediction with the latest advances in technologies.
Collapse
Affiliation(s)
- Mustafa Unal
- Department of Mechanical Engineering, Karamanoglu Mehmetbey University, Karaman, Turkey; Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
86
|
Surowiec RK, Ram S, Idiyatullin D, Goulet R, Schlecht SH, Galban CJ, Kozloff KM. In vivo quantitative imaging biomarkers of bone quality and mineral density using multi-band-SWIFT magnetic resonance imaging. Bone 2021; 143:115615. [PMID: 32853850 PMCID: PMC7770067 DOI: 10.1016/j.bone.2020.115615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/29/2022]
Abstract
Bone is a composite biomaterial of mineral crystals, organic matrix, and water. Each contributes to bone quality and strength and may change independently, or together, with disease progression and treatment. Even so, there is a near ubiquitous reliance on ionizing x-ray-based approaches to measure bone mineral density (BMD) which is unable to fully characterize bone strength and may not adequately predict fracture risk. Characterization of treatment efficacy in bone diseases of altered remodeling is complicated by the lack of imaging modality able to safely monitor material-level and biochemical changes in vivo. To improve upon the current state of bone imaging, we tested the efficacy of Multi Band SWeep Imaging with Fourier Transformation (MB-SWIFT) magnetic resonance imaging (MRI) as a readout of bone derangement in an estrogen deficient ovariectomized (OVX) rat model during growth. MB-SWIFT MRI-derived BMD correlated significantly with BMD measured using micro-computed tomography (μCT). In this rodent model, growth appeared to overcome estrogen deficiency as bone mass continued to increase longitudinally over the duration of the study. Nonetheless, after 10 weeks of intervention, MB-SWIFT detected significant changes consistent with estrogen deficiency in cortical water, cortical matrix organization (T1), and marrow fat. Findings point to MB-SWIFT's ability to quantify BMD in good agreement with μCT while providing additive quantitative outcomes about bone quality in a manner consistent with estrogen deficiency. These results indicate MB-SWIFT as a non-ionizing imaging strategy with value for bone imaging and may be a promising technique to progress to the clinic for monitoring and clinical management of patients with bone diseases such as osteoporosis.
Collapse
Affiliation(s)
- Rachel K Surowiec
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Sundaresh Ram
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Djaudat Idiyatullin
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Robert Goulet
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Stephen H Schlecht
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Craig J Galban
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Kenneth M Kozloff
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
87
|
Creecy A, Brown KL, Rose KL, Voziyan P, Nyman JS. Post-translational modifications in collagen type I of bone in a mouse model of aging. Bone 2021; 143:115763. [PMID: 33220504 PMCID: PMC7968971 DOI: 10.1016/j.bone.2020.115763] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 01/05/2023]
Abstract
The fracture resistance of cortical bone and matrix hydration are known to decline with advanced aging. However, the underlying mechanisms remain poorly understood, and so we investigated levels of matrix proteins and post-translational modifications (PTM) of collagen I in extracts from the tibia of 6-mo. and 20-mo. old BALB/c mice (female and male analysis done separately). Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis revealed that the levels of collagen I deamidation at specific asparagine (Asn) and glutamine (Gln) residues significantly increased with age. Other non-enzymatic PTMs such as carboxymethylation of lysine (CML) were detected as well, but the relative abundance did not vary with age. No significant age-related differences in the abundance of hydroxylysine glycosylation sites were found, but hydroxylation levels at a few of the numerous lysine and proline hydroxylation sites significantly changed by a small amount with age. We performed molecular modeling and dynamics (MD) simulations for three triple helical fragments representing collagen I regions with prominent age-dependent increases in deamidation as identified by LC-MS/MS of male extracts. These 3 fragments included deamidated Asn and Gln residues as follows: 1) an Asn428 site of the α2(I) chain in which deamidation levels increased from 4.4% at 6-mo. to 8.1% at 20-mo., 2) an Asn983 site of the α2(I) chain with a deamidation increase from 18.3% to 36.8% with age and an Asn1052 site of the α1(I) chain with consistent deamidation levels of ~60% across the age groups, and 3) a Gln410 site of the α1(I) chain that went from no detectable deamidation at 6-mo. to 2.7% at 20-mo. and a neighboring Asn421 site of the same chain with an age-related deamidation increase from 3.6% to 16.3%. The deamidation levels at these sites inversely correlated with an estimate of toughness determined from three-point bending tests of the femur mid-diaphysis. MD revealed that the sidechains become more negatively charged at deamidated sites and that deamidation alters hydrogen bonding with water along the collagen backbone while increasing water interactions with the aspartic and glutamic acid sidechains. Our findings suggest a new mechanism of the age-dependent reduction in the fracture resistance of cortical bone whereby deamidation of Asn and Glu residues redistributes bound water within collagen I triple helix.
