51
|
Jennings J, Ašćerić D, Semeraro EF, Lohner K, Malanovic N, Pabst G. Combinatorial Screening of Cationic Lipidoids Reveals How Molecular Conformation Affects Membrane-Targeting Antimicrobial Activity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40178-40190. [PMID: 37602460 PMCID: PMC10472336 DOI: 10.1021/acsami.3c05481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/04/2023] [Indexed: 08/22/2023]
Abstract
The search for next-generation antibacterial compounds that overcome the development of resistance can be facilitated by identifying how to target the cell membrane of bacteria. Understanding the key molecular features that enable interactions with lipids and lead to membrane disruption is therefore crucial. Here, we employ a library of lipid-like compounds (lipidoids) comprising modular structures with tunable hydrophobic and hydrophilic architecture to shed light on how the chemical functionality and molecular shape of synthetic amphiphilic compounds determine their activity against bacterial membranes. Synthesized from combinations of 8 different polyamines as headgroups and 13 acrylates as tails, 104 different lipidoids are tested for activity against a model Gram-positive bacterial strain (Bacillus subtilis). Results from the combinatorial screening assay show that lipidoids with the most potent antimicrobial properties (down to 2 μM) have intermediate tail hydrophobicity (i.e., c log P values between 3 and 4) and lower headgroup charge density (i.e., longer spacers between charged amines). However, the most important factor appeared to be the ability of a lipidoid to self-assemble into an inverse hexagonal liquid crystalline phase, as observed by small-angle X-ray scattering (SAXS) analysis. The lipidoids active at lowest concentrations, which induced the most significant membrane damage during propidium iodide (PI) permeabilization assays, were those that aggregated into highly curved inverse hexagonal liquid crystal phases. These observations suggest that the introduction of strong curvature stress into the membrane is one way to maximize membrane disruption and lipidoid antimicrobial activity. Lipidoids that demonstrated the ability to furnish this phase consisted of either (i) branched or linear headgroups with shorter linear tails or (ii) cyclic headgroups with 4 bulky nonlinear tails. On the contrary, lipidoids previously observed to adopt disc-like conformations that pack into bicontinuous cubic phases were significantly less effective against B. subtilis. The discovery of these structure-property relationships demonstrates that it is not simply a balance of hydrophobic and hydrophilic moieties that govern membrane-active antibacterial activity, but also their intrinsic curvature and collective behavior.
Collapse
Affiliation(s)
- James Jennings
- Institute
of Molecular Biosciences, University of
Graz, NAWI Graz, 8010 Graz, Austria
- Field
of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| | - Dunja Ašćerić
- Institute
of Molecular Biosciences, University of
Graz, NAWI Graz, 8010 Graz, Austria
- Field
of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| | - Enrico Federico Semeraro
- Institute
of Molecular Biosciences, University of
Graz, NAWI Graz, 8010 Graz, Austria
- Field
of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| | - Karl Lohner
- Institute
of Molecular Biosciences, University of
Graz, NAWI Graz, 8010 Graz, Austria
- Field
of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| | - Nermina Malanovic
- Institute
of Molecular Biosciences, University of
Graz, NAWI Graz, 8010 Graz, Austria
- Field
of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| | - Georg Pabst
- Institute
of Molecular Biosciences, University of
Graz, NAWI Graz, 8010 Graz, Austria
- Field
of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| |
Collapse
|
52
|
Brycki B, Szulc A, Brycka J, Kowalczyk I. Properties and Applications of Quaternary Ammonium Gemini Surfactant 12-6-12: An Overview. Molecules 2023; 28:6336. [PMID: 37687165 PMCID: PMC10489655 DOI: 10.3390/molecules28176336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/16/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Surfactants are amphiphilic molecules and one of the most versatile products of the chemical industry. They can be absorbed at the air-water interface and can align themselves so that the hydrophobic part is in the air while the hydrophilic part is in water. This alignment lowers the surface or interfacial tension. Gemini surfactants are a modern variety of surfactants with unique properties and a very wide range of potential applications. Hexamethylene-1,6-bis(N-dodecyl-N,N-dimethylammonium bromide) is one such representative compound that is a better alternative to a single analogue. It shows excellent surface, antimicrobial, and anticorrosion properties. With a highly efficient synthetic method and a good ecological profile, it is a potential candidate for numerous applications, including biomedical applications.
Collapse
Affiliation(s)
- Bogumił Brycki
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University Poznan, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland; (A.S.); (I.K.)
| | - Adrianna Szulc
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University Poznan, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland; (A.S.); (I.K.)
| | | | - Iwona Kowalczyk
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University Poznan, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland; (A.S.); (I.K.)
| |
Collapse
|
53
|
Odžak R, Crnčević D, Sabljić A, Krce L, Paladin A, Primožič I, Šprung M. Further Study of the Polar Group's Influence on the Antibacterial Activity of the 3-Substituted Quinuclidine Salts with Long Alkyl Chains. Antibiotics (Basel) 2023; 12:1231. [PMID: 37627651 PMCID: PMC10451673 DOI: 10.3390/antibiotics12081231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Quaternary ammonium compounds (QACs) are among the most potent antimicrobial agents increasingly used by humans as disinfectants, antiseptics, surfactants, and biological dyes. As reports of bacterial co- and cross-resistance to QACs and their toxicity have emerged in recent years, new attempts are being made to develop soft QACs by introducing hydrolyzable groups that allow their controlled degradation. However, the development of such compounds has been hindered by the structural features that affect the bioactivity of QACs, one of them being polarity of the substituent near the quaternary center. To further investigate the influence of the polar group on the bioactivity of QACs, we synthesized 3-aminoquinuclidine salts for comparison with their structural analogues, 3-acetamidoquinuclidines. We found that the less polar amino-substituted compounds exhibited improved antibacterial activity over their more polar amide analogues. In addition to their better minimum inhibitory concentrations, the candidates were excellent at suppressing Staphylococcus aureus biofilm formation and killing bacteria almost immediately, as shown by the flow cytometry measurements. In addition, two candidates, namely QNH2-C14 and QNH2-C16, effectively suppressed bacterial growth even at concentrations below the MIC. QNH2-C14 was particularly effective at subinhibitory concentrations, inhibiting bacterial growth for up to 6 h. In addition, we found that the compounds targeted the bacterial membrane, leading to its perforation and subsequent cell death. Their low toxicity to human cells and low potential to develop bacterial resistance suggest that these compounds could serve as a basis for the development of new QACs.
Collapse
Affiliation(s)
- Renata Odžak
- Department of Chemistry, Faculty of Science, University of Split, R. Bošković 33, 21000 Split, Croatia; (R.O.); (D.C.); (A.S.)
| | - Doris Crnčević
- Department of Chemistry, Faculty of Science, University of Split, R. Bošković 33, 21000 Split, Croatia; (R.O.); (D.C.); (A.S.)
- Doctoral Study of Biophysics, Faculty of Science, University of Split, R. Bošković 33, 21000 Split, Croatia
| | - Antonio Sabljić
- Department of Chemistry, Faculty of Science, University of Split, R. Bošković 33, 21000 Split, Croatia; (R.O.); (D.C.); (A.S.)
- Doctoral Study of Biophysics, Faculty of Science, University of Split, R. Bošković 33, 21000 Split, Croatia
| | - Lucija Krce
- Department of Physics, Faculty of Science, University of Split, R. Bošković 33, 21000 Split, Croatia;
| | - Antonela Paladin
- Department of Biology, Faculty of Science, University of Split, R. Bošković 33, 21000 Split, Croatia;
| | - Ines Primožič
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia;
| | - Matilda Šprung
- Department of Chemistry, Faculty of Science, University of Split, R. Bošković 33, 21000 Split, Croatia; (R.O.); (D.C.); (A.S.)
| |
Collapse
|
54
|
Melcrová A, Maity S, Melcr J, de Kok NAW, Gabler M, van der Eyden J, Stensen W, Svendsen JSM, Driessen AJM, Marrink SJ, Roos WH. Lateral membrane organization as target of an antimicrobial peptidomimetic compound. Nat Commun 2023; 14:4038. [PMID: 37419980 PMCID: PMC10328936 DOI: 10.1038/s41467-023-39726-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 06/20/2023] [Indexed: 07/09/2023] Open
Abstract
Antimicrobial resistance is one of the leading concerns in medical care. Here we study the mechanism of action of an antimicrobial cationic tripeptide, AMC-109, by combining high speed-atomic force microscopy, molecular dynamics, fluorescence assays, and lipidomic analysis. We show that AMC-109 activity on negatively charged membranes derived from Staphylococcus aureus consists of two crucial steps. First, AMC-109 self-assembles into stable aggregates consisting of a hydrophobic core and a cationic surface, with specificity for negatively charged membranes. Second, upon incorporation into the membrane, individual peptides insert into the outer monolayer, affecting lateral membrane organization and dissolving membrane nanodomains, without forming pores. We propose that membrane domain dissolution triggered by AMC-109 may affect crucial functions such as protein sorting and cell wall synthesis. Our results indicate that the AMC-109 mode of action resembles that of the disinfectant benzalkonium chloride (BAK), but with enhanced selectivity for bacterial membranes.
Collapse
Affiliation(s)
- Adéla Melcrová
- Molecular Biophysics, Zernike Institute for Advanced Materials, Rijksuniversiteit Groningen, Groningen, the Netherlands
| | - Sourav Maity
- Molecular Biophysics, Zernike Institute for Advanced Materials, Rijksuniversiteit Groningen, Groningen, the Netherlands
| | - Josef Melcr
- Molecular Dynamics, Groningen Biomolecular Sciences & Biotechnology Institute, Rijksuniversiteit Groningen, Groningen, the Netherlands
| | - Niels A W de Kok
- Molecular Microbiology, Groningen Biomolecular Sciences & Biotechnology Institute, Rijksuniversiteit Groningen, Groningen, the Netherlands
| | - Mariella Gabler
- Molecular Biophysics, Zernike Institute for Advanced Materials, Rijksuniversiteit Groningen, Groningen, the Netherlands
| | - Jonne van der Eyden
- Molecular Biophysics, Zernike Institute for Advanced Materials, Rijksuniversiteit Groningen, Groningen, the Netherlands
| | - Wenche Stensen
- Department of Chemistry, UiT Arctic University of Norway, Tromsø, Norway
| | - John S M Svendsen
- Department of Chemistry, UiT Arctic University of Norway, Tromsø, Norway
| | - Arnold J M Driessen
- Molecular Microbiology, Groningen Biomolecular Sciences & Biotechnology Institute, Rijksuniversiteit Groningen, Groningen, the Netherlands
| | - Siewert J Marrink
- Molecular Biophysics, Zernike Institute for Advanced Materials, Rijksuniversiteit Groningen, Groningen, the Netherlands
- Molecular Dynamics, Groningen Biomolecular Sciences & Biotechnology Institute, Rijksuniversiteit Groningen, Groningen, the Netherlands
| | - Wouter H Roos
- Molecular Biophysics, Zernike Institute for Advanced Materials, Rijksuniversiteit Groningen, Groningen, the Netherlands.
| |
Collapse
|
55
|
Frolov NA, Seferyan MA, Valeev AB, Saverina EA, Detusheva EV, Vereshchagin AN. The Antimicrobial and Antibiofilm Potential of New Water-Soluble Tris-Quaternary Ammonium Compounds. Int J Mol Sci 2023; 24:10512. [PMID: 37445691 DOI: 10.3390/ijms241310512] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/10/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
The invention and innovation of highly effective antimicrobials are always crucial tasks for medical and organic chemistry, especially at the current time, when there is a serious threat of shortages of effective antimicrobials following the pandemic. In the study presented in this article, we established a new approach to synthesizing three novel series of bioactive water-soluble tris-quaternary ammonium compounds using an optimized one-pot method, and we assessed their antimicrobial and antibiofilm potential. Five pathogenic microorganisms of the ESKAPE group, including highly resistant clinical isolates, were used as the test samples. Moreover, we highlighted the dependence of antibacterial activity from the hydrophilic-hydrophobic balance of the QACs and noted the significant performance of the desired products on biofilms with MBEC as low as 16 mg/L against bacteria and 8 mg/L against fungi. Particularly notable was the high activity against Pseudomonas aeruginosa and Acinetobacter baumannii, which are among the most resilient bacteria known. The presented work will provide useful insights for future research on the topic.
