51
|
Lunney JK, Van Goor A, Walker KE, Hailstock T, Franklin J, Dai C. Importance of the pig as a human biomedical model. Sci Transl Med 2021; 13:eabd5758. [PMID: 34818055 DOI: 10.1126/scitranslmed.abd5758] [Citation(s) in RCA: 268] [Impact Index Per Article: 89.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Joan K Lunney
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD 20705, USA
| | - Angelica Van Goor
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD 20705, USA
| | - Kristen E Walker
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD 20705, USA
| | - Taylor Hailstock
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD 20705, USA
| | - Jasmine Franklin
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD 20705, USA
| | - Chaohui Dai
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD 20705, USA.,College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
52
|
Barras ED, Hampton CE, Takawira C, Taguchi T, Nourbakhsh A, Lopez MJ. Hemodynamic Changes in Response to Hyperacute Spinal Trauma in a Swine Model. Comp Med 2021; 72:30-37. [PMID: 34814974 DOI: 10.30802/aalas-cm-21-000067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Acute spinal cord injury (ASCI) is a devastating event that can have severe hemodynamic consequences, depending on location and severity of the lesion. Knowledge of hyperacute hemodynamic changes is important for researchers using porcine models of thoracic ASCI. The goal of this study was to determine the hyperacute hemodynamic changes observed after ASCI when using pigs as their own controls. Five Yucatan gilts were anesthetized, and a dorsal laminectomy performed at T10-T12. Standardized blunt trauma was applied for 5 consecutive min, and hemodynamic variables were collected 5 min before ASCI, and at 2, 4, 6, 8, 10, 20, 30, 60, 80 and 120 min after ASCI. Arterial blood gas samples were collected at 60 min and 10 min before, and at 30 min and between 120 and 240 min after ASCI. Parametric data were analyzed using a mixed effects model with time point as the fixed factor and subject as the random factor. We found no effect on heart rate, pulse pressure, SpO2, EtCO2, and respiratory rate between baseline and timepoints after ASCI. Diastolic arterial pressure, mean arterial pressure, and systolic arterial pressure fell significantly by 18%, 16%, and 15%, respectively, at 2 min after ASCI. However, none of the decrements in arterial pressures resulted in hypotension at any time point. Heart rate did not change significantly after ASCI. Blood glucose progressively increased to 50% above baseline between 120 and 240 minutes after ASCI. Low-thoracic ASCI caused a consistent and statistically significant but clinically minor hyperacute decrease in arterial pressures (-15%) that did not produce hypotension or metabolic changes suggestive of tissue hypoperfusion. Our findings using this model suggest that mean arterial pressures should be maintained above 85 mm Hg prior to spinal trauma in order to avoid hypotensive states after ASCI.
Collapse
|
53
|
McAllister JP, Talcott MR, Isaacs AM, Zwick SH, Garcia-Bonilla M, Castaneyra-Ruiz L, Hartman AL, Dilger RN, Fleming SA, Golden RK, Morales DM, Harris CA, Limbrick DD. A novel model of acquired hydrocephalus for evaluation of neurosurgical treatments. Fluids Barriers CNS 2021; 18:49. [PMID: 34749745 PMCID: PMC8576945 DOI: 10.1186/s12987-021-00281-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 10/09/2021] [Indexed: 02/07/2023] Open
Abstract
Background Many animal models have been used to study the pathophysiology of hydrocephalus; most of these have been rodent models whose lissencephalic cerebral cortex may not respond to ventriculomegaly in the same way as gyrencephalic species and whose size is not amenable to evaluation of clinically relevant neurosurgical treatments. Fewer models of hydrocephalus in gyrencephalic species have been used; thus, we have expanded upon a porcine model of hydrocephalus in juvenile pigs and used it to explore surgical treatment methods. Methods Acquired hydrocephalus was induced in 33–41-day old pigs by percutaneous intracisternal injections of kaolin (n = 17). Controls consisted of sham saline-injected (n = 6) and intact (n = 4) animals. Magnetic resonance imaging (MRI) was employed to evaluate ventriculomegaly at 11–42 days post-kaolin and to plan the surgical implantation of ventriculoperitoneal shunts at 14–38-days post-kaolin. Behavioral and neurological status were assessed. Results Bilateral ventriculomegaly occurred post-induction in all regions of the cerebral ventricles, with prominent CSF flow voids in the third ventricle, foramina of Monro, and cerebral aqueduct. Kaolin deposits formed a solid cast in the basal cisterns but the cisterna magna was patent. In 17 untreated hydrocephalic animals. Mean total ventricular volume was 8898 ± 5917 SD mm3 at 11–43 days of age, which was significantly larger than the baseline values of 2251 ± 194 SD mm3 for 6 sham controls aged 45–55 days, (p < 0.001). Past the post-induction recovery period, untreated pigs were asymptomatic despite exhibiting mild-moderate ventriculomegaly. Three out of 4 shunted animals showed a reduction in ventricular volume after 20–30 days of treatment, however some developed ataxia and lethargy, from putative shunt malfunction. Conclusions Kaolin induction of acquired hydrocephalus in juvenile pigs produced an in vivo model that is highly translational, allowing systematic studies of the pathophysiology and clinical treatment of hydrocephalus. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-021-00281-0.
Collapse
Affiliation(s)
- James P McAllister
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA. .,Department of Neurosurgery, BJC Institute of Health, 425 S. Euclid, Campus, Box 8057, St. Louis, MO, 63143, USA.
| | - Michael R Talcott
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA.,Division of Comparative Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Albert M Isaacs
- Department of Surgery, Division of Neurosurgery, University of Calgary School of Medicine, Calgary, AB, T2N 2T9, Canada
| | - Sarah H Zwick
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Maria Garcia-Bonilla
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Leandro Castaneyra-Ruiz
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Alexis L Hartman
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Ryan N Dilger
- Department of Animal Sciences, Division of Nutritional Sciences, Neuroscience Program, University of Illinois, Champagne-Urbana, Illinois, 61801, USA.,Traverse Science, Champaign, IL, 61801, USA
| | - Stephen A Fleming
- Department of Animal Sciences, Division of Nutritional Sciences, Neuroscience Program, University of Illinois, Champagne-Urbana, Illinois, 61801, USA.,Traverse Science, Champaign, IL, 61801, USA
| | - Rebecca K Golden
- Department of Animal Sciences, Division of Nutritional Sciences, Neuroscience Program, University of Illinois, Champagne-Urbana, Illinois, 61801, USA
| | - Diego M Morales
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Carolyn A Harris
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI, 48202 , USA.,Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, 48202, USA
| | - David D Limbrick
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA.,Department of Pediatrics, St. Louis Children's Hospital, St. Louis, MO, 63110, USA
| |
Collapse
|
54
|
A systematic review of porcine models in translational pain research. Lab Anim (NY) 2021; 50:313-326. [PMID: 34650279 DOI: 10.1038/s41684-021-00862-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/27/2021] [Indexed: 11/09/2022]
Abstract
Translating basic pain research from rodents to humans has proven to be a challenging task. Efforts have been made to develop preclinical large animal models of pain, such as the pig. However, no consistent overview and comparison of pig models of pain are currently available. Therefore, in this review, our primary aim was to identify the available pig models in pain research and compare these models in terms of intensity and duration. First, we systematically searched Proquest, Scopus and Web of Science and compared the duration for which the pigs were significantly sensitized as well as the intensity of mechanical sensitization. We searched models within the specific field of pain and adjacent fields in which pain induction or assessment is relevant, such as pig production. Second, we compared assessment methodologies in surrogate pain models in humans and pigs to identify areas of overlap and possible improvement. Based on the literature search, 23 types of porcine pain models were identified; 13 of which could be compared quantitatively. The induced sensitization lasted from hours to months and intensities ranged from insignificant to the maximum attainable. We also found a near to complete overlap of assessment methodologies between human and pig models within the area of peripheral neurophysiology, which allows for direct comparison of results obtained in the two species. In spite of this overlap, further development of pain assessment methodologies is still needed. We suggest that central nervous system electrophysiology, such as electroencephalography, electrocorticography or intracortical recordings, may pave the way for future objective pain assessment.
Collapse
|
55
|
Obesity Animal Models for Acupuncture and Related Therapy Research Studies. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6663397. [PMID: 34630614 PMCID: PMC8497105 DOI: 10.1155/2021/6663397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 09/02/2021] [Indexed: 11/17/2022]
Abstract
Obesity and related diseases are considered as pandemic representing a worldwide threat for health. Animal models are critical to validate the effects and understand the mechanisms related to classical or innovative preventive and therapeutic strategies. It is, therefore, important to identify the best animal models for translational research, using different evaluation criteria such as the face, construct, and predictive validity. Because the pharmacological treatments and surgical interventions currently used for treating obesity often present many undesirable side effects, relatively high relapse probabilities, acupuncture, electroacupuncture (EA), and related therapies have gained more popularity and attention. Many kinds of experimental animal models have been used for obesity research studies, but in the context of acupuncture, most of the studies were performed in rodent obesity models. Though, are these obesity rodent models really the best for acupuncture or related therapies research studies? In this study, we review different obesity animal models that have been used over the past 10 years for acupuncture and EA research studies. We present their respective advantages, disadvantages, and specific constraints. With the development of research on acupuncture and EA and the increasing interest regarding these approaches, proper animal models are critical for preclinical studies aiming at developing future clinical trials in the human. The aim of the present study is to provide researchers with information and guidance related to the preclinical models that are currently available to investigate the outcomes of acupuncture and related therapies.
Collapse
|
56
|
Choi KE, Anh VTQ, Oh JH, Yun C, Kim SW. Normative Data of Axial Length, Retinal Thickness Measurements, Visual Evoked Potentials, and Full-Field Electroretinography in Female, Wild-Type Minipigs. Transl Vis Sci Technol 2021; 10:3. [PMID: 34605876 PMCID: PMC8496425 DOI: 10.1167/tvst.10.12.3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this study was to present normative data of optical coherence tomography (OCT), electrophysiological, and ocular biometry parameters and their correlation in minipigs. Methods Eighty-eight eyes of 44 minipigs underwent full-field electroretinogram (ERG) recording and ocular biometry. However, 10 eyes of 6 minipigs were excluded because of poor OCT image quality. The thickness of the retinal sublayers was measured on a vertical line at 5 locations with a 1 mm interval from the disc margin to the dorsal periphery and at 10 locations on the visual streak. Visual evoked potentials (VEPs) were measured in 15 eyes of 8 minipigs. Results All minipigs were female with a mean age and axial length of 13.83 ± 10.56 months and 20.33 ± 0.88 mm, respectively. The implicit time of the a-wave and b-wave in scotopic 3.0 ERGs was longer than that in photopic 3.0 ERG. The implicit time of the n2-wave and p2-wave in VEP was 25.67 ± 7.41 ms and 52.96 ± 10.38 ms, respectively. The total retinal layer (TRL) and nerve fiber layer (NFL) became thinner near the periphery. The inner retinal sublayers near the visual streak were thicker than those at other locations. Central TRL and NFL thickness on visual streak was 223.06 ± 23.19 µm and 74.03 ± 13.93 µm, respectively. The temporal TRL and NFL on the visual streak were thicker than those on the nasal side. Conclusions The normative electrophysiological and OCT parameters used in our study can be used as reference data in further pig studies. Translational Relevance This study presents normative data of minipigs, which are adequate animal models for preclinical studies.
