51
|
Li LP. Cisplatin-Loaded Polymeric Micelles with Aggregation-Induced Emission Feature for Cellular Imaging and Chemotherapy. ChemistrySelect 2018. [DOI: 10.1002/slct.201802542] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Li-Ping Li
- Department of Clinical Laboratory; The Third Affiliated Hospital of Nanchang University, Jiangxi; Nanchang 330008 P. R. China
| |
Collapse
|
52
|
Wang Z, Duan Y, Duan Y. Application of polydopamine in tumor targeted drug delivery system and its drug release behavior. J Control Release 2018; 290:56-74. [PMID: 30312718 DOI: 10.1016/j.jconrel.2018.10.009] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 10/08/2018] [Accepted: 10/08/2018] [Indexed: 12/13/2022]
Abstract
Inspired by the bionics of marine mussels, polydopamine (PDA), a new polymer with unique physicochemical properties was discovered. Due to its simple preparation, good biocompatibility, unique drug-loading methods, PDA has attracted tremendous attentions in field of drug delivery and imaging, and the combination of chemotherapy and other therapies or diagnostic methods, such as photothermotherapy (PTT), photoacoustic imaging (PAI), magnetic resonance imaging (MRI), etc. As an excellent drug carrier in tumor targeted drug delivery system, the drug release behavior of drug-loaded PDA-based nanoparticles is also an important factor to be considered in the establishment of drug delivery systems. Therefore, the purpose of this review is to provide a comprehensive overview of the various applications of PDA in tumor targeted drug delivery systems and to gain insight into the release behavior of the drug-loaded PDA-based nanocarriers. A sufficient understanding and discussion of these aspects is expected to provide a better way to design more rational and effective PDA-based tumor nano-targeted delivery systems. Apart from this, the prospects for the future application of PDA in this field and some unique insights are listed at the end of the article.
Collapse
Affiliation(s)
- Zhe Wang
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan 410013, China.
| | - Yaou Duan
- Moores Cancer Center and Institute for Genomic Medicine, University of California, San Diego, CA 92093, USA
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan 410013, China; Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, Hunan 410011, China; National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan 410011, China.
| |
Collapse
|
53
|
Zhang D, Cai Z, Liao N, Lan S, Wu M, Sun H, Wei Z, Li J, Liu X. pH/hypoxia programmable triggered cancer photo-chemotherapy based on a semiconducting polymer dot hybridized mesoporous silica framework. Chem Sci 2018; 9:7390-7399. [PMID: 30542542 PMCID: PMC6237124 DOI: 10.1039/c8sc02408a] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/25/2018] [Indexed: 01/08/2023] Open
Abstract
Although photothermal therapy (PTT) has become a compelling strategy for cancer therapy, few studies concern the physiological consequences of PTT ablation. Herein, we discover that PTT-induced hyperthermia can aggravate tumor hypoxia, which may increase the risk of tumor recurrence and reduce PTT efficacy. We thus integrated the pH/hypoxia-triggered Fe(iii)-banoxantrone (AQ4N) prodrug and semiconducting polymer dots (SPs) for programmable triggered cancer photothermal-chemotherapy. A SP-hybridized mesoporous silica framework, decorated by dopamine and polyethylene glycol, named PPMSF, was synthesized by a simple method, and then served as an efficient photo-absorbing agent (PTA) and drug carrier. Fe(iii)-AQ4N and Mn(ii) were then coordinated with PPMSF (abbreviated Mn-APPMSF) via coordination effects. The nanohybrids exhibited tumor micro-environment pH triggered drug release. Under the irradiation of NIR light, magnetic resonance imaging (MRI) tracked the accumulation of the nanohybrids in tumors which then destroyed tumor cells by local hyperthermia, this can consequently aggravate the tumor hypoxia levels. Intriguingly, the aggravated hypoxia can further enhance the reduction of AQ4N to significantly improve therapeutic efficacy and effectively inhibit tumor growth when compared with traditional PTT. These results indicate the potential of our nanohybrids as a programmable synergistic agent for cancer therapy.
Collapse
Affiliation(s)
- Da Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology , State Key Laboratory of Photocatalysis on Energy and Environment , College of Chemistry , Fuzhou University , Fuzhou 350116 , P. R. China .
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province , Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025 , P. R. China .
| | - Zhixiong Cai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province , Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025 , P. R. China .
- Key Laboratory of Biomedical Information Engineering of Ministry of Education , Institute of Biomedical Analytical Technology and Instrumentation , School of Life Science and Technology , Xi'an Jiaotong University , Xi'an 710049 , P. R. China
| | - Naishun Liao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province , Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025 , P. R. China .
| | - Shanyou Lan
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province , Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025 , P. R. China .
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province , Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025 , P. R. China .
| | - Haiyan Sun
- Department of Anesthesiology , Beijing Anzhen Hospital , Capital Medical University , Beijing 100029 , P. R. China
| | - Zuwu Wei
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province , Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025 , P. R. China .
| | - Juan Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology , State Key Laboratory of Photocatalysis on Energy and Environment , College of Chemistry , Fuzhou University , Fuzhou 350116 , P. R. China .
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province , Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025 , P. R. China .
| |
Collapse
|
54
|
Alonso S. Exploiting the bioengineering versatility of lactobionic acid in targeted nanosystems and biomaterials. J Control Release 2018; 287:216-234. [DOI: 10.1016/j.jconrel.2018.08.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/19/2018] [Accepted: 08/20/2018] [Indexed: 12/25/2022]
|
55
|
Hyaluronic Acid Layer-By-Layer (LbL) Nanoparticles for Synergistic Chemo-Phototherapy. Pharm Res 2018; 35:196. [PMID: 30143878 DOI: 10.1007/s11095-018-2480-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/11/2018] [Indexed: 02/05/2023]
Abstract
PURPOSE The aim of this study was to design hyaluronic acid (HA) layer-by-layer (LbL) nanoparticles, which carried paclitaxel (PTX) and Indocyanine green (ICG) to both tumor cells and tumor associated cells to achieve synergistic chemo-photothermal therapeutic effect. METHODS The LbL-engineered nanoparticles (PDIH) were prepared by dopamine self-polymerization on PTX nanocrystal to form thin, surface-adherent polydopamine (PDA) films, which subsequently absorbed ICG and HA. The tumor cell and tumor associated cell targeting and antitumor efficacy of PDIH were investigated both in vitro an in vivo using 4 T1 murine mammary cancer cell lines and mice bearing orthotopic 4 T1 breast tumor. RESULTS PDIH presented a long-rod shape in TEM and showed enhanced photothermal effect and cytotoxicity upon NIR laser irradiation both in vitro and in vivo. PDIH also displayed high target ability to CD44 overexpressed tumor cells and tumor associated cells mediated by HA. In vivo antitumor study indicated that PDIH therapeutic strategy could achieve remarkable antitumor efficacy. CONCLUSION PDIH showed excellent tumor-targeting property and chemo-photothermal therapeutic efficacy.
Collapse
|
56
|
Zhang D, Xu H, Zhang X, Liu Y, Wu M, Li J, Yang H, Liu G, Liu X, Liu J, Yuan Z. Self-Quenched Metal-Organic Particles as Dual-Mode Therapeutic Agents for Photoacoustic Imaging-Guided Second Near-Infrared Window Photochemotherapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:25203-25212. [PMID: 29979022 DOI: 10.1021/acsami.8b08419] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The nanosized metal-organic particles (NMOPs) recently have attracted tremendous attentions in biomedical applications. However, few studies have developed metal-organic nanoparticles (NMOPs) as near-infrared (NIR) II phototherapeutic agents and as Fenton-like agents for cancer theranostics. Herein, directly using organic dye and Cu(II)-ion complexes to construct NMOPs, as dual-mode therapeutic agent for PA imaging-guided photochemotherapy in NIR II window, is reported. The NMOPs are simply an assembly of Cu(II) ion and tetrahydroxyanthraquinone (THQ) complexes [Cu(II)-THQ] n through the coordination effect, van der Waals force, and π-π interactions. After modification of polyethylene glycol (PEG-(NH2)2), the obtained Cu-THQNPs endow excellent biocompatibility and stability in physiological conditions. Because of the strong absorption at NIR II window and photoinduced electrontransfer (PET) mechanism, the Cu-THQNPs not only acted as an excellent photothermal agent with extremely high light-to-heat conversion ability (51.34%) at 1064 nm for phototherapy but also explored as the PA contrast agent for precisely tracking and guiding the therapy in vivo. Most strikingly, our Cu-THQNPs can be degraded by tumor-specific acidic-cleaving of the coordination bonds and follow by the slow release of Cu(II) into tumors, which can act as Fenton-like agents to generate •OH from H2O2 for enhancing the antitumor efficacy in vivo. With almost 100% prevention of the tumor growth for ca. 14 days and no obvious toxicity based on blood biochemical/histological analysis, this work highlights the Cu-THQNPs as an efficient NIR II therapeutic agent for precise cancer theranostics.
Collapse
Affiliation(s)
- Da Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province , Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025 , P. R. China
- The Liver Center of Fujian Province , Fujian Medical University , Fuzhou 350025 , P. R. China
- The Key Lab of Analysis and Detection Technology for Food Safety of the MOE, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry , Fuzhou University , Fuzhou 350002 , P. R. China
| | - Hao Xu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering , Shenzhen University , Shenzhen 518060 , P. R. China
- Bioimaging Core, Faculty of Health Sciences , University of Macau , Macau 999078 SAR, P. R. China
| | - Xiaolong Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province , Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025 , P. R. China
- The Liver Center of Fujian Province , Fujian Medical University , Fuzhou 350025 , P. R. China
| | - Yubin Liu
- Bioimaging Core, Faculty of Health Sciences , University of Macau , Macau 999078 SAR, P. R. China
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province , Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025 , P. R. China
- The Liver Center of Fujian Province , Fujian Medical University , Fuzhou 350025 , P. R. China
| | - Juan Li
- The Key Lab of Analysis and Detection Technology for Food Safety of the MOE, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry , Fuzhou University , Fuzhou 350002 , P. R. China
| | - Huanghao Yang
- The Key Lab of Analysis and Detection Technology for Food Safety of the MOE, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry , Fuzhou University , Fuzhou 350002 , P. R. China
| | - Gang Liu
- Center for Molecular Imaging and Translational Medicine , Xiamen University , Xiamen 361005 , P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province , Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025 , P. R. China
- The Liver Center of Fujian Province , Fujian Medical University , Fuzhou 350025 , P. R. China
| | - Jingfeng Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province , Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025 , P. R. China
- The Liver Center of Fujian Province , Fujian Medical University , Fuzhou 350025 , P. R. China
- Liver Disease Center , The First Affiliated Hospital of Fujian Medical University , Fuzhou 350005 , P. R. China
| | - Zhen Yuan
- Bioimaging Core, Faculty of Health Sciences , University of Macau , Macau 999078 SAR, P. R. China
| |
Collapse
|
57
|
Zhou B, Xiong Z, Wang P, Peng C, Shen M, Shi X. Acetylated Polyethylenimine-Entrapped Gold Nanoparticles Enable Negative Computed Tomography Imaging of Orthotopic Hepatic Carcinoma. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8701-8707. [PMID: 29958496 DOI: 10.1021/acs.langmuir.8b01669] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Developing an effective computed tomography (CT) contrast agent is still a challenging task for precise diagnosis of hepatic carcinoma (HCC). Here, we present the use of acetylated polyethylenimine (PEI)-entrapped gold nanoparticles (Ac-PE-AuNPs) without antifouling modification for negative CT imaging of HCC. PEI was first linked to fluorescein isothiocyanate (FI) and then utilized as a vehicle for the entrapment of AuNPs. The particles were then acetylated to reduce its positive surface potential. The designed Ac-PE-AuNPs were characterized by various techniques. We find that the Ac-PE-AuNPs with a uniform size distribution (mean diameter = 2.3 nm) are colloidally stable and possess low toxicity in the studied range of concentration. Owing to the fact that the particles without additional antifouling modification were mainly gathered in liver, the Ac-PE-AuNPs could greatly improve the CT contrast enhancement of normal liver, whereas poor CT contrast enhancement appeared in liver necrosis region caused by HCC. As a result, HCC could be easily and precisely diagnosed. The designed Ac-PE-AuNPs were demonstrated to have biocompatibility through in vivo biodistribution and histological studies, hence holding an enormous potential to be adopted as an effective negative CT contrast agent for diagnosis of hepatoma carcinoma.