Collapse
Affiliation(s)
- Nikita A Frolov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Mary A Seferyan
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Anvar B Valeev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
- Higher Chemical College of the Russian Academy of Sciences, D. Mendeleev University of Chemical Technology of Russia, Miusskaya Square 9, 125047 Moscow, Russia
| | - Evgeniya A Saverina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
- Laboratory of Biologically Active Compounds and Biocomposites, Tula State University, Lenin Prospect. 92, 300012 Tula, Russia
| | - Elena V Detusheva
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia
| | - Anatoly N Vereshchagin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| |
Collapse
|
56
|
Martins da Silva Filho P, Higor Rocha Mariano P, Lopes Andrade A, Barros Arrais Cruz Lopes J, de Azevedo Pinheiro A, Itala Geronimo de Azevedo M, Carneiro de Medeiros S, Alves de Vasconcelos M, Gonçalvez da Cruz Fonseca S, Barbosa Grangeiro T, Gonzaga de França Lopes L, Henrique Silva Sousa E, Holanda Teixeira E, Longhinotti E. Antibacterial and antifungal action of CTAB-containing silica nanoparticles against human pathogens. Int J Pharm 2023; 641:123074. [PMID: 37230370 DOI: 10.1016/j.ijpharm.2023.123074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/16/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023]
Abstract
New antibiotic agents are urgently needed worldwide to combat the increasing tolerance and resistance of pathogenic fungi and bacteria to current antimicrobials. Here, we looked at the antibacterial and antifungal effects of minor quantities of cetyltrimethylammonium bromide (CTAB), ca. 93.8 mg g-1, on silica nanoparticles (MPSi-CTAB). Our results show that MPSi-CTAB exhibits antimicrobial activity against Methicillin-resistant Staphylococcus aureus strain (S. aureus ATCC 700698) with MIC and MBC of 0.625 mg mL-1 and 1.25 mg mL-1, respectively. Additionally, for Staphylococcus epidermidis ATCC 35984, MPSi-CTAB reduces MIC and MBC by 99.99% of viable cells on the biofilm. Furthermore, when combined with ampicillin or tetracycline, MPSi-CTAB exhibits reduced MIC values by 32- and 16-folds, respectively. MPSi-CTAB also exhibited in vitro antifungal activity against reference strains of Candida, with MIC values ranging from 0.0625 to 0.5 mg mL-1. This nanomaterial has low cytotoxicity in human fibroblasts, where over 80% of cells remained viable at 0.31 mg mL-1 of MPSi-CTAB. Finally, we developed a gel formulation of MPSi-CTAB, which inhibited in vitro the growth of Staphylococcus and Candida strains. Overall, these results support the efficacy of MPSi-CTAB with potential application in the treatment and/or prevention of infections caused by methicillin-resistant Staphylococcus and/or Candida species.
Collapse
Affiliation(s)
- Pedro Martins da Silva Filho
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará 60440-900 Fortaleza - CE, Brazil; Laboratório de Bioinorgânica, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, PO Box 12200, Campus do Pici s/n, 60440-900, Fortaleza - CE, Brazil.
| | - Pedro Higor Rocha Mariano
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará 60440-900 Fortaleza - CE, Brazil
| | - Alexandre Lopes Andrade
- Laboratório Integrado de Biomoléculas, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, CEP 60430-270, Fortaleza - CE, Brazil
| | - Jessica Barros Arrais Cruz Lopes
- Laboratório Integrado de Biomoléculas, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, CEP 60430-270, Fortaleza - CE, Brazil
| | - Aryane de Azevedo Pinheiro
- Laboratório Integrado de Biomoléculas, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, CEP 60430-270, Fortaleza - CE, Brazil
| | | | - Suelen Carneiro de Medeiros
- Departamento de Biologia, Universidade Federal do Ceará, Campus do Pici s/n, 60440-900, Fortaleza - CE, Brazil
| | - Mayron Alves de Vasconcelos
- Laboratório Integrado de Biomoléculas, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, CEP 60430-270, Fortaleza - CE, Brazil; Departamento de Ciências Biológicas, Faculdade de Ciências Exatas e Naturais, Universidade do Estado do Rio Grande do Norte, 59610-090, Mossoró - RN, Brazil; Universidade do Estado de Minas Gerais, Unidade de Divinópolis, 35501-170, Divinópolis - MG, Brazil
| | | | - Thalles Barbosa Grangeiro
- Departamento de Biologia, Universidade Federal do Ceará, Campus do Pici s/n, 60440-900, Fortaleza - CE, Brazil
| | - Luiz Gonzaga de França Lopes
- Laboratório de Bioinorgânica, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, PO Box 12200, Campus do Pici s/n, 60440-900, Fortaleza - CE, Brazil
| | - Eduardo Henrique Silva Sousa
- Laboratório de Bioinorgânica, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, PO Box 12200, Campus do Pici s/n, 60440-900, Fortaleza - CE, Brazil.
| | - Edson Holanda Teixeira
- Laboratório Integrado de Biomoléculas, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, CEP 60430-270, Fortaleza - CE, Brazil
| | - Elisane Longhinotti
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará 60440-900 Fortaleza - CE, Brazil.
| |
Collapse
|
57
|
Toles ZEA, Wu A, Sanchez CA, Michaud ME, Thierer LM, Wuest WM, Minbiole KP. Double BAC and Triple BAC: A Systematic Analysis of the Disinfectant Properties of Multicationic Derivatives of Benzalkonium Chloride (BAC). ChemMedChem 2023; 18:e202300018. [PMID: 36823400 PMCID: PMC10192024 DOI: 10.1002/cmdc.202300018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 02/25/2023]
Abstract
Over the past decades, the shortcomings of established quaternary ammonium disinfectants have become increasingly clear. Although benzalkonium chloride (BAC) has enjoyed nearly a century of significantly protecting human health through surgical preparation, home use, and industrial applications, increasing levels of bacterial resistance have rendered it decreasingly effective. In light of more recent efforts that have informed us that multicationic amphiphilic disinfectants show both higher activity as well as diminished susceptibility to resistance, we embarked on the preparation of 27 multicationic QACs in an attempt to clearly document structure-activity relationships of next-generation BAC structures. Select biscationic BAC derivatives demonstrate single-digit micromolar activity against all seven bacteria tested and MIC values of 2- to 32-fold better than BAC. Particularly notable is the improvement against the more concerning bacteria like Acinetobacter baumannii and Pseudomonas aeruginosa, which pose a modern threat to legacy disinfectants like BAC. With simple synthetic paths, consistently high yields (averaging ∼80 %), and strong biological activity, potent structures with clear SAR trends and strong therapeutic indices have been established.
Collapse
Affiliation(s)
| | - Alice Wu
- Department of Chemistry, Villanova University, Villanova, PA 19085, USA
| | | | | | - Laura M. Thierer
- Department of Chemistry, Villanova University, Villanova, PA 19085, USA
| | - William M. Wuest
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | | |
Collapse
|
58
|
Brayton S, Toles ZEA, Sanchez CA, Michaud ME, Thierer LM, Keller TM, Risener CJ, Quave CL, Wuest WM, Minbiole KPC. Soft QPCs: Biscationic Quaternary Phosphonium Compounds as Soft Antimicrobial Agents. ACS Infect Dis 2023; 9:943-951. [PMID: 36926876 PMCID: PMC10111419 DOI: 10.1021/acsinfecdis.2c00624] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Indexed: 03/17/2023]
Abstract
Quaternary ammonium compounds (QACs) serve as a first line of defense against infectious pathogens. As resistance to QACs emerges in the environment, the development of next-generation disinfectants is of utmost priority for human health. Balancing antibacterial potency with environmental considerations is required to effectively counter the development of bacterial resistance. To address this challenge, a series of 14 novel biscationic quaternary phosphonium compounds (bisQPCs) have been prepared as amphiphilic disinfectants through straightforward, high-yielding alkylation reactions. These compounds feature decomposable or "soft" amide moieties in their side chains, anticipated to promote decomposition under environmental conditions. Strong bioactivity against a panel of seven bacterial pathogens was observed, highlighted by single-digit micromolar activity for compounds P6P-12A,12A and P3P-12A,12A. Hydrolysis experiments in pure water and in buffers of varying pH revealed surprising decomposition of the soft QPCs under basic conditions at the phosphonium center, leading to inactive phosphine oxide products; QPC stability (>24 h) was maintained in neutral solutions. The results of this work unveil soft QPCs as a potent and environmentally conscious new class of bisQPC disinfectants.
Collapse
Affiliation(s)
- Samantha
R. Brayton
- Department
of Chemistry, Villanova University, Villanova, Pennsylvania 19085, United States
| | - Zachary E. A. Toles
- Department
of Chemistry, Villanova University, Villanova, Pennsylvania 19085, United States
| | - Christian A. Sanchez
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Marina E. Michaud
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Laura M. Thierer
- Department
of Chemistry, Villanova University, Villanova, Pennsylvania 19085, United States
| | - Taylor M. Keller
- Department
of Chemistry Crystallography Facility, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Caitlin J. Risener
- Molecular
and Systems Pharmacology Program, Emory
University, Atlanta, Georgia 30322, United
States
| | - Cassandra L. Quave
- Department
of Dermatology, Emory University School of Medicine, Emory University, Atlanta, Georgia 30322, United States
| | - William M. Wuest
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Kevin P. C. Minbiole
- Department
of Chemistry, Villanova University, Villanova, Pennsylvania 19085, United States
| |
Collapse
|
59
|
Boyce JM. Quaternary ammonium disinfectants and antiseptics: tolerance, resistance and potential impact on antibiotic resistance. Antimicrob Resist Infect Control 2023; 12:32. [PMID: 37055844 PMCID: PMC10099023 DOI: 10.1186/s13756-023-01241-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/07/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Due to the substantial increase in the use of disinfectants containing quaternary ammonion compounds (QACs) in healthcare and community settings during the COVID-19 pandemic, there is increased concern that heavy use might cause bacteria to develop resistance to QACs or contribute to antibiotic resistance. The purpose of this review is to briefly discuss the mechanisms of QAC tolerance and resistance, laboratory-based evidence of tolerance and resistance, their occurrence in healthcare and other real-world settings, and the possible impact of QAC use on antibiotic resistance. METHODS A literature search was conducted using the PubMed database. The search was limited to English language articles dealing with tolerance or resistance to QACs present in disinfectants or antiseptics, and potential impact on antibiotic resistance. The review covered the period from 2000 to mid-Jan 2023. RESULTS Mechanisms of QAC tolerance or resistance include innate bacterial cell wall structure, changes in cell membrane structure and function, efflux pumps, biofilm formation, and QAC degradation. In vitro studies have helped elucidate how bacteria can develop tolerance or resistance to QACs and antibiotics. While relatively uncommon, multiple episodes of contaminated in-use disinfectants and antiseptics, which are often due to inappropriate use of products, have caused outbreaks of healthcare-associated infections. Several studies have identified a correlation between benzalkonium chloride (BAC) tolerance and clinically-defined antibiotic resistance. The occurrence of mobile genetic determinants carrying multiple genes that encode for QAC or antibiotic tolerance raises the concern that widespread QAC use might facilitate the emergence of antibiotic resistance. Despite some evidence from laboratory-based studies, there is insufficient evidence in real-world settings to conclude that frequent use of QAC disinfectants and antiseptics has promoted widespread emergence of antibiotic resistance. CONCLUSIONS Laboratory studies have identified multiple mechanisms by which bacteria can develop tolerance or resistance to QACs and antibiotics. De novo development of tolerance or resistance in real-world settings is uncommon. Increased attention to proper use of disinfectants is needed to prevent contamination of QAC disinfectants. Additional research is needed to answer many questions and concerns related to use of QAC disinfectants and their potential impact on antibiotic resistance.
