51
|
Liao X, Cao J, Hu Y, Zhang C, Hu L. Mechanism of unactivated peroxymonosulfate-induced degradation of methyl parathion: Kinetics and transformation pathway. CHEMOSPHERE 2021; 284:131332. [PMID: 34198067 DOI: 10.1016/j.chemosphere.2021.131332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/12/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Although various activated peroxymonosulfate (PMS) processes have been applied widely for the destruction of recalcitrant organics due to its high generation potential of various electrophiles reactive oxygen species (e.g., sulfate and hydroxyl radicals and singlet oxygen), non-radical-based PMS reactions with pollutants are poorly understood. Especially, relatively little information exists on the reactivity of PMS towards organic ester compounds such an organophosphorus pesticides (OPPs). Herein, we systematically studied the unactivated PMS-induced transformation of methyl parathion, a stubborn and toxic OPP. Specifically, direct reaction rather than electrophile radical-based oxidation was responsible for the rapid degradation of methyl parathion. The contribution of the produced singlet oxygen (1O2) from the self-decomposition of PMS to methyl parathion degradation can be neglected. The degradation rate constant (kobs) was strongly dependent on PMS loading and solution pH. The implication of the PMS reaction with methyl parathion for environment treatment was further evaluated by investigating the effects of common water matrices such as sediment humic acids, Cl-, and natural water. The identified metabolic products revealed that exposure to PMS resulted in hydrolysis and oxidation to methyl parathion. Further study demonstrated that PMS was also capable of effectively oxidizing other typical OPPs without explicit activation. This study provides novel insights into the reaction of methyl parathion with PMS, which indicate feasibility for the decontamination of OPP-contaminated environments.
Collapse
Affiliation(s)
- Xiaoping Liao
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Jinru Cao
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Ying Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Caixiang Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China.
| | - Lisong Hu
- School of Xingfa Mining Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| |
Collapse
|
52
|
Drouin G, Droz B, Leresche F, Payraudeau S, Masbou J, Imfeld G. Direct and indirect photodegradation of atrazine and S-metolachlor in agriculturally impacted surface water and associated C and N isotope fractionation. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:1791-1802. [PMID: 34709265 DOI: 10.1039/d1em00246e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Knowledge of direct and indirect photodegradation of pesticides and associated isotope fractionation can help to assess pesticide degradation in surface waters. Here, we investigated carbon (C) and nitrogen (N) isotope fractionation during direct and indirect photodegradation of the herbicides atrazine and S-metolachlor in synthetic agriculturally impacted surface waters containing nitrates (20 mg L-1) and dissolved organic matter (DOM, 5.4 mgC L-1). Atrazine and S-metolachlor were quickly photodegraded by both direct and indirect processes (half-lives <5 and <7 days, respectively). DOM slowed down photodegradation while nitrates increased degradation rates. The analysis of transformation products showed that oxidation mediated by hydroxyl radicals (HO˙) predominated during indirect photodegradation. UV light (254 nm) led to significant C and N isotope fractionation, yielding isotopic fractionation values εC = 2.7 ± 0.3 and 0.8 ± 0.1‰, and εN = 2.4 ± 0.3 and -2.6 ± 0.7‰ for atrazine and S-metolachlor, respectively. In contrast, photodegradation under simulated sunlight led to negligible C and slight N isotope fractionation, emphasizing the effect of the radiation wavelengths on the isotope fractionation induced by direct photodegradation. Altogether, these results highlight the importance of using simulated sunlight to obtain environmentally-relevant isotopic fractionation values and to distinguish photodegradation and other dissipation pathways in surface waters.
Collapse
Affiliation(s)
- Guillaume Drouin
- Institut Terre et Environnement de Strasbourg (ITES), Université de Strasbourg, EOST, ENGEES, CNRS, UMR 7063, 5 rue Descartes, Strasbourg F-67084, France.
| | - Boris Droz
- Institut Terre et Environnement de Strasbourg (ITES), Université de Strasbourg, EOST, ENGEES, CNRS, UMR 7063, 5 rue Descartes, Strasbourg F-67084, France.
| | - Frank Leresche
- Department of Civil, Environmental, and Architectural Engineering, Environmental Engineering Program, University of Colorado Boulder, Colorado 80309, USA
| | - Sylvain Payraudeau
- Institut Terre et Environnement de Strasbourg (ITES), Université de Strasbourg, EOST, ENGEES, CNRS, UMR 7063, 5 rue Descartes, Strasbourg F-67084, France.
| | - Jérémy Masbou
- Institut Terre et Environnement de Strasbourg (ITES), Université de Strasbourg, EOST, ENGEES, CNRS, UMR 7063, 5 rue Descartes, Strasbourg F-67084, France.
| | - Gwenaël Imfeld
- Institut Terre et Environnement de Strasbourg (ITES), Université de Strasbourg, EOST, ENGEES, CNRS, UMR 7063, 5 rue Descartes, Strasbourg F-67084, France.
| |
Collapse
|
53
|
Wenk J, Graf C, Aeschbacher M, Sander M, Canonica S. Effect of Solution pH on the Dual Role of Dissolved Organic Matter in Sensitized Pollutant Photooxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15110-15122. [PMID: 34714642 PMCID: PMC8735754 DOI: 10.1021/acs.est.1c03301] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Dissolved organic matter (DOM) has a dual role in indirect phototransformations of aquatic contaminants by acting both as a photosensitizer and an inhibitor. Herein, the pH dependence of the inhibitory effect of DOM and the underlying mechanisms were studied in more than 400 kinetic irradiation experiments over the pH range of 6-11. Experiments employed various combinations of one of three DOM isolates, one of two model photosensitizers, the model antioxidant phenol, and one of nine target compounds (TCs), comprising several aromatic amines, in particular anilines and sulfonamides, and 4-cyanophenol. Using model photosensitizers without antioxidants, the phototransformation of most TCs increased with increasing pH, even for TCs for which pH did not affect speciation. This trend was attributed to pH-dependent formation yields of TC-derived radicals and their re-formation to the parent TC. Analogous trends were observed with DOM as a photosensitizer. Comparison of model and DOM photosensitizer data sets showed increasing inhibitory effects of DOM on TC phototransformation kinetics with increasing pH. In systems with anilines as a TC and phenol as a model antioxidant, pH trends of the inhibitory effect could be rationalized based on the reduction potential difference (ΔEred) of phenoxyl/phenol and anilinyl/aniline couples. Our results indicate that the light-induced transformation of aromatic amines in the aquatic environment is governed by the pH-dependent inhibitory effects of antioxidant phenolic moieties of DOM and pH-dependent processes related to the formation of amine oxidation intermediates.
Collapse
Affiliation(s)
- Jannis Wenk
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
- Institute
of Biogeochemistry and Pollutant Dynamics, ETH Zürich, CH-8092 Zürich, Switzerland
- Department
of Chemical Engineering and Water Innovation & Research Centre
(WIRC), University of Bath, Claverton Down, Bath BA2
7AY, United Kingdom
- . Tel: +44-1225-383246
| | - Cornelia Graf
- Institute
of Biogeochemistry and Pollutant Dynamics, ETH Zürich, CH-8092 Zürich, Switzerland
- INFRAS
Research and Consulting, CH-3012 Berne, Switzerland
| | - Michael Aeschbacher
- Institute
of Biogeochemistry and Pollutant Dynamics, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Michael Sander
- Institute
of Biogeochemistry and Pollutant Dynamics, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Silvio Canonica
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
- . Tel: +41-58-765-5453. Fax: +41-58-765-5210
| |
Collapse
|
54
|
Leresche F, Salazar JR, Pfotenhauer DJ, Hannigan MP, Majestic BJ, Rosario-Ortiz FL. Photochemical Aging of Atmospheric Particulate Matter in the Aqueous Phase. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13152-13163. [PMID: 34529399 DOI: 10.1021/acs.est.1c00978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This study focused on the photoaging of atmospheric particulate matter smaller than 2.5 μm (PM2.5) in the aqueous phase. PM2.5 was collected during a winter, a spring, and a summer campaign in urban and rural settings in Colorado and extracted into water. The aqueous extracts were photoirradiated using simulated sunlight, and the production rate (r•OH) and the effects of hydroxyl radicals (•OH) were measured as well as the optical properties as a function of the photoaging of the extracts. r•OH was seen to have a strong seasonality with low mean values for the winter and spring extracts (4.8 and 14 fM s-1 mgC-1 L, respectively) and a higher mean value for the summer extracts (65.4 fM s-1 mgC-1 L). For the winter extracts, •OH was seen to mostly originate from nitrate photolysis while for the summer extracts, a correlation was seen between r•OH and iron concentration. The extent of photobleaching of the extracts was correlated with r•OH, and the correlation also indicated that non-•OH processes took place. Using the •OH measurements and singlet oxygen (1O2) measurements, the half-life of a selection of compounds was modeled in the atmospheric aqueous phase to be between 1.9 and 434 h.
Collapse
Affiliation(s)
- Frank Leresche
- Department of Civil, Environmental and Architectural Engineering, University of Colorado at Boulder, Boulder, Colorado 80309, United States
- Environmental Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Joseph R Salazar
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - David J Pfotenhauer
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| | - Michael P Hannigan
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| | - Brian J Majestic
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - Fernando L Rosario-Ortiz
- Department of Civil, Environmental and Architectural Engineering, University of Colorado at Boulder, Boulder, Colorado 80309, United States
- Environmental Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
55
|
Zhang R, Olomthong M, Fan YU, Wang L, Pan D, Shi Y, Ye W. Dissipation of Chlorpyrifos in Bottled Tea Beverages and the Effects of (-)-Epigallocatechin-3-Gallate. J Food Prot 2021; 84:1836-1843. [PMID: 34115868 DOI: 10.4315/jfp-21-119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/10/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Bottled tea beverages (BTB) are popular for the health benefits and convenience. Because chlorpyrifos (CP) is commonly used as a biomarker for exposure, as well as a pesticide in the field, it is important to determine the dynamics of CP dissipation in BTB to better perform risk assessments. This study focused on the dynamic behavior of CP for 22 days by fortifying bottled green tea, dark tea, and oolong tea beverages with the parent chemical and analyzing the degradation products. Photoinduction was used to generate the two transient intermediates: the reactive oxygen species from H2O2 and the triplet excited state of CP from the parent chemical in water were designed to observe the effects of (-)-epigallocatechin-3-gallate (EGCG) on the dissipation and transformation of CP. The results indicated that the CP degraded in BTB and the main products were detected. The half-life values of CP illustrated that EGCG increased the dissipation of CP by combination with CP and inhibited the generation of CP-oxon by scavenging the emerged oxidant, the reactive oxygen species, and interfering with the transformation of the triplet excited state of CP. This work suggests EGCG could play various roles in the dissipation and transformation of CP. Thus, a comprehensive identification of CP degradation should be performed when assessing the exposure risk in drinking BTB. HIGHLIGHTS
Collapse
Affiliation(s)
- Rong Zhang
- School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, People's Republic of China
| | - Mekky Olomthong
- School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, People's Republic of China
| | - Y U Fan
- School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, People's Republic of China
| | - Lijun Wang
- School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, People's Republic of China
| | - Dandan Pan
- School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, People's Republic of China
| | - Yanhong Shi
- School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, People's Republic of China
| | - Wenlin Ye
- School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, People's Republic of China
| |
Collapse
|
56
|
Lewer J, Huang J, Peloquin J, Kostal J. Structure-Energetics-Property Relationships Support Computational Design of Photodegradable Pesticides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11713-11722. [PMID: 34428037 DOI: 10.1021/acs.est.1c02556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Development of high-performing pesticides with tunable degradation properties is vital to increasing the safety and effectiveness of tomorrow's analogs. Chromophoric dissolved organic matter in the excited triple state (3CDOM*) is known to play a key role in the removal of pesticides via indirect photodegradation. However, the potential of these transformations to guide the design of safer chemicals has not yet been fully realized. Here, we report a two-tier computational framework developed to probe and predict both kinetics and thermodynamics of 3CDOM*-pesticide interactions. In the first tier, robust in silico models were constructed by fitting free energies obtained from density functional theory (DFT) calculations to cell potentials and second-order rate constants for the 3CDOM*-pesticide electron transfer. In the second tier, Gibbs free energies and corresponding free energy barriers, determined in solution using the Marcus theory, were applied to develop a quick yet accurate screening approach based on the frontier molecular orbital (FMO) Theory. Being highly mechanistic and spanning ca. 1500 unique 3CDOM*-pesticide interactions, our approach is both robust and broadly applicable. To that end, the outcomes of our computational models were integrated into an easy-to-use decision framework that can guide structure-based design of less persistent pesticide analogs.