Collapse
Affiliation(s)
- Benqing Zhou
- Department of Radiology, Shanghai Tenth People's Hospital , Tongji University School of Medicine , Shanghai 200072 , P. R. China
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
| | - Zhijuan Xiong
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
| | - Peng Wang
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
| | - Chen Peng
- Department of Radiology, Shanghai Tenth People's Hospital , Tongji University School of Medicine , Shanghai 200072 , P. R. China
| | - Mingwu Shen
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
| | - Xiangyang Shi
- Department of Radiology, Shanghai Tenth People's Hospital , Tongji University School of Medicine , Shanghai 200072 , P. R. China
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
- CQM-Centro de Química da Madeira , Universidade da Madeira , Campus da Penteada , 9020-105 Funchal , Portugal
| |
Collapse
|
58
|
Wen H, Jiang P, Hu Y, Li G. Synthesis of Au@Ag core-shell nanostructures with a poly(3,4-dihydroxy-L-phenylalanine) interlayer for surface-enhanced Raman scattering imaging of epithelial cells. Mikrochim Acta 2018; 185:353. [PMID: 29971629 DOI: 10.1007/s00604-018-2873-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/16/2018] [Indexed: 10/28/2022]
Abstract
Poly(3,4-dihydroxy-L-phenylalanine) (polyDOPA) is a stable and biocompatible reducing agent. A versatile strategy is described here for the synthesis of core-shell Au@Ag nanostructures containing a polyDOPA interlayer. The latter provides abundant sites for deposition of nanocomposites, to immobilize molecules and to grow shells. The Au@polyDOPA@Ag nanoparticles are shown to generate strong and stable surface-enhanced Raman spectroscopy (SERS) signals compared to bare AuNPs and bare AgNPs. Folic acid was then immobilized on Au@polyDOPA@Ag nanoparticles and then applied to SERS imaging of human lung adenocarcinoma cell line A549 by the specific recognition of the folic acid receptor. The folic acid-conjugated SERS tags were promising to be nanoplatforms for imaging of cancer cells. Graphical abstract An Au@Ag core-shell nanostructures SERS nanotag with a polyDOPA interlayer was fabricated and then applied to SERS imaging of epithelial cells. (DOPA: 3,4-Dihydroxy-[L-phenylalanine]; FA: folic acid; 4-MBA: 4-mercaptobenzoic acid).
Collapse
Affiliation(s)
- Haibin Wen
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Peichun Jiang
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Yuling Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
59
|
Chen W, Wang Y, Qin M, Zhang X, Zhang Z, Sun X, Gu Z. Bacteria-Driven Hypoxia Targeting for Combined Biotherapy and Photothermal Therapy. ACS NANO 2018; 12:5995-6005. [PMID: 29786420 DOI: 10.1021/acsnano.8b02235] [Citation(s) in RCA: 254] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The facultative anaerobe Salmonella strain VNP20009 selectively colonizes into tumors following systemic injection due to its preference for the hypoxia in the tumor cores. However, the phase 1 clinical trial of VNP20009 has been terminated mainly due to its weak antitumor effects and exhibition of dose-dependent toxicity. Here, we leveraged the advantages of VNP20009 biotherapy together with polydopamine-mediated photothermal therapy in order to enhance the antitumor efficacy toward malignant melanoma. VNP20009 was coated with polydopamine via oxidation and self-polymerization, which was then injected into tumor-bearing mice via the tail vein. Polydopamine-coated VNP20009 targeted hypoxic areas of the solid tumors, and near-infrared laser irradiation of the tumors induced heating due to polydopamine. This combined approach eliminated the tumors without relapse or metastasis with only one injection and laser irradiation. More importantly, we found both VNP and pDA potentiate the therapeutic ability of each other, resulting in a superior anticancer effect.
Collapse
Affiliation(s)
- Wenfei Chen
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy , Sichuan University , Chengdu 610041 , P.R. China
| | - Ying Wang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy , Sichuan University , Chengdu 610041 , P.R. China
| | - Ming Qin
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy , Sichuan University , Chengdu 610041 , P.R. China
| | - Xudong Zhang
- Joint Department of Biomedical Engineering , University of North Carolina at Chapel Hill and North Carolina State University, Raleigh , North Carolina 27695 , United States
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy , Sichuan University , Chengdu 610041 , P.R. China
| | - Xun Sun
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy , Sichuan University , Chengdu 610041 , P.R. China
| | - Zhen Gu
- Joint Department of Biomedical Engineering , University of North Carolina at Chapel Hill and North Carolina State University, Raleigh , North Carolina 27695 , United States
| |
Collapse
|
60
|
Zhang H, Sun Y, Huang R, Cang H, Cai Z, Sun B. pH-sensitive prodrug conjugated polydopamine for NIR-triggered synergistic chemo-photothermal therapy. Eur J Pharm Biopharm 2018; 128:260-271. [PMID: 29733952 DOI: 10.1016/j.ejpb.2018.05.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/03/2018] [Accepted: 05/03/2018] [Indexed: 02/06/2023]
Abstract
Combination of chemotherapy with photothermal therapy (PTT) demonstrate highly desirable for efficient medical treatment of tumor. At present works, camptothecin (CPT)-containing polymeric prodrug (PCPT) were fabricated by polymerization of a pH-sensitive camptothecin (CPT) prodrug monomer and MPC using reversible addition-fragmentation transfer (RAFT) strategy. The pH-sensitive polymeric prodrug was tethered onto surface of polydopamine (PDA) nanoparticles by amidation chemistry for combination of chemotherapy with photothermal therapy. Specifically, the active CPT quickly released from the multifunctional nanoparticles in acidic microenvironment ascribe to the cleavage of bifunctional silyl ether linkage. Meanwhile, the PDA could convert the near infrared (NIR) light energy into heat with high efficiency, which makes the resulted nanoparticles an effective platform for photothermal therapy. In vitro analysis confirmed that the PDA@PCPT nanoparticles could be efficiently uptaked by HeLa cells and deliver CPT into the nuclei of cancer cells. The cell viability assays indicated an evident in vitro cytotoxicity to HeLa cancer cells under 808 nm light irradiation. Significant tumor regression was also observed in the tumor-bearing mice model with the combinational therapy provided from the PDA@PCPT nanoparticles. The PDA@PCPT multifunctional system which was achieved by a facile route should be a potential candidate in the anti-cancer field due to the synergistic therapeutic effect, which is superior to any single approach.
Collapse
Affiliation(s)
- Huaihong Zhang
- School of Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China; College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yu Sun
- College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Rong Huang
- College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Hui Cang
- School of Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Zhaosheng Cai
- School of Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Baiwang Sun
- College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
61
|
Zhao H, Zeng Z, Liu L, Chen J, Zhou H, Huang L, Huang J, Xu H, Xu Y, Chen Z, Wu Y, Guo W, Wang JH, Wang J, Liu Z. Polydopamine nanoparticles for the treatment of acute inflammation-induced injury. NANOSCALE 2018; 10:6981-6991. [PMID: 29610822 DOI: 10.1039/c8nr00838h] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Nanotechnology-mediated anti-inflammatory therapy is emerging as a novel strategy for the treatment of inflammation-induced injury. However, one of the main hurdles for these anti-inflammatory nano-drugs is their potential toxic side effects in vivo. Herein, we uncovered that polydopamine (PDA) nanoparticles with their structure and chemical properties similar to melanin, a natural bio-polymer, displayed a significant anti-inflammation therapeutic effect on acute inflammation-induced injury. PDA with enriched phenol groups functioned as a radical scavenger to eliminate reactive oxygen species (ROS) generated during inflammatory responses. As revealed by in vivo photoacoustic imaging with a H2O2-specific nanoprobe, PDA nanoparticles remarkably reduced intracellular ROS levels in murine macrophages challenged with either H2O2 or lipopolysaccharide (LPS). The anti-inflammatory capacity of PDA nanoparticles was further demonstrated in murine models of both acute peritonitis and acute lung injury (ALI), where diminished ROS generation, reduced proinflammatory cytokines, attenuated neutrophil infiltration, and alleviated lung tissue damage were observed in PDA-treated mice after a single dose of PDA treatment. Our work therefore presents the great promise of PDA nanoparticles as a biocompatible nano-drug for anti-inflammation therapy to treat acute inflammation-induced injury.
Collapse
Affiliation(s)
- He Zhao
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, Jiangsu 215123, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Hameed S, Bhattarai P, Dai Z. Cerasomes and Bicelles: Hybrid Bilayered Nanostructures With Silica-Like Surface in Cancer Theranostics. Front Chem 2018; 6:127. [PMID: 29721494 PMCID: PMC5915561 DOI: 10.3389/fchem.2018.00127] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/03/2018] [Indexed: 01/10/2023] Open
Abstract
Over years, theranostic nanoplatforms have provided a new avenue for the diagnosis and treatment of various cancer types. To this end, a myriad of nanocarriers such as polymeric micelles, liposomes, and inorganic nanoparticles (NPs) with distinct physiochemical and biological properties are routinely investigated for preclinical and clinical studies. So far, liposomes have received great attention for various biomedical applications, however, it still suffers from insufficient morphological stability. On the other hand, inorganic NPs depicting excellent therapeutic ability have failed to address biocompatibility issues. This has raised a serious concern about the clinical approval of multifunctional organic or inorganic-based theranostic agents. Recently, partially silica coated nanohybrids such as cerasomes and bicelles demonstrating both diagnostic and therapeutic ability in a single system, have drawn profound attention as a fascinating novel drug delivery system. Compared with traditional liposomal or inorganic-based nanoformulations, this new and highly stable nanocarriers integrates the functional attributes of biomimetic liposomes and silica NPs, therefore, synergize strengths and functions, or even surpass weaknesses of individual components. This review at its best enlightens the emerging concept of such partially silica coated nanohybrids, fabrication strategies, and theranostic opportunities to combat cancer and related diseases.
Collapse
Affiliation(s)
- Sadaf Hameed
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Pravin Bhattarai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| |
Collapse
|
63
|
Zhang D, Lin X, Lan S, Sun H, Wang X, Liu X, Zhang Y, Zeng Y. Localized Surface Plasmon Resonance Enhanced Singlet Oxygen Generation and Light Absorption Based on Black Phosphorus@AuNPs Nanosheet for Tumor Photodynamic/Thermal Therapy. PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION 2018; 35. [DOI: 10.1002/ppsc.201800010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Indexed: 01/23/2025]
Abstract
AbstractAlthough photodynamic therapy is an efficient therapeutic strategy for cancer treatment, it always suffers from the low singlet oxygen (1O2) yields owing to the weak absorption in optical transparent window of biological tissues. Herein, the black phosphorus (BP) nanosheet is integrated with gold nanoparticles (AuNPs) to simultaneously enhance the singlet oxygen generation and hyperthermia by localized surface plasmon resonance (LSPR) in cancer therapy. In the design, BP nanosheet employed as two‐dimension (2D) inorganic photosensitizer is hybridized with AuNPs through polyetherimide (PEI) as bridge to form BP‐PEI/AuNPs hybrid nanosheet. Such hybridation not only significantly increases the 1O2 production of BP nanosheet through maximizing the local field enhancement of AuNPs, but also significantly enhances the light absorption of BP nanosheet to promote photothermal effect by LSPR. Accordingly, about 3.9‐fold enhancement of 1O2 production and 1.7‐fold increasement of photothermal conversion efficiency are achieved compared with BP‐PEI alone upon single 670 nm laser irradiation. As a proof‐of‐concept model, BP‐PEI/AuNPs hybrid nanosheet with simultaneous dual‐modal phototherapy functions result in effective suppression of tumor growth with minimized side effects both in vitro and in vivo, indicating the great potential of the BP‐PEI/AuNPs hybrid nanosheet as an effective strategy to enhance the cancer therapy efficiency.
