51
|
Bao J, Wang J, Chen S, Liu S, Wang Z, Zhang W, Zhao C, Sha Y, Yang X, Li Y, Zhong Y, Bai F. Coordination Self-Assembled AuTPyP-Cu Metal-Organic Framework Nanosheets with pH/Ultrasound Dual-Responsiveness for Synergistically Triggering Cuproptosis-Augmented Chemotherapy. ACS NANO 2024; 18:9100-9113. [PMID: 38478044 DOI: 10.1021/acsnano.3c13225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Reactive oxygen species (ROS) mediated tumor cell death is a powerful anticancer strategy. Cuproptosis is a copper-dependent and ROS-mediated prospective tumor therapy strategy. However, the complex tumor microenvironment (TME), low tumor specificity, poor therapy efficiency, and lack of imaging capability impair the therapy output of current cuproptosis drugs. Herein, we designed a dual-responsive two-dimensional metal-organic framework (2D MOF) nanotheranostic via a coordination self-assembly strategy using Au(III) tetra-(4-pyridyl) porphine (AuTPyP) as the ligand and copper ions (Cu2+) as nodes. The dual-stimulus combined with the protonation of the pyridyl group in AuTPyP and deep-penetration ultrasound (US) together triggered the controlled release in an acidic TME. The ultrathin structure (3.0 nm) of nanotheranostics promoted the release process. The released Cu2+ was reduced to Cu+ by depleting the overexpressed glutathione (GSH) in the tumor, which not only activated the Ferredoxin 1 (FDX1)-mediated cuproptosis but also catalyzed the overexpressed hydrogen peroxide (H2O2) in the tumor into reactive oxygen species via Fenton-like reaction. Simultaneously, the released AuTPyP could specifically bind with thioredoxin reductase and activate the redox imbalance of tumor cells. These together selectively induced significant mitochondrial vacuoles and prominent tumor cell death but did not damage the normal cells. The fluorescence and magnetic resonance imaging (MRI) results verified this nanotheranostic could target the HeLa tumor to greatly promote the self-enhanced effect of chemotherapy/cuproptosis and tumor inhibition efficiency. The work helped to elucidate the controlled assembly of multiresponsive nanotheranostics and the high-specificity ROS regulation for application in anticancer therapy.
Collapse
Affiliation(s)
- Jianshuai Bao
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, P. R. China
| | - Jiefei Wang
- International Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Sudi Chen
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, P. R. China
| | - Shiqi Liu
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, P. R. China
| | - Zhen Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, P. R. China
| | - Weiwei Zhang
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, P. R. China
| | - Chenhui Zhao
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, P. R. China
| | - Yuling Sha
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, P. R. China
| | - Xiaoyan Yang
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, P. R. China
| | - Yusen Li
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, P. R. China
| | - Yong Zhong
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, P. R. China
| | - Feng Bai
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, P. R. China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, P. R. China
| |
Collapse
|
52
|
Chanda A, Mandal SK. A Multivariate 2D Metal-Organic Framework with Open Metal Sites for Catalytic CO 2 Cycloaddition and Cyanosilylation Reactions. Inorg Chem 2024; 63:5598-5610. [PMID: 38478680 DOI: 10.1021/acs.inorgchem.3c04559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
This work reports the synthesis of a dual functional 2D framework, {[Zn2(4-tpom)2(oxdz)2]·4H2O}n (1), at room temperature, where a bent dicarboxylate, oxdz2- (4,4'-(1,3,4-oxadiazole-2,5-diyl)dibenzoate), and a neutral flexible N-donor linker, 4-tpom (tetrakis(4-pyridyloxymethylene)methane), are utilized. Its single-crystal X-ray analysis indicated a 2-fold interpenetrated 2D framework having tetracoordinated Zn(II) centers and dangling pyridyl groups. Its further characterization was carried out with elemental microanalysis, FTIR spectroscopy, TG analysis, and powder X-ray diffraction. The tetracoordinated Zn(II) centers as active Lewis acidic sites and the N atoms of 4-tpom as Lewis basic sites in 1 are explored for its functioning as a heterogeneous catalyst in two important reactions, (i) cycloaddition of CO2 with various epoxides and (ii) cyanosilylation reaction under solvent-free conditions. We could successfully show the cycloaddition of styrene oxide with CO2 (99% conversion) under balloon pressure with low catalyst (0.2-0.3 mol %) and cocatalyst (0.5-0.75 mol %) loadings, which is otherwise difficult to achieve. It was observed that all the substrates (aromatic and aliphatic), irrespective of their sizes, showed conversion percentage >99%. In the cyanosilylation reaction, a conversion of 96% was obtained with 1.5 mol % of 1 at room temperature for 12 h. This framework emerged as an excellent recyclable catalyst for both the reactions.
Collapse
Affiliation(s)
- Alokananda Chanda
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Manauli PO, S.A.S. Nagar, Mohali, Punjab 140306, India
| | - Sanjay K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Manauli PO, S.A.S. Nagar, Mohali, Punjab 140306, India
| |
Collapse
|
53
|
Li K, Rajeshkumar T, Zhao Y, Wang T, Maron L, Zhu C. Temperature induced single-crystal to single-crystal transformation of uranium azide complexes. Chem Commun (Camb) 2024; 60:2966-2969. [PMID: 38376444 DOI: 10.1039/d4cc00546e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The monomeric and dimeric uranium azide complexes {[(CH3)2NCH2CH2NPiPr2]2U(N3)2} (2) and {[(CH3)2NCH2CH2NPiPr2]2U(N3)2}2 (3) were synthesized by treating complex 1 with NaN3 at 60 and -20 °C, respectively. A temperature-induced single-crystal to single-crystal transformation of 3 to 2 was observed. The reduction of either 2 or 3 with KC8 yields a uranium nitride complex {[(CH3)2NCH2CH2NPiPr2]4U2(μ-N)2} (4).
Collapse
Affiliation(s)
- Kai Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Thayalan Rajeshkumar
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, Toulouse 31077, France.
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Tianwei Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Laurent Maron
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, Toulouse 31077, France.
| | - Congqing Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
54
|
Gopalakrishnan M, Kao-ian W, Rittiruam M, Praserthdam S, Praserthdam P, Limphirat W, Nguyen MT, Yonezawa T, Kheawhom S. 3D Hierarchical MOF-Derived Defect-Rich NiFe Spinel Ferrite as a Highly Efficient Electrocatalyst for Oxygen Redox Reactions in Zinc-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11537-11551. [PMID: 38361372 PMCID: PMC11184548 DOI: 10.1021/acsami.3c17789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
The strategy of defect engineering is increasingly recognized for its pivotal role in modulating the electronic structure, thereby significantly improving the electrocatalytic performance of materials. In this study, we present defect-enriched nickel and iron oxides as highly active and cost-effective electrocatalysts, denoted as Ni0.6Fe2.4O4@NC, derived from NiFe-based metal-organic frameworks (MOFs) for oxygen reduction reactions (ORR) and oxygen evolution reactions (OER). XANES and EXAFS confirm that the crystals have a distorted structure and metal vacancies. The cation defect-rich Ni0.6Fe2.4O4@NC electrocatalyst exhibits exceptional ORR and OER activities (ΔE = 0.68 V). Mechanistic pathways of electrochemical reactions are studied by DFT calculations. Furthermore, a rechargeable zinc-air battery (RZAB) using the Ni0.6Fe2.4O4@NC catalyst demonstrates a peak power density of 187 mW cm-2 and remarkable long-term cycling stability. The flexible solid-state ZAB using the Ni0.6Fe2.4O4@NC catalyst exhibits a power density of 66 mW cm-2. The proposed structural design strategy allows for the rational design of electronic delocalization of cation defect-rich NiFe spinel ferrite attached to ultrathin N-doped graphitic carbon sheets in order to enhance active site availability and facilitate mass and electron transport.
Collapse
Affiliation(s)
- Mohan Gopalakrishnan
- Department
of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wathanyu Kao-ian
- Department
of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Meena Rittiruam
- Center
of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok 10330, Thailand
- High-Performance
Computing Unit (CECC-HCU), Center of Excellence on Catalysis and Catalytic
Reaction Engineering (CECC), Chulalongkorn
University, Bangkok 10330, Thailand
- Rittiruam
Research Group, Bangkok 10330, Thailand
| | - Supareak Praserthdam
- Center
of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok 10330, Thailand
- High-Performance
Computing Unit (CECC-HCU), Center of Excellence on Catalysis and Catalytic
Reaction Engineering (CECC), Chulalongkorn
University, Bangkok 10330, Thailand
| | - Piyasan Praserthdam
- Center
of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok 10330, Thailand
| | - Wanwisa Limphirat
- Synchrotron
Light Research Institute, 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand
| | - Mai Thanh Nguyen
- Division
of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Tetsu Yonezawa
- Division
of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Soorathep Kheawhom
- Department
of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Bio-Circular-Green-economy
Technology & Engineering Center (BCGeTEC), Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Center
of Excellence on Advanced Materials for Energy Storage, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
55
|
Zhao Q, Hou HM, Qiu Y, Zhang GL, Hao H, Zhu BW, Bi J. Rapid and large-capacity adsorption of heterocyclic aromatic amines on heat resistant two-dimensional metal organic layer/cellulose nanofiber aerogels constructed by a thawing cross-linking strategy. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133160. [PMID: 38064948 DOI: 10.1016/j.jhazmat.2023.133160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 02/08/2024]
Abstract
Composite aerogels, formed by the combination of nanoscale polymers and highly efficient adsorbents, offer the potential to deploy adsorbent distinct separation properties into a processable matrix. This paper presents a method for the fabrication of low energy bio-aerogels with high ductility, excellent wet strength and favorable heat resistance, based on cellulose nanofibers (CNFs) bound by calcium carbonate particles (CaCO3) via a simple process of ice induction, cross-linking during freezing and freeze-drying. Due to induced defects, two-dimensional metal-organic layers (MOLs) were rich in mesoporous structure and embedded in the aerogel (AGCa-MOL), which exhibited a powerful adsorption capacity. AGCa-MOL could take full advantage of their hierarchical pores and available surface area to obtain high adsorption capacity (0.694-5.470 μmol/g) and rapid adsorption kinetics (5 min) for 14 heterocyclic aromatic amines (HAAs). Moreover, the CaCO3 particles and MOLs gave the AGCa-MOL excellent thermal stability, so that it could maintain excellent adsorption capacity at a high temperature (100 °C) and be applied as an adsorbent to remove HAAs in the boiling marinade. The intrinsic potential of composite aerogels was revealed due to the synergistic properties of the various components in the composite aerogel.
Collapse
Affiliation(s)
- Qiyue Zhao
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China; Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China
| | - Hong-Man Hou
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China; Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China
| | - Yulong Qiu
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China; Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China
| | - Gong-Liang Zhang
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China; Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China
| | - Hongshun Hao
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China; Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China
| | - Bei-Wei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China
| | - Jingran Bi
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China; Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China.
| |
Collapse
|
56
|
Hulushe ST, Watkins GM, Khanye SD. Enhanced Catalytic Activity of a Copper(II) Metal-Organic Framework Constructed via Semireversible Single-Crystal-to-Single-Crystal Dehydration. ACS OMEGA 2024; 9:7511-7528. [PMID: 38405543 PMCID: PMC10882598 DOI: 10.1021/acsomega.3c05999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/15/2023] [Accepted: 01/05/2024] [Indexed: 02/27/2024]
Abstract
Herein, we present a copper(II) metal-organic framework, [Cu2(btec)(OH2)4]·2H2O (1) [(btec)4- = 1,2,4,5-benzenetetracarboxylate], that undergoes single-crystal-to-single-crystal transformations into two anhydrous phases 2' and 2″ with the chemical formula [Cu2(btec)], triggered by two-step dehydration at 403 and 433 K, respectively. After immersion in water for 3 days at room temperature, 2' transformed into [Cu2(btec)(OH2)] (3), while both 2' and 2″ took 1 week to revert to 1. Dynamic vapor sorption studies validated water-induced reversible structural transformations at 70% relative humidity (RH). According to single-crystal X-ray diffraction (SC-XRD), the local coordination geometry of the Cu2+ ion in 2' changed from a saturated octahedron to a coordinatively unsaturated square-based pyramid in 3, manifested by changes in color and dimensionality. From a topological point of view, all of the scaffolds show a binodal (3,6)-connected kgd topology with the point symbol {43}2{46}. In addition, the materials were thoroughly characterized using routine spectroscopic data and various analytical techniques. The catalytic activity of the microporous materials in the liquid-phase oxidation of styrene in acetonitrile, using 30% (wt) H2O2 as the oxidant, was investigated. The excellent performance of the monohydrous phase 3 was shown to be superior to the pristine framework and the anhydrous counterparts, as evidenced by a good turnover number (TON) and turnover frequency (TOF) = 82.6 and 21.0 h-1, respectively. Within 4 h, the substrates were catalytically oxidized to the desired products with up to 67% conversion and 100% benzaldehyde selectivity. It is worth noting that the accessible active metal sites and higher surface area enhanced the catalytic properties of 3. Furthermore, the maintenance of catalytic efficiency over five cycles and reusability are illustrated and discussed in terms of the structural differences of the microporous frameworks. Thus, a preliminary reaction mechanism for the selective oxidation of styrene is proposed. This study not only provides a fascinating example of MOF chromism achieved by thermal activation and rehydration but also sheds some light on the relationship between pore-surface- or metal-engineered sites in MOFs and their heterogeneous catalytic performances.