Collapse
Affiliation(s)
- Jessica Lewer
- Department of Chemistry, The George Washington University, 800 22nd St NW, Ste 4000, Washington, District of Columbia 20052-0066, United States
| | - Jessica Huang
- Department of Chemistry, The George Washington University, 800 22nd St NW, Ste 4000, Washington, District of Columbia 20052-0066, United States
| | - John Peloquin
- Department of Chemistry, The George Washington University, 800 22nd St NW, Ste 4000, Washington, District of Columbia 20052-0066, United States
| | - Jakub Kostal
- Department of Chemistry, The George Washington University, 800 22nd St NW, Ste 4000, Washington, District of Columbia 20052-0066, United States
| |
Collapse
|
57
|
Partanen SB, Apell JN, Lin J, McNeill K. Factors affecting the mixed-layer concentrations of singlet oxygen in sunlit lakes. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:1130-1145. [PMID: 34231605 PMCID: PMC8372756 DOI: 10.1039/d1em00062d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/16/2021] [Indexed: 06/01/2023]
Abstract
The steady-state concentration of singlet oxygen within a lake ([1O2]SS) is an important parameter that can affect the environmental half-life of pollutants and environmental fate modelling. However, values of [1O2]SS are often determined for the near-surface of a lake, and these values typically do not represent the average over the epilimnia of lakes. In this work, the environmental and physical factors that have the largest impact on [1O2]SS within lake epilimnia were identified. It was found that the depth of the epilimnion has the largest impact on depth-averaged [1O2]SS, with a factor of 8.8 decrease in [1O2]SS when epilimnion depth increases from 2 m to 20 m. The next most important factors are the wavelength-dependent singlet oxygen quantum yield relationship and the latitude of the lake, causing variations in [1O2]SS by factors of 3.2 and 2.5 respectively, over ranges of representative values. For a set of representative parameters, the depth-averaged value of [1O2]SS within an average epilimnion depth of 9.0 m was found to be 5.8 × 10-16 M and the near-surface value of [1O2]SS was found to be 1.9 × 10-14 M. We recommend a range of 6 × 10-17 to 5 × 10-15 M as being more representative of [1O2]SS values within the epilimnia of lakes globally and potentially more useful for estimating pollutant lifetimes than those calculated using [1O2]SS values that correspond to near-surface, summer midday values. This work advances our understanding of [1O2]SS inter-lake variability in the environment, and provides estimates of [1O2]SS for practitioners and researchers to assess environmental half-lives of pollutants due to reaction with singlet oxygen.
Collapse
Affiliation(s)
- Sarah B. Partanen
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zurich8092 ZurichSwitzerland
| | - Jennifer N. Apell
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zurich8092 ZurichSwitzerland
- Department of Civil and Urban Engineering, New York University Tandon School of Engineering6 MetroTech CenterBrooklynNY 11201USA
| | - Jianming Lin
- Firmenich IncorporatedP.O. Box 5880PrincetonNew Jersey 08543USA
| | - Kristopher McNeill
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zurich8092 ZurichSwitzerland
| |
Collapse
|
58
|
Sha H, Nie J, Lian L, Yan S, Song W. Phototransformation of an emerging cyanotoxin (Aerucyclamide A) in simulated natural waters. WATER RESEARCH 2021; 201:117339. [PMID: 34157574 DOI: 10.1016/j.watres.2021.117339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/01/2021] [Accepted: 06/06/2021] [Indexed: 06/13/2023]
Abstract
Aerucyclamide A (ACA) is an emerging cyanopeptide toxin produced by cyanobacteria, and its transformation pathway has rarely been reported. In the present study, ACA was purified from cyanobacterial extracts, and photodegradation processes were investigated in dissolved organic matter (DOM) solutions. Under simulated solar irradiation, the photodegradation of ACA was dominated by •OH oxidation, accounting for ~72% of the indirect photodegradation. The bimolecular reaction rate constant of ACA with •OH was (6.4 ± 0.2) × 109M - 1s - 1. Our results indicated that the major reactive sites of ACA toward •OH are thiazoline and thiazole moieties. Product analysis via high-resolution mass spectrometry suggested that hydrogen abstraction and gradual hydroxylation are the main photodegradation pathways. The acute toxicity assessment indicate that the products generated in photolysis process did not show any measurable toxicity to Thamnocephalus platyurus. Photodegradation experiments with various DOM-phycocyanin mixtures demonstrated that the half-life of ACA is much longer than that of microcystin-LR.
Collapse
Affiliation(s)
- Haitao Sha
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, PR China
| | - Jianxin Nie
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, PR China
| | - Lushi Lian
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Shuwen Yan
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Weihua Song
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
59
|
Lu J, Ji Y, Chovelon JM, Lu J. Fluoroquinolone antibiotics sensitized photodegradation of isoproturon. WATER RESEARCH 2021; 198:117136. [PMID: 33894578 DOI: 10.1016/j.watres.2021.117136] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Fluoroquinolone (FQ) antibiotics are a group of contaminants of emerging environmental concern. In the present study, we demonstrated that norfloxacin (NORF) and ofloxacin (OFLO), two typical FQs, have photochemical reactivity analogous to chromophoric dissolved natural organic matter (DOM) in surface waters and can sensitize the photodegradation of isoproturon (IPU), a phenylurea herbicide. Such photochemical reactivity is ascribed to the quinolone chromophore that is excited to a triplet state (3FQ*) upon UV-A irradiation. 3FQ* further reacts with dissolved oxygen to give rise to singlet oxygen. 3FQ* steady-state concentrations of 6.72 × 10-15 and 1.27 × 10-15 M were measured in 10 μM NORF and OFLO solutions, respectively, under UV365nm irradiation. The degradation of IPU was due to the reaction with 3FQ*, with bimolecular rate constants of 6.07 × 109 and 1.51 × 1010 for 3NORF* and 3OFLO*, respectively. Intriguingly, NORF and OFLO per se were unstable and photolyzed during UV-A irradiation, but the photochemical reactivities of the solutions were not lost accordingly. High-resolution mass spectrometry analysis revealed that defluorination and piperazine moiety oxidation were the main photolysis pathways, while the core quinolone structure remained intact. Thus, the photolysis products largely inherited the photochemical reactivity of the parent compounds. Since all FQs share the same quinolone structure, similar photochemical reactivity is expected. The presence of FQs in surface water would affect the transformation and fate of coexisting compounds. To the best of our knowledge, this is the first study examining the environmental behavior of FQs as photosensitizers. The findings greatly advance the understandings of the influence of FQs in aquatic environment.
Collapse
Affiliation(s)
- Jiaxin Lu
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuefei Ji
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jean-Marc Chovelon
- Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626, Villeurbanne, France
| | - Junhe Lu
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
60
|
Wang J, Wang K, Zhang L, Guo Y, Guo Z, Sun W, Ye Z, Niu J. Mechanism of bicarbonate enhancing the photodegradation of β-blockers in natural waters. WATER RESEARCH 2021; 197:117078. [PMID: 33819659 DOI: 10.1016/j.watres.2021.117078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
The impact of HCO3- on the photodegradation of β-blockers was investigated under simulated sunlight irradiation. The results show that in the presence of HCO3-, the photodegradation rates increase significantly for sotalol (SOT), whereas no effects on the degradation of carvedilol and arotinolol are observed. Using quenching experiments, electron paramagnetic resonance spectra and degradation product determination, we demonstrate that carbonate radical (CO3•-) is formed by direct oxidation of HCO3- by triplet-excited SOT (3SOT*) and plays a significant role in SOT photodegradation. Competition kinetics experiments show that the three β-blockers all have high second-order rate constants (107-108 M-1 s-1) for the reaction with CO3•-. However, only 3SOT* has a higher reduction potential that can oxidize HCO3- to produce CO3•-. Thus, enhanced SOT removal rates in the presence of HCO3- were observed. In addition, the results show that seawater DOM could increase HCO3--induced photodegradation of SOT, whereas SRNOM mainly behaves as a CO3•- quencher and decreases the removal rate of SOT. The results underscore the role of HCO3- in limiting the persistence of organic pollutants like SOT in sunlit natural waters, and especially in marine and coastal waters.
Collapse
Affiliation(s)
- Jieqiong Wang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Kai Wang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Lilan Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Yuchen Guo
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Zhongyu Guo
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan
| | - Wei Sun
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Zimi Ye
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Junfeng Niu
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China.
| |
Collapse
|
61
|
Hou Z, Fang Q, Liu H, Li Y, Zhao Q, Zhang Z, Lei Y, Tian S. Photolytic kinetics of pharmaceutically active compounds from upper to lower estuarine waters: Roles of triplet-excited dissolved organic matter and halogen radicals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116692. [PMID: 33592446 DOI: 10.1016/j.envpol.2021.116692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Photodegradation is a major elimination route of many pharmaceutically active compounds (PhACs) in natural surface waters, yet their photolytic behavior in estuarine waters with salinity gradient change is largely unknown. Herein, sulfamethazine and carbamazepine were taken as representative PhACs to explore the photolytic kinetic differences in Qinzhou Bay estuarine water samples collected from upper to lower reaches. Rapid photodegradation of sulfamethazine was found in lower estuarine water relative to upstream estuarine water; whereas for carbamazepine, photolytic rate was inversely proportional to the salinity of estuarine waters. Experiments with extracted estuarine dissolved organic matter (E-DOM) imply that the multivariate effects of triplet-excited E-DOM (3E-DOM∗) and halide ions are responsible for the enhancement photolysis of sulfamethazine. Radical scavenging experiments suggest that the photolysis enhancement can be ascribed to the contribution of reactive halogen species (RHS), while their contribution to carbamazepine is negligible and 3E-DOM∗ is the dominant reactive species for its photodegradation. This indicates that the reactivity differences with RHS and 3DOM∗ affect the photolytic kinetics of PhACs from upper estuarine waters to lower reaches, which is also supported by a good linear relationship between the ratios of photolytic rates for ten PhACs in E-DOM solution with/without halides and the ratios of the reactivity of these pollutants with RHS and 3DOM∗. These findings show that the different reactivity of PhACs with 3E-DOM∗ and RHS influences the photolytic kinetics in estuarine waters with different salinity, and highlights the photochemical behavior of organic micropollutants from upstream to downstream estuarine waters.
Collapse
Affiliation(s)
- Zhichao Hou
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Qi Fang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Huaying Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Yingjie Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Qun Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Zhiyu Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Yajie Lei
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Senlin Tian
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| |
Collapse
|
62
|
Lei X, Lei Y, Zhang X, Yang X. Treating disinfection byproducts with UV or solar irradiation and in UV advanced oxidation processes: A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124435. [PMID: 33189471 DOI: 10.1016/j.jhazmat.2020.124435] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
This review focuses on the degradation kinetics and mechanisms of disinfection byproducts (DBPs) under UV and solar irradiation and in UV-based advanced oxidation processes (AOPs). A total of 59 such compounds are discussed. The processes evaluated are low pressure, medium pressure and vacuum UV irradiation, solar irradiation together with UV/hydrogen peroxide, UV/persulfate and UV/chlorine AOPs. Under UV and solar irradiation, the photodegradation rates of N-nitrosamines are much higher than those of halogenated DBPs. Among halogenated DBPs, those containing iodine are photodegraded more rapidly than those containing bromine or chlorine. This is due to differences in their bond energies (EN-N < EC-I < EC-Br < EC-Cl). Molar absorption coefficients at 254 nm and energy gaps can be used to predict the photodegradation rates of DBPs under low pressure UV irradiation. But many DBPs of interest cannot be degraded to half their original concentration with less than a 500 mJ cm-2 dose of low pressure UV light. HO• generally contributes to less than 30% of the degradation of DBPs except iodo-DBPs in UV/H2O2 AOPs. Reaction mechanisms under UV irradiation and in HO•-mediated oxidation are also summarized. N-N bond cleavage initiates their direct UV photolysis of N-nitrosamines as C-X cleavage does among halogenated compounds. HO• generally initiates degradation via single electron transfer, addition and hydrogen abstraction pathways. Information on the reaction rate constants of SO4•- and halogen radicals with DBPs is rather limited, and little information is available about their reaction pathways. Overall, this review provides improved understanding of UV, solar and AOPs.