Collapse
Affiliation(s)
- Kwang-Eon Choi
- Department of Ophthalmology, Korea University College of Medicine, Seoul, Korea
| | - Vu Thi Que Anh
- Department of Ophthalmology, Hanoi Medical University, Hanoi, Vietnam
| | - Jong-Hyun Oh
- Department of Ophthalmology, Dongguk University Ilsan Hospital, Goyang, Korea
| | - Cheolmin Yun
- Department of Ophthalmology, Korea University College of Medicine, Seoul, Korea
| | - Seong-Woo Kim
- Department of Ophthalmology, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
57
|
Janjua TAM, Nielsen TGNDS, Andreis FR, Meijs S, Jensen W. The effect of peripheral high-frequency electrical stimulation on the primary somatosensory cortex in pigs. IBRO Neurosci Rep 2021; 11:112-118. [PMID: 34541572 PMCID: PMC8436059 DOI: 10.1016/j.ibneur.2021.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 10/26/2022] Open
Abstract
This study implements the use of Danish Landrace pigs as subjects for the long-term potentiation (LTP)-like pain model. This is accomplished by analyzing changes in the primary somatosensory cortex (S1) in response to electrical stimulation on the ulnar nerve after applying high-frequency electrical stimulation (HFS) on the ulnar nerve. In this study, eight Danish Landrace pigs were electrically stimulated, through the ulnar nerve, to record the cortically evoked response in S1 by a 16-channel microelectrode array (MEA). Six of these pigs were subjected to HFS (four consecutive, 15 mA, 100 Hz, 1000 µs pulse duration) 45 min after the start of the experiment. Two pigs were used as control subjects to compare the cortical response to peripheral electrical stimulation without applying HFS. Low-frequency components of the intracortical signals (0.3-300 Hz) were analyzed using event-related potential (ERP) analysis, where the minimum peak during the first 30-50 ms (N1 component) in each channel was detected. The change in N1 was compared over time across the intervention and control groups. Spectral analysis was used to demonstrate the effect of the intervention on the evoked cortical oscillations computed between 75 ms and 200 ms after stimulus. ERP analysis showed an immediate increase in N1 amplitude that became statistically significant 45 mins after HFS (p < 0.01) for the intervention group. The normalized change in power in frequency oscillations showed a similar trend. The results show that the LTP-like pain model can be effectively implemented in pigs using HFS since the cortical responses are comparable to those described in humans.
Collapse
Affiliation(s)
| | | | | | - Suzan Meijs
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Winnie Jensen
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
58
|
Zeiler FA, Iturria-Medina Y, Thelin EP, Gomez A, Shankar JJ, Ko JH, Figley CR, Wright GEB, Anderson CM. Integrative Neuroinformatics for Precision Prognostication and Personalized Therapeutics in Moderate and Severe Traumatic Brain Injury. Front Neurol 2021; 12:729184. [PMID: 34557154 PMCID: PMC8452858 DOI: 10.3389/fneur.2021.729184] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/09/2021] [Indexed: 01/13/2023] Open
Abstract
Despite changes in guideline-based management of moderate/severe traumatic brain injury (TBI) over the preceding decades, little impact on mortality and morbidity have been seen. This argues against the "one-treatment fits all" approach to such management strategies. With this, some preliminary advances in the area of personalized medicine in TBI care have displayed promising results. However, to continue transitioning toward individually-tailored care, we require integration of complex "-omics" data sets. The past few decades have seen dramatic increases in the volume of complex multi-modal data in moderate and severe TBI care. Such data includes serial high-fidelity multi-modal characterization of the cerebral physiome, serum/cerebrospinal fluid proteomics, admission genetic profiles, and serial advanced neuroimaging modalities. Integrating these complex and serially obtained data sets, with patient baseline demographics, treatment information and clinical outcomes over time, can be a daunting task for the treating clinician. Within this review, we highlight the current status of such multi-modal omics data sets in moderate/severe TBI, current limitations to the utilization of such data, and a potential path forward through employing integrative neuroinformatic approaches, which are applied in other neuropathologies. Such advances are positioned to facilitate the transition to precision prognostication and inform a top-down approach to the development of personalized therapeutics in moderate/severe TBI.
Collapse
Affiliation(s)
- Frederick A. Zeiler
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
- Centre on Aging, University of Manitoba, Winnipeg, MB, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Yasser Iturria-Medina
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, QC, Canada
| | - Eric P. Thelin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jai J. Shankar
- Department of Radiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ji Hyun Ko
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg, MB, Canada
| | - Chase R. Figley
- Department of Radiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg, MB, Canada
| | - Galen E. B. Wright
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg, MB, Canada
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Chris M. Anderson
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg, MB, Canada
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
59
|
Tvilling L, West M, Glud AN, Zaer H, Sørensen JCH, Bjarkam CR, Orlowski D. Anatomy and histology of the Göttingen minipig adenohypophysis with special emphasis on the polypeptide hormones: GH, PRL, and ACTH. Brain Struct Funct 2021; 226:2375-2386. [PMID: 34235563 DOI: 10.1007/s00429-021-02337-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 07/01/2021] [Indexed: 12/19/2022]
Abstract
The pituitary is involved in the regulation of endocrine homeostasis. Therefore, animal models of pituitary disease based on a thorough knowledge of pituitary anatomy are of great importance. Accordingly, we aimed to perform a qualitative and quantitative description of polypeptide hormone secreting cellular components of the Göttingen minipig adenohypophysis using immunohistochemistry and stereology. Estimates of the total number of cells immune-stained for adrenocorticotrophic hormone (ACTH), prolactin (PRL), and growth hormone (GH) were obtained with the optical fractionator technique using Stereo Investigator software. Moreover, 3D reconstructions of cell distribution were made. We estimated that the normal minipig adenohypophysis contains, on average, 5.6 million GH, 3.5 million PRL, and 2.4 million ACTH producing cells. The ACTH producing cells were widely distributed, while the PRL and GH producing cells were located in clusters in the central and lateral regions of the adenohypophysis. The morphology of the hormone producing cells also differs. We visualized a clear difference in the numerical density of hormone producing cells throughout the adenohypophysis. The relative proportions of the cells analyzed in our experiment are comparable to those observed in humans, primates, and rodents; however, the distribution of cells differs among species. The distribution of GH cells in the minipig is similar to that in humans, while the PRL and ACTH cell distributions differ. The volume of the pituitary is slightly smaller than that of humans. These data provide a framework for future large animal experimentation on pituitary function in health and disease.
Collapse
Affiliation(s)
- Laura Tvilling
- CENSE, Department of Neurosurgery and the Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, 8200, Aarhus N, Denmark
| | - Mark West
- CENSE, Department of Neurosurgery and the Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, 8200, Aarhus N, Denmark
| | - Andreas N Glud
- CENSE, Department of Neurosurgery and the Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, 8200, Aarhus N, Denmark
| | - Hamed Zaer
- CENSE, Department of Neurosurgery and the Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, 8200, Aarhus N, Denmark
| | - Jens Christian H Sørensen
- CENSE, Department of Neurosurgery and the Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, 8200, Aarhus N, Denmark
| | - Carsten Reidies Bjarkam
- Department of Neurosurgery and the Department of Clinical Medicine, Aalborg University Hospital, 9100, Aalborg, Denmark
| | - Dariusz Orlowski
- CENSE, Department of Neurosurgery and the Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, 8200, Aarhus N, Denmark.
| |
Collapse
|
60
|
Witkowska-Wrobel A, Aristovich K, Crawford A, Perkins JD, Holder D. Imaging of focal seizures with Electrical Impedance Tomography and depth electrodes in real time. Neuroimage 2021; 234:117972. [PMID: 33757909 PMCID: PMC8204270 DOI: 10.1016/j.neuroimage.2021.117972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 01/31/2021] [Accepted: 03/12/2021] [Indexed: 11/26/2022] Open
Abstract
Intracranial EEG is the current gold standard technique for localizing seizures for surgery, but it can be insensitive to tangential dipole or distant sources. Electrical Impedance Tomography (EIT) offers a novel method to improve coverage and seizure onset localization. The feasibility of EIT has been previously assessed in a computer simulation, which revealed an improved accuracy of seizure detection with EIT compared to intracranial EEG. In this study, slow impedance changes, evoked by cell swelling occurring over seconds, were reconstructed in real time by frequency division multiplexing EIT using depth and subdural electrodes in a swine model of epilepsy. EIT allowed to generate repetitive images of ictal events at similar time course to fMRI but without its significant limitations. EIT was recorded with a system consisting of 32 parallel current sources and 64 voltage recorders. Seizures triggered with intracranial injection of benzylpenicillin (BPN) in five pigs caused a repetitive peak impedance increase of 3.4 ± 1.5 mV and 9.5 ± 3% (N =205 seizures); the impedance signal change was seen already after a single, first seizure. EIT enabled reconstruction of the seizure onset 9 ± 1.5 mm from the BPN cannula and 7.5 ± 1.1 mm from the closest SEEG contact (p<0.05, n =37 focal seizures in three pigs) and it could address problems with sampling error in intracranial EEG. The amplitude of the impedance change correlated with the spread of the seizure on the SEEG (p <<0.001, n =37). The results presented here suggest that combining a parallel EIT system with intracranial EEG monitoring has a potential to improve the diagnostic yield in epileptic patients and become a vital tool in improving our understanding of epilepsy.
Collapse
Affiliation(s)
| | - Kirill Aristovich
- Medical Physics and Biomedical Engineering, University College London, UK
| | - Abbe Crawford
- Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK
| | - Justin D Perkins
- Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK
| | - David Holder
- Medical Physics and Biomedical Engineering, University College London, UK
| |
Collapse
|
61
|
Malbert CH. Open-source 3D printable frameless stereotaxic system for young and adult pigs. J Neurosci Methods 2021; 359:109222. [PMID: 34004201 DOI: 10.1016/j.jneumeth.2021.109222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Here we present an open-source solution, comprising several 3D-printable mechanical pieces and software tools, for frameless stereotaxic targeting in young and adult pigs of varying weights. NEW METHOD Localization was achieved using an IR camera and CT imaging. The positions of the tools were followed, after registration of the pig stereotaxic space, with a CT scan and open-source brain atlas. The system was used to target the lateral ventricle and the subthalamic nucleus (STN) in one piglet and two adult Yucatan miniature pigs, which were either normal weight or obese. RESULTS AND CONCLUSIONS Positive targeting was confirmed in the first trial for all subjects, either by radiopaque CT enhancement of the ventricle or actual recording of the STN electrophysiological signature. We conclude that open-source freely available models, easily built with low-end 3D printers, and their associated software can be effectively used for brain surgery in pigs, at a minimal cost, irrespective of the weight of the animal.
Collapse
Affiliation(s)
- Charles-Henri Malbert
- Aniscan Department, Human Nutrition, INRAE, 16 Le clos, Saint-Gilles, 35590, France.
| |
Collapse
|
62
|
Trovatelli M, Brizzola S, Zani DD, Castellano A, Mangili P, Riva M, Woolley M, Johnson D, Rodriguez Y Baena F, Bello L, Falini A, Secoli R. Development and in vivo assessment of a novel MRI-compatible headframe system for the ovine animal model. Int J Med Robot 2021; 17:e2257. [PMID: 33817973 DOI: 10.1002/rcs.2257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 02/26/2021] [Accepted: 03/26/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND The brain of sheep has primarily been used in neuroscience as an animal model because of its similarity to the human brain, in particular if compared to other models such as the lissencephalic rodent brain. Their brain size also makes sheep an ideal model for the development of neurosurgical techniques using conventional clinical CT/MRI scanners and stereotactic systems for neurosurgery. METHODS In this study, we present the design and validation of a new CT/MRI compatible head frame for the ovine model and software, with its assessment under two real clinical scenarios. RESULTS Ex-vivo and in vivo trial results report an average linear displacement of the ovine head frame during conventional surgical procedures of 0.81 mm for ex-vivo trials and 0.68 mm for in vivo tests, respectively. CONCLUSIONS These trial results demonstrate the robustness of the head frame system and its suitability to be employed within a real clinical setting.