Collapse
Affiliation(s)
- Siya T. Hulushe
- Department
of Chemistry, Rhodes University, Makhanda 6139, South Africa
| | - Gareth M. Watkins
- Department
of Chemistry, Rhodes University, Makhanda 6139, South Africa
| | - Setshaba D. Khanye
- Division
of Pharmaceutical Chemistry, Faculty of Pharmacy, Rhodes University, Makhanda 6139, South Africa
| |
Collapse
|
57
|
Liu X, McPherson JN, Andersen CE, Jørgensen MSB, Larsen RW, Yutronkie NJ, Wilhelm F, Rogalev A, Giménez-Marqués M, Mínguez Espallargas G, Göb CR, Pedersen KS. A zero-valent palladium cluster-organic framework. Nat Commun 2024; 15:1177. [PMID: 38331922 PMCID: PMC10853280 DOI: 10.1038/s41467-024-45363-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/19/2024] [Indexed: 02/10/2024] Open
Abstract
Acquiring spatial control of nanoscopic metal clusters is central to their function as efficient multi-electron catalysts. However, dispersing metal clusters on surfaces or in porous hosts is accompanied by an intrinsic heterogeneity that hampers detailed understanding of the chemical structure and its relation to reactivities. Tethering pre-assembled molecular metal clusters into polymeric, crystalline 2D or 3D networks constitutes an unproven approach to realizing ordered arrays of chemically well-defined metal clusters. Herein, we report the facile synthesis of a {Pd3} cluster-based organometallic framework from a molecular triangulo-Pd3(CNXyl)6 (Xyl = xylyl; Pd3) cluster under chemically mild conditions. The formally zero-valent Pd3 cluster readily engages in a complete ligand exchange when exposed to a similar, ditopic isocyanide ligand, resulting in polymerization into a 2D coordination network (Pd3-MOF). The structure of Pd3-MOF could be unambiguously determined by continuous rotation 3D electron diffraction (3D-ED) experiments to a resolution of ~1.0 Å (>99% completeness), showcasing the applicability of 3D-ED to nanocrystalline, organometallic polymers. Pd3-MOF displays Pd03 cluster nodes, which possess significant thermal and aerobic stability, and activity towards hydrogenation catalysis. Importantly, the realization of Pd3-MOF paves the way for the exploitation of metal clusters as building blocks for rigidly interlocked metal nanoparticles at the molecular limit.
Collapse
Affiliation(s)
- Xiyue Liu
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kgs, Lyngby, Denmark
| | - James N McPherson
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kgs, Lyngby, Denmark.
| | - Carl Emil Andersen
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kgs, Lyngby, Denmark
| | - Mike S B Jørgensen
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kgs, Lyngby, Denmark
| | - René Wugt Larsen
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kgs, Lyngby, Denmark
| | - Nathan J Yutronkie
- European Synchrotron Radiation Facility (ESRF), CS 40220, 38043, Grenoble Cedex 9, France
| | - Fabrice Wilhelm
- European Synchrotron Radiation Facility (ESRF), CS 40220, 38043, Grenoble Cedex 9, France
| | - Andrei Rogalev
- European Synchrotron Radiation Facility (ESRF), CS 40220, 38043, Grenoble Cedex 9, France
| | - Mónica Giménez-Marqués
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Paterna, 46980, Valencia, Spain
| | | | - Christian R Göb
- Rigaku Europe SE, Hugenottenallee 167, 63263, Neu-Isenburg, Germany
| | - Kasper S Pedersen
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kgs, Lyngby, Denmark.
| |
Collapse
|
58
|
Li ZH, Li M, Xu TY, Zhao BT. A viologen-derived luminescent material exhibiting photochromism, photocontrolled luminescence and selective detection of Cr 2O 72- in aqueous solution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 306:123579. [PMID: 37922851 DOI: 10.1016/j.saa.2023.123579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
Stable viologen-derived multifunctional smart materials exhibit widespread practical applications in many areas. In this study, a viologen-derived material with 4-fold interpenetrating diamondoid network, {[Cd(1,4-ndc)(cpbpy)]·2H2O}n, was successfully constructed based on asymmetrical N-(3-carboxyphenyl)-4,4'-bipyridinium (cpbpy) and 1,4-naphthalenedicarboxylic acid (1,4-H2ndc). The compound shows reversible photochromic behavior under a xenon lamp, which are proved by UV-vis spectra and EPR characterizations. Moreover, the compound with good photoluminescence properties displays photocontrolled luminescence quenching behaviors. Owing to its good water stability, the compound is then applied in luminescence sensing for the detection of Cr2O72- in aqueous solution. The corresponding luminescence quenching constant for Cr2O72- is KSV = 4.33 × 104 M-1, and the detection limit is 3.66 μM. Systematic investigations on the luminescence quenching mechanism suggest that the inner filter effect resulted in the selective detection of Cr2O72-. This study provides inspiration for the design and synthesis of target luminescent crystalline materials with rigid and asymmetric viologen-derived ligands.
Collapse
Affiliation(s)
- Zhao-Hao Li
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, Henan 471934, PR China.
| | - Min Li
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, Henan 471934, PR China
| | - Tian-Yu Xu
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, Henan 471934, PR China
| | - Bang-Tun Zhao
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, Henan 471934, PR China.
| |
Collapse
|
59
|
Ji Z, Yuan M, He Z, Wei H, Wang X, Song J, Jiang L. Construction of Porphyrin-Based Bimetallic Nanomaterials with Photocatalytic Properties. Molecules 2024; 29:708. [PMID: 38338452 PMCID: PMC10856655 DOI: 10.3390/molecules29030708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
The efficient synthesis of nanosheets containing two metal ions is currently a formidable challenge. Here, we attempted to dope lanthanide-based bimetals into porphyrin-based metal-organic skeleton materials (MOFs) by microwave-assisted heating. The results of the EDX, ICP, and XPS tests show that we have successfully synthesized porphyrin-based lanthanide bimetallic nanosheets (Tb-Eu-TCPP) using a household microwave oven. In addition, it is tested and experimentally evident that these nanosheets have a thinner thickness, a larger BET surface area, and higher photogenerated carrier separation efficiency than bulk porphyrin-based bimetallic materials, thus exhibiting enhanced photocatalytic activity and n-type semiconductor properties. Furthermore, the prepared Tb-Eu-TCPP nanomaterials are more efficient in generating single-linear state oxygen under visible light irradiation compared to pristine monometallic nanosheets due to the generation of bimetallic nodes. The significant increase in catalytic activity is attributed to the improved separation and transfer efficiency of photogenerated carriers. This study not only deepens our understanding of lanthanide bimetallic nanosheet materials but also introduces an innovative approach to improve the photocatalytic performance of MOFs.
Collapse
Affiliation(s)
- Zhiqiang Ji
- School of Civil Engineering, Yantai University, Yantai 264005, China;
| | - Mengnan Yuan
- School of Civil Engineering, Yantai University, Yantai 264005, China;
| | - Zhaoqin He
- School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China; (Z.H.); (H.W.); (X.W.); (J.S.)
| | - Hao Wei
- School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China; (Z.H.); (H.W.); (X.W.); (J.S.)
| | - Xuemin Wang
- School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China; (Z.H.); (H.W.); (X.W.); (J.S.)
| | - Jianxin Song
- School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China; (Z.H.); (H.W.); (X.W.); (J.S.)
| | - Lisha Jiang
- School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China; (Z.H.); (H.W.); (X.W.); (J.S.)
| |
Collapse
|
60
|
Wang X, Wada Y, Shimada T, Kosaka A, Adachi K, Hashizume D, Yazawa K, Uekusa H, Shoji Y, Fukushima T, Kawano M, Murakami Y. Triple Isomerism in 3D Covalent Organic Frameworks. J Am Chem Soc 2024; 146:1832-1838. [PMID: 38206810 DOI: 10.1021/jacs.3c13863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Isomerism in covalent organic frameworks (COFs) has scarcely been known. Here, for the first time we show 3D COFs with three framework isomers or polymorphs constructed from the same building blocks. All isomers were obtained as large (>10 μm) crystals; although their crystal shapes were distinctly different, they showed identical FT-IR and solid-state NMR spectra. Our structural analyses revealed unprecedented triple isomerism in 3D COFs (noninterpenetrated dia, qtz, and 3-fold interpenetrated dia-c3 nets). Furthermore, this Communication reports the first known COF with qtz topology for which the structure determination was based on Rietveld analysis. We achieved triple framework isomerism by reticulating a tetrahedral building block with a flexible junction and a linear building block with PEO side chains and by varying solution compositions. Our energy calculations, along with the discovery of interisomer transition, revealed that the isomer with qtz topology was a kinetic isomer. Thus, this simple yet little-explored concept of reticulating only flexible building blocks is an effective pathway to significantly broaden the diversity of 3D COFs, which have been proposed for a myriad of applications.
Collapse
Affiliation(s)
- Xiaohan Wang
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
- Department of Mechanical Engineering, School of Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan
| | - Yuki Wada
- Department of Chemistry, School of Science, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
| | - Terumasa Shimada
- Department of Chemistry, School of Science, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
| | - Atsuko Kosaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8503, Japan
| | - Kiyohiro Adachi
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
| | | | - Hidehiro Uekusa
- Department of Chemistry, School of Science, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
| | - Yoshiaki Shoji
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8503, Japan
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8503, Japan
| | - Masaki Kawano
- Department of Chemistry, School of Science, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
| | - Yoichi Murakami
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
- Department of Mechanical Engineering, School of Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
61
|
Li ZF, Li YT, Zhang Q, Hu TL. 2-Methylimidazole-modulated 2D Cu metal-organic framework for 5-hydroxymethylfurfural hydrodeoxygenation. Dalton Trans 2024; 53:1698-1705. [PMID: 38169009 DOI: 10.1039/d3dt03870j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Preparation of the high value-added chemical 2,5-dimethylfuran (2,5-DMF) from the biomass-derived platform molecule 5-hydroxymethylfurfural (HMF) is of great significance in the preparation of biofuels. Here, a bottom-up strategy was used to prepare a metal-organic framework (MOF) material with a two-dimensional nanosheet morphology, named CPM, in which an additive 2-methylimidazole was introduced into the hydrothermal process of Cu2+ ions and terephthalic acid. Subsequently, CPM-700 prepared by heat treatment under an inert atmosphere showed excellent catalytic performance in the reaction of HMF hydrodeoxygenation to 2,5-DMF. The materials before and after pyrogenation were characterized by PXRD, XPS, TEM, N2 adsorption and desorption and so on. It was confirmed that compared with the catalyst derived from the cubic MOF material self-assembled by Cu2+ and terephthalic acid, the morphology of 2D nanosheets was beneficial for the reaction of HMF to 2,5-DMF. Combined with the experimental data, the possible reaction path of 2,5-DMF preparation from HMF is that 2,5-dihydroxymethylfuran was formed by hydrogenation of the aldehyde group on the furan ring, and then 2,5-DMF was obtained by hydrogenolysis. This paper provides an effective route for 2D MOF-derived catalytic materials in the selective hydrogenation of HMF.