Collapse
Affiliation(s)
- Amy Creecy
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA; Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kyle L Brown
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Kristie L Rose
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Paul Voziyan
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Jeffry S Nyman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA; Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, USA.
| |
Collapse
|
88
|
Lugli F, Sciutto G, Oliveri P, Malegori C, Prati S, Gatti L, Silvestrini S, Romandini M, Catelli E, Casale M, Talamo S, Iacumin P, Benazzi S, Mazzeo R. Near-infrared hyperspectral imaging (NIR-HSI) and normalized difference image (NDI) data processing: An advanced method to map collagen in archaeological bones. Talanta 2021; 226:122126. [PMID: 33676680 DOI: 10.1016/j.talanta.2021.122126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/28/2022]
Abstract
In the present study, an innovative and highly efficient near-infrared hyperspectral imaging (NIR-HSI) method is proposed to provide spectral maps able to reveal collagen distribution in large-size bones, also offering semi-quantitative estimations. A recently introduced method for the construction of chemical maps, based on Normalized Difference Images (NDI), is declined in an innovative approach, through the exploitation of the NDI values computed for each pixel of the hyperspectral image to localize collagen and to extract information on its content by a direct comparison with known reference samples. The developed approach addresses an urgent issue of the analytical chemistry applied to bioarcheology researches, which rely on well-preserved collagen in bones to obtain key information on chronology, paleoecology and taxonomy. Indeed, the high demand for large-sample datasets and the consequent application of a wide variety of destructive analytical methods led to the considerable destruction of precious bone samples. NIR-HSI pre-screening allows researchers to properly select the sampling points for subsequent specific analyses, to minimize costs and time and to preserve integrity of archaeological bones (which are available in a very limited amount), providing further opportunities to understand our past.
Collapse
Affiliation(s)
- F Lugli
- University of Bologna, Department of Cultural Heritage, Ravenna Campus, Via Degli Ariani, 1, 48121, Ravenna, Italy
| | - G Sciutto
- University of Bologna, Department of Chemistry "G. Ciamician", Ravenna Campus, Via Guaccimanni, 42, 48121, Ravenna, Italy.
| | - P Oliveri
- University of Genova, Department of Pharmacy, Viale Cembrano 4, I-16148, Genova, Italy.
| | - C Malegori
- University of Genova, Department of Pharmacy, Viale Cembrano 4, I-16148, Genova, Italy
| | - S Prati
- University of Bologna, Department of Chemistry "G. Ciamician", Ravenna Campus, Via Guaccimanni, 42, 48121, Ravenna, Italy
| | - L Gatti
- University of Bologna, Department of Chemistry "G. Ciamician", Ravenna Campus, Via Guaccimanni, 42, 48121, Ravenna, Italy
| | - S Silvestrini
- University of Bologna, Department of Cultural Heritage, Ravenna Campus, Via Degli Ariani, 1, 48121, Ravenna, Italy
| | - M Romandini
- University of Bologna, Department of Cultural Heritage, Ravenna Campus, Via Degli Ariani, 1, 48121, Ravenna, Italy
| | - E Catelli
- University of Bologna, Department of Chemistry "G. Ciamician", Ravenna Campus, Via Guaccimanni, 42, 48121, Ravenna, Italy
| | - M Casale
- University of Genova, Department of Pharmacy, Viale Cembrano 4, I-16148, Genova, Italy
| | - S Talamo
- University of Bologna, Department of Chemistry "G. Ciamician", Via Selmi, 2, 40126, Bologna, Italy; Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - P Iacumin
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area Delle Scienze, 11/a, Parma, Italy
| | - S Benazzi
- University of Bologna, Department of Cultural Heritage, Ravenna Campus, Via Degli Ariani, 1, 48121, Ravenna, Italy; Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - R Mazzeo