Collapse
Affiliation(s)
- Marco Trovatelli
- Department of Veterinary Medicine, Universitá degli Studi di Milano, Milan, Italy
| | - Stefano Brizzola
- Department of Veterinary Medicine, Universitá degli Studi di Milano, Milan, Italy
| | - Davide Danilo Zani
- Department of Veterinary Medicine, Universitá degli Studi di Milano, Milan, Italy
| | - Antonella Castellano
- Neuroradiology Unit and C.E.R.M.A.C., Vita-Salute San Raffaele University and IRCCS Ospedale San Raffaele, Milan, Italy
| | - Paola Mangili
- Medical Physics Unit, Vita-Salute San Raffaele University and IRCCS Ospedale San Raffaele, Milan, Italy
| | - Marco Riva
- Department of Oncology and Hematology-Oncology, Universitá degli Studi di Milano, Milan, Italy
| | - Max Woolley
- Renishaw Neuro Solutions Ltd., Wotton-Under-Edge, UK
| | - Dave Johnson
- Renishaw Neuro Solutions Ltd., Wotton-Under-Edge, UK
| | - Ferdinando Rodriguez Y Baena
- The Mechatronics in Medicine Laboratory, Department of Mechanical Engineering, Imperial College London, London, UK
| | - Lorenzo Bello
- Department of Oncology and Hematology-Oncology, Universitá degli Studi di Milano, Milan, Italy
| | - Andrea Falini
- Neuroradiology Unit and C.E.R.M.A.C., Vita-Salute San Raffaele University and IRCCS Ospedale San Raffaele, Milan, Italy
| | - Riccardo Secoli
- The Mechatronics in Medicine Laboratory, Department of Mechanical Engineering, Imperial College London, London, UK
| |
Collapse
|
63
|
Norris C, Lisinski J, McNeil E, VanMeter JW, VandeVord P, LaConte SM. MRI brain templates of the male Yucatan minipig. Neuroimage 2021; 235:118015. [PMID: 33798725 DOI: 10.1016/j.neuroimage.2021.118015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 10/21/2022] Open
Abstract
The pig is growing in popularity as an experimental animal because its gyrencephalic brain is similar to humans. Currently, however, there is a lack of appropriate brain templates to support functional and structural neuroimaging pipelines. The primary contribution of this work is an average volume from an iterative, non-linear registration of 70 five- to seven-month-old male Yucatan minipigs. In addition, several aspects of this study are unique, including the comparison of linear and non-linear template generation, the characterization of a large and homogeneous cohort, an analysis of effective resolution after averaging, and the evaluation of potential in-template bias as well as a comparison with a template from another minipig species using a "left-out" validation set. We found that within our highly homogeneous cohort, non-linear registration produced better templates, but only marginally so. Although our T1-weighted data were resolution limited, we preserved effective resolution across the multi-subject average, produced templates that have high gray-white matter contrast and demonstrate superior registration accuracy compared to an alternative minipig template.
Collapse
Affiliation(s)
- Carly Norris
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| | - Jonathan Lisinski
- Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA, United States
| | - Elizabeth McNeil
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| | - John W VanMeter
- Neurology, Georgetown University, Washington, DC, United States
| | - Pamela VandeVord
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States; Salem VA Medical Center, Salem VA, United States
| | - Stephen M LaConte
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States; Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA, United States.
| |
Collapse
|
64
|
Hwang SU, Eun K, Kim M, Yoon JD, Cai L, Choi H, Oh D, Lee G, Kim H, Kim E, Hyun SH. Establishment of 3D Neuro-Organoids Derived from Pig Embryonic Stem-Like Cells. Int J Mol Sci 2021; 22:ijms22052600. [PMID: 33807555 PMCID: PMC7961951 DOI: 10.3390/ijms22052600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 12/16/2022] Open
Abstract
Although the human brain would be an ideal model for studying human neuropathology, it is difficult to perform in vitro culture of human brain cells from genetically engineered healthy or diseased brain tissue. Therefore, a suitable model for studying the molecular mechanisms responsible for neurological diseases that can appropriately mimic the human brain is needed. Somatic cell nuclear transfer (SCNT) was performed using an established porcine Yucatan EGFP cell line and whole seeding was performed using SCNT blastocysts. Two Yucatan EGFP porcine embryonic stem-like cell (pESLC) lines were established. These pESLC lines were then used to establish an in vitro neuro-organoids. Aggregates were cultured in vitro until 61 or 102 days after neural induction, neural patterning, and neural expansion. The neuro-organoids were sampled at each step and the expression of the dopaminergic neuronal marker (TH) and mature neuronal marker (MAP2) was confirmed by reverse transcription-PCR. Expression of the neural stem cell marker (PAX6), neural precursor markers (S100 and SOX2), and early neural markers (MAP2 and Nestin) were confirmed by immunofluorescence staining. In conclusion, we successfully established neuro-organoids derived from pESLCs in vitro. This protocol can be used as a tool to develop in vitro models for drug development, patient-specific chemotherapy, and human central nervous system disease studies.
Collapse
Affiliation(s)
- Seon-Ung Hwang
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (S.-U.H.); (M.K.); (J.D.Y.); (L.C.); (H.C.); (D.O.)
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Kiyoung Eun
- Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841, Korea; (K.E.); (H.K.)
- Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Mirae Kim
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (S.-U.H.); (M.K.); (J.D.Y.); (L.C.); (H.C.); (D.O.)
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Junchul David Yoon
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (S.-U.H.); (M.K.); (J.D.Y.); (L.C.); (H.C.); (D.O.)
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Lian Cai
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (S.-U.H.); (M.K.); (J.D.Y.); (L.C.); (H.C.); (D.O.)
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Hyerin Choi
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (S.-U.H.); (M.K.); (J.D.Y.); (L.C.); (H.C.); (D.O.)
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Dongjin Oh
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (S.-U.H.); (M.K.); (J.D.Y.); (L.C.); (H.C.); (D.O.)
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Gabsang Lee
- Department of Neurology, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Hyunggee Kim
- Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841, Korea; (K.E.); (H.K.)
- Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Eunhye Kim
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (S.-U.H.); (M.K.); (J.D.Y.); (L.C.); (H.C.); (D.O.)
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
- Correspondence: (E.K.); (S.-H.H.); Tel.: +82-43-249-1746 (E.K.); +82-43-261-3393 (S.-H.H.)
| | - Sang-Hwan Hyun
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (S.-U.H.); (M.K.); (J.D.Y.); (L.C.); (H.C.); (D.O.)
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
- Correspondence: (E.K.); (S.-H.H.); Tel.: +82-43-249-1746 (E.K.); +82-43-261-3393 (S.-H.H.)
| |
Collapse
|
65
|
Chang SJ, Santamaria AJ, Sanchez FJ, Villamil LM, Saraiva PP, Benavides F, Nunez-Gomez Y, Solano JP, Opris I, Guest JD, Noga BR. Deep brain stimulation of midbrain locomotor circuits in the freely moving pig. Brain Stimul 2021; 14:467-476. [PMID: 33652130 PMCID: PMC9097921 DOI: 10.1016/j.brs.2021.02.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 01/01/2023] Open
Abstract
Background: Deep brain stimulation (DBS) of the mesencephalic locomotor region (MLR) has been studied as a therapeutic target in rodent models of stroke, parkinsonism, and spinal cord injury. Clinical DBS trials have targeted the closely related pedunculopontine nucleus in patients with Parkinson’s disease as a therapy for gait dysfunction, with mixed reported outcomes. Recent studies suggest that optimizing the MLR target could improve its effectiveness. Objective: We sought to determine if stereotaxic targeting and DBS in the midbrain of the pig, in a region anatomically similar to that previously identified as the MLR in other species, could initiate and modulate ongoing locomotion, as a step towards generating a large animal neuromodulation model of gait. Methods: We implanted Medtronic 3389 electrodes into putative MLR structures in Yucatan micropigs to characterize the locomotor effects of acute DBS in this region, using EMG recordings, joint kinematics, and speed measurements on a manual treadmill. Results: MLR DBS initiated and augmented locomotion in freely moving micropigs. Effective locomotor sites centered around the cuneiform nucleus and stimulation frequency controlled locomotor speed and stepping frequency. Off-target stimulation evoked defensive and aversive behaviors that precluded locomotion in the animals. Conclusion: Pigs appear to have an MLR and can be used to model neuromodulation of this gait-promoting center. These results indicate that the pig is a useful model to guide future clinical studies for optimizing MLR DBS in cases of gait deficiencies associated with such conditions as Parkinson’s disease, spinal cord injury, or stroke.
Collapse
Affiliation(s)
- Stephano J Chang
- Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL, USA; The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA; Division of Neurosurgery, Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Andrea J Santamaria
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Francisco J Sanchez
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Luz M Villamil
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Pedro Pinheiro Saraiva
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Francisco Benavides
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Yohjans Nunez-Gomez
- Department of Pediatric Critical Care, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Juan P Solano
- Department of Pediatric Critical Care, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ioan Opris
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - James D Guest
- Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL, USA; The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Brian R Noga
- Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL, USA; The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
66
|
Petnehazy O, Donko T, Ellis R, Csoka A, Czeibert K, Baksa G, Zucker E, Repa K, Takacs A, Repa I, Moizs M. Creating a cross-sectional, CT and MR atlas of the Pannon minipig. Anat Histol Embryol 2021; 50:562-571. [PMID: 33529429 DOI: 10.1111/ahe.12657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/20/2020] [Accepted: 12/19/2020] [Indexed: 11/27/2022]
Abstract
PURPOSE The purpose of this study was to create a detailed cross-sectional anatomical reference atlas of the Pannon minipig by correlating good resolution CT and MR images with high quality cross-sectional anatomical images. According to the authors knowledge, no detailed anatomical atlas is available for the minipig. MATERIAL AND METHOD An adult female minipig was utilized for this purpose. The animal was placed in a PVC half tube, and CT generated images of 0.6 mm slice thickness and MR images of 1.41 mm slice thickness were obtained. The images covered the whole body from the most rostral portion of the snout to the tip of the tail. The CT and MR scans were aligned with frozen anatomical sections prepared with an anatomical band saw from the same animal and significant structures were identified and labelled. The terminology employed has been referenced from the Nomina Anatomica Veterinaria 6th edition-2017. FINDINGS AND CONCLUSIONS The resulting atlas consists of 109 anatomical slices and the corresponding 109 CT and 109 MR scans (altogether 327 images) and the nomenclature list for each image. Although this publication contains limited images of the resulted atlas, it is a reference source for anatomy education and clinical sciences. We are of the opinion that more comprehensive and especially online available interactive atlases should be prepared using similar methodology.
Collapse
Affiliation(s)
- Ors Petnehazy
- Medicopus Nonprofit Ltd, Kaposvar, Hungary.,Kaposvar Campus, Szent Istvan University, Kaposvar, Hungary
| | - Tamas Donko
- Medicopus Nonprofit Ltd, Kaposvar, Hungary.,Kaposvar Campus, Szent Istvan University, Kaposvar, Hungary
| | - Rosie Ellis
- The Veterinary Referral & Emergency Centre, Godstone, England
| | - Adam Csoka
- Medicopus Nonprofit Ltd, Kaposvar, Hungary.,Kaposvar Campus, Szent Istvan University, Kaposvar, Hungary
| | - Kalman Czeibert
- Department of Ethology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Gabor Baksa
- Department of Anatomy, Histology and Embryology, Semmelweis University of Medical Sciences, Budapest, Hungary
| | - Eric Zucker
- Veterinary Medicine Program, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Krisztina Repa
- Radiation Oncology, Research and Teaching Center, Moritz Kaposi General Hospital Dr. József Baka Diagnostic, Kaposvar, Hungary.,Moritz Kaposi General Hospital, Kaposvar, Hungary
| | | | - Imre Repa
- Medicopus Nonprofit Ltd, Kaposvar, Hungary.,Radiation Oncology, Research and Teaching Center, Moritz Kaposi General Hospital Dr. József Baka Diagnostic, Kaposvar, Hungary
| | | |
Collapse
|
67
|
Malbert CH. Vagally Mediated Gut-Brain Relationships in Appetite Control-Insights from Porcine Studies. Nutrients 2021; 13:nu13020467. [PMID: 33573329 PMCID: PMC7911705 DOI: 10.3390/nu13020467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 01/07/2023] Open
Abstract
Signals arising from the upper part of the gut are essential for the regulation of food intake, particularly satiation. This information is supplied to the brain partly by vagal nervous afferents. The porcine model, because of its sizeable gyrencephalic brain, omnivorous regimen, and comparative anatomy of the proximal part of the gut to that of humans, has provided several important insights relating to the relevance of vagally mediated gut-brain relationships to the regulation of food intake. Furthermore, its large size combined with the capacity to become obese while overeating a western diet makes it a pivotal addition to existing murine models, especially for translational studies relating to obesity. How gastric, proximal intestinal, and portal information relating to meal arrival and transit are encoded by vagal afferents and their further processing by primary and secondary brain projections are reviewed. Their peripheral and central plasticities in the context of obesity are emphasized. We also present recent insights derived from chronic stimulation of the abdominal vagi with specific reference to the modulation of mesolimbic structures and their role in the restoration of insulin sensitivity in the obese miniature pig model.