Collapse
Affiliation(s)
- Zhuo-Fei Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Yan-Ting Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
| | - Qiang Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
| | - Tong-Liang Hu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| |
Collapse
|
62
|
You Q, Jiang XL, Fan W, Cui YS, Zhao Y, Zhuang S, Gu W, Liao L, Xu CQ, Li J, Wu Z. Pd 8 Nanocluster with Nonmetal-to-Metal- Ring Coordination and Promising Photothermal Conversion Efficiency. Angew Chem Int Ed Engl 2024; 63:e202313491. [PMID: 37990769 DOI: 10.1002/anie.202313491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 11/23/2023]
Abstract
Constructing ambient-stable, single-atom-layered metal-based materials with atomic precision and understanding their underlying stability mechanisms are challenging. Here, stable single-atom-layered nanoclusters of Pd were synthesized and precisely characterized through electrospray ionization mass spectrometry and single-crystal X-ray crystallography. A pseudo-pentalene-like Pd8 unit was found in the nanocluster, interacting with two syn PPh units through nonmetal-to-metal -ring coordination. The unexpected coordination, which is distinctly different from the typical organoring-to-metal coordination in half-sandwich-type organometallic compounds, contributes to the ambient stability of the as-obtained single-atom-layered nanocluster as revealed through theoretical and experimental analyses. Furthermore, quantum chemical calculations revealed dominant electron transition along the horizontal x-direction of the Pd8 plane, indicating high photothermal conversion efficiency (PCE) of the nanocluster, which was verified by the experimental PCE of 73.3 %. Therefore, this study unveils the birth of a novel type of compound and the finding of the unusual nonmetal-to-metal -ring coordination and has important implications for future syntheses, structures, properties, and structure-property correlations of single-atom-layered metal-based materials.
Collapse
Grants
- 21925303, 21829501, 22033005, 21905284, 22038002, 22103035, 21771186, 21222301, 22075291, 21171170 and 21528303 National Natural Science Foundation of China
- 2022YFA1503900, 2022YFA1503000 National Key Research and Development Project
- 2020B121201002 Guangdong Provincial Key Laboratory of Catalysis
- BJPY2019A02 CASHIPS Director's Fund
- 2020HSC-CIP005, 2022HSC-CIP018 Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology
- YZJJ202306-TS and YZJJ-GGZX-2022-01 Foundation of President of HFIPS
Collapse
Affiliation(s)
- Qing You
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, Anhui, China
| | - Xue-Lian Jiang
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Wentao Fan
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, Anhui, China
| | - Yun-Shu Cui
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Yan Zhao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, Anhui, China
| | - Shengli Zhuang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, Anhui, China
| | - Wanmiao Gu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, Anhui, China
| | - Lingwen Liao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, Anhui, China
| | - Cong-Qiao Xu
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Jun Li
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, 518055, Shenzhen, China
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, 100084, Beijing, China
| | - Zhikun Wu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, Anhui, China
| |
Collapse
|
63
|
Lei L, Zhao B, Pei X, Gao L, Wu Y, Xu X, Wang P, Wu S, Yuan S. Optimizing Porous Metal-Organic Layers for Stable Zinc Anodes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:485-495. [PMID: 38150633 DOI: 10.1021/acsami.3c12369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Aqueous zinc-ion batteries (ZIBs) have been considered as alternative stationary energy storage systems, but the dendrite and corrosion issues of Zn anodes hinder their practical applications. Here we report a series of two-dimensional (2D) metal-organic frameworks (MOFs) with Zr12 clusters, which act as artificial solid electrolyte interphase (SEI) layers to prevent dendrites and corrosion of Zn anodes. The Zr12-based 2D MOF layers were formed by incubating 3D layer-pillared Zr-MOFs in ZnSO4 aqueous electrolytes, which replaced the pillar ligands with terminal SO42-. Furthermore, the pore sizes of Zr12-based 2D MOF layers were systematically tuned, leading to optimized Zn2+ conduction properties and protective performance for Zn anodes. In contrast to the traditional 2D-MOFs with Zr6 clusters, Zr12-based 2D MOF layers as artificial SEI significantly reduced the polarization and increased the stability of Zn anodes in MOF@Zn||MOF@Zn symmetric cells and MOF@Zn||MnO2 full cells. In situ experiments and DFT computations reveal that the enhanced cell performance is attributed to the unique Zr12-based layered structure with intrinsic pores to allow fast Zn2+ diffusion, surface Zr-SO4 zincophilic sites to induce uniform Zn deposition, and inhibited hydrogen evolution by 2D MOF Zr12 layers.
Collapse
Affiliation(s)
- Liling Lei
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Binghua Zhao
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Xudong Pei
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Lei Gao
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yulun Wu
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Xinyu Xu
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Peng Wang
- Department of Physics, University of Warwick, Coventry CV4 7AL, U.K
| | - Shishan Wu
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Shuai Yuan
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
64
|
Yun LX, Zhang C, Shi XR, Dong YJ, Zhang HT, Shen ZG, Wang JX. The controllable and efficient synthesis of two-dimensional metal-organic framework nanosheets for heterogeneous catalysis. NANOSCALE 2024; 16:691-700. [PMID: 38054762 DOI: 10.1039/d3nr05348b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Two-dimensional (2D) MOFs exhibit unique periodicity in surface structures and thus have attracted much interest in the fields of catalysis, energy, and sensors. However, the expanded production scale of 2D MOFs had remained a great challenge in most previous studies. Herein, a controllable and efficient crystallization method for synthesizing 2D MOF nanosheets using high-gravity reactive precipitation is proposed, significantly improving heterogeneous catalysis efficiency. The two-dimensional ZIF-L nanosheets prepared in a rotating packed bed (RPB) reactor show a smaller lateral and lamellar thickness and a higher BET surface area compared to ZIF-L nanosheets prepared in a conventional stirred tank reactor (STR), with a greatly shortened reaction time. Applying the ZIF-L-RPB nanosheets as a catalyst, the catalytic Knoevenagel condensation as a probe reaction displays a high conversion rate of benzaldehyde (99.3%) within 2 h at room temperature, greatly exceeding that displayed by ZIF-L-STR and other reported catalysts. Furthermore, ZIL-L-RPB nanosheets of only 0.2 wt% enhanced the catalytic activity for the glycolysis of poly(ethylene terephthalate) (PET) with a PET conversion and a monomer yield of 90% in a short period of 15 min at 195 °C and almost completely depolymerized PET with a monomer yield of 94% in 30 min, which was far above that achieved by ZIL-L-STR. These results indicate the promising prospects of a high-gravity reactive precipitation strategy with precise size control in an economical way to prepare high-activity 2D MOF nanosheets for a wide range of heterogeneous catalysis.
Collapse
Affiliation(s)
- Ling-Xia Yun
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China.
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| | - Cong Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China.
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| | - Xin-Ran Shi
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China.
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| | - Yan-Jun Dong
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China.
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| | - Hang-Tian Zhang
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China.
- Quzhou Innovation Institute for Chemical Engineering and Materials, Quzhou, Zhejiang, 324000, China
| | - Zhi-Gang Shen
- School of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Jie-Xin Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China.
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| |
Collapse
|
65
|
Xie Y, Wu X, Shi Y, Peng Y, Zhou H, Wu X, Ma J, Jin J, Pi Y, Pang H. Recent Progress in 2D Metal-Organic Framework-Related Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305548. [PMID: 37643389 DOI: 10.1002/smll.202305548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/10/2023] [Indexed: 08/31/2023]
Abstract
2D metal-organic frameworks-based (2D MOF-related) materials benefit from variable topological structures, plentiful open active sites, and high specific surface areas, demonstrating promising applications in gas storage, adsorption and separation, energy conversion, and other domains. In recent years, researchers have innovatively designed multiple strategies to avoid the adverse effects of conventional methods on the synthesis of high-quality 2D MOFs. This review focuses on the latest advances in creative synthesis techniques for 2D MOF-related materials from both the top-down and bottom-up perspectives. Subsequently, the strategies are categorized and summarized for synthesizing 2D MOF-related composites and their derivatives. Finally, the current challenges are highlighted faced by 2D MOF-related materials and some targeted recommendations are put forward to inspire researchers to investigate more effective synthesis methods.
Collapse
Affiliation(s)
- Yun Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Xinyue Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Yuxin Shi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Yi Peng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Huijie Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Xiaohui Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Jiao Ma
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Jiangchen Jin
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Yecan Pi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| |
Collapse
|
66
|
Dong J, Mo Q, Xiong X, Zhang L. Two-Dimensional Porphyrinic Metal-Organic Framework Composites as a Photocatalytic Platform for Chemoselective Hydrogenation. Inorg Chem 2023; 62:21432-21442. [PMID: 38047769 DOI: 10.1021/acs.inorgchem.3c03584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Chemoselective hydrogenation with high efficiency under ambient conditions remains a great challenge. Herein, an efficient photocatalyst, the 2D porphyrin metal-organic framework composite AmPy/Pd-PPF-1(Cu), featuring AmPy (1-aminopyrene) sitting axially on a paddle-wheel unit, has been rationally fabricated. The 2D AmPy/Pd-PPF-1(Cu) composite acts as a photocatalytic platform, promoting the selective hydrogenation of quinolines to tetrahydroquinolines with a yield up to 99%, in which ammonia borane serves as the hydrogen donor. The AmPy molecules coordinated on a 2D MOF not only enhance the light absorption capacity but also adjust the layer spacing without affecting the network structure of 2D Pd-PPF-1(Cu) nanosheets. Through deuterium-labeling experiments, in situ X-ray photoelectron spectroscopy, electron paramagnetic resonance studies, and density functional theory calculations, it is disclosed that Cu paddle-wheel units in 2D AmPy/Pd-PPF-1(Cu) nanosheets behave as the active site for transfer hydrogenation, and metalloporphyrin ligand and axial aminopyrene molecules can enhance the light absorption capacity and excite photogenerated electrons to Cu paddle-wheel units, assisting in photocatalysis.
Collapse
Affiliation(s)
- Jurong Dong
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Qijie Mo
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiaohong Xiong
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Li Zhang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
67
|
Cheng M, Yan P, Zheng X, Gao B, Yan X, Zhang G, Cui X, Xu Q. Porphyrin-based Bi-MOFs with Enriched Surface Bi Active Sites for Boosting Photocatalytic CO 2 Reduction. Chemistry 2023; 29:e202302395. [PMID: 37706350 DOI: 10.1002/chem.202302395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/15/2023]
Abstract
The inherent challenges in using metal-organic frameworks (MOFs) for photocatalytic CO2 reduction are the combination of wide-range light harvesting, efficient charge separation and transfer as well as highly exposed catalytic active sites for CO2 activation and reduction. We present here a promising solution to satisfy these requirements together by modulating the crystal facet and surface atomic structure of a porphyrin-based bismuth-MOF (Bi-PMOF). The series of structural and photo-electronic characterizations together with photocatalytic CO2 reduction experiment collectively establish that the enriched Bi active sites on the (010) surface prefer to promote efficient charge separation and transfer as well as the activation and reduction of CO2 . Specifically, the Bi-PMOFs-120-F with enriched surface Bi active sites exhibits optimal photocatalytic CO2 reduction performance to CO (28.61 μmol h-1 g-1 ) and CH4 (8.81 μmol h-1 g-1 ). This work provides new insights to synthesize highly efficient main group p-block metal Bi-MOF photocatalysts for CO2 reduction through a facet-regulation strategy and sheds light on the surface structure-activity relationships of the MOFs.
Collapse
Affiliation(s)
- Mingjie Cheng
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Pengfei Yan
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Xiaoli Zheng
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Bo Gao
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Xinying Yan
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Gaoxiang Zhang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Xiaomin Cui
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Qun Xu
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P. R. China
| |
Collapse
|
68
|
Khan S, Das P, Naaz S, Brandão P, Choudhury A, Medishetty R, Ray PP, Mir MH. A dual-functional 2D coordination polymer exhibiting photomechanical and electrically conductive behaviours. Dalton Trans 2023; 52:17934-17941. [PMID: 37982190 DOI: 10.1039/d3dt02728g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
A photoactive two-dimensional coordination polymer (2D CP) [Zn2(4-spy)2(bdc)2]n (1) [4-spy = 4-styrylpyridine and H2bdc = 1,4-benzendicarboxylic acid] undergoes a photochemical [2 + 2] cycloaddition reaction upon UV irradiation. Interestingly, the crystals of 1 show different photomechanical effects, such as jumping, swelling, and splitting, during UV irradiation. In addition, the CP was employed for conductivity measurements before and after UV irradiation via current density-voltage characteristics and impedance spectroscopy, which suggest that they are semiconducting in nature and can be used as Schottky diodes. Thus, this work demonstrates the potential dual applications of a 2D CP based on photosalient and conductivity properties.