Collapse
Affiliation(s)
- Xin Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yu Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xinran Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
63
|
Wang Y, Fan L, Jones OAH, Roddick F. Quantification of seasonal photo-induced formation of reactive intermediates in a municipal sewage lagoon upon sunlight exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142733. [PMID: 33572041 DOI: 10.1016/j.scitotenv.2020.142733] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/14/2020] [Accepted: 09/26/2020] [Indexed: 06/12/2023]
Abstract
Photochemically produced reactive oxygen species in wastewater lagoons upon sunlight exposure are important in the attenuation of emerging contaminants (ECs). The production of reactive radicals in wastewater lagoons depends on both environmental factors and the composition of effluent organic matter (EfOM) in the wastewater. Knowing the steady state concentrations of these reactive species produced in a particular lagoon wastewater is critical to the prediction of the persistence and attenuation of ECs in that sunlit wastewater treatment lagoon. This study quantified the formation of four photochemically produced reactive intermediates (PPRIs): hydroxyl radical, carbonate radical, singlet oxygen, and triplet excited state EfOM in 11 samples collected from a municipal wastewater lagoon over a full year. The temporal distribution of these key PPRIs in the lagoon under investigation was determined in relation to sunlight irradiance, wastewater composition and temperature. Greater sunlight intensity led to greater PPRI production over the year. Increasing wastewater temperature from 12 to 25 °C led to greater production of singlet oxygen, a moderate decrease in hydroxyl radical and increase in triplet excited state EfOM, and minimal impact on carbonate radical production. The optical properties of the lagoon wastewater of Napierian absorption coefficient (A300) and E2:E3 ratio could be used as indicators of the formation of singlet oxygen (Pearson's r = 0.79) and triplet excited EfOM (Pearson's r = 0.76) produced upon solar irradiation. The concentration of carbonate radical formed was strongly correlated to the nitrate level in the wastewater (Pearson's r = 0.85). The findings could be used for modelling the seasonal sunlight-induced photolysis process of ECs during lagoon-based wastewater treatment, with a view to optimising the treatment process, predicting the efficacy of EC removal, and risk assessment of the treated water.
Collapse
Affiliation(s)
- Yufei Wang
- School of Engineering, RMIT University, GPO Box 2476, Melbourne, Victoria 3000, Australia
| | - Linhua Fan
- School of Engineering, RMIT University, GPO Box 2476, Melbourne, Victoria 3000, Australia
| | - Oliver A H Jones
- School of Science, RMIT University, Bundoora West Campus, PO Box 71, Bundoora, Victoria 3083, Australia
| | - Felicity Roddick
- School of Engineering, RMIT University, GPO Box 2476, Melbourne, Victoria 3000, Australia.
| |
Collapse
|
64
|
Wang X, Pu L, Liu C, Gao J, Gu C. Enhanced and selective phototransformation of chlorophene on aluminum hydroxide-humic complexes. WATER RESEARCH 2021; 193:116904. [PMID: 33582491 DOI: 10.1016/j.watres.2021.116904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/30/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Mineral-humic complexes, known as mineral-associated organic matter (MAOM), are ubiquitous in natural waters. However, the interaction between organic pollutants and MAOM remains elusive, which may affect their degradation process. In this study, photochemical transformation of chlorophene (CP) in the presence of MAOM, prepared by coating aluminum hydroxide with humic acid (HA-HAO), was investigated. Our results showed that the degradation of CP was significantly enhanced in the presence of HA-HAO, and the degradation rate constant was ~5 times as that with HA only. It was because the adsorption of CP to HA-HAO particles was greatly enhanced, and concentration of reactive oxygen species (ROS) was increased on HA-HAO surfaces, which further promoted the reactions between CP and ROS. The quenching experiments combined with EPR technology confirmed that superoxide anion (O2·-) was the primary reactive radical on CP photodegradation. More importantly, the degradation of CP with HA-HAO followed a hydroxylation process, rather than the oligomerization reaction with HA only. Spectroscopic analysis provided direct evidence for the formation of hydrogen bonding between CP phenolic hydroxyl group and surface oxygen of HAO, which would suppress the reactivity of phenolic hydroxyl group, consequently the ortho- and meta-positions of CP became more facile for the hydroxylation reaction. This study shows the importance of MAOM in altering the photochemical behavior and transformation pathway of organic contaminants.
Collapse
Affiliation(s)
- Xinghao Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Lirong Pu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Cun Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Juan Gao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
65
|
Durantini AM, Greer A. Interparticle Delivery and Detection of Volatile Singlet Oxygen at Air/Solid Interfaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3559-3567. [PMID: 33660980 DOI: 10.1021/acs.est.0c07922] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An interparticle system has been devised, allowing airborne singlet oxygen to transfer between particle surfaces. Singlet oxygen is photogenerated on a sensitizer particle, where it then travels through air to a second particle bearing an oxidizable compound-a particulate-based approach with some similarities to reactive oxygen quenching in the atmosphere. In atmospheric photochemistry, singlet oxygen is generated by natural particulate matter, but its formation and quenching between particles has until now not been determined. Determining how singlet oxygen reacts on a second surface is useful and was developed by a three-phase system (particle-air-particle) interparticulate photoreaction with tunable quenching properties. We identify singlet oxygen quenching directly by near-IR phosphorescence in the airborne state and at the air/particle interface for total quenching rate constants (kT) of adsorbed anthracene trapping agents. The air/solid interface kT of singlet oxygen by anthracene-coated particles was (2.8 ± 0.8) × 107 g mol-1 s-1 for 9,10-dimethylanthracene and (2.1 ± 0.9) × 107 g mol-1 s-1 for 9,10-anthracene dipropionate dianion, and the lifetime of airborne singlet oxygen was measured to be 550 μs. These real-time interactions and particle-induced quenching steps open up new opportunities for singlet oxygen research of atmospheric and particulate processes.
Collapse
Affiliation(s)
- Andrés M Durantini
- Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Alexander Greer
- Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| |
Collapse
|
66
|
Remke SC, von Gunten U, Canonica S. Enhanced transformation of aquatic organic compounds by long-lived photooxidants (LLPO) produced from dissolved organic matter. WATER RESEARCH 2021; 190:116707. [PMID: 33373945 DOI: 10.1016/j.watres.2020.116707] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
Dissolved organic matter (DOM) plays a crucial role in the photochemical transformation of organic contaminants in natural aquatic systems. The present study focuses on the characterization of a specific effect previously observed for electron-rich phenols, consisting in an acceleration of the DOM-photosensitized transformation of target compounds at low concentrations (< 1 µM). This effect was hypothesized to be caused by DOM-derived "long-lived" photooxidants (LLPO). Pseudo-first-order rate constants for the transformation of several phenols, anilines, sulfonamide antibiotics and phenylureas photosensitized by Suwannee River fulvic acid were determined under steady-state irradiation using the UVA and visible wavelengths from a medium-pressure mercury lamp. A significant enhancement (by a factor of 2.4 - 16) of the first-order transformation rate constant of various electron-rich target compounds was observed for an initial concentration of 0.1 μM compared to 5 μM . This effect points to a relevant reactivity of these compounds with LLPO. For phenols and anilines the enhancement effect occurred only above certain standard one-electron oxidation potentials. From these data series the standard one-electron reduction potential of LLPO was estimated to be in the range of 1.0 - 1.3 V versus the standard hydrogen electrode. LLPO are proposed to mainly consist of phenoxyl radicals formed by photooxidation of electron-poor phenolic moieties of the DOM. The plausibility of this hypothesis was successfully tested by studying the photosensitized transformation kinetics of 3,4-dimethoxyphenol in aqueous solutions containing a model photosensitizer (2-acetonaphthone) and a model electron-poor phenol (4-cyanophenol) as DOM surrogates.
Collapse
Affiliation(s)
- Stephanie C Remke
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland; School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), GC A2 454, Station 18, CH-1015 Lausanne, Switzerland
| | - Urs von Gunten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland; School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), GC A2 454, Station 18, CH-1015 Lausanne, Switzerland
| | - Silvio Canonica
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland.
| |
Collapse
|
67
|
Wu B, Arnold WA, Ma L. Photolysis of atrazine: Role of triplet dissolved organic matter and limitations of sensitizers and quenchers. WATER RESEARCH 2021; 190:116659. [PMID: 33279742 DOI: 10.1016/j.watres.2020.116659] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Atrazine, a widely used herbicide, is susceptible to photolysis. The role of triplet excited states of chromophoric dissolved organic matter (3CDOM*) in the photolysis of atrazine, however, is not well understood. The direct photolysis of atrazine under irradiation sources (natural sunlight/environmentally relevant simulated solar light) and its indirect photochemical reactivity with model triplet photosensitizers (benzophenone, 2-acetonaphthone, 3'-methoxy-acetophenone, 4-carboxybenzophenone, rose bengal, methylene blue, and anthraquinone-2-sulphonate) was investigated. The reactivity of the model sensitizers and DOM (Suwannee River natural organic matter, river/lake water, and wastewater effluent), were compared. The direct photolysis quantum yield was determined as 0.0196 mol Einstein-1 in a solar simulator and 0.00437 mol Einstein-1 under natural sunlight. Considerable photosensitization was induced by triplet state (n-π*) model sensitizers, while insignificant effects on atrazine loss were discerned in natural organic matter even when oxygen, a triplet quencher, was removed. The triplet sensitizers benzophenone and 2-acetylnaphthone reacted with L-histidine and 2-propanol that were intended to quench/ scavenge 1O2 and hydroxyl radical •OH, respectively, and benzophenone reacted with NaN3 as a 1O2 scavenger and furfuryl alcohol as a 1O2 trapping agent, indicating quenchers may have unanticipated effects when using model sensitizers. Atrazine loss via reaction with 3DOM* will be relevant only in selected conditions, and this work provides a more comprehensive view on the use of model photosensitizers to mimic triplet 3DOM*.
Collapse
Affiliation(s)
- Bin Wu
- School of Environmental Science and Engineering, Tongji University, Shanghai, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Technology, Tongji University, Shanghai, China; Department of Civil, Environmental, and Geo- Engineering, University of Minnesota - Twin Cities, 500 Pillsbury Drive SE, Minneapolis, MN 55455, United States
| | - William A Arnold
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota - Twin Cities, 500 Pillsbury Drive SE, Minneapolis, MN 55455, United States
| | - Limin Ma
- School of Environmental Science and Engineering, Tongji University, Shanghai, China.
| |
Collapse
|
68
|
Sun J, Ma J, Lian L, Yan S, Song W. Photochemical Formation of Methylhydroperoxide in Dissolved Organic Matter Solutions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1076-1087. [PMID: 33373203 DOI: 10.1021/acs.est.0c07717] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although it is known that the solar irradiation of chromophoric dissolved organic matter (CDOM) solutions generates H2O2, whether or not organic hydroperoxides (ROOHs) are photochemically formed remains unclear. This study employs high-performance liquid chromatography with the postcolumn enzymatic derivatization method to examine whether ROOHs can be formed in CDOM solutions under simulated solar irradiation. Methylhydroperoxide (MHP) is the only identified ROOH under our experimental conditions, and the quantum yields of MHP (ΦMHP) vary from (1.09 ± 0.09) × 10-6 to (4.95 ± 0.11) × 10-6 in the tested CDOM solutions, including four reference natural organic matters and two effluent organic matters. The quantum yields of H2O2 (ΦH2O2) are simultaneously measured, and the ratios of ΦH2O2 to ΦMHP range from 147 to 676. The formation of MHP is highly related to the presence of superoxide radical ions (O2•-) and methyl radicals (CH3•); therefore, a photoformation mechanism of MHP has been proposed. The photochemically generated CH3• reacts with O2 to yield CH3OO•. Subsequently, CH3OO• is reduced to MHP by O2•-. Our results also suggest that the yield of CH3• to MHP under air-saturated conditions is 52% and increases to 98% under oxygen-saturated conditions. The decays of MHP and H2O2 are very similar in terms of photodegradation, hydrolysis, Fenton, and photo-Fenton reactions. This study can be useful to understand the photochemical formation of organic peroxides in surface waters.
Collapse
Affiliation(s)
- Jiaqian Sun
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, P. R. China
| | - Jianzhong Ma
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, P. R. China
| | - Lushi Lian
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, P. R. China
| | - Shuwen Yan
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| | - Weihua Song
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| |
Collapse
|
69
|
Dong Y, Peng W, Liu Y, Wang Z. Photochemical origin of reactive radicals and halogenated organic substances in natural waters: A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123884. [PMID: 33113752 DOI: 10.1016/j.jhazmat.2020.123884] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/14/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
Halogenated organic compounds, also termed organohalogens, were initially regarded to be of almost exclusively anthropogenic origin. However, recent research has demonstrated that photochemical reactions are important abiotic sources of organohalogen compounds in sunlit surface waters. Halide ions (X-, X represents Cl, Br and I) are common anions in natural waters and might be oxidized by reactive species originated from photochemistry of dissolved organic matter (DOM) or inorganic photoactive species. The resulting reactive halogen species may react with organic substances with diverse bimolecular reaction rate constants, depending on the complexity and structure of organic substances. Therefore, the chemical mechanism of halogenation remains challenging to be fully elucidated. To better understand the trends in the existing data and to identify the knowledge gaps that may merit further investigation, this review gives an integrative summary on the sources of reactive oxygen species (ROS) and halogen radicals (X/X2-). Photochemical halogenation of phenolic compounds and formation of methyl halide and brominated organic pollutants are highlighted. By evaluating existing literature and identifying some uncertainties, this review emphasizes the environmental significance of sunlight-driven halogenation and proposes further research directions on mechanistic investigation and rational experimental design close to natural systems.