Collapse
Affiliation(s)
- Charles-Henri Malbert
- Aniscan Unit, INRAE, Saint-Gilles, 35590 Paris, France;
- National Academy of Medicine, 75000 Paris, France
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
68
|
Brain organoid formation on decellularized porcine brain ECM hydrogels. PLoS One 2021; 16:e0245685. [PMID: 33507989 PMCID: PMC7842896 DOI: 10.1371/journal.pone.0245685] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/05/2021] [Indexed: 12/21/2022] Open
Abstract
Human brain tissue models such as cerebral organoids are essential tools for developmental and biomedical research. Current methods to generate cerebral organoids often utilize Matrigel as an external scaffold to provide structure and biologically relevant signals. Matrigel however is a nonspecific hydrogel of mouse tumor origin and does not represent the complexity of the brain protein environment. In this study, we investigated the application of a decellularized adult porcine brain extracellular matrix (B-ECM) which could be processed into a hydrogel (B-ECM hydrogel) to be used as a scaffold for human embryonic stem cell (hESC)-derived brain organoids. We decellularized pig brains with a novel detergent- and enzyme-based method and analyzed the biomaterial properties, including protein composition and content, DNA content, mechanical characteristics, surface structure, and antigen presence. Then, we compared the growth of human brain organoid models with the B-ECM hydrogel or Matrigel controls in vitro. We found that the native brain source material was successfully decellularized with little remaining DNA content, while Mass Spectrometry (MS) showed the loss of several brain-specific proteins, while mainly different collagen types remained in the B-ECM. Rheological results revealed stable hydrogel formation, starting from B-ECM hydrogel concentrations of 5 mg/mL. hESCs cultured in B-ECM hydrogels showed gene expression and differentiation outcomes similar to those grown in Matrigel. These results indicate that B-ECM hydrogels can be used as an alternative scaffold for human cerebral organoid formation, and may be further optimized for improved organoid growth by further improving protein retention other than collagen after decellularization.
Collapse
|
69
|
Walsh DR, Zhou Z, Li X, Kearns J, Newport DT, Mulvihill JJE. Mechanical Properties of the Cranial Meninges: A Systematic Review. J Neurotrauma 2021; 38:1748-1761. [PMID: 33191848 DOI: 10.1089/neu.2020.7288] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The meninges are membranous tissues that are pivotal in maintaining homeostasis of the central nervous system. Despite the importance of the cranial meninges in nervous system physiology and in head injury mechanics, our knowledge of the tissues' mechanical behavior and structural composition is limited. This systematic review analyzes the existing literature on the mechanical properties of the meningeal tissues. Publications were identified from a search of Scopus, Academic Search Complete, and Web of Science and screened for eligibility according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The review details the wide range of testing techniques employed to date and the significant variability in the observed experimental findings. Our findings identify many gaps in the current literature that can serve as a guide for future work for meningeal mechanics investigators. The review identifies no peer-reviewed mechanical data on the falx and tentorium tissues, both of which have been identified as key structures in influencing brain injury mechanics. A dearth of mechanical data for the pia-arachnoid complex also was identified (no experimental mechanics studies on the human pia-arachnoid complex were identified), which is desirable for biofidelic modeling of human head injuries. Finally, this review provides recommendations on how experiments can be conducted to allow for standardization of test methodologies, enabling simplified comparisons and conclusions on meningeal mechanics.
Collapse
Affiliation(s)
- Darragh R Walsh
- Bernal Institute, University of Limerick, Limerick, Ireland.,School of Engineering, University of Limerick, Limerick, Ireland
| | - Zhou Zhou
- Division of Neuronic Engineering, KTH Royal Institute of Technology, Huddinge, Sweden
| | - Xiaogai Li
- Division of Neuronic Engineering, KTH Royal Institute of Technology, Huddinge, Sweden
| | - Jamie Kearns
- Munster Rugby High Performance Center, University of Limerick, Limerick, Ireland
| | - David T Newport
- Bernal Institute, University of Limerick, Limerick, Ireland.,School of Engineering, University of Limerick, Limerick, Ireland
| | - John J E Mulvihill
- Bernal Institute, University of Limerick, Limerick, Ireland.,School of Engineering, University of Limerick, Limerick, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
70
|
Sneed SE, Scheulin KM, Kaiser EE, Fagan MM, Jurgielewicz BJ, Waters ES, Spellicy SE, Duberstein KJ, Platt SR, Baker EW, Stice SL, Kinder HA, West FD. Magnetic Resonance Imaging and Gait Analysis Indicate Similar Outcomes Between Yucatan and Landrace Porcine Ischemic Stroke Models. Front Neurol 2021; 11:594954. [PMID: 33551956 PMCID: PMC7859633 DOI: 10.3389/fneur.2020.594954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/21/2020] [Indexed: 12/21/2022] Open
Abstract
The Stroke Therapy Academic Industry Roundtable (STAIR) has recommended that novel therapeutics be tested in a large animal model with similar anatomy and physiology to humans. The pig is an attractive model due to similarities in brain size, organization, and composition relative to humans. However, multiple pig breeds have been used to study ischemic stroke with potentially differing cerebral anatomy, architecture and, consequently, ischemic stroke pathologies. The objective of this study was to characterize brain anatomy and assess spatiotemporal gait parameters in Yucatan (YC) and Landrace (LR) pigs pre- and post-stroke using magnetic resonance imaging (MRI) and gait analysis, respectively. Ischemic stroke was induced via permanent middle cerebral artery occlusion (MCAO). MRI was performed pre-stroke and 1-day post-stroke. Structural and diffusion-tensor sequences were performed at both timepoints and analyzed for cerebral characteristics, lesion diffusivity, and white matter changes. Spatiotemporal and relative pressure gait measurements were collected pre- and 2-days post-stroke to characterize and compare acute functional deficits. The results from this study demonstrated that YC and LR pigs exhibit differences in gross brain anatomy and gait patterns pre-stroke with MRI and gait analysis showing statistical differences in the majority of parameters. However, stroke pathologies in YC and LR pigs were highly comparable post-stroke for most evaluated MRI parameters, including lesion volume and diffusivity, hemisphere swelling, ventricle compression, caudal transtentorial and foramen magnum herniation, showing no statistical difference between the breeds. In addition, post-stroke changes in velocity, cycle time, swing percent, cadence, and mean hoof pressure showed no statistical difference between the breeds. These results indicate significant differences between pig breeds in brain size, anatomy, and motor function pre-stroke, yet both demonstrate comparable brain pathophysiology and motor outcomes post-stroke. The conclusions of this study suggest pigs of these different breeds generally show a similar ischemic stroke response and findings can be compared across porcine stroke studies that use different breeds.
Collapse
Affiliation(s)
- Sydney E Sneed
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| | - Kelly M Scheulin
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States.,Biomedical and Health Sciences Institute Neuroscience Program, University of Georgia, Athens, GA, United States
| | - Erin E Kaiser
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States.,Biomedical and Health Sciences Institute Neuroscience Program, University of Georgia, Athens, GA, United States
| | - Madison M Fagan
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| | - Brian J Jurgielewicz
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Biomedical and Health Sciences Institute Neuroscience Program, University of Georgia, Athens, GA, United States
| | - Elizabeth S Waters
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States.,Biomedical and Health Sciences Institute Neuroscience Program, University of Georgia, Athens, GA, United States
| | - Samantha E Spellicy
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Biomedical and Health Sciences Institute Neuroscience Program, University of Georgia, Athens, GA, United States
| | - Kylee J Duberstein
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| | - Simon R Platt
- Department of Small Animal Medicine and Surgery, University of Georgia, Athens, GA, United States
| | | | - Steven L Stice
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States.,Aruna Bio, Inc., Athens, GA, United States
| | - Holly A Kinder
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States.,Biomedical and Health Sciences Institute Neuroscience Program, University of Georgia, Athens, GA, United States
| | - Franklin D West
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States.,Biomedical and Health Sciences Institute Neuroscience Program, University of Georgia, Athens, GA, United States
| |
Collapse
|
71
|
Norscia I, Coco E, Robino C, Chierto E, Cordoni G. Yawn contagion in domestic pigs (Sus scrofa). Sci Rep 2021; 11:1851. [PMID: 33473157 PMCID: PMC7817675 DOI: 10.1038/s41598-020-80545-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
Contrary to spontaneous yawning—an ancient phenomenon common to vertebrates—contagious yawning (elicited by others’ yawns) has been found only in highly social species and may reflect an emotional inter-individual connection. We investigated yawn contagion in the domestic pig, Sus scrofa. Owing to the complex socio-emotional and cognitive abilities of Sus scrofa, we posited that yawn contagion could be present in this species (Prediction 1) and influenced by individual/social factors (Prediction 2). In June-November 2018, on 104 semi-free ranging adolescent/adult pigs, 224 videos were recorded for video analysis on yawning. Kinship information was refined via genetic analyses. Statistical elaboration was conducted via GLMMs and non-parametric/randomization/cross-tabulation tests. We found yawn contagion in Sus scrofa, as it was more likely that pigs yawned when perceiving rather than not perceiving (yawning/control condition) others’ yawns (response peak in the first out of three minutes). Yawn contagion was more likely: (1) in response to males’ yawns; (2) as the age increased; (3) within short distance (1 m); (4) between full siblings, with no significant association between kinship and distance. The influence of kinship suggests that—as also hypothesized for Homo sapiens—yawn contagion might be linked with emotional communication and possibly contagion.
Collapse
Affiliation(s)
- Ivan Norscia
- Department of Life Sciences and Systems Biology, University of Torino, Turin, Italy.
| | - Elisabetta Coco
- Department of Life Sciences and Systems Biology, University of Torino, Turin, Italy
| | - Carlo Robino
- Department of Public Health Sciences and Pediatrics, University of Torino, Turin, Italy
| | - Elena Chierto
- Department of Public Health Sciences and Pediatrics, University of Torino, Turin, Italy
| | - Giada Cordoni
- Department of Life Sciences and Systems Biology, University of Torino, Turin, Italy.
| |
Collapse
|
72
|
Malbert CH, Val-Laillet D, Meurice P, Lallès JP, Delarue J. Contrasted central effects of n-3 versus n-6 diets on brain functions in diet-induced obesity in minipigs. Nutr Neurosci 2021; 25:1453-1465. [PMID: 33427097 DOI: 10.1080/1028415x.2020.1866881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
INTRODUCTION N3 polyunsaturated fatty acids (n-3 PUFAs) exert anti-inflammatory effects for the hypothalamus, but their extra-hypothalamic outcome lack documentation. We evaluated the central consequences of the substitution of saturated fatty acids with n-3 or n-6 PUFA in obesogenic diets. METHODS Twenty-one miniature pigs were fed ad libitum obesogenic diets enriched in fat provided either as lard, fish oil (source for n-3 PUFAs), or sunflower oil (source for n-6 PUFAs) for ten weeks. The blood-brain barrier (BBB) permeability was quantified by CT perfusion. Central autonomic network was evaluated using heart rate variability, and PET 18FDG was performed to assess brain metabolism. RESULTS BBB permeability was higher in lard group, but heart rate variability changed only in fish oil group. Brain connectivity analysis and voxel-based comparisons show regional differences between groups except for the cingulate cortex in fish oil vs. sunflower oil groups. DISCUSSION : The minute changes in brain metabolism in obese pigs feed with fish oil compared with saturated fatty acids were sufficient to induce detrimental changes in heart rate variability. On the contrary, the BBB's decreased permeability in n-3 and n-6 PUFAs groups was protective against an obesity-driven damaged BBB.
Collapse
Affiliation(s)
| | - David Val-Laillet
- INRAE, INSERM, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Saint-Gilles, France
| | - Paul Meurice
- INRAE, INSERM, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Saint-Gilles, France
| | - Jean-Paul Lallès
- Division of Human Nutrition, INRAE, SDAR, Domaine de la Motte, Le Rheu, France
| | - Jacques Delarue
- Department of Nutritional Sciences & Laboratory of Human Nutrition, Hospital University/Faculty of Medicine/University of Brest, France
| |
Collapse
|
73
|
Malbert CH, Chauvin A, Horowitz M, Jones KL. Glucose Sensing Mediated by Portal Glucagon-Like Peptide 1 Receptor Is Markedly Impaired in Insulin-Resistant Obese Animals. Diabetes 2021; 70:99-110. [PMID: 33067312 DOI: 10.2337/db20-0361] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 10/06/2020] [Indexed: 02/05/2023]
Abstract
The glucose portal sensor informs the brain of changes in glucose inflow through vagal afferents that require an activated glucagon-like peptide 1 receptor (GLP-1r). The GLP-1 system is known to be impaired in insulin-resistant conditions, and we sought to understand the consequences of GLP-1 resistance on glucose portal signaling. GLP-1-dependent portal glucose signaling was identified, in vivo, using a novel 68Ga-labeled GLP-1r positron-emitting probe that supplied a quantitative in situ tridimensional representation of the portal sensor with specific reference to the receptor density expressed in binding potential units. It also served as a map for single-neuron electrophysiology driven by an image-based abdominal navigation. We determined that in insulin-resistant animals, portal vagal afferents failed to inhibit their spiking activity during glucose infusion, a GLP-1r-dependent function. This reflected a reduction in portal GLP-1r binding potential, particularly between the splenic vein and the entrance of the liver. We propose that insulin resistance, through a reduction in GLP-1r density, leads to functional portal desensitization with a consequent suppression of vagal sensitivity to portal glucose.