Collapse
Affiliation(s)
- Samim Khan
- Department of Chemistry, Aliah University, New Town, Kolkata 700 160, India.
| | - Pubali Das
- Department of Physics, Jadavpur University, Jadavpur, Kolkata 700 032, India.
| | - Sanobar Naaz
- Department of Chemistry, Aliah University, New Town, Kolkata 700 160, India.
| | - Paula Brandão
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Aditya Choudhury
- Department of Chemistry, IIT Bhilai, Sejbahar, Raipur, Chhattisgarh 492015, India.
| | | | - Partha Pratim Ray
- Department of Physics, Jadavpur University, Jadavpur, Kolkata 700 032, India.
| | | |
Collapse
|
69
|
Yuan Y, Peng X, Weng X, He J, Liao C, Wang Y, Liu L, Zeng S, Song J, Qu J. Two-dimensional nanomaterials as enhanced surface plasmon resonance sensing platforms: Design perspectives and illustrative applications. Biosens Bioelectron 2023; 241:115672. [PMID: 37716156 DOI: 10.1016/j.bios.2023.115672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 08/16/2023] [Accepted: 09/04/2023] [Indexed: 09/18/2023]
Abstract
Both increasing demand for ultrasensitive detection in the scientific community and significant new breakthroughs in materials science field have inspired and promoted the development of new-generation multifunctional plasmonic sensing platforms by adopting promising plasmonic nanomaterials. Recently, high-quality surface plasmon resonance (SPR) sensors, assisted by two dimensional (2D) nanomaterials including 2D van der Waals (vdWs) materials (such as graphene/graphene oxide, transition metal dichalcogenides (TMDs), phosphorene, antimonene, tellurene, MXenes, and metal oxides), 2D metal-organic frameworks (MOFs), 2D hyperbolic metamaterials (HMMs), and 2D optical metasurfaces, have emerged as a class of novel plasmonic sensing platforms that show unprecedented detection sensitivity and impressive performance. This review of recent progress in 2D nanomaterials-enhanced SPR platforms will highlight their compelling plasmonic enhancement features, working mechanisms, and design methodologies, as well as discuss illustrative practical applications. Hence, it is of great importance to describe the latest research progress in 2D nanomaterials-enhanced SPR sensing cases. In this review, we present some concepts of SPR enhanced by 2D nanomaterials, including the basic principles of SPR, signal modulation approaches, and working enhancement mechanisms for various 2D materials-enhanced SPR systems. In addition, we also demonstrate a detailed categorization of 2D nanomaterials-enhanced SPR sensing platforms and comment on their ability to realize ultrasensitive SPR detection. Finally, we conclude with future perspectives for exploring a new generation of 2D nanomaterials-based sensors.
Collapse
Affiliation(s)
- Yufeng Yuan
- School of Electronic Engineering and Intelligentization, Dongguan University of Technology, Dongguan, Guangdong, 523808, China; State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Xiao Peng
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Xiaoyu Weng
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Jun He
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Changrui Liao
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Yiping Wang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Liwei Liu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Shuwen Zeng
- Light, Nanomaterials & Nanotechnologies (L2n), CNRS-EMR 7004, Université de Technologie de Troyes, 10000, Troyes, France.
| | - Jun Song
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| | - Junle Qu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| |
Collapse
|
70
|
Wang Z, Ding R, Li X, Zhang J, Yang L, Wang Y, Liu J, Zhou Z. Blocking Accretion Enables Dimension Reduction of Metal-Organic Framework for Photocatalytic Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2305308. [PMID: 37635096 DOI: 10.1002/smll.202305308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/07/2023] [Indexed: 08/29/2023]
Abstract
The evolution and formation process of two-dimensional metal-organic frameworks (MOFs) primarily arise from the anisotropic growth of crystals, leading to variations in photocatalytic performance. It is crucial to achieve a synergistic combination of anisotropic electron transfer direction and dimension reduction strategies. In this study, a novel approach that effectively blocks crystal growth accretion through the coordination of solvent molecules is presented, achieving the successful synthesis of impurity-free two-dimensional nanosheet Zn-PTC with exceptional hydrogen evolution reaction (HER) performance (15.4 mmol g-1 h-1 ). The structural and photophysical characterizations validate the successful prevention of crystal accretion, while establishing correlation between structural anisotropy and intrinsic charge transfer mode through transient spectroscopy. These findings unequivocally demonstrate that electron transfer along the [001] direction plays a pivotal role in the redox performance of nano-Zn-PTC. Subsequently, by coupling the photocatalytic performance and density functional theory (DFT) simulation calculations, the carrier diffusion kinetics is explored, revealing that effective dimension reduction along the ligand-to-metal charge transfer (LMCT) direction is the key to achieving superior photocatalytic performance.
Collapse
Affiliation(s)
- Zejin Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210033, P. R. China
| | - Rui Ding
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210033, P. R. China
| | - Xiaoke Li
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210033, P. R. China
| | - Jie Zhang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210033, P. R. China
| | - Le Yang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210033, P. R. China
| | - Ying Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210033, P. R. China
- Eco-Materials and Renewable Energy Research Center (ERERC), Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Jianguo Liu
- Institute of Energy Power Innovation, North China Electric Power University, Beijing, 102206, P. R. China
| | - Zhigang Zhou
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210033, P. R. China
- Eco-Materials and Renewable Energy Research Center (ERERC), Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| |
Collapse
|
71
|
Jin E, Lee IS, Yang DC, Moon D, Nam J, Cho H, Kang E, Lee J, Noh HJ, Min SK, Choe W. Origamic metal-organic framework toward mechanical metamaterial. Nat Commun 2023; 14:7938. [PMID: 38040755 PMCID: PMC10692132 DOI: 10.1038/s41467-023-43647-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023] Open
Abstract
Origami, known as paper folding has become a fascinating research topic recently. Origami-inspired materials often establish mechanical properties that are difficult to achieve in conventional materials. However, the materials based on origami tessellation at the molecular level have been significantly underexplored. Herein, we report a two-dimensional (2D) porphyrinic metal-organic framework (MOF), self-assembled from Zn nodes and flexible porphyrin linkers, displaying folding motions based on origami tessellation. A combined experimental and theoretical investigation demonstrated the origami mechanism of the 2D porphyrinic MOF, whereby the flexible linker acts as a pivoting point. The discovery of the 2D tessellation hidden in the 2D MOF unveils origami mechanics at the molecular level.
Collapse
Affiliation(s)
- Eunji Jin
- Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST, Ulsan, 44919, Republic of Korea
| | - In Seong Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST, Ulsan, 44919, Republic of Korea
| | - D ChangMo Yang
- Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST, Ulsan, 44919, Republic of Korea
| | - Dohyun Moon
- Beamline Department, Pohang Accelerator Laboratory, Pohang, Republic of Korea
| | - Joohan Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST, Ulsan, 44919, Republic of Korea
| | - Hyeonsoo Cho
- Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST, Ulsan, 44919, Republic of Korea
| | - Eunyoung Kang
- Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST, Ulsan, 44919, Republic of Korea
| | - Junghye Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST, Ulsan, 44919, Republic of Korea
| | - Hyuk-Jun Noh
- Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST, Ulsan, 44919, Republic of Korea
| | - Seung Kyu Min
- Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST, Ulsan, 44919, Republic of Korea.
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea.
| | - Wonyoung Choe
- Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST, Ulsan, 44919, Republic of Korea.
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea.
| |
Collapse
|
72
|
Li G, Stefanczyk O, Jia F, Nagashima S, Kumar K, Imoto K, Tokoro H, Ohkoshi SI. Mechanical Exfoliation of Multilayer Pseudohalogen-Bridged Nanosheets. J Phys Chem Lett 2023; 14:10420-10426. [PMID: 37955968 DOI: 10.1021/acs.jpclett.3c02257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
The development of nanolayered materials is one of the greatest challenges in nanoscience. Until now, pseudohalogen-bridged nanosheets using the mechanical exfoliation method have not been reported. A state-of-the-art material, {[FeII(3-acetylpyridine)2][HgII(μ-SCN)4]}n (1), has been developed to achieve the goal. The compound forms a two-dimensional (2D) coordination polymer with weak out-of-plane van der Waals interactions and has an intrinsic tendency to form shear planes perpendicular to the crystallographic c-direction. These structural features predispose 1 to mechanical exfoliation realized by employing the "Scotch-tape method". As a result, nanosheets were fabricated and characterized by digital optical microscopy, scanning electron microscopy, and atomic force microscopy. The nanosheets were found to have a minimum thickness of ∼15 nm and a lateral size of several micrometers. As the first example of thiocyanato-bridged coordination nanosheets, these materials extend the scope of 2D materials and potentially pave the way toward developing nanolayered materials.
Collapse
Affiliation(s)
- Guanping Li
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Olaf Stefanczyk
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Fangda Jia
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shuntaro Nagashima
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Kunal Kumar
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kenta Imoto
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroko Tokoro
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Shin-Ichi Ohkoshi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
73
|
Iwai Y, Imamura Y, Nakaya M, Inada M, Le Ouay B, Ohba M, Ohtani R. Janus-Type Mixed-Valent Copper-Cyanido Honeycomb Layers. Inorg Chem 2023; 62:18707-18713. [PMID: 37906718 DOI: 10.1021/acs.inorgchem.3c03100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The synthesis of Janus-type layers, which possess front and back sides that consist of different structures, remains a major challenge in the field of two-dimensional materials. In this study, two Janus-type layered coordination polymers, namely, CuII(NEtH2)(NMe2H·H2O)CuI(CN)3 (1) and CuII(NMe2H)(NMe2H·H2O)CuI(CN)3 (2), were synthesized via a simple one-pot procedure using copper(II) nitrate and sodium cyanido in mixed solutions of dimethylamine and ethylamine. Uniquely, 1 and 2 were composed of cyanido-bridged neutral layers and exhibited a CuICuII mixed-valent state. Meanwhile, using a solution of pure dimethylamine for the synthesis yielded the monovalent three-dimensional framework (NMe2H2)[CuI2(CN)3] (3). Results indicated that the simultaneous use of two mixed amines gave rise to the controlled reduction of CuII ions during the reaction. In addition, each face of the layers was coordinated by different amines on the axial positions of the CuII sites, resulting in anisotropic Janus layers. Furthermore, the thermal expansion behavior of 2 was investigated, demonstrating that the neutral [CuICuII(CN)3] layer was relatively rigid compared with the analogous anionic [CuI2(CN)3]- layer.
Collapse
Affiliation(s)
- Yuudai Iwai
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yuki Imamura
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Manabu Nakaya
- Department of Chemistry, Faculty of Science, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Miki Inada
- Center of Advanced Instrumental Analysis, Kyushu University, 6-1 Kasuga-Koen Kasuga-Shi, Fukuoka 816-8580, Japan
| | - Benjamin Le Ouay
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masaaki Ohba
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ryo Ohtani
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
74
|
Hu X, Su NQ. Targeted Spin-State Regulation to Boost Oxygen Reduction Reaction. J Phys Chem Lett 2023; 14:9872-9882. [PMID: 37902469 DOI: 10.1021/acs.jpclett.3c02412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Catalytic reactions are known to be significantly affected by spin states and their variations during reaction processes, yet the mechanisms behind them remain not fully understood, thus preventing the rational optimization of catalysis. Here, we explore the relationship between the spin states of active sites and their catalytic performance, taking the oxygen reduction reaction as an example. We demonstrate that the catalytic performance is spin-state-dependent and can be improved by adjusting spin states during the catalytic process. To this end, we further investigate the possibility of altering the spin states of transition metals through the application of external fields, such as adsorbed species. By studying the influence of the strength of adsorbed ligands on spin states and its impact on catalytic performance, our results show that optimal catalytic performance is achieved when the strength of the external field is neither too strong nor too weak, forming a volcano-like relationship between the catalytic performance and the external field strength. Our findings can have far-reaching implications for the rational design of high-performance catalysis.