Collapse
Affiliation(s)
- Yongxia Dong
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Wenya Peng
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yunjiao Liu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Zhaohui Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai 200062, China.
| |
Collapse
|
70
|
Zhu Q, Yang Y, Lao Z, Zhong Y, Zhang K, Zhao S. Photodegradation kinetics, mechanism and aquatic toxicity of deltamethrin, permethrin and dihaloacetylated heterocyclic pyrethroids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:142106. [PMID: 33370902 DOI: 10.1016/j.scitotenv.2020.142106] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/06/2020] [Accepted: 08/29/2020] [Indexed: 06/12/2023]
Abstract
Photochemical methods attracted much research interests for their high-efficiency and low secondary pollution. Decomposition of synthetic pyrethroids, the fourth major group of insecticides in use worldwide, was also of great significance due to their possible environmental risks. The photodegradation of deltamethrin, permethrin and dihaloacetylated heterocyclic pyrethroids in methanol/acetone = 9/1 (by volume) by a 400 W mercury lamp was examined. The t1/2 of tested pyrethroids was less than 25 min, except for cis-permethrin with a t1/2 of up to 50 min. The trans-isomer of permethrin and compound DCA-01 with a smaller t1/2 might be more susceptible to degradation than their cis-isomer. Besides, the photodegradation of pyrethroids was divided into twelve pathways including isomerization, ester hydrolysis, ester bond cleavage, CO bond cleavage, 3,3-dimethylacrylate formation, double bond break, C1-C3 bond cleavage in cyclopropyl, reductive dehalogenation, decarboxylation, nucleophilic reagents attack on lone pair electrons on oxygen atoms in the phenyl ether, cyano hydrolysis, and halogenated hydrocarbon hydrolysis. The ECOSAR program displayed that pyrethroids and most of their photodegradation products were toxic to fish, daphnid, green algae. Particularly, some photodegradation products were more harmful to aquatic organisms than their parents.
Collapse
Affiliation(s)
- Qiuyan Zhu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Yang Yang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Zhiting Lao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Yingying Zhong
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Kun Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China; Faculty of Biotechnology and Health, Wuyi University, Jiangmen 529020, People's Republic of China.
| | - Suqing Zhao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| |
Collapse
|
71
|
Min SJ, Kim JG, Baek K. Role of carbon fiber electrodes and carbonate electrolytes in electrochemical phenol oxidation. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123083. [PMID: 32947731 DOI: 10.1016/j.jhazmat.2020.123083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/23/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
In-situ chemical oxidation (ISCO) requires an injection of oxidants into a contaminated site. However, the oxidants decompose and react with contaminants during transport to the contaminated region, which causes oxidant over-consumption. In-situ oxidant generation can solve this problem, and electrochemical methods can be applied to achieve this. Electrochemical oxidation is highly dependent on electrode material type. In this study, we evaluated graphite and carbon fiber as candidates for electrochemical oxidant generation and phenol as the model compound. The carbon fiber anode oxidized the phenol more effectively than graphite, with removal proportional to the applied current. Carbonate electrolytes were more effective at oxidizing phenols than sulfate electrolytes. The faster carbon fiber anode phenol oxidation is due to its large surface area. Carbonate radicals in the carbonate electrolyte contribute to phenol oxidation as well as further intermediate oxidation. The carbon fiber cathode was not an effective phenol oxidizer even though it generated more hydrogen peroxide. This is because there was no catalyst to transform the hydrogen peroxide into hydroxyl radicals. Results indicate that electrochemical oxidation using carbon fiber is an effective method for treating phenol found in groundwater with high concentrations of (bi)carbonate.
Collapse
Affiliation(s)
- Su-Jin Min
- Department of Environmental Engineering and Soil Environment Research Center, Jeonbuk National University, 567 Baekie-daero, Deokjin, Jeonju, Jeollabukdo 561-756, Republic of Korea
| | - Jong-Gook Kim
- Department of Environmental Engineering and Soil Environment Research Center, Jeonbuk National University, 567 Baekie-daero, Deokjin, Jeonju, Jeollabukdo 561-756, Republic of Korea
| | - Kitae Baek
- Department of Environmental Engineering and Soil Environment Research Center, Jeonbuk National University, 567 Baekie-daero, Deokjin, Jeonju, Jeollabukdo 561-756, Republic of Korea.
| |
Collapse
|
72
|
Literature Review: Global Neonicotinoid Insecticide Occurrence in Aquatic Environments. WATER 2020. [DOI: 10.3390/w12123388] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neonicotinoids have been the most commonly used insecticides since the early 1990s. Despite their efficacy in improving crop protection and management, these agrochemicals have gained recent attention for their negative impacts on non-target species such as honeybees and aquatic invertebrates. In recent years, neonicotinoids have been detected in rivers and streams across the world. Determining and predicting the exposure potential of neonicotinoids in surface water requires a thorough understanding of their fate and transport mechanisms. Therefore, our objective was to provide a comprehensive review of neonicotinoids with a focus on their fate and transport mechanisms to and within surface waters and their occurrence in waterways throughout the world. A better understanding of fate and transport mechanisms will enable researchers to accurately predict occurrence and persistence of insecticides entering surface waters and potential exposure to non-target organisms in agricultural intensive regions. This review has direct implications on how neonicotinoids are monitored and degraded in aquatic ecosystems. Further, an improved understanding of the fate and transport of neonicotinoids aide natural resource practitioners in the development and implementation of effective best management practices to reduce the potential impact and exposure of neonicotinoids in waterways and aquatic ecosystems.
Collapse
|
73
|
Modiri Gharehveran M, Hain E, Blaney L, Shah AD. Influence of dissolved organic matter on carbonyl sulfide and carbon disulfide formation from cysteine during sunlight photolysis. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:1852-1864. [PMID: 32966465 DOI: 10.1039/d0em00219d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Carbonyl sulfide (COS) and carbon disulfide (CS2) are important atmospheric gases that are formed from organic sulfur precursors present in natural waters when exposed to sunlight. However, it remains unclear how specific water constituents, such as dissolved organic matter (DOM), affect COS and CS2 formation. To better understand the role of DOM, irradiation experiments were conducted in O2-free synthetic waters containing four different DOM isolates, acquired from freshwater to open ocean sources, and the sulfur-based amino acid, cysteine (CYS). CYS is a known natural precursor of COS and CS2. Results indicated that COS formation did not vary strongly with DOM type, although small impacts were observed on the kinetic patterns. COS formation also increased with increasing CYS concentration but decreased with increasing DOM concentration. Quenching experiments indicated that ˙OH was not involved in the rate-limiting step of COS formation, whereas excited triplet states of DOM (3CDOM*) were plausibly involved, although the quenching agents used to remove 3CDOM* may have reacted with the CYS-derived intermediates as well. CS2 was not formed under any of the experimental conditions. Overall, DOM-containing synthetic waters had a limited to no effect towards forming COS and CS2, especially when compared to the higher concentrations formed in sunlit natural waters, as examined previously. The reasons behind this limited effect need to be explored further but may be due to the additional water quality constituents present in these natural waters. The findings of this study imply that multiple variables beyond DOM govern COS and CS2 photoproduction when moving from freshwaters to open ocean waters.
Collapse
Affiliation(s)
| | - Ethan Hain
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Lee Blaney
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Amisha D Shah
- Lyles School of Civil Engineering, Purdue University, West Lafayette, Indiana, USA. and Division of Environmental and Ecological Engineering, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
74
|
Wasswa J, Driscoll CT, Zeng T. Photochemical Characterization of Surface Waters from Lakes in the Adirondack Region of New York. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10654-10667. [PMID: 32786602 DOI: 10.1021/acs.est.0c02811] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The Adirondack Mountain region of New York, a historical hotspot for atmospheric sulfur and nitrogen deposition, features abundant lakes that are experiencing browning associated with recovery from acidification. Yet, much remains unknown about the photoreactivity of Adirondack lake waters. We quantified the apparent quantum yields (Φapp,RI) of photochemically produced reactive intermediates (RIs), such as excited triplet states of dissolved organic matter (3DOM*), singlet oxygen (1O2), and hydroxyl radicals (•OH), for surface waters collected from 16 representative Adirondack lakes. Φapp,3DOM* and Φapp,1O2 for native Adirondack lake waters fell within ranges reported for whole waters and DOM isolates from various sources, while Φapp,•OH were substantially lower than those measured for other aquatic samples. Orthogonal partial least squares and multiple linear regression analyses identified the spectral slope coefficient from 290 to 400 nm (S290-400) as the most effective predictor of Φapp,RI among measured water chemistry parameters and bulk DOM properties. Φapp,RI also exhibited divergent responses to controlled pH adjustment and aluminum or iron addition simulating hypothetical scenarios relevant to past and future water chemistry conditions of Adirondack lakes. This study highlights the need for continued research on changes in photoreactivity of acid-impacted aquatic ecosystems in response to browning and subsequent impacts on photochemical processes.
Collapse
Affiliation(s)
- Joseph Wasswa
- Department of Civil and Environmental Engineering, Syracuse University, 151 Link Hall, Syracuse, New York 13244, United States
| | - Charles T Driscoll
- Department of Civil and Environmental Engineering, Syracuse University, 151 Link Hall, Syracuse, New York 13244, United States
| | - Teng Zeng
- Department of Civil and Environmental Engineering, Syracuse University, 151 Link Hall, Syracuse, New York 13244, United States
| |
Collapse
|
75
|
Noelle A, Vandaele AC, Martin-Torres J, Yuan C, Rajasekhar BN, Fahr A, Hartmann GK, Lary D, Lee YP, Limão-Vieira P, Locht R, McNeill K, Orlando JJ, Salama F, Wayne RP. UV/Vis + photochemistry database: Structure, content and applications. JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER 2020; 253:10.1016/j.jqsrt.2020.107056. [PMID: 34121770 PMCID: PMC8193824 DOI: 10.1016/j.jqsrt.2020.107056] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The "science-softCon UV/Vis+ Photochemistry Database" (www.photochemistry.org) is a large and comprehensive collection of EUV-VUV-UV-Vis-NIR spectral data and other photochemical information assembled from published peer-reviewed papers. The database contains photochemical data including absorption, fluorescence, photoelectron, and circular and linear dichroism spectra, as well as quantum yields and photolysis related data that are critically needed in many scientific disciplines. This manuscript gives an outline regarding the structure and content of the "science-softCon UV/Vis+ Photochemistry Database". The accurate and reliable molecular level information provided in this database is fundamental in nature and helps in proceeding further to understand photon, electron and ion induced chemistry of molecules of interest not only in spectroscopy, astrochemistry, astrophysics, Earth and planetary sciences, environmental chemistry, plasma physics, combustion chemistry but also in applied fields such as medical diagnostics, pharmaceutical sciences, biochemistry, agriculture, and catalysis. In order to illustrate this, we illustrate the use of the UV/Vis+ Photochemistry Database in four different fields of scientific endeavor.
Collapse
Affiliation(s)
| | - Ann Carine Vandaele
- Planetary Aeronomy Division, BIRA-IASB, 3 av. Circulaire, B-1180 Brussels, Belgium
| | - Javier Martin-Torres
- Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, 97187 Luleå, Sweden
- Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Av. de las Palmeras, 4, 18100 Armilla, Granada, Spain
- School of Geosciences, University of Aberdeen, Meston Building, King’s College, Aberdeen AB24 3UE, United Kingdom
| | - Chenyi Yuan
- Oak Ridge Institute for Science and Education (ORISE), Office of Research and Development, U.S. Environmental Protection Agency, Athens, GA 30605, United States
| | | | - Askar Fahr
- American Chemical Society, Office of Research Grants, 1155 Sixteenth Street, NW, Washington D.C. 20036, United States
| | | | - David Lary
- William B. Hanson Center for Space Sciences, Department of Physics, University of Texas at Dallas, 800 West Campbell Road Richardson, TX 75080-3021, United States
| | - Yuan-Pern Lee
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 30010, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Paulo Limão-Vieira
- Atomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Robert Locht
- RU MolSys, Molecular Dynamics Laboratory, Department of Chemistry, Blg B6c, University of Liège, Sart-Tilman, B-4000 Liège 1, Belgium
| | - Kristopher McNeill
- Institute for Biogeochemistry and Pollutant Dynamics, ETH Zurich, Universitätsstrasse 16, 8092 Zurich, Switzerland
| | - John J. Orlando
- Atmospheric Chemistry Observations and Modeling Laboratory, UCAR, P.O. Box 3000, Boulder, CO 80307-3000, United States
| | - Farid Salama
- NASA-Ames Research Center, Space Science & Astrobiology Division, Mail Stop: 245-6, Moffett Field, CA 94035-1000, United States
| | - Richard P. Wayne
- Chemistry Department, University of Oxford, South Parks Road, Oxford, OX1 3QR, United Kingdom
| |
Collapse
|
76
|
Pan Y, Ruan X, Garg S, Waite TD, Lei Y, Yang X. Copper Inhibition of Triplet-Sensitized Phototransformation of Phenolic and Amine Contaminants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9980-9989. [PMID: 32687340 DOI: 10.1021/acs.est.0c01693] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Excited triplet states of natural organic matter (3NOM*) are important reactive intermediates in phototransformation of organic contaminants in sunlit waters. The main goal of this study was to explore the influence of Cu on triplet-sensitized transformation rates of 20 selected phenolic and amine contaminants. Fourteen of the compounds examined exhibited a marked decrease in their 4-carboxybenzophenone (CBBP)-mediated phototransformation rate in the presence of trace amounts of Cu(II) (25-500 nM). Both mathematical modeling of these rate data and transient absorption spectroscopy measurements support the hypothesis that the decrease in the rate and extent of phototransformation of organic contaminants is due to the reduction of radical intermediates of the contaminants by photochemically formed Cu(I). The Cu-induced inhibition of oxidation of organic contaminants photosensitized by Suwannee River NOM (SRNOM) could also take place in the presence of nanomolar concentrations of Cu. The inhibitory effect of Cu on the oxidation rates of amine contaminants in SRNOM solutions was found to be significantly weaker compared to that in CBBP solutions, but little difference was observed on depletion of phenols. This behavior was attributed to the intrinsic inhibitory effect of the antioxidant moieties present in NOM on phototransformation of amine compounds, partially neutralizing the potential for further Cu inhibition.
