51
|
|
52
|
Ehlers MR. Immune-modulating effects of alpha-1 antitrypsin. Biol Chem 2015; 395:1187-93. [PMID: 24854541 DOI: 10.1515/hsz-2014-0161] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 04/09/2014] [Indexed: 01/27/2023]
Abstract
Alpha-1 antitrypsin (AAT) is a circulating serine protease inhibitor (serpin) that inhibits neutrophil elastase in the lung, and AAT deficiency is associated with early-onset emphysema. AAT is also a liver-derived acute-phase protein that, in vitro and in vivo, reduces production of pro-inflammatory cytokines, inhibits apoptosis, blocks leukocyte degranulation and migration, and modulates local and systemic inflammatory responses. In monocytes, AAT has been shown to increase intracellular cAMP, regulate expression of CD14, and suppress NFκB nuclear translocation. These effects may be mediated by AAT's serpin activity or by other protein-binding activities. In preclinical models of autoimmunity and transplantation, AAT therapy prevents or reverses autoimmune disease and graft loss, and these effects are accompanied by tolerogenic changes in cytokine and transcriptional profiles and T cell subsets. This review highlights advances in our understanding of the immune-modulating effects of AAT and their potential therapeutic utility.
Collapse
|
53
|
Lin F, Zhou A, Wei Z. Crystallization and crystallographic studies of kallistatin. Acta Crystallogr F Struct Biol Commun 2015; 71:1135-8. [PMID: 26323298 PMCID: PMC4555919 DOI: 10.1107/s2053230x15012893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 07/03/2015] [Indexed: 01/27/2023] Open
Abstract
Kallistatin is a serine protease inhibitor (serpin) which specifically inhibits human tissue kallikrein; however, its inhibitory activity is inhibited by heparin. In order to elucidate the underlying mechanism, recombinant human kallistatin was prepared in Escherichia coli and the protein was crystallized by the sitting-drop vapour-diffusion method. X-ray diffraction data were collected to 1.9 Å resolution. The crystals were found to belong to space group P61, with unit-cell parameters a = 113.51, b = 113.51, c = 76.17 Å. Initial analysis indicated that the crystallized kallistatin was in a relaxed conformation, with its reactive-centre loop inserted in the central β-sheet.
Collapse
Affiliation(s)
- Fang Lin
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Faculty of Basic Medicine, and Department of Pathophysiology, Shanghai Jiaotong University School of Medicine, (Room 1006, Building 2, No 280, South Chongqing Road), Shanghai 200025, People’s Republic of China
| | - Aiwu Zhou
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Faculty of Basic Medicine, and Department of Pathophysiology, Shanghai Jiaotong University School of Medicine, (Room 1006, Building 2, No 280, South Chongqing Road), Shanghai 200025, People’s Republic of China
| | - Zhenquan Wei
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Faculty of Basic Medicine, and Department of Pathophysiology, Shanghai Jiaotong University School of Medicine, (Room 1006, Building 2, No 280, South Chongqing Road), Shanghai 200025, People’s Republic of China
| |
Collapse
|
54
|
Gierczak RF, Bhakta V, Xie M, Sheffield WP. Comparison of mammalian and bacterial expression library screening to detect recombinant alpha-1 proteinase inhibitor variants with enhanced thrombin inhibitory capacity. J Biotechnol 2015; 208:54-62. [PMID: 26043905 DOI: 10.1016/j.jbiotec.2015.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 05/27/2015] [Indexed: 11/29/2022]
Abstract
Serpins are a widely distributed family of serine protease inhibitors. A key determinant of their specificity is the reactive centre loop (RCL), a surface motif of ∼20 amino acids in length. Expression libraries of variant serpins could be rapidly probed with proteases to develop novel inhibitors if optimal systems were available. The serpin variant alpha-1 proteinase inhibitor M358R (API M358R) inhibits the coagulation protease thrombin, but at sub-maximal rates compared to other serpins. Here we compared two approaches to isolate functional API variants from serpin expression libraries, using the same small library of API randomized at residue 358 (M358X): flow cytometry of transfected HEK 293 cells expressing membrane-displayed API; and a thrombin capture assay (TCA) performed on pools of bacterial lysates expressing soluble API. No enrichment for specific P1 residues was observed when the RCL codons of the 1% of sorted transfected 293 cells with the highest fluorescent thrombin-binding signals were subcloned and sequenced. In contrast, screening of 16 pools of bacterial API-expressing transformants led to the facile identification of API M358R and M358K as functional variants. Kinetic characterization showed that API M358R inhibited thrombin 17-fold more rapidly than API M358K. Reducing the incubation time with immobilized thrombin improved the sensitivity of TCA to detect supra-active API M358R variants and was used to screen a hypervariable library of API variants expressing 16 different amino acids at residues 352-357. The most active variant isolated, with TLSATP substituted for FLEAI, inhibited thrombin 2.9-fold more rapidly than API M358R. Our results indicate that flow cytometric approaches used in protein engineering of antibodies are not appropriate for serpins, and highlight the utility of the optimized TCA for serpin protein engineering.
Collapse
Affiliation(s)
- Richard F Gierczak
- Department of Pathology and Molecular Medicine, McMasterUniversity, Hamilton, Ontario, Canada
| | - Varsha Bhakta
- Canadian Blood Services, Centre for Innovation, Hamilton, Ontario, Canada
| | - Michael Xie
- Department of Pathology and Molecular Medicine, McMasterUniversity, Hamilton, Ontario, Canada
| | - William P Sheffield
- Department of Pathology and Molecular Medicine, McMasterUniversity, Hamilton, Ontario, Canada; Canadian Blood Services, Centre for Innovation, Hamilton, Ontario, Canada.
| |
Collapse
|
55
|
The aggregation-prone intracellular serpin SRP-2 fails to transit the ER in Caenorhabditis elegans. Genetics 2015; 200:207-19. [PMID: 25786854 DOI: 10.1534/genetics.115.176180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/17/2015] [Indexed: 11/18/2022] Open
Abstract
Familial encephalopathy with neuroserpin inclusions bodies (FENIB) is a serpinopathy that induces a rare form of presenile dementia. Neuroserpin contains a classical signal peptide and like all extracellular serine proteinase inhibitors (serpins) is secreted via the endoplasmic reticulum (ER)-Golgi pathway. The disease phenotype is due to gain-of-function missense mutations that cause neuroserpin to misfold and aggregate within the ER. In a previous study, nematodes expressing a homologous mutation in the endogenous Caenorhabditis elegans serpin, srp-2, were reported to model the ER proteotoxicity induced by an allele of mutant neuroserpin. Our results suggest that SRP-2 lacks a classical N-terminal signal peptide and is a member of the intracellular serpin family. Using confocal imaging and an ER colocalization marker, we confirmed that GFP-tagged wild-type SRP-2 localized to the cytosol and not the ER. Similarly, the aggregation-prone SRP-2 mutant formed intracellular inclusions that localized to the cytosol. Interestingly, wild-type SRP-2, targeted to the ER by fusion to a cleavable N-terminal signal peptide, failed to be secreted and accumulated within the ER lumen. This ER retention phenotype is typical of other obligate intracellular serpins forced to translocate across the ER membrane. Neuroserpin is a secreted protein that inhibits trypsin-like proteinase. SRP-2 is a cytosolic serpin that inhibits lysosomal cysteine peptidases. We concluded that SRP-2 is neither an ortholog nor a functional homolog of neuroserpin. Furthermore, animals expressing an aggregation-prone mutation in SRP-2 do not model the ER proteotoxicity associated with FENIB.
Collapse
|
56
|
Chanprasert S, Scaglia F. Adult liver disorders caused by inborn errors of metabolism: review and update. Mol Genet Metab 2015; 114:1-10. [PMID: 25467056 DOI: 10.1016/j.ymgme.2014.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/23/2014] [Accepted: 10/23/2014] [Indexed: 12/22/2022]
Abstract
Inborn errors of metabolism (IEMs) are a group of genetic diseases that have protean clinical manifestations and can involve several organ systems. The age of onset is highly variable but IEMs afflict mostly the pediatric population. However, in the past decades, the advancement in management and new therapeutic approaches have led to the improvement in IEM patient care. As a result, many patients with IEMs are surviving into adulthood and developing their own set of complications. In addition, some IEMs will present in adulthood. It is important for internists to have the knowledge and be familiar with these conditions because it is predicted that more and more adult patients with IEMs will need continuity of care in the near future. The review will focus on Wilson disease, alpha-1 antitrypsin deficiency, citrin deficiency, and HFE-associated hemochromatosis which are typically found in the adult population. Clinical manifestations and pathophysiology, particularly those that relate to hepatic disease as well as diagnosis and management will be discussed in detail.
Collapse
Affiliation(s)
- Sirisak Chanprasert
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children Hospital, Houston, TX, USA
| | - Fernando Scaglia
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children Hospital, Houston, TX, USA.
| |
Collapse
|
57
|
Giovannoni I, Callea F, Stefanelli M, Mariani R, Santorelli FM, Francalanci P. Alpha-1-antitrypsin deficiency: from genoma to liver disease. PiZ mouse as model for the development of liver pathology in human. Liver Int 2015; 35:198-206. [PMID: 24529185 DOI: 10.1111/liv.12504] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 02/08/2014] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIMS Homozygous individuals with alpha-1-antitrypsin deficiency (AATD) type PiZ have an increased risk of chronic liver disease and hepatocellular carcinoma (HCC). It is noteworthy that HCCs are composed by hepatocytes without accumulation of AAT, but the reason for this remains unclear. The aim of this study was to determine liver pathology in PiZ mice, focusing the attention on the distribution of AAT globules in normal liver, regenerative foci and neoplastic nodules. METHODS Liver of 79 PiZ mice and 18 wild type (Wt) was histologically analysed for steatosis, clear cell foci, hyperplasia and neoplasia. The expression of human-AAT transgene and murine AAT, in non-neoplastic liver and in hyperplastic/neoplastic nodules was tested by qPCR and qRT-PCR. RT-PCR was used to study expression of hepatic markers: albumin, α-foetoprotein, transthyretin, AAT, glucose-6-phospate, tyrosine aminotransferase. RESULTS Liver pathology was seen more frequently in PiZ (47/79) than in Wt (5/18) and its development was age related. In older PiZ mice (18-24 m), livers showed malignant tumours (HCC and angiosarcoma) (17/50), hyperplastic nodules (28/50), non-specific changes (33/50), whereas only 9/50 were normal. Both human-AATZ DNA and mRNA showed no differences between tumours/nodules and normal liver, while murine-AAT mRNA was reduced in tumours/nodules. CONCLUSION Accumulation of AAT is associated with an increased risk of liver nodules. The presence of globule-devoid hepatocytes and the reduced expression of murine-AAT mRNA in hyperplastic and neoplastic nodules suggest that these hepatic lesions in AATD could originate from proliferating dedifferentiated cells, lacking AAT storage and becoming capable of AFP re-expression.