Collapse
Affiliation(s)
- Xiuli Hu
- Department of Chemistry, Frontiers Science Center for New Organic Matter, State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Neil Qiang Su
- Department of Chemistry, Frontiers Science Center for New Organic Matter, State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| |
Collapse
|
75
|
Kang X, Ren C, Mei Z, Fan X, Xue J, Shao Y, Gu J. Hydrothermal Assembly, Structural Multiplicity, and Catalytic Knoevenagel Condensation Reaction of a Series of Coordination Polymers Based on a Pyridine-Tricarboxylic Acid. Molecules 2023; 28:7474. [PMID: 38005197 PMCID: PMC10673224 DOI: 10.3390/molecules28227474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
A pyridine-tricarboxylic acid, 5-(3',5'-dicarboxylphenyl)nicotinic acid (H3dpna), was employed as a adjustable block to assemble a series of coordination polymers under hydrothermal conditions. The seven new coordination polymers were formulated as [Co(μ3-Hdpna)(μ-dpey)]n·nH2O (1), [Zn4.5(μ6-dpna)3(phen)3]n (2), [Co1.5(μ6-dpna)(2,2'-bipy)]n (3), [Zn1.5(μ6-dpna)(2,2'-bipy)]n (4), [Co3(μ3-dpna)2(4,4'-bipy)2(H2O)8]n·2nH2O (5),[Co(bpb)2(H2O)4]n[Co2(μ3-dpna)2(H2O)4]n·3nH2O (6), and [Mn1.5(μ6-dpna)(μ-dpea)]n (7), wherein 1,2-di(4-pyridyl)ethylene (dpey), 1,10-phenanthroline (phen), 2,2'-bipyridine(2,2'-bipy),4,4'-bipyridine(4,4'-bipy),1,4-bis(pyrid-4-yl)benzene (bpb), and 1,2-di(4-pyridyl)ethane (dpea) were employed as auxiliary ligands. The structural variation of polymers 1-7 spans the range from a 2D sheet (1-4, 6, and 7) to a 3D metal-organic framework (MOF, 5). Polymers 1-7 were investigated as heterogeneous catalysts in the Knoevenagel condensation reaction, leading to high condensation product yields (up to 100%) under optimized conditions. Various reaction conditions, substrate scope, and catalyst recycling were also researched. This work broadens the application of H3dpna as a versatile tricarboxylate block for the fabrication of functional coordination polymers.
Collapse
Affiliation(s)
| | | | | | | | | | - Yongliang Shao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; (X.K.); (C.R.); (Z.M.); (X.F.); (J.X.)
| | - Jinzhong Gu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; (X.K.); (C.R.); (Z.M.); (X.F.); (J.X.)
| |
Collapse
|
76
|
Efimova AS, Alekseevskiy PV, Timofeeva MV, Kenzhebayeva YA, Kuleshova AO, Koryakina IG, Pavlov DI, Sukhikh TS, Potapov AS, Shipilovskikh SA, Li N, Milichko VA. Exfoliation of 2D Metal-Organic Frameworks: toward Advanced Scalable Materials for Optical Sensing. SMALL METHODS 2023; 7:e2300752. [PMID: 37702111 DOI: 10.1002/smtd.202300752] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/18/2023] [Indexed: 09/14/2023]
Abstract
Two-dimensional metal-organic frameworks (MOFs) occupy a special place among the large family of functional 2D materials. Even at a monolayer level, 2D MOFs exhibit unique sensing, separation, catalytic, electronic, and conductive properties due to the combination of porosity and organo-inorganic nature. However, lab-to-fab transfer for 2D MOF layers faces the challenge of their scalability, limited by weak interactions between the organic and inorganic building blocks. Here, comparing three top-down approaches to fabricate 2D MOF layers (sonication, freeze-thaw, and mechanical exfoliation), The technological criteria have established for creation of the layers of the thickness up to 1 nm with a record aspect ratio up to 2*10^4:1. The freezing-thaw and mechanical exfoliation are the most optimal approaches; wherein the rate and manufacturability of the mechanical exfoliation rivaling the greatest scalability of 2D MOF layers obtained by freezing-thaw (21300:1 vs 1330:1 aspect ratio), leaving the sonication approach behind (with a record 900:1 aspect ratio) have discovered. The high quality 2D MOF layers with a record aspect ratio demonstrate unique optical sensitivity to solvents of a varied polarity, which opens the way to fabricate scalable and freestanding 2D MOF-based atomically thin chemo-optical sensors by industry-oriented approach.
Collapse
Affiliation(s)
- Anastasiia S Efimova
- School of Physics and Engineering, ITMO University, St. Petersburg, 197101, Russia
| | - Pavel V Alekseevskiy
- School of Physics and Engineering, ITMO University, St. Petersburg, 197101, Russia
| | - Maria V Timofeeva
- School of Physics and Engineering, ITMO University, St. Petersburg, 197101, Russia
| | | | - Alina O Kuleshova
- School of Physics and Engineering, ITMO University, St. Petersburg, 197101, Russia
| | - Irina G Koryakina
- School of Physics and Engineering, ITMO University, St. Petersburg, 197101, Russia
| | - Dmitry I Pavlov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Taisiya S Sukhikh
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Andrei S Potapov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | | | - Nan Li
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Valentin A Milichko
- School of Physics and Engineering, ITMO University, St. Petersburg, 197101, Russia
- Université de Lorraine, CNRS, IJL, Nancy, F-54011, France
| |
Collapse
|
77
|
Zhong J, Zheng X, Wen Y, Li Y, Zhang J, Kankala RK, Wang S, Chen A. NIR-switchable local hydrogen generation by tandem bimetallic MOFs nanocomposites for enhanced chemodynamic therapy. Regen Biomater 2023; 11:rbad097. [PMID: 38173769 PMCID: PMC10761206 DOI: 10.1093/rb/rbad097] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 01/05/2024] Open
Abstract
The inadequate quantity of hydrogen peroxide (H2O2) in cancer cells promptly results in the constrained success of chemodynamic therapy (CDT). Significant efforts made throughout the years; nevertheless, researchers are still facing the great challenge of designing a CDT agent and securing H2O2 supply within the tumor cell. In this study, taking advantage of H2O2 level maintenance mechanism in cancer cells, a nanozyme-based bimetallic metal-organic frameworks (MOFs) tandem reactor is fabricated to elevate intracellular H2O2 levels, thereby enhancing CDT. In addition, under near-infrared excitation, the upconversion nanoparticles (UCNPs) loaded into the MOFs can perform photocatalysis and generate hydrogen, which increases cellular susceptibility to radicals induced from H2O2, inhibits cancer cell energy, causes DNA damages and induces tumor cell apoptosis, thus improving CDT therapeutic efficacy synergistically. The proposed nanozyme-based bimetallic MOFs-mediated CDT and UCNPs-mediated hydrogen therapy act as combined therapy with high efficacy and low toxicity.
Collapse
Affiliation(s)
- Jun Zhong
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
| | - Xiang Zheng
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
| | - Yuan Wen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
| | - Yuewei Li
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
| | - Jianting Zhang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
| | - Shibin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
| | - Aizheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
78
|
Fan X, Wang H, Gu J, Lv D, Zhang B, Xue J, Kirillova MV, Kirillov AM. Coordination Polymers from an Amino-Functionalized Terphenyl-Tetracarboxylate Linker: Structural Multiplicity and Catalytic Properties. Inorg Chem 2023; 62:17612-17624. [PMID: 37847556 DOI: 10.1021/acs.inorgchem.3c01905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
An amino-functionalized terphenyl-tetracarboxylic acid, 2'-amino-[1,1':4',1″-terphenyl]-3,3″,5,5″-tetracarboxylic acid (H4tpta), was used as an adaptable linker to synthesize, under hydrothermal conditions, eight coordination polymers (CPs). The obtained products were formulated as [Co(μ6-H2tpta)]n (1), [Co(μ3-H2tpta)(2,2'-bipy)]n (2), [M3(μ6-Htpta)2(2,2'-bipy)2]n (M = Mn (3), Cd (4)), [Ni2(μ4-tpta)(phen)2(H2O)4]n (5), [Zn2(μ6-tpta)(phen)2]n (6), {[Zn2(μ6-tpta)(μ-4,4'-bipy)]·H2O}n (7), and [Zn2(μ6-tpta)(μ-H2biim)(H2O)2]n (8), wherein 2,2'-bipyridine (2,2'-bipy), 4,4'-bipyridine (4,4'-bipy), 1,10-phenanthroline (phen), or 2,2'-biimidazole (H2biim) are present as additional stabilizing ligands. The structural types of 1-8 vary from one-dimensional (1D) (2, 5) and two-dimensional (2D) (3, 4, 6) CPs to three-dimensional (3D) metal-organic frameworks (MOFs) (1, 7, and 8) with a diversity of topologies. The products 1-8 were investigated as catalysts in the Knoevenagel condensation involving aldehydes and active methylene derivatives (malononitrile, ethyl cyanoacetate, or tert-butyl cyanoacetate), leading to high condensation product yields (up to 99%) under optimized conditions. Various reaction conditions, substrate scope, and catalyst recycling were investigated. This work broadens the application of H4tpta as a versatile tetracarboxylate linker for the generation of diverse CPs/MOFs.
Collapse
Affiliation(s)
- Xiaoxiang Fan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Hongyu Wang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jinzhong Gu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Dongyu Lv
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Bo Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jijun Xue
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Marina V Kirillova
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Alexander M Kirillov
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
79
|
Li Y, Guo Y, Luan D, Gu X, Lou XWD. An Unlocked Two-Dimensional Conductive Zn-MOF on Polymeric Carbon Nitride for Photocatalytic H 2 O 2 Production. Angew Chem Int Ed Engl 2023; 62:e202310847. [PMID: 37698180 DOI: 10.1002/anie.202310847] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/13/2023]
Abstract
Developing highly efficient catalytic sites for O2 reduction to H2 O2 , while ensuring the fast injection of energetic electrons into these sites, is crucial for artificial H2 O2 photosynthesis but remains challenging. Herein, we report a strongly coupled hybrid photocatalyst comprising polymeric carbon nitride (CN) and a two-dimensional conductive Zn-containing metal-organic framework (Zn-MOF) (denoted as CN/Zn-MOF(lc)/400; lc, low crystallinity; 400, annealing temperature in °C), in which the catalytic capability of Zn-MOF(lc) for H2 O2 production is unlocked by the annealing-induced effects. As revealed by experimental and theoretical calculation results, the Zn sites coordinated to four O (Zn-O4 ) in Zn-MOF(lc) are thermally activated to a relatively electron-rich state due to the annealing-induced local structure shrinkage, which favors the formation of a key *OOH intermediate of 2e- O2 reduction on these sites. Moreover, the annealing treatment facilitates the photoelectron migration from the CN photocatalyst to the Zn-MOF(lc) catalytic unit. As a result, the optimized catalyst exhibits dramatically enhanced H2 O2 production activity and excellent stability under visible light irradiation.
Collapse
Affiliation(s)
- Yunxiang Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Yan Guo
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Deyan Luan
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong, China
| | - Xiaojun Gu
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Xiong Wen David Lou
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong, China
| |
Collapse
|
80
|
Xie H, Yuan H, Xu L. Direct Synthesis of Metal-Organic Framework Sols: Advances and Perspectives. Chem Asian J 2023:e202300845. [PMID: 37885350 DOI: 10.1002/asia.202300845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 10/28/2023]
Abstract
The intrinsic lack of processability in the conventional nano/microcrystalline powder form of metal-organic frameworks (MOFs) greatly limits their application in various fields. Synthesis of MOFs with certain flowability make them promising for multitudinous applications. The direct synthesis strategy represents one of the simplest and efficient method for synthesizing solution processable MOF sols/suspensions, compared with other approaches, for instance, the post-synthesis surface modification, the direct dispersion of MOFs in hindered ionic liquids, as well as the calcination method toward a few MOFs with melting behavior. This article reviews the recent direct synthesis strategies of solution processable MOF sols and their typical applications in different fields. The direct synthesis strategies of MOF sols can be classified into two categories: particle size reduction strategy, and selective coordination strategy. The synthesis mechanism of different strategies and the factors affecting the formation of sols are summarized. The application of solution processable MOF sols in different fields are introduced, showing great application potentials. Furthermore, the challenges faced by the direct synthesis of MOF sols and the main methods to deal with the challenges are emphasized, and the future development trend is prospected.
Collapse
Affiliation(s)
- Hongshen Xie
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang, 471003, China
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Hongye Yuan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Liujie Xu
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang, 471003, China
- National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials, Henan University of Science and Technology, Luoyang, 471003, China
| |
Collapse
|
81
|
Saha S, Ananthram KS, Hassan N, Ugale A, Tarafder K, Ballav N. Ag Nanoparticles-Induced Metallic Conductivity in Thin Films of 2D Metal-Organic Framework Cu 3(HHTP) 2. NANO LETTERS 2023; 23:9326-9332. [PMID: 37843499 DOI: 10.1021/acs.nanolett.3c02522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Two-dimensional (2D) metal-organic frameworks (MOFs) are usually associated with higher electrical conductivity and charge carrier mobility when compared with 3D MOFs. However, attaining metallic conduction in such systems through synthetic or postsynthetic modifications is extremely challenging. Herein, we present the fabrication of thin films of a 2D MOF, Cu3(HHTP)2 (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene), decorated with silver nanoparticles (AgNPs) exhibiting significant conductivity enhancement at room temperature. Variable-temperature electrical transport measurements across the low-temperature (200 K) to high-temperature (373 K) regime evidenced metallic conduction. Interestingly, thin films of a 3D MOF, CuTCNQ (TCNQ = 7,7,8,8-tetracyanoquinodimethane), upon decoration with AgNPs, disclosed a converse trend. The origin of such distinctive observations on AgNPs@Cu3(HHTP)2 and AgNPs@CuTCNQ systems was comprehended by using first-principles density functional theory (DFT) calculations and attributed to an interfacial electronic effect. Our work sheds new light on rationally designing synthetic modifications in thin films of MOFs to tune the electrical transport property.
