51
|
Wu S, Zhao H, Dong F, Ling W, Tang Z, Zhang J. Construction of Superhydrophobic Ru/TiCeO x Catalysts for the Enhanced Water Resistance of o-Dichlorobenzene Catalytic Combustion. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2610-2621. [PMID: 33412849 DOI: 10.1021/acsami.0c18636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this paper, a simple method to enhance the H2O resistance of Ru/TiCeOx catalysts for o-DCB catalytic combustion by constructing superhydrophobic coating of phenyltriethoxysilane (PhTES) was proposed. The effect of PhTES content on the pore structure, specific surface area, H2O resistance, contact angle (CA) value, and catalytic activity of the catalyst was studied. When water was added, the pristine Ru/TiCeOx catalytic activity decreased by about 26%, while the Ru/TiCeOx-16Ph activity hardly decreased. According to the analysis results of XRD, FT-IR, SEM, and CA, PhTES was closely coated on the surface of Ru/TiCeOx to produce a more hydrophobic surface. The Ru/TiCeOx-16Ph catalyst had strong hydrophobicity, and the contact angle was 159.8°, which not only significantly enhanced the water resistance and self-cleaning activity but also showed a good elimination temperature (T90 = 341 °C) for the o-DCB. The enhanced water resistance of Ru/TiCeOx-XPh catalysts resulted from the reduction of the active centers consumed (water occupying oxygen vacancy sites). The reaction mechanism of the Ru/TiCeOx-16Ph catalyst based on surface oxygen species and the Deacon reaction was proposed. This method provided new idea for the design of a new water-resistant composite catalyst and promoted the practical application of the composite catalyst in the catalytic oxidation of o-DCB.
Collapse
Affiliation(s)
- Shilin Wu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, and National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
- School of Petroleum and Chemical, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Haijun Zhao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, and National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Fang Dong
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, and National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Weitong Ling
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, and National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Zhicheng Tang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, and National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Jiyi Zhang
- School of Petroleum and Chemical, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| |
Collapse
|
52
|
Kurepa J, Smalle JA. Composition of the metabolomic bio-coronas isolated from Ocimum sanctum and Rubia tinctorum. BMC Res Notes 2021; 14:6. [PMID: 33407859 PMCID: PMC7789504 DOI: 10.1186/s13104-020-05420-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023] Open
Abstract
Objective Nanoharvesting from intact plants, organs, and cultured cells is a method in which nanoparticles are co-incubated with the target tissue, which leads to the internalization of nanoparticles. Internalized nanoparticles are coated in situ with specific metabolites that form a dynamic surface layer called a bio-corona. Our previous study showed that metabolites that form the bio-corona around anatase TiO2 nanoparticles incubated with leaves of the model plant Arabidopsis thaliana are enriched for flavonoids and lipids. The present study focused on the identification of metabolites isolated by nanoharvesting from two medicinal plants, Ocimum sanctum (Tulsi) and Rubia tinctorum (common madder). Results To identify metabolites that form the bio-corona, Tulsi leaves and madder roots were incubated with ultra-small anatase TiO2 nanoparticles, the coated nanoparticles were collected, and the adsorbed molecules were released from the nanoparticle surface and analyzed using an untargeted metabolomics approach. Similar to the results in which Arabidopsis tissue was used as a source of metabolites, TiO2 nanoparticle bio-coronas from Tulsi and madder were enriched for flavonoids and lipids, suggesting that nanoharvesting has a wide-range application potential. The third group of metabolites enriched in bio-coronas isolated from both plants were small peptides with C-terminal arginine and lysine residues.