Collapse
Affiliation(s)
- Isabella Giovannoni
- Department of Pathology, Children's Hospital Bambino Gesù, IRCCS, Rome, Italy
| | | | | | | | | | | |
Collapse
|
58
|
Functional stability of plasminogen activator inhibitor-1. ScientificWorldJournal 2014; 2014:858293. [PMID: 25386620 PMCID: PMC4214104 DOI: 10.1155/2014/858293] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 09/17/2014] [Indexed: 12/23/2022] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is the main inhibitor of plasminogen activators, such as tissue-type plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA), and a major regulator of the fibrinolytic system. PAI-1 plays a pivotal role in acute thrombotic events such as deep vein thrombosis (DVT) and myocardial infarction (MI). The biological effects of PAI-1 extend far beyond thrombosis including its critical role in fibrotic disorders, atherosclerosis, renal and pulmonary fibrosis, type-2 diabetes, and cancer. The conversion of PAI-1 from the active to the latent conformation appears to be unique among serpins in that it occurs spontaneously at a relatively rapid rate. Latency transition is believed to represent a regulatory mechanism, reducing the risk of thrombosis from a prolonged antifibrinolytic action of PAI-1. Thus, relying solely on plasma concentrations of PAI-1 without assessing its function may be misleading in interpreting the role of PAI-1 in many complex diseases. Environmental conditions, interaction with other proteins, mutations, and glycosylation are the main factors that have a significant impact on the stability of the PAI-1 structure. This review provides an overview on the current knowledge on PAI-1 especially importance of PAI-1 level and stability and highlights the potential use of PAI-1 inhibitors for treating cardiovascular disease.
Collapse
|
59
|
Jung CH, Lim JH, Lee K, Im H. An Endoplasmic Reticulum Cyclophilin Cpr5p Rescues Z-type α 1-Antitrypsin from Retarded Folding. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.9.2781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
60
|
Yang L, Dinarvand P, Qureshi SH, Rezaie AR. Engineering D-helix of antithrombin in alpha-1-proteinase inhibitor confers antiinflammatory properties on the chimeric serpin. Thromb Haemost 2014; 112:164-75. [PMID: 24522239 PMCID: PMC4087087 DOI: 10.1160/th13-12-1029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 01/29/2014] [Indexed: 01/20/2023]
Abstract
Antithrombin (AT) is a heparin-binding serpin in plasma which regulates the proteolytic activity of procoagulant proteases of the clotting cascade. In addition to being an anticoagulant, AT also exhibits antiinflammatory activities when it binds to cell surface heparan sulfate proteoglycans (HSPGs) on the endothelium via its basic residues of D-helix to elicit intracellular signalling responses. By contrast to AT, α1-proteinase inhibitor (α1-PI) is a non-heparin-binding serpin that exhibits very slow reactivity with coagulation proteases and possesses no HSPG-dependent antiinflammatory properties. To determine whether the antiinflammatory signaling specificity of AT can be transferred to α1-PI, we replaced the D-helix of human α1-PI with the corresponding sequence of human AT and expressed the chimeric serpin α1-PI/D-helix) in a bacterial expression system. High molecular weight heparin bound to α1-PI/D-helix and accelerated the inhibition of thrombin by the serpin mutant by a template mechanism reminiscent of the cofactor effect of heparin on inhibition of thrombin by AT. Like AT, α1-PI/D-helix exhibited antiinflammatory properties in both cellular and animal models. Thus, α1-PI/D-helix inhibited the barrier-disruptive effect of proinflammatory cytokines and inhibited the activation of nuclear factor-κB transcription factor in lipopolysaccharide-stimulated endothelial cells by a concentration-dependent manner. Furthermore, the chimeric serpin reduced lipopolysaccharide-mediated lethality, elicited a vascular protective effect and inhibited infiltration of activated leukocytes to the peritoneal cavity of mice in an HMGB1-mediated inflammatory model. These results suggest that grafting the D-helix of AT to α1-PI confers antiinflammatory properties on the serpin and that the chimeric serpin may have therapeutic utility for treating inflammatory disorders.
Collapse
Affiliation(s)
| | | | | | - A R Rezaie
- Alireza R. Rezaie, PhD, Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, 1100 S. Grand Blvd., St. Louis, MO 63104, USA, Tel.: +1 314 977 9240, Fax: +1 314 977 9205 , E-mail:
| |
Collapse
|
61
|
McCarthy C, Saldova R, Wormald MR, Rudd PM, McElvaney NG, Reeves EP. The Role and Importance of Glycosylation of Acute Phase Proteins with Focus on Alpha-1 Antitrypsin in Acute and Chronic Inflammatory Conditions. J Proteome Res 2014; 13:3131-43. [DOI: 10.1021/pr500146y] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Cormac McCarthy
- Respiratory
Research Division, Royal College of Surgeons in Ireland, Beaumont
Hospital, Dublin 9, Ireland
| | - Radka Saldova
- NIBRT
GlycoScience Group, The National Institute for Bioprocessing Research
and Training, University College Dublin, Dublin 4, Ireland
| | - Mark R Wormald
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford OX1 3QU, U.K
| | - Pauline M. Rudd
- NIBRT
GlycoScience Group, The National Institute for Bioprocessing Research
and Training, University College Dublin, Dublin 4, Ireland
| | - Noel G. McElvaney
- Respiratory
Research Division, Royal College of Surgeons in Ireland, Beaumont
Hospital, Dublin 9, Ireland
| | - Emer P. Reeves
- Respiratory
Research Division, Royal College of Surgeons in Ireland, Beaumont
Hospital, Dublin 9, Ireland
| |
Collapse
|
62
|
Therapeutic targeting of misfolding and conformational change in α1-antitrypsin deficiency. Future Med Chem 2014; 6:1047-65. [DOI: 10.4155/fmc.14.58] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Misfolding and conformational diseases are increasing in prominence and prevalence. Both misfolding and ‘postfolding’ conformational mechanisms can contribute to pathogenesis and can coexist. The different contexts of folding and native state behavior may have implications for the development of therapeutic strategies. α1-antitrypsin deficiency illustrates how these issues can be addressed with therapeutic approaches to rescue folding, ameliorate downstream consequences of aberrant polymerization and/or maintain physiological function. Small-molecule strategies have successfully targeted structural features of the native conformer. Recent developments include the capability to follow solution behavior of α1-antitrypsin in the context of disease mutations and interactions with drug-like compounds. Moreover, preclinical studies in cells and organisms support the potential of manipulating cellular response repertoires to process misfolded and polymer states.
Collapse
|
63
|
Takahashi N, Onda M, Hayashi K, Yamasaki M, Mita T, Hirose M. Thermostability of Refolded Ovalbumin andS-Ovalbumin. Biosci Biotechnol Biochem 2014; 69:922-31. [PMID: 15914911 DOI: 10.1271/bbb.69.922] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ovalbumin, a member of the serpin superfamily, is transformed into a thermostabilized form, S-ovalbumin, during storage of shell eggs or by an alkaline treatment of the isolated protein (DeltaT(m)=8 degrees C). As structural characteristics of S-ovalbumin, three serine residues (Ser164, Ser236 and Ser320) take the D-amino acid residue configuration, while the conformational change from non-thermostabilized native ovalbumin is very small. To assess the role of the structural characteristics on protein thermostabilization, ovalbumin and S-ovalbumin were denatured to eliminate the conformational modulation effects and then refolded. The denatured ovalbumin and S-ovalbumin were correctly refolded into the original non-denatured forms with the corresponding differential thermostability. There was essentially no difference in the disulfide structures of the native and refolded forms of ovalbumin and S-ovalbumin. These data are consistent with the view that the configuration inversion, which is the only chemical modification directly detected in S-ovalbumin so far, plays a central role in ovalbumin thermostabilization. The rate of refolding of S-ovalbumin was greater than that of ovalbumin, indicating the participation, at least in part, of an increased folding rate for thermodynamic stabilization.
Collapse
Affiliation(s)
- Nobuyuki Takahashi
- The Division of Applied Life Sciences, The Graduate School of Agriculture, Kyoto University, Kyoto.
| | | | | | | | | | | |
Collapse
|
64
|
Chang YP, Chu YH. Mixture-based combinatorial libraries from small individual peptide libraries: a case study on α1-antitrypsin deficiency. Molecules 2014; 19:6330-48. [PMID: 24840902 PMCID: PMC6271437 DOI: 10.3390/molecules19056330] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/12/2014] [Accepted: 05/13/2014] [Indexed: 12/12/2022] Open
Abstract
The design, synthesis and screening of diversity-oriented peptide libraries using a "libraries from libraries" strategy for the development of inhibitors of α1-antitrypsin deficiency are described. The major buttress of the biochemical approach presented here is the use of well-established solid-phase split-and-mix method for the generation of mixture-based libraries. The combinatorial technique iterative deconvolution was employed for library screening. While molecular diversity is the general consideration of combinatorial libraries, exquisite design through systematic screening of small individual libraries is a prerequisite for effective library screening and can avoid potential problems in some cases. This review will also illustrate how large peptide libraries were designed, as well as how a conformation-sensitive assay was developed based on the mechanism of the conformational disease. Finally, the combinatorially selected peptide inhibitor capable of blocking abnormal protein aggregation will be characterized by biophysical, cellular and computational methods.