Collapse
Affiliation(s)
- Yanheng Pan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaoxue Ruan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Shikha Garg
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - T David Waite
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yu Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
77
|
Hora PI, Arnold WA. Photochemical fate of quaternary ammonium compounds in river water. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:1368-1381. [PMID: 32406464 DOI: 10.1039/d0em00086h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Quaternary ammonium compounds (QACs) are not completely removed during wastewater treatment and are frequently detected in surface waters and sediments. The photochemical transformation of QACs has not been thoroughly investigated as a potential degradation pathway affecting their fate in the environment. Kinetic studies of common QACs with and without aromatic groups under simulated and natural sunlight conditions were performed with model sensitizers and dissolved organic matter to estimate photochemical half-lives in the aquatic environment. All QACs investigated react with hydroxyl radicals at diffusion-controlled rates (∼2.9 × 109 to 1.2 × 1010 M-1 s-1). Benzethonium reacted via direct photolysis (ΦBZT,outdoor = 1.7 × 10-2 (mol Ei-1)). Benzethonium also reacted with the triplet excited state model sensitizer 2-acetylnaphthalene, but evidence suggests this reaction pathway is unimportant in natural waters due to faster quenching of the triplet 2-acetylnapthalene by oxygen. Reactivity with singlet oxygen for the QACs was minimal. Overall, reactions with hydroxyl radicals will dominate over direct photolysis due to limited spectral overlap of sunlight emission and QAC absorbance. Photolysis half-lives are predicted to be 12 to 94 days, indicating slow abiotic degradation in surface water.
Collapse
Affiliation(s)
- Priya I Hora
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota - Twin Cities, 500 Pillsbury Drive SE, Minneapolis, Minnesota 55455, USA.
| | - William A Arnold
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota - Twin Cities, 500 Pillsbury Drive SE, Minneapolis, Minnesota 55455, USA.
| |
Collapse
|
78
|
Wang Y, Khan SJ, Fan L, Roddick F. Application of a QWASI model to produce validated insights into the fate and transport of six emerging contaminants in a wastewater lagoon system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137676. [PMID: 32172107 DOI: 10.1016/j.scitotenv.2020.137676] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/11/2020] [Accepted: 03/01/2020] [Indexed: 06/10/2023]
Abstract
The occurrence and fate of emerging contaminants (ECs) in surface water bodies is of increasing interest to water quality managers and environmental regulators throughout the world. Wastewater treatment plants are a major source of ECs in many aquatic environments. A modified Quantitative Water Air Sediment Interaction (QWASI) fugacity model was developed for a municipal wastewater lagoon system to study the behaviour of six representative ECs. As the wastewater lagoons were exposed to extensive periods of sunlight, the original model was modified by the addition of photolytic degradation as a removal mechanism. Laboratory studies were conducted over different seasons of a year to obtain the rate constants for the key processes of sunlight photodegradation, water and sediment transformation, as well as sediment sorption coefficients for the target ECs in the system to serve as model inputs. The model predicted the pathways for the different ECs and that at least 65% of the concentration of the ECs remained in the outflow of the first lagoon of the lagoon system after treatment. The greatest removal was predicted for sulfamethoxazole (35%) and the least for carbamazepine (5%). Multi-segment theory was applied to the single lagoon model and the predictions for the sequential six lagoon system were validated through field sampling. Sensitivity analysis revealed that the mass transfer coefficient between the water and sediment phases was the most influential parameter, with the four key process rate constants having various impacts depending on the EC. These results suggest that the modified QWASI model could be used to more accurately represent the fate and transport of ECs in this unique wastewater lagoon/stabilisation pond treatment system. Furthermore, it can be adapted to model a wide range of ECs in other wastewater treatment lagoon systems and thus assist with process optimisation and risk assessment of the treated water.
Collapse
Affiliation(s)
- Yufei Wang
- School of Engineering, RMIT University, Melbourne, VIC, Australia
| | - Stuart J Khan
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Linhua Fan
- School of Engineering, RMIT University, Melbourne, VIC, Australia
| | - Felicity Roddick
- School of Engineering, RMIT University, Melbourne, VIC, Australia.
| |
Collapse
|
79
|
Chen Y, Hozalski RM, Olmanson LG, Page BP, Finlay JC, Brezonik PL, Arnold WA. Prediction of Photochemically Produced Reactive Intermediates in Surface Waters via Satellite Remote Sensing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:6671-6681. [PMID: 32383589 DOI: 10.1021/acs.est.0c00344] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Absorption of solar radiation by colored dissolved organic matter (CDOM) in surface waters results in the formation of photochemically produced reactive intermediates (PPRIs) that react with pollutants in water. Knowing the steady-state concentrations of PPRIs ([PPRI]ss) is critical to predicting the persistence of pollutants in sunlit surface waters. CDOM levels (a440) can be measured remotely for lakes over large areas using satellite imagery. Laboratory measurements of [PPRI]ss and apparent quantum yields (Φ) of three PPRIs (3DOM*, 1O2, and •OH) were made for 24 lake samples under simulated sunlight. The total rate of light absorption by the water samples (Ra), the rates of formation (Rf), and [PPRI]ss of 3DOM* and 1O2 linearly increased with increasing a440. The production rate of •OH was linearly correlated with a440, but the steady-state concentration was best fit by a logarithmic function. The relationship between measured a440 and Landsat 8 reflectance was used to map a440 for more than 10 000 lakes across Minnesota. Relationships of a440 with Rf, [PPRIs]ss, and Ra were coupled with satellite-based a440 assessments to map reactive species production rates and concentrations as well as contaminant transformation rates. This study demonstrates the potential for using satellite imagery for estimating contaminant loss via indirect photolysis in lakes.
Collapse
Affiliation(s)
- Yiling Chen
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Drive SE, Minneapolis, Minnesota 55455-0116, United States
| | - Raymond M Hozalski
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Drive SE, Minneapolis, Minnesota 55455-0116, United States
| | - Leif G Olmanson
- Department of Forest Resources, University of Minnesota, 1530 Cleveland Avenue North, St. Paul, Minnesota 55108-6112, United States
| | - Benjamin P Page
- Water Resources Center, University of Minnesota, 1985 Buford Avenue, St. Paul, Minnesota 55108-6112, United States
| | - Jacques C Finlay
- Department of Ecology, Evolution, and Behavior, University of Minnesota, 1987 Upper Buford Circle, St. Paul, Minnesota 55108-6097, United States
| | - Patrick L Brezonik
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Drive SE, Minneapolis, Minnesota 55455-0116, United States
| | - William A Arnold
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Drive SE, Minneapolis, Minnesota 55455-0116, United States
| |
Collapse
|
80
|
Xu H, Li Y, Liu J, Du H, Du Y, Su Y, Jiang H. Photogeneration and steady-state concentration of hydroxyl radical in river and lake waters along middle-lower Yangtze region, China. WATER RESEARCH 2020; 176:115774. [PMID: 32272319 DOI: 10.1016/j.watres.2020.115774] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/26/2020] [Accepted: 03/29/2020] [Indexed: 05/21/2023]
Abstract
Hydroxyl radical (HO∙) in natural waters plays a critical role in contaminant transformation and ecosystem health. In this study, the photogeneration and steady-state concentration of HO∙ in different aquatic environments (e.g., river and lake) along the middle-lower Yangtze region, China, were evaluated. The results showed that, compared to lake samples, the river waters were characterized by lower HO∙ photoformation rate (RHO∙) (5.10-11.69 × 10-11 vs. 1.10-1.82 × 10-10 M s-1) and steady-state HO∙ concentration ([HO∙]) (1.76-3.11 × 10-17 vs. 2.50-10.33 × 10-17 M). The contribution of nitrate and nitrite to the total RHO∙ in river waters was generally higher than that in lake waters, and photolysis of nitrite exhibited contributions 1-2 times higher than those of nitrate (0-25% vs. 0-9%) irrespective of sample types. As a result, the photosensitization by chromophoric dissolved organic matter (CDOM) contributed more than 70% of the total RHO∙ for all samples except for River Ganjiang. [HO∙] among all samples was positively correlated with dissolved organic carbon (DOC) concentration, and the DOC-normalized [HO∙] was further related to the physicochemical properties of CDOM samples (e.g., aromaticity, humification, and molecular weight). The humic-like aromatic substances with low molecular weight were the controlling factors influencing [HO∙] in the studied surface waters. The results contributed to a deeper understanding of behaviors and fate of aquatic DOMs in terms of HO∙ formation and contaminant attenuation.
Collapse
Affiliation(s)
- Huacheng Xu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Yani Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jin Liu
- Key Laboratory of the Pearl River Estuarine Dynamics & Associated Process Regulation, MWR, Guangzhou, 510611, China
| | - Haiyan Du
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yingxun Du
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yaling Su
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Helong Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
81
|
Wojnárovits L, Tóth T, Takács E. Rate constants of carbonate radical anion reactions with molecules of environmental interest in aqueous solution: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137219. [PMID: 32084688 DOI: 10.1016/j.scitotenv.2020.137219] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/23/2020] [Accepted: 02/07/2020] [Indexed: 05/09/2023]
Abstract
The rate constants of carbonate radical anion (CO3-) reaction with organic molecules, mainly of environmental interest, were collected from the literature and structure effects were discussed together with methods of rate constant determination and reaction mechanisms. These rate constants are essential for modelling chemical processes taking place with participation of reactive radicals in the environment determining the persistence of certain toxic compounds. The rate constants span over a very wide range from 102 to 109 mol-1 dm3 s-1, but, even the highest values are smaller by a factor of 2-5 as the diffusion controlled limit. This survey shows that only those molecules have high rate constants in the 107-109 mol-1 dm3 s-1 range which have special electron rich part(s). These molecules are removed selectively in CO3- reactions. Such electron rich moiety is the NH2 group attached to an aromatic ring. High vales were measured e.g., for most of anilines or the sulfonamide antibiotics. -CO group attached to the N-atom (in acetanilides and in phenylurea herbicides), or strong electron withdrawing substituents on benzene ring strongly decrease the rate constant. High values were also measured for aromatic molecules with dissociated -OH group (O-, phenoxides). The thioether group (e.g., in amino acids, or in fenthion or phorate insecticides) also activates the molecules in CO3- reactions.
Collapse
Affiliation(s)
- László Wojnárovits
- Radiation Chemistry Department, Institute for Energy Security and Environmental Safety, Centre for Energy Research, H-1121 Budapest, Konkoly-Thege Miklós út 29-33, Hungary.
| | - Tünde Tóth
- Radiation Chemistry Department, Institute for Energy Security and Environmental Safety, Centre for Energy Research, H-1121 Budapest, Konkoly-Thege Miklós út 29-33, Hungary.
| | - Erzsébet Takács
- Radiation Chemistry Department, Institute for Energy Security and Environmental Safety, Centre for Energy Research, H-1121 Budapest, Konkoly-Thege Miklós út 29-33, Hungary.
| |
Collapse
|
82
|
Carena L, Fabbri D, Passananti M, Minella M, Pazzi M, Vione D. The role of direct photolysis in the photodegradation of the herbicide bentazone in natural surface waters. CHEMOSPHERE 2020; 246:125705. [PMID: 31891848 DOI: 10.1016/j.chemosphere.2019.125705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/14/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
The photochemical fate of the herbicide bentazone was assessed by lab experiments and modeling tools. Experimental and modeling results showed that bentazone is mainly photodegraded by direct photolysis in natural water samples, even in the presence of dissolved organic matter (DOM) that can act as light-screening agent, photosensitizer and scavenger of reactive species. Even when it was dissolved in natural water samples containing different DOM amounts, the phototransformation kinetics of bentazone was unchanged compared to irradiation runs in ultrapure water. This finding suggests that the DOM and the other components of our samples did not affect the direct photolysis of bentazone by light-absorption competition, at least at the experimental optical path lengths, and did not induce significant indirect photodegradation by producing reactive transient species. Photochemical modeling in a lake-water photoreactivity scenario corroborated the observed experimental results, showing the predominant role of direct photolysis in the overall (direct + indirect) photodegradation of bentazone at different water depths and DOM contents. However, the model predicted a minor but non-negligible contribution of indirect photochemistry (i.e., reactions triggered by HO•, CO3•- and 3CDOM*) to the herbicide degradation. This contribution (especially by 3CDOM*) could become crucial in deep and DOM-rich water bodies. Finally, several photoproducts formed by direct photolysis and HO•-induced photodegradation were identified, which should not be particularly toxic for aquatic organisms and Vibrio fischeri bacteria.