Collapse
Affiliation(s)
- Jasmina Kurepa
- Plant Physiology, Biochemistry, Molecular Biology Program, Department of Plant and Soil Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Jan A Smalle
- Plant Physiology, Biochemistry, Molecular Biology Program, Department of Plant and Soil Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
53
|
Zhang Q, Zhang L, Liu XN, Li Z, Li Z, Wu X, Wang GL, Zhao WW. Establishing Interfacial Charge-Transfer Transitions on Ferroelectric Perovskites: An Efficient Route for Photoelectrochemical Bioanalysis. ACS Sens 2020; 5:3827-3832. [PMID: 33315371 DOI: 10.1021/acssensors.0c02143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This work presents the concept of establishing interfacial charge-transfer transitions (ICTT) on ferroelectric perovskites for efficient photoelectrochemical (PEC) bioanalysis. The model system was exemplified by using representative lead titanate (PbTiO3) and an enzyme tandem consisting of the isocitrate dehydrogenase (ICDH) and p-hydroxybenzoate hydroxylase (PHBH). The enzymatic generation of protocatechuic acid (PCA) can coordinate onto the surface of the PbTiO3 and hence form the ICTT that enables direct ligand-to-metal charge transfer from the highest occupied molecular orbital (HOMO) of PCA to the conduction band (CB) of PbTiO3 under light irradiation. Due to the ferroelectric polarization induced electric field of PbTiO3 and the surface polarity of PCA modification, enhanced charge separation of the ICTT contributes to the generation of anodic photocurrent and thus underlies a unique route for detecting the enzymatic activity or its substrate. For dehydrogenase detection, this strategy has better performance than some classical methodologies in terms of high sensitivity and improved selectivity. This work not only features ICTT establishment on ferroelectric perovskites for unique bioanalysis but also provides new insights into the utilization of ferroelectric perovskites for advanced PEC bioanalysis.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Lan Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiang-Nan Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zaijun Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Zheng Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiuming Wu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Guang-Li Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
54
|
Ko Y, Kwon CH, Lee SW, Cho J. Nanoparticle-Based Electrodes with High Charge Transfer Efficiency through Ligand Exchange Layer-by-Layer Assembly. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001924. [PMID: 32954530 DOI: 10.1002/adma.202001924] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/02/2020] [Indexed: 06/11/2023]
Abstract
Organic-ligand-based solution processes of metal and transition metal oxide (TMO) nanoparticles (NPs) have been widely studied for the preparation of electrode materials with desired electrical and electrochemical properties for various energy devices. However, the ligands adsorbed on NPs have a significant effect on the intrinsic properties of materials, thus influencing the performance of bulk electrodes assembled by NPs for energy devices. To resolve these critical drawbacks, numerous approaches have focused on developing unique surface chemistry that can exchange bulky ligands with small ligands or remove bulky ligands from NPs after NP deposition. In particular, recent studies have reported that the ligand-exchange-induced layer-by-layer (LE-LbL) assembly of NPs enables controlled assembly of NPs with the desired interparticle distance, and interfaces, dramatically improving the electrical/electrochemical performance of electrodes. This emerging approach also demonstrates that efficient surface ligand engineering can exploit the unique electrochemical properties of individual NPs and maximize the electrochemical performance of the resultant NP-assembled electrodes through improved charge transfer efficiency. This report focuses on how LE-LbL assembly can be effectively applied to NP-based energy storage/conversion electrodes. First, the basic principles of the LE-LbL approach are introduced and then recent progress on NP-based energy electrodes prepared via the LE-LbL approach is reviewed.
Collapse
Affiliation(s)
- Yongmin Ko
- Department of Chemical & Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Division of Energy Technology, Materials Research Institute, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Cheong Hoon Kwon
- Department of Chemical & Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Seung Woo Lee
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| | - Jinhan Cho
- Department of Chemical & Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| |
Collapse
|
55
|
Blidar A, Trashin S, Carrión EN, Gorun SM, Cristea C, De Wael K. Enhanced Photoelectrochemical Detection of an Analyte Triggered by Its Concentration by a Singlet Oxygen-Generating Fluoro Photosensitizer. ACS Sens 2020; 5:3501-3509. [PMID: 33118815 DOI: 10.1021/acssensors.0c01609] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The use of a photocatalyst (photosensitizer) which produces singlet oxygen instead of enzymes for oxidizing analytes creates opportunities for designing cost-efficient and sensitive photoelectrochemical sensors. We report that perfluoroisopropyl-substituted zinc phthalocyanine (F64PcZn) interacts specifically with a complex phenolic compound, the antibiotic rifampicin (RIF), but not with hydroquinone or another complex phenolic compound, the antibiotic doxycycline. The specificity is imparted by the selective preconcentration of RIF in the photocatalytic layer, as revealed by electrochemical and optical measurements, complemented by molecular modeling that confirms the important role of a hydrophobic cavity formed by the iso-perfluoropropyl groups of the photocatalyst. The preconcentration effect favorably enhances the RIF photoelectrochemical detection limit as well as sensitivity to nanomolar (ppb) concentrations, LOD = 7 nM (6 ppb) and 2.8 A·M-1·cm-2, respectively. The selectivity to RIF, retained in the photosensitizer layer, is further enhanced by the selective removal of all unretained phenols via simple washing of the electrodes with pure buffer. The utility of the sensor for analyzing municipal wastewater was demonstrated. This first demonstration of enhanced selectivity and sensitivity due to intrinsic interactions of a molecular photocatalyst (photosensitizer) with an analyte, without use of a biorecognition element, may allow the design of related, robust, simple, and viable sensors.