Collapse
Affiliation(s)
- Yi-Pin Chang
- The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
| | - Yen-Ho Chu
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Minhsiung, Chiayi 62102, Taiwan.
| |
Collapse
|
65
|
O'Reilly LP, Long OS, Cobanoglu MC, Benson JA, Luke CJ, Miedel MT, Hale P, Perlmutter DH, Bahar I, Silverman GA, Pak SC. A genome-wide RNAi screen identifies potential drug targets in a C. elegans model of α1-antitrypsin deficiency. Hum Mol Genet 2014; 23:5123-32. [PMID: 24838285 DOI: 10.1093/hmg/ddu236] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
α1-Antitrypsin deficiency (ATD) is a common genetic disorder that can lead to end-stage liver and lung disease. Although liver transplantation remains the only therapy currently available, manipulation of the proteostasis network (PN) by small molecule therapeutics offers great promise. To accelerate the drug-discovery process for this disease, we first developed a semi-automated high-throughput/content-genome-wide RNAi screen to identify PN modifiers affecting the accumulation of the α1-antitrypsin Z mutant (ATZ) in a Caenorhabditis elegans model of ATD. We identified 104 PN modifiers, and these genes were used in a computational strategy to identify human ortholog-ligand pairs. Based on rigorous selection criteria, we identified four FDA-approved drugs directed against four different PN targets that decreased the accumulation of ATZ in C. elegans. We also tested one of the compounds in a mammalian cell line with similar results. This methodology also proved useful in confirming drug targets in vivo, and predicting the success of combination therapy. We propose that small animal models of genetic disorders combined with genome-wide RNAi screening and computational methods can be used to rapidly, economically and strategically prime the preclinical discovery pipeline for rare and neglected diseases with limited therapeutic options.
Collapse
Affiliation(s)
| | | | - Murat C Cobanoglu
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC and Magee-Womens Hospital Research Institute, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | | | | | | | | | | | - Ivet Bahar
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC and Magee-Womens Hospital Research Institute, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | | | | |
Collapse
|
66
|
Qi X, Chan WL, Read RJ, Zhou A, Carrell RW. Temperature-responsive release of thyroxine and its environmental adaptation in Australians. Proc Biol Sci 2014; 281:20132747. [PMID: 24478298 PMCID: PMC3924073 DOI: 10.1098/rspb.2013.2747] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 01/07/2014] [Indexed: 12/15/2022] Open
Abstract
The hormone thyroxine that regulates mammalian metabolism is carried and stored in the blood by thyroxine-binding globulin (TBG). We demonstrate here that the release of thyroxine from TBG occurs by a temperature-sensitive mechanism and show how this will provide a homoeostatic adjustment of the concentration of thyroxine to match metabolic needs, as with the hypothermia and torpor of small animals. In humans, a rise in temperature, as in infections, will trigger an accelerated release of thyroxine, resulting in a predictable 23% increase in the concentration of free thyroxine at 39°C. The in vivo relevance of this fever-response is affirmed in an environmental adaptation in aboriginal Australians. We show how two mutations incorporated in their TBG interact in a way that will halve the surge in thyroxine release, and hence the boost in metabolic rate that would otherwise occur as body temperatures exceed 37°C. The overall findings open insights into physiological changes that accompany variations in body temperature, as notably in fevers.
Collapse
Affiliation(s)
- Xiaoqiang Qi
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Wee Lee Chan
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Randy J. Read
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Aiwu Zhou
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education of China, School of Medicine, Shanghai JiaoTong University, No. 280, Shanghai 200025, People's Republic of China
| | - Robin W. Carrell
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
67
|
Espinosa-Marzal RM, Fontani G, Reusch FB, Roba M, Spencer ND, Crockett R. Sugars communicate through water: oriented glycans induce water structuring. Biophys J 2014; 104:2686-94. [PMID: 23790377 DOI: 10.1016/j.bpj.2013.05.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 04/16/2013] [Accepted: 05/06/2013] [Indexed: 01/13/2023] Open
Abstract
Cells are coated with a glycocalyx-a layer of carbohydrate-containing biomolecules, such as glycoproteins. Although the structure and orientation of the cell-surface glycans are frequently regarded as being random, we have found, using α-1-acid glycoprotein and antitrypsin as model systems for surface glycans, that this is not the case. A glycoprotein monolayer was adsorbed onto hydrophilic and hydrophobic substrates. Surface-force measurements revealed that the orientation of the glycans with respect to the aqueous solution has a profound effect on the structure of vicinal water. The glycan antennae of the surface-adsorbed glycoproteins apparently impose an ordering on the water, resulting in a strong repulsive force over some tens of nanometers with superposed film-thickness transitions ranging from ≈0.7 to 1.8 nm. When the glycan orientation is modified by chemical means, this long-range repulsion disappears. These results may provide an explanation as to why the multiantennary structure is ubiquitous in glycoproteins. Although direct, specific interactions between glycans and other biomolecules are essential for their functionality, these results indicate that glycans' long-range structuring of water may also influence their ability to interact with biomolecules in their vicinity.
Collapse
Affiliation(s)
- Rosa M Espinosa-Marzal
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
68
|
Scott BM, Matochko WL, Gierczak RF, Bhakta V, Derda R, Sheffield WP. Phage display of the serpin alpha-1 proteinase inhibitor randomized at consecutive residues in the reactive centre loop and biopanned with or without thrombin. PLoS One 2014; 9:e84491. [PMID: 24427287 PMCID: PMC3888415 DOI: 10.1371/journal.pone.0084491] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/15/2013] [Indexed: 02/04/2023] Open
Abstract
In spite of the power of phage display technology to identify variant proteins with novel properties in large libraries, it has only been previously applied to one member of the serpin superfamily. Here we describe phage display of human alpha-1 proteinase inhibitor (API) in a T7 bacteriophage system. API M358R fused to the C-terminus of T7 capsid protein 10B was directly shown to form denaturation-resistant complexes with thrombin by electrophoresis and immunoblotting following exposure of intact phages to thrombin. We therefore developed a biopanning protocol in which thrombin-reactive phages were selected using biotinylated anti-thrombin antibodies and streptavidin-coated magnetic beads. A library consisting of displayed API randomized at residues 357 and 358 (P2-P1) yielded predominantly Pro-Arg at these positions after five rounds of thrombin selection; in contrast the same degree of mock selection yielded only non-functional variants. A more diverse library of API M358R randomized at residues 352-356 (P7-P3) was also probed, yielding numerous variants fitting a loose consensus of DLTVS as judged by sequencing of the inserts of plaque-purified phages. The thrombin-selected sequences were transferred en masse into bacterial expression plasmids, and lysates from individual colonies were screening for API-thrombin complexing. The most active candidates from this sixth round of screening contained DITMA and AAFVS at P7-P3 and inhibited thrombin 2.1-fold more rapidly than API M358R with no change in reaction stoichiometry. Deep sequencing using the Ion Torrent platform confirmed that over 800 sequences were significantly enriched in the thrombin-panned versus naïve phage display library, including some detected using the combined phage display/bacterial lysate screening approach. Our results show that API joins Plasminogen Activator Inhibitor-1 (PAI-1) as a serpin amenable to phage display and suggest the utility of this approach for the selection of "designer serpins" with novel reactivity and/or specificity.
Collapse
Affiliation(s)
- Benjamin M. Scott
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Wadim L. Matochko
- Department of Chemistry, Alberta Glycomics Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Richard F. Gierczak
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Varsha Bhakta
- Canadian Blood Services, Research and Development, Hamilton, Ontario, Canada
| | - Ratmir Derda
- Department of Chemistry, Alberta Glycomics Centre, University of Alberta, Edmonton, Alberta, Canada
| | - William P. Sheffield
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- Canadian Blood Services, Research and Development, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
69
|
McCarthy C, Saldova R, O'Brien ME, Bergin DA, Carroll TP, Keenan J, Meleady P, Henry M, Clynes M, Rudd PM, Reeves EP, McElvaney NG. Increased outer arm and core fucose residues on the N-glycans of mutated alpha-1 antitrypsin protein from alpha-1 antitrypsin deficient individuals. J Proteome Res 2013; 13:596-605. [PMID: 24328305 DOI: 10.1021/pr400752t] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Alpha-1 antitrypsin (AAT) is the major physiological inhibitor of a range of serine proteases, and in the lung, it maintains a protease-antiprotease balance. AAT deficiency (AATD) is an autosomal co-dominant condition with the Z mutation being the most common cause. Individuals homozygous for Z (PiZZ) have low levels of circulating mutant Z-AAT protein leading to premature emphysematous lung disease. Extensive glycoanalysis has been performed on normal AAT (M-AAT) from healthy individuals and the importance of glycosylation in affecting the immune modulatory roles of AAT is documented. However, no glycoanalysis has been carried out on Z-AAT from deficient individuals to date. In this study, we investigate whether the glycans present on Z-AAT differ to those found on M-AAT from healthy controls. Plasma AAT was purified from 10 individuals: 5 AATD donors with the PiZZ phenotype and 5 PiMM healthy controls. Glycoanalysis was performed employing N-glycan release, exoglycosidase digestion and UPLC analysis. No difference in branched glycans was identified between AATD and healthy controls. However, a significant increase in both outer arm (α1-3) (p = 0.04) and core (α1-6) fucosylated glycans (p < 0.0001) was found on Z-AAT compared to M-AAT. This study has identified increased fucosylation on N-glycans of Z-AAT indicative of ongoing inflammation in AATD individuals with implications for early therapeutic intervention.