Collapse
Affiliation(s)
- Luca Carena
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 5, 10125, Torino, Italy.
| | - Debora Fabbri
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 5, 10125, Torino, Italy
| | - Monica Passananti
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 5, 10125, Torino, Italy
| | - Marco Minella
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 5, 10125, Torino, Italy
| | - Marco Pazzi
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 5, 10125, Torino, Italy
| | - Davide Vione
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 5, 10125, Torino, Italy
| |
Collapse
|
83
|
Wang J, Wang K, Guo Y, Niu J. Photochemical degradation of nebivolol in different natural organic matter solutions under simulated sunlight irradiation: Kinetics, mechanism and degradation pathway. WATER RESEARCH 2020; 173:115524. [PMID: 32006808 DOI: 10.1016/j.watres.2020.115524] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 06/10/2023]
Abstract
Nebivolol (NEB) is widely used for the treatment of hypertension and chronic heart failure and has become an ubiquitous emerging organic pollutant. It has been shown to undergo direct photolysis, but the role of DOM in its degradation kinetics and mechanism is not well understood. In this study, we studied the photochemical behavior of NEB in the presence of seawater DOM (SW-DOM) and freshwater DOM (SRNOM) under simulated sunlight irradiation. SW-DOM had a promotion effect on NEB photodegradation, whereas SRNOM retarded its photolytic transformation. After eliminating the influence of light screening, we found that the indirect photodegradation rate of NEB in the presence of SRNOM was lower than that in the presence of SW-DOM. Results show that the indirect photodegradation pathway occurred by reaction with triplet-excited DOM (3DOM*). The second-order rate constants for 3SW-DOM* and 3SRNOM* reaction with NEB are 3.7 × 109 M-1 s-1 and 3.7 × 108 M-1 s-1, respectively. The electron donating capacity of SRNOM is higher than that of SW-DOM, indicating that SRNOM may contain more activated phenolic moieties. SRNOM may thus have higher antioxidant activity, leading a higher inhibitory effect on NEB photodegradation. A total of six degradation products were identified in the absence and presence of DOM by HPLC-ESI-MS/MS. The substitution of F by OH-groups and further oxidation a OH-group in the lateral chain to a ketone, and cleavage of N-C bond by the attack of 3DOM* are here proposed as the main degradation pathways.
Collapse
Affiliation(s)
- Jieqiong Wang
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR China
| | - Kai Wang
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR China
| | - Yuchen Guo
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR China
| | - Junfeng Niu
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR China.
| |
Collapse
|
84
|
Zhou C, Xie Q, Wang J, Chen X, Niu J, Chen J. Effects of dissolved organic matter derived from freshwater and seawater on photodegradation of three antiviral drugs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113700. [PMID: 31838398 DOI: 10.1016/j.envpol.2019.113700] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/10/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
Dissolved organic matter (DOM) is the most important light absorber that may induce indirect photolytic transformation of organic pollutants in natural waters. In this study, effects of DOM derived from freshwater and seawater on the photodegradation of three antiviral drugs acyclovir, lamivudine and zidovudine were investigated. Results show that the photodegradation of acyclovir is promoted mainly by excited triplet states DOM (3DOM*), and the photodegradation of lamivudine is accelerated by 3DOM*, •OH and 1O2 together; however, the photodegradation of zidovudine is inhibited by DOM mainly via light screening. Compared with DOM from freshwater, promotion effect of DOM extracted from seawater (SDOM) on the photodegradation of acyclovir and lamivudine is weaker, which is attributed to lower productivity of reactive intermediates. On the other hand, inhibitory effect of SDOM on the photodegradation of zidovudine is also weaker, which is due to weaker light screening caused by lower light absorption. Photodegradation half-lives of the three antiviral drugs are predicted to be all more than 20 days in freshwater and seawater bodies of the Yellow River estuarine region. These findings are significant for understanding the phototransformation processes of antiviral drugs and other organic pollutants in estuarine and coastal regions.
Collapse
Affiliation(s)
- Chengzhi Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China; Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Qing Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Jieqiong Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Xi Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Junfeng Niu
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China.
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| |
Collapse
|
85
|
Carena L, Vione D. Mapping the Photochemistry of European Mid-Latitudes Rivers: An Assessment of Their Ability to Photodegrade Contaminants. Molecules 2020; 25:molecules25020424. [PMID: 31968645 PMCID: PMC7024250 DOI: 10.3390/molecules25020424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/09/2020] [Accepted: 01/14/2020] [Indexed: 12/02/2022] Open
Abstract
The abiotic photochemical reactions that take place naturally in sunlit surface waters can degrade many contaminants that pose concern to water bodies for their potentially toxic and long-term effects. This works aims at assessing the ability of European rivers to photoproduce reactive transient intermediates, such as HO• radicals and the excited triplet states of chromophoric dissolved organic matter (3CDOM*), involved in pollutant degradation. A photochemical mapping of the steady-state concentrations of these transients was carried out by means of a suitable modeling tool, in the latitude belt between 40 and 50°N. Such a map allowed for the prediction of the photochemical lifetimes of the phenylurea herbicide isoproturon (mostly undergoing photodegradation upon reaction with HO• and especially 3CDOM*) across different European countries. For some rivers, a more extensive dataset was available spanning the years 1990–2002, which allowed for the computation of the steady-state concentration of the carbonate radicals (CO3•−). With these data, it was possible to assess the time trends of the photochemical half-lives of further contaminants (atrazine, ibuprofen, carbamazepine, and clofibric acid). The calculated lifetimes were in the range of days to weeks, which might or might not allow for efficient depollution depending on the river-water flow velocity.
Collapse
|
86
|
Carena L, Puscasu CG, Comis S, Sarakha M, Vione D. Environmental photodegradation of emerging contaminants: A re-examination of the importance of triplet-sensitised processes, based on the use of 4-carboxybenzophenone as proxy for the chromophoric dissolved organic matter. CHEMOSPHERE 2019; 237:124476. [PMID: 31404736 DOI: 10.1016/j.chemosphere.2019.124476] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/24/2019] [Accepted: 07/27/2019] [Indexed: 06/10/2023]
Abstract
The photoreactions sensitised by the excited triplet states of chromophoric dissolved organic matter (3CDOM*) are very important in the photochemical attenuation of emerging contaminants in natural waters. Until quite recently, anthraquinone-2-sulphonate (AQ2S) was the only available CDOM proxy molecule to estimate the contaminant reaction kinetics with 3CDOM*, under steady-state irradiation conditions. Unfortunately, the AQ2S triplet state (3AQ2S*) is considerably more reactive than average 3CDOM*. We have recently developed an alternative protocol based on 4-carboxybenzophenone (CBBP), the triplet state of which (3CBBP*) is less reactive compared to 3AQ2S*. Here we show that in the case of ibuprofen (IBP), paracetamol (APAP) and clofibric acid (CLO), the reaction rate constants with 3CBBP* are more reasonable as 3CDOM* reactivity estimates than those obtained by using AQ2S. In contrast, similar rate constants are measured for the reaction of atrazine (ATZ) with either 3AQ2S* or 3CBBP*. Moreover, the reactivity of ATZ with both 3AQ2S* and 3CBBP* is very similar to that with 3CDOM*, available through a literature estimate. The possibility to validate the ATZ-3CBBP* reactivity estimate against the 3CDOM* data, and to accurately predict the reported IBP and CLO field lifetime, support the suitability of CBBP as CDOM proxy. The replacement of AQ2S with CBBP as proxy molecule does not reverse the qualitative prediction, according to which 3CDOM* would be the main process involved in the photodegradation of the studied contaminants in waters with high dissolved organic carbon (DOC). However, the CBBP-based data prompt for an important reconsideration of the estimated lifetimes at high DOC.
Collapse
Affiliation(s)
- Luca Carena
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 5, 10125, Torino, Italy
| | - Cezara G Puscasu
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 5, 10125, Torino, Italy
| | - Silvia Comis
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 5, 10125, Torino, Italy
| | - Mohamed Sarakha
- Institut de Chimie de Clermont-Ferrand, Clermont Université, Université Blaise Pascal, F-63177, Aubière, France
| | - Davide Vione
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 5, 10125, Torino, Italy.
| |
Collapse
|
87
|
Carena L, Terrenzio D, Mosley LM, Toldo M, Minella M, Vione D. Photochemical consequences of prolonged hydrological drought: A model assessment of the Lower Lakes of the Murray-Darling Basin (Southern Australia). CHEMOSPHERE 2019; 236:124356. [PMID: 31330437 DOI: 10.1016/j.chemosphere.2019.124356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
The prolonged "Millennium" drought affecting Australia in the 2000s had important consequences on surface-water bodies, including the Lower Lakes (Lake Alexandrina and Lake Albert) located at the terminal end of the River Murray system. Shallower water depths, limited solute dilution and altered geochemical processes ensured that the concentration values of several water constituents increased considerably during drought, including the water parameters of photochemical significance (nitrate, bicarbonate, carbonate and the dissolved organic carbon, DOC). The aim of this study was to model the photochemical processes in the Lower Lakes during the drought and post-drought periods, to provide insight into the changes that photoinduced reactions can undergo in periods of water scarcity. Among the photochemical processes involved in the light-assisted transformation of dissolved compounds, an important role is played by indirect photochemistry where degradation is triggered by photogenerated transient species such as hydroxyl (OH) and carbonate (CO3-) radicals, and the triplet states of chromophoric dissolved organic matter (3CDOM*). Results of photochemical modelling suggest that the reactions induced by 3CDOM* would be enhanced during drought, while the processes triggered by OH and CO3- would be less modified. For compounds undergoing efficient degradation with 3CDOM*, enhanced photochemistry during drought could offset the higher concentration values resulting from lower dilution. In contrast, for compounds mainly degraded by OH or CO3- the drought period could produce a concentration increase not balanced by an increment in the photochemical reactivity of the water body.
Collapse
Affiliation(s)
- Luca Carena
- Dipartimento di Chimica, Università di Torino, Via P. Giuria 5, 10125, Torino, Italy
| | - Dario Terrenzio
- Dipartimento di Chimica, Università di Torino, Via P. Giuria 5, 10125, Torino, Italy
| | - Luke M Mosley
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Marco Toldo
- iMpronta48, Loc., Ciocchini 18, 12060, Novello, CN, Italy
| | - Marco Minella
- Dipartimento di Chimica, Università di Torino, Via P. Giuria 5, 10125, Torino, Italy
| | - Davide Vione
- Dipartimento di Chimica, Università di Torino, Via P. Giuria 5, 10125, Torino, Italy.
| |
Collapse
|
88
|
Apell JN, Pflug NC, McNeill K. Photodegradation of Fludioxonil and Other Pyrroles: The Importance of Indirect Photodegradation for Understanding Environmental Fate and Photoproduct Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11240-11250. [PMID: 31486641 DOI: 10.1021/acs.est.9b03948] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fludioxonil is a pyrrole-containing pesticide whose registration as a plant protection product is currently under review in the United States and Europe. There are concerns over its potential persistence and toxicity in the aquatic environment; however, the pyrrole moiety represents a potential reaction site for indirect photodegradation. In this study, the direct and indirect photodegradation of fludioxonil, along with pyrrole, 3-cyanopyrrole, and 3-phenylpyrrole, were investigated. Results showed that pyrrole moieties are capable of undergoing direct photoionization and sensitized photooxidation to form radical cation species, which then likely deprotonate and react with dissolved oxygen. Additionally, pyrrole moieties can undergo reactions with singlet oxygen (1O2). Furthermore, the presence of electron-withdrawing or -donating substituents substantially impacted the reaction rate with 1O2 as well as the one-electron oxidation potential of the pyrrole that dictates reactions with triplet states of dissolved organic matter (3CDOM*). For fludioxonil, which can undergo both direct and indirect photodegradation, the reaction rate constant with 1O2 alone resulted in a predicted t1/2 < 2 days in waters under sunlit near-surface conditions, suggesting it will not be persistent in aquatic systems. These results are useful for evaluating the environmental fate of fludioxonil as well as other pyrrole compounds.