Collapse
Affiliation(s)
- Adrian Blidar
- Department of Analytical Chemistry, “Iuliu Hatieganu” University of Medicine and Pharmacy, 4 Pasteur Street, 400349 Cluj-Napoca, Romania
| | | | - Erik N. Carrión
- Department of Chemistry and Biochemistry and the Center for Functional Materials, Seton Hall University, South Orange, New Jersey 07079, United States
| | - Sergiu M. Gorun
- Department of Chemistry and Biochemistry and the Center for Functional Materials, Seton Hall University, South Orange, New Jersey 07079, United States
| | - Cecilia Cristea
- Department of Analytical Chemistry, “Iuliu Hatieganu” University of Medicine and Pharmacy, 4 Pasteur Street, 400349 Cluj-Napoca, Romania
| | | |
Collapse
|
56
|
|
57
|
Bahamonde Soria R, Zhu J, Gonza I, Van der Bruggen B, Luis P. Effect of (TiO2: ZnO) ratio on the anti-fouling properties of bio-inspired nanofiltration membranes. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117280] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
58
|
Wang XN, Tang W, Gordon A, Wang HY, Xu L, Li P, Li B. Porous TiO 2 Film Immobilized with Gold Nanoparticles for Dual-Polarity SALDI MS Detection and Imaging. ACS APPLIED MATERIALS & INTERFACES 2020; 12:42567-42575. [PMID: 32852188 DOI: 10.1021/acsami.0c12949] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Surface-assisted laser desorption/ionization (SALDI) mass spectrometry (MS) has become an attractive complementary approach to matrix-assisted laser desorption/ionization (MALDI) MS. SALDI MS has great potential for the detection of small molecules because of the absence of applied matrix. In this work, a functionalized porous TiO2 film immobilized with gold nanoparticles (AuNPs-FPTDF) was prepared to enhance SALDI MS performance. The porous TiO2 films were prepared by the facile sol-gel method and chemically functionalized for dense loading of AuNPs. The prepared AuNPs-FPTDF showed superior performance in the detection and imaging of small molecules in dual-polarity modes, with high detection sensitivity in the low pmol range, good repeatability, and low background noise compared to common organic MALDI matrixes. Its usage efficiently enhanced SALDI MS detection of various small molecules, such as amino acids and neurotransmitters, fatty acids, saccharides, alkaloids, and flavonoids, as compared with α-cyano-4-hydroxycinnamic acid, 9-aminoacridine, and the three precursor substrates of AuNPs-FPTDF. In addition, the blood glucose level in rats was successfully determined from a linearity concentration range of 0.5-9 mM, as well as other biomarkers in rat serum with SALDI MS. More importantly, the spatial distribution of metabolites from the intact flowers of the medicinal plant Catharanthus roseus was explored by using the AuNPs-FPTDF as an imprint SALDI MS substrate in dual-polarity modes. These results demonstrate wide applications and superior performances of the AuNPs-FPTDF as a multifunctional SALDI surface with enhanced detection sensitivity and imaging capabilities.
Collapse
Affiliation(s)
- Xian-Na Wang
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Weiwei Tang
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Andrew Gordon
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Hui-Ying Wang
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Linru Xu
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ping Li
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Bin Li
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
59
|
Bahrami S, Hassanzadeh‐Afruzi F, Maleki A. Synthesis and characterization of a novel and green rod‐like magnetic ZnS/CuFe
2
O
4
/agar organometallic hybrid catalyst for the synthesis of biologically‐active 2‐amino‐tetrahydro‐4
H
‐chromene‐3‐carbonitrile derivatives. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5949] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shahrzad Bahrami
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry Iran University of Science and Technology Tehran 16846‐13114 Iran
| | - Fereshte Hassanzadeh‐Afruzi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry Iran University of Science and Technology Tehran 16846‐13114 Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry Iran University of Science and Technology Tehran 16846‐13114 Iran
| |
Collapse
|
60
|
Role of carboxylic group pattern on protein surface in the recognition of iron oxide nanoparticles: A key for protein corona formation. Int J Biol Macromol 2020; 164:1715-1728. [PMID: 32758605 DOI: 10.1016/j.ijbiomac.2020.07.295] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 01/30/2023]
Abstract
The knowledge of protein-nanoparticle interplay is of crucial importance to predict the fate of nanomaterials in biological environments. Indeed, protein corona on nanomaterials is responsible for the physiological response of the organism, influencing cell processes, from transport to accumulation and toxicity. Herein, a comparison using four different proteins reveals the existence of patterned regions of carboxylic groups acting as recognition sites for naked iron oxide nanoparticles. Readily interacting proteins display a distinctive surface distribution of carboxylic groups, recalling the geometric shape of an ellipse. This is morphologically complementary to nanoparticles curvature and compatible with the topography of exposed FeIII sites laying on the nanomaterial surface. The recognition site, absent in non-interacting proteins, promotes the nanoparticle harboring and allows the formation of functional protein coronas. The present work envisages the possibility of predicting the composition and the biological properties of protein corona on metal oxide nanoparticles.