Collapse
Affiliation(s)
- Da Zhang
- Liver Disease Center The First Affiliated Hospital of Fujian Medical University Fuzhou 350005 P. R. China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province Mengchao Hepatobiliary Hospital of Fujian Medical University Fuzhou 350025 P. R. China
| | - Xiao Lin
- Department of Critical Care Medicine The First Affiliated Hospital of Fujian Medical University Fuzhou 350005 P. R. China
| | - Shanyou Lan
- Liver Disease Center The First Affiliated Hospital of Fujian Medical University Fuzhou 350005 P. R. China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province Mengchao Hepatobiliary Hospital of Fujian Medical University Fuzhou 350025 P. R. China
| | - Haiyan Sun
- Department of Anesthesiology Beijing Anzhen Hospital Capital Medical University Beijing 100029 P. R. China
| | - Xuandong Wang
- Department of Translational Medicine Xiamen Institute of Rare Earth Materials Chinese Academy of Sciences Xiamen 361021 China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province Mengchao Hepatobiliary Hospital of Fujian Medical University Fuzhou 350025 P. R. China
- Department of Translational Medicine Xiamen Institute of Rare Earth Materials Chinese Academy of Sciences Xiamen 361021 China
| | - Yun Zhang
- Department of Translational Medicine Xiamen Institute of Rare Earth Materials Chinese Academy of Sciences Xiamen 361021 China
| | - Yongyi Zeng
- Liver Disease Center The First Affiliated Hospital of Fujian Medical University Fuzhou 350005 P. R. China
| |
Collapse
|
64
|
Zhang C, Zhao X, Guo H. Synergic highly effective photothermal-chemotherapy with platinum prodrug linked melanin-like nanoparticles. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:356-363. [PMID: 29607699 DOI: 10.1080/21691401.2018.1457536] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cisplatin is widely used in cancer treatment, but the application is limited due to toxicities and its acquired resistance. In this study, we delivered cisplatin to prostate cancer cells by linking the platinum prodrug Pt(IV) to melanin-like nanoparticles (MeNPs), a promising photothermal therapeutic agent with excellent biocompatibility. As expected, the Pt(IV)-MeNPs exhibited brilliant synergic photothermal-chemotherapy upon near-infrared reflection exposure. Compared with free cisplatin, Pt(IV)-MeNPs displayed highly effective antitumour activity both in vitro and in vivo.
Collapse
Affiliation(s)
- Chengwei Zhang
- a Department of Urology , Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University , Nanjing , P. R. China
| | - Xiaozhi Zhao
- a Department of Urology , Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University , Nanjing , P. R. China
| | - Hongqian Guo
- a Department of Urology , Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University , Nanjing , P. R. China
| |
Collapse
|
65
|
Batul R, Tamanna T, Khaliq A, Yu A. Recent progress in the biomedical applications of polydopamine nanostructures. Biomater Sci 2018; 5:1204-1229. [PMID: 28594019 DOI: 10.1039/c7bm00187h] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Polydopamine is a dark brown-black insoluble biopolymer produced by autoxidation of dopamine. Although its structure and polymerization mechanism have not been fully understood, there has been a rapid growth in the synthesis and applications of polydopamine nanostructures in biomedical fields such as drug delivery, photothermal therapy, bone and tissue engineering, and cell adhesion and patterning, as well as antimicrobial applications. This article is dedicated to reviewing some of the recent polydopamine developments in these biomedical fields. Firstly, the polymerization mechanism is introduced with a discussion of the factors that influence the polymerization process. The discussion is followed by the introduction of various forms of polydopamine nanostructures and their recent applications in biomedical fields, especially in drug delivery. Finally, the review is summarized followed by brief comments on the future prospects of polydopamine.
Collapse
Affiliation(s)
- Rahila Batul
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
| | | | | | | |
Collapse
|
66
|
Chen W, Qin M, Chen X, Wang Q, Zhang Z, Sun X. Combining photothermal therapy and immunotherapy against melanoma by polydopamine-coated Al 2O 3 nanoparticles. Am J Cancer Res 2018; 8:2229-2241. [PMID: 29721075 PMCID: PMC5928883 DOI: 10.7150/thno.24073] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/04/2018] [Indexed: 12/14/2022] Open
Abstract
Photothermal therapy (PTT) can be an effective antitumor therapy, but it may not completely eliminate tumor cells, leading to the risk of recurrence or metastasis. Here we describe nanocarriers that allow combination therapy involving PTT and immunotherapy. Nanocarriers are prepared by coating Al2O3 nanoparticles with non-toxic, biodegradable polydopamine, which shows high photothermal efficiency. A near-infrared laser irradiation can kill the majority of tumor tissues, resulting in the release of tumor-associated antigens. The Al2O3 within the nanoparticles, together with CpG, acts as an adjuvant to trigger robust cell-mediated immune responses that can help eliminate the residual tumor cells and reduce the risk of tumor recurrence. Methods: The characteristics and photothermal performance of polydopamine-coated Al2O3 nanoparticles were examined after one-step preparation. Then we studied their internalization, photothermal toxicity and immunostimulatory activity in vitro. For in vivo experiments, these nanocarriers were injected directly into B16F10 melanoma allografts in mice to ensure specific localization. After photothermal irradiation on day 0, mice were subcutaneously injected with CpG adjuvant on day 1, 3 and 5. Tumor volumes and number of living mice were recorded every two days. Moreover, various immune responses induced by our combined therapy were tested for mechanism research. Results: 50% of mice after our combined treatment successfully achieved the goal of tumor eradication, and survived for 120 days, which was the end point of the experiment. Mechanism studies demonstrated the combined therapy efficiently led to dendritic cell maturation, resulting in the secretion of antibodies and cytokines as well as the proliferation of splenocytes and lymphocytes for anti-tumor immunotherapy. Conclusion: Taken together, these results demonstrated the promise of our combined photothermal therapy and immunotherapy for tumor shrinkage, which merited further research.
Collapse
|
67
|
Mrówczyński R. Polydopamine-Based Multifunctional (Nano)materials for Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:7541-7561. [PMID: 28786657 DOI: 10.1021/acsami.7b08392] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Since Lee published a pioneering paper about polydopamine (PDA), application of that polymer in a number of areas has grown enormously in the last 10 years and is still growing. PDA's spectacular success can be attributed to its unique features, i.e., simple preparation protocol, strong adhesive properties, easy and straightforward functionalization, and biocompatibility. Therefore, this polymer has attracted the attention of a vast group of scientists, including those working in the field of nanomedicine. In consequence, polydopamine has been merged with various nanostructures that differ in size and nature, which has resulted in novel types of multifunctional nanomaterials that have recently been extensively exploited in nanomedicine and particularly in cancer therapy. The aim of this article is to offer insight into the latest achievements (up until the end of 2016) in the field of synthesis and application of nanomaterials based on polydopamine and their application in cancer therapy. The conclusions regarding the application of polydopamine-based nanoplatforms in this area and future prospects are given at the end.
Collapse
Affiliation(s)
- Radosław Mrówczyński
- NanoBioMedical Centre , Adam Mickiewicz University in Poznan , Umultowska 85 , 61-614 Poznan , Poland
| |
Collapse
|
68
|
Pugazhendhi A, Edison TNJI, Karuppusamy I, Kathirvel B. Inorganic nanoparticles: A potential cancer therapy for human welfare. Int J Pharm 2018; 539:104-111. [DOI: 10.1016/j.ijpharm.2018.01.034] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 01/07/2023]
|
69
|
Polydopamine-coated nanocomposites of Angelica gigas Nakai extract and their therapeutic potential for triple-negative breast cancer cells. Colloids Surf B Biointerfaces 2018; 165:74-82. [PMID: 29454167 DOI: 10.1016/j.colsurfb.2018.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/18/2018] [Accepted: 02/08/2018] [Indexed: 11/20/2022]
Abstract
Polydopamine (PD)-coated nanocomposites (NCs) based on the ethanol extract of Angelica gigas Nakai (AGN EtOH ext) were fabricated and evaluated for breast cancer therapy. AGN NCs were prepared using a modified emulsification-solvent evaporation method and were further incubated in dopamine solution (at pH 8.6) to be covered with the PD layer. PD-AGN NCs with a 213-nm mean diameter, narrow size distribution, and negative zeta potential values were fabricated in this study. Less negative (close to zero) zeta potential value of PD-AGN NCs than that of AGN NCs implied the existence of the PD layer in the outer surface of NCs. The PD layer in PD-AGN NCs was also identified by X-ray photoelectron spectroscopy (XPS) and ultraviolet (UV)/visible absorption analyses. The sustained release of decursin (D) and decursinol angelate (DA), as major active pharmacological components of AGN, was observed in both AGN NCs and PD-AGN NCs. Enhanced cellular binding property of PD-AGN NCs, compared to AGN NCs, in MDA-MB-231 (human breast adenocarcinoma; triple-negative breast cancer) cells was observed. Improved anticancer activities of PD-AGN NCs compared with those of AGN EtOH ext and AGN NCs were also shown in MDA-MB-231 cells. The developed PD-AGN NCs may be used as remarkable platform nanocarriers for efficient breast cancer therapy.
Collapse
|
70
|
Li H, Jia Y, Peng H, Li J. Recent developments in dopamine-based materials for cancer diagnosis and therapy. Adv Colloid Interface Sci 2018; 252:1-20. [PMID: 29395035 DOI: 10.1016/j.cis.2018.01.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/10/2018] [Accepted: 01/10/2018] [Indexed: 12/17/2022]
Abstract
Dopamine-based materials are emerging as novel biomaterials and have attracted considerable interests in the fields of biosensing, bioimaging and cancer therapy due to their unique physicochemical properties, such as versatile adhesion property, high chemical reactivity, excellent biocompatibility and biodegradability, strong photothermal conversion capacity, etc. In this review, we present an overview of recent research progress on dopamine-based materials for diagnosis and therapy of cancer. The review starts with a summary of the physicochemical properties of dopamine-based materials in general. Then detailed description is followed on their applications in the fields of diagnosis and treatment of cancers. The review concludes with an outline of some remaining challenges for dopamine-based materials to be used for clinical applications.
Collapse
Affiliation(s)
- Hong Li
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Haonan Peng
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
71
|
Guo H, Sun H, Zhu H, Guo H, Sun H. Synthesis of Gd-functionalized Fe3O4@polydopamine nanocomposites for T1/T2 dual-modal magnetic resonance imaging-guided photothermal therapy. NEW J CHEM 2018. [DOI: 10.1039/c8nj00454d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A safe, efficient and inexpensive nanoplatform based on gadolinium-functionalized Fe3O4@polydopamine nanocomposites was fabricated for T1/T2 dual-modal magnetic resonance imaging-guided photothermal therapy.