Collapse
Affiliation(s)
- Sauvik Saha
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune 411008, India
| | - K S Ananthram
- Department of Physics, National Institute of Technology Karnataka, Surathkal, Mangalore 575 025, India
| | - Nahid Hassan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune 411008, India
| | - Ajay Ugale
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune 411008, India
| | - Kartick Tarafder
- Department of Physics, National Institute of Technology Karnataka, Surathkal, Mangalore 575 025, India
| | - Nirmalya Ballav
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune 411008, India
| |
Collapse
|
82
|
Ding G, Zhao J, Zhou K, Zheng Q, Han ST, Peng X, Zhou Y. Porous crystalline materials for memories and neuromorphic computing systems. Chem Soc Rev 2023; 52:7071-7136. [PMID: 37755573 DOI: 10.1039/d3cs00259d] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Porous crystalline materials usually include metal-organic frameworks (MOFs), covalent organic frameworks (COFs), hydrogen-bonded organic frameworks (HOFs) and zeolites, which exhibit exceptional porosity and structural/composition designability, promoting the increasing attention in memory and neuromorphic computing systems in the last decade. From both the perspective of materials and devices, it is crucial to provide a comprehensive and timely summary of the applications of porous crystalline materials in memory and neuromorphic computing systems to guide future research endeavors. Moreover, the utilization of porous crystalline materials in electronics necessitates a shift from powder synthesis to high-quality film preparation to ensure high device performance. This review highlights the strategies for preparing porous crystalline materials films and discusses their advancements in memory and neuromorphic electronics. It also provides a detailed comparative analysis and presents the existing challenges and future research directions, which can attract the experts from various fields (e.g., materials scientists, chemists, and engineers) with the aim of promoting the applications of porous crystalline materials in memory and neuromorphic computing systems.
Collapse
Affiliation(s)
- Guanglong Ding
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - JiYu Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Kui Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - Qi Zheng
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - Su-Ting Han
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| |
Collapse
|
83
|
Kang X, Wang H, Mei Z, Fan X, Gu J. Syntheses, Crystal Structures, and Catalytic Properties of Three Cu(II) and Cobalt(II) Coordination Compounds Based on an Ether-Bridged Tetracarboxylic Acid. Molecules 2023; 28:6911. [PMID: 37836754 PMCID: PMC10574591 DOI: 10.3390/molecules28196911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Three new products, [Cu2(μ3-dppa)(2,2'-bipy)2(H2O)]n·2nH2O (1), [Co4(μ4-dppa)2(phen)4(H2O)4]·2H2O (2), and [Co2(μ6-dppa)(μ-4,4'-bipy)(H2O)2]n·3nH2O (3) were synthesized using a hydrothermal method from Cu(II) and Co(II) metal(II) chlorides, 3-(3,4-dicarboxyphenoxy)phthalic acid (H4dppa), and different auxiliary ligands, namely 2,2'-bipyridine (2,2'-bipy),1,10-phenanthroline (phen), and 4,4'-bipyridine (4,4'-bipy). Products 1-3 were characterized by elemental analysis, FTIR, TGA, PXRD, SEM, and single-crystal X-ray crystallography. The structure of 1 features a 1D chain of the 2C1 topological type. Compound 2 shows a discrete tetrameric complex. Product 3 demonstrates a 3D metal-organic framework (MOF) with the new topology. Their structure and topology, thermal stability, and catalytic activity were studied. In particular, excellent catalytic activity was demonstrated for copper(II)-polymer 1 in the cyanosilylation reaction at 35 °C.
Collapse
Affiliation(s)
| | | | | | | | - Jinzhong Gu
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; (X.K.); (H.W.); (Z.M.); (X.F.)
| |
Collapse
|
84
|
Rogovoy MI, Rakhmanova MI, Sadykov EH, Carignan GM, Bagryanskaya IY, Li J, Artem'ev AV. Fast and reversible solvent-vapor-induced 1D to 2D transformation in emissive Ag(I)-organic networks. Chem Commun (Camb) 2023; 59:11413-11416. [PMID: 37670724 DOI: 10.1039/d3cc03540a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
We report here an unprecedentedly fast and reversible transformation between 1D and 2D MOFs/CPs induced through organic solvent vapours. The transformations occur at room temperature in just 15-20 min, accompanied by a significant change in the observed phosphorescence. These findings provide a new insight into the design of luminescent networks with stimuli-switchable dimensionality.
Collapse
Affiliation(s)
- Maxim I Rogovoy
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave, 630090, Novosibirsk, Russia.
| | - Mariana I Rakhmanova
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave, 630090, Novosibirsk, Russia.
| | - Evgeniy H Sadykov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave, 630090, Novosibirsk, Russia.
| | - Gia M Carignan
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854, USA.
| | - Irina Yu Bagryanskaya
- Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 9, Acad. Lavrentiev Ave, 630090, Novosibirsk, Russia
| | - Jing Li
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854, USA.
| | - Alexander V Artem'ev
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave, 630090, Novosibirsk, Russia.
| |
Collapse
|
85
|
Lu Y, Zhang X, Zhao L, Liu H, Yan M, Zhang X, Mochizuki K, Yang S. Metal-organic framework template-guided electrochemical lithography on substrates for SERS sensing applications. Nat Commun 2023; 14:5860. [PMID: 37730799 PMCID: PMC10511444 DOI: 10.1038/s41467-023-41563-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023] Open
Abstract
The templating method holds great promise for fabricating surface nanopatterns. To enhance the manufacturing capabilities of complex surface nanopatterns, it is important to explore new modes of the templates beyond their conventional masking and molding modes. Here, we employed the metal-organic framework (MOF) microparticles assembled monolayer films as templates for metal electrodeposition and revealed a previously unidentified guiding growth mode enabling the precise growth of metallic films exclusively underneath the MOF microparticles. The guiding growth mode was induced by the fast ion transportation within the nanochannels of the MOF templates. The MOF template could be repeatedly used, allowing for the creation of identical metallic surface nanopatterns for multiple times on different substrates. The MOF template-guided electrochemical growth mode provided a robust route towards cost-effective fabrication of complex metallic surface nanopatterns with promising applications in metamaterials, plasmonics, and surface-enhanced Raman spectroscopy (SERS) sensing fields.
Collapse
Affiliation(s)
- Youyou Lu
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xuan Zhang
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Liyan Zhao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Hong Liu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Mi Yan
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Baotou Research Institute of Rare Earths, Baotou, 014030, China
| | - Xiaochen Zhang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Kenji Mochizuki
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China.
| | - Shikuan Yang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
- Baotou Research Institute of Rare Earths, Baotou, 014030, China.
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
86
|
Zou Y, Liu C, Zhang C, Yuan L, Li J, Bao T, Wei G, Zou J, Yu C. Epitaxial growth of metal-organic framework nanosheets into single-crystalline orthogonal arrays. Nat Commun 2023; 14:5780. [PMID: 37723168 PMCID: PMC10507060 DOI: 10.1038/s41467-023-41517-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 09/05/2023] [Indexed: 09/20/2023] Open
Abstract
Construction of two-dimensional nanosheets into three-dimensional regular structures facilitates the mass transfer and exploits the maximum potential of two-dimensional building blocks in applications such as catalysis. Here, we report the synthesis of metal-organic frameworks with an orthogonal nanosheet array. The assembly involves the epitaxial growth of single crystalline metal-organic framework nanosheets with a naturally non-preferred facet exposure as the shell on a cubic metal-organic framework as the core. The nanosheets, despite of two typical shapes and crystallographic orientations, also form a single crystalline orthogonally arrayed framework. The density and size of nanosheets in the core-shell-structured composite metal-organic frameworks can be well adjusted. Moreover, metal-organic frameworks with a single composition and hollow orthogonal nanosheet array morphology can be obtained. Benefiting from the unusual facet exposure and macroporous structure, the designed structure exhibits improved electrocatalytic oxygen evolution activity compared to conventional nanosheets.
Collapse
Affiliation(s)
- Yingying Zou
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, PR China
| | - Chao Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, PR China.
| | - Chaoqi Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, PR China
| | - Ling Yuan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, PR China
| | - Jiaxin Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, PR China
| | - Tong Bao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, PR China
| | - Guangfeng Wei
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, PR China.
| | - Jin Zou
- Materials Engineering and Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Chengzhong Yu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, PR China.
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
87
|
Guo J, Wu L, Ye YX, Zhu F, Xu J, Ouyang G. Two-Dimensional Conductive Metal-Organic Framework for Small-Molecule Sensing in Aqueous Solution. Anal Chem 2023; 95:13412-13416. [PMID: 37624146 DOI: 10.1021/acs.analchem.3c02417] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Two-dimensional (2D) conductive metal-organic frameworks (cMOFs) have emerged as powerful transducers for electrochemical sensing. However, electrochemical sensing in aqueous solutions remains at a very early stage for 2D cMOFs. Herein, the interfacial capacitances of a 2D cMOF are utilized for electrochemical sensing for the first time. Various redox-innocent compounds along with redox-active compounds in aqueous solutions are successfully detected based on the responses of two capacitance peaks at low voltages. The quantitative sensitivity to ascorbic acid is even an order of magnitude higher than the previous voltammetric method. Further investigation demonstrates that the responses are rooted in the pseudocapacitances of the 2D cMOF, i.e., the transitions among the multiple redox states of the ligands. The analytes are suggested to alert the d-p conjugation and exchange electrons with the 2D cMOF. These deep insights in response mechanisms represent an important step for promoting the application of 2D cMOFs in chemical sensing.
Collapse
Affiliation(s)
- Jing Guo
- Ministry of Education Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Lihua Wu
- Ministry of Education Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Yu-Xin Ye
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Fang Zhu
- Ministry of Education Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Jianqiao Xu
- Ministry of Education Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Gangfeng Ouyang
- Ministry of Education Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
88
|
Zhao T, Zou M, Xiao P, Luo M, Nie S. Template-Free Synthesis and Multifunctional Application of Foam HKUST-1. Inorg Chem 2023; 62:14659-14667. [PMID: 37624582 DOI: 10.1021/acs.inorgchem.3c01923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Hierarchically porous metal-organic frameworks (HP-MOFs) have attracted a lot of attention in recent years because their hierarchical pores have critical importance in strengthening their performance, including guest diffusion kinetics, catalytic activity, and selectivity, especially with reference to large molecules. However, the preparation method for simple, controllable, and stable HP-MOFs at a micro-/meso-/macroscopic scale is still lacking. Herein, we showed several forms of HKUST-1 (HKUST = Hong Kong University of Science and Technology) by simply changing the copper source and solvent type, including original micron HKUST-1 (O-HKUST-1), half-foam HKUST-1 (HF-HKUST-1), and fully foam HKUST-1 (F-HKUST-1). Compared to O-HKUST-1, HF-HKUST-1 and F-HKUST-1 possessed an apparent hierarchically porous structure due to the high fusion of HKUST-1 nanocrystals. Especially in F-HKUST-1, all of the HKUST-1 nanocrystals were tightly integrated into each other, which formed a holistic hollow foam structure. Hence, F-HKUST-1 exhibited the highest adsorption capacity toward large molecules, including proteases, phosphotungstic acid, and organic dyes. Meanwhile, F-HKUST-1 presented the highest photocatalytic degradation capability for rhodamine B. Furthermore, F-HKUST-1, loaded with phosphotungstic acid (F-HKUST-1@PTA), which was used as a catalyst, indicated a catalytic capacity comparable to that of a homogeneous catalyst (pure phosphotungstic acid).