Collapse
|
61
|
Hou Z, Liu Y, Xu J, Zhu J. Surface engineering of magnetic iron oxide nanoparticles by polymer grafting: synthesis progress and biomedical applications. NANOSCALE 2020; 12:14957-14975. [PMID: 32648868 DOI: 10.1039/d0nr03346d] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Magnetic iron oxide nanoparticles (IONPs) have wide applications in magnetic resonance imaging (MRI), biomedicine, drug delivery, hyperthermia therapy, catalysis, magnetic separation, and others. However, these applications are usually limited by irreversible agglomeration of IONPs in aqueous media because of their dipole-dipole interactions, and their poor stability. A protecting polymeric shell provides IONPs with not only enhanced long-term stability, but also the functionality of polymer shells. Therefore, polymer-grafted IONPs have recently attracted much attention of scientists. In this tutorial review, we will present the current strategies for grafting polymers onto the surface of IONPs, basically including "grafting from" and "grafting to" methods. Available functional groups and chemical reactions, which could be employed to bind polymers onto the IONP surface, are comprehensively summarized. Moreover, the applications of polymer-grafted IONPs will be briefly discussed. Finally, future challenges and perspectives in the synthesis and application of polymer-grafted IONPs will also be discussed.
Collapse
Affiliation(s)
- Zaiyan Hou
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Yijing Liu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Jiangping Xu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Jintao Zhu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| |
Collapse
|
62
|
Datteo M, Ferraro L, Seifert G, Di Valentin C. TETT-functionalized TiO 2 nanoparticles for DOX loading: a quantum mechanical study at the atomic scale. NANOSCALE ADVANCES 2020; 2:2774-2784. [PMID: 36132395 PMCID: PMC9417671 DOI: 10.1039/d0na00275e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/14/2020] [Indexed: 05/21/2023]
Abstract
In this work, we present a quantum mechanical investigation, based on the self-consistent charge density functional tight-binding (SCC-DFTB) method, of the functionalization with silane-type ligands (TETT) of a spherical TiO2 nanoparticle of realistic size (2.2 nm containing 700 atoms) to create an efficient nanosystem for simultaneous photodynamic therapy and drug transport. We determine the mechanism of the TETT ligand anchoring and its stability under thermal treatment, through molecular dynamics simulations at 300 K. Then, we build a medium and a full coverage model (22 and 40 TETTs, respectively) and analyze the interaction among TETT ligands and between the ligands and the surface. Finally, on the fully covered nanoparticle, we succeed in localizing two minimum energy structures for an attached doxorubicin anticancer molecule (DOX) and provide the atomistic details for both the covalent and the non-covalent (electrostatic) types of interaction. A future development of this work will be the investigation of the loading capacity of this drug delivery system and of the pH effect of the surrounding aqueous environment.
Collapse
Affiliation(s)
- Martina Datteo
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca Via R. Cozzi 55 20125 Milano Italy
| | - Lorenzo Ferraro
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca Via R. Cozzi 55 20125 Milano Italy
| | - Gotthard Seifert
- Technische Universität Dresden, Institut für Theoretische Chemie D-01062 Dresden Germany
| | - Cristiana Di Valentin
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca Via R. Cozzi 55 20125 Milano Italy
| |
Collapse
|
63
|
Deshpande SS, Potekar DB, Shelke PB, Deshpande MD. Theoretical study of interaction of Fe 13O 8@Zn 48O 48 cluster with dopamine: Magnetic and optical properties. J Mol Graph Model 2020; 99:107640. [PMID: 32599508 DOI: 10.1016/j.jmgm.2020.107640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 10/24/2022]
Abstract
In this study, we modelled the interaction of Fe13O8 and Fe13O8@Zn48O48 (core@shell) cluster with a biologically active dopamine molecule using density functional theory. First, the electronic, magnetic and optical properties of core@shell, Fe13O8@Zn48O48 cluster investigated and compared with isolated Fe13O8 and Zn48O48 clusters. Fe13O8@Zn48O48 cluster is found to be energetically stable. For Fe13O8 and Fe13O8@Zn48O48 clusters have the net magnetic moment 42 μB. The decrease in HOMO-LUMO gap of core@shell cluster as compared to that of isolated clusters reflects the higher reactivity. The results of the site dependent interaction of Fe13O8 and Fe13O8@Zn48O48 clusters with dopamine molecule are presented. The interaction strength is determined in terms of the cluster-dopamine complex binding energy and found to be enhanced for core@shell cluster than the Fe13O8. Furthermore, the calculated results predict that in presence of dopamine, the magnetic moment of Fe13O8 and Fe13O8@Zn48O48 cluster remains unaffected. The analysis of optical spectra of core@shell indicates the obvious red shift compared to Zn48O48 clusters. The optical spectra of Fe13O8@Zn48O48-dopamine shows the higher oscillator strength as compared to that of Fe13O8-dopamine complex. Fe13O8-dopamine complex gives rise to more quenched oscillator strengths as compared to that of bare iron oxide cluster. These results indicate interesting magneto-optical behaviour, which can be useful for biomedical applications.