Collapse
Affiliation(s)
- Jennifer N Apell
- Institute for Biogeochemistry and Pollutant Dynamics , ETH Zurich , Universitaetstrasse 16 , 8092 Zurich , Switzerland
| | - Nicholas C Pflug
- Institute for Biogeochemistry and Pollutant Dynamics , ETH Zurich , Universitaetstrasse 16 , 8092 Zurich , Switzerland
| | - Kristopher McNeill
- Institute for Biogeochemistry and Pollutant Dynamics , ETH Zurich , Universitaetstrasse 16 , 8092 Zurich , Switzerland
| |
Collapse
|
89
|
Schmitt M, Moor KJ, Erickson PR, McNeill K. Sorbic Acid as a Triplet Probe: Reactivity of Oxidizing Triplets in Dissolved Organic Matter by Direct Observation of Aromatic Amine Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:8087-8096. [PMID: 31269391 DOI: 10.1021/acs.est.9b01789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Sorbic acid (2,4-hexadienoic acid; HDA) isomerization is frequently used to probe triplet-state dissolved organic matter (3CDOM*) reactivity, but there remain open questions about the reaction kinetics of 3CDOM* with HDA due to the difficulties of directly measuring 3CDOM* quenching rate constants. Using our recently developed approach based on observing the radical cation of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) formed through oxidation of TMPD by 3CDOM*, we studied 3CDOM* quenching kinetics with HDA monitored via transient absorption spectroscopy. A competition kinetics-based approach utilizing formation yields of TMPD•+ was developed, validated with model sensitizers, and used to determine bimolecular rate constants between 3CDOM* oxidants and HDA for diverse DOM isolates and natural waters samples, yielding values in the range of (2.4-7.7) × 108 M-1 s-1. The unquenchable fraction of TMPD-oxidizing triplets showed that, on average, 41% of 3CDOM* oxidants cannot be quenched by HDA. Conversely, cycloheptatriene quenched nearly all TMPD•+-forming triplets in CDOM, suggesting that most 3CDOM* oxidants possess energies greater than 150 kJ mol-1. Comparing results with our companion study, we found slight, but noticeable differences in the 3CDOM* quenching rate constants by HDA and unquenchable triplet fractions determined by oxidation of TMPD and energy transfer to O2 (1O2 formation) methods.
Collapse
Affiliation(s)
- Markus Schmitt
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science , ETH Zurich , 8092 Zurich , Switzerland
| | - Kyle J Moor
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science , ETH Zurich , 8092 Zurich , Switzerland
| | - Paul R Erickson
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science , ETH Zurich , 8092 Zurich , Switzerland
| | - Kristopher McNeill
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science , ETH Zurich , 8092 Zurich , Switzerland
| |
Collapse
|
90
|
Moor KJ, Schmitt M, Erickson PR, McNeill K. Sorbic Acid as a Triplet Probe: Triplet Energy and Reactivity with Triplet-State Dissolved Organic Matter via 1O 2 Phosphorescence. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:8078-8086. [PMID: 31268694 DOI: 10.1021/acs.est.9b01787] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Sorbic acid (2,4-hexadienoic acid; HDA) is commonly used as a probe and quencher for triplet-excited chromophoric dissolved organic matter (3CDOM*), an important transient species in natural waters, yet much remains unknown about its reactivity with 3CDOM* and its triplet energy. To better understand the quenching behavior of HDA, we measured HDA quenching rate constants for various humic substance isolates and whole waters with singlet oxygen (1O2) phosphorescence and determined the triplet energy of HDA. Low-temperature phosphorescence measurements determined the triplet energy of HDA to be 217 kJ mol-1, whereas a complementary method based on triplet quenching kinetics found a triplet energy of 184 ± 7 kJ mol-1. Time-resolved 1O2 phosphorescence measurements yielded different HDA quenching rate constants depending on the fitting method. Using an approach that considered the reactivity of the entire triplet pool produced values of (∼1-10) × 108 M-1 s-1, while an approach that considered only the reactivity of the high-energy triplets output higher rate constants ((∼7-30) × 108 M-1 s-1). In addition, the model based on high-energy triplet reactivity found that ∼30-60% of 3CDOM* is not quenched by HDA. Findings from this study provide a more comprehensive view on the use of HDA as a probe for 3CDOM*.
Collapse
Affiliation(s)
- Kyle J Moor
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science , ETH Zurich , 8092 Zurich , Switzerland
| | - Markus Schmitt
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science , ETH Zurich , 8092 Zurich , Switzerland
| | - Paul R Erickson
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science , ETH Zurich , 8092 Zurich , Switzerland
| | - Kristopher McNeill
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science , ETH Zurich , 8092 Zurich , Switzerland
| |
Collapse
|
91
|
Hsu MH, Tsai CJ, Lin AYC. Mechanism and pathways underlying the self-sensitized photodegradation of methotrexate under simulated solar irradiation. JOURNAL OF HAZARDOUS MATERIALS 2019; 373:468-475. [PMID: 30939429 DOI: 10.1016/j.jhazmat.2019.03.095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 06/09/2023]
Abstract
Methotrexate, a chemotherapeutic agent, was found to undergo self-sensitized photodegradation in aqueous environments. As the initial concentration increased, methotrexate was able to enhance its own direct photolysis reaction not only in DI but also in natural waters. The methotrexate degradation rate increased through the production of singlet oxygen (1O2), the triplet excited state of methotrexate (3MTX*), and the triplet excited state of the pteridine structure (3PT*) from the phototransformation byproducts. At low methotrexate concentrations (<20 ppb), 1O2 played an important role, whereas at higher methotrexate concentrations (>2000 ppb), the presence of oxygen decreased the overall methotrexate degradation rate by physically quenching 3MTX* and 3PT*. The cleavage of the CN bond resulted in a significant amount of byproducts: pteridine derivatives and N-(4-aminobenzoyl)-l-glutamic acid (yields: 13.5 ± 0.6% and 32.3 ± 2.2% for 10 ppm and 500 ppb MTX, respectively). The reactivity of the phototransformation byproducts and the substructures of methotrexate were investigated to help elucidate the proposed self-sensitized pathways. The results indicated that methotrexate as well as compounds containing a pteridine structure will generate pteridine byproducts during photodegradation and 3PT* is the primary triplet excited species that can cause self-sensitized photodegradation.
Collapse
Affiliation(s)
- Ming-Hao Hsu
- Graduate Institute of Environmental Engineering, National Taiwan University, 71, Chou-Shan Rd., Taipei 106, Taiwan
| | - Chia-Jung Tsai
- Graduate Institute of Environmental Engineering, National Taiwan University, 71, Chou-Shan Rd., Taipei 106, Taiwan
| | - Angela Yu-Chen Lin
- Graduate Institute of Environmental Engineering, National Taiwan University, 71, Chou-Shan Rd., Taipei 106, Taiwan.
| |
Collapse
|
92
|
Su L, Caywood LM, Sivey JD, Dai N. Sunlight Photolysis of Safener Benoxacor and Herbicide Metolachlor as Mixtures on Simulated Soil Surfaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:6784-6793. [PMID: 31132254 DOI: 10.1021/acs.est.9b01243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Benoxacor is a safener paired with the high-use herbicide S-metolachlor. Commercial formulations containing both compounds are sprayed onto soil pre-emergence to enhance yields of corn. In this study, we evaluated the sunlight photolysis of metolachlor and benoxacor, individually and as mixtures, in three different reaction environments: in water and on two soil-simulating surfaces (quartz and kaolinite). When irradiated individually, benoxacor degraded at least 19 times faster than metolachlor in each reaction environment, consistent with its higher molar absorptivity within the solar spectrum than metolachlor. When metolachlor and benoxacor were irradiated as mixtures, benoxacor promoted metolachlor degradation on quartz and, to a lesser extent, in water, but not on kaolinite. On quartz, at a benoxacor/metolachlor molar ratio of 0.1:1, metolachlor degraded 1.8 times faster than in the absence of benoxacor; as the benoxacor/metolachlor ratio increased, metolachlor degradation rate also increased. The photolysis rate of benoxacor depended on its initial surface concentration and was promoted by metolachlor. Benoxacor photoproducts were capable of absorbing sunlight and serving as photosensitizers for metolachlor degradation. These results illustrate how a safener can influence the photochemistry of its coformulated herbicide and suggest that such mixture effects should be considered when evaluating the environmental fate of agrochemicals.
Collapse
Affiliation(s)
- Lei Su
- Department of Civil, Structural and Environmental Engineering , University at Buffalo, The State University of New York , Buffalo , New York 14260 , United States
| | - Leandra M Caywood
- Department of Chemical and Materials Engineering , University of Alabama in Huntsville , Huntsville , Alabama 35899 , United States
| | - John D Sivey
- Department of Chemistry , Towson University , Towson , Maryland 21252 , United States
| | - Ning Dai
- Department of Civil, Structural and Environmental Engineering , University at Buffalo, The State University of New York , Buffalo , New York 14260 , United States
| |
Collapse
|
93
|
Hong J, Liu J, Wang L, Kong S, Tong C, Qin J, Chen L, Sui Y, Li B. Characterization of reactive photoinduced species in rainwater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:36368-36380. [PMID: 30368707 DOI: 10.1007/s11356-018-3499-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
Rainfall is a highly effective and important carrier that can remove a majority of aerosol mass into land and marine ecosystems. The photochemically formed reactive species in the rainwater are likely dominant oxidants for organic and inorganic substances. Here, we collected rainwater samples from Oct. 2016 to Dec. 2016 in CUG campus (Wuhan, Hubei, China) and measured their formation rates, lifetimes, steady-state concentrations, and apparent quantum yields of reactive photoinduced species, including hydroxyl radical (HO•), H2O2, singlet oxygen (1O2), and chromophoric dissolved organic matter triplet state (3CDOM*) in the laboratory. Results showed that rainwater samples contained photochemical sources, like DOM, nitrate, heavy metals, etc. Quantification of HO• showed that rHO• (the photogeneration rate of HO•) were in the range of 1.05 × 10-10-4.56 × 10-10 M s-1, and [•OH]ss (the steady-state concentrations of OH•) were of 4.06 × 10-18-2.97 × 10-17 M for the three samples. Further investigations revealed that 10-24% of r•OH was attributed to nitrate photolysis, suggesting DOM was possibly the prevailing source of HO•. Apparent quantum yields of H2O2 (ΦH2O2) correlated negatively with E2/E3 (the ratio of absorption at 250 and 365 nm), while Φ1O2 and Φ3CDOM* increased with elevated E2/E3.
Collapse
Affiliation(s)
- Jun Hong
- Laboratory of Basin Hydrology and Wetland Eco-restoration, School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, 430074, People's Republic of China.
- Engineering Research Center of Nano-Geo Materials of Ministry of Education, China University of Geosciences (Wuhan), Wuhan, 430074, People's Republic of China.
| | - Jia Liu
- Laboratory of Basin Hydrology and Wetland Eco-restoration, School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, 430074, People's Republic of China
| | - Li Wang
- Laboratory of Basin Hydrology and Wetland Eco-restoration, School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, 430074, People's Republic of China
| | - Shaofei Kong
- Department of Atmosphere sciences, School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, 430074, People's Republic of China
| | - Chen Tong
- Laboratory of Basin Hydrology and Wetland Eco-restoration, School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, 430074, People's Republic of China
| | - Jun Qin
- Department of Atmosphere sciences, School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, 430074, People's Republic of China
| | - Lei Chen
- Department of Atmosphere sciences, School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, 430074, People's Republic of China
| | - Yue Sui
- Department of Atmosphere sciences, School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, 430074, People's Republic of China
| | - Baoqing Li
- Faculty of Earth Resources, China University of Geosciences (Wuhan), Wuhan, 430074, People's Republic of China
| |
Collapse
|
94
|
Zhou Z, Chen B, Qu X, Fu H, Zhu D. Dissolved Black Carbon as an Efficient Sensitizer in the Photochemical Transformation of 17β-Estradiol in Aqueous Solution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:10391-10399. [PMID: 30130961 DOI: 10.1021/acs.est.8b01928] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Dissolved black carbon (DBC) is an important component of the dissolved organic matter (DOM) pool. Nonetheless, little is known about its role in the photochemical processes of organic contaminants. This study investigated the effect of DBC on the phototransformation of 17β-estradiol in aqueous solutions under simulated sunlight. Four well-studied dissolved humic substances (DHS) were included as comparisons. DBC acted as a very effective sensitizer to facilitate the phototransformation of 17β-estradiol. The apparent quantum yield for 17β-estradiol phototransformation mediated by DBC was approximately six times higher than that by DHS at the same carbon concentration. Quenching experiments suggested that direct reaction with triplet-excited state DBC (3DBC*) was the predominant pathway of 17β-estradiol phototransformation. The higher mediation efficiency of DBC than DHS is likely due to the higher contents of aromatic groups and smaller molecular sizes, which facilitated the generation of 3DBC*. The apparent quantum yield of triplet-excited states production for DBC was 4-8 times higher than that for DHS. The results suggest that 3DBC* may have a considerable contribution to the overall photoreactivity of triplet-excited state DOM in aquatic systems. Our findings also imply that DBC can play an important role in the phototransformation of organic contaminants in the environments.