Collapse
Affiliation(s)
- John M Boyce
- J.M. Boyce Consulting, LLC, 5123 Town Place, Middletown, CT, Connecticut, USA.
| |
Collapse
|
60
|
Qiu H, Zhao X, Jiang Y, Liang W, Wang W, Jiang X, Jiang M, Wang X, Cui W, Li Y, Tang K, Zhang T, Zhao L, Liang H. Design and synthesis of fascaplysin derivatives as inhibitors of FtsZ with potent antibacterial activity and mechanistic study. Eur J Med Chem 2023; 254:115348. [PMID: 37060755 DOI: 10.1016/j.ejmech.2023.115348] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/20/2023] [Accepted: 04/03/2023] [Indexed: 04/17/2023]
Abstract
The increase in antibiotic resistance has made it particularly urgent to develop new antibiotics with novel antibacterial mechanisms. Inhibition of bacterial cell division by disrupting filamentous temperature-sensitive mutant Z (FtsZ) function is an effective and promising approach. A series of novel fascaplysin derivatives with tunable hydrophobicity were designed and synthesized here. The in vitro bioactivity assessment revealed that these compounds could inhibit the tested Gram-positive bacteria including methicillin-resistant S. aureus (MRSA) (MIC = 0.049-25 μg/mL), B. subtilis (MIC = 0.024-12.5 μg/mL) and S. pneumoniae (MIC = 0.049-50 μg/mL). Among them, compounds B3 (MIC = 0.098 μg/mL), B6 (MIC = 0.098 μg/mL), B8 (MIC = 0.049 μg/mL) and B16 (MIC = 0.098 μg/mL) showed the best bactericidal activities against MRSA and no significant tendency to trigger bacterial resistance as well as rapid bactericidal properties. The cell surface integrity of bacteria was significantly disrupted by hydrophobic tails of fascaplysin derivatives. Further studies revealed that these highly active amphiphilic compounds showed low hemolytic activity and cytotoxicity to mammalian cells. Preliminary mechanistic exploration suggests that B3, B6, B8 and B16 are potent FtsZ inhibitors to promote FtsZ polymerization and inhibit GTPase activity of FtsZ, leading to the death of bacterial cells by inhibiting bacterial division. Molecular docking simulations and structure-activity relationship (SAR) study reveal that appropriate increase in the hydrophobicity of fascaplysin derivatives and the addition of additional hydrogen bonds facilitated their binding to FtsZ proteins. These amphiphilic fascaplysin derivatives could serve as a novel class of FtsZ inhibitors, which not only gives new prospects for the application of compounds containing this skeleton but also provides new ideas for the discovery of new antibiotics.
Collapse
Affiliation(s)
- Hongda Qiu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Xing Zhao
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Yinli Jiang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Weida Liang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Weile Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Xingyao Jiang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Mengying Jiang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Xiao Wang
- School of Medicine, Ningbo University, Ningbo, 315211, China.
| | - Wei Cui
- School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Yang Li
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China
| | - Keqi Tang
- Institute of Mass Spectrometry, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Tao Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, and College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Lingling Zhao
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Hongze Liang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
61
|
Photodynamic inactivation of Salmonella enterica and Listeria monocytogenes inoculated onto stainless steel or polyurethane surfaces. Food Microbiol 2023; 110:104174. [DOI: 10.1016/j.fm.2022.104174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/14/2022] [Accepted: 10/23/2022] [Indexed: 11/07/2022]
|
62
|
Jörgensen AM, Wibel R, Bernkop-Schnürch A. Biodegradable Cationic and Ionizable Cationic Lipids: A Roadmap for Safer Pharmaceutical Excipients. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206968. [PMID: 36610004 DOI: 10.1002/smll.202206968] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Cationic and ionizable cationic lipids are broadly applied as auxiliary agents, but their use is associated with adverse effects. If these excipients are rapidly degraded to endogenously occurring metabolites such as amino acids and fatty acids, their toxic potential can be minimized. So far, synthesized and evaluated biodegradable cationic and ionizable cationic lipids already showed promising results in terms of functionality and safety. Within this review, an overview about the different types of such biodegradable lipids, the available building blocks, their synthesis and cleavage by endogenous enzymes is provided. Moreover, the relationship between the structure of the lipids and their toxicity is described. Their application in drug delivery systems is critically discussed and placed in context with the lead compounds used in mRNA vaccines. Moreover, their use as preservatives is reviewed, guidance for their design is provided, and an outlook on future developments is given.
Collapse
Affiliation(s)
- Arne Matteo Jörgensen
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innsbruck, 6020, Austria
| | - Richard Wibel
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innsbruck, 6020, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innsbruck, 6020, Austria
| |
Collapse
|
63
|
Kocak HS, Bulut O, Yilmaz MD. A Dicationic BODIPY-Based Fluorescent Bactericide to Combat Infectious Diseases and to Eradicate Bacterial Biofilms. ACS APPLIED BIO MATERIALS 2023; 6:1604-1610. [PMID: 36917772 DOI: 10.1021/acsabm.3c00021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Increased bacterial resistance against extensively used common disinfectants has begun to emerge. The discovery of disinfectants substituting the current commercially available ones is strongly needed. For this purpose, a dicationic BODIPY-based fluorescent amphiphile has been synthesized by specific molecular design. This quaternized BODIPY behaves as a broad-spectrum disinfectant against both Gram-positive and Gram-negative bacteria strains. It exhibits potent antimicrobial activity against tested microorganisms when compared with structurally similar disinfectant benzalkonium chloride (BAC). Moreover, it shows antibiofilm activity against Staphylococcus epidermidis with a minimum biofilm eradication concentration as low as 16 μg/mL. The interaction of this compound with the bacterial cell and genomic DNA was further evaluated by fluorescence spectroscopy and microscopy to follow cell internationalization and to clarify the mechanism of antibacterial action.
Collapse
Affiliation(s)
- Haluk Samet Kocak
- Department of Materials Science and Nanotechnology, Graduate School of Natural and Applied Sciences, Konya Food and Agriculture University, 42080 Konya, Türkiye
| | - Onur Bulut
- Department of Bioengineering, Faculty of Engineering and Architecture, Konya Food and Agriculture University, 42080 Konya, Türkiye
| | - M Deniz Yilmaz
- Department of Basic Sciences, Faculty of Engineering, Necmettin Erbakan University, 42140 Konya, Türkiye.,BITAM-Science and Technology Research and Application Center, Necmettin Erbakan University, 42140 Konya, Türkiye
| |
Collapse
|
64
|
Saverina EA, Frolov NA, Kamanina OA, Arlyapov VA, Vereshchagin AN, Ananikov VP. From Antibacterial to Antibiofilm Targeting: An Emerging Paradigm Shift in the Development of Quaternary Ammonium Compounds (QACs). ACS Infect Dis 2023; 9:394-422. [PMID: 36790073 DOI: 10.1021/acsinfecdis.2c00469] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
In a previous development stage, mostly individual antibacterial activity was a target in the optimization of biologically active compounds and antiseptic agents. Although this targeting is still valuable, a new trend has appeared since the discovery of superhigh resistance of bacterial cells upon their aggregation into groups. Indeed, it is now well established that the great majority of pathogenic germs are found in the environment as surface-associated microbial communities called biofilms. The protective properties of biofilms and microbial resistance, even to high concentrations of biocides, cause many chronic infections in medical settings and lead to serious economic losses in various areas. A paradigm shift from individual bacterial targeting to also affecting more complex cellular frameworks is taking place and involves multiple strategies for combating biofilms with compounds that are effective at different stages of microbiome formation. Quaternary ammonium compounds (QACs) play a key role in many of these treatments and prophylactic techniques on the basis of both the use of individual antibacterial agents and combination technologies. In this review, we summarize the literature data on the effectiveness of using commercially available and newly synthesized QACs, as well as synergistic treatment techniques based on them. As an important focus, techniques for developing and applying antimicrobial coatings that prevent the formation of biofilms on various surfaces over time are discussed. The information analyzed in this review will be useful to researchers and engineers working in many fields, including the development of a new generation of applied materials; understanding biofilm surface growth; and conducting research in medical, pharmaceutical, and materials sciences. Although regular studies of antibacterial activity are still widely conducted, a promising new trend is also to evaluate antibiofilm activity in a comprehensive study in order to meet the current requirements for the development of highly needed practical applications.
Collapse
Affiliation(s)
- Evgeniya A Saverina
- Tula State University, Lenin pr. 92, 300012 Tula, Russia.,N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| | - Nikita A Frolov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| | | | | | - Anatoly N Vereshchagin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| | - Valentine P Ananikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| |
Collapse
|
65
|
Thierer LM, Petersen AA, Michaud ME, Sanchez CA, Brayton SR, Wuest WM, Minbiole KPC. Atom Economical QPCs: Phenyl-Free Biscationic Quaternary Phosphonium Compounds as Potent Disinfectants. ACS Infect Dis 2023; 9:609-616. [PMID: 36757826 PMCID: PMC10032568 DOI: 10.1021/acsinfecdis.2c00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Quaternary ammonium compounds (QACs) are vital disinfectants for the neutralization of pathogenic bacteria in clinical, domestic, and commercial settings. After decades of dependence on QACs, the emergence of antimicrobial resistance to this class of compounds threatens the ability of existing QAC products to effectively manage rising bacterial threats. The need for new disinfectants is therefore urgent, with quaternary phosphonium compounds (QPCs) emerging as a new class of promising antimicrobials that boast significant activity against highly resistant bacteria. Reported here is a series of twenty-one novel QPCs that replace phenyl substituents on the phosphorus center with alkyl groups yet allow for rapid synthetic routes in high yields. Within this series are structures containing methyl, ethyl, or cyclohexyl phosphonium substituents on bisphosphane scaffolds bearing ethyl linkers, affording atom economical structures and ones that represent exact analogs to nitrogenous amphiphiles. The resultant bisQPC structures display high antibacterial efficacy enjoyed by comparably constructed QACs, with three structures in the single-digit micromolar activity range despite structural simplification.
Collapse
Affiliation(s)
- Laura M Thierer
- Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085, United States of America
| | - Ashley A Petersen
- Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085, United States of America
| | - Marina E Michaud
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States of America
| | - Christian A Sanchez
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States of America
| | - Samantha R Brayton
- Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085, United States of America
| | - William M Wuest
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States of America
| | - Kevin P C Minbiole
- Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085, United States of America
| |
Collapse
|
66
|
Mohapatra S, Yutao L, Goh SG, Ng C, Luhua Y, Tran NH, Gin KYH. Quaternary ammonium compounds of emerging concern: Classification, occurrence, fate, toxicity and antimicrobial resistance. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130393. [PMID: 36455328 PMCID: PMC9663149 DOI: 10.1016/j.jhazmat.2022.130393] [Citation(s) in RCA: 60] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/01/2022] [Accepted: 11/11/2022] [Indexed: 05/25/2023]
Abstract
Amplified hygiene and precautionary measures are of utmost importance to control the spread of COVID-19 and future infection; however, these changes in practice are projected to trigger a rise in the purchase, utilisation and hence, discharge of many disinfectants into the environment. While alcohol-based, hydrogen peroxide-based, and chlorine-based compounds have been used widely, quaternary ammonium compounds (QACs) based disinfectants are of significant concern due to their overuse during this pandemic. This review presents the classification of disinfectants and their mechanism of action, focusing on QACs. Most importantly, the occurrence, fate, toxicity and antimicrobial resistance due to QACs are covered in this paper. Here we collated evidence from multiple studies and found rising trends of concern, including an increase in the mass load of QACs at a wastewater treatment plant (WWTP) by 331% compared to before the COVID-19 pandemic, as well as an increases in the concentration of 62% in residential dust, resulting in high concentrations of QACs in human blood and breast milk and suggesting that these could be potential sources of persistent QACs in infants. In addition to increased toxicity to human and aquatic life, increased use of QACs and accelerated use of antibiotics and antimicrobials during the COVID-19 pandemic could multiply the threat to antimicrobial resistance.