Collapse
Affiliation(s)
| | - Alain Chauvin
- UEPR Unit, Department of Animal Physiology, INRAE, Saint-Gilles, France
| | - Michael Horowitz
- Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Karen L Jones
- Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
74
|
Winkler-Schwartz A, Yilmaz R, Tran DH, Gueziri HE, Ying B, Tuznik M, Fonov V, Collins L, Rudko DA, Li J, Debergue P, Pazos V, Del Maestro R. Creating a Comprehensive Research Platform for Surgical Technique and Operative Outcome in Primary Brain Tumor Neurosurgery. World Neurosurg 2020; 144:e62-e71. [DOI: 10.1016/j.wneu.2020.07.209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 02/05/2023]
|
75
|
Chang SJ, Santamaria AJ, Sanchez FJ, Villamil LM, Pinheiro Saraiva P, Rodriguez J, Nunez-Gomez Y, Opris I, Solano JP, Guest JD, Noga BR. In vivo Population Averaged Stereotaxic T2w MRI Brain Template for the Adult Yucatan Micropig. Front Neuroanat 2020; 14:599701. [PMID: 33281567 PMCID: PMC7691581 DOI: 10.3389/fnana.2020.599701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/23/2020] [Indexed: 12/28/2022] Open
Abstract
Population averaged brain templates are an essential tool for imaging-based neuroscience research, providing investigators with information about the expected size and morphology of brain structures and the spatial relationships between them, within a demographic cross-section. This allows for a standardized comparison of neuroimaging data between subjects and provides neuroimaging software with a probabilistic framework upon which further processing and analysis can be based. Many different templates have been created to represent specific study populations and made publicly available for human and animal research. An increasingly studied animal model in the neurosciences that still lacks appropriate brain templates is the adult Yucatan micropig. In particular, T2-weighted templates are absent in this species as a whole. To address this need and provide a tool for neuroscientists wishing to pursue neuroimaging research in the adult micropig, we present the construction of population averaged (n = 16) T2-weighted MRI brain template for the adult Yucatan micropig. Additionally, we present initial analysis of T1-weighted (n = 3), and diffusion-weighted (n = 3) images through multimodal registration of these contrasts to our T2 template. The strategies used here may also be generalized to create similar templates for other study populations or species in need of template construction.
Collapse
Affiliation(s)
- Stephano J. Chang
- Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL, United States
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
- Division of Neurosurgery, Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Andrea J. Santamaria
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Francisco J. Sanchez
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Luz M. Villamil
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Pedro Pinheiro Saraiva
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Jose Rodriguez
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Yohjans Nunez-Gomez
- Department of Pediatric Critical Care, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Ioan Opris
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Juan P. Solano
- Department of Pediatric Critical Care, University of Miami Miller School of Medicine, Miami, FL, United States
| | - James D. Guest
- Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL, United States
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Brian R. Noga
- Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL, United States
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
76
|
Cozzi B, Bonfanti L, Canali E, Minero M. Brain Waste: The Neglect of Animal Brains. Front Neuroanat 2020; 14:573934. [PMID: 33304245 PMCID: PMC7693423 DOI: 10.3389/fnana.2020.573934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/14/2020] [Indexed: 01/29/2023] Open
Affiliation(s)
- Bruno Cozzi
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - Luca Bonfanti
- Department of Veterinary Sciences, University of Torino, Torino, Italy.,Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
| | - Elisabetta Canali
- Department of Veterinary Medicine, University of Milan, Milan, Italy
| | - Michela Minero
- Department of Veterinary Medicine, University of Milan, Milan, Italy
| |
Collapse
|
77
|
Pelot NA, Goldhagen GB, Cariello JE, Musselman ED, Clissold KA, Ezzell JA, Grill WM. Quantified Morphology of the Cervical and Subdiaphragmatic Vagus Nerves of Human, Pig, and Rat. Front Neurosci 2020; 14:601479. [PMID: 33250710 PMCID: PMC7672126 DOI: 10.3389/fnins.2020.601479] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/13/2020] [Indexed: 12/27/2022] Open
Abstract
It is necessary to understand the morphology of the vagus nerve (VN) to design and deliver effective and selective vagus nerve stimulation (VNS) because nerve morphology influences fiber responses to electrical stimulation. Specifically, nerve diameter (and thus, electrode-fiber distance), fascicle diameter, fascicular organization, and perineurium thickness all significantly affect the responses of nerve fibers to electrical signals delivered through a cuff electrode. We quantified the morphology of cervical and subdiaphragmatic VNs in humans, pigs, and rats: effective nerve diameter, number of fascicles, effective fascicle diameters, proportions of endoneurial, perineurial, and epineurial tissues, and perineurium thickness. The human and pig VNs were comparable sizes (∼2 mm cervically; ∼1.6 mm subdiaphragmatically), while the rat nerves were ten times smaller. The pig nerves had ten times more fascicles-and the fascicles were smaller-than in human nerves (47 vs. 7 fascicles cervically; 38 vs. 5 fascicles subdiaphragmatically). Comparing the cervical to the subdiaphragmatic VNs, the nerves and fascicles were larger at the cervical level for all species and there were more fascicles for pigs. Human morphology generally exhibited greater variability across samples than pigs and rats. A prior study of human somatic nerves indicated that the ratio of perineurium thickness to fascicle diameter was approximately constant across fascicle diameters. However, our data found thicker human and pig VN perineurium than those prior data: the VNs had thicker perineurium for larger fascicles and thicker perineurium normalized by fascicle diameter for smaller fascicles. Understanding these differences in VN morphology between preclinical models and the clinical target, as well as the variability across individuals of a species, is essential for designing suitable cuff electrodes and stimulation parameters and for informing translation of preclinical results to clinical application to advance the therapeutic efficacy of VNS.
Collapse
Affiliation(s)
- Nicole A. Pelot
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Gabriel B. Goldhagen
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Jake E. Cariello
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Eric D. Musselman
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Kara A. Clissold
- Histology Research Core, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - J. Ashley Ezzell
- Histology Research Core, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Warren M. Grill
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, United States
- Department of Neurobiology, Duke University, Durham, NC, United States
- Department of Neurosurgery, School of Medicine, Duke University, Durham, NC, United States
| |
Collapse
|
78
|
Malbert CH, Chauvin A, Horowitz M, Jones KL. Pancreatic GLP-1r binding potential is reduced in insulin-resistant pigs. BMJ Open Diabetes Res Care 2020; 8:8/2/e001540. [PMID: 33132211 PMCID: PMC7607594 DOI: 10.1136/bmjdrc-2020-001540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/11/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION The insulinotropic capacity of exogenous glucagon like peptide-1 (GLP-1) is reduced in type 2 diabetes and the insulin-resistant obese. We have tested the hypothesis that this response is the consequence of a reduced pancreatic GLP-1 receptor (GLP-1r) density in insulin-resistant obese animals. RESEARCH DESIGN AND METHODS GLP-1r density was measured in lean and insulin-resistant adult miniature pigs after the administration of a 68Ga-labeled GLP-1r agonist. The effect of hyperinsulinemia on GLP-1r was assessed using sequential positron emission tomography (PET), both in the fasted state and during a clamp. The impact of tissue perfusion, which could account for changes in GLP-1r agonist uptake, was also investigated using 68Ga-DOTA imaging. RESULTS GLP-1r binding potential in the obese pancreas was reduced by 75% compared with lean animals. Similar reductions were evident for fat tissue, but not for the duodenum. In the lean group, induced hyperinsulinemia reduced pancreatic GLP-1r density to a level comparable with that of the obese group. The reduction in blood to tissue transfer of the GLP-1r ligand paralleled that of tissue perfusion estimated using 68Ga-DOTA. CONCLUSIONS These observations establish that a reduction in abdominal tissue perfusion and a lower GLP-1r density account for the diminished insulinotropic effect of GLP-1 agonists in type 2 diabetes.
Collapse
Affiliation(s)
| | - Alain Chauvin
- UEPR Unit, Department of Animal Physiology, INRAE, Saint-Gilles, France
| | - Michael Horowitz
- Center of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, South Australia, Australia
| | - Karen L Jones
- Center of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
79
|
Zaer H, Glud AN, Schneider BM, Lukacova S, Vang Hansen K, Adler JR, Høyer M, Jensen MB, Hansen R, Hoffmann L, Worm ES, Sørensen JCH, Orlowski D. Radionecrosis and cellular changes in small volume stereotactic brain radiosurgery in a porcine model. Sci Rep 2020; 10:16223. [PMID: 33004849 PMCID: PMC7529917 DOI: 10.1038/s41598-020-72876-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 09/08/2020] [Indexed: 12/25/2022] Open
Abstract
Stereotactic radiosurgery (SRS) has proven an effective tool for the treatment of brain tumors, arteriovenous malformation, and functional conditions. However, radiation-induced therapeutic effect in viable cells in functional SRS is also suggested. Evaluation of the proposed modulatory effect of irradiation on neuronal activity without causing cellular death requires the knowledge of radiation dose tolerance at very small tissue volume. Therefore, we aimed to establish a porcine model to study the effects of ultra-high radiosurgical doses in small volumes of the brain. Five minipigs received focal stereotactic radiosurgery with single large doses of 40–100 Gy to 5–7.5 mm fields in the left primary motor cortex and the right subcortical white matter, and one animal remained as unirradiated control. The animals were followed-up with serial MRI,
PET scans, and histology 6 months post-radiation. We observed a dose-dependent relation of the histological and MRI changes at 6 months post-radiation. The necrotic lesions were seen in the grey matter at 100 Gy and in white matter at 60 Gy. Furthermore, small volume radiosurgery at different dose levels induced vascular, as well as neuronal cell changes and glial cell remodeling.
Collapse
Affiliation(s)
- Hamed Zaer
- Centre for Experimental Neuroscience (CENSE), Department of Neurosurgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, indgang J, Plan 1, J118-125, (Krydspunkt 116), 8200, Aarhus N, Denmark. .,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Andreas Nørgaard Glud
- Centre for Experimental Neuroscience (CENSE), Department of Neurosurgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, indgang J, Plan 1, J118-125, (Krydspunkt 116), 8200, Aarhus N, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Bret M Schneider
- Zap Surgical Systems, Inc., San Carlos, CA, USA.,Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA.,Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Slávka Lukacova
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Oncology and Radiation Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Kim Vang Hansen
- Department of Nuclear Medicine and PET Center, Institute of Clinical Medicine, Aarhus University and Hospital, Aarhus, Denmark
| | - John R Adler
- Zap Surgical Systems, Inc., San Carlos, CA, USA.,Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Morten Høyer
- Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Morten Bjørn Jensen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Oncology and Radiation Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Rune Hansen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Oncology and Radiation Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Lone Hoffmann
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Oncology and Radiation Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Esben Schjødt Worm
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Oncology and Radiation Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Jens Chr Hedemann Sørensen
- Centre for Experimental Neuroscience (CENSE), Department of Neurosurgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, indgang J, Plan 1, J118-125, (Krydspunkt 116), 8200, Aarhus N, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Dariusz Orlowski
- Centre for Experimental Neuroscience (CENSE), Department of Neurosurgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, indgang J, Plan 1, J118-125, (Krydspunkt 116), 8200, Aarhus N, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
80
|
Val-Laillet D, Kanzari A, Guérin S, Randuineau G, Coquery N. A maternal Western diet during gestation and lactation modifies offspring's microglial cell density and morphology in the hippocampus and prefrontal cortex in Yucatan minipigs. Neurosci Lett 2020; 739:135395. [PMID: 32950568 DOI: 10.1016/j.neulet.2020.135395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022]
Abstract
Changes in microglial development and morphology can be induced by inflammatory conditions and associated with eating or mood disorders, such as hyperphagia or depression. In a previous paper in the minipig model, we showed that maternal Western diet during gestation and lactation decreased hippocampus neurogenesis and food-rewarded cognitive abilities in the progeny. Whether these alterations are concomitant with a central inflammatory process in brain structures involved in learning and memory (hippocampus, HPC), cognitive (prefrontal cortex, PFC), or hedonic (orbitofrontal cortex, OFC) control of food intake is still unknown. In the present study, Yucatan minipigs (Sus scrofa) sows were exposed to two different diets during gestation and lactation (standard, SD N = 7 vs. Western diet, WD N = 9). Iba1 is a calcium-binding protein specifically expressed in microglia in the brain, which plays an important role in the regulation of the microglia function. Iba1 expression was examined by immunohistochemical analyses in the PFC, OFC and HPC of piglets. The density of microglial cells, as well as their morphology, were assessed in order to have an indirect insight of microglial cell activation state possibly in relationship with neuroinflammation. The density of Iba1-positive cells was higher in the PFC but not in the HPC of WD compared to SD piglets (p < 0.001). In the HPC, anterior and dorsolateral PFC, WD piglets had more unipolar cells, contrary to SD that had more multipolar cells (P < 0.0001). Opposite effects were observed in the OFC, with SD presenting more unipolar (P < 0.001) microglial cells compared to WD. We showed here that maternal diet during pregnancy and lactation had significant effects on morphological changes of microglial cells in the offspring, and that these effects differed between the HPC and PFC, suggesting different response mechanisms to the early nutritional environment.