Collapse
Affiliation(s)
- Tian Zhao
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Minmin Zou
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Pengcheng Xiao
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Mingliang Luo
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Saiqun Nie
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| |
Collapse
|
89
|
Oggianu M, Abhervé A, Marongiu D, Quochi F, Galán-Mascarós JR, Bertolotti F, Masciocchi N, Avarvari N, Mercuri ML. Terbium and Europium Chlorocyananilate-Based 2D Coordination Polymers. Molecules 2023; 28:6453. [PMID: 37764229 PMCID: PMC10535540 DOI: 10.3390/molecules28186453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Two-dimensional layered coordination polymers based on the hetero-substituted 3-chloro-6-cyano-2,5-dihydroxybenzoquinone ligands, hereafter ClCNAn2- anilate, and LnIII ions (Tb and Eu) are reported. Compounds 1 and 2, formulated as Ln2(ClCNAn)3(DMSO)6 (LnIII = Tb, 1; Eu, 2), and their related intermediates 1' and 2', formulated as Ln2(ClCNAn)3(H2O)x·yH2O (x + y likely = 12, Ln = Tb, 1'; and Eu, 2'), were prepared by a conventional one-pot reaction (the latter) and recrystallized from DMSO solvent (the former). Polyhydrated intermediates 1' and 2' show very similar XRPD patterns, while, despite their common stoichiometry, 1 and 2 are not isostructural. Compound 1 consists of a 2D coordination framework of 3,6 topology, where [Tb(DMSO)3]III moieties are bridged by three bis-chelating ClCNAn2- ligands, forming distorted hexagons. Ultrathin nanosheets of 1 were obtained by exfoliation via the liquid-assisted sonication method and characterized by atomic force microscopy, confirming the 2D nature of 1. The crystal structure of 2, still showing the presence of 2D sheets with a "hexagonal" mesh and a common (3,6) connectivity, is based onto flat, non-corrugated slabs. Indeed, at a larger scale, the different "rectangular tiles" show clear roofing in 1, which is totally absent in 2. The magnetic behavior of 1 very likely indicates depopulation of the highest crystal-field levels, as expected for TbIII compounds.
Collapse
Affiliation(s)
- Mariangela Oggianu
- Department of Chemical and Geological Sciences, University of Cagliari, Highway 554, Crossroads for Sestu, I-09042 Monserrato, Italy;
- National Interuniversity Consortium of Materials Science and Technology, INSTM, Street Giuseppe Giusti, 9, I-50121 Florence, Italy; (F.Q.); (N.M.)
| | - Alexandre Abhervé
- Laboratoire MOLTECH-Anjou UMR 6200, UFR Sciences, CNRS, Université d’Angers, Bât. K, 2 Bd. Lavoisier, I-49045 Angers, France;
| | - Daniela Marongiu
- Department of Physics, University of Cagliari, Highway 554, Crossroads for Sestu, I-09042 Monserrato, Italy;
| | - Francesco Quochi
- National Interuniversity Consortium of Materials Science and Technology, INSTM, Street Giuseppe Giusti, 9, I-50121 Florence, Italy; (F.Q.); (N.M.)
- Department of Physics, University of Cagliari, Highway 554, Crossroads for Sestu, I-09042 Monserrato, Italy;
| | - José Ramón Galán-Mascarós
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute of Science and Technology (BIST), Avenida Països Catalans 16, 43007 Tarragona, Spain;
- ICREA, Av. Lluis Companys 16, Passeig Lluís Companys, 23, 08010 Barcelona, Spain
| | - Federica Bertolotti
- Dipartimento di Scienza e Alta Tecnologia & To.Sca.Lab., University of Insubria, Via Valleggio 11, I-22100 Como, Italy;
| | - Norberto Masciocchi
- National Interuniversity Consortium of Materials Science and Technology, INSTM, Street Giuseppe Giusti, 9, I-50121 Florence, Italy; (F.Q.); (N.M.)
- Dipartimento di Scienza e Alta Tecnologia & To.Sca.Lab., University of Insubria, Via Valleggio 11, I-22100 Como, Italy;
| | - Narcis Avarvari
- Laboratoire MOLTECH-Anjou UMR 6200, UFR Sciences, CNRS, Université d’Angers, Bât. K, 2 Bd. Lavoisier, I-49045 Angers, France;
| | - Maria Laura Mercuri
- Department of Chemical and Geological Sciences, University of Cagliari, Highway 554, Crossroads for Sestu, I-09042 Monserrato, Italy;
- National Interuniversity Consortium of Materials Science and Technology, INSTM, Street Giuseppe Giusti, 9, I-50121 Florence, Italy; (F.Q.); (N.M.)
| |
Collapse
|
90
|
Abstract
Metal-organic frameworks (MOFs) and ionic liquids (ILs) represent promising materials for adsorption separation. ILs incorporated into MOF materials (denoted as IL/MOF composites) have been developed, and IL/MOF composites combine the advantages of MOFs and ILs to achieve enhanced performance in the adsorption-based separation of fluid mixtures. The designed different ILs are introduced into the various MOFs to tailor their functional properties, which affect the optimal adsorptive separation performance. In this Perspective, the rational fabrication of IL/MOF composites is presented, and their functional properties are demonstrated. This paper provides a critical overview of an emergent class of materials termed IL/MOF composites as well as the recent advances in the applications of IL/MOF composites as adsorbents or membranes in fluid separation. Furthermore, the applications of IL/MOF in adsorptive gas separations (CO2 capture from flue gas, natural gas purification, separation of acetylene and ethylene, indoor pollutants removal) and liquid separations (separation of bioactive components, organic-contaminant removal, adsorptive desulfurization, radionuclide removal) are discussed. Finally, the existing challenges of IL/MOF are highlighted, and an appropriate design strategy direction for the effective exploration of new IL/MOF adsorptive materials is proposed.
Collapse
Affiliation(s)
- Xueqin Li
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Kai Chen
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Ruili Guo
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Zhong Wei
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang 832003, China
| |
Collapse
|
91
|
Kim S, An J, Choi H, Jung SH, Lee SS, Park IH. Construction of Photoreactive Chiral Metal-Organic Frameworks and Their [2 + 2] Photocycloaddition Reactions. Inorg Chem 2023; 62:13173-13178. [PMID: 37552800 DOI: 10.1021/acs.inorgchem.3c02349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Chiral metal-organic frameworks (CMOFs) and solid-state [2 + 2] photocyclization have been explored as independent areas in crystal engineering. We herein report the photoreactive CMOFs that undergo a [2 + 2] photocycloaddition reaction for the first time. Through the incorporation of a dipyridyl olefin ligand, 1,4-bis[2-(4-pyridyl)ethenyl]benzene, and d-camphoric acid or l-camphoric acid, we constructed a pair of homochiral Zn(II) CMOFs (d-1 or l-1) with a two-dimensional sql topology via a two-step procedure to avoid racemization. Both d-1 and l-1 were photoinert due to the large olefin bond separation. The removal of the solvent molecules between layers enabled them (d-1a and l-1a) to undergo [2 + 2] cycloaddition reactions; d-1a is more reactive (70%) than l-1a (20%) probably due to proper desolvation-induced rearrangement. The photoluminescence properties are also discussed. This work presents a new perspective on photoreactive homochiral network materials with diverse topologies and applications.
Collapse
Affiliation(s)
- Seulgi Kim
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, South Korea
| | - Jaewook An
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, South Korea
| | - Heekyoung Choi
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, South Korea
| | - Sung Ho Jung
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, South Korea
| | - Shim Sung Lee
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, South Korea
| | - In-Hyeok Park
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, South Korea
| |
Collapse
|
92
|
Teng M, Hao M, Ding C, Wang L, Shen H, Yu S, Chen L, Yang F. Rapid detection of Saccharomyces cerevisiae with boronic acid-decorated multivariate metal-organic frameworks and aptamers. Analyst 2023; 148:4213-4218. [PMID: 37539700 DOI: 10.1039/d3an00835e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Liquor brewing is a classic solid-substrate fermentation process with a unique brewing microbiome. As one of the most common fungi, Saccharomyces cerevisiae ferments saccharides and has been extensively applied in brewing production. Here, we present the facile fabrication of a selective, sensitive, and integrated fluorescent biosensor for S. cerevisiae detection. The proposed biosensor used aptamer-modified magnetic beads to specifically capture S. cerevisiae, and the enriched fungi were recognized and detected with boronic acid-decorated multivariate metal-organic frameworks. The biosensor allows rapid quantification of S. cerevisiae in the range of 10-106 CFU mL-1, showing excellent specificity and repeatability, and maintaining stable biosensing performance in long-term storage. The analytical ability of the proposed biosensor was successfully verified in distilled yeast and fermented grain samples spiked with S. cerevisiae.
Collapse
Affiliation(s)
- Mengjing Teng
- Kweichow Moutai Group, Renhuai, Guizhou 564501, China.
- Key Laboratory of Industrial Microbial Resources Development, Kweichow Moutai Co. Ltd, Renhuai, Guizhou 564501, China
| | - Mengdi Hao
- Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Chuanfan Ding
- Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Li Wang
- Kweichow Moutai Group, Renhuai, Guizhou 564501, China.
- Key Laboratory of Industrial Microbial Resources Development, Kweichow Moutai Co. Ltd, Renhuai, Guizhou 564501, China
| | - Hao Shen
- Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Shaoning Yu
- Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Liangqiang Chen
- Kweichow Moutai Group, Renhuai, Guizhou 564501, China.
- Key Laboratory of Industrial Microbial Resources Development, Kweichow Moutai Co. Ltd, Renhuai, Guizhou 564501, China
| | - Fan Yang
- Kweichow Moutai Group, Renhuai, Guizhou 564501, China.
- Key Laboratory of Industrial Microbial Resources Development, Kweichow Moutai Co. Ltd, Renhuai, Guizhou 564501, China
| |
Collapse
|
93
|
An J, Oh J, Kurakula U, Lee DH, Choudhury A, Lee E, Medishetty R, Park IH. Solid-State Structural Transformation in Zn(II) Metal-Organic Frameworks in a Single-Crystal-to-Single-Crystal Fashion. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2319. [PMID: 37630906 PMCID: PMC10459828 DOI: 10.3390/nano13162319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Solid-state structural transformation is an interesting methodology used to prepare various metal-organic frameworks (MOFs) that are challenging to prepare in direct synthetic procedures. On the other hand, solid-state [2 + 2] photoreactions are distinctive methodologies used for light-driven solid-state transformations. Meanwhile, most of these photoreactions explored are quantitative in nature, in addition to them being stereo-selective and regio-specific in manner. In this work, we successfully synthesized two photoreactive novel binuclear Zn(II) MOFs, [Zn2(spy)2(tdc)2] (1) and [Zn2(spy)4(tdc)2] (2) (where spy = 4-styrylpyridine and tdc = 2,5-thiophenedicarboxylate) with different secondary building units. Both MOFs are interdigitated in nature and are 2D and 1D frameworks, respectively. Both the compounds showed 100% and 50% photoreaction upon UV irradiation, as estimated from the structural analysis for 1 and 2, respectively. This light-driven transformation resulted in the formation of 3D, [Zn2(rctt-ppcb)(tdc)2] (3), and 2D, [Zn2(spy)2(rctt-ppcb)(tdc)2] (4) (where rctt = regio, cis, trans, trans; ppcb = 1,3-bis(4'-pyridyl)-2,4-bis(phenyl)cyclobutane), respectively. These solid-state structural transformations were observed as an interesting post-synthetic modification. Overall, we successfully transformed novel lower-dimensional frameworks into higher-dimensional materials using a solid-state [2 + 2] photocycloaddition reaction.
Collapse
Affiliation(s)
- Jaewook An
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jihye Oh
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Republic of Korea
| | - Uma Kurakula
- Department of Chemistry, GEC Campus, Indian Institute of Technology Bhilai, Sejbahar, Raipur 492015, India
| | - Dong Hee Lee
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Republic of Korea
| | - Aditya Choudhury
- Department of Chemistry, GEC Campus, Indian Institute of Technology Bhilai, Sejbahar, Raipur 492015, India
| | - Eunji Lee
- Department of Chemistry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Raghavender Medishetty
- Department of Chemistry, GEC Campus, Indian Institute of Technology Bhilai, Sejbahar, Raipur 492015, India
| | - In-Hyeok Park
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
94
|
Mohammadi Rasooll M, Sepehrmansourie H, Zarei M, Zolfigol MA, Hosseinifard M, Gu Y. Catalytic Application of Functionalized Bimetallic-Organic Frameworks with Phosphorous Acid Tags in the Synthesis of Pyrazolo[4,3- e]pyridines. ACS OMEGA 2023; 8:25303-25315. [PMID: 37483221 PMCID: PMC10357449 DOI: 10.1021/acsomega.3c02580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023]
Abstract
Combining two different metals for the synthesis of a metal-organic framework (MOF) is a smart strategy for the architecture of new porous materials. Herein, a bimetal-organic framework (bimetal-MOFs) based on Fe and Co metals was synthesized. Then, phosphorous acid tags were decorated on bimetal-MOFs via a postmodification method as a new porous acidic functionalized catalyst. This catalyst was used for the synthesis of pyrazolo[4,3-e]pyridine derivatives as suitable drug candidates. The present study provides new insights into the architecture of novel porous heterogeneous catalysts based on a bimetal-organic framework (bimetal-MOFs). The type of final structures of catalyst and pyrazolo[4,3-e]pyridine derivatives were determined using different techniques such as fourier transform infrared (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), SEM-elemental mapping, N2 adsorption-desorption isotherm, Barrett-Joyner-Halenda (BJH), thermogravimetry/differential thermal analysis (TG/DTA), 1H NMR, and 13C NMR.