Collapse
Affiliation(s)
- Sanjeeb Mohapatra
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore
| | - Lin Yutao
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| | - Shin Giek Goh
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore
| | - Charmaine Ng
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore
| | - You Luhua
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore
| | - Ngoc Han Tran
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore
| | - Karina Yew-Hoong Gin
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore; Department of Civil & Environmental Engineering, National University of Singapore, Engineering Drive 2, Singapore 117576, Singapore.
| |
Collapse
|
67
|
Xia J, Xin L, Li J, Tian L, Wu K, Zhang S, Yan W, Li H, Zhao Q, Liang C. Discovery of Quaternized Pyridine-Thiazole-Pleuromutilin Derivatives with Broad-Spectrum Antibacterial and Potent Anti-MRSA Activity. J Med Chem 2023; 66:5061-5078. [PMID: 37051724 DOI: 10.1021/acs.jmedchem.2c02135] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The quaternization of compounds has emerged as a promising molecular design strategy for the development of antibiotics. Herein, we report the design, synthesis, antibacterial activities, and structure-activity relationships of a series of novel pleuromutilin derivatives containing a quaternary amine C-14 side chain. Most of these derivatives exhibited broad-spectrum antibacterial activity against the tested bacteria. 10b was the most effective antibacterial agent that displayed excellent antibacterial activity against five clinical methicillin-resistant Staphylococcus aureus (MRSA) isolates, remarkable antimycoplasma activity, rapid bactericidal effects, and a strong ability to damage bacterial biofilms. Further mechanistic studies indicated that 10b destroyed bacterial cell membranes to exert its antibacterial effects. Moreover, 10b exhibited high survival protection and potent in vivo antibacterial efficacy (ED50 = 4.94 mg/kg) in a mouse model of systemic MRSA infection. These findings suggest that 10b is a promising candidate for the treatment of multi-drug-resistant infectious diseases, especially MRSA infections.
Collapse
Affiliation(s)
- Juan Xia
- Laboratory of Hematologic Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, P. R. China
| | - Liang Xin
- School of Biology and Medicine, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| | - Jingyi Li
- School of Biology and Medicine, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| | - Lei Tian
- School of Biology and Medicine, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| | - Kangxiong Wu
- School of Biology and Medicine, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| | - Shaojun Zhang
- School of Biology and Medicine, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| | - Wenjing Yan
- School of Biology and Medicine, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| | - Han Li
- School of Biology and Medicine, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| | - Qianqian Zhao
- School of Biology and Medicine, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| | - Chengyuan Liang
- School of Biology and Medicine, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| |
Collapse
|
68
|
Zhou Z, Zhou S, Zhang X, Zeng S, Xu Y, Nie W, Zhou Y, Xu T, Chen P. Quaternary Ammonium Salts: Insights into Synthesis and New Directions in Antibacterial Applications. Bioconjug Chem 2023; 34:302-325. [PMID: 36748912 DOI: 10.1021/acs.bioconjchem.2c00598] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The overuse of antibiotics has led to the emergence of a large number of antibiotic-resistant genes in bacteria, and increasing evidence indicates that a fungicide with an antibacterial mechanism different from that of antibiotics is needed. Quaternary ammonium salts (QASs) are a biparental substance with good antibacterial properties that kills bacteria through simple electrostatic adsorption and insertion into cell membranes/altering of cell membrane permeability. Therefore, the probability of bacteria developing drug resistance is greatly reduced. In this review, we focus on the synthesis and application of single-chain QASs, double-chain QASs, heterocyclic QASs, and gemini QASs (GQASs). Some possible structure-function relationships of QASs are also summarized. As such, we hope this review will provide insight for researchers to explore more applications of QASs in the field of antimicrobials with the aim of developing systems for clinical applications.
Collapse
Affiliation(s)
- Zhenyang Zhou
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Shuguang Zhou
- Department of Gynecology, Anhui Province Maternity and Child Healthcare Hospital, Hefei, Anhui 236000, China
| | - Xiran Zhang
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Shaohua Zeng
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Ying Xu
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Wangyan Nie
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Yifeng Zhou
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Pengpeng Chen
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| |
Collapse
|
69
|
Yang W, Cai C, Wang R, Dai X. Insights into the impact of quaternary ammonium disinfectant on sewage sludge anaerobic digestion: Dose-response, performance variation, and potential mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130341. [PMID: 36403443 DOI: 10.1016/j.jhazmat.2022.130341] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/03/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Wide commercial applications of antimicrobial quaternary ammonium compounds (QACs) inevitably lead to the release into wastewater and enrichment in sewage sludge. This study evaluated the impacts of levels and structures of QACs on sewage sludge properties, microbial community, and methane production during anaerobic digestion. Methane production was stimulated or not affected at low QACs concentrations, but significantly inhibited at high QACs concentrations. Compared with benzyl and alkyltrimethyl QACs, dialkyl QACs showed least toxicity on digestion performance. Meanwhile, microbial community analysis indicated that shifts in bacterial communities mainly depended on QACs doses, but the archaeal communities were affected by both QACs doses and types. The dominant methanogenic pathway shifted from acetotrophic/methylotrophic methanogens to mixotrophic methanogens by low levels of benzyl and alkyltrimethyl QACs but not dialkyl QACs, and further to hydrogenotrophic methanogens at high QACs concentration. Mechanism exploration revealed that the presence of QACs promoted sludge solubilization by the integrated effects of cell lysis, electric neutralization, and hydrophobicity improvement, but inhibited methanogenesis due to the accumulation of volatile fatty acids and susceptibility of methanogens to QACs. These findings provided a reference for potential impacts of different QACs on sludge biological treatment, which had implications for the use and selection of QACs disinfectants.
Collapse
Affiliation(s)
- Wan Yang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Chen Cai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Rui Wang
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
70
|
First Synthesis of DBU-Conjugated Cationic Carbohydrate Derivatives and Investigation of Their Antibacterial and Antifungal Activity. Int J Mol Sci 2023; 24:ijms24043550. [PMID: 36834964 PMCID: PMC9968064 DOI: 10.3390/ijms24043550] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
The emergence of drug-resistant bacteria and fungi represents a serious health problem worldwide. It has long been known that cationic compounds can inhibit the growth of bacteria and fungi by disrupting the cell membrane. The advantage of using such cationic compounds is that the microorganisms would not become resistant to cationic agents, since this type of adaptation would mean significantly altering the structure of their cell walls. We designed novel, DBU (1,8-diazabicyclo[5.4.0]undec-7-ene)-derived amidinium salts of carbohydrates, which may be suitable for disturbing the cell walls of bacteria and fungi due to their quaternary ammonium moiety. A series of saccharide-DBU conjugates were prepared from 6-iodo derivatives of d-glucose, d-mannose, d-altrose and d-allose by nucleophilic substitution reactions. We optimized the synthesis of a d-glucose derivative, and studied the protecting group free synthesis of the glucose-DBU conjugates. The effect of the obtained quaternary amidinium salts against Escherichia coli and Staphylococcus aureus bacterial strains and Candida albicans yeast was investigated, and the impact of the used protecting groups and the sugar configuration on the antimicrobial activity was analyzed. Some of the novel sugar quaternary ammonium compounds with lipophilic aromatic groups (benzyl and 2-napthylmethyl) showed particularly good antifungal and antibacterial activity.
Collapse
|
71
|
Ameh T, Zarzosa K, Dickinson J, Braswell WE, Sayes CM. Nanoparticle surface stabilizing agents influence antibacterial action. Front Microbiol 2023; 14:1119550. [PMID: 36846763 PMCID: PMC9947285 DOI: 10.3389/fmicb.2023.1119550] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
The antibacterial properties of nanoparticles are of particular interest because of their potential to serve as an alternative therapy to combat antimicrobial resistance. Metal nanoparticles such as silver and copper nanoparticles have been investigated for their antibacterial properties. Silver and copper nanoparticles were synthesized with the surface stabilizing agents cetyltrimethylammonium bromide (CTAB, to confer a positive surface charge) and polyvinyl pyrrolidone (PVP, to confer a neutral surface charge). Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and viable plate count assays were used to determine effective doses of silver and copper nanoparticles treatment against Escherichia coli, Staphylococcus aureus and Sphingobacterium multivorum. Results show that CTAB stabilized silver and copper nanoparticles were more effective antibacterial agents than PVP stabilized metal nanoparticles, with MIC values in a range of 0.003 μM to 0.25 μM for CTAB stabilized metal nanoparticles and 0.25 μM to 2 μM for PVP stabilized metal nanoparticles. The recorded MIC and MBC values of the surface stabilized metal nanoparticles show that they can serve as effective antibacterial agents at low doses.
Collapse
Affiliation(s)
- Thelma Ameh
- Department of Environmental Science, Baylor University, Waco, TX, United States
| | - Kusy Zarzosa
- Department of Environmental Science, Baylor University, Waco, TX, United States,United States Department of Agriculture, Animal and Plant Health Inspection Services, Plant Protection and Quarantine, Science and Technology, Insect Management and Molecular Diagnostics Laboratory, Edinburg, TX, United States
| | - Jake Dickinson
- Department of Environmental Science, Baylor University, Waco, TX, United States
| | - W. Evan Braswell
- United States Department of Agriculture, Animal and Plant Health Inspection Services, Plant Protection and Quarantine, Science and Technology, Insect Management and Molecular Diagnostics Laboratory, Edinburg, TX, United States
| | - Christie M. Sayes
- Department of Environmental Science, Baylor University, Waco, TX, United States,*Correspondence: Christie M. Sayes, ✉
| |
Collapse
|
72
|
Aguinaga U, Oyinwola FJ, Childs MJ, Aldarkazanly S, Yousufuddin M. Benzyl-hexa-decyl-dimethyl-ammonium chloride dihydrate. IUCRDATA 2023; 8:x230096. [PMID: 36911083 PMCID: PMC9993895 DOI: 10.1107/s2414314623000962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
The title compound, C25H46N+·Cl-·2H2O, crystallizes in the space group P21 with one organic mol-ecule in the asymmetric unit. The compound belongs to a class of benzalkonium chlorides (BACs) with an alkyl chain length of 16 carbon atoms in an all-trans conformation.
Collapse
Affiliation(s)
- Ulises Aguinaga
- University of North Texas at Dallas, 7400 University Hills Blvd., Dallas, TX 75241, USA
| | - Festus J. Oyinwola
- University of North Texas at Dallas, 7400 University Hills Blvd., Dallas, TX 75241, USA
| | - Malik J. Childs
- University of North Texas at Dallas, 7400 University Hills Blvd., Dallas, TX 75241, USA
| | - Sara Aldarkazanly
- University of North Texas at Dallas, 7400 University Hills Blvd., Dallas, TX 75241, USA
| | - Muhammed Yousufuddin
- University of North Texas at Dallas, 7400 University Hills Blvd., Dallas, TX 75241, USA
| |
Collapse
|
73
|
Lin Z, Fan D, Li G, He L, Qin X, Zhao B, Wang Q, Liang W. Antibacterial, Adhesive, and Conductive Hydrogel for Diabetic Wound Healing. Macromol Biosci 2023; 23:e2200349. [PMID: 36333912 DOI: 10.1002/mabi.202200349] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/25/2022] [Indexed: 11/06/2022]
Abstract
Diabetic mellitus is one of the leading causes of chronic wounds and remains a challenging issue to be resolved. Herein, a hydrogel with conformal tissue adhesivity, skin-like conductivity, robust mechanical characteristics, as well as active antibacterial function is developed. In this hydrogel, silver nanoparticles decorated polypyrrole nanotubes (AgPPy) and cobalt ions (Co2+ ) are introduced into an in situ polymerized poly(acrylic acid) (PAA) and branched poly(ethylenimine) (PEI) network (PPCA hydrogel). The PPCA hydrogel provides active antibacterial function through synergic effects from protonated PEI and AgPPy nanotubes, with a tissue-like mechanical property (≈16.8 ± 4.5 kPa) and skin-like electrical conductivity (≈0.048 S m-1 ). The tensile and shear adhesive strength (≈15.88 and ≈12.76 kPa, respectively) of the PPCA hydrogel is about two- to threefold better than that of fibrin glue. In vitro studies show the PPCA hydrogel is highly effective against both gram-positive and gram-negative bacteria. In vivo results demonstrate that the PPCA hydrogel promotes diabetic wounds with accelerated healing, with notable inflammatory reduction and prominent angiogenesis regeneration. These results suggest the PPCA hydrogel provide a promising approach to promote diabetic wound healing.