Collapse
Affiliation(s)
- David Val-Laillet
- INRAE, INSERM, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, St Gilles, France.
| | - Ameni Kanzari
- INRAE, INSERM, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, St Gilles, France; Université de Tunis El Manar, Faculté des Sciences de Tunis, UR/11ES09 Laboratory of Functional Neurophysiology and Pathology, Tunis, Tunisia
| | - Sylvie Guérin
- INRAE, INSERM, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, St Gilles, France
| | - Gwénaëlle Randuineau
- INRAE, INSERM, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, St Gilles, France
| | - Nicolas Coquery
- INRAE, INSERM, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, St Gilles, France
| |
Collapse
|
81
|
Melià-Sorolla M, Castaño C, DeGregorio-Rocasolano N, Rodríguez-Esparragoza L, Dávalos A, Martí-Sistac O, Gasull T. Relevance of Porcine Stroke Models to Bridge the Gap from Pre-Clinical Findings to Clinical Implementation. Int J Mol Sci 2020; 21:ijms21186568. [PMID: 32911769 PMCID: PMC7555414 DOI: 10.3390/ijms21186568] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022] Open
Abstract
In the search of animal stroke models providing translational advantages for biomedical research, pigs are large mammals with interesting brain characteristics and wide social acceptance. Compared to rodents, pigs have human-like highly gyrencephalic brains. In addition, increasingly through phylogeny, animals have more sophisticated white matter connectivity; thus, ratios of white-to-gray matter in humans and pigs are higher than in rodents. Swine models provide the opportunity to study the effect of stroke with emphasis on white matter damage and neuroanatomical changes in connectivity, and their pathophysiological correlate. In addition, the subarachnoid space surrounding the swine brain resembles that of humans. This allows the accumulation of blood and clots in subarachnoid hemorrhage models mimicking the clinical condition. The clot accumulation has been reported to mediate pathological mechanisms known to contribute to infarct progression and final damage in stroke patients. Importantly, swine allows trustworthy tracking of brain damage evolution using the same non-invasive multimodal imaging sequences used in the clinical practice. Moreover, several models of comorbidities and pathologies usually found in stroke patients have recently been established in swine. We review here ischemic and hemorrhagic stroke models reported so far in pigs. The advantages and limitations of each model are also discussed.
Collapse
Affiliation(s)
- Marc Melià-Sorolla
- Cellular and Molecular Neurobiology Research Group, Department of Neurosciences, Germans Trias i Pujol Research Institute, 08916 Badalona, Catalonia, Spain; (M.M.-S.); (N.D.-R.)
| | - Carlos Castaño
- Neurointerventional Radiology Unit, Department of Neurosciences, Hospital Germans Trias i Pujol, 08916 Badalona, Catalonia, Spain;
| | - Núria DeGregorio-Rocasolano
- Cellular and Molecular Neurobiology Research Group, Department of Neurosciences, Germans Trias i Pujol Research Institute, 08916 Badalona, Catalonia, Spain; (M.M.-S.); (N.D.-R.)
| | - Luis Rodríguez-Esparragoza
- Stroke Unit, Department of Neurology, Hospital Germans Trias i Pujol, 08916 Badalona, Catalonia, Spain; (L.R.-E.); (A.D.)
| | - Antoni Dávalos
- Stroke Unit, Department of Neurology, Hospital Germans Trias i Pujol, 08916 Badalona, Catalonia, Spain; (L.R.-E.); (A.D.)
| | - Octavi Martí-Sistac
- Cellular and Molecular Neurobiology Research Group, Department of Neurosciences, Germans Trias i Pujol Research Institute, 08916 Badalona, Catalonia, Spain; (M.M.-S.); (N.D.-R.)
- Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08916 Bellaterra, Catalonia, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Carretera del Canyet, Camí de les Escoles s/n, Edifici Mar, 08916 Badalona, Catalonia, Spain
- Correspondence: (O.M.-S.); (T.G.); Tel.: +34-930330531 (O.M.-S.)
| | - Teresa Gasull
- Cellular and Molecular Neurobiology Research Group, Department of Neurosciences, Germans Trias i Pujol Research Institute, 08916 Badalona, Catalonia, Spain; (M.M.-S.); (N.D.-R.)
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Carretera del Canyet, Camí de les Escoles s/n, Edifici Mar, 08916 Badalona, Catalonia, Spain
- Correspondence: (O.M.-S.); (T.G.); Tel.: +34-930330531 (O.M.-S.)
| |
Collapse
|
82
|
Circulating GFAP and Iba-1 levels are associated with pathophysiological sequelae in the thalamus in a pig model of mild TBI. Sci Rep 2020; 10:13369. [PMID: 32770054 PMCID: PMC7415146 DOI: 10.1038/s41598-020-70266-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/23/2020] [Indexed: 12/31/2022] Open
Abstract
Serum biomarkers are promising tools for evaluating patients following traumatic brain injury (TBI). However, their relationship with diffuse histopathology remains unclear. Additionally, translatability is a focus of neurotrauma research, however, studies using translational animal models are limited. Here, we evaluated associations between circulating biomarkers and acute thalamic histopathology in a translational micro pig model of mTBI. Serum samples were collected pre-injury, and 1 min-6 h following mTBI. Markers of neuronal injury (Ubiquitin Carboxy-terminal Hydrolase L1 [UCH-L1]), microglial/macrophage activation (Ionized calcium binding adaptor molecule-1 [Iba-1]) and interleukin-6 [IL-6]) and astrogliosis/astrocyte damage (glial fibrillary acidic protein [GFAP]) were measured. Axonal injury and histological features of neurons and glia were also investigated using immunofluorescent labeling and correlated to serum levels of the associated biomarkers. Consistent with prior experimental and human studies, GFAP, was highest at 6 h post-injury, while no substantial changes were observed in UCH-L1, Iba-1 or IL-6 over 6 h. This study also found promising associations between thalamic glial histological signatures and ensuing release of Iba-1 and GFAP into the circulation. Our findings suggest that in diffuse injury, monitoring serum Iba-1 and GFAP levels can provide clinically relevant insight into the underlying acute pathophysiology and biomarker release kinetics following mTBI, providing previously underappreciated diagnostic capability.
Collapse
|
83
|
Pacia CP, Zhu L, Yang Y, Yue Y, Nazeri A, Michael Gach H, Talcott MR, Leuthardt EC, Chen H. Feasibility and safety of focused ultrasound-enabled liquid biopsy in the brain of a porcine model. Sci Rep 2020; 10:7449. [PMID: 32366915 PMCID: PMC7198482 DOI: 10.1038/s41598-020-64440-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Although blood-based liquid biopsy is a promising noninvasive technique to acquire a comprehensive molecular tumor profile by detecting cancer-specific biomarkers (e.g. DNA, RNA, and proteins), there has been limited progress for brain tumor application partially because the low permeability of the blood-brain barrier (BBB) hinders the release of tumor biomarkers. We previously demonstrated focused ultrasound-enabled liquid biopsy (FUS-LBx) that uses FUS to increase BBB permeability in murine glioblastoma models and thus enhance the release of tumor-specific biomarkers into the bloodstream. The objective of this study was to evaluate the feasibility and safety of FUS-LBx in the normal brain tissue of a porcine model. Increased BBB permeability was confirmed by the significant increase (p = 0.0053) in Ktrans (the transfer coefficient from blood to brain extravascular extracellular space) when comparing the FUS-sonicated brain area with the contralateral non-sonicated area. Meanwhile, there was a significant increase in the blood concentrations of glial fibrillary acidic protein (GFAP, p = 0.0074) and myelin basic protein (MBP, p = 0.0039) after FUS sonication as compared with before FUS. There was no detectable tissue damage by T2*-weighted MRI and histological analysis. Findings from this study suggest that FUS-LBx is a promising technique for noninvasive and localized diagnosis of the molecular profiles of brain diseases with the potential to translate to the clinic.
Collapse
Affiliation(s)
- Christopher Pham Pacia
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Lifei Zhu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Yaoheng Yang
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Yimei Yue
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Arash Nazeri
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - H Michael Gach
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, MO, 63108, USA
| | - Michael R Talcott
- Division of Comparative Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Eric C Leuthardt
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
- Department of Neurosurgery, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Center for Innovation in Neuroscience and Technology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA.
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, MO, 63108, USA.
| |
Collapse
|
84
|
Chinn GA, Pearn ML, Vutskits L, Mintz CD, Loepke AW, Lee JJ, Chen J, Bosnjak ZJ, Brambrink AM, Jevtovic-Todorovic V, Sun LS, Sall JW. Standards for preclinical research and publications in developmental anaesthetic neurotoxicity: expert opinion statement from the SmartTots preclinical working group. Br J Anaesth 2020; 124:585-593. [PMID: 32145876 PMCID: PMC7424895 DOI: 10.1016/j.bja.2020.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 01/06/2020] [Accepted: 01/24/2020] [Indexed: 12/16/2022] Open
Abstract
In March 2019, SmartTots, a public-private partnership between the US Food and Drug Administration and the International Anesthesia Research Society, hosted a meeting attended by research experts, anaesthesia journal editors, and government agency representatives to discuss the continued need for rigorous preclinical research and the importance of establishing reporting standards for the field of anaesthetic perinatal neurotoxicity. This group affirmed the importance of preclinical research in the field, and welcomed novel and mechanistic approaches to answer some of the field's largest questions. The attendees concluded that summarising the benefits and disadvantages of specific model systems, and providing guidance for reporting results, would be helpful for designing new experiments and interpreting results across laboratories. This expert opinion report is a summary of these discussions, and includes a focused review of current animal models and reporting standards for the field of perinatal anaesthetic neurotoxicity. This will serve as a practical guide and road map for novel and rigorous experimental work.
Collapse
Affiliation(s)
- Gregory A Chinn
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Matthew L Pearn
- Department of Anesthesiology, University of California, San Diego, CA, USA
| | - Laszlo Vutskits
- Department of Anesthesiology, Clinical Pharmacology, Intensive Care and Emergency Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | - Cyrus D Mintz
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andreas W Loepke
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jennifer J Lee
- Department of Anesthesiology, Columbia University, New York, NY, USA
| | - Jerri Chen
- Department of Anesthesiology, Columbia University, New York, NY, USA
| | - Zeljko J Bosnjak
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | | - Lena S Sun
- Department of Anesthesiology, Columbia University, New York, NY, USA
| | - Jeffrey W Sall
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA.
| |
Collapse
|
85
|
Kang J, Kadam SD, Elmore JS, Sullivan BJ, Valentine H, Malla AP, Harraz MM, Rahmim A, Kang JU, Loew LM, Baumann MH, Grace AA, Gjedde A, Boctor EM, Wong DF. Transcranial photoacoustic imaging of NMDA-evoked focal circuit dynamics in the rat hippocampus. J Neural Eng 2020; 17:025001. [PMID: 32084654 DOI: 10.1088/1741-2552/ab78ca] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE We report the transcranial functional photoacoustic (fPA) neuroimaging of N-methyl-D-aspartate (NMDA) evoked neural activity in the rat hippocampus. Concurrent quantitative electroencephalography (qEEG) and microdialysis were used to record real-time circuit dynamics and excitatory neurotransmitter concentrations, respectively. APPROACH We hypothesized that location-specific fPA voltage-sensitive dye (VSD) contrast would identify neural activity changes in the hippocampus which correlate with NMDA-evoked excitatory neurotransmission. MAIN RESULTS Transcranial fPA VSD imaging at the contralateral side of the microdialysis probe provided NMDA-evoked VSD responses with positive correlation to extracellular glutamate concentration changes. qEEG validated a wide range of glutamatergic excitation, which culminated in focal seizure activity after a high NMDA dose. We conclude that transcranial fPA VSD imaging can distinguish focal glutamate loads in the rat hippocampus, based on the VSD redistribution mechanism which is sensitive to the electrophysiologic membrane potential. SIGNIFICANCE Our results suggest the future utility of this emerging technology in both laboratory and clinical sciences as an innovative functional neuroimaging modality.