Collapse
Affiliation(s)
- Swapnil S Deshpande
- Department of Physics, H.P.T. Arts and R.Y.K. Science College, Nasik, 422005, Maharashtra, India
| | - Dipali B Potekar
- Department of Physics, H.P.T. Arts and R.Y.K. Science College, Nasik, 422005, Maharashtra, India; Department of Physics, Ahmednagar College, Ahmednagar, 414001, Maharashtra, India
| | - Pradip B Shelke
- Department of Physics, Ahmednagar College, Ahmednagar, 414001, Maharashtra, India
| | - Mrinalini D Deshpande
- Department of Physics, H.P.T. Arts and R.Y.K. Science College, Nasik, 422005, Maharashtra, India.
| |
Collapse
|
64
|
Interfacial Charge-Transfer Transitions for Direct Charge-Separation Photovoltaics. ENERGIES 2020. [DOI: 10.3390/en13102521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Photoinduced charge separation (PCS) plays an essential role in various solar energy conversions such as photovoltaic conversion in solar cells. Usually, PCS in solar cells occurs stepwise via solar energy absorption by light absorbers (dyes, inorganic semiconductors, etc.) and the subsequent charge transfer at heterogeneous interfaces. Unfortunately, this two-step PCS occurs with a relatively large amount of the energy loss (at least ca. 0.3 eV). Hence, the exploration of a new PCS mechanism to minimize the energy loss is a high-priority subject to realize efficient solar energy conversion. Interfacial charge-transfer transitions (ICTTs) enable direct PCS at heterogeneous interfaces without energy loss, in principle. Recently, several progresses have been reported for ICTT at organic-inorganic semiconductor interfaces by our group. First of all, new organic-metal oxide complexes have been developed with various organic and metal-oxide semiconductors for ICTT. Through the vigorous material development and fundamental research of ICTT, we successfully demonstrated efficient photovoltaic conversion due to ICTT for the first time. In addition, we revealed that the efficient photoelectric conversion results from the suppression of charge recombination, providing a theoretical guiding principle to control the charge recombination rate in the ICTT system. These results open up a way to the development of ICTT-based photovoltaic cells. Moreover, we showed the important role of ICTT in the reported efficient dye-sensitized solar cells (DSSCs) with carboxy-anchor dyes, particularly, in the solar energy absorption in the near IR region. This result indicates that the combination of dye sensitization and ICTT would lead to the further enhancement of the power conversion efficiency of DSSC. In this feature article, we review the recent progresses of ICTT and its application in solar cells.
Collapse
|
65
|
Magro M, Venerando A, Macone A, Canettieri G, Agostinelli E, Vianello F. Nanotechnology-Based Strategies to Develop New Anticancer Therapies. Biomolecules 2020; 10:E735. [PMID: 32397196 PMCID: PMC7278173 DOI: 10.3390/biom10050735] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/16/2020] [Accepted: 05/06/2020] [Indexed: 12/14/2022] Open
Abstract
The blooming of nanotechnology has made available a limitless landscape of solutions responding to crucial issues in many fields and, nowadays, a wide choice of nanotechnology-based strategies can be adopted to circumvent the limitations of conventional therapies for cancer. Herein, the current stage of nanotechnological applications for cancer management is summarized encompassing the core nanomaterials as well as the available chemical-physical approaches for their surface functionalization and drug ligands as possible therapeutic agents. The use of nanomaterials as vehicles to delivery various therapeutic substances is reported emphasizing advantages, such as the high drug loading, the enhancement of the pay-load half-life and bioavailability. Particular attention was dedicated to highlight the importance of nanomaterial intrinsic features. Indeed, the ability of combining the properties of the transported drug with the ones of the nano-sized carrier can lead to multifunctional theranostic tools. In this view, fluorescence of carbon quantum dots, optical properties of gold nanoparticle and superparamagnetism of iron oxide nanoparticles, are fundamental examples. Furthermore, smart anticancer devices can be developed by conjugating enzymes to nanoparticles, as in the case of bovine serum amine oxidase (BSAO) and gold nanoparticles. The present review is aimed at providing an overall vision on nanotechnological strategies to face the threat of human cancer, comprising opportunities and challenges.
Collapse
Affiliation(s)
- Massimiliano Magro
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020 Legnaro (PD), Italy; (M.M.); (A.V.)
| | - Andrea Venerando
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020 Legnaro (PD), Italy; (M.M.); (A.V.)
| | - Alberto Macone
- Department of Biochemical Sciences, A. Rossi Fanelli’, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Gianluca Canettieri
- Pasteur Laboratory, Department of Molecular Medicine, Sapienza University of Rome, I-00161 Rome, Italy;
- International Polyamines Foundation ‘ETS-ONLUS’, Via del Forte Tiburtino 98, 00159 Rome, Italy
| | - Enzo Agostinelli
- Department of Biochemical Sciences, A. Rossi Fanelli’, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
- International Polyamines Foundation ‘ETS-ONLUS’, Via del Forte Tiburtino 98, 00159 Rome, Italy
| | - Fabio Vianello
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020 Legnaro (PD), Italy; (M.M.); (A.V.)