Collapse
Affiliation(s)
- Zhicong Lin
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Donghao Fan
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Guojiao Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Liming He
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Xianyan Qin
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Bin Zhao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Qin Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Wenlang Liang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| |
Collapse
|
74
|
Odžak R, Crnčević D, Sabljić A, Primožič I, Šprung M. Synthesis and Biological Evaluation of 3-Amidoquinuclidine Quaternary Ammonium Compounds as New Soft Antibacterial Agents. Pharmaceuticals (Basel) 2023; 16:187. [PMID: 37259335 PMCID: PMC9966435 DOI: 10.3390/ph16020187] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 08/27/2023] Open
Abstract
Quaternary ammonium compounds (QACs) are among the most effective antimicrobial agents that have been used for more than a century. However, due to the growing trend of bacterial resistance and high toxicity of QACs, research in this field remains a pressing matter. Recent studies of the structure-activity relationship suggest that the introduction of the amide functional group into QAC structures results in soft variants that retain their antimicrobial properties while opening the possibility of fine-tuned activity regulation. Here, we report the synthesis and structure-function study of three structurally distinct series of naturally derived soft QACs. The obtained 3-amidoquinuclidine QACs showed a broad range of antibacterial activities related to the hydrophobic-hydrophilic balance of the QAC structures. All three series yielded candidates with minimal inhibitory concentrations (MIC) in the single-digit μM range. Time-resolved growth analysis revealed subtle differences in the antibacterial activity of the selected candidates. The versatile MIC values were recorded in different nutrient media, suggesting that the media composition may have a dramatic impact on the antibacterial potential. The new QACs were found to have excellent potential to suppress bacterial biofilm formation while exhibiting low ability to induce bacterial resistance. In addition, the selected candidates were found to be less toxic than commercially available QACs and proved to be potential substrates for protease degradation. These data suggest that 3-amidoquinuclidine QACs could be considered as novel antimicrobial agents that pose a low threat to ecosystems and human health.
Collapse
Affiliation(s)
- Renata Odžak
- Department of Chemistry, Faculty of Science, University of Split, R. Bošković 33, 21000 Split, Croatia
| | - Doris Crnčević
- Department of Chemistry, Faculty of Science, University of Split, R. Bošković 33, 21000 Split, Croatia
- Doctoral Study of Biophysics, Faculty of Science, University of Split, R. Bošković 33, 21000 Split, Croatia
| | - Antonio Sabljić
- Department of Chemistry, Faculty of Science, University of Split, R. Bošković 33, 21000 Split, Croatia
- Doctoral Study of Biophysics, Faculty of Science, University of Split, R. Bošković 33, 21000 Split, Croatia
| | - Ines Primožič
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Matilda Šprung
- Department of Chemistry, Faculty of Science, University of Split, R. Bošković 33, 21000 Split, Croatia
| |
Collapse
|
75
|
Le TA, Huynh TP. Current advances in the Chemical functionalization and Potential applications of Guar gum and its derivatives. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
76
|
Jia X, Wei R, Xu B, Liu H, Xu BC. Green Synthesis, Surface Activity, Micellar Aggregation, and Foam Properties of Amide Quaternary Ammonium Surfactants. ACS OMEGA 2022; 7:48240-48249. [PMID: 36591167 PMCID: PMC9798752 DOI: 10.1021/acsomega.2c06353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
A series of amide quaternary ammonium surfactants with the formula C n H2n+1CONH(CH2)2N+(CH3)3·CH3CO3 - (n = 9, 11, 13, 15) were synthesized using a fatty acid, N,N-dimethylethylenediamine, and a green reagent dimethyl carbonate. A comparative study of the four surfactants in terms of surface activity, aggregation characteristics, and foam properties was conducted. The results show that these amide quaternary ammonium surfactants reduce the surface tension of water to a minimum value of 23.69 mN·m-1 at a concentration of 1.55 × 10-4 mol·L-1 and self-assemble spontaneously into aggregates, which are mostly vesicles. Furthermore, with increasing the alkyl chain length, their critical micelle concentration (CMC) values and surface tension values at the CMC (γCMC) decrease and then increase, and the degree of counterion binding (β) decreases. It is also found that these amide quaternary ammonium surfactants exhibit excellent foam ability and foam stability.
Collapse
Affiliation(s)
- Xinru Jia
- School
of Light Industry, Beijing Key Laboratory of Flavor Chemistry, Beijing
Higher Institution Engineering Research Center of Food Additives and
Ingredients, Beijing Technology and Business
University, No. 11 Fucheng Road, Beijing100048, People’s Republic
of China
| | - Ran Wei
- School
of Light Industry, Beijing Key Laboratory of Flavor Chemistry, Beijing
Higher Institution Engineering Research Center of Food Additives and
Ingredients, Beijing Technology and Business
University, No. 11 Fucheng Road, Beijing100048, People’s Republic
of China
| | - Bo Xu
- McIntire
School of Commerce, University of Virginia, Charlottesville, Virginia22903, United States
| | - Hongqin Liu
- School
of Light Industry, Beijing Key Laboratory of Flavor Chemistry, Beijing
Higher Institution Engineering Research Center of Food Additives and
Ingredients, Beijing Technology and Business
University, No. 11 Fucheng Road, Beijing100048, People’s Republic
of China
| | - Bao-Cai Xu
- School
of Light Industry, Beijing Key Laboratory of Flavor Chemistry, Beijing
Higher Institution Engineering Research Center of Food Additives and
Ingredients, Beijing Technology and Business
University, No. 11 Fucheng Road, Beijing100048, People’s Republic
of China
| |
Collapse
|
77
|
Jothi R, Sangavi R, Raja V, Kumar P, Pandian SK, Gowrishankar S. Alteration of Cell Membrane Permeability by Cetyltrimethylammonium Chloride Induces Cell Death in Clinically Important Candida Species. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:ijerph20010027. [PMID: 36612353 PMCID: PMC9819714 DOI: 10.3390/ijerph20010027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 05/25/2023]
Abstract
The increased incidence of healthcare-related Candida infection has necessitated the use of effective disinfectants/antiseptics in healthcare settings as a preventive measure to decontaminate the hospital environment and stop the persistent colonization of the offending pathogens. Quanternary ammonium surfactants (QASs), with their promising antimicrobial efficacy, are considered as intriguing and appealing candidates for disinfectants. From this perspective, the present study investigated the antifungal efficacy and action mechanism of the QAS cetyltrimethylammonium chloride (CTAC) against three clinically important Candida species: C. albicans, C. tropicalis, and C. glabrata. CTAC exhibited phenomenal antifungal activity against all tested Candida spp., with minimum inhibitory concentrations (MIC) and minimum fungicidal concentrations (MFC) between 2 and 8 µg/mL. The time−kill kinetics of CTAC (at 2XMIC) demonstrated that an exposure time of 2 h was required to kill 99.9% of the inoculums in all tested strains. An important observation was that CTAC treatment did not influence intracellular reactive oxygen species (ROS), signifying that its phenomenal anticandidal efficacy was not mediated via oxidative stress. In addition, sorbitol supplementation increased CTAC’s MIC values against all tested Candida strains by three times (8−32 μg/mL), indicating that CTAC’s possible antifungal activity involves fungus cell membrane destruction. Interestingly, the increased fluorescence intensity of CTAC-treated cells in both propidium iodide (PI) and DAPI staining assays indicated the impairment of cell plasma membrane and nuclear membrane integrity by CTAC, respectively. Additionally, CTAC at MIC and 2XMIC was sufficient (>80%) to disrupt the mature biofilms of all tested spp., and it inhibited the yeast-to-hyphae transition at sub-MIC in C. albicans. Finally, the non-hemolytic activity of CTAC (upto 32 µg/mL) in human blood cells and HBECs signified its non-toxic nature at the investigated concentrations. Furthermore, thymol and citral, two phytocompounds, together with CTAC, showed synergistic fungicidal effectiveness against C. albicans planktonic cells. Altogether, the data of the present study appreciably broaden our understanding of the antifungal action mechanism of CTAC and support its future translation as a potential disinfectant against Candida-associated healthcare infections.
Collapse
Affiliation(s)
- Ravi Jothi
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| | - Ravichellam Sangavi
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| | - Veerapandian Raja
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA
| | - Ponnuchamy Kumar
- Department of Animal Health and Management, Science Campus, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| | | | - Shanmugaraj Gowrishankar
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| |
Collapse
|
78
|
Michaud ME, Allen RA, Morrison-Lewis KR, Sanchez CA, Minbiole KPC, Post SJ, Wuest WM. Quaternary Phosphonium Compound Unveiled as a Potent Disinfectant against Highly Resistant Acinetobacter baumannii Clinical Isolates. ACS Infect Dis 2022; 8:2307-2314. [PMID: 36301313 DOI: 10.1021/acsinfecdis.2c00382] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Acinetobacter baumannii is classified as a highest threat pathogen, urgently necessitating novel antimicrobials that evade resistance to combat its spread. Quaternary ammonium compounds (QACs) have afforded a valuable first line of defense against antimicrobial resistant pathogens as broad-spectrum amphiphilic disinfectant molecules. However, a paucity of innovation in this space has driven the emergence of QAC resistance. Through this work, we sought to identify next-generation disinfectant molecules with efficacy against highly resistant A. baumannii clinical isolates. We selected 12 best-in-class molecules from our previous investigations of quaternary ammonium and quaternary phosphonium compounds (QPCs) to test against a panel of 35 resistant A. baumannii clinical isolates. The results highlighted the efficacy of our next-generation compounds over leading commercial QACs, with our best-in-class QAC (2Pyr-11,11) and QPC (P6P-10,10) displaying improved activities with a few exceptions. Furthermore, we elucidated a correlation between colistin resistance and QAC resistance, wherein the only pan-resistant isolate of the panel, also harboring colistin resistance, exhibited resistance to all tested QACs. Notably, P6P-10,10 maintained efficacy against this strain with an IC90 of 3 μM. In addition, P6P-10,10 displayed minimum biofilm eradication concentrations as low as 32 μM against extensively drug resistant clinical isolates. Lastly, examining the development of disinfectant resistance and cross-resistance, we generated QAC-resistant A. baumannii mutants and observed the development of QAC cross-resistance. In contrast, neither disinfectant resistance nor cross-resistance was observed in A. baumannii under P6P-10,10 treatment. Taken together, the results of this work illustrate the need for novel disinfectant compounds to treat resistant pathogens, such as A. baumannii, and underscore the promise of QPCs, such as P6P-10,10, as viable next-generation disinfectant molecules.
Collapse
Affiliation(s)
- Marina E Michaud
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ryan A Allen
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | | | - Christian A Sanchez
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Kevin P C Minbiole
- Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085, United States
| | - Savannah J Post
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - William M Wuest
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States.,Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| |
Collapse
|
79
|
Zhang Y, Su YA, Qiu X, Mao Q, Liu H, Liu H, Wen D, Su Z. Temperature affects variations of class 1 integron during sludge anaerobic digestion. BIORESOURCE TECHNOLOGY 2022; 364:128005. [PMID: 36155808 DOI: 10.1016/j.biortech.2022.128005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Revealing class 1 integron characteristics under different operating conditions is of great importance to control antibiotic resistance genes (ARGs) during sludge anaerobic digestion (AD). This study investigated the variations of class 1 integrons and the ARGs carried by class 1 integrons in anaerobic sludge digesters under 25 °C, 35 °C, and 55 °C. The results showed lower intI1 abundance and fewer class I integrons with long gene cassette arrays at 55 °C than at 25 °C and 35 °C. Multi-resistance gene cassette arrays were observed in the digesters at 25 °C and 35 °C. Abundant ARGs were detected on class 1 integrons in all digesters with aminoglycosides as the dominant class. The abundance of ARGs on class 1 integrons in digesters at 55 °C was lower than that at 25 °C and 35 °C. Thermophilic AD is better than mesophilic ones in the control of ARGs carried by class 1 integrons.
Collapse
Affiliation(s)
- Yan Zhang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou 215011, China
| | - Yu-Ao Su
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xuyang Qiu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Qiuyan Mao
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Hongbo Liu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou 215011, China
| | - He Liu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou 215011, China.
| | - Donghui Wen
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zhiguo Su
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
80
|
Kaur KD, Habimana O. Death at the interface: Nanotechnology’s challenging frontier against microbial surface colonization. Front Chem 2022; 10:1003234. [PMID: 36311433 PMCID: PMC9613359 DOI: 10.3389/fchem.2022.1003234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022] Open
Abstract
The emergence of antimicrobial-resistant bacterial strains has led to novel approaches for combating bacterial infections and surface contamination. More specifically, efforts in combining nanotechnology and biomimetics have led to the development of next-generation antimicrobial/antifouling nanomaterials. While nature-inspired nanoscale topographies are known for minimizing bacterial attachment through surface energy and physicochemical features, few studies have investigated the combined inhibitory effects of such features in combination with chemical alterations of these surfaces. Studies describing surface alterations, such as quaternary ammonium compounds (QACs), have also gained attention due to their broad spectrum of inhibitory activity against bacterial cells. Similarly, antimicrobial peptides (AMPs) have exhibited their capacity to reduce bacterial viability. To maximize the functionality of modified surfaces, the integration of patterned surfaces and functionalized exteriors, achieved through physical and chemical surface alterations, have recently been explored as viable alternatives. Nonetheless, these modifications are prone to challenges that can reduce their efficacy considerably in the long term. Their effectiveness against a wider array of microbial cells is still a subject of investigation. This review article will explore and discuss the emerging trends in biomimetics and other antimicrobials while raising possible concerns about their limitations and discussing future implications regarding their potential combined applications.