- University of Bologna, Department of Chemistry "G. Ciamician", Ravenna Campus, Via Guaccimanni, 42, 48121, Ravenna, Italy
| |
Collapse
|
89
|
Stockhausen KE, Qwamizadeh M, Wölfel EM, Hemmatian H, Fiedler IAK, Flenner S, Longo E, Amling M, Greving I, Ritchie RO, Schmidt FN, Busse B. Collagen Fiber Orientation Is Coupled with Specific Nano-Compositional Patterns in Dark and Bright Osteons Modulating Their Biomechanical Properties. ACS NANO 2021; 15:455-467. [PMID: 33404232 DOI: 10.1021/acsnano.0c04786] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bone continuously adapts to its mechanical environment by structural reorganization to maintain mechanical strength. As the adaptive capabilities of bone are portrayed in its nano- and microstructure, the existence of dark and bright osteons with contrasting preferential collagen fiber orientation (longitudinal and oblique-angled, respectively) points at a required tissue heterogeneity that contributes to the excellent fracture resistance mechanisms in bone. Dark and bright osteons provide an exceptional opportunity to deepen our understanding of how nanoscale tissue properties influence and guide fracture mechanisms at larger length scales. To this end, a comprehensive structural, compositional, and mechanical assessment is performed using circularly polarized light microscopy, synchrotron nanocomputed tomography, focused ion beam/scanning electron microscopy, quantitative backscattered electron imaging, Fourier transform infrared spectroscopy, and nanoindentation testing. To predict how the mechanical behavior of osteons is affected by shifts in collagen fiber orientation, finite element models are generated. Fundamental disparities between both osteon types are observed: dark osteons are characterized by a higher degree of mineralization along with a higher ratio of inorganic to organic matrix components that lead to higher stiffness and the ability to resist plastic deformation under compression. On the contrary, bright osteons contain a higher fraction of collagen and provide enhanced ductility and energy dissipation due to lower stiffness and hardness.
Collapse
Affiliation(s)
- Kilian E Stockhausen
- Department of Osteology and Biomechanics, University Medical Center, Lottestrasse 55a, 22529 Hamburg, Germany
| | - Mahan Qwamizadeh
- Department of Osteology and Biomechanics, University Medical Center, Lottestrasse 55a, 22529 Hamburg, Germany
| | - Eva M Wölfel
- Department of Osteology and Biomechanics, University Medical Center, Lottestrasse 55a, 22529 Hamburg, Germany
- Forum Medical Technology Health Hamburg (FMTHH), Butenfeld 34, 22529 Hamburg, Germany
- Interdisciplinary Competence Center for Interface Research (ICCIR), Martinistrasse 52, 20251 Hamburg, Germany
| | - Haniyeh Hemmatian
- Department of Osteology and Biomechanics, University Medical Center, Lottestrasse 55a, 22529 Hamburg, Germany
| | - Imke A K Fiedler
- Department of Osteology and Biomechanics, University Medical Center, Lottestrasse 55a, 22529 Hamburg, Germany
- Forum Medical Technology Health Hamburg (FMTHH), Butenfeld 34, 22529 Hamburg, Germany
| | - Silja Flenner
- Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - Elena Longo
- Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center, Lottestrasse 55a, 22529 Hamburg, Germany
| | - Imke Greving
- Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - Robert O Ritchie
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Felix N Schmidt
- Department of Osteology and Biomechanics, University Medical Center, Lottestrasse 55a, 22529 Hamburg, Germany
- Forum Medical Technology Health Hamburg (FMTHH), Butenfeld 34, 22529 Hamburg, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center, Lottestrasse 55a, 22529 Hamburg, Germany
- Interdisciplinary Competence Center for Interface Research (ICCIR), Martinistrasse 52, 20251 Hamburg, Germany
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| |
Collapse
|
90
|