- International Polyamines Foundation ‘ETS-ONLUS’, Via del Forte Tiburtino 98, 00159 Rome, Italy
| |
Collapse
|
66
|
Moreau LM, Herve A, Straub MD, Russo DR, Abergel RJ, Alayoglu S, Arnold J, Braun A, Deblonde GJP, Liu Y, Lohrey TD, Olive DT, Qiao Y, Rees JA, Shuh DK, Teat SJ, Booth CH, Minasian SG. Structural properties of ultra-small thorium and uranium dioxide nanoparticles embedded in a covalent organic framework. Chem Sci 2020; 11:4648-4668. [PMID: 34122920 PMCID: PMC8159168 DOI: 10.1039/c9sc06117g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/13/2020] [Indexed: 01/23/2023] Open
Abstract
We report the structural properties of ultra-small ThO2 and UO2 nanoparticles (NPs), which were synthesized without strong binding surface ligands by employing a covalent organic framework (COF-5) as an inert template. The resultant NPs were used to observe how structural properties are affected by decreasing grain size within bulk actinide oxides, which has implications for understanding the behavior of nuclear fuel materials. Through a comprehensive characterization strategy, we gain insight regarding how structure at the NP surface differs from the interior. Characterization using electron microscopy and small-angle X-ray scattering indicates that growth of the ThO2 and UO2 NPs was confined by the pores of the COF template, resulting in sub-3 nm particles. X-ray absorption fine structure spectroscopy results indicate that the NPs are best described as ThO2 and UO2 materials with unpassivated surfaces. The surface layers of these particles compensate for high surface energy by exhibiting a broader distribution of Th-O and U-O bond distances despite retaining average bond lengths that are characteristic of bulk ThO2 and UO2. The combined synthesis and physical characterization efforts provide a detailed picture of actinide oxide structure at the nanoscale, which remains highly underexplored compared to transition metal counterparts.
Collapse
Affiliation(s)
- Liane M Moreau
- Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | | | - Mark D Straub
- Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- University of California Berkeley CA 94720 USA
| | - Dominic R Russo
- Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- University of California Berkeley CA 94720 USA
| | - Rebecca J Abergel
- Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- University of California Berkeley CA 94720 USA
| | - Selim Alayoglu
- Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - John Arnold
- Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- University of California Berkeley CA 94720 USA
| | - Augustin Braun
- Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | | | | | - Trevor D Lohrey
- Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- University of California Berkeley CA 94720 USA
| | - Daniel T Olive
- Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- Los Alamos National Laboratory Los Alamos NM 87545 USA
| | - Yusen Qiao
- Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- University of Pennsylvania Philadelphia PA 19104 USA
| | - Julian A Rees
- Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - David K Shuh
- Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Simon J Teat
- Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Corwin H Booth
- Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | | |
Collapse
|
67
|
Bortoletti M, Molinari S, Fasolato L, Ugolotti J, Tolosi R, Venerando A, Radaelli G, Bertotto D, De Liguoro M, Salviulo G, Zboril R, Vianello F, Magro M. Nano-immobilized flumequine with preserved antibacterial efficacy. Colloids Surf B Biointerfaces 2020; 191:111019. [PMID: 32305623 DOI: 10.1016/j.colsurfb.2020.111019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 11/26/2022]
Abstract
Flumequine was nano-immobilized by self-assembly on iron oxide nanoparticles, called surface active maghemite nanoparticles (SAMNs). The binding process was studied and the resulting core-shell nanocarrier (SAMN@FLU) was structurally characterized evidencing a firmly immobilized organic canopy on which the fluorine atom of the antibiotic was exposed to the solvent. The antibiotic efficacy of the SAMN@FLU nanocarrier was tested on a fish pathogenic bacterium (Aeromonas veronii), a flumequine sensitive strain, in comparison to soluble flumequine and the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) were assessed. Noteworthy, the MIC and MBC of soluble and nanoparticle bound drug were superimposable. Moreover, the interactions between SAMN@FLU nanocarrrier and microorganism were studied by transmission electron microscopy evidencing the ability of the complex to disrupt the bacterial wall. Finally, a preliminary in vivo test was provided using Daphnia magna as animal model. SAMN@FLU was able to protect the crustacean from the fatal consequences of a bacterial infection and showed no sign of toxicity. Thus, in contrast with the strength of the interaction, nano-immobilized FLU displayed a fully preserved antimicrobial activity suggesting the crucial role of fluorine in the drug mechanism of action. Besides the importance for potential applications in aquaculture, the present study contributes to the nascent field of nanoantibiotics.