Collapse
Affiliation(s)
- Kiran Deep Kaur
- The School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Olivier Habimana
- Guangdong Technion Israel Institute of Technology (GTIIT), Shantou, Guangdong, China
- *Correspondence: Olivier Habimana,
| |
Collapse
|
81
|
Fabrication of Encapsulated Gemini Surfactants. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196664. [PMID: 36235201 PMCID: PMC9573393 DOI: 10.3390/molecules27196664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022]
Abstract
(1) Background: Encapsulation of surfactants is an innovative approach that allows not only protection of the active substance, but also its controlled and gradual release. This is primarily used to protect metallic surfaces against corrosion or to create biologically active surfaces. Gemini surfactants are known for their excellent anticorrosion, antimicrobial and surface properties; (2) Methods: In this study, we present an efficient methods of preparation of encapsulated gemini surfactants in form of alginate and gelatin capsules; (3) Results: The analysis of infrared spectra and images of the scanning electron microscope confirm the effectiveness of encapsulation; (4) Conclusions: Gemini surfactants in encapsulated form are promising candidates for corrosion inhibitors and antimicrobials with the possibility of protecting the active substance against environmental factors and the possibility of controlled outflow.
Collapse
|
82
|
Soyekwo F, Wen H, Liao D, Liu C. Fouling-resistant ionic graft-polyamide nanofiltration membrane with improved permeance for lithium separation from MgCl2/LiCl mixtures. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
83
|
Bogdanov AV, Bukharov SV, Garifullina RA, Voloshina AD, Lyubina AP, Amerkhanova SK, Bezsonova MS, Khaptsev ZY, Tsivileva OM. Synthesis and Antimicrobial Activity Evaluation of Ammonium Acylhydrazones Based on 4,6-Di-tert-butyl-2,3-dihydroxybenzaldehyde. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222100012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
84
|
Navarro-Barreda D, de Llanos R, Miravet JF, Galindo F. Photodynamic inactivation of Staphylococcus aureus in the presence of aggregation-prone photosensitizers based on BODIPY used at submicromolar concentrations. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 235:112543. [PMID: 36113260 DOI: 10.1016/j.jphotobiol.2022.112543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Two new brominated BODIPYs (1 and 2) bearing amino acid-based chains (l-valine for 1, and dimethyl-l-lysine for 2) were synthesized and characterized. In organic solvents, 1 and 2 were fully soluble and showed the photophysical properties expected for brominated BODIPY dyes, including efficient generation of singlet oxygen (1O2), upon irradiation. In contrast, in aqueous media, both compounds were prone to aggregation and the photo-induced generation of 1O2 was halted. Despite the lack of generation of this reactive species in aqueous media (in cuvette), both 1 and 2 have positive antimicrobial Photodynamic Inactivation (aPDI) effect. The activity against gram-positive Staphylococcus aureus and gram-negative Escherichia coli was determined through the inactivation curves, with a total energy dose of 5.3 J/cm2 (white light LED used as an energy source). Compound 2 was highly active against both gram-positive and gram-negative bacteria (3 log CFU/mL reduction was obtained at 0.16 μM for S. aureus and 2.5-5.0 μM for E. coli), whereas 1 was less effective to kill S. aureus (3 log CFU/mL at 0.32 μM) and ineffective for E. coli. The higher efficiency of 2, as compared to 1, to reduce the population of bacteria, can reside in the presence of a protonatable residue in 2, allowing a more effective interaction of this molecule with the cell walls of the microorganisms. In order to explain the lack of reactivity in pure aqueous media (in cuvette) and the contrasting good activity in the presence of bacterial cells it can be hypothesized that upon interaction with the walls of the microorganisms, the aggregated photosensitizers suffer a disaggregation process restoring the ability to generate 1O2, and hence leading to efficient photodynamic activity against these pathogenic microorganisms, in agreement with the similar effect observed recently for porphyrinoid photosensitizers.
Collapse
Affiliation(s)
- Diego Navarro-Barreda
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Avda. Sos Baynat s/n, 12071 Castellón, Spain
| | - Rosa de Llanos
- Unidad Predepartamental de Medicina, Universitat Jaume I, Avda. Sos Baynat s/n, 12071 Castellón, Spain
| | - Juan F Miravet
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Avda. Sos Baynat s/n, 12071 Castellón, Spain
| | - Francisco Galindo
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Avda. Sos Baynat s/n, 12071 Castellón, Spain.
| |
Collapse
|
85
|
Peyneau M, de Chaisemartin L, Gigant N, Chollet-Martin S, Kerdine-Römer S. Quaternary ammonium compounds in hypersensitivity reactions. FRONTIERS IN TOXICOLOGY 2022; 4:973680. [PMID: 36211198 PMCID: PMC9534575 DOI: 10.3389/ftox.2022.973680] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Quaternary ammonium compounds (QAC) are commonly used disinfectants, antiseptics, preservatives, and detergents due to their antibacterial property and represent the first used biocides before phenolic or nitrogen products. Their common structure consists of one or more quaternary ammonium bound with four lateral substituents. Their amphiphilic structure allows them to intercalate into microorganism surfaces which induces an unstable and porous membrane that explains their antimicrobial activity towards bacteria, fungi, and viruses. QAC are thus found in many areas, such as household products, medicines, hygiene products, cosmetics, agriculture, or industrial products but are also used in medical practice as disinfectants and antiseptics and in health care facilities where they are used for cleaning floors and walls. QAC exposure has already been involved in occupational asthma in healthcare workers or professional cleaners by many authors. They also have been suggested to play a role in contact dermatitis (CD) and urticaria in workers using cosmetics such as hairdressers or healthcare workers, inciting reglementary agencies to make recommendations regarding those products. However, distinguishing the irritant or sensitizing properties of chemicals is complex and as a result, the sensitizing property of QAC is still controverted. Moreover, the precise mechanisms underlying the possible sensitization effect are still under investigation, and to date, only a few studies have documented an immunological mechanism. Besides, QAC have been suggested to be responsible for neuromuscular blocking agents (NMBA) sensitization by cross-reactivity. This hypothesis is supported by a higher prevalence of quaternary ammonium (QA)-specific IgE in the professionally exposed populations, such as hairdressers, cleaners, or healthcare workers, suggesting that the sensitization happens with structurally similar compounds present in the environment. This review summarizes the newest knowledge about QAC and their role in hypersensitivities. After describing the different QAC, their structure and use, the most relevant studies about the effects of QAC on the immune system will be reviewed and discussed.
Collapse
Affiliation(s)
- Marine Peyneau
- Université Paris-Saclay, Inserm, Inflammation microbiome immunosurveillance, Châtenay-Malabry, France
- Department « Autoimmunité, Hypersensibilités et Biothérapies », DMU BioGeM, APHP, Hôpital Bichat, Paris, France
- *Correspondence: Marine Peyneau,
| | - Luc de Chaisemartin
- Université Paris-Saclay, Inserm, Inflammation microbiome immunosurveillance, Châtenay-Malabry, France
- Department « Autoimmunité, Hypersensibilités et Biothérapies », DMU BioGeM, APHP, Hôpital Bichat, Paris, France
| | - Nicolas Gigant
- CNRS, BioCIS, Université Paris-Saclay, Châtenay-Malabry, France
| | - Sylvie Chollet-Martin
- Université Paris-Saclay, Inserm, Inflammation microbiome immunosurveillance, Châtenay-Malabry, France
- Department « Autoimmunité, Hypersensibilités et Biothérapies », DMU BioGeM, APHP, Hôpital Bichat, Paris, France
| | - Saadia Kerdine-Römer
- Université Paris-Saclay, Inserm, Inflammation microbiome immunosurveillance, Châtenay-Malabry, France
| |
Collapse
|
86
|
Dan W, Gao J, Qi X, Wang J, Dai J. Antibacterial quaternary ammonium agents: Chemical diversity and biological mechanism. Eur J Med Chem 2022; 243:114765. [PMID: 36116235 DOI: 10.1016/j.ejmech.2022.114765] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 01/04/2023]
Abstract
Bacterial infections have seriously threatened public health especially with the increasing resistance and the cliff-like decline of the number of newly approved antibacterial agents. Quaternary ammonium compounds (QACs) possess potent medicinal properties with 95 successfully marketed drugs, which also have a long history as antibacterial agents. In this review, we summarize the chemical diversity of antibacterial QACs, divided into chain-like and aromatic ring, reported over the past decade (2012 to mid-2022). Additionally, the structure-activity relationships, mainly covering hydrophobicity, charges and skeleton features, are discussed. In the cases where sufficient information is available, antibacterial mechanisms including biofilm, cell membrane, and intracellular targets are presented. It is hoped that this review will provide sufficient information for medicinal chemists to discover the new generation of antibacterial agents based on QACs.
Collapse
Affiliation(s)
- Wenjia Dan
- School of Life Science and Technology, Weifang Medical University, Shandong, China
| | - Jixiang Gao
- School of Life Science and Technology, Weifang Medical University, Shandong, China
| | - Xiaohui Qi
- School of Life Science and Technology, Weifang Medical University, Shandong, China
| | - Junru Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Shaanxi, China.
| | - Jiangkun Dai
- School of Life Science and Technology, Weifang Medical University, Shandong, China.
| |
Collapse
|
87
|
López-Fernández AM, Moisescu EE, de Llanos R, Galindo F. Development of a Polymeric Film Entrapping Rose Bengal and Iodide Anion for the Light-Induced Generation and Release of Bactericidal Hydrogen Peroxide. Int J Mol Sci 2022; 23:ijms231710162. [PMID: 36077560 PMCID: PMC9478968 DOI: 10.3390/ijms231710162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
A series of poly(2-hydroxyethyl methacrylate) (PHEMA) thin films entrapping photosensitizer Rose Bengal (RB) and tetrabutylammonium iodide (TBAI) have been synthetized. The materials have been characterized by means of Thermogravimetric Analysis (TGA), Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) and UV-vis Absorption spectroscopy. Irradiation of the materials with white light led to the generation of several bactericidal species, including singlet oxygen (1O2), triiodide anion (I3-) and hydrogen peroxide (H2O2). 1O2 production was demonstrated spectroscopically by reaction with the chemical trap 2,2'-(anthracene-9,10-diylbis(methylene))dimalonic acid (ABDA). In addition, the reaction of iodide anion with 1O2 yielded I3- inside the polymeric matrix. This reaction is accompanied by the formation of H2O2, which diffuses out the polymeric matrix. Generation of both I3- and H2O2 was demonstrated spectroscopically (directly in the case of triiodide by the absorption at 360 nm and indirectly for H2O2 using the xylenol orange test). A series of photodynamic inactivation assays were conducted with the synthesized polymers against Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa. Complete eradication (7 log10 CFU/mL) of both bacteria occurred after only 5 min of white light irradiation (400-700 nm; total energy dose 24 J/cm2) of the polymer containing both RB and TBAI. The control polymer without embedded iodide (only RB) showed only marginal reductions of ca. 0.5 log10 CFU/mL. The main novelty of the present investigation is the generation of three bactericidal species (1O2, I3- and H2O2) at the same time using a single polymeric material containing all the elements needed to produce such a bactericidal cocktail, although the most relevant antimicrobial activity is shown by H2O2. This experimental approach avoids multistep protocols involving a final step of addition of I-, as described previously for other assays in solution.