Collapse
Affiliation(s)
- Hongying Guo
- School of Bioengineering and Food
- Key Laboratory of Fermentation Engineering (Ministry of Education)
- Key Laboratory of Industrial Microbiology in Hubei
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics
- Hubei Provincial Cooperative Innovation Center of Industrial Fermentation
| | - Hongmei Sun
- School of Bioengineering and Food
- Key Laboratory of Fermentation Engineering (Ministry of Education)
- Key Laboratory of Industrial Microbiology in Hubei
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics
- Hubei Provincial Cooperative Innovation Center of Industrial Fermentation
| | - Hongda Zhu
- School of Bioengineering and Food
- Key Laboratory of Fermentation Engineering (Ministry of Education)
- Key Laboratory of Industrial Microbiology in Hubei
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics
- Hubei Provincial Cooperative Innovation Center of Industrial Fermentation
| | - Huiling Guo
- School of Bioengineering and Food
- Key Laboratory of Fermentation Engineering (Ministry of Education)
- Key Laboratory of Industrial Microbiology in Hubei
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics
- Hubei Provincial Cooperative Innovation Center of Industrial Fermentation
| | - Honghao Sun
- School of Bioengineering and Food
- Key Laboratory of Fermentation Engineering (Ministry of Education)
- Key Laboratory of Industrial Microbiology in Hubei
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics
- Hubei Provincial Cooperative Innovation Center of Industrial Fermentation
| |
Collapse
|
72
|
Wang D, Zhang S, Zhang T, Wan G, Chen B, Xiong Q, Zhang J, Zhang W, Wang Y. Pullulan-coated phospholipid and Pluronic F68 complex nanoparticles for carrying IR780 and paclitaxel to treat hepatocellular carcinoma by combining photothermal therapy/photodynamic therapy and chemotherapy. Int J Nanomedicine 2017; 12:8649-8670. [PMID: 29255359 PMCID: PMC5722019 DOI: 10.2147/ijn.s147591] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
IR780, a near-infrared dye, can also be used as a photosensitizer both for photothermal therapy (PTT) and photodynamic therapy (PDT). In this study, we designed a simple but effective nanoparticle system for carrying IR780 and paclitaxel, thus hoping to combine PTT/PDT and chemotherapy to treat hepatocellular carcinoma (HCC). This nanosystem, named PDF nanoparticles, consisted of phospholipid/Pluronic F68 complex nanocores and pullulan shells. IR780 and paclitaxel were loaded separately into PDF nanoparticles to form PDFI and PDFP nanoparticles, which had regular sphere shapes and relatively small sizes. Upon near-infrared laser irradiation at 808 nm, PDFI nanoparticles showed strong PTT/PDT efficacy both in vitro and in vivo. In MHCC-97H cells, the combined treatment of PDFI nanoparticles/laser irradiation and PDFP nanoparticles exhibited significant synergistic effects on inhibiting cell proliferation and inducing cell apoptosis and cell cycle arrest at G2/M phase. In MHCC-97H tumor-bearing mice, PDFI nanoparticles exhibited excellent HCC-targeting and accumulating capability after intravenous injection. Furthermore, the combined treatment of PDFI nanoparticles/laser irradiation and PDFP nanoparticles also effectively inhibited the tumor growth and the tumor angiogenesis in MHCC-97H tumor-bearing mice. In summary, we put forward a therapeutic strategy for HCC treatment by combining PTT/PDT and chemotherapy.
Collapse
Affiliation(s)
- Dan Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University
| | - Sipei Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University
| | - Tao Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University
| | - Guoyun Wan
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University
| | - Bowei Chen
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University
| | - Qingqing Xiong
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital
| | | | - Wenxue Zhang
- Radiotherapy Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Yinsong Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University
| |
Collapse
|
73
|
Lv R, Wang D, Xiao L, Chen G, Xia J, Prasad PN. Stable ICG-loaded upconversion nanoparticles: silica core/shell theranostic nanoplatform for dual-modal upconversion and photoacoustic imaging together with photothermal therapy. Sci Rep 2017; 7:15753. [PMID: 29147000 PMCID: PMC5691150 DOI: 10.1038/s41598-017-16016-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 11/02/2017] [Indexed: 11/10/2022] Open
Abstract
We report here the design and multiple functions of a new hierarchical nanotheronostic platform consisting of an upconversion nanoparticle (UCNP) core: shell with an additional mesoporous silica (mSiO2) matrix load shell containing sealed, high concentration of ICG molecules. We demonstrate that this UCNP@mSiO2-ICG nanoplatform can perform the following multiple functions under NIR excitation at 800 nm: 1) Light harvesting by the UCNP shell containing Nd and subsequent energy transfer to Er in the Core to produce efficient green and red upconversion luminescence for optical imaging; 2) Efficient nonradiative relaxation and local heating produced by concentration quenching in aggregated ICG imbedded in the mesopourous silica shell to enable both photoacoustic imaging and photothermal therapy. Compared to pure ICG, sealing of mesoporous silica platforms prevents the leak-out and improves the stability of ICG by protecting from rapid hydrolysis. Under 800 nm laser excitation, we performed both optical and photoacoustic (PA) imaging in vitro and in vivo. Our results demonstrated that UCNP@mSiO2-ICG with sealed structures could be systemically delivered to brain vessels, with a long circulation time. In addition, these nanoplatforms were capable of producing strong hyperthermia efforts to kill cancer cells and hela cells under 800 nm laser irradiation.
Collapse
Affiliation(s)
- Ruichan Lv
- Institute for Lasers, Photonics, and Biophotonics and Department of Chemistry, University at Buffalo, the State University of New York, Buffalo, NY, 14260, USA
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi, 710071, China
| | - Depeng Wang
- Department of Biomedical Engineering, University at Buffalo, the State University of New York, Buffalo, NY, 14260, USA
| | - Liyang Xiao
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi, 710071, China
| | - Guanying Chen
- Institute for Lasers, Photonics, and Biophotonics and Department of Chemistry, University at Buffalo, the State University of New York, Buffalo, NY, 14260, USA
| | - Jun Xia
- Department of Biomedical Engineering, University at Buffalo, the State University of New York, Buffalo, NY, 14260, USA.
| | - Paras N Prasad
- Institute for Lasers, Photonics, and Biophotonics and Department of Chemistry, University at Buffalo, the State University of New York, Buffalo, NY, 14260, USA.
| |
Collapse
|
74
|
Deng Z, Shang B, Peng B. Polydopamine Based Colloidal Materials: Synthesis and Applications. CHEM REC 2017; 18:410-432. [PMID: 29124869 DOI: 10.1002/tcr.201700051] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 11/02/2017] [Indexed: 01/29/2023]
Abstract
Polydopamine is a synthetic analogue of natural melanin (eumelanin) produced from oxidative polymerization of dopamine. Owing to its strong adhesion ability, versatile chemical reactivity, biocompatibility and biodegradation, polydopamine is commonly applied as a versatile linker to synthesize colloidal materials with diverse structures, unique physicochemical properties and tunable functions, which allow for a broad scope of applications including biomedicine, sensing, catalysis, environment and energy. In this personal account, we discuss first about the different synthetic approaches of polydopamine, as well as its polymerization mechanism, and then with a comprehensive overview of recent progress in the synthesis and applications of polydopamine-based colloidal materials. Finally, we summarize this personal account with future perspectives.
Collapse
Affiliation(s)
- Ziwei Deng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Bin Shang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Bo Peng
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
75
|
Sun L, Li Z, Li Z, Hu Y, Chen C, Yang C, Du B, Sun Y, Besenbacher F, Yu M. Design and mechanism of core-shell TiO 2 nanoparticles as a high-performance photothermal agent. NANOSCALE 2017; 9:16183-16192. [PMID: 29043348 DOI: 10.1039/c7nr02848b] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Photothermal agents (PTAs) with high biocompatibility and therapeutic efficacy have become particularly fascinating, however, knowledge of their photothermal performance is rather limited. Herein, rationally designed core-shell TiO2 nanoparticles have been fabricated using a mild hydrogenation method, where NaBH4 was used as the H2 source. The resultant TiO2 possesses strong optical absorption in the NIR region and remarkable photothermal conversion capability and stability, leading to a high inhibition rate on cancer cells. In particular, its photothermal conversion efficiency is as high as 55.2%, which is 204% that of the fully hydrogenated amorphous TiO2. More importantly, the underlying mechanism is proposed. It is revealed that while the oxygen vacancies induced by the hydrogenation can introduce defect levels in the band gap and enhance the optical absorption, the superfluous oxygen vacancies and defects reduce the photothermal conversion capability and thermal conductivity to a large extent. Controlling the hydrogenation degree and maintaining a certain extent of crystallization are, therefore, crucial to the photothermal properties. This new understanding of the photothermal conversion mechanism may have provided a fresh route to design and optimize PTAs and inspire considerable interest to turn a large variety of semiconductor metal oxides into competent PTAs by appropriate hydrogenation.
Collapse
Affiliation(s)
- Lei Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Ma R, Wu Q, Si T, Chang S, Xu RX. Oxygen and Indocyanine Green loaded microparticles for dual-mode imaging and sonodynamic treatment of cancer cells. ULTRASONICS SONOCHEMISTRY 2017; 39:197-207. [PMID: 28732936 DOI: 10.1016/j.ultsonch.2017.03.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/09/2017] [Accepted: 03/09/2017] [Indexed: 06/07/2023]
Abstract
Oxygen and Indocyanine Green (ICG) loaded microparticles (OI-MPs) were fabricated by a gas-driven coaxial flow focusing (CFF) process for dual-mode imaging and sonodynamic therapy (SDT). The produced OI-MPs agent showed stable optical properties, superior imaging depth in near infrared (NIR) fluorescence imaging, and enhanced acoustic contrast after ultrasound mediation. We hypothesized that encapsulating ICG and oxygen in microparticles would enhance reactive oxygen species (ROS) production in SDT. This hypothesis was validated in a cell-free environment. We further hypothesized that ultrasound mediated fragmentation of the OI-MPs would induce cytotoxicity and apoptosis of cancer cells. This hypothesis was validated in SKOV3 ovarian cancer cells. Our research demonstrated that OI-MPs can be potentially used as a dual-mode theranostic agent for image guided SDT with enhanced efficacy. Further study is needed to delineate the mechanism of ROS-induced cell apoptosis and optimize the OI-MPs formulation for the maximal anti-cancer potency.
Collapse
Affiliation(s)
- Rong Ma
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Qiang Wu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Ting Si
- Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Shufang Chang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Ronald X Xu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China; Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
77
|
Xia M, Ye M, Zhou X, Tang J, Piao Y, Liu X, Zhou Z, Hu H, Shen Y. A facile synthesis of a theranostic nanoparticle by oxidation of dopamine-DTPA-Gd conjugates. J Mater Chem B 2017; 5:8754-8760. [PMID: 32264269 DOI: 10.1039/c7tb01362k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Photothermal therapies (PPTs) with various light-absorbing materials have shown very promising therapeutic effects against cancers. However, their application was severely limited by the lack of accurate localization of tumors and real-time monitoring of the therapeutic process. Theranostic nanoparticles with both imaging and therapeutic functions are highly desired to develop imaging-mediated PPTs. Herein, we develop a facile one-pot method to synthesize a nanoparticle with functions of an MRI contrast agent and a PTT agent through oxidization of dopamine-DTPA-Gd conjugates and PEG-dopamine conjugates. The oxidized dopamine nanoparticles (ODNP) had a high R1 up to 9.6 mM-1 s-1, 2.2 times higher than that of Omniscan, and showed significantly higher MRI contrast enhancement than Omniscan in tumor. Meanwhile, the ODNP showed strong NIR light absorption and significant antitumor efficacy both in vitro and in vivo as a PPT agent. The ODNP with excellent MRI contrasting capability and PTT efficacy plus its facile synthesis and good biocompatibility are a very promising theranostic agent for MRI-mediated PTT.