Age related changes of rib cortical bone matrix and the application to forensic age-at-death estimation. Sci Rep 2021; 11:2086. [PMID: 33483587 PMCID: PMC7822937 DOI: 10.1038/s41598-021-81342-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/22/2020] [Indexed: 01/30/2023] Open
Abstract
Forensic anthropology includes, amongst other applications, the positive identification of unknown human skeletal remains. The first step in this process is an assessment of the biological profile, that is: sex, age, stature and ancestry. In forensic contexts, age estimation is one of the main challenges in the process of identification. Recently established admissibility criteria are driving researchers towards standardisation of methodological procedures. Despite these changes, experience still plays a central role in anthropological examinations. In order to avoid this issue, age estimation procedures (i) must be presented to the scientific community and published in peer reviewed journals, (ii) accurately explained in terms of procedure and (iii) present clear information about the accuracy of the estimation and possible error rates. In order to fulfil all these requirements, a number of methods based on physiological processes which result in biochemical changes in various tissue structures at the molecular level, such as modifications in DNA-methylation and telomere shortening, racemization of proteins and stable isotopes analysis, have been developed. The current work proposes a new systematic approach in age estimation based on tracing physicochemical and mechanical degeneration of the rib cortical bone matrix. This study used autopsy material from 113 rib specimens. A set of 33 parameters were measured by standard bio-mechanical (nanoindentation and microindentation), physical (TGA/DSC, XRD and FTIR) and histomorphometry (porosity-ImageJ) methods. Stepwise regressions were used to create equations that would produce the best 'estimates of age at death' vs real age of the cadavers. Five equations were produced; in the best of cases an equation counting 7 parameters had an R2 = 0.863 and mean absolute error of 4.64 years. The present method meets all the admissibility criteria previously described. Furthermore, the method is experience-independent and as such can be performed without previous expert knowledge of forensic anthropology and human anatomy.
Collapse
|
91
|
Yoshioka H, Mikami Y, Ramakrishnan SS, Suzuki A, Iwata J. MicroRNA-124-3p Plays a Crucial Role in Cleft Palate Induced by Retinoic Acid. Front Cell Dev Biol 2021; 9:621045. [PMID: 34178974 PMCID: PMC8219963 DOI: 10.3389/fcell.2021.621045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 05/05/2021] [Indexed: 01/13/2023] Open
Abstract
Cleft lip with/without cleft palate (CL/P) is one of the most common congenital birth defects, showing the complexity of both genetic and environmental contributions [e.g., maternal exposure to alcohol, cigarette, and retinoic acid (RA)] in humans. Recent studies suggest that epigenetic factors, including microRNAs (miRs), are altered by various environmental factors. In this study, to investigate whether and how miRs are involved in cleft palate (CP) induced by excessive intake of all-trans RA (atRA), we evaluated top 10 candidate miRs, which were selected through our bioinformatic analyses, in mouse embryonic palatal mesenchymal (MEPM) cells as well as in mouse embryos treated with atRA. Among them, overexpression of miR-27a-3p, miR-27b-3p, and miR-124-3p resulted in the significant reduction of cell proliferation in MEPM cells through the downregulation of CP-associated genes. Notably, we found that excessive atRA upregulated the expression of miR-124-3p, but not of miR-27a-3p and miR-27b-3p, in both in vivo and in vitro. Importantly, treatment with a specific inhibitor for miR-124-3p restored decreased cell proliferation through the normalization of target gene expression in atRA-treated MEPM cells and atRA-exposed mouse embryos, resulting in the rescue of CP in mice. Taken together, our results indicate that atRA causes CP through the induction of miR-124-3p in mice.