Collapse
Affiliation(s)
- Cormac McCarthy
- Respiratory Research Division, Royal College of Surgeons in Ireland , Beaumont Hospital, Dublin 9, Ireland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Bhakta V, Gierczak RF, Sheffield WP. Expression screening of bacterial libraries of recombinant alpha-1 proteinase inhibitor variants for candidates with thrombin inhibitory capacity. J Biotechnol 2013; 168:373-81. [DOI: 10.1016/j.jbiotec.2013.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/03/2013] [Accepted: 10/07/2013] [Indexed: 11/30/2022]
|
71
|
Roddick LA, Bhakta V, Sheffield WP. Fusion of the C-terminal triskaidecapeptide of hirudin variant 3 to alpha1-proteinase inhibitor M358R increases the serpin-mediated rate of thrombin inhibition. BMC BIOCHEMISTRY 2013; 14:31. [PMID: 24215622 PMCID: PMC3830444 DOI: 10.1186/1471-2091-14-31] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 11/05/2013] [Indexed: 11/10/2022]
Abstract
BACKGROUND Alpha-1 proteinase inhibitor (API) is a plasma serpin superfamily member that inhibits neutrophil elastase; variant API M358R inhibits thrombin and activated protein C (APC). Fusing residues 1-75 of another serpin, heparin cofactor II (HCII), to API M358R (in HAPI M358R) was previously shown to accelerate thrombin inhibition over API M358R by conferring thrombin exosite 1 binding properties. We hypothesized that replacing HCII 1-75 region with the 13 C-terminal residues (triskaidecapeptide) of hirudin variant 3 (HV354-66) would further enhance the inhibitory potency of API M358R fusion proteins. We therefore expressed HV3API M358R (HV354-66 fused to API M358R) and HV3API RCL5 (HV354-66 fused to API F352A/L353V/E354V/A355I/I356A/I460L/M358R) API M358R) as N-terminally hexahistidine-tagged polypeptides in E. coli. RESULTS HV3API M358R inhibited thrombin 3.3-fold more rapidly than API M358R; for HV3API RCL5 the rate enhancement was 1.9-fold versus API RCL5; neither protein inhibited thrombin as rapidly as HAPI M358R. While the thrombin/Activated Protein C rate constant ratio was 77-fold higher for HV3API RCL5 than for HV3API M358R, most of the increased specificity derived from the API F352A/L353V/E354V/A355I/I356A/I460L API RCL 5 mutations, since API RCL5 remained 3-fold more specific than HV3API RCL5. An HV3 54-66 peptide doubled the Thrombin Clotting Time (TCT) and halved the binding of thrombin to immobilized HCII 1-75 at lower concentrations than free HCII 1-75. HV3API RCL5 bound active site-inhibited FPR-chloromethyl ketone-thrombin more effectively than HAPI RCL5. Transferring the position of the fused HV3 triskaidecapeptide to the C-terminus of API M358R decreased the rate of thrombin inhibition relative to that mediated by HV3API M358R by 11-to 14-fold. CONCLUSIONS Fusing the C-terminal triskaidecapeptide of HV3 to API M358R-containing serpins significantly increased their effectiveness as thrombin inhibitors, but the enhancement was less than that seen in HCII 1-75-API M358R fusion proteins. HCII 1-75 was a superior fusion partner, in spite of the greater affinity of the HV3 triskaidecapeptide, manifested both in isolated and API-fused form, for thrombin exosite 1. Our results suggest that HCII 1-75 binds thrombin exosite 1 and orients the attached serpin scaffold for more efficient interaction with the active site of thrombin than the HV3 triskaidecapeptide.
Collapse
Affiliation(s)
| | | | - William P Sheffield
- Pathology and Molecular Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4 K1, Canada.
| |
Collapse
|
72
|
Heit C, Jackson BC, McAndrews M, Wright MW, Thompson DC, Silverman GA, Nebert DW, Vasiliou V. Update of the human and mouse SERPIN gene superfamily. Hum Genomics 2013; 7:22. [PMID: 24172014 PMCID: PMC3880077 DOI: 10.1186/1479-7364-7-22] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 10/15/2013] [Indexed: 12/14/2022] Open
Abstract
The serpin family comprises a structurally similar, yet functionally diverse, set of proteins. Named originally for their function as serine proteinase inhibitors, many of its members are not inhibitors but rather chaperones, involved in storage, transport, and other roles. Serpins are found in genomes of all kingdoms, with 36 human protein-coding genes and five pseudogenes. The mouse has 60 Serpin functional genes, many of which are orthologous to human SERPIN genes and some of which have expanded into multiple paralogous genes. Serpins are found in tissues throughout the body; whereas most are extracellular, there is a class of intracellular serpins. Serpins appear to have roles in inflammation, immune function, tumorigenesis, blood clotting, dementia, and cancer metastasis. Further characterization of these proteins will likely reveal potential biomarkers and therapeutic targets for disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Daniel W Nebert
- Department of Pharmaceutical Sciences, Molecular Toxicology and Environmental Health Sciences Program, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA.
| | | |
Collapse
|
73
|
Jha S, Sanyal I, Amla DV. Single amino acid substitutions in recombinant plant-derived human α1-proteinase inhibitor confer enhanced stability and functional efficacy. Biochim Biophys Acta Gen Subj 2013; 1840:416-27. [PMID: 24090883 DOI: 10.1016/j.bbagen.2013.09.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 09/22/2013] [Accepted: 09/23/2013] [Indexed: 11/26/2022]
Abstract
BACKGROUND Human α1-proteinase inhibitor (α1-PI) is the most abundant serine protease inhibitor in the blood and the heterologous expression of recombinant α1-PI has great potential for possible therapeutic applications. However, stability and functional efficacy of the recombinant protein expressed in alternate hosts are of major concern. METHODS Five variants of plant-expressed recombinant α1-PI protein were developed by incorporating single amino acid substitutions at specific sites, namely F51C, F51L, A70G, M358V and M374I. Purified recombinant α1-PI variants were analyzed for their expression, biological activity, oxidation-resistance, conformational and thermal stability by DAC-ELISA, porcine pancreatic elastase (PPE) inhibition assays, transverse urea gradient (TUG) gel electrophoresis, fluorescence spectroscopy and far-UV CD spectroscopy. RESULTS Urea-induced unfolding of recombinant α1-PI variants revealed that the F51C mutation shifted the mid-point of transition from 1.4M to 4.3M, thus increasing the conformational stability close to the human plasma form, followed by F51L, A70G and M374I variants. The variants also exhibited enhanced stability for heat denaturation, and the size-reducing substitution at Phe51 slowed down the deactivation rate ~5-fold at 54°C. The M358V mutation at the active site of the protein did not significantly affect the conformational or thermal stability of the recombinant α1-PI but provided enhanced resistance to oxidative inactivation. CONCLUSIONS Our results suggest that single amino acid substitutions resulted in improved stability and oxidation-resistance of the plant-derived recombinant α1-PI protein, without inflicting the inhibitory activity of the protein. GENERAL SIGNIFICANCE Our results demonstrate the significance of engineered modifications in plant-derived recombinant α1-PI protein molecule for further therapeutic development.
Collapse
Affiliation(s)
- Shweta Jha
- Plant Transgenic Lab, MB and GE Division, CSIR-National Botanical Research Institute, P.O. Box 436, Rana Pratap Marg, Lucknow 226 001, India.
| | | | | |
Collapse
|
74
|
McKee CM, Xu D, Kessler BM, Muschel RJ. Proteomic analysis reveals a proteolytic feedback loop in murine seminal fluid. Prostate 2013; 73:1427-40. [PMID: 23765702 DOI: 10.1002/pros.22690] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 04/30/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND Matrix metalloproteinase 9 (MMP9) has been implicated in extracellular matrix (ECM) remodelling, angiogenesis and inflammation. However, the targets for proteolysis that lead to these physiological consequences are often undefined as is the regulation of MMP9 itself. Therefore, identification of both the potential direct and indirect targets of MMP9 is critical for further understanding the effects of its proteolytic cascades. METHODS To study these cascades on a wider scale, transgenic mouse "knock-out" models and ultra-high performance liquid chromatography mass spectroscopy (UPLC-MS(E) ) were used to elucidate the MMP9 targets, inhibitors, and interactors found in mouse seminal vesicle fluid (SVF). RESULTS Proteomics analysis of SVF from wild type, mmp9-/- or pn1-/- mice detected differences in serine protease inhibitors (serpins), reproductive proteins, developmental regulators, and cancer proto-oncogenes, including Renin 1/2. Protease nexin 1 (PN1), an ECM-based inhibitor of urokinase, was elevated in the SVF of mmp9-/- mice. We observed that MMP9-mediated N-terminal cleavage of PN1 reduces this serpin's functional activity. Our data also suggest a feedback loop in which inhibition of PN1 is a critical step in permitting greater activity of MMP9. CONCLUSION This study extends the degradome of MMP9 and examines components relevant to seminal fluid physiology. PN1 is proposed to be a novel inhibitor of MMP9 activity and a block to collagen cleavage, a frequent antecedent to cancer cell invasion. The interaction of MMP9 with PN1 and other serpins may lead to a better understanding of seminal vesicle function and possible impacts on fertility, as well as provide novel therapeutic targets.