Collapse
Affiliation(s)
- Jeeun Kang
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, United States of America. Laboratory of Computational Sensing and Robotics, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Lentiviral Vector Induced Modeling of High-Grade Spinal Cord Glioma in Minipigs. Sci Rep 2020; 10:5291. [PMID: 32210315 PMCID: PMC7093438 DOI: 10.1038/s41598-020-62167-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/09/2020] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Prior studies have applied driver mutations targeting the RTK/RAS/PI3K and p53 pathways to induce the formation of high-grade gliomas in rodent models. In the present study, we report the production of a high-grade spinal cord glioma model in pigs using lentiviral gene transfer. METHODS Six Gottingen Minipigs received thoracolumbar (T14-L1) lateral white matter injections of a combination of lentiviral vectors, expressing platelet-derived growth factor beta (PDGF-B), constitutive HRAS, and shRNA-p53 respectively. All animals received injection of control vectors into the contralateral cord. Animals underwent baseline and endpoint magnetic resonance imaging (MRI) and were evaluated daily for clinical deficits. Hematoxylin and eosin (H&E) and immunohistochemical analysis was conducted. Data are presented using descriptive statistics including relative frequencies, mean, standard deviation, and range. RESULTS 100% of animals (n = 6/6) developed clinical motor deficits ipsilateral to the oncogenic lentiviral injections by a three-week endpoint. MRI scans at endpoint demonstrated contrast enhancing mass lesions at the site of oncogenic lentiviral injection and not at the site of control injections. Immunohistochemistry demonstrated positive staining for GFAP, Olig2, and a high Ki-67 proliferative index. Histopathologic features demonstrate consistent and reproducible growth of a high-grade glioma in all animals. CONCLUSIONS Lentiviral gene transfer represents a feasible pathway to glioma modeling in higher order species. The present model is the first lentiviral vector induced pig model of high-grade spinal cord glioma and may potentially be used in preclinical therapeutic development programs.
Collapse
|
87
|
Menneson S, Ménicot S, Malbert CH, Meurice P, Serrand Y, Noirot V, Etienne P, Coquery N, Val-Laillet D. Neuromodulatory and possible anxiolytic-like effects of a spice functional food ingredient in a pig model of psychosocial chronic stress. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
88
|
Kuo SH, Louis ED, Faust PL, Handforth A, Chang SY, Avlar B, Lang EJ, Pan MK, Miterko LN, Brown AM, Sillitoe RV, Anderson CJ, Pulst SM, Gallagher MJ, Lyman KA, Chetkovich DM, Clark LN, Tio M, Tan EK, Elble RJ. Current Opinions and Consensus for Studying Tremor in Animal Models. CEREBELLUM (LONDON, ENGLAND) 2019; 18:1036-1063. [PMID: 31124049 PMCID: PMC6872927 DOI: 10.1007/s12311-019-01037-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tremor is the most common movement disorder; however, we are just beginning to understand the brain circuitry that generates tremor. Various neuroimaging, neuropathological, and physiological studies in human tremor disorders have been performed to further our knowledge of tremor. But, the causal relationship between these observations and tremor is usually difficult to establish and detailed mechanisms are not sufficiently studied. To overcome these obstacles, animal models can provide an important means to look into human tremor disorders. In this manuscript, we will discuss the use of different species of animals (mice, rats, fruit flies, pigs, and monkeys) to model human tremor disorders. Several ways to manipulate the brain circuitry and physiology in these animal models (pharmacology, genetics, and lesioning) will also be discussed. Finally, we will discuss how these animal models can help us to gain knowledge of the pathophysiology of human tremor disorders, which could serve as a platform towards developing novel therapies for tremor.
Collapse
Affiliation(s)
- Sheng-Han Kuo
- Department of Neurology, Columbia University, 650 West 168th Street, Room 305, New York, NY, 10032, USA.
| | - Elan D Louis
- Department of Neurology, Yale School of Medicine, Yale University, 800 Howard Avenue, Ste Lower Level, New Haven, CT, 06519, USA.
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT, USA.
- Center for Neuroepidemiology and Clinical Neurological Research, Yale School of Medicine, Yale University, New Haven, CT, USA.
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY, USA
| | - Adrian Handforth
- Neurology Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Su-Youne Chang
- Department of Neurologic Surgery and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Billur Avlar
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | - Eric J Lang
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | - Ming-Kai Pan
- Department of Medical Research and Neurology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Lauren N Miterko
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
| | - Amanda M Brown
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Collin J Anderson
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | | | - Kyle A Lyman
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Lorraine N Clark
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Murni Tio
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Rodger J Elble
- Department of Neurology, Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|
89
|
Locomotion and eating behavior changes in Yucatan minipigs after unilateral radio-induced ablation of the caudate nucleus. Sci Rep 2019; 9:17082. [PMID: 31745153 PMCID: PMC6863900 DOI: 10.1038/s41598-019-53518-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/28/2019] [Indexed: 11/27/2022] Open
Abstract
The functional roles of the Caudate nucleus (Cd) are well known. Selective Cd lesions can be found in neurological disorders. However, little is known about the dynamics of the behavioral changes during progressive Cd ablation. Current stereotactic radiosurgery technologies allow the progressive ablation of a brain region with limited adverse effects in surrounding normal tissues. This could be of high interest for the study of the modified behavioral functions in relation with the degree of impairment of the brain structures. Using hypofractionated stereotactic radiotherapy combined with synchrotron microbeam radiation, we investigated, during one year after irradiation, the effects of unilateral radio-ablation of the right Cd on the behavior of Yucatan minipigs. The right Cd was irradiated to a minimal dose of 35.5 Gy delivered in three fractions. MRI-based morphological brain integrity and behavioral functions, i.e. locomotion, motivation/hedonism were assessed. We detected a progressive radio-necrosis leading to a quasi-total ablation one year after irradiation, with an additional alteration of surrounding areas. Transitory changes in the motivation/hedonism were firstly detected, then on locomotion, suggesting the influence of different compensatory mechanisms depending on the functions related to Cd and possibly some surrounding areas. We concluded that early behavioral changes related to eating functions are relevant markers for the early detection of ongoing lesions occurring in Cd-related neurological disorders.
Collapse
|
90
|
Val-Laillet D. Review: Impact of food, gut-brain signals and metabolic status on brain activity in the pig model: 10 years of nutrition research using in vivo brain imaging. Animal 2019; 13:2699-2713. [PMID: 31354119 DOI: 10.1017/s1751731119001745] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The purpose of this review is to offer a panorama on 10 years of nutrition research using in vivo brain imaging in the pig model. First, we will review some work describing the brain responses to food signals, including basic tastants such as sweet and bitter at both oral and visceral levels, as well as conditioned preferred and aversive flavours. Second, we will have a look at the impact of weight gain and obesity on brain metabolism and functional responses, drawing the parallel with obese human patients. Third, we will evoke the concept of the developmental origins of health and diseases, and how the pig model can shed light on the importance of maternal nutrition during gestation and lactation for the development of the gut-brain axis and adaptation abilities of the progeny to nutritional environments. Finally, three examples of preventive or therapeutic strategies will be introduced: the use of sensory food ingredients or pre-, pro-, and postbiotics to improve metabolic and cognitive functions; the implementation of chronic vagus nerve stimulation to prevent weight gain and glucose metabolism alterations; and the development of bariatric surgery in the pig model for the understanding of its complex mechanisms at the gut-brain level. A critical conclusion will brush the limitations of neurocognitive studies in the pig model and put in perspective the rationale and ethical concerns underlying the use of pig experimentation in nutrition and neurosciences.
Collapse
Affiliation(s)
- D Val-Laillet
- INRA, INSERM, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, St Gilles, France
| |
Collapse
|
91
|
Alexander SL, Gunnarsson CA, Weerasooriya T. Influence of the mesostructure on the compressive mechanical response of adolescent porcine cranial bone. J Mech Behav Biomed Mater 2019; 96:96-107. [DOI: 10.1016/j.jmbbm.2019.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/11/2019] [Accepted: 04/11/2019] [Indexed: 11/15/2022]
|
92
|
Tanti GK, Srivastava R, Kalluri SR, Nowak C, Hemmer B. Isolation, Culture and Functional Characterization of Glia and Endothelial Cells From Adult Pig Brain. Front Cell Neurosci 2019; 13:333. [PMID: 31474831 PMCID: PMC6705213 DOI: 10.3389/fncel.2019.00333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/05/2019] [Indexed: 02/02/2023] Open
Abstract
Primary cultures of glial and endothelial cells are important tools for basic and translational neuroscience research. Primary cell cultures are usually generated from rodent brain although considerable differences exist between human and rodent glia and endothelial cells. Because many translational research projects aim to identify mechanisms that eventually lead to diagnostic and therapeutic approaches to target human diseases, glia, and endothelial cultures are needed that better reflect the human central nervous system (CNS). Pig brain is easily accessible and, in many aspects, close to the human brain. We established an easy and cost-effective method to isolate and culture different primary glial and endothelial cells from adult pig brain. Oligodendrocyte, microglia, astrocyte, and endothelial primary cell cultures were generated from the same brain tissue and grown for up to 8 weeks. Primary cells showed lineage-specific morphology and expressed specific markers with a purity ranging from 60 to 95%. Cultured oligodendrocytes myelinated neurons and microglia secreted tumor necrosis factor alpha when induced with lipopolysaccharide. Endothelial cells showed typical tube formation when grown on Matrigel. Astrocytes enhanced survival of co-cultured neurons and were killed by Aquaporin-4 antibody positive sera from patients with Neuromyelitis optica. In summary, we established a new method for primary oligodendrocyte, microglia, endothelial and astrocyte cell cultures from pig brain that provide a tool for translational research on human CNS diseases.
Collapse
Affiliation(s)
- Goutam Kumar Tanti
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Rajneesh Srivastava
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Sudhakar Reddy Kalluri
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Carina Nowak
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Bernhard Hemmer
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany.,Munich Cluster for Systems Neurology, Munich, Germany
| |
Collapse
|
93
|
Ella A, Barrière DA, Adriaensen H, Palmer DN, Melzer TR, Mitchell NL, Keller M. The development of brain magnetic resonance approaches in large animal models for preclinical research. Anim Front 2019; 9:44-51. [PMID: 32002261 PMCID: PMC6951960 DOI: 10.1093/af/vfz024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Arsène Ella
- Physiologie de la Reproduction & des Comportements, INRA/CNRS/Université de Tours, France.,MRC Cognition and Brain Science Unit, University of Cambridge, UK
| | - David A Barrière
- Physiologie de la Reproduction & des Comportements, INRA/CNRS/Université de Tours, France.,Neurospin, CEA, France
| | - Hans Adriaensen
- Physiologie de la Reproduction & des Comportements, INRA/CNRS/Université de Tours, France
| | - David N Palmer
- Faculty of Agriculture and Life Sciences, Lincoln University, New Zealand
| | - Tracy R Melzer
- Department of Medicine, University of Otago, Christchurch, and New Zealand Brain Research Institute, New Zealand
| | - Nadia L Mitchell
- Faculty of Agriculture and Life Sciences, Lincoln University, New Zealand.,Department of Radiology, University of Otago, Christchurch, New Zealand
| | - Matthieu Keller
- Physiologie de la Reproduction & des Comportements, INRA/CNRS/Université de Tours, France
| |
Collapse
|
94
|
Simchick G, Shen A, Campbell B, Park HJ, West FD, Zhao Q. Pig Brains Have Homologous Resting-State Networks with Human Brains. Brain Connect 2019; 9:566-579. [PMID: 31115245 DOI: 10.1089/brain.2019.0673] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Many neurological and psychiatric diseases in humans are caused by disruptions to large-scale functional properties of the brain, including functional connectivity. There has been growing interest in discovering the functional organization of brain networks in larger animal models. As a result, the use of translational pig models in neuroscience has significantly increased in the past decades. The gyrencephalic pig brain resembles the human brain more in anatomy, growth, and development than the brains of commonly used small laboratory animals such as rodents. In this work, resting-state functional magnetic resonance imaging (rs-fMRI) and diffusion tensor imaging (DTI) data were acquired from a group of pigs (n = 12). rs-fMRI data were analyzed for resting-state networks (RSNs) by using independent component analysis and sparse dictionary learning. Six RSNs (executive control, cerebellar, sensorimotor, visual, auditory, and default mode) were detected that resemble their counterparts in human brains, as measured by Pearson spatial correlations and mean ratios. Supporting evidence of the validity of these RSNs was provided through the evaluation and quantification of structural connectivity measures (mean diffusivity, fractional anisotropy, fiber length, and fiber density) estimated from the DTI data. This study shows that as a translational, large animal model, pigs demonstrate great potential for mapping connectome-scale functional connectivity in experimental modeling of human brain disorders.