Collapse
Affiliation(s)
- Hiroki Yoshioka
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yurie Mikami
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Sai Shankar Ramakrishnan
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Akiko Suzuki
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Junichi Iwata
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, United States.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
92
|
Mieczkowska A, Bouvard B, Legrand E, Mabilleau G. [Gly²]-GLP-2, But Not Glucagon or [D-Ala²]-GLP-1, Controls Collagen Crosslinking in Murine Osteoblast Cultures. Front Endocrinol (Lausanne) 2021; 12:721506. [PMID: 34421828 PMCID: PMC8371440 DOI: 10.3389/fendo.2021.721506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/16/2021] [Indexed: 11/23/2022] Open
Abstract
Bone tissue is organized at the molecular level to resist fracture with the minimum of bone material. This implies that several modifications of the extracellular matrix, including enzymatic collagen crosslinking, take place. We previously highlighted the role of several gut hormones in enhancing collagen maturity and bone strength. The present study investigated the effect of proglucagon-derived peptides on osteoblast-mediated collagen post-processing. Briefly, MC3T3-E1 murine osteoblasts were cultured in the presence of glucagon (GCG), [D-Ala²]-glucagon-like peptide-1 ([D-Ala²]-GLP-1), and [Gly²]-glucagon-like peptide-2 ([Gly²]-GLP-2). Gut hormone receptor expression at the mRNA and protein levels were investigated by qPCR and Western blot. Extent of collagen postprocessing was examined by Fourier transform infrared microspectroscopy. GCG and GLP-1 receptors were not evidenced in osteoblast cells at the mRNA and protein levels. However, it is not clear whether the known GLP-2 receptor is expressed. Nevertheless, administration of [Gly²]-GLP-2, but not GCG or [D-Ala²]-GLP-1, led to a dose-dependent increase in collagen maturity and an acceleration of collagen post-processing. This mechanism was dependent on adenylyl cyclase activation. In conclusion, the present study highlighted a direct effect of [Gly²]-GLP-2 to enhance collagen post-processing and crosslinking maturation in murine osteoblast cultures. Whether this effect is translatable to human osteoblasts remains to be elucidated.
Collapse
Affiliation(s)
| | - Beatrice Bouvard
- Univ Angers, GEROM, SFR ICAT, Angers, France
- CHU Angers, Rheumatology Department, Angers, France
| | - Erick Legrand
- Univ Angers, GEROM, SFR ICAT, Angers, France
- CHU Angers, Rheumatology Department, Angers, France
| | - Guillaume Mabilleau
- Univ Angers, GEROM, SFR ICAT, Angers, France
- CHU Angers, Bone Pathology Unit, Angers, France
- *Correspondence: Guillaume Mabilleau,
| |
Collapse
|
93
|
Pentosidine and carboxymethyl-lysine associate differently with prevalent osteoporotic vertebral fracture and various bone markers. Sci Rep 2020; 10:22090. [PMID: 33328494 PMCID: PMC7744574 DOI: 10.1038/s41598-020-78993-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/30/2020] [Indexed: 02/08/2023] Open
Abstract
Pentosidine (PEN) and carboxymethyl-lysine (CML) are well-recognized advanced glycation end products (AGEs). However, how these AGEs affect the pathophysiology of osteoporosis and osteoporotic fractures remains controversial. This cross-sectional study aimed to investigate the associations of PEN and CML with bone markers, bone mineral density (BMD), and osteoporotic fractures in postmenopausal women from the Nagano Cohort Study. A total of 444 Japanese postmenopausal outpatients (mean ± standard deviation age: 69.8 ± 10.2 years) were enrolled after the exclusion of patients with acute or severe illness or secondary osteoporosis. The relationships among urinary PEN and serum CML levels, various bone markers, lumbar and hip BMD, and prevalent vertebral and long-bone fractures were evaluated. PEN associated significantly with prevalent vertebral fracture after adjustment for other confounders (odds ratio [OR] 1.59, 95% confidence interval [CI] 1.22-2.07; P < 0.001), but not with lumbar BMD. In contrast, a significant negative correlation was found between CML and lumbar BMD (r = - 0.180; P < 0.001), and this relationship was significant after adjustment for confounders (OR 0.84, 95% CI 0.76-0.93; P < 0.01). Although patients with prevalent vertebral fracture had significantly higher CML levels, the association between CML and prevalent vertebral fracture did not reach significance in the multivariate regression model. Both PEN and CML may play important roles in bone health for postmenopausal women, possibly via different mechanisms.