Collapse
Affiliation(s)
- Mingchun Xia
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Multifunctional polymeric micelles loaded with doxorubicin and poly(dithienyl-diketopyrrolopyrrole) for near-infrared light-controlled chemo-phototherapy of cancer cells. Colloids Surf B Biointerfaces 2017. [DOI: 10.1016/j.colsurfb.2017.05.080] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
79
|
Zhang X, Liao N, Chen G, Zheng A, Zeng Y, Liu X, Liu J. A fluorescent turn on nanoprobe for simultaneous visualization of dual-targets involved in cell apoptosis and drug screening in living cells. NANOSCALE 2017; 9:10861-10868. [PMID: 28731107 DOI: 10.1039/c7nr03564k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Herein, a novel dual-responsive two-color fluorescent nanoprobe has been designed for the fluorescence activation imaging of cell apoptosis in living cells. The nanoprobe consists of a gold nanoparticle core functionalized with a dense layer of DNA aptamers and peptides, which shows high affinity and specific response to cytochrome c (Cyt c) and caspase-3, respectively. The formation of the aptamer-Cyt c complex and the cleavage of the specific peptide by caspase-3 can liberate the dye labelled aptamers and peptides from the surface of gold nanoparticles, and then recover their fluorescence. The turn-on and specific recognition properties of our nanoprobe allow for the sensitive and selective detection of Cyt c concentration and caspase-3 activity both in solutions and in living cells. The here proposed nanoprobe with the abilities of real-time monitoring the cell apoptosis and evaluating the apoptosis-related drug efficacy might serve as a potential interesting tool for studying the molecular mechanisms of apoptosis regulation or screening the apoptosis-based drugs.
Collapse
Affiliation(s)
- Xiaolong Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
80
|
Wei Z, Lin X, Wu M, Zhao B, Lin R, Zhang D, Zhang Y, Liu G, Liu X, Liu J. Core-shell NaGdF 4@CaCO 3 nanoparticles for enhanced magnetic resonance/ultrasonic dual-modal imaging via tumor acidic micro-enviroment triggering. Sci Rep 2017; 7:5370. [PMID: 28710468 PMCID: PMC5511195 DOI: 10.1038/s41598-017-05395-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 05/30/2017] [Indexed: 01/12/2023] Open
Abstract
For cancer diagnosis, a paramount challenge still exists in the exploring of methods that can precisely discriminate tumor tissues from their surrounding healthy tissues with a high target-to-background signal ratio. Here, we report a NaGdF4@CaCO3-PEG core-shell nanoparticle which has the tumor acidic microenvironment enhanced imaging signals of ultrasound and magnetic resonance. Under the acidic conditions, the CaCO3 shell will gradually dissolve which then facilitate the interaction of NaGdF4 with the external aqueous environment to enhance water proton relaxation. Meanwhile, the CO2 bubbles generated by the CaCO3 dissolvement will generate strong elastic echo for US detection. The core-shell structure of NaGdF4@CaCO3-PEG can be observed by TEM, and its composition can be determined by STEM. The acid triggered generation of CO2 bubbles and the enhancement of MRI signal could be demonstrated in vitro, and the excellent dual-modal magnetic resonance/ultrasonic cancer imaging abilities of NaGdF4@CaCO3-PEG could be also proved at the tumor site in vivo. The here described proof-of-concept nanoparticles with pH triggered magnetic resonance/ultrasonic dual-modal imaging enhancement, may serve as a useful guide to develop various molecular imaging strategies for cancer diagnosis in the future.
Collapse
Affiliation(s)
- Zuwu Wei
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, People's Republic of China
| | - Xiao Lin
- Liver Disease Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, People's Republic of China
| | - Bixing Zhao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, People's Republic of China
| | - Ruhui Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People's Republic of China
| | - Da Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, People's Republic of China
| | - Yun Zhang
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
| | - Gang Liu
- Center for Molecular Imaging and Translational Medicine, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, People's Republic of China.
| | - Jingfeng Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, People's Republic of China.
- Liver Disease Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.
| |
Collapse
|
81
|
Cheng Y, Zhang S, Kang N, Huang J, Lv X, Wen K, Ye S, Chen Z, Zhou X, Ren L. Polydopamine-Coated Manganese Carbonate Nanoparticles for Amplified Magnetic Resonance Imaging-Guided Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:19296-19306. [PMID: 28508635 DOI: 10.1021/acsami.7b03087] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
This study reports a multifunctional nanoparticle (NP) that can be used for amplified magnetic resonance image (MRI)-guided photothermal therapy (PTT) due to its surface coating with a polydopamine (PDA) shell. Importantly, by means of introducing the surface coating of PDA, large quantities of water can be trapped around the NPs allowing more efficient water exchange, leading to greatly improved MR contrast signals compared with those from NPs without the PDA coating. Further, a distinct photothermal effect can be obtained arising from the strong absorption of PDA in the near-infrared (NIR) region. By synthesizing multifunctional MnCO3@PDA NPs, for example, we found that the longitudinal relaxivity (r1) of MnCO3 NPs can improve from 5.7 to 8.3 mM-1 s-1. Subsequently, in vitro MRI and PTT results verified that MnCO3@PDA could serve as an excellent MRI/PTT theranostic agent. Furthermore, the MnCO3@PDA NPs were applied as an MRI/PTT theranostic agent for in vivo MRI-guided photothermal ablation of tumors by intratumoral injection in 4T1 tumor-bearing mice. The MR imaging result shows a significantly bright MR image in the tumor site. The MnCO3@PDA-mediated PTT result shows high therapeutic efficiency as a result of high photothermal conversion efficiency. The present strategy of amplified MRI-guided PTT based on PDA coating of NPs will be widely applicable to other multifunctional NPs.
Collapse
Affiliation(s)
- Youxing Cheng
- Department of Biomaterials, College of Materials, ‡Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, §State Key Laboratory of Physical Chemistry of Solid Surface, School of Chemistry and Chemical Engineering, and ∥Department of Electronic Science, College of Physical Science and Technology, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance Research, Xiamen University , Xiamen 361005, Fujian, P. R. China
| | - Shupeng Zhang
- Department of Biomaterials, College of Materials, ‡Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, §State Key Laboratory of Physical Chemistry of Solid Surface, School of Chemistry and Chemical Engineering, and ∥Department of Electronic Science, College of Physical Science and Technology, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance Research, Xiamen University , Xiamen 361005, Fujian, P. R. China
| | - Ning Kang
- Department of Biomaterials, College of Materials, ‡Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, §State Key Laboratory of Physical Chemistry of Solid Surface, School of Chemistry and Chemical Engineering, and ∥Department of Electronic Science, College of Physical Science and Technology, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance Research, Xiamen University , Xiamen 361005, Fujian, P. R. China
| | - Jianpan Huang
- Department of Biomaterials, College of Materials, ‡Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, §State Key Laboratory of Physical Chemistry of Solid Surface, School of Chemistry and Chemical Engineering, and ∥Department of Electronic Science, College of Physical Science and Technology, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance Research, Xiamen University , Xiamen 361005, Fujian, P. R. China
| | - Xiaolin Lv
- Department of Biomaterials, College of Materials, ‡Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, §State Key Laboratory of Physical Chemistry of Solid Surface, School of Chemistry and Chemical Engineering, and ∥Department of Electronic Science, College of Physical Science and Technology, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance Research, Xiamen University , Xiamen 361005, Fujian, P. R. China
| | - Kai Wen
- Department of Biomaterials, College of Materials, ‡Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, §State Key Laboratory of Physical Chemistry of Solid Surface, School of Chemistry and Chemical Engineering, and ∥Department of Electronic Science, College of Physical Science and Technology, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance Research, Xiamen University , Xiamen 361005, Fujian, P. R. China
| | - Shefang Ye
- Department of Biomaterials, College of Materials, ‡Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, §State Key Laboratory of Physical Chemistry of Solid Surface, School of Chemistry and Chemical Engineering, and ∥Department of Electronic Science, College of Physical Science and Technology, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance Research, Xiamen University , Xiamen 361005, Fujian, P. R. China
| | - Zhiwei Chen
- Department of Biomaterials, College of Materials, ‡Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, §State Key Laboratory of Physical Chemistry of Solid Surface, School of Chemistry and Chemical Engineering, and ∥Department of Electronic Science, College of Physical Science and Technology, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance Research, Xiamen University , Xiamen 361005, Fujian, P. R. China
| | - Xi Zhou
- Department of Biomaterials, College of Materials, ‡Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, §State Key Laboratory of Physical Chemistry of Solid Surface, School of Chemistry and Chemical Engineering, and ∥Department of Electronic Science, College of Physical Science and Technology, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance Research, Xiamen University , Xiamen 361005, Fujian, P. R. China
| | - Lei Ren
- Department of Biomaterials, College of Materials, ‡Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, §State Key Laboratory of Physical Chemistry of Solid Surface, School of Chemistry and Chemical Engineering, and ∥Department of Electronic Science, College of Physical Science and Technology, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance Research, Xiamen University , Xiamen 361005, Fujian, P. R. China
| |
Collapse
|
82
|
Sakaguchi N, Kimura Y, Hirano-Iwata A, Ogino T. Fabrication of Au-Nanoparticle-Embedded Lipid Bilayer Membranes Supported on Solid Substrates. J Phys Chem B 2017; 121:4474-4481. [PMID: 28414450 DOI: 10.1021/acs.jpcb.7b00500] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We fabricated gold nanoparticle (Au-NP)-embedded supported lipid bilayers (SLBs) by two methods. In the vesicle-vesicle fusion method, vesicles with hydrophobized Au-NPs are ruptured and fused on SiO2/Si substrates. In the vesicle-membrane fusion method, SLBs without Au-NPs were preformed on the substrate and then vesicles with Au-NPs were fused into the preformed membranes. In the former method, Au-NP incorporation into the SLBs was observed as an increase in the membrane thickness in atomic force microscopy (AFM) images and directly observed by transmission electron microscopy. In the latter method, fusion of vesicles into the preformed membranes was confirmed by the fluorescent color change in the preformed membranes, and Au-NP incorporation was also confirmed by an increase in the membrane thickness in the AFM images. Key techniques for the successful vesicle-membrane fusion are hydrophobization of Au-NPs, approach control of vesicles by mixing the charged lipids, and destabilization of the lipid bilayers by adding lipids with a small polar headgroup.
Collapse
Affiliation(s)
- Naotoshi Sakaguchi
- Yokohama National University , 79-1, Tokiwadai, Hodogaya, Yokohama 240-8501, Japan
| | - Yasuo Kimura
- Tokyo University of Technology , 1404-1, Katakura, Hachioji, Tokyo 192-0982, Japan
| | | | - Toshio Ogino
- Yokohama National University , 79-1, Tokiwadai, Hodogaya, Yokohama 240-8501, Japan
| |
Collapse
|
83
|
Cao Y, Xu L, Kuang Y, Xiong D, Pei R. Gadolinium-based nanoscale MRI contrast agents for tumor imaging. J Mater Chem B 2017; 5:3431-3461. [PMID: 32264282 DOI: 10.1039/c7tb00382j] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gadolinium-based nanoscale magnetic resonance imaging (MRI) contrast agents (CAs) have gained significant momentum as a promising nanoplatform for detecting tumor tissue in medical diagnosis, due to their favorable capability of enhancing the longitudinal relaxivity (r1) of individual gadolinium ions, delivering to the region of interest a large number of gadolinium ions, and incorporating different functionalities. This mini-review highlights the latest developments and applications, and simultaneously gives some perspectives for their future development.