Collapse
Affiliation(s)
- Ana M. López-Fernández
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. V. Sos Baynat s/n, 12071 Castellón, Spain
| | - Evelina E. Moisescu
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. V. Sos Baynat s/n, 12071 Castellón, Spain
| | - Rosa de Llanos
- Unidad Predepartamental de Medicina, Universitat Jaume I, Av. V. Sos Baynat s/n, 12071 Castellón, Spain
- Correspondence: (R.d.L.); (F.G.)
| | - Francisco Galindo
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. V. Sos Baynat s/n, 12071 Castellón, Spain
- Correspondence: (R.d.L.); (F.G.)
| |
Collapse
|
88
|
Sharan M, Vijay D, Dhaka P, Bedi JS, Gill JPS. Biofilms as a microbial hazard in the food industry: A scoping review. J Appl Microbiol 2022; 133:2210-2234. [PMID: 35945912 DOI: 10.1111/jam.15766] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/06/2022] [Indexed: 11/29/2022]
Abstract
Biofilms pose a serious public health hazard with a significant economic impact on the food industry. The present scoping review is designed to analyze the literature published during 2001-2020 on biofilm formation of microbes, their detection methods, and association with antimicrobial resistance (if any). The peer-reviewed articles retrieved from 04 electronic databases were assessed using PRISMA-ScR guidelines. From the 978 preliminary search results, a total of 88 publications were included in the study. On analysis, the commonly isolated pathogens were Listeria monocytogenes, Staphylococcus aureus, Salmonella spp., Escherichia coli, Bacillus spp., Vibrio spp., Campylobacter jejuni and Clostridium perfringens. The biofilm-forming ability of microbes was found to be influenced by various factors such as attachment surfaces, temperature, presence of other species, nutrient availability etc. A total of 18 studies characterized the biofilm-forming genes, particularly for S. aureus, Salmonella spp., and E. coli. In most studies, polystyrene plate and/or stainless-steel coupons were used for biofilm formation, and the detection was carried out by crystal violet assays and/or by plate counting method. The strain-specific significant differences in biofilm formation were observed in many studies, and few studies carried out analysis of multi-species biofilms. The association between biofilm formation and antimicrobial resistance wasn't clearly defined. Further, viable but non-culturable (VBNC) form of the foodborne pathogens is posing an unseen (by conventional cultivation techniques) but potent threat food safety. The present review recommends the need for carrying out systematic surveys and risk analysis of biofilms in food chain to highlight the evidence-based public health concerns, especially in regions where microbiological food hazards are quite prevalent.
Collapse
Affiliation(s)
- Manjeet Sharan
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Deepthi Vijay
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India.,Present Address: Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Kerala, India
| | - Pankaj Dhaka
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Jasbir Singh Bedi
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Jatinder Paul Singh Gill
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| |
Collapse
|
89
|
A Multiple-Stimuli-Responsive Amphiphilic Copolymer for Antifouling and Antibacterial Functionality via a “Resistance–Kill–Release” Mechanism. Molecules 2022; 27:molecules27165059. [PMID: 36014312 PMCID: PMC9416764 DOI: 10.3390/molecules27165059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/30/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
In recent years, polymers with stimuli-responsive properties have been increasingly reported on due to their diverse applications. However, most of the studies have only focused on the performance of polymers under specific scenarios. The laws of changes in the properties in response to various external stimuli have been less systematically and quantitatively studied. In this paper, we prepared an amphiphilic polymer (PadaMX and PAdaM3QA−X) with temperature-, pH-, ion-, and β-cyclodextrin (β-CD)-responsive properties. According to the cloud point tested by the UV-Vis method, the lower critical soluble temperature (LCST) of PAdaM3QA−10% was more sensitive to a change in pH and less sensitive to a change in ions compared with PadaM3 due to quaternized side chains with a stronger intramolecular mutual repulsion. We then fabricated the coatings with responsive properties by immobilizing the adamantyl groups on β-CD-modified surfaces. The hydrophilicity of the coatings was improved after quaternization, as proven by the water contact angle (WCA) measurement. The antifouling and antibacterial performance was further evaluated via the fluorescence intensity of bovine serum albumin (BSA) adsorbed on the surfaces and the spread plate method. A 78.4% BSA desorption rate and a 96.8% sterilization rate were achieved by the PAdaM3QA−10% coating. In summary, this work prepared a multiple-stimuli-responsive amphiphilic copolymer for antifouling and antibacterial functionality via a “resistance–kill–release” mechanism.
Collapse
|
90
|
Wang X, Li Q, Lu H, Liu Z, Wu Y, Mao J, Gong S. Effects of the Combined Application of Trimethylated Chitosan and Carbodiimide on the Biostability and Antibacterial Activity of Dentin Collagen Matrix. Polymers (Basel) 2022; 14:polym14153166. [PMID: 35956681 PMCID: PMC9370890 DOI: 10.3390/polym14153166] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/24/2022] [Accepted: 07/30/2022] [Indexed: 01/27/2023] Open
Abstract
The structural integrity of a dentin matrix that has been demineralized by the clinical use of etchants or calcium-depleting endodontic irrigants, such as endodontic ethylenediaminetetraacetic acid (EDTA), is often deteriorated due to the collagenolytic activities of reactivated endogenous enzymes as well as the infiltration of extrinsic bacteria. Therefore, the biomodification of dentin collagen with improved stability and antibacterial activity holds great promise in conservative dentistry. The purpose of this study was to evaluate the effects of the combined application of trimethylated chitosan (TMC) and 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC) on the biostability and antibacterial activity of the demineralized dentin collagen matrix. The morphological changes in the collagen matrix were observed by scanning electron microscopy (SEM), the amount of TMC adsorbed on the collagen surface was detected by X-ray photoelectron spectroscopy, and the elastic modulus was measured by a three-point bending device. Dry weight loss and amino acid release were detected to evaluate its anti-collagenase degradation performance. The antibacterial performance was detected by confocal microscopy. The TMC-treated group had less collagen space and a more compact collagen arrangement, while the untreated group had a looser collagen arrangement. The combined application of TMC and EDC can increase the elastic modulus, reduce the loss of elastic modulus, and result in good antibacterial performance. The current study proved that a dentin collagen matrix biomodified by TMC and EDC showed improved biodegradation resistance and antibacterial activities.
Collapse
Affiliation(s)
- Xiangyao Wang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (X.W.); (Q.L.); (H.L.); (Z.L.); (Y.W.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Qilin Li
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (X.W.); (Q.L.); (H.L.); (Z.L.); (Y.W.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Haibo Lu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (X.W.); (Q.L.); (H.L.); (Z.L.); (Y.W.)
| | - Zhuo Liu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (X.W.); (Q.L.); (H.L.); (Z.L.); (Y.W.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yaxin Wu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (X.W.); (Q.L.); (H.L.); (Z.L.); (Y.W.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Jing Mao
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (X.W.); (Q.L.); (H.L.); (Z.L.); (Y.W.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
- Correspondence: (J.M.); (S.G.); Tel.: +86-27-8366-3225 (S.G.)
| | - Shiqiang Gong
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (X.W.); (Q.L.); (H.L.); (Z.L.); (Y.W.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
- Correspondence: (J.M.); (S.G.); Tel.: +86-27-8366-3225 (S.G.)
| |
Collapse
|
91
|
Jia Y, Lu H, Zhu L. Molecular mechanism of antibiotic resistance induced by mono- and twin-chained quaternary ammonium compounds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155090. [PMID: 35398118 PMCID: PMC8985400 DOI: 10.1016/j.scitotenv.2022.155090] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/17/2022] [Accepted: 04/03/2022] [Indexed: 05/08/2023]
Abstract
The usage of quaternary ammonium compounds (QACs) as disinfectants has increased dramatically since the outbreak of COVID-19 pandemic, leading to potentially accelerated emergence of antibiotic resistance. Long-term exposure to subinhibitory level QACs can lead to multidrug resistance, but the contribution of mutagenesis to resistance evolution is obscure. In this study, we subcultured E. coli K-12 under subinhibitory (0.25 × and 0.5 × Minimum Inhibitory Concentration, MIC) or inhibitory (1 × and 2 × MIC) concentrations of benzalkonium chloride (BAC, mono-chained) or didecyldimethylammonium chloride (DDAC, twin-chained) for 60 days. The sensitivity of QAC-adapted cells to five typical antibiotics decreased significantly, and in particular, the MIC of rifampicin increased by 85 times. E. coli adapted faster to BAC but developed 20-167% higher antibiotic resistance with 56% more mutations under DDAC exposure. The broader mutations induced by QACs, including negative regulators (acrR, marR, soxR, and crp), outer membrane proteins and transporters (mipA and sbmA), and RNA polymerase (rpoB and rpoC), potentially contributed to the high multi-drug resistance. After QACs stresses were removed, the phenotypic resistance induced by subinhibitory concentrations of QACs was reversible, whereas that induced by inhibitory concentrations of QACs was irreversible. The different patterns and molecular mechanism of antibiotic resistance induced by BAC and DDAC is informative to estimating the risks of broader QACs present at varied concentrations in the environment.
Collapse
Affiliation(s)
- Yin Jia
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Huijie Lu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| |
Collapse
|
92
|
Deciphering the mechanism of interaction of an ester-functionalized cationic gemini surfactant with bovine serum albumin: A biophysical and molecular modeling study. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128944] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
93
|
Spahr AC, Michaud ME, Amoo LE, Sanchez CA, Hogue CE, Thierer LM, Gau MR, Wuest WM, Minbiole KPC. Rigidity-Activity Relationships of bisQPC Scaffolds against Pathogenic Bacteria. ChemMedChem 2022; 17:e202200224. [PMID: 35561149 PMCID: PMC9308712 DOI: 10.1002/cmdc.202200224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/11/2022] [Indexed: 11/10/2022]
Abstract
Biscationic quaternary phosphonium compounds (bisQPCs) represent a promising class of antimicrobials, displaying potent activity against both Gram-negative and Gram-positive bacteria. In this study, we explored the effects of structural rigidity on the antimicrobial activity of QPC structures bearing a two-carbon linker between phosphonium groups, testing against a panel of six bacteria, including multiple strains harboring known disinfectant resistance mechanisms. Using simple alkylation reactions, 21 novel compounds were prepared, although alkene isomerization as well as an alkyne reduction were observed during the respective syntheses. The resulting bisQPC compounds showed strong biological activity, but were hampered by diminished solubility of their iodide salts. One compound (P2P-10,10 I) showed single-digit micromolar activity against the entire panel of bacteria. Overall, intriguing biological activity was observed, with less rigid structures displaying better efficacy against Gram-negative strains and more rigid structures demonstrating slightly increased efficacy against S. aureus strains.