Collapse
|
94
|
Whyne CM, Ferguson D, Clement A, Rangrez M, Hardisty M. Biomechanical Properties of Metastatically Involved Osteolytic Bone. Curr Osteoporos Rep 2020; 18:705-715. [PMID: 33074529 DOI: 10.1007/s11914-020-00633-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE OF REVIEW Skeletal metastasis involves the uncoupling of physiologic bone remodeling resulting in abnormal bone turnover and radical changes in bony architecture, density, and quality. Bone strength assessment and fracture risk prediction are critical in clinical treatment decision-making. This review focuses on bone tissue and structural mechanisms altered by osteolytic metastasis and the resulting changes to its material and mechanical behavior. RECENT FINDINGS Both organic and mineral phases of bone tissue are altered by osteolytic metastatic disease, with diminished bone quality evident at multiple length-scales. The mechanical performance of bone with osteolytic lesions is influenced by a combination of tissue-level and structural changes. This review considers the effects of osteolytic metastasis on bone biomechanics demonstrating its negative impact at tissue and structural levels. Future studies need to assess the cumulative impact of cancer treatments on metastatically involved bone quality, and its utility in directing multimodal treatment planning.
Collapse
Affiliation(s)
- Cari M Whyne
- Orthopaedic Biomechanics Lab, Sunnybrook Research Institute, University of Toronto, Toronto, Canada.
- Department of Surgery, University of Toronto, Toronto, Canada.
- Biomedical Engineering, University of Toronto, Toronto, Canada.
| | - Dallis Ferguson
- Orthopaedic Biomechanics Lab, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
- Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Allison Clement
- Orthopaedic Biomechanics Lab, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Mohammedayaz Rangrez
- Orthopaedic Biomechanics Lab, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Michael Hardisty
- Orthopaedic Biomechanics Lab, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| |
Collapse
|
95
|
XRD and ATR-FTIR techniques for integrity assessment of gamma radiation sterilized cortical bone pretreated by antioxidants. Cell Tissue Bank 2020; 22:305-321. [PMID: 33165827 DOI: 10.1007/s10561-020-09879-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/30/2020] [Indexed: 01/22/2023]
Abstract
Terminal sterilization of bone allograft by gamma radiation is required to reduce the risk of infection. Free radical scavengers could be utilized to minimize the deteriorating effects of gamma radiation on bone allograft mechanical properties. The objective of this research is to assess the changes in structural and chemical composition induced by hydroxytyrosol (HT) and alpha lipoic acid (ALA) free radical scavengers in gamma sterilized cortical bone. Bovine femurs specimens were soaked in different concentrations of HT and ALA for 7 and 3 days respectively before irradiation with 35 KGy gamma radiation. The attenuated total reflection-Fourier transform infrared spectroscopy and the X-ray diffraction techniques were utilized to analyze the changes in chemical composition induced by irradiation in the presence of free radical scavengers. A significant increase in the proportion of amide I and amide II to phosphate was noticed in the irradiated group, while in the pretreated groups with ALA and HT this effect was minimized. In addition, gamma radiation reduced the mature to immature cross links while ALA and HT alleviated this reduction. No significant changes were noticed in the mineral crystallinity or crystal size. Bone chemical structure has been changed due to gamma irradiation and these changes are mainly relevant to amide I, amide II proportions and collagen crosslinks. The deteriorating effects of gamma sterilization dose (35 kGy) on chemical structure of bone allograft can be alleviated by using (HT) and (ALA) free radical scavengers before irradiation.
Collapse
|
96
|
Arakawa S, Suzuki R, Kurosaka D, Ikeda R, Hayashi H, Kayama T, Ohno RI, Nagai R, Marumo K, Saito M. Mass spectrometric quantitation of AGEs and enzymatic crosslinks in human cancellous bone. Sci Rep 2020; 10:18774. [PMID: 33139851 PMCID: PMC7606603 DOI: 10.1038/s41598-020-75923-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Advanced glycation end-products (AGEs) deteriorate bone strength. Among over 40 species identified in vivo, AGEs other than pentosidine were roughly estimated as total fluorescent AGEs (tfAGEs) due to technical difficulties. Using LC-QqTOF-MS, we established a system that enabled the quantitation of five AGEs (CML, CEL, MG-H1, CMA and pentosidine) as well as two mature and three immature enzymatic crosslinks. Human bone samples were collected from 149 patients who underwent total knee arthroplasty. Their clinical parameters were collected to investigate parameters that may be predictive of AGE accumulation. All the analytes were quantitated and showed significant linearity with high sensitivity and precision. The results showed that MG-H1 was the most abundant AGE, whereas pentosidine was 1/200-1/20-fold less abundant than the other four AGEs. The AGEs were significantly and strongly correlated with pentosidine, while showing moderate correlation with tfAGEs. Interestingly, multiple linear regression analysis revealed that gender contributed most to the accumulation of all the AGEs, followed by age, tartrate-resistant acid phosphatase-5b and HbA1c. Furthermore, the AGEs were negatively correlated with immature crosslinks. Mass spectrometric quantitation of AGEs and enzymatic crosslinks is crucial to a better understanding of ageing- and disease-related deterioration of bone strength.