Collapse
Affiliation(s)
- Martina Bortoletti
- Department of Comparative Biomedicine and Food Science, Agripolis Campus, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy.
| | - Simone Molinari
- Department of Geosciences, University of Padua, via Gradenigo 6, 35131 Padova, Italy.
| | - Luca Fasolato
- Department of Comparative Biomedicine and Food Science, Agripolis Campus, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy.
| | - Juri Ugolotti
- Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 78371 Olomouc, Czech Republic.
| | - Roberta Tolosi
- Department of Comparative Biomedicine and Food Science, Agripolis Campus, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy.
| | - Andrea Venerando
- Department of Comparative Biomedicine and Food Science, Agripolis Campus, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy.
| | - Giuseppe Radaelli
- Department of Comparative Biomedicine and Food Science, Agripolis Campus, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy.
| | - Daniela Bertotto
- Department of Comparative Biomedicine and Food Science, Agripolis Campus, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy.
| | - Marco De Liguoro
- Department of Comparative Biomedicine and Food Science, Agripolis Campus, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy.
| | - Gabriella Salviulo
- Department of Geosciences, University of Padua, via Gradenigo 6, 35131 Padova, Italy.
| | - Radek Zboril
- Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 78371 Olomouc, Czech Republic.
| | - Fabio Vianello
- Department of Comparative Biomedicine and Food Science, Agripolis Campus, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy.
| | - Massimiliano Magro
- Department of Comparative Biomedicine and Food Science, Agripolis Campus, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy.
| |
Collapse
|
68
|
Xu W, Yang W, Guo H, Ge L, Tu J, Zhen C. Constructing a TiO 2/PDA core/shell nanorod array electrode as a highly sensitive and stable photoelectrochemical glucose biosensor. RSC Adv 2020; 10:10017-10022. [PMID: 35498614 PMCID: PMC9050206 DOI: 10.1039/c9ra10445c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/16/2020] [Indexed: 01/24/2023] Open
Abstract
Developing stable PEC glucose biosensors with high sensitivity and low detection limit is highly desirable in the biosensor field. Herein, a highly stable and sensitive enzymatic glucose photoelectrochemical biosensor is rationally designed and fabricated by constructing TiO2/PDA core/shell nanorod arrays. The TiO2 nanorod as the core has the advantages of increasing charge transportation towards interfaces and enhancing the absorption of incident sunlight due to its single-crystal nature and one dimensional array structure. The PDA shell not only induces a rapid charge transfer across the interfaces but also stabilizes the biosensor performance by avoiding the decomposition of enzymes induced by the strong oxidizing holes from the TiO2 core. A remarkable performance with an ultrahigh sensitivity of 57.72 μA mM−1 cm−2, a linear range of 0.2–1.0 mM, a glucose detection limit of 0.0285 mM (S/N = 3) and a high sensitivity of 8.75 μA mM−1 cm−2 in a dynamic range of 1.0–6.0 mM were obtained for the glucose detection. This study might provide a strategy for constructing inorganic/organic core/shell structures with a satisfactory PEC performance. Developing stable PEC glucose biosensors with high sensitivity and low detection limit is highly desirable in the biosensor field.![]()
Collapse
Affiliation(s)
- Wei Xu
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials and Chemical Engineering, Hainan University Haikou 570228 China
| | - Wenke Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials and Chemical Engineering, Hainan University Haikou 570228 China
| | - Hongkai Guo
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials and Chemical Engineering, Hainan University Haikou 570228 China
| | - Lianyuan Ge
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials and Chemical Engineering, Hainan University Haikou 570228 China
| | - Jinchun Tu
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials and Chemical Engineering, Hainan University Haikou 570228 China
| | - Chao Zhen
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences 72# Wenhua RD Shenyang 110016 China
| |
Collapse
|
69
|
Xu Y, Peng G, Liao J, Shen J, Gao C. Preparation of molecular selective GO/DTiO2-PDA-PEI composite nanofiltration membrane for highly pure dye separation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117727] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
70
|
Liu C, Hu J, Liu W, Zhu F, Wang G, Tung CH, Wang Y. Binding Modes of Salicylic Acids to Titanium Oxide Molecular Surfaces. Chemistry 2020; 26:2666-2674. [PMID: 31816131 DOI: 10.1002/chem.201904302] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Indexed: 01/06/2023]
Abstract
A set of titanium oxide clusters (TOCs) comprised of 4 to 16 Ti atoms are synthesized with substituted salicylates (SSAs). The interfacial coordination environment of these SSA/Ti oxide hybrids are surveyed and found to be limited to four binding modes, with the bridging chelate mode being the most common one. The SSA-functionalized TOCs show strong visible light absorption properties. The contribution of the SSAs in the frontier orbitals of the TOCs are analyzed by using TD-DFT calculations based on the molecular geometries determined by X-ray diffraction. For TOCs of relatively high O/Ti ratio, the SSAs narrow the band gap of the TOCs by contributing solely to the HOMOs. Both binding modes and locations of the SSAs are important for the roles of SSAs in changing the HOMOs and thereby the absorption onsets.