Collapse
Affiliation(s)
- Chad M McKee
- Department of Oncology, Gray Institute of Radiation Oncology and Biology, University of Oxford, Oxford, UK
| | | | | | | |
Collapse
|
75
|
Rather GM, Gupta MN. Refolding of urea denatured ovalbumin with three phase partitioning generates many conformational variants. Int J Biol Macromol 2013; 60:301-8. [DOI: 10.1016/j.ijbiomac.2013.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 06/06/2013] [Accepted: 06/10/2013] [Indexed: 10/26/2022]
|
76
|
Wang L, Ma Z, Yang J, Gai Y, Zhou Z, Wang L, Yue F, Song L. Identification and characterization of a serine protease inhibitor Esserpin from the Chinese mitten crab Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2013; 34:1576-1586. [PMID: 23567854 DOI: 10.1016/j.fsi.2013.03.371] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/06/2013] [Accepted: 03/26/2013] [Indexed: 06/02/2023]
Abstract
Serine protease inhibitors (serpins) represent an expanding superfamily of endogenous inhibitors that regulate proteolytic events and involve in a variety of physiological processes. A serine protease inhibitor, namely Esserpin, was identified from Chinese mitten crab Eriocheir sinensis based on expressed sequence tag (EST) analysis. The full-length cDNA of Esserpin was of 2367 bp, including an open reading frame (ORF) of 1371 bp encoding a polypeptide of 456 amino acids with estimated molecular mass of 49.95 kDa and theoretical isoelectric point of 6.03. A putative signal peptide of 23 amino acids and a classical serpin domain were identified in Esserpin. The deduced amino acid sequence of Esserpin shared homology with serpins from Fenneropenaeus chinensis and Pacifastacus leniusculus. The mRNA transcripts of Esserpin could be detected in all the examined tissues including heart, gill, hemocytes, muscle, gonad and hepatopancreas, and the highest expression level was present in gonad. After the crabs were challenged by Vibrio anguillarum and Pichia pastoris, the expression levels of Esserpin transcripts in hemocytes were significantly up-regulated, and peaked at 24 h (5.18-fold of blank group, P < 0.05) and 3 h (2.87-fold of blank group, P < 0.05), respectively. The functional activity of Esserpin was investigated by recombination and expression of the cDNA fragment encoding its mature peptide in Escherichia coli BL21 (DE3)-pLysS. The recombinant Esserpin (rEsserpin) could inhibit trypsin activities in a dose-dependent manner, and it could lead to 100% inhibition of trypsin activities under the concentration of 873.76 nM, while there was no evident inhibition of chymotrypsin observed with rEsserpin. Moreover, rEsserpin inhibited the growth of E. coli at the final concentration of 1747.52 nM, and it also significantly depressed (P < 0.05) the phenoloxidase activity in the plasma at the final concentration of 873.76 nM. These results indicated that Esserpin was a homologue of serpin in crab and it could be induced after immune stimulation and mediate immune response possibly via the inhibition of bacterial growth and the regulation of prophenoloxidase-activating system.
Collapse
Affiliation(s)
- Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Boyle AJ, Roddick LA, Bhakta V, Lambourne MD, Junop MS, Liaw PC, Weitz JI, Sheffield WP. The complete N-terminal extension of heparin cofactor II is required for maximal effectiveness as a thrombin exosite 1 ligand. BMC BIOCHEMISTRY 2013; 14:6. [PMID: 23496873 PMCID: PMC3601010 DOI: 10.1186/1471-2091-14-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 02/21/2013] [Indexed: 11/22/2022]
Abstract
Background Heparin cofactor II (HCII) is a circulating protease inhibitor, one which contains an N-terminal acidic extension (HCII 1-75) unique within the serpin superfamily. Deletion of HCII 1-75 greatly reduces the ability of glycosaminoglycans (GAGs) to accelerate the inhibition of thrombin, and abrogates HCII binding to thrombin exosite 1. While a minor portion of HCII 1-75 can be visualized in a crystallized HCII-thrombin S195A complex, the role of the rest of the extension is not well understood and the affinity of the HCII 1-75 interaction has not been quantitatively characterized. To address these issues, we expressed HCII 1-75 as a small, N-terminally hexahistidine-tagged polypeptide in E. coli. Results Immobilized purified HCII 1-75 bound active α-thrombin and active-site inhibited FPR-ck- or S195A-thrombin, but not exosite-1-disrupted γT-thrombin, in microtiter plate assays. Biotinylated HCII 1-75 immobilized on streptavidin chips bound α-thrombin and FPR-ck-thrombin with similar KD values of 330-340 nM. HCII 1-75 competed thrombin binding to chip-immobilized HCII 1-75 more effectively than HCII 54-75 but less effectively than the C-terminal dodecapeptide of hirudin (mean Ki values of 2.6, 8.5, and 0.29 μM, respectively). This superiority over HCII 54-75 was also demonstrated in plasma clotting assays and in competing the heparin-catalysed inhibition of thrombin by plasma-derived HCII; HCII 1-53 had no effect in either assay. Molecular modelling of HCII 1-75 correctly predicted those portions of the acidic extension that had been previously visualized in crystal structures, and suggested that an α-helix found between residues 26 and 36 stabilizes one found between residues 61-67. The latter region has been previously shown by deletion mutagenesis and crystallography to play a crucial role in the binding of HCII to thrombin exosite 1. Conclusions Assuming that the KD value for HCII 1-75 of 330-340 nM faithfully predicts that of this region in intact HCII, and that 1-75 binding to exosite 1 is GAG-dependent, our results support a model in which thrombin first binds to GAGs, followed by HCII addition to the ternary complex and release of HCII 1-75 for exosite 1 binding and serpin mechanism inhibition. They further suggest that, in isolated or transferred form, the entire HCII 1-75 region is required to ensure maximal binding of thrombin exosite 1.
Collapse
|
78
|
Gulley MM, Zhang X, Michel K. The roles of serpins in mosquito immunology and physiology. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:138-47. [PMID: 22960307 PMCID: PMC3560325 DOI: 10.1016/j.jinsphys.2012.08.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 08/24/2012] [Accepted: 08/28/2012] [Indexed: 05/10/2023]
Abstract
In vector-borne diseases, the complex interplay between pathogen and its vector's immune system determines the outcome of infection and therefore disease transmission. Serpins have been shown in many animals to be key regulators of innate immune reactions. Their control over regulatory proteolytic cascades ultimately decides whether the recognition of a pathogen will lead to an appropriate immune response. In mosquitoes, serpins (SRPNs) regulate the activation of prophenoloxidase and thus melanization, contribute to malaria parasite lysis, and likely Toll pathway activation. Additionally, in culicine mosquitoes, SRPNs are able to regulate hemostasis in the vertebrate host, suggesting a crucial role during bloodfeeding. This review summarizes the annotation, transcriptional regulation, and current knowledge of SRPN function in the three mosquito species for which the complete genome sequence is available. Additionally, we give a brief overview of how SRPNs may be used to prevent transmission of vector-borne diseases.
Collapse
Affiliation(s)
| | | | - Kristin Michel
- Corresponding author: tel.: +1 (785) 532-0161, fax: +1 (785) 532-6653;
| |
Collapse
|
79
|
Heiker JT, Klöting N, Kovacs P, Kuettner EB, Sträter N, Schultz S, Kern M, Stumvoll M, Blüher M, Beck-Sickinger AG. Vaspin inhibits kallikrein 7 by serpin mechanism. Cell Mol Life Sci 2013; 70:2569-83. [PMID: 23370777 PMCID: PMC3689916 DOI: 10.1007/s00018-013-1258-8] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Revised: 12/09/2012] [Accepted: 01/03/2013] [Indexed: 12/31/2022]
Abstract
The molecular target of the adipokine vaspin (visceral adipose tissue-derived serpin; serpinA12) and its mode of action are unknown. Here, we provide the vaspin crystal structure and identify human kallikrein 7 (hK7) as a first protease target of vaspin inhibited by classical serpin mechanism with high specificity in vitro. We detect vaspin-hK7 complexes in human plasma and find co-expression of both proteins in murine pancreatic β-cells. We further demonstrate that hK7 cleaves human insulin in the A- and B-chain. Vaspin treatment of isolated pancreatic islets leads to increased insulin concentration in the media upon glucose stimulation without influencing insulin secretion. By application of vaspin and generated inactive mutants, we find the significantly improved glucose tolerance in C57BL/6NTac and db/db mice treated with recombinant vaspin fully dependent on the vaspin serpin activity and not related to vaspin-mediated changes in insulin sensitivity as determined by euglycemic-hyperinsulinemic clamp studies. Improved glucose metabolism could be mediated by increased insulin plasma concentrations 150 min after a glucose challenge in db/db mice, supporting the hypothesis that vaspin may inhibit insulin degradation by hK7 in the circulation. In conclusion, we demonstrate the inhibitory serpin nature and the first protease target of the adipose tissue-derived serpin vaspin, and our findings suggest hK7 inhibition by vaspin as an underlying physiological mechanism for its compensatory actions on obesity-induced insulin resistance.
Collapse
Affiliation(s)
- John T Heiker
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Universität Leipzig, Brüderstraße 34, Leipzig, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Huber R. “Wie ich zur Proteaseforschung kam oder, richtiger gesagt, wie die Proteaseforschung zu mir kam”. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201205629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
81
|
Glotzbach B, Schmelz S, Reinwarth M, Christmann A, Heinz DW, Kolmar H. Structural characterization ofSpinacia oleraceatrypsin inhibitor III (SOTI-III). ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 69:114-20. [DOI: 10.1107/s0907444912043880] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 10/23/2012] [Indexed: 01/07/2023]
|
82
|
Abdul-Wahab MF, Homma T, Wright M, Olerenshaw D, Dafforn TR, Nagata K, Miller AD. The pH sensitivity of murine heat shock protein 47 (HSP47) binding to collagen is affected by mutations in the breach histidine cluster. J Biol Chem 2012; 288:4452-61. [PMID: 23212911 DOI: 10.1074/jbc.m112.409029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Heat shock protein 47 (HSP47) is a single-substrate molecular chaperone crucial for collagen biosynthesis. Although its function is well established, the molecular mechanisms that govern binding to procollagen peptides and triple helices in the endoplasmic reticulum (followed by controlled release in the Golgi) are unclear. HSP47 binds procollagen at a neutral pH but releases at a pH similar to the pK(a) of the imidazole side chain of histidine residues. It thus seems likely that these residues are involved in this pH-dependent mechanism. Murine HSP47 has 14 histidine residues grouped into three clusters, known as the breach, gate, and shutter. Here, we report the use of histidine mutagenesis to demonstrate the relative contribution of these three clusters to HSP47 structure and the "pH switch." Many of the tested mutants are silent; however, breach mutants H197A and H198A show binding but no apparent pH switch and are unable to control release. Another breach mutant, H191A, shows perturbed collagen release characteristics, consistent with observed perturbations in pH-driven trans-conformational changes. Thus, His-198, His-197 and His-191 are important (if not central) to HSP47 mechanism of binding/release to collagen. This is consistent with the breach cluster residues being well conserved across the HSP47 family.