Collapse
Affiliation(s)
- Shoutaro Arakawa
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan.
- Laboratory of Food and Regulation Biology, School of Agriculture, Tokai University, 9-1-1, Toroku, Higashi-ku, Kumamoto, 862-8652, Japan.
| | - Ryusuke Suzuki
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
- Laboratory of Food and Regulation Biology, School of Agriculture, Tokai University, 9-1-1, Toroku, Higashi-ku, Kumamoto, 862-8652, Japan
| | - Daisaburo Kurosaka
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Ryo Ikeda
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Hiroteru Hayashi
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Tomohiro Kayama
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Rei-Ichi Ohno
- Laboratory of Food and Regulation Biology, School of Agriculture, Tokai University, 9-1-1, Toroku, Higashi-ku, Kumamoto, 862-8652, Japan
| | - Ryoji Nagai
- Laboratory of Food and Regulation Biology, School of Agriculture, Tokai University, 9-1-1, Toroku, Higashi-ku, Kumamoto, 862-8652, Japan
| | - Keishi Marumo
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Mitsuru Saito
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| |
Collapse
|
97
|
Root fractures in seniors: Consequences of acute embrittlement of dentin. Dent Mater 2020; 36:1464-1473. [DOI: 10.1016/j.dental.2020.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 07/03/2020] [Accepted: 08/29/2020] [Indexed: 12/17/2022]
|
98
|
Wang Q, Tang T, Cooper D, Eltit F, Fratzl P, Guy P, Wang R. Globular structure of the hypermineralized tissue in human femoral neck. J Struct Biol 2020; 212:107606. [PMID: 32905849 DOI: 10.1016/j.jsb.2020.107606] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 10/23/2022]
Abstract
Bone becomes more fragile with ageing. Among many structural changes, a thin layer of highly mineralized and brittle tissue covers part of the external surface of the thin femoral neck cortex in older people and has been proposed to increase hip fragility. However, there have been very limited reports on this hypermineralized tissue in the femoral neck, especially on its ultrastructure. Such information is critical to understanding both the mineralization process and its contributions to hip fracture. Here, we use multiple advanced techniques to characterize the ultrastructure of the hypermineralized tissue in the neck across various length scales. Synchrotron radiation micro-CT found larger but less densely distributed cellular lacunae in hypermineralized tissue than in lamellar bone. When examined under FIB-SEM, the hypermineralized tissue was mainly composed of mineral globules with sizes varying from submicron to a few microns. Nano-sized channels were present within the mineral globules and oriented with the surrounding organic matrix. Transmission electron microscopy showed the apatite inside globules were poorly crystalline, while those at the boundaries between the globules had well-defined lattice structure with crystallinity similar to the apatite mineral in lamellar bone. No preferred mineral orientation was observed both inside each globule and at the boundaries. Collectively, we conclude based on these new observations that the hypermineralized tissue is non-lamellar and has less organized mineral, which may contribute to the high brittleness of the tissue.