Collapse
Affiliation(s)
- Yi Cao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | | | | | | | | |
Collapse
|
84
|
Kuang Y, Zhang K, Cao Y, Chen X, Wang K, Liu M, Pei R. Hydrophobic IR-780 Dye Encapsulated in cRGD-Conjugated Solid Lipid Nanoparticles for NIR Imaging-Guided Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:12217-12226. [PMID: 28306236 DOI: 10.1021/acsami.6b16705] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This is high demand to enhance the accumulation of near-infrared theranostic agents in the tumor region, which is favorable to the effective phototherapy. Compared with indocyanine green (a clinically applied dye), IR-780 iodide possesses higher and more stable fluorescence intensity and can be utilized as an imaging-guided PTT agent with laser irradiation. However, lipophilicity and short circulation time limit its applications in cancer imaging and therapy. Moreover, solid lipid nanoparticles (SLNs) conjugated with c(RGDyK) was designed as efficient carriers to improve the targeted delivery of IR-780 to the tumors. The multifunctional cRGD-IR-780 SLNs exhibited a desirable monodispersity, preferable stability and significant targeting to cell lines overexpressing αvβ3 integrin. Additionally, the in vitro assays such as cell viability and in vivo PTT treatment denoted that U87MG cells or U87MG transplantation tumors could be eradicated by applying cRGD-IR-780 SLNs under laser irradiation. Therefore, the resultant cRGD-IR-780 SLNs may serve as a promising NIR imaging-guided targeting PTT agent for cancer therapy.
Collapse
Affiliation(s)
- Ye Kuang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| | - Kunchi Zhang
- Shanghai University of Medicine & Health Sciences , Shanghai 200120, China
| | - Yi Cao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| | - Xing Chen
- Public Health of Guangxi Medical University , Nanning 530021, China
| | - Kewei Wang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| | - Min Liu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| |
Collapse
|
85
|
Chen X, Zhu H, Huang X, Wang P, Zhang F, Li W, Chen G, Chen B. Novel iodinated gold nanoclusters for precise diagnosis of thyroid cancer. NANOSCALE 2017; 9:2219-2231. [PMID: 28120979 DOI: 10.1039/c6nr07656d] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
As the most common endocrine malignancy with a high incidence, thyroid cancer lacks a dual-modal imaging method for precise diagnosis. An accurate and multimodal imaging system is pivotal to solve this problem. Herein, dual-modality fluorescence/Computed Tomography (CT) iodinated gold nanoclusters for malignant thyroid cancer visualization have been recently fabricated. In this study, innovative iodinated gold nanoclusters (AuNCs@BSA-I) were synthesized via Bovine serum albumin (BSA) and chloramine-T. AuNCs@BSA-I not only possess an ultra-small size and brilliant biocompatibility but also exhibit excellent fluorescence/CT imaging properties. Particularly with regard to CT imaging properties, AuNCs@BSA-I rival the clinical CT contrast medium. And the fluorescence emission spectrum of AuNCs@BSA-I falls in the near infrared region (NIR). For further translational application in medicine, we established an orthotopic human thyroid cancer patient tissue derived xenograft (PDX) mouse model, highly close to the actual human thyroid cancer. The results unveil that AuNCs@BSA-I exert sensitive and accurate diagnosis characteristics. To be more specific, the AuNCs@BSA-I fluorescent/CT signals in the thyroid tumor represent characteristics of 'slow in fast out', compared to those in the normal thyroid. Moreover, AuNCs@BSA-I could distinguish minimal thyroid cancer, as small as 2 mm3. Therefore, AuNCs@BSA-I appear to be a promising nanoprobe which could be applied to preclinical medicine.
Collapse
Affiliation(s)
- Xin Chen
- Department of Thyroid Surgery, The First Bethune Hospital of Jilin University, No. 71, Xinmin Street, Changchun, Jilin 130021, People's Republic of China and The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, People's Republic of China
| | - Huanhuan Zhu
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, People's Republic of China
| | - Xin Huang
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, People's Republic of China
| | - Peisong Wang
- Department of Thyroid Surgery, The First Bethune Hospital of Jilin University, No. 71, Xinmin Street, Changchun, Jilin 130021, People's Republic of China
| | - Fulei Zhang
- International Joint Cancer Institute, The Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, People's Republic of China
| | - Wei Li
- International Joint Cancer Institute, The Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, People's Republic of China
| | - Guang Chen
- Department of Thyroid Surgery, The First Bethune Hospital of Jilin University, No. 71, Xinmin Street, Changchun, Jilin 130021, People's Republic of China
| | - Bingdi Chen
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, People's Republic of China
| |
Collapse
|
86
|
Lv R, Yang P, Hu B, Xu J, Shang W, Tian J. In Situ Growth Strategy to Integrate Up-Conversion Nanoparticles with Ultrasmall CuS for Photothermal Theranostics. ACS NANO 2017; 11:1064-1072. [PMID: 27960062 DOI: 10.1021/acsnano.6b07990] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In the theranostic field, a near-infrared (NIR) laser is located in the optical window, and up-conversion nanoparticles (UCNPs) could be potentially utilized as the imaging agents with high contrast. Meanwhile, copper sulfide (CuS) has been proposed as a photothermal agent with increased temperature under a NIR laser. However, there is still no direct and effective strategy to integrate the hydrophobic UCNPs with CuS until now. Herein, we propose an in situ growth routine based on the hydrophobic core/shell UCNPs combined with ultrasmall water-soluble CuS triggered by single 808 nm NIR irradiation as the theranostic platform. Hydrophobic NaYF4:Yb,Er@NaYF4,Nd,Yb could be turned hydrophilic with highly dispersed and biocompatible properties through conjunction with transferred dopamine. The as-synthesized ultrasmall CuS (3 and 7 nm) served as a stable photothermal agent even after several laser-on/off cycles. Most importantly, comparing with the mix routine, the in situ growth routine to coat UCNPs with CuS is meaningful, and the platform is uniform and stable. Green luminescence-guided hyperthermia could be achieved under a single 808 nm laser, which was evidenced by in vitro and in vivo assays. This nanoplatform is applicable as a bioimaging and photothermal antitumor agent, and the in situ growth routine could be spread to other integration processes.
Collapse
Affiliation(s)
- Ruichan Lv
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University , Xi'an, Shanxi 710071, China
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University , Harbin 150001, China
- Fachbereich Physik, Philipps Universität Marburg , 35037 Marburg, Germany
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University , Harbin 150001, China
| | - Bo Hu
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University , Xi'an, Shanxi 710071, China
| | - Jiating Xu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University , Harbin 150001, China
| | - Wenting Shang
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences , Beijing 100190, China
| | - Jie Tian
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University , Xi'an, Shanxi 710071, China
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences , Beijing 100190, China
| |
Collapse
|
87
|
Zhang D, Zheng A, Li J, Wu M, Wu L, Wei Z, Liao N, Zhang X, Cai Z, Yang H, Liu G, Liu X, Liu J. Smart Cu(II)-aptamer complexes based gold nanoplatform for tumor micro-environment triggered programmable intracellular prodrug release, photodynamic treatment and aggregation induced photothermal therapy of hepatocellular carcinoma. Theranostics 2017; 7:164-179. [PMID: 28042325 PMCID: PMC5196894 DOI: 10.7150/thno.17099] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/07/2016] [Indexed: 12/21/2022] Open
Abstract
This study describes smart Cu(II)-aptamer complexes based gold nanoplatform for tumor micro-environment triggered programmable prodrug release, in demand photodynamic therapy and aggregation induced photothermal ablation of hepatocellular carcinoma. The nanoplatform is consist of monodispersed gold nanoparticle (GNP) that is binding to HCC cell specific targeting aptamers (TLS11a) through Au-S bond; the aptamer is labeled with Ce6 at the 5'end and coordinated with Cu(II) through (GA)10 repeating bases to load AQ4N at the 3' end. In normal physiological conditions, the fluorescence and ROS generation ability of Ce6 are quenched by GNPs via RET; but in cancerous cells, the fluorescence and the ROS generation of Ce6 could be recovered by cleavage of Au-S bond through high level of intracellular GSH for real-time imaging and in demand PDT. Meanwhile, the prodrug AQ4N release could be triggered by acid-cleavage of coordination bonds, then accompanied by a release of Cu(II) that would induce the electrostatic aggregation of GNPs for photo-thermal ablation; furthermore, the significantly enhanced chemotherapy efficiency could be achieved by PDT produced hypoxia to convert AQ4N into AQ4. In summary, here described nanoplatform with tumor cell specific responsive properties and programmable PDT/PTT/chemotherapy functions, might be an interesting synergistic strategy for HCC treatment.
Collapse
Affiliation(s)
- Da Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, P. R. China
| | - Aixian Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, P. R. China
| | - Juan Li
- The Key Lab of Analysis and Detection Technology for Food Safety of the MOE, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350002, P.R. China
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, P. R. China
| | - Lingjie Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, P. R. China
| | - Zuwu Wei
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, P. R. China
| | - Naishun Liao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, P. R. China
| | - Xiaolong Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, P. R. China
| | - Zhixiong Cai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, P. R. China
| | - Huanghao Yang
- The Key Lab of Analysis and Detection Technology for Food Safety of the MOE, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350002, P.R. China
| | - Gang Liu
- Center for Molecular Imaging and Translational Medicine, Xiamen University, Xiamen, 361005, P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, P. R. China
| | - Jingfeng Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, P. R. China
- Liver Disease Center, The First Affliated Hospital of Fujian Medical University, Fuzhou 350005, P. R. China
| |
Collapse
|
88
|
Guo X, Zhang M, Zheng J, Xu J, Hayat T, Alharbi NS, Xi B, Xiong S. Fabrication of Co@SiO2@C/Ni submicrorattles as highly efficient catalysts for 4-nitrophenol reduction. Dalton Trans 2017; 46:11598-11607. [DOI: 10.1039/c7dt02095c] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Co@SiO2@C/Ni magnetic composites have been synthesized by an extended Stöber method combined with a carbonization process.
Collapse
Affiliation(s)
- Xiaohui Guo
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- PR China
| | - Min Zhang
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- PR China
| | - Jing Zheng
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- PR China
| | - Jingli Xu
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- PR China
| | - Tasawar Hayat
- Department of Mathematics
- Quaid-I-Azam University
- Islamabad 44000
- Pakistan
- NAAM Research Group
| | - Njud S. Alharbi
- Biotechnology Research Group
- Department of Biological Sciences
- Faculty of Science
- King Abdulaziz University
- Jeddah
| | - Baojuan Xi
- Key Laboratory of the Colloid and Interface Chemistry
- Ministry of Education
- and School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
| | - Shenglin Xiong
- Key Laboratory of the Colloid and Interface Chemistry
- Ministry of Education
- and School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
| |
Collapse
|
89
|
Khatri V, Bhatia S, Achazi K, Deep S, Kohli E, Sharma SK, Haag R, Prasad AK. Lipase-mediated synthesis of sugar–PEG-based amphiphiles for encapsulation and stabilization of indocyanine green. RSC Adv 2017. [DOI: 10.1039/c7ra04994c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bio-catalytically synthesized sugar–PEG-based copolymers form stable micelles in an aqueous medium. These micelles from amphiphilic copolymer are able to efficiently solubilize and stabilize indocyanine green dye (ICG) under physiological conditions.