Collapse
Affiliation(s)
- Mohd Firdaus Abdul-Wahab
- Imperial College Genetic Therapies Centre, Department of Chemistry, Flowers Building, Armstrong Road, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
83
|
Huber R. "How I chose research on proteases or, more correctly, how it chose me". Angew Chem Int Ed Engl 2012. [PMID: 23208749 DOI: 10.1002/anie.201205629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Robert Huber
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| |
Collapse
|
84
|
An C, Hiromasa Y, Zhang X, Lovell S, Zolkiewski M, Tomich JM, Michel K. Biochemical characterization of Anopheles gambiae SRPN6, a malaria parasite invasion marker in mosquitoes. PLoS One 2012; 7:e48689. [PMID: 23152794 PMCID: PMC3494705 DOI: 10.1371/journal.pone.0048689] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 10/01/2012] [Indexed: 01/14/2023] Open
Abstract
Serine proteinase inhibitors of the serpin family are well known as negative regulators of hemostasis, thrombolysis and innate immune responses. Additionally, non-inhibitory serpins serve functions as chaperones, hormone transporters, or anti-angiogenic factors. In the African malaria mosquito, Anopheles gambiae s.s., at least three serpins (SRPNs) are implicated in the innate immune response against malaria parasites. Based on reverse genetic and cell biological analyses, AgSRPN6 limits parasite numbers and transmission and has been postulated to control melanization and complement function in mosquitoes. This study aimed to characterize AgSRPN6 biophysically and determine its biochemical mode of action. The structure model of AgSRPN6, as predicted by I-Tasser showed the protein in the native serpin fold, with three central β-sheets, nine surrounding α-helices, and a protruding reactive center loop. This structure is in agreement with biophysical and functional data obtained from recombinant (r) AgSRPN6, produced in Escherichia coli. The physical properties of purified rAgSRPN6 were investigated by means of analytical ultracentrifugation, circular dichroism, and differential scanning calorimetry tools. The recombinant protein exists predominantly as a monomer in solution, is composed of a mixture of α-helices and β-sheets, and has a mid-point unfolding temperature of 56°C. Recombinant AgSRPN6 strongly inhibited porcine pancreatic kallikrein and to a lesser extent bovine pancreatic trypsin in vitro. Furthermore, rAgSRPN6 formed inhibitory, SDS-stable, higher molecular weight complexes with prophenoloxidase-activating proteinase (PAP)1, PAP3, and Hemolymph protein (HP)6, which are required for melanization in the lepidopteran model organism, Manduca sexta. Taken together, our results strongly suggest that AgSRPN6 takes on a native serpin fold and is an inhibitor of trypsin-like serine proteinases.
Collapse
Affiliation(s)
- Chunju An
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
- Department of Entomology, China Agricultural University, Beijing, China
| | - Yasuaki Hiromasa
- Department of Biochemistry, Kansas State University, Manhattan, Kansas, United States of America
| | - Xin Zhang
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Scott Lovell
- Protein Structure Laboratory, University of Kansas, Lawrence, Kansas, United States of America
| | - Michal Zolkiewski
- Department of Biochemistry, Kansas State University, Manhattan, Kansas, United States of America
| | - John M. Tomich
- Department of Biochemistry, Kansas State University, Manhattan, Kansas, United States of America
| | - Kristin Michel
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
- * E-mail:
| |
Collapse
|
85
|
Marcus NY, Blomenkamp K, Ahmad M, Teckman JH. Oxidative stress contributes to liver damage in a murine model of alpha-1-antitrypsin deficiency. Exp Biol Med (Maywood) 2012; 237:1163-72. [PMID: 23104507 DOI: 10.1258/ebm.2012.012106] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Alpha-1-antitrypsin deficiency is a genetic disorder resulting in the expression of misfolded mutant protein that can polymerize and accumulate in hepatocytes, leading to liver disease in some individuals. Transgenic PiZ mice are a well-characterized model, which express human alpha-1-antitrypsin mutant Z protein (ATZ protein) and faithfully recapitulate the human liver disease. Liver tissue expressing alpha-1-antitrypsin mutant Z protein exhibits inflammation, injury and replacement of damaged cells. Fibrosis and hepatocellular carcinoma (HCC) develop in aging PiZ mice. In this study, microarray analysis was performed comparing young PiZ (ZY) mice to wild-type (WY), and indicated that there were alterations in gene expression levels that could influence a number of pathways leading to liver disease. Redox-regulating genes were up-regulated in ZY tissue, including carbonyl reductase 3 (CBR3), glutathione S-transferase alpha 1 + 2 (GSTA(1 + 2)) and glutathione S-transferase mu 3 (GSTM3). We hypothesized that oxidative stress could develop in Z mouse liver, contributing to tissue damage and disease progression with age. The results of biochemical analysis of PiZ mouse liver revealed that higher levels of reactive oxygen species (ROS) and a more oxidized, cellular redox state occurred in liver tissue from ZY mice than WY. ZY mice showed little evidence of oxidative cellular damage as assessed by protein carbonylation levels, malondialdehyde levels and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8oxodG) staining. Aging liver tissue from PiZ older mice (ZO) had elevated ROS, generally lower levels of antioxidant enzymes than younger mice and evidence of cellular damage. These data indicate that oxidative stress is a contributing factor in the development of liver disease in this model of alpha-1-antitrypsin deficiency.
Collapse
Affiliation(s)
- Nancy Y Marcus
- Department of Pediatrics, St Louis University School of Medicine, Cardinal Glennon Children's Medical Center, St Louis, MO 63104, USA.
| | | | | | | |
Collapse
|
86
|
Iram A, Naeem A. Conformational Transitions Provoked by Organic Solvents in Chicken Egg Ovalbumin: Mimicking the Local Environment. Protein J 2012; 32:7-14. [DOI: 10.1007/s10930-012-9453-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
87
|
Functional display of proteins, mutant proteins, fragments of proteins and peptides on the surface of filamentous (bacterio) phages: A review. Cytotechnology 2012; 18:107-12. [PMID: 22358642 DOI: 10.1007/bf00744325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Cytoplasmic expression of complex eukaryotic proteins inEscherichia coli usually yields inactive protein preparations. In some cases, (part) of the biological activity can be recovered by rather inefficient denaturation-renaturation procedures. Recently, novel concepts have been developed for the expression of fully functional eukaryotic proteins inE. coli. Essential to the success of these procedures is the transport of such proteins across the inner membrane to the periplasmic space, allowing proper folding and the establishment of disulfide bonding. Subsequently, fully functional proteins can be exposed on the surface of filamentous (bacterio)phages, provided a system is employed that consists of a cloning vector (e.g. the phagemid pComb3, Barbas et al., 1991) that generates phage particles in the presence of a helper phage. The main advantage of surface display of recombinant proteins is to facilitate the screening of very large numbers of different molecules by simple selection methods ("panning"). In addition, periplasmic expression yields relatively large quantities (e.g. 1 mg l(-1) of culture) soluble protein. In this review, the principle aspects of this novel expression system based on the phagemid pComb3 will be discussed. Two examples for functional periplasmic expression of human proteins inE. coli will be presented, namely i) the antigen-binding moiety (Fab fragment) of human immunoglobulins (IgGs) and ii) the human plasminogen activator inhibitor 1, an essential regulator of the plasminogen activation system. Finally, perspectives for the application of this system to express mutant proteins, fragments of proteins and peptides are indicated.
Collapse
|
88
|
Francis SE, Ersoy RA, Ahn JW, Atwell BJ, Roberts TH. Serpins in rice: protein sequence analysis, phylogeny and gene expression during development. BMC Genomics 2012; 13:449. [PMID: 22947050 PMCID: PMC3534287 DOI: 10.1186/1471-2164-13-449] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 03/19/2012] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Most members of the serpin family of proteins are potent, irreversible inhibitors of specific serine or cysteine proteinases. Inhibitory serpins are distinguished from members of other families of proteinase inhibitors by their metastable structure and unique suicide-substrate mechanism. Animal serpins exert control over a remarkable diversity of physiological processes including blood coagulation, fibrinolysis, innate immunity and aspects of development. Relatively little is known about the complement of serpin genes in plant genomes and the biological functions of plant serpins. RESULTS A structurally refined amino-acid sequence alignment of the 14 full-length serpins encoded in the genome of the japonica rice Oryza sativa cv. Nipponbare (a monocot) showed a diversity of reactive-centre sequences (which largely determine inhibitory specificity) and a low degree of identity with those of serpins in Arabidopsis (a eudicot). A new convenient and functionally informative nomenclature for plant serpins in which the reactive-centre sequence is incorporated into the serpin name was developed and applied to the rice serpins. A phylogenetic analysis of the rice serpins provided evidence for two main clades and a number of relatively recent gene duplications. Transcriptional analysis showed vastly different levels of basal expression among eight selected rice serpin genes in callus tissue, during seedling development, among vegetative tissues of mature plants and throughout seed development. The gene OsSRP-LRS (Os03g41419), encoding a putative orthologue of Arabidopsis AtSerpin1 (At1g47710), was expressed ubiquitously and at high levels. The second most highly expressed serpin gene was OsSRP-PLP (Os11g11500), encoding a non-inhibitory serpin with a surprisingly well-conserved reactive-centre loop (RCL) sequence among putative orthologues in other grass species. CONCLUSIONS The diversity of reactive-centre sequences among the putatively inhibitory serpins of rice point to a range of target proteases with different proteolytic specificities. Large differences in basal expression levels of the eight selected rice serpin genes during development further suggest a range of functions in regulation and in plant defence for the corresponding proteins.