Collapse
Affiliation(s)
- Qiong Wang
- Department of Materials Engineering, University of British Columbia, Vancouver, BC, Canada; Centre for Hip Health and Mobility, Vancouver, BC, Canada
| | - Tengteng Tang
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - David Cooper
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, Canada
| | - Felipe Eltit
- Vancouver Prostate Centre, Vancouver, Canada; Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Peter Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Pierre Guy
- Centre for Hip Health and Mobility, Vancouver, BC, Canada; Department of Orthopaedics, University of British Columbia, Vancouver, BC, Canada
| | - Rizhi Wang
- Department of Materials Engineering, University of British Columbia, Vancouver, BC, Canada; Centre for Hip Health and Mobility, Vancouver, BC, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
99
|
Chen Y, Chen J, Chen J, Yu H, Zheng Y, Zhao J, Zhu J. Recent advances in seafood bioactive peptides and their potential for managing osteoporosis. Crit Rev Food Sci Nutr 2020; 62:1187-1203. [PMID: 33094645 DOI: 10.1080/10408398.2020.1836606] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Marine biodiversity provides a range of diverse biological resources, including seafoods that are rich in protein and a well-balanced amino acid composition. Previous studies have shown that peptides can improve bone formation and/or inhibit bone resorption, suggesting the potential for seafood bioactive peptides (SBPs) in development of food and pharmaceuticals for management of osteoporosis. In this review, we provided an up-to-date overview of the anti-osteoporosis activity of SBPs and describe their underlying molecular mechanisms. We focus on SBPs' development, broadening the scope and depth of research, as well as strengthening in vivo and clinical research. In vitro cell cultures and in vivo animal osteoporosis models have demonstrated the potential for seafood-derived SBPs, including fish, mollusks, crustaceans, seaweed and microalgae, in preventing osteoporosis. These peptides may act by activating the signaling pathways, such as BMP/Smads, MAPK, OPG/RANKL/RANK, and NF-κB, which are associated with modulation bone health.
Collapse
Affiliation(s)
- Yixuan Chen
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou, China
| | - Jianchu Chen
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou, China.,Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Juan Chen
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou, China
| | - Huilin Yu
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou, China
| | - Yangfan Zheng
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou, China
| | - Jiawen Zhao
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou, China
| | - Jiajin Zhu
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
100
|
Jackson K, Moseley KF. Diabetes and Bone Fragility: SGLT2 Inhibitor Use in the Context of Renal and Cardiovascular Benefits. Curr Osteoporos Rep 2020; 18:439-448. [PMID: 32710428 DOI: 10.1007/s11914-020-00609-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Type 2 diabetes mellitus (T2DM) has been shown to negatively impact bone quality and increase fracture risk. While the pathophysiology of bone fragility in T2DM is not clear and likely multifactorial, medications used to treat T2DM are increasingly scrutinized for their potential role in aberrant bone metabolism. Sodium-glucose co-transporter 2 (SGLT2) inhibitors are gaining popularity in patients with T2DM. In addition to lowering blood glucose, there is evidence that these drugs offer cardiac and renal benefit to individuals with T2DM, leading to FDA-approved indications for use in at-risk individuals. At the same time, there remain concerns that SGLT2 inhibitors, specifically canagliflozin, have adverse effects on bone metabolism and increase fracture risk in T2DM. This review seeks to further clarify the impact of these agents on the skeleton. RECENT FINDINGS SGLT2 inhibitors may indirectly disrupt calcium and phosphate homeostasis, contribute to weight loss, and cause hypotension, resulting in bone mineral density (BMD) losses and increased falls. The true long-term impact of SGLT2 inhibitors on the diabetic skeleton is still unclear; this review summarizes the results in studies investigating the impact of SGLT2 inhibitors on fracture risk in T2DM. Whereas studies performed with dapagliflozin and empagliflozin have not shown an increased risk of bone fractures compared with placebo, some studies have shown increased markers of bone turnover and reduced bone mineral density with canagliflozin treatment. While an increased fracture risk was observed with canagliflozin in the CANVAS trial (HR 1.26; 95% CI 1.04, 1.52), an increased risk was not seen in the CANVAS-R (HR 0.86) or CREDENCE (HR 0.98) trials. There is substantial evidence of the cardiac and renal protective benefits of SGLT2 inhibitors. There does not appear to be an increased fracture risk with the use of dapagliflozin or empagliflozin. Given the possible association between canagliflozin and adverse bone outcomes described in CANVAS, canagliflozin use should be pursued in individuals with T2DM only after careful consideration of the individual's skeletal risk.
Collapse
Affiliation(s)
- Kristen Jackson
- School of Medicine, Division of Endocrinology, Diabetes & Metabolism, Johns Hopkins University, 5501 Hopkins Bayview Circle, 2A62, Baltimore, MD, 21224, USA
| | - Kendall F Moseley
- School of Medicine, Division of Endocrinology, Diabetes & Metabolism, Johns Hopkins University, 5501 Hopkins Bayview Circle, 2A62, Baltimore, MD, 21224, USA.
| |
Collapse
|