Collapse
Affiliation(s)
- Zhicheng Zhou
- State Key Laboratory of Pollution Control and Resource Reuse/School of the Environment , Nanjing University , Nanjing , Jiangsu 210046 , China
| | - Beining Chen
- State Key Laboratory of Pollution Control and Resource Reuse/School of the Environment , Nanjing University , Nanjing , Jiangsu 210046 , China
| | - Xiaolei Qu
- State Key Laboratory of Pollution Control and Resource Reuse/School of the Environment , Nanjing University , Nanjing , Jiangsu 210046 , China
| | - Heyun Fu
- State Key Laboratory of Pollution Control and Resource Reuse/School of the Environment , Nanjing University , Nanjing , Jiangsu 210046 , China
| | - Dongqiang Zhu
- School of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| |
Collapse
|
95
|
Chen C, Huang Y. Enhanced photoreactivity of amine-functionalized carbon nanotubes under sunlight in the aquatic environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 636:1577-1584. [PMID: 29913618 DOI: 10.1016/j.scitotenv.2018.04.241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
To overcome the hydrophobic nature of pristine carbonaceous materials such as carbon nanotubes (CNTs) and to make them available for intended applications, chemically covalent functionalization tailoring these materials is widely applied. However, the addition of surface functional moieties often changes the fundamental properties of the parent materials and introduces great variations that hinder a full understanding of and unified conclusions about their environmental implications. In this work, we studied the photoactivity of covalently functionalized CNTs in the aquatic environment under sunlight irradiation. The results indicate an enhanced photoreactivity of CNTs with amine functional groups resulting from a greater excited triplet state formation and a restored electronic structure after the secondary functionalization. Photogenerated singlet oxygen was produced directly through a photosensitization process in which the photoexcited CNTs transferred energy to oxygen, as well as produced indirectly from the aqueous reactions of superoxide radical. The superior photoreactive behaviors of engineered nanomaterials with amine functionalization in terms of reactive oxygen species generation in aquatic environments not only raise ecological concerns, but also render these functionalized engineered nanomaterials useful as water treatment agents against pollutants or microorganisms that can be destroyed by singlet oxygen or hydroxyl radicals.
Collapse
Affiliation(s)
- Chiaying Chen
- Department of Environmental Engineering, National Chung Hsing University, Taichung City 402, Taiwan.
| | - Yu Huang
- Department of Environmental Engineering, National Chung Hsing University, Taichung City 402, Taiwan
| |
Collapse
|
96
|
Davis CA, McNeill K, Janssen EML. Non-Singlet Oxygen Kinetic Solvent Isotope Effects in Aquatic Photochemistry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:9908-9916. [PMID: 30056698 DOI: 10.1021/acs.est.8b01512] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The kinetic solvent isotope effect (KSIE) is typically utilized in environmental photochemistry to elucidate whether a compound is susceptible to photooxidation by singlet oxygen (1O2), due to its known difference in lifetime in water (H2O) versus heavy water (D2O). Here, the overall indirect photodegradation rates of diarylamines in the presence of dissolved organic matter (DOM) were enhanced in D2O to a greater extent than expected based on their reactivity with 1O2. For each diarylamine, the relative contribution of reaction with 1O2 to the observed KSIE was determined from high resolution data of 1O2 lifetimes by time-resolved infrared luminescence spectroscopy. The additional enhancement in D2O beyond reaction with 1O2 contributed significantly to the observed KSIE for diarylamines (8-65%) and diclofenac (100%). The enhancement was ascribed to slower reduction of transient radical species of the diarylamines due to H/D exchange at DOM's phenolic antioxidant moieties. A slower second-order reaction rate constant with a model antioxidant was verified for mefenamic acid radicals using transient absorption spectroscopy. Changes in lifetime and reactivity with triplet sensitizers were not responsible for the additional KSIE. Other pollutants with quenchable radical intermediates may also be susceptible to such an additional KSIE, which has to be considered when using the KSIE as a diagnostic tool.
Collapse
Affiliation(s)
- Caroline A Davis
- Institute of Biogeochemistry and Pollutant Dynamics , ETH Zurich , Zürich , 8092 , Switzerland
- Swiss Federal Institute of Aquatic Science and Technology, Eawag , Dübendorf , 8600 , Switzerland
| | - Kristopher McNeill
- Institute of Biogeochemistry and Pollutant Dynamics , ETH Zurich , Zürich , 8092 , Switzerland
| | - Elisabeth M-L Janssen
- Swiss Federal Institute of Aquatic Science and Technology, Eawag , Dübendorf , 8600 , Switzerland
| |
Collapse
|
97
|
Su L, Sivey JD, Dai N. Emerging investigator series: sunlight photolysis of 2,4-D herbicides in systems simulating leaf surfaces. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:1123-1135. [PMID: 29974906 DOI: 10.1039/c8em00186c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Pesticides are commonly applied on foliage, forming dry deposits on the leaf cuticular wax. However, their photochemical transformation in this lipophilic environment is much less understood compared with that in surface water. In this work, sunlight photolysis of six chlorinated phenoxyacetic acid herbicides (i.e., 2,4-D and structural analogues) was evaluated in four organic solvents, on quartz, and on paraffin wax. In solvents of low polarity (i.e., n-heptane and 2-propanol), direct photolysis of 2,4-D herbicides was enhanced due to the relatively high quantum yields in these solvents. Photolysis on paraffin wax was slower than photolysis on quartz by a factor of 3-9, but was comparable with that in solvents of low polarity. With environmentally relevant irradiation and surface loading, the half-lives of 2,4-D herbicides on paraffin wax were 27-159 h, which are within the same range reported for biodegradation, the dominant dissipation pathway in the current 2,4-D fate model. Product analyses showed that photoreductive dechlorination is the dominant pathway in organic solvents, accounting for 68-100% of parent compound decay. On quartz and paraffin wax surfaces, however, photoreductive dechlorination products accounted for <60% of parent compound decay. Combining kinetic modeling and product analyses, it was shown that neither could the two additional putative pathways (photosubstitution of chlorine by hydroxyl group and cleavage of the ether bond) fully account for the total phototransformation on surfaces. These results suggest that rapid photolysis on surfaces can be attributed to unique pathways that are absent in the organic solvent phase.
Collapse
Affiliation(s)
- Lei Su
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, 231 Jarvis Hall, Buffalo, New York 14260, USA.
| | | | | |
Collapse
|
98
|
Adachi T, Suzuki Y, Nishiyama M, Kodaka R, Fujisawa T, Katagi T. Photodegradation of Strobilurin Fungicide Mandestrobin in Water. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8514-8521. [PMID: 30049214 DOI: 10.1021/acs.jafc.8b03610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Photodegradation of a new strobilurin fungicide, mandestrobin, was investigated in buffered aqueous solution and synthetic humic water (SHW) under continuous irradiation with artificial sunlight (λ > 290 nm). In both aquatic media, the direct photolysis preferentially proceeded via homolytic bond cleavage at the benzyl phenyl ether, and the subsequent recombination of geminate radicals in a solvent cage gave the photo-Claisen rearrangement products. A radical mechanism in the photochemical rearrangement was strongly supported by a radical-trapping technique using a novel nitroxide spin label combined with electron spin resonance (ESR) and liquid chromatography-mass spectrometry (LC-MS) analyses. Photosensitized generation of hydroxyl radical in SHW might significantly contribute to enhancing the formation of a benzyl alcohol derivative. The series of photolysis products steadily degraded and finally mineralized to carbon dioxide.
Collapse
Affiliation(s)
- Takeshi Adachi
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 4-2-1 Takatsukasa , Takarazuka , Hyogo 665-8555 , Japan
| | - Yusuke Suzuki
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 4-2-1 Takatsukasa , Takarazuka , Hyogo 665-8555 , Japan
| | - Masahiro Nishiyama
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 3-1-98 Kasugadenaka , Konohana-ku, Osaka 554-8558 , Japan
| | - Rika Kodaka
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 4-2-1 Takatsukasa , Takarazuka , Hyogo 665-8555 , Japan
| | - Takuo Fujisawa
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 4-2-1 Takatsukasa , Takarazuka , Hyogo 665-8555 , Japan
| | - Toshiyuki Katagi
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 3-1-98 Kasugadenaka , Konohana-ku, Osaka 554-8558 , Japan
| |
Collapse
|
99
|
Bai Y, Cui Z, Su R, Qu K. Influence of DOM components, salinity, pH, nitrate, and bicarbonate on the indirect photodegradation of acetaminophen in simulated coastal waters. CHEMOSPHERE 2018; 205:108-117. [PMID: 29689524 DOI: 10.1016/j.chemosphere.2018.04.087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/12/2018] [Accepted: 04/15/2018] [Indexed: 06/08/2023]
Abstract
The indirect photodegradation behaviors of acetaminophen (APAP) were investigated in the presence of four kinds of dissolved organic matter (DOM) and were also assessed in the presence of seawater components and conditions such as salinity, pH, nitrate and bicarbonate. The results showed three important findings: firstly, in the indirect photolysis of APAP, the contributions of 3DOM*, ·OH and 1O2 were >85.0%, 2.3-9.9% and 0.8-2.6% at pH 8.0. Secondly, DOM was divided into four terrestrial humic-like components by Excitation-emission matrix spectroscopy (EEMs) combined with parallel factor analysis (PARAFAC). This study showed a good linearity between DOM fluorescence components and the indirect photodegradation of APAP (R2 = 0.92) and the differences in photodegradation rates of APAP among various DOM solutions were due to the diverse compositions of DOM. Finally, salinity was an important factor influencing the removal of APAP, and the APAP photodegradation rate constants increased from (3.33 ± 0.07) × 10-5 s-1 to (1.25 ± 0.05) × 10-4 s-1 with increasing salinity. The increased pseudo-first-order rate constants for photolysis of APAP with increasing salinity, pH and nitrate were attributed to the enhanced generation of reactive intermediates (RI) and easier reactions between RI and APAP. The increased APAP removal rate constant with increasing bicarbonate was likely ascribed to the yield of ∙CO3-. This is the first report of the roles of DOM components and salinity on the indirect photolysis of APAP. These findings would be essential to predict the photochemical fate of APAP and would also allow for a better understanding of the environmental fate of other phenolic contaminants.
Collapse
Affiliation(s)
- Ying Bai
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Zhengguo Cui
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Rongguo Su
- Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| | - Keming Qu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| |
Collapse
|
100
|
Minella M, Rapa L, Carena L, Pazzi M, Maurino V, Minero C, Brigante M, Vione D. An experimental methodology to measure the reaction rate constants of processes sensitised by the triplet state of 4-carboxybenzophenone as a proxy of the triplet states of chromophoric dissolved organic matter, under steady-state irradiation conditions. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:1007-1019. [PMID: 29876570 DOI: 10.1039/c8em00155c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
By a combination of transient absorption spectroscopy and steady-state irradiation experiments, we investigated the transformation of phenol and furfuryl alcohol (FFA) sensitised by irradiated 4-carboxybenzophenone (CBBP). The latter is a reasonable proxy molecule to assess the reactivity of the excited triplet states of the chromophoric dissolved organic matter that occurs in natural waters. The main reactive species for the transformation of both phenol and FFA was the CBBP triplet state, despite the fact that FFA is a commonly used probe for 1O2. In the case of FFA it was possible to develop a simple kinetic model that fitted well the experimental data obtained by steady-state irradiation, in a wide range of FFA concentration values. In the case of phenol the model was made much more complex by the likely occurrence of back reactions between radical species (e.g., phenoxyl and superoxide). This problem can be tackled by considering only the experimental data at low phenol concentration, where the degradation rate increases linearly with concentration. We do not recommend the use of 1O2 scavengers/quenchers such as sodium azide to elucidate CBBP photoreaction pathways, because the azide provides misleading results by also acting as a triplet-state quencher. Based on the experimental data, we propose a methodology for the measurement of the CBBP triplet-sensitisation rate constants from steady-state irradiation experiments, allowing for a better assessment of the triplet-sensitised degradation of emerging contaminants.
Collapse
Affiliation(s)
- Marco Minella
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 5, 10125 Torino, Italy.
| | | | | | | | | | | | | | | |
Collapse
|