Collapse
Affiliation(s)
- Vinod Khatri
- Bioorganic Laboratory
- Department of Chemistry
- University of Delhi
- India
| | - Sumati Bhatia
- Institute for Chemistry and Biochemistry
- Free University Berlin
- Berlin 14195
- Germany
| | - Katharina Achazi
- Institute for Chemistry and Biochemistry
- Free University Berlin
- Berlin 14195
- Germany
| | - Satyanarayan Deep
- Bioorganic Laboratory
- Department of Chemistry
- University of Delhi
- India
- DIPAS
| | | | - Sunil K. Sharma
- Bioorganic Laboratory
- Department of Chemistry
- University of Delhi
- India
| | - Rainer Haag
- Institute for Chemistry and Biochemistry
- Free University Berlin
- Berlin 14195
- Germany
| | - Ashok K. Prasad
- Bioorganic Laboratory
- Department of Chemistry
- University of Delhi
- India
| |
Collapse
|
90
|
Zhang L, Su H, Cai J, Cheng D, Ma Y, Zhang J, Zhou C, Liu S, Shi H, Zhang Y, Zhang C. A Multifunctional Platform for Tumor Angiogenesis-Targeted Chemo-Thermal Therapy Using Polydopamine-Coated Gold Nanorods. ACS NANO 2016; 10:10404-10417. [PMID: 27934087 DOI: 10.1021/acsnano.6b06267] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Image-guided combined chemo-thermal therapy assists in optimizing treatment time, enhancing therapeutic efficiency, and circumventing side effects. In the present study, we developed a chemo-photothermal theranostic platform based on polydopamine (PDA)-coated gold nanorods (GNRs). The PDA coating was thin; however, it significantly suppressed the cytotoxicity of the cetyltrimethylammonium bromide template and allowed high cisplatin loading efficiency, arginine-glycine-aspartic acid (RGD) peptide (c(RGDyC)) conjugation, and chelator-free iodine-125 labeling (RGD-125IPt-PDA@GNRs). While loaded cisplatin was released in a pH-sensitive manner, labeled 125I was outstandingly stable under biological conditions. RGD-125IPt-PDA@GNRs had a high specificity for αvβ3 integrin, and consequently, they could selectively accumulate in tumors, as revealed by single photon emission computed tomography/CT imaging, and in target tumor angiogenic vessels, as shown by high-resolution photoacoustic imaging. As RGD-125IPt-PDA@GNRs targets tumor angiogenesis, it is a highly potent tumor therapy. Combined chemo-photothermal therapy with probes could thoroughly ablate tumors and inhibit tumor relapse via a synergistic antitumor effect. Our studies demonstrated that RGD-125IPt-PDA@GNRs is a robust platform for image-guided, chemo-thermal tumor therapy with outstanding synergistic tumor killing and relapse inhibition effects.
Collapse
Affiliation(s)
- Lu Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, Shanghai Jiao Tong University , Shanghai 200030, China
| | | | - Jiali Cai
- Changzheng Hospital, Secondary Military Medical University , Shanghai 200003, China
| | | | | | | | | | - Shiyuan Liu
- Changzheng Hospital, Secondary Military Medical University , Shanghai 200003, China
| | | | | | - Chunfu Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, Shanghai Jiao Tong University , Shanghai 200030, China
- Department of Nuclear Medicine, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200025, China
| |
Collapse
|
91
|
Wang S, Zhao X, Wang S, Qian J, He S. Biologically Inspired Polydopamine Capped Gold Nanorods for Drug Delivery and Light-Mediated Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2016; 8:24368-84. [PMID: 27564325 DOI: 10.1021/acsami.6b05907] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Multifunctional drug delivery and combined multimodal therapy strategies are very promising in tumor theranostic applications. In this work, a simple and versatile nanoplatform based on biologically inspired polydopamine capped gold nanorods (GNR-PDA) is developed. Dopamine, a well-known neurotransmitter associated with many neuronal disorders, can undergo self-polymerization on the surface of GNRs to form a stable PDA shell. Its unique molecular adsorption property, as well as its high chemical stability and biocompatibility, facilitate GNR-PDA as an ideal candidate for drug delivery. Methylene blue (MB) and doxorubicin (DOX) are directly adsorbed on GNR-PDA via electrostatic and/or π-π stacking interactions, forming GNR-PDA-MB and GNR-PDA-DOX nanocomposites, respectively. The GNR-PDA-MB can generate reactive oxygen species (ROS, from MB) or hyperthermia (from GNR-PDA) with high efficiency under deep-red/NIR laser irradiation, while the GNR-PDA-DOX exhibits light-enhanced drug release under NIR laser irradiation. The combined dual-modal light-mediated therapy, by using GNR-PDA-MB [photodynamic/photothermal therapy (PDT/PTT)] and GNR-PDA-DOX (Chemo/PTT), is carried out and shows remarkable cancer cell killing efficiency in vitro and significant suppression of tumor growth in vivo, which are much more distinct than any single-modal therapy strategy. Our work illustrates that GNR-PDA could be a promising nanoplatform for multifunctional drug delivery and multimodal tumor theranostics in the future.
Collapse
Affiliation(s)
- Shaowei Wang
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, and ‡Bioelectromagnetics Laboratory, School of Medicine, Zhejiang University , Hangzhou, Zhejiang 310058, China
| | - Xinyuan Zhao
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, and ‡Bioelectromagnetics Laboratory, School of Medicine, Zhejiang University , Hangzhou, Zhejiang 310058, China
| | - Shaochuan Wang
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, and ‡Bioelectromagnetics Laboratory, School of Medicine, Zhejiang University , Hangzhou, Zhejiang 310058, China
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, and ‡Bioelectromagnetics Laboratory, School of Medicine, Zhejiang University , Hangzhou, Zhejiang 310058, China
| | - Sailing He
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, and ‡Bioelectromagnetics Laboratory, School of Medicine, Zhejiang University , Hangzhou, Zhejiang 310058, China
| |
Collapse
|
92
|
Dykman LA, Khlebtsov NG. Multifunctional gold-based nanocomposites for theranostics. Biomaterials 2016; 108:13-34. [PMID: 27614818 DOI: 10.1016/j.biomaterials.2016.08.040] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/08/2016] [Accepted: 08/23/2016] [Indexed: 01/21/2023]
Abstract
Although Au-particle potential in nanobiotechnology has been recognized for the last 15 years, new insights into the unique properties of multifunctional nanostructures have just recently started to emerge. Multifunctional gold-based nanocomposites combine multiple modalities to improve the efficacy of the therapeutic and diagnostic treatment of cancer and other socially significant diseases. This review is focused on multifunctional gold-based theranostic nanocomposites, which can be fabricated by three main routes. The first route is to create composite (or hybrid) nanoparticles, whose components enable diagnostic and therapeutic functions. The second route is based on smart bioconjugation techniques to functionalize gold nanoparticles with a set of different molecules, enabling them to perform targeting, diagnostic, and therapeutic functions in a single treatment procedure. Finally, the third route for multifunctionalized composite nanoparticles is a combination of the first two and involves additional functionalization of hybrid nanoparticles with several molecules possessing different theranostic modalities. This last class of multifunctionalized composites also includes fluorescent atomic clusters with multiple functionalities.
Collapse
Affiliation(s)
- Lev A Dykman
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov 410049, Russia.
| | - Nikolai G Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov 410049, Russia; Saratov State University, 83 Ulitsa Astrakhanskaya, Saratov 410012, Russia
| |
Collapse
|
93
|
Chen Q, Wen J, Li H, Xu Y, Liu F, Sun S. Recent advances in different modal imaging-guided photothermal therapy. Biomaterials 2016; 106:144-66. [PMID: 27561885 DOI: 10.1016/j.biomaterials.2016.08.022] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/08/2016] [Accepted: 08/14/2016] [Indexed: 02/06/2023]
Abstract
Photothermal therapy (PTT) has recently attracted considerable attention owing to its controllable treatment process, high tumour eradication efficiency and minimal side effects on non-cancer cells. PTT can melt cancerous cells by localising tissue hyperthermia induced by internalised therapeutic agents with a high photothermal conversion efficiency under external laser irradiation. Numerous in vitro and in vivo studies have shown the significant potential of PTT to treat tumours in future practical applications. Unfortunately, the lack of visualisation towards agent delivery and internalisation, as well as imaging-guided comprehensive evaluation of therapeutic outcome, limits its further application. Developments in combined photothermal therapeutic nanoplatforms guided by different imaging modalities have compensated for the major drawback of PTT alone, proving PTT to be a promising technique in biomedical applications. In this review, we introduce recent developments in different imaging modalities including single-modal, dual-modal, triple-modal and even multi-modal imaging-guided PTT, together with imaging-guided multi-functional theranostic nanoplatforms.
Collapse
Affiliation(s)
- Qiwen Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Science, Northwest A&F University, Xinong Road 22, Yangling, Shaanxi 712100, China
| | - Jia Wen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Science, Northwest A&F University, Xinong Road 22, Yangling, Shaanxi 712100, China
| | - Hongjuan Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Science, Northwest A&F University, Xinong Road 22, Yangling, Shaanxi 712100, China
| | - Yongqian Xu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Science, Northwest A&F University, Xinong Road 22, Yangling, Shaanxi 712100, China
| | - Fengyu Liu
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian 116023, China
| | - Shiguo Sun
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Science, Northwest A&F University, Xinong Road 22, Yangling, Shaanxi 712100, China.
| |
Collapse
|
94
|
Qian RC, Cao Y, Long YT. Binary System for MicroRNA-Targeted Imaging in Single Cells and Photothermal Cancer Therapy. Anal Chem 2016; 88:8640-7. [DOI: 10.1021/acs.analchem.6b01804] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ruo-Can Qian
- Key Laboratory for Advanced
Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People’s Republic of China
| | - Yue Cao
- Key Laboratory for Advanced
Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People’s Republic of China
| | - Yi-Tao Long
- Key Laboratory for Advanced
Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People’s Republic of China
| |
Collapse
|
95
|
Holbrook RJ, Rammohan N, Rotz MW, MacRenaris KW, Preslar AT, Meade TJ. Gd(III)-Dithiolane Gold Nanoparticles for T1-Weighted Magnetic Resonance Imaging of the Pancreas. NANO LETTERS 2016; 16:3202-9. [PMID: 27050622 PMCID: PMC5045863 DOI: 10.1021/acs.nanolett.6b00599] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Pancreatic adenocarcinoma has a 5 year survival of approximately 3% and median survival of 6 months and is among the most dismal of prognoses in all of medicine. This poor prognosis is largely due to delayed diagnosis where patients remain asymptomatic until advanced disease is present. Therefore, techniques to allow early detection of pancreatic adenocarcinoma are desperately needed. Imaging of pancreatic tissue is notoriously difficult, and the development of new imaging techniques would impact our understanding of organ physiology and pathology with applications in disease diagnosis, staging, and longitudinal response to therapy in vivo. Magnetic resonance imaging (MRI) provides numerous advantages for these types of investigations; however, it is unable to delineate the pancreas due to low inherent contrast within this tissue type. To overcome this limitation, we have prepared a new Gd(III) contrast agent that accumulates in the pancreas and provides significant contrast enhancement by MR imaging. We describe the synthesis and characterization of a new dithiolane-Gd(III) complex and a straightforward and scalable approach for conjugation to a gold nanoparticle. We present data that show the nanoconjugates exhibit very high per particle values of r1 relaxivity at both low and high magnetic field strengths due to the high Gd(III) payload. We provide evidence of pancreatic tissue labeling that includes MR images, post-mortem biodistribution analysis, and pancreatic tissue evaluation of particle localization. Significant contrast enhancement was observed allowing clear identification of the pancreas with contrast-to-noise ratios exceeding 35:1.