Collapse
Affiliation(s)
- Sheila E Francis
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Renan A Ersoy
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Joon-Woo Ahn
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- Green Bio Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 111 Gwahangno, Yuseong-gu, Daejeon, 305-806, Korea
| | - Brian J Atwell
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Thomas H Roberts
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- Department of Plant and Food Sciences, Faculty of Agriculture and Environment, University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
89
|
Anes AB, Nasr HB, Hammann P, Kuhn L, Trimeche M, Hamrita B, Bougmiza I, Chaieb A, Khairi H, Chahed K. Assessment of the clinical significance of antigenic and functional levels of α1-proteinase inhibitor (α1-Pi) in infiltrating ductal breast carcinomas. Clin Biochem 2012; 45:1421-31. [PMID: 22841602 DOI: 10.1016/j.clinbiochem.2012.07.099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 05/28/2012] [Accepted: 07/15/2012] [Indexed: 11/24/2022]
Abstract
OBJECTIVES To determine the clinical significance of α1-proteinase inhibitor (α1-Pi) in infiltrating ductal breast carcinoma patients. DESIGN AND METHODS Serum levels of α1-Pi, tryptic specific inhibitory capacity and α1-Pi circulating immune complexes were determined using radial immunodiffusion, BAPNA assays and ELISA, respectively. 2-DE-MS and immunohistochemistry were performed to examine α1-Pi protein expression. RESULTS A decreased serum level of α1-Pi was found among breast cancer patients in comparison to controls. In addition, we found a significantly decreased mean level of α1-Pi in the node metastatic group when compared to node negative patients. However, the functional activity of the inhibitor did not decrease proportionately. Through 2-DE analyses, a differential expression of α1-Pi isoforms according to tumor stage and node metastatic development was found. CONCLUSIONS Both α1-Pi levels and specific activity could be a source of complementary clinical information and may provide useful information for a better understanding of the mechanisms of metastasis.
Collapse
Affiliation(s)
- Amel Ben Anes
- Laboratoire d'Immuno-Oncologie Moléculaire, Faculté de Médecine de Monastir, Tunisia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Bouças RI, Jarrouge-Bouças TR, Lima MA, Trindade ES, Moraes FA, Cavalheiro RP, Tersariol IL, Hoppenstead D, Fareed J, Nader HB. Glycosaminoglycan backbone is not required for the modulation of hemostasis: Effect of different heparin derivatives and non-glycosaminoglycan analogs. Matrix Biol 2012; 31:308-16. [DOI: 10.1016/j.matbio.2012.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 03/10/2012] [Accepted: 03/23/2012] [Indexed: 11/26/2022]
|
91
|
Abstract
The oxidation of cysteine sulphydryl in proteins produces sulphenic acid that can form a reversible disulphide bond with another cysteine. The disulphide bond formation often triggers switches in protein structure and activity, especially when the distance between the two cysteine sulphur atoms is longer than the resulting disulphide bond distance. As an early example for the reversible disulphide bond-mediated functional switches, the reduced and oxidized forms of the bacterial transcription factor OxyR were characterized by X-ray crystallography. Recently, the Drosophila vision signalling protein, the association of inactivation-no-afterpotential D (INAD) was analysed by structural and functional methods. The two conserved cysteines of INAD were found to cycle between reduced and oxidized states during the light signal processing in Drosophila eyes, which was achieved by conformation dependent modulation of the disulphide bond redox potential. The production of the hypertension control peptide angiotensins was also shown to be controlled by the reversible disulphide bond in the precursor protein angiotensinogen. The crystal structure of the complex of angiotensiongen with its processing enzyme renin elucidated the role of the disulphide bond in stabilizing the precursor-enzyme complex facilitating the production of angiotensins. The increasing importance of the disulphide bond-mediated redox switches in normal and diseased states has implications in the development of novel antioxidant-based therapeutic approaches.
Collapse
Affiliation(s)
- Seong Eon Ryu
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Korea.
| |
Collapse
|
92
|
Yang L, Ding Q, Huang X, Olson ST, Rezaie AR. Characterization of the heparin-binding site of the protein z-dependent protease inhibitor. Biochemistry 2012; 51:4078-85. [PMID: 22540147 DOI: 10.1021/bi300353c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
High-molecular weight heparins promote the protein Z-dependent protease inhibitor (ZPI) inhibition of factors Xa (FXa) and XIa (FXIa) by a template mechanism. To map the heparin-binding site of ZPI, the role of basic residues of the D-helix (residues Lys-113, Lys-116, and Lys-125) in the interaction with heparin was evaluated by either substituting these residues with Ala (ZPI-3A) or replacing the D-helix with the corresponding loop of the non-heparin-binding serpin α(1)-proteinase inhibitor (ZPI-D-helix(α1-PI)). Furthermore, both the C-helix (contains two basic residues, Lys-104 and Arg-105) and the D-helix of ZPI were substituted with the corresponding loops of α(1)-proteinase inhibitor (ZPI-CD-helix(α1-PI)). All mutants exhibited near normal reactivity with FXa and FXIa in the absence of cofactors and in the presence of protein Z and membrane cofactors. By contrast, the mutants interacted with heparin with a lower affinity and the ~48-fold heparin-mediated enhancement in the rate of FXa inhibition by ZPI was reduced to ~30-fold for ZPI-3A, ~15-fold for ZPI-D-helix(α1-PI), and ~8-fold for ZPI-CD-helix(α1-PI). Consistent with a template mechanism for heparin cofactor action, ZPI-CD-helix(α1-PI) inhibition of a FXa mutant containing a mutation in the heparin-binding site (FXa-R240A) was minimally affected by heparin. A significant decrease (~2-5-fold) in the heparin template effect was also observed for the inhibition of FXIa by ZPI mutants. Interestingly, ZPI derivatives exhibited a markedly elevated stoichiometry of inhibition with FXIa in the absence of heparin. These results suggest that basic residues of both helices C and D of ZPI interact with heparin to modulate the inhibitory function of the serpin.
Collapse
Affiliation(s)
- Likui Yang
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | | | | | | | | |
Collapse
|
93
|
Madhurantakam C, Duru AD, Sandalova T, Webb JR, Achour A. Inflammation-associated nitrotyrosination affects TCR recognition through reduced stability and alteration of the molecular surface of the MHC complex. PLoS One 2012; 7:e32805. [PMID: 22431983 PMCID: PMC3303804 DOI: 10.1371/journal.pone.0032805] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Accepted: 02/03/2012] [Indexed: 01/07/2023] Open
Abstract
Nitrotyrosination of proteins, a hallmark of inflammation, may result in the production of MHC-restricted neoantigens that can be recognized by T cells and bypass the constraints of immunological self-tolerance. Here we biochemically and structurally assessed how nitrotyrosination of the lymphocytic choriomeningitis virus (LCMV)-associated immunodominant MHC class I-restricted epitopes gp33 and gp34 alters T cell recognition in the context of both H-2Db and H-2Kb. Comparative analysis of the crystal structures of H-2Kb/gp34 and H-2Kb/NY-gp34 demonstrated that nitrotyrosination of p3Y in gp34 abrogates a hydrogen bond interaction formed with the H-2Kb residue E152. As a consequence the conformation of the TCR-interacting E152 was profoundly altered in H-2Kb/NY-gp34 when compared to H-2Kb/gp34, thereby modifying the surface of the nitrotyrosinated MHC complex. Furthermore, nitrotyrosination of gp34 resulted in structural over-packing, straining the overall conformation and considerably reducing the stability of the H-2Kb/NY-gp34 MHC complex when compared to H-2Kb/gp34. Our structural analysis also indicates that nitrotyrosination of the main TCR-interacting residue p4Y in gp33 abrogates recognition of H-2Db/gp33-NY complexes by H-2Db/gp33-specific T cells through sterical hindrance. In conclusion, this study provides the first structural and biochemical evidence for how MHC class I-restricted nitrotyrosinated neoantigens may enable viral escape and break immune tolerance.
Collapse
Affiliation(s)
- Chaithanya Madhurantakam
- Centre for Infectious Medicine, Department of Medicine Huddinge, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Adil D. Duru
- Centre for Infectious Medicine, Department of Medicine Huddinge, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Tatyana Sandalova
- Centre for Infectious Medicine, Department of Medicine Huddinge, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - John R. Webb
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, British Columbia, Canada
| | - Adnane Achour
- Centre for Infectious Medicine, Department of Medicine Huddinge, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
94
|
Abstract
Serine protease inhibitors (serpins) are a superfamily of structurally conserved proteins that inhibit serine proteases and play key physiological roles in numerous biological systems such as blood coagulation, complement activation and inflammation. A number of serpins have now been identified in parasitic helminths with putative involvement in immune regulation and in parasite survival through interference with the host immune response. This review describes the serpins and smapins (small serine protease inhibitors) that have been identified in Ascaris spp., Brugia malayi, Ancylostoma caninum Onchocerca volvulus, Haemonchus contortus, Trichinella spiralis, Trichostrongylus vitrinus, Anisakis simplex, Trichuris suis, Schistosoma spp., Clonorchis sinensis, Paragonimus westermani and Echinococcus spp. and discusses their possible biological functions, including roles in host-parasite interplay and their evolutionary relationships.