Collapse
Affiliation(s)
- Gregory Simchick
- Bio-Imaging Research Center, University of Georgia, Athens, Georgia.,Department of Physics and Astronomy, University of Georgia, Athens, Georgia.,Regenerative Bioscience Center, University of Georgia, Athens, Georgia
| | - Alice Shen
- Bio-Imaging Research Center, University of Georgia, Athens, Georgia
| | - Brandon Campbell
- Bio-Imaging Research Center, University of Georgia, Athens, Georgia.,Department of Physics and Astronomy, University of Georgia, Athens, Georgia
| | - Hea Jin Park
- Department of Foods and Nutrition, University of Georgia, Athens, Georgia
| | - Franklin D West
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| | - Qun Zhao
- Bio-Imaging Research Center, University of Georgia, Athens, Georgia.,Department of Physics and Astronomy, University of Georgia, Athens, Georgia.,Regenerative Bioscience Center, University of Georgia, Athens, Georgia
| |
Collapse
|
95
|
Malbert CH, Genissel M, Divoux JL, Henry C. Chronic abdominal vagus stimulation increased brain metabolic connectivity, reduced striatal dopamine transporter and increased mid-brain serotonin transporter in obese miniature pigs. J Transl Med 2019; 17:78. [PMID: 30866954 PMCID: PMC6417219 DOI: 10.1186/s12967-019-1831-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/06/2019] [Indexed: 01/18/2023] Open
Abstract
Background/objective Changes in brain metabolism has been investigated thoroughly during unilateral cervical chronic vagal stimulation in epileptic or depressive patients. Bilateral stimulation of the abdominal vagus (aVNS) has received less attention despite the reduction in body weight and an altered feeding behavior in obese animals that could be clinically relevant in obese individuals. Our study aims to examine the changes in brain glucose metabolism (CMRglu) induced by aVNS in obese adult miniature pigs. Dopamine (DAT) and serotonin transporters (SERT) were also quantified to further understand the molecular origins of the alterations in brain metabolism. Subjects/methods Pairs of stimulating electrodes were implanted during laparoscopy on both abdominal vagal trunks in 20 obese adult’s miniature pigs. Half of the animals were permanently stimulated while the remaining were sham stimulated. Two months after the onset of stimulation, dynamic 18FDG PET and 123I-ioflupane SPECT were performed. Food intake, resting energy expenditure and fat deposition were also assessed longitudinally. Results Food intake was halved and resting energy expenditure was increased by 60% in aVNS group compared to sham. The gain in body weight was also 38% less in aVNS group compared to sham. Brain metabolic connectivity increased between numerous structures including striatum, mid-brain, amygdala and hippocampus. On the contrary, increased CMRglu were restricted to the thalamus, the periaqueducal grey and the amygdala. DAT binding potential was decreased by about one third in the striatum while SERT was about doubled in the midbrain. Conclusions Our findings demonstrated that aVNS reduced weight gain as a consequence of diminished daily food intake and increased resting energy expenditure. These changes were associated with enhanced connectivity between several brain areas. A lower striatal DAT together with a doubled mid-brain SERT were likely causative for these changes. Electronic supplementary material The online version of this article (10.1186/s12967-019-1831-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Mickael Genissel
- Pegase Unit, Dept of Animal Physiology, INRA, Saint-Gilles, France
| | | | | |
Collapse
|
96
|
Elsayed M, Torres R, Sterkers O, Bernardeschi D, Nguyen Y. Pig as a large animal model for posterior fossa surgery in oto-neurosurgery: A cadaveric study. PLoS One 2019; 14:e0212855. [PMID: 30807592 PMCID: PMC6391018 DOI: 10.1371/journal.pone.0212855] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 02/11/2019] [Indexed: 11/18/2022] Open
Abstract
This study proposes a practical model for a new approach to the posterior fossa in common domestic pigs. Several surgical procedures can be simulated in the nonliving pig model, including soft tissue dissection, drilling of temporal bone, dural incision, access to the cerebellopontine angle, exposure of cranial nerves and drilling of the internal auditory canal. The pig model perfectly simulates standard otological and neurosurgical procedures, and we highlight the feasibility of our approach for further experiments in a living pig model with the possibility of reproducing the model for research on cranial nerves in pigs to study their electrophysiological behavior.
Collapse
Affiliation(s)
- Mohamed Elsayed
- Sorbonne Université, Inserm, Unité "Réhabilitation chirurgicale mini-invasive et robotisée de l'audition", Paris, France
- AP-HP, GHU Pitié-Salpêtrière, Service ORL, Otologie, implants auditifs et chirurgie de la base du crâne, Paris, France
- Alexandria University, Faculty of Medicine, ORL Department, Alexandria, Egypt
- * E-mail:
| | - Renato Torres
- Sorbonne Université, Inserm, Unité "Réhabilitation chirurgicale mini-invasive et robotisée de l'audition", Paris, France
- AP-HP, GHU Pitié-Salpêtrière, Service ORL, Otologie, implants auditifs et chirurgie de la base du crâne, Paris, France
| | - Olivier Sterkers
- Sorbonne Université, Inserm, Unité "Réhabilitation chirurgicale mini-invasive et robotisée de l'audition", Paris, France
- AP-HP, GHU Pitié-Salpêtrière, Service ORL, Otologie, implants auditifs et chirurgie de la base du crâne, Paris, France
| | - Daniele Bernardeschi
- Sorbonne Université, Inserm, Unité "Réhabilitation chirurgicale mini-invasive et robotisée de l'audition", Paris, France
- AP-HP, GHU Pitié-Salpêtrière, Service ORL, Otologie, implants auditifs et chirurgie de la base du crâne, Paris, France
| | - Yann Nguyen
- Sorbonne Université, Inserm, Unité "Réhabilitation chirurgicale mini-invasive et robotisée de l'audition", Paris, France
- AP-HP, GHU Pitié-Salpêtrière, Service ORL, Otologie, implants auditifs et chirurgie de la base du crâne, Paris, France
| |
Collapse
|
97
|
Aubid NN, Liu Y, Vidal JMP, Hall VJ. Isolation and culture of porcine primary fetal progenitors and neurons from the developing dorsal telencephalon. J Vet Sci 2019; 20:e3. [PMID: 30944526 PMCID: PMC6441812 DOI: 10.4142/jvs.2019.20.e3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/26/2018] [Accepted: 12/04/2018] [Indexed: 01/20/2023] Open
Abstract
The development of long-term surviving fetal cell cultures from primary cell tissue from the developing brain is important for facilitating studies investigating neural development and for modelling neural disorders and brain congenital defects. The field faces current challenges in co-culturing both progenitors and neurons long-term. Here, we culture for the first time, porcine fetal cells from the dorsal telencephalon at embryonic day (E) 50 and E60 in conditions that promoted both the survival of progenitor cells and young neurons. We applied a novel protocol designed to collect, isolate and promote survival of both progenitors and young neurons. Herein, we used a combination of low amount of fetal bovine serum, together with pro-survival factors, including basic fibroblast growth factor and retinoic acid, together with arabinofuranosylcytosine and could maintain progenitors and facilitate in vitro differentiation into calbindin 1+ neurons and reelin+ interneurons for a period of 7 days. Further improvements to the protocol that might extend the survival of the fetal primary neural cells would be beneficial. The development of new porcine fetal culture methods is of value for the field, given the pig's neuroanatomical and developmental similarities to the human brain.
Collapse
Affiliation(s)
- Niroch Nawzad Aubid
- Department of Veterinary and Animal Sciences, Faculty of Health Sciences, University of Copenhagen, Frederiksberg C, DK-1870, Denmark
| | - Yong Liu
- Department of Veterinary and Animal Sciences, Faculty of Health Sciences, University of Copenhagen, Frederiksberg C, DK-1870, Denmark
| | - Juan Miguel Peralvo Vidal
- Department of Veterinary and Animal Sciences, Faculty of Health Sciences, University of Copenhagen, Frederiksberg C, DK-1870, Denmark
| | - Vanessa Jane Hall
- Department of Veterinary and Animal Sciences, Faculty of Health Sciences, University of Copenhagen, Frederiksberg C, DK-1870, Denmark
| |
Collapse
|
98
|
Qian L, Sun Y, Tong Q, Tian J, Ren Z, Zhao H. Indentation response in porcine brain under electric fields. SOFT MATTER 2019; 15:623-632. [PMID: 30608501 DOI: 10.1039/c8sm01272e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Electric fields in the environment can have profound effects on brain function and behavior. In clinical practice, some noninvasive/microinvasive therapies with electrical fields such as transcranial electrical stimulation (tES), deep brain stimulation (DBS), and electroconvulsive therapy (ECT) have emerged as powerful tools for the treatment of neuropsychiatric disorders and neuromodulation. Nonetheless, currently, most studies focus on the mechanisms and effects of therapies and do not to address the mechanical properties of brain tissue under electric fields. Thus, the mechanical behavior of brain tissue, which plays an important role in modulating both brain form and brain function, should be given attention. The present study addresses this paucity by presenting, for the first time, the mechanical properties of brain tissue under various intensities of direct current electric field (0, 2, 5, 10, 20, and 50 V) using a custom-designed indentation device. Prior to brain indentation, validation tests were performed in different hydrogels to ensure that there was no interference in the electric fields from the indentation device. Subsequently, the load trace data obtained from the indentation-relaxation tests was fitted to both linear elastic and viscoelastic models to characterize the sensitivity of the mechanical behavior of the brain tissue to the electric fields. The brain tissue was found to be softened at a higher electric field level and less viscous, and substantially responded more quickly with an increase in electric field. The explanations for the above behaviors were further discussed based on the analysis of the resistance and thermal responses during the testing process. Understanding the effect of electric fields on brain tissue at the mechanical level can provide a better understanding of the mechanisms of some therapies, which may be beneficial to guide therapy protocols.
Collapse
Affiliation(s)
- Long Qian
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China.
| | - Yifan Sun
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China.
| | - Qian Tong
- Department of Cardiology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Jiyu Tian
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China.
| | - Zhuang Ren
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China.
| | - Hongwei Zhao
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China.
| |
Collapse
|
99
|
|
100
|
Somatosensory and transcranial motor evoked potential monitoring in a porcine model for experimental procedures. PLoS One 2018; 13:e0205410. [PMID: 30296297 PMCID: PMC6175523 DOI: 10.1371/journal.pone.0205410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 09/25/2018] [Indexed: 11/19/2022] Open
Abstract
Evoked potential monitoring has evolved as an essential tool not only for elaborate neurological diagnostics, but also for general clinical practice. Moreover, it is increasingly used to guide surgical procedures and prognosticate neurological outcome in the critical care unit, e.g. after cardiac arrest. Experimental animal models aim to simulate a human-like scenario to deduct relevant clinical information for patient treatment and to test novel therapeutic opportunities. Porcine models are particularly ideal due to a comparable cardiovascular system and size. However, certain anatomic disparities have to be taken into consideration when evoked potential monitoring is used in animal models. We describe a non-invasive and reproducible set-up useful for different modalities in porcine models. We further illustrate hints to overcome multi-faceted problems commonly occurring while using this sophisticated technique. Our descriptions can be used to answer a plethora of experimental questions, and help to further facilitate experimental therapeutic innovation.
Collapse
|