Collapse
Affiliation(s)
- Robert J. Holbrook
- Department of Chemistry, Molecular Biosciences, Neurobiology, Radiology, and Center for Advanced Molecular Imaging, Northwestern University, Evanston, Illinois 60208, United States
| | - Nikhil Rammohan
- Department of Chemistry, Molecular Biosciences, Neurobiology, Radiology, and Center for Advanced Molecular Imaging, Northwestern University, Evanston, Illinois 60208, United States
| | - Matthew W. Rotz
- Department of Chemistry, Molecular Biosciences, Neurobiology, Radiology, and Center for Advanced Molecular Imaging, Northwestern University, Evanston, Illinois 60208, United States
| | - Keith W. MacRenaris
- Department of Chemistry, Molecular Biosciences, Neurobiology, Radiology, and Center for Advanced Molecular Imaging, Northwestern University, Evanston, Illinois 60208, United States
| | - Adam T. Preslar
- Department of Chemistry, Molecular Biosciences, Neurobiology, Radiology, and Center for Advanced Molecular Imaging, Northwestern University, Evanston, Illinois 60208, United States
| | - Thomas J. Meade
- Department of Chemistry, Molecular Biosciences, Neurobiology, Radiology, and Center for Advanced Molecular Imaging, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
96
|
Wu M, Wang Q, Zhang D, Liao N, Wu L, Huang A, Liu X. Magnetite nanocluster@poly(dopamine)-PEG@ indocyanine green nanobead with magnetic field-targeting enhanced MR imaging and photothermal therapy in vivo. Colloids Surf B Biointerfaces 2016; 141:467-475. [PMID: 26896652 DOI: 10.1016/j.colsurfb.2016.02.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 01/19/2016] [Accepted: 02/08/2016] [Indexed: 11/26/2022]
Abstract
Multifunctional nanomaterials with the magnetic resonance imaging (MRI) guided tumor photothermal ablation ability have been extensively applied in biomedical research as one of the most exciting and challenging strategies for cancer treatment. Nevertheless, most of these nanomaterials still suffer from low accumulation in tumor tissues and insufficient photothermal ablation of tumors so far. Here, we report a novel approach to overcome these limitations using a core-shell magnetite nanocluster@poly(dopamine)-PEG@ICG nanobead compositing of magnetite nanocluster core with coating of poly(dopamine), then further conjugating with polyethylene glycol (PEG) and adsorbing indocyanine green (ICG) on the surface. The adsorbed ICG in the nanobead displays a higher photostability and photothermal conversion ability than free ICG, as well as additional photothermal effect rather than magnetite nanocluster and poly(dopamine), which endow the nanobead with enhanced photothermal killing efficiency against cancer cells under near-infrared (NIR) laser irritation. Furthermore, it is proved that these nanobeads have excellent biocompatibility, T2-weighted MR imaging and magnetic field targeting ability. By applying an external magnetic field (MF) focused on the targeted tumor, a magnetic targeting mediated enhanced accumulation is observed at tumor site as proved by a darker T2-weighted MR image. Utilizing the magnetic targeting strategy, enhanced photothermal tumor ablation was achieved under laser irradiation in vivo, which is reflected by the degree of tumor tissue damage and tumor growth delay. Therefore, this nanobead integrates the abilities of magnetic field-targeting, MR imaging and photothermal cancer therapy, and might be a promising theranostic platform for tumor treatment.
Collapse
Affiliation(s)
- Ming Wu
- Department of Pathology, School of Basic Medical Science, Fujian Medical University, Fuzhou 350004, PR China; The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China
| | - Qingtang Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China; The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, PR China
| | - Da Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China; The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, PR China
| | - Naishun Liao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China; The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, PR China
| | - Lingjie Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China; The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, PR China
| | - Aimin Huang
- Department of Pathology, School of Basic Medical Science, Fujian Medical University, Fuzhou 350004, PR China; The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China; The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, PR China.
| | - Xiaolong Liu
- Department of Pathology, School of Basic Medical Science, Fujian Medical University, Fuzhou 350004, PR China; The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China; The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, PR China.
| |
Collapse
|
97
|
Cherukula K, Manickavasagam Lekshmi K, Uthaman S, Cho K, Cho CS, Park IK. Multifunctional Inorganic Nanoparticles: Recent Progress in Thermal Therapy and Imaging. NANOMATERIALS (BASEL, SWITZERLAND) 2016; 6:E76. [PMID: 28335204 PMCID: PMC5302572 DOI: 10.3390/nano6040076] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/01/2016] [Accepted: 04/06/2016] [Indexed: 12/18/2022]
Abstract
Nanotechnology has enabled the development of many alternative anti-cancer approaches, such as thermal therapies, which cause minimal damage to healthy cells. Current challenges in cancer treatment are the identification of the diseased area and its efficient treatment without generating many side effects. Image-guided therapies can be a useful tool to diagnose and treat the diseased tissue and they offer therapy and imaging using a single nanostructure. The present review mainly focuses on recent advances in the field of thermal therapy and imaging integrated with multifunctional inorganic nanoparticles. The main heating sources for heat-induced therapies are the surface plasmon resonance (SPR) in the near infrared region and alternating magnetic fields (AMFs). The different families of inorganic nanoparticles employed for SPR- and AMF-based thermal therapies and imaging are described. Furthermore, inorganic nanomaterials developed for multimodal therapies with different and multi-imaging modalities are presented in detail. Finally, relevant clinical perspectives and the future scope of inorganic nanoparticles in image-guided therapies are discussed.
Collapse
Affiliation(s)
- Kondareddy Cherukula
- Department of Biomedical Science and BK21 PLUS Centre for Creative Biomedical Scientists, Chonnam National University Medical School, Gwangju 501-746, Korea.
| | - Kamali Manickavasagam Lekshmi
- Department of Biomedical Science and BK21 PLUS Centre for Creative Biomedical Scientists, Chonnam National University Medical School, Gwangju 501-746, Korea.
| | - Saji Uthaman
- Department of Biomedical Science and BK21 PLUS Centre for Creative Biomedical Scientists, Chonnam National University Medical School, Gwangju 501-746, Korea.
| | - Kihyun Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea.
| | - Chong-Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea.
| | - In-Kyu Park
- Department of Biomedical Science and BK21 PLUS Centre for Creative Biomedical Scientists, Chonnam National University Medical School, Gwangju 501-746, Korea.
| |
Collapse
|
98
|
Tan X, Pang X, Lei M, Ma M, Guo F, Wang J, Yu M, Tan F, Li N. An efficient dual-loaded multifunctional nanocarrier for combined photothermal and photodynamic therapy based on copper sulfide and chlorin e6. Int J Pharm 2016; 503:220-8. [PMID: 26988376 DOI: 10.1016/j.ijpharm.2016.03.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 02/16/2016] [Accepted: 03/11/2016] [Indexed: 02/01/2023]
Abstract
The therapeutic effectiveness of photodynamic therapy (PDT) was hampered by the poor water solubility and instability in physiological conditions of the photosensitizers. Here, we designed folate conjugated thermosensitive liposomes (TSL) as the nanocarrier to improve the solubility, stability and biocompatibility of photosensitizer Chlorin e6 (Ce6). Based on the photothermal effect, we combined copper sulfide (CuS) as the photothermal agent to realize heat-triggered Ce6 release as well as synergistic effect of photothermal and photodynamic therapy. In vitro MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay showed that Ce6-CuS-TSL had low dark toxicity, while performed excellent phototoxicity under the combined 660 and 808 nm laser irradiation compared to any single laser irradiation alone. Moreover, in vivo combination therapy study revealed that Ce6-CuS-TSL inhibited tumor growth to a great extent without evident side effect under the laser irradiation. All detailed evidence demonstrated a considerable potential of Ce6-CuS-TSL for synergistic cancer treatment.
Collapse
Affiliation(s)
- Xiaoxiao Tan
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Xiaojuan Pang
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Mingzhu Lei
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Man Ma
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Fang Guo
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Jinping Wang
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Meng Yu
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Fengping Tan
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Nan Li
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
99
|
Wang S, Zhang Q, Yang P, Yu X, Huang LY, Shen S, Cai S. Manganese Oxide-Coated Carbon Nanotubes As Dual-Modality Lymph Mapping Agents for Photothermal Therapy of Tumor Metastasis. ACS APPLIED MATERIALS & INTERFACES 2016; 8:3736-43. [PMID: 26653008 DOI: 10.1021/acsami.5b08087] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Lymph node (LN) status is a major indicator of stage and survival of lung cancer patients. LN dissection is a primary option for lung cancer LN metastasis; however, this strategy elicits adverse effects and great trauma. Therefore, developing a minimally invasive technique to cure LN metastasis of lung cancer is desired. In this study, multiwalled carbon nanotubes (MWNTs) coated with manganese oxide (MnO) and polyethylene glycol (PEG) (namely MWNTs-MnO-PEG) was employed as a lymphatic theranostic agent to diagnose and treat metastatic LNs. After single local injection and lymph drainage were performed, regional LNs were clearly mapped by T1-weighted magnetic resonance (MR) of MnO and dark dye imaging of MWNTs. Meanwhile, metastatic LNs could be simultaneously ablated by near-infrared (NIR) irradiation under the guidance of dual-modality mapping. The excellent result was obtained in mice bearing LNs metastasis models, showing that MWNTs-MnO-PEG as a multifunctional theranostic agent was competent for dual-modality mapping guided photothermal therapy of metastatic LNs.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center , Shanghai 200032, China
| | - Qin Zhang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University , Shanghai 200030, China
| | | | | | - Li-Yong Huang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center , Shanghai 200032, China
| | | | - Sanjun Cai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center , Shanghai 200032, China
| |
Collapse
|
100
|
Zhang D, Wu M, Zeng Y, Liao N, Cai Z, Liu G, Liu X, Liu J. Lipid micelles packaged with semiconducting polymer dots as simultaneous MRI/photoacoustic imaging and photodynamic/photothermal dual-modal therapeutic agents for liver cancer. J Mater Chem B 2016; 4:589-599. [PMID: 32262941 DOI: 10.1039/c5tb01827g] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Incorporating multiple imaging modalities and simultaneous therapeutic functions together into one single nano-formulation is of great importance for developing high-performance clinical-translatable theranostic agents. Herein, we fabricated multifunctional lipid-micelles incorporated with semiconducting polymer dots and a photosensitizer (referred as Pdots/Ce6@lipid-Gd-DOTA micelles) for combined magnetic resonance imaging (MRI)/photoacoustic imaging (PAI) and photodynamic (PDT)/photothermal (PTT) dual-modal therapy that induced by a single laser to achieve enhanced cancer therapeutic efficiency. The Pdots/Ce6@lipid-Gd-DOTA micelles with excellent water dispersibility were comprised of a core with poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']-dithiophene)-alt-4,7-(2,1,3-benzo-thiadiazole)] dots (Pdots) and Ce6 molecules inside, and a lipid-PEG outlayer conjugated with gadolinium-1,4,7,10-tetraacetic acid. The prepared Pdots/Ce6@lipid-Gd-DOTA micelles exhibited extremely low cytotoxicity, and had excellent MR- and PA-imaging contrast-enhancement ability, which could synchronously offer anatomical information and morphological information of tumors. Moreover, both Pdots and Ce6 photosensitizer, encapsulated inside the lipid-Gd-DOTA micelles, exhibited high NIR absorption at 670 nm and were applied to combine photothermal and photodynamic therapy simultaneously to achieve enhanced synergistic cancer therapeutic efficiency both in vitro and in vivo. In summary, our studies demonstrated that Pdots/Ce6@lipid-Gd-DOTA micelles with multi-diagnosis modalities and simultaneous dual-modal photo-therapy functions might be a potential interesting theranostic platform for tumor treatment.
Collapse
Affiliation(s)
- Da Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|