Collapse
|
95
|
Simone TM, Higgins PJ. Low Molecular Weight Antagonists of Plasminogen Activator Inhibitor-1: Therapeutic Potential in Cardiovascular Disease. ACTA ACUST UNITED AC 2012; 1:101. [PMID: 23936868 DOI: 10.4172/2324-8769.1000102] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Plasminogen activator inhibitor-1 (PAI-1; SERPINE1) is the major physiologic regulator of the plasmin-based pericellular proteolytic cascade, a modulator of vascular smooth muscle cell (VSMC) migration and a causative factor in cardiovascular disease and restenosis, particularly in the context of increased vessel transforming growth factor- β1 (TGF-β1) levels. PAI-1 limits conversion of plasminogen to plasmin (and, thereby, fibrin degradation) by inhibiting its protease targets urokinase and tissue-type plasminogen activators (uPA, tPA). PAI-1 also has signaling functions and binds to the low density lipoprotein receptor-related protein 1 (LRP1) to regulate LRP1-dependent cell motility that, in turn, contributes to neointima formation. PAI-1/uPA/uPA receptor/LRPI/integrin complexes are endocytosed with subsequent uPAR/LRP1/integrin redistribution to the leading edge, initiating an "adhesion-detachment-readhesion" cycle to promote cell migration. PAI-1 also interacts with LRP1 in a uPA/uPAR-independent manner triggering Jak/Stat1 pathway activation to stimulate cell motility. PAI-1 itself is a substrate for extracellular proteases and exists in a "cleaved" form which, while unable to interact with uPA and tPA, retains LRP1-binding and migratory activity. These findings suggest that there are multiple mechanisms through which inhibition of PAI-1 may promote cardiovascular health. Several studies have focused on the design, synthesis and preclinical assessment of PAI-1 antagonists including monoclonal antibodies, peptides and low molecular weight (LMW) antagonists. This review discusses the translational impact of LMW PAI-1 antagonists on cardiovascular disease addressing PAI-1-initiated signaling, PAI-1 structure, the design and characteristics of PAI-1-targeting drugs, results of in vitro and in vivo studies, and their clinical implications.
Collapse
Affiliation(s)
- Tessa M Simone
- Center for Cell Biology & Cancer Research, Albany Medical College, Albany, New York 12208, USA
| | | |
Collapse
|
96
|
Corley SC, Sprangers P, Albert AD. The bilayer enhances rhodopsin kinetic stability in bovine rod outer segment disk membranes. Biophys J 2011; 100:2946-54. [PMID: 21689528 DOI: 10.1016/j.bpj.2011.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 05/04/2011] [Accepted: 05/09/2011] [Indexed: 10/18/2022] Open
Abstract
Rhodopsin is a kinetically stable protein constituting >90% of rod outer segment disk membrane protein. To investigate the bilayer contribution to rhodopsin kinetic stability, disk membranes were systematically disrupted by octyl-β-D-glucopyranoside. Rhodopsin kinetic stability was examined under subsolubilizing (rhodopsin in a bilayer environment perturbed by octyl-β-D-glucopyranoside) and under fully solubilizing conditions (rhodopsin in a micelle with cosolubilized phospholipids). As determined by DSC, rhodopsin exhibited a scan-rate-dependent irreversible endothermic transition at all stages of solubilization. The transition temperature (T(m)) decreased in the subsolubilizing stage. However, once the rhodopsin was in a micelle environment there was little change of the T(m) as the phospholipid/rhodopsin ratio in the mixed micelles decreased during the fully solubilized stage. Rhodopsin thermal denaturation is consistent with the two-state irreversible model at all stages of solubilization. The activation energy of denaturation (E(act)) was calculated from the scan rate dependence of the T(m) and from the rate of rhodopsin thermal bleaching at all stages of solubilization. The E(act) as determined by both techniques decreased in the subsolubilizing stage, but remained constant once fully solubilized. These results indicate the bilayer structure increases the E(act) to rhodopsin denaturation.
Collapse
Affiliation(s)
- Scott C Corley
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | | | | |
Collapse
|
97
|
Ko DH, Chang HE, Song SH, Yoon H, Park KU, Song J. Identification of compound heterozygous mutation in a Korean patient with alpha 1-antitrypsin deficiency. Korean J Lab Med 2011; 31:294-7. [PMID: 22016686 PMCID: PMC3190011 DOI: 10.3343/kjlm.2011.31.4.294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 05/04/2011] [Accepted: 07/16/2011] [Indexed: 12/17/2022] Open
Abstract
Alpha 1-antitrypsin (AAT) deficiency is a genetic disorder that primarily affects the lungs and liver. While AAT deficiency is one of the most common genetic disorders in the Caucasian population, it is extremely rare in Asians. Here, we report the case of a 36-year-old Korean woman with AAT deficiency who visited the emergency department of our hospital for the treatment of progressive dyspnea that had begun 10 years ago. She had never smoked. Chest computed tomography revealed panlobular emphysema in both lungs, which suggested AAT deficiency. The serum AAT level was 33 mg/dL (reference interval: 90-200 mg/dL). Four exons of the SERPINA1 gene, which is responsible for AAT deficiency, and their flanking regions were analyzed by PCR-direct sequencing. The patient was found to have 1 missense mutation (c.230C>T, p.Ser77Phe; Siiyama) and 1 frameshift mutation (c.1158dupC, p.Glu387ArgfsX14; QOclayton). This is the first Korean case of AAT deficiency confirmed by genetic analysis and the second case of a compound heterozygote of Siiyama and QOclayton, the first case of which was reported from Japan.
Collapse
Affiliation(s)
- Dae-Hyun Ko
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, 300 Gumi-dong, Bundang-gu, Seongnam, Korea
| | | | | | | | | | | |
Collapse
|
98
|
Yabe T, Hosoda-Yabe R, Kanamaru Y, Kiso M. A peptide found by phage display discriminates a specific structure of a trisaccharide in heparin. J Biol Chem 2011; 286:12397-406. [PMID: 21335559 DOI: 10.1074/jbc.m110.172155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A number of recent studies have shown that heparan sulfate can control several important biological events on the cell surface through changes in sulfation pattern. The in vivo modification of sugar chains with sulfates, however, is complicated, and the discrimination of different sulfation patterns is difficult. Heparin, which is primarily produced by mast cells, is closely approximated by the structural analog heparan sulfate. Screening of heparin-associating peptides using phage display and antithrombin-bound affinity chromatography identified a peptide, heparin-associating peptide Y (HappY), that acts as a target of immobilized heparin. The peptide consists of 12 amino acid residues with characteristic three arginines and exclusively binds to heparin and heparan sulfate but does not associate with other glycosaminoglycans. HappY recognizes three consecutive monosaccharide residues in heparin through its three arginine residues. HappY should be a useful probe to detect heparin and heparan sulfate in studies of glycobiology.
Collapse
Affiliation(s)
- Tomio Yabe
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan.
| | | | | | | |
Collapse
|
99
|
Qi X, Loiseau F, Chan WL, Yan Y, Wei Z, Milroy LG, Myers RM, Ley SV, Read RJ, Carrell RW, Zhou A. Allosteric modulation of hormone release from thyroxine and corticosteroid-binding globulins. J Biol Chem 2011; 286:16163-73. [PMID: 21325280 PMCID: PMC3091225 DOI: 10.1074/jbc.m110.171082] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The release of hormones from thyroxine-binding globulin (TBG) and corticosteroid-binding globulin (CBG) is regulated by movement of the reactive center loop in and out of the β-sheet A of the molecule. To investigate how these changes are transmitted to the hormone-binding site, we developed a sensitive assay using a synthesized thyroxine fluorophore and solved the crystal structures of reactive loop cleaved TBG together with its complexes with thyroxine, the thyroxine fluorophores, furosemide, and mefenamic acid. Cleavage of the reactive loop results in its complete insertion into the β-sheet A and a substantial but incomplete decrease in binding affinity in both TBG and CBG. We show here that the direct interaction between residue Thr(342) of the reactive loop and Tyr(241) of the hormone binding site contributes to thyroxine binding and release following reactive loop insertion. However, a much larger effect occurs allosterically due to stretching of the connecting loop to the top of the D helix (hD), as confirmed in TBG with shortening of the loop by three residues, making it insensitive to the S-to-R transition. The transmission of the changes in the hD loop to the binding pocket is seen to involve coherent movements in the s2/3B loop linked to the hD loop by Lys(243), which is, in turn, linked to the s4/5B loop, flanking the thyroxine-binding site, by Arg(378). Overall, the coordinated movements of the reactive loop, hD, and the hormone binding site allow the allosteric regulation of hormone release, as with the modulation demonstrated here in response to changes in temperature.
Collapse
Affiliation(s)
- Xiaoqiang Qi
- Department of Biochemistry, Nanjing University, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Wladyka B, Kozik AJ, Bukowski M, Rojowska A, Kantyka T, Dubin G, Dubin A. α1-Antichymotrypsin inactivates staphylococcal cysteine protease in cross-class inhibition. Biochimie 2011; 93:948-53. [PMID: 21296644 DOI: 10.1016/j.biochi.2011.01.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 01/24/2011] [Indexed: 10/18/2022]
Abstract
Staphylococcal cysteine proteases are implicated as virulence factors in human and avian infections. Human strains of Staphylococcus aureus secrete two cysteine proteases (staphopains A and B), whereas avian strains express staphopain C (ScpA2), which is distinct from both human homologues. Here, we describe probable reasons why the horizontal transfer of a plasmid encoding staphopain C between avian and human strains has never been observed. The human plasma serine protease inhibitor α(1)-antichymotrypsin (ACHT) inhibits ScpA2. Together with the lack of ScpA2 inhibition by chicken plasma, these data may explain the exclusively avian occurrence of ScpA2. We also clarify the mechanistic details of this unusual cross-class inhibition. Analysis of mutated ACHT variants revealed that the cleavage of the Leu383-Ser384 peptide bond results in ScpA2 inhibition, whereas hydrolysis of the preceding peptide bond leads to ACHT inactivation. This evidence is consistent with the suicide-substrate-like mechanism of inhibition.
Collapse
Affiliation(s)
- Benedykt Wladyka
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| | | | | | | | | | | | | |
Collapse
|