Collapse
Affiliation(s)
- Milad Mohammadi Rasooll
- Department
of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838683, Iran
| | - Hassan Sepehrmansourie
- Department
of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838683, Iran
| | - Mahmoud Zarei
- Department
of Chemistry, Faculty of Science, University
of Qom, Qom 37185-359, Iran
| | - Mohammad Ali Zolfigol
- Department
of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838683, Iran
| | - Mojtaba Hosseinifard
- Department
of Energy, Materials and Energy Research
Center, P.O. Box 31787-316, Karaj 401602, Iran
| | - Yanlong Gu
- School
of Chemistry and Chemical Engineering, Huazhong
University of Science and Technology, 1037 Luoyu road, Hongshan District, Wuhan 430074, China
| |
Collapse
|
95
|
Luo F, Guo M, Zheng L, Cai Z. Efficient fluorescence-enhanced probe for cyanide ions based on a tetraphenylethene pyridine coordinated copper-iodide complex. RSC Adv 2023; 13:19738-19745. [PMID: 37396831 PMCID: PMC10312066 DOI: 10.1039/d3ra02868b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/26/2023] [Indexed: 07/04/2023] Open
Abstract
An efficient fluorescence-enhanced probe was developed for detecting cyanide ions (CN-) based on a tetraphenylethene coordinated copper-iodide complex (named CIT-Z). The coordination polymers (CPs) prepared were (Z)-1,2-diphenyl-1,2-bis[4-(pyridin-3-ylmethoxy)phenyl]ethene (1Z) and a CuI cluster, where the tetraphenylethylene (TPE) pyridine derivatives acted as organic ligands and the CuI cluster acted as a metal center. The higher-dimensional CIT-Z exhibited a 3-fold-interpenetrating network structure with excellent optical properties and chemical stability. This study also provides insights into the mechanism behind the fluorescence enhancement, which is attributed to the competitive coordination between CN- and the ligands. The probe showed high selectivity and sensitivity towards CN-, with a detection limit of 0.1 μM and good recovery in the real water samples.
Collapse
Affiliation(s)
- Fenqiang Luo
- College of Chemical Engineering, College of Food and Biological Engineering, Collaborative Innovation Center of Fine Chemicals in Fujian Province, Zhangzhou Institute of Technology Zhangzhou 363000 China
| | - Meng Guo
- College of Chemical Engineering, College of Food and Biological Engineering, Collaborative Innovation Center of Fine Chemicals in Fujian Province, Zhangzhou Institute of Technology Zhangzhou 363000 China
| | - Liyan Zheng
- School of Chemical Science and Technology, Yunnan University Kunming 650091 China
| | - Zhixiong Cai
- College of Chemistry, Chemical Engineering and Environment, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University Zhangzhou 363000 China
| |
Collapse
|
96
|
Luo D, He H, Jing H, Ling Y, Jia Y, Yang Y, Liu X, Chen Z, Deng M. Nanosheets of two-dimensional photoluminescent lanthanide phosphonocarboxylate frameworks decorated with free carboxylic groups for latent fingerprint imaging. Dalton Trans 2023. [PMID: 37334841 DOI: 10.1039/d3dt01173a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
The synthesis, structural characterization, exfoliation, and photophysical studies of two-dimensional (2-D) lanthanide phosphonates, named Ln(m-pbc); [Ln(m-Hpbc)(m-H2pbc)(H2O)] (Ln = Eu, Tb; m-pbc = 3-phosphonobenzoic acid) based on the phosphonocarboxylate ligand, are reported. These compounds are neutral polymeric 2D layered structures with pendent uncoordinated carboxylic groups between layers. The nanosheets were obtained by a top-down strategy involving sonication-assisted solution exfoliation and characterized by atomic force microscopy and transmission electron microscropy, showing lateral dimensions from nano- to micro-meter scales, and thicknesses down to several layers. The photoluminescence studies demonstrate that the m-pbc ligand acts as an efficient antenna toward Eu and Tb(III) ions. The emission intensities of dimetallic compounds are clearly enhanced after incorporation of Y(III) ions due to the dilution effect. Ln(m-pbc)s were then applied for labelling latent fingerprints. It is worth noting that the reaction between active carboxylic groups and fingerprint residues benefits the labelling, showing efficient imaging for fingerprints on all kinds of material surfaces.
Collapse
Affiliation(s)
- Dan Luo
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.
| | - Hongjie He
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.
| | - Huiru Jing
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.
| | - Yun Ling
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.
| | - Yu Jia
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.
| | - Yongtai Yang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.
| | - Xiaofeng Liu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.
| | - Zhenxia Chen
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.
| | - Mingli Deng
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.
| |
Collapse
|
97
|
Wang R, He C, Chen W. Tunable electronic and magnetic properties of planar and corrugated phases of two-dimensional metal-organic frameworks. NANOSCALE 2023. [PMID: 37335273 DOI: 10.1039/d3nr01170d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
The stability of two-dimensional (2D) metal-organic frameworks (MOFs) and their physical and chemical properties for potential applications are contentious. We herein investigated geometric, electronic and magnetic properties of the planar (p-) and corrugated (c-) phases of nickel ions with hexathiolbenzene (HTB)-based coordination nanosheets (Ni3HTB). The c-Ni3HTB is an antiferromagnetic semiconductor with a direct band gap of 0.33 eV, while the p-Ni3HTB is a ferromagnetic metal. This indicates that the electronic and magnetic properties of c-Ni3HTB and p-Ni3HTB depend on their geometric pattern. Furthermore, we applied biaxial strain and molecular adsorption to control their electronic and magnetic properties. In addition, we have proved that the corrugated phase in some kinds of 2D MOFs is common. Our work not only demonstrates that the potential applications of 2D MOFs should be scrupulously explored but also offers a new platform to investigate the physical and chemical properties of 2D MOFs.
Collapse
Affiliation(s)
- Ran Wang
- Institute of Environmental and Energy Catalysis, Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices, School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China.
| | - Chaozheng He
- Institute of Environmental and Energy Catalysis, Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices, School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China.
| | - Weixing Chen
- Institute of Environmental and Energy Catalysis, Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices, School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China.
| |
Collapse
|
98
|
Qiao M, Xie J, Zhu D. Computational Screening of Two-Dimensional Metal-Organic Frameworks as Efficient Single-Atom Catalysts for Oxygen Reduction Reaction. Chemistry 2023; 29:e202300686. [PMID: 37012207 DOI: 10.1002/chem.202300686] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/05/2023]
Abstract
The development of efficient and inexpensive oxygen reduction reaction (ORR) catalysts is crucial for renewable energy technologies. Herein, using density functional theory (DFT) methods and microkinetic simulations, we systematically investigated the ORR catalytic performance of a series of 2D metal-organic frameworks M3 (HADQ)2 (HADQ=2,3,6,7,10,11-hexaamine dipyrazino quinoxaline). It shows that all 2D M3 (HADQ)2 (M=Cr, Mn, Fe, Co, Ni, Cu, Ru, Rh and Pd) monolayers are metallic, due to π-conjugated crystal orbitals centered on the central metals and ligand N atoms. The catalytic activity of M3 (HADQ)2 depends on the binding strength between ORR intermediates and metal species, and can be tuned via changing the central metals. Among these candidates, Rh3 (HADQ)2 and Co3 (HADQ)2 show superior ORR performance to Pt (111) with high half-wave potentials of 0.99 and 0.93 V, respectively. Moreover, the screened two catalysts have excellent intermediate-tolerance ability for dynamic coverage of oxygenated species on the active sites. Our work provides a new path towards developing efficient ORR electrocatalysts.
Collapse
Affiliation(s)
- Man Qiao
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Jiachi Xie
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Dongdong Zhu
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, Nanjing, 210044, China
| |
Collapse
|
99
|
Ronghe A, Ayappa KG. Graphene Nanopores Enhance Water Evaporation from Salt Solutions: Exploring the Effects of Ions and Concentration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37312291 DOI: 10.1021/acs.langmuir.3c00797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With increased water stress, the development of clean water technologies is an active area of research. Evaporation-based solutions offer the advantage of low energy consumption, and recently a 10-30 fold enhancement in water evaporation flux has been observed through Å-scale graphene nanopores (Lee, W.-C., et al., ACS Nano 2022, 16(9), 15382). Herein, using molecular dynamics simulations, we examine the suitability of Å-scale graphene nanopores in enhancing water evaporation from salt solutions (LiCl, NaCl, and KCl). Cation-π interactions between ions and the surface of nanoporous graphene are found to significantly influence ion populations in the nanopore vicinity, leading to varied water evaporation fluxes from different salt solutions. The highest water evaporation flux was observed for KCl solutions, followed by NaCl and LiCl solutions, with the differences reducing at lower concentrations. Relative to the bare liquid-vapor interface, 4.54 Å nanopores exhibit the highest evaporation flux enhancements ranging from 7 to 11, with an enhancement of 10.8 obtained for 0.6 M NaCl solution, which closely resembles seawater compositions. Functionalized nanopores induce short-lived water-water hydrogen bonds and reduce surface tension at the liquid-vapor interface, thereby lowering the free energy barrier for water evaporation with a negligible effect on the ion hydration dynamics. These findings can aid in developing green technologies for desalination and separation processes with low thermal energy input.
Collapse
Affiliation(s)
- Anshaj Ronghe
- Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India
| | - K Ganapathy Ayappa
- Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
100
|
Lozančić A, Renka S, Barišić D, Burazer S, Molčanov K, Pajić D, Jurić M. High Proton Conductivity of Magnetically Ordered 2D Oxalate-Bridged [Mn IICr III] Coordination Polymers with Irregular Topology. Inorg Chem 2023. [PMID: 37290133 DOI: 10.1021/acs.inorgchem.3c00443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Two heterometallic coordination polymers {[NH(CH3)2(C2H5)]8[Mn4Cl4Cr4(C2O4)12]}n (1) and {[NH(CH3)-(C2H5)2]8[Mn4Cl4Cr4(C2O4)12]}n (2) were obtained by slow evaporation of an aqueous solution containing the building block [A]3[Cr(C2O4)3] [A = (CH3)2(C2H5)NH+ or (CH3)(C2H5)2NH+] and MnCl2·2H2O. The isostructural compounds comprise irregular two-dimensional (2D) oxalate-bridged anionic layers [Mn4Cl4Cr4(C2O4)12]n8n- with a Shubnikov plane net fes topology designated as (4·82), interleaved by the hydrogen-bonded templating cations (CH3)2(C2H5)NH+ (1) or (CH3)(C2H5)2NH+ (2). They exhibit remarkable humidity-sensing properties and very high proton conductivity at room temperature [1.60 × 10-3 (Ω·cm)-1 at 90% relative humidity (RH) of 1 and 9.6 × 10-4 (Ω·cm)-1 at 94% RH of 2]. The layered structure facilitates the uptake of water molecules, which contributes to the enhancement of proton conductivity at high RH. The better proton transport observed in 1 compared to that in 2 can be tentatively attributed to the higher hydrophilicity of the cations (CH3)2(C2H5)NH+, which is closely related to their affinity for water molecules. The original topology of the anionic networks in both compounds leads to the development of interesting magnetic phases upon cooling. The magnetically ordered ground state can be described as the coupling of ferromagnetic spin chains in which Mn2+ and Cr3+ ions are bridged by bis(bidentate) oxalate groups into antiferromagnetic planes through monodentate-bidentate oxalate bridges in the layers, which are triggered to long-range order below temperature 4.45 K via weaker interlayer interactions.
Collapse
Affiliation(s)
- Ana Lozančić
- Ruđer Bošković Institute, Bijenička Cesta 54, Zagreb 10000, Croatia
| | - Sanja Renka
- Ruđer Bošković Institute, Bijenička Cesta 54, Zagreb 10000, Croatia
| | - Dario Barišić
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, Zagreb 10000, Croatia
| | - Sanja Burazer
- Ruđer Bošković Institute, Bijenička Cesta 54, Zagreb 10000, Croatia
| | | | - Damir Pajić
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, Zagreb 10000, Croatia
| | - Marijana Jurić
- Ruđer Bošković Institute, Bijenička Cesta 54, Zagreb 10000, Croatia
| |
Collapse
|