Collapse
Affiliation(s)
- Aaron C Spahr
- Department of Chemistry, Villanova University, 800 E. Lancaster Avenue Mendel Hall, Villanova, PA, 19085, USA
| | - Marina E Michaud
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA, 30322, USA
| | - Lauren E Amoo
- Department of Chemistry, Villanova University, 800 E. Lancaster Avenue Mendel Hall, Villanova, PA, 19085, USA
| | - Christian A Sanchez
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA, 30322, USA
| | - Cody E Hogue
- Department of Chemistry, Villanova University, 800 E. Lancaster Avenue Mendel Hall, Villanova, PA, 19085, USA
| | - Laura M Thierer
- Department of Chemistry, Villanova University, 800 E. Lancaster Avenue Mendel Hall, Villanova, PA, 19085, USA
| | - Michael R Gau
- Department of Chemistry X-Ray Crystallography Facility, University of Pennsylvania, 231 S. 34 Street, Philadelphia, PA, 19104, USA
| | - William M Wuest
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA, 30322, USA
| | - Kevin P C Minbiole
- Department of Chemistry, Villanova University, 800 E. Lancaster Avenue Mendel Hall, Villanova, PA, 19085, USA
| |
Collapse
|
94
|
Sharma P, Agrawal S, Rathore MS, Shahi VK. Cross-linked anion-exchange membrane with side-chain grafted multi-cationic spacer for electrodialysis: Imparting dual anti-fouling and anti-bacterial characteristics. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
95
|
Lazofsky A, Doherty C, Szary P, Buckley B. A surface sampling and liquid chromatography mass spectrometry method for the analysis of quaternary ammonium compounds collected from public transportation buses in New Jersey. EMERGING CONTAMINANTS 2022; 8:318-328. [PMID: 35791422 PMCID: PMC9247117 DOI: 10.1016/j.emcon.2022.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/02/2022] [Accepted: 06/28/2022] [Indexed: 05/29/2023]
Abstract
Quaternary ammonium compounds (QACs) are a class of antimicrobial disinfectants whose use in cleaning products increased during the COVID-19 pandemic. Chemically, their low vapor pressure indicates a proclivity to persist on surfaces, and their presence suggests a level of protection against microorganisms. The widespread application of QACs in response to the SARS CoV-2 virus created a need to evaluate their longevity on surfaces, for both efficacy and possible health risks. There are however, no standardized analytical methods for QAC surface sampling and analysis, and no published studies quantifying their concentrations on mass transportation vehicles-a high occupancy, close-contact microenvironment documented to facilitate the spread the SARS CoV-2 virus. Here, we describe a robust liquid chromatography mass spectrometry (LC-MS) method for the analysis of QACs and simultaneous development of a direct surface sampling and extraction protocol. We demonstrate the applicability of the method through the analysis of surface samples collected from in-service public transportation buses. The rapid, sensitive LC-MS method included 8 target QACs quantified on a Q-Exactive HF Hybrid Quadrupole-Orbitrap mass spectrometer using an electrospray ionization source and Dionex UltiMate 3000 UHPLC system for analyte separation. QAC standard mixtures at concentrations between 0.1 ng mL-1 and 2000 ng mL-1 were analyzed, and chromatographic separation of all analytes was achieved in less than 10 min. All correlation coefficients were reported at r > 0.986, and LODs ranged from 0.007 to 2.103 ng mL-1 for all compounds, confirming the method's sensitivity. A previously reported surface sampling and extraction protocol was modified to further simplify the procedure and expand the number of target compounds. The new sampling protocol was optimized from 10 commercially available wipes and 4 solvent types by quantifying recovery from the surface. Band-Aid brand small gauze pads saturated with isopropanol had the highest recovery efficiencies, ranging from 61.5 to 102.9% across all analytes. To test the real-world applicability, wipe samples were collected from 4 in-circulation New Jersey Transit buses on 5 separate days over the course of a month to assess the occurrence and longevity of QACs on sanitized mass transportation vehicles. Concentrations of QACs were detected on every wipe sample taken, and at all sampled time points, confirming their persistence on hard surfaces. QACs have the potential to form polymers, and detection of the polymer might serve as a secondary indication of their effectiveness on surfaces. None of the polymers detected however, were unique to QACs from this study. The polymers detected were already present in the wipe and used as an internal standard to demonstrate the efficacy of extraction and analysis of polymeric QACs.
Collapse
Affiliation(s)
- Abigail Lazofsky
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Cathleen Doherty
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Patrick Szary
- Center for Advanced Infrastructure and Transportation, Rutgers University, 100 Brett Road, Piscataway, NJ, 08854, USA
| | - Brian Buckley
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| |
Collapse
|
96
|
Chemical modifications in the structure of seaweed polysaccharides as a viable antimicrobial application: A current overview and future perspectives. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
97
|
Guo S, He Y, Zhu Y, Tang Y, Yu B. Combatting Antibiotic Resistance Using Supramolecular Assemblies. Pharmaceuticals (Basel) 2022; 15:ph15070804. [PMID: 35890105 PMCID: PMC9322166 DOI: 10.3390/ph15070804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023] Open
Abstract
Antibiotic resistance has posed a great threat to human health. The emergence of antibiotic resistance has always outpaced the development of new antibiotics, and the investment in the development of new antibiotics is diminishing. Supramolecular self-assembly of the conventional antibacterial agents has been proved to be a promising and versatile strategy to tackle the serious problem of antibiotic resistance. In this review, the recent development of antibacterial agents based on supramolecular self-assembly strategies will be introduced.
Collapse
Affiliation(s)
- Shuwen Guo
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710100, China;
- Correspondence: (S.G.); (Y.T.); (B.Y.)
| | - Yuling He
- Institute of Basic and Translational Medicine, Xi’an Medical University, No. 1 Xinwang Road, Xi’an 710021, China;
| | - Yuanyuan Zhu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710100, China;
| | - Yanli Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710100, China;
- Correspondence: (S.G.); (Y.T.); (B.Y.)
| | - Bingran Yu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing 100029, China
- Correspondence: (S.G.); (Y.T.); (B.Y.)
| |
Collapse
|
98
|
Belter B, McCarlie SJ, Boucher-van Jaarsveld CE, Bragg RR. Investigation into the Metabolism of Quaternary Ammonium Compound Disinfectants by Bacteria. Microb Drug Resist 2022; 28:841-848. [PMID: 35759372 DOI: 10.1089/mdr.2022.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Since the start of the COVID-19 pandemic, our reliance on disinfectants and sanitizers and the use thereof has grown. While this may protect human health, it may be selecting for antimicrobial-resistant microorganisms, including those that are not only capable of growth in the presence of disinfectants but also thrive using this as an energy source. Furthermore, there is a growing concern in emerging nosocomial pathogens, which have shown resistance to antibiotics and disinfectants. This rise in resistance has led to the investigation of various mechanisms behind resistance, such as biofilms, efflux pumps, and mobile genetic elements. Although many resistance mechanisms have been identified, it was discovered that some potentially pathogenic microbes could metabolize these compounds, which remains an avenue for further investigation. Investigating alternative metabolic pathways in microorganisms capable of growth using disinfectants as their sole carbon and energy source may provide insight into the metabolism of quaternary ammonium compound (QAC)-based antimicrobials. Many of the metabolic reactions proposed include hydroxylation, N-dealkylation, N-demethylation, and β-oxidation of QACs. If clear metabolic pathways and reactions are elucidated, possible alternative approaches to QACs may be advised. Alternatively, this may provide opportunities for biodegradation of the compounds that adversely affect the environment.
Collapse
Affiliation(s)
- Bernadette Belter
- Department of Microbial, Biochemical and Food Biotechnology, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | - Samantha J McCarlie
- Department of Microbial, Biochemical and Food Biotechnology, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | - Charlotte E Boucher-van Jaarsveld
- Department of Microbial, Biochemical and Food Biotechnology, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | - Robert R Bragg
- Department of Microbial, Biochemical and Food Biotechnology, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
99
|
Crnčević D, Krce L, Cvitković M, Brkljača Z, Sabljić A, Vuko E, Primožič I, Odžak R, Šprung M. New Membrane Active Antibacterial and Antiviral Amphiphiles Derived from Heterocyclic Backbone of Pyridinium-4-Aldoxime. Pharmaceuticals (Basel) 2022; 15:ph15070775. [PMID: 35890073 PMCID: PMC9315884 DOI: 10.3390/ph15070775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 02/06/2023] Open
Abstract
Quaternary ammonium salts (QAS) are irreplaceable membrane-active antimicrobial agents that have been widely used for nearly a century. Cetylpyridinium chloride (CPC) is one of the most potent QAS. However, recent data from the literature indicate that CPC activity against resistant bacterial strains is decreasing. The major QAS resistance pathway involves the QacR dimer, which regulates efflux pump expression. A plausible approach to address this issue is to structurally modify the CPC structure by adding other biologically active functional groups. Here, a series of QAS based on pyridine-4-aldoxime were synthesized, characterized, and tested for antimicrobial activity in vitro. Although we obtained several potent antiviral candidates, these candidates had lower antibacterial activity than CPC and were not toxic to human cell lines. We found that the addition of an oxime group to the pyridine backbone resulted in derivatives with large topological polar surfaces and with unfavorable cLog P values. Investigation of the antibacterial mode of action, involving the cell membrane, revealed altered cell morphologies in terms of corrugated and/or disrupted surface, while 87% of the cells studied exhibited a permeabilized membrane after 3 h of treatment at 4 × minimum inhibitory concentration (MIC). Molecular dynamic (MD) simulations of the interaction of QacR with a representative candidate showed rapid dimer disruption, whereas this was not observed for QacR and QacR bound to the structural analog CPC. This might explain the lower bioactivity of our compounds, as they are likely to cause premature expression of efflux pumps and thus activation of resistance.
Collapse
Affiliation(s)
- Doris Crnčević
- Department of Chemistry, Faculty of Science, University of Split, R. Bošković 33, 21 000 Split, Croatia; (D.C.); (A.S.)
- Doctoral Study of Biophysics, Faculty of Science, University of Split, R. Bošković 33, 21 000 Split, Croatia
| | - Lucija Krce
- Department of Physics, Faculty of Science, University of Split, R. Bošković 33, 21 000 Split, Croatia; (L.K.); (M.C.)
| | - Mislav Cvitković
- Department of Physics, Faculty of Science, University of Split, R. Bošković 33, 21 000 Split, Croatia; (L.K.); (M.C.)
| | - Zlatko Brkljača
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička c. 54, 10 000 Zagreb, Croatia;
- Selvita Ltd., Prilaz Baruna Filipovića 29, 10 000 Zagreb, Croatia
| | - Antonio Sabljić
- Department of Chemistry, Faculty of Science, University of Split, R. Bošković 33, 21 000 Split, Croatia; (D.C.); (A.S.)
- Doctoral Study of Biophysics, Faculty of Science, University of Split, R. Bošković 33, 21 000 Split, Croatia
| | - Elma Vuko
- Department of Biology, Faculty of Science, University of Split, R. Bošković 33, 21 000 Split, Croatia;
| | - Ines Primožič
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10 000 Zagreb, Croatia;
| | - Renata Odžak
- Department of Chemistry, Faculty of Science, University of Split, R. Bošković 33, 21 000 Split, Croatia; (D.C.); (A.S.)
- Correspondence: (R.O.); (M.Š.)
| | - Matilda Šprung
- Department of Chemistry, Faculty of Science, University of Split, R. Bošković 33, 21 000 Split, Croatia; (D.C.); (A.S.)
- Correspondence: (R.O.); (M.Š.)
| |
Collapse
|
100
|
Voumard M, Breider F, von Gunten U. Effect of cetyltrimethylammonium chloride on various Escherichia coli strains and their inactivation kinetics by ozone and monochloramine. WATER RESEARCH 2022; 216:118278. [PMID: 35366494 DOI: 10.1016/j.watres.2022.118278] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/23/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Cethyltrimethylammonium chloride (CTMA) is one of the most used quaternary ammonium compounds (QACs) in consumer products. CTMA and other QACs are only partially eliminated in municipal wastewater treatment and they can interact with bacteria in biological processes. Currently, there is only limited information on the antimicrobial efficiency of CTMA in matrices other than standard growth media and if and how CTMA influences conventional chemical disinfection. The results obtained in this study showed that the susceptibility of E. coli to CTMA was significantly enhanced in phosphate-buffered saline, lake water and wastewater compared to broth. In broth, a minimum inhibitory concentration (MIC) of CTMA of 20 mgL-1 was observed for E. coli, whereas a 4-log inactivation occurred for CTMA concentrations of about 4 mgL-1 in buffered ultra-purified water, a lake water and wastewater effluent. The impacts of the pre-exposure and the presence of CTMA on inactivation by ozone and monochloramine were tested with three different E. coli strains: AG100 with the efflux pump acrAB intact, AG100A with it deleted and AG100tet with it overexpressed. Pre-exposure of E. coli AG100 to CTMA led to an increased susceptibility for ozone with second-order inactivation rate constants (∼ 106 M-1s-1) increasing by a factor of about 1.5. An opposite trend was observed for monochloramine with second-order inactivation rate constants (∼ 103 M-1s-1) decreasing by a factor of about 2. For E. coli AG100tet, the second-order inactivation rate constant decreased by a factor of almost 2 and increased by a factor of about 1.5 for ozone and monochloramine, respectively, relative to the strain AG100. The simultaneous presence of CTMA and ozone enhanced the second-order inactivation rate constants for CTMA concentrations of 2.5 mgL-1 by a factor of about 3. For monochloramine also an enhancement of the inactivation was observed, which was at least additive but might also be synergistic. Enhancement by factors from about 2 to 4.5 were observed for CTMA concentrations > 2.5 mgL-1.
Collapse
Affiliation(s)
- M Voumard
- School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne, EPFL, Switzerland
| | - F Breider
- School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne, EPFL, Switzerland
| | - U von Gunten
- School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne, EPFL, Switzerland; Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zürich 8092, Switzerland.
| |
Collapse
|