Collapse
Affiliation(s)
- Caiyun Liu
- School of Chemistry and Chemical Engineering, Shandong University, Shanda South Road 27, 250100, Jinan, China
| | - Junyi Hu
- School of Chemistry and Chemical Engineering, Shandong University, Shanda South Road 27, 250100, Jinan, China
| | - Weiming Liu
- School of Chemistry and Chemical Engineering, Shandong University, Shanda South Road 27, 250100, Jinan, China
| | - Feng Zhu
- School of Chemistry and Chemical Engineering, Shandong University, Shanda South Road 27, 250100, Jinan, China
| | - Guo Wang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, Shandong University, Shanda South Road 27, 250100, Jinan, China
| | - Yifeng Wang
- School of Chemistry and Chemical Engineering, Shandong University, Shanda South Road 27, 250100, Jinan, China
| |
Collapse
|
71
|
Kurepa J, Shull TE, Smalle JA. Metabolomic analyses of the bio-corona formed on TiO 2 nanoparticles incubated with plant leaf tissues. J Nanobiotechnology 2020; 18:28. [PMID: 32066442 PMCID: PMC7027069 DOI: 10.1186/s12951-020-00592-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 02/06/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The surface of a nanoparticle adsorbs molecules from its surroundings with a specific affinity determined by the chemical and physical properties of the nanomaterial. When a nanoparticle is exposed to a biological system, the adsorbed molecules form a dynamic and specific surface layer called a bio-corona. The present study aimed to identify the metabolites that form the bio-corona around anatase TiO2 nanoparticles incubated with leaves of the model plant Arabidopsis thaliana. RESULTS We used an untargeted metabolomics approach and compared the metabolites isolated from wild-type plants with plants deficient in a class of polyphenolic compounds called flavonoids. CONCLUSIONS These analyses showed that TiO2 nanoparticle coronas are enriched for flavonoids and lipids and that these metabolite classes compete with each other for binding the nanoparticle surface.
Collapse
Affiliation(s)
- Jasmina Kurepa
- Plant Physiology, Biochemistry, Molecular Biology Program, Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - Timothy E Shull
- Plant Physiology, Biochemistry, Molecular Biology Program, Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - Jan A Smalle
- Plant Physiology, Biochemistry, Molecular Biology Program, Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
72
|
Khan M, Shaik MR, Khan S, Adil SF, Kuniyil M, Khan M, Al-Warthan AA, Siddiqui MRH, Nawaz Tahir M. Enhanced Antimicrobial Activity of Biofunctionalized Zirconia Nanoparticles. ACS OMEGA 2020; 5:1987-1996. [PMID: 32039336 PMCID: PMC7003502 DOI: 10.1021/acsomega.9b03840] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/13/2020] [Indexed: 05/03/2023]
Abstract
The effective interactions of nanomaterials with biological constituents play a significant role in enhancing their biomedicinal properties. These interactions can be efficiently enhanced by altering the surface properties of nanomaterials. In this study, we demonstrate the method of altering the surface properties of ZrO2 nanoparticles (NPs) to enhance their antimicrobial properties. To do this, the surfaces of the ZrO2 NPs prepared using a solvothermal method is functionalized with glutamic acid, which is an α-amino acid containing both COO- and NH4 + ions. The binding of glutamic acid (GA) on the surface of ZrO2 was confirmed by UV-visible and Fourier transform infrared spectroscopies, whereas the phase and morphology of resulting GA-functionalized ZrO2 (GA-ZrO2) was identified by X-ray diffraction and transmission electron microscopy. GA stabilization has altered the surface charges of the ZrO2, which enhanced the dispersion qualities of NPs in aqueous media. The as-prepared GA-ZrO2 NPs were evaluated for their antibacterial properties toward four strains of oral bacteria, namely, Rothia mucilaginosa, Rothia dentocariosa, Streptococcus mitis, and Streptococcus mutans. GA-ZrO2 exhibited increased antimicrobial activities compared with pristine ZrO2. This improved activity can be attributed to the alteration of surface charges of ZrO2 with GA. Consequently, the dispersion properties of GA-ZrO2 in the aqueous solution have increased considerably, which may have enhanced the interactions between the nanomaterial and bacteria.
Collapse
Affiliation(s)
- Mujeeb Khan
- Department
of Chemistry, College of Science, King Saud
University, P.O. 2455, Riyadh 11451, Kingdom of Saudi Arabia
| | - Mohammed Rafi Shaik
- Department
of Chemistry, College of Science, King Saud
University, P.O. 2455, Riyadh 11451, Kingdom of Saudi Arabia
| | - Shams
Tabrez Khan
- Department
of Agricultural Microbiology, Faculty of Agriculture, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Syed Farooq Adil
- Department
of Chemistry, College of Science, King Saud
University, P.O. 2455, Riyadh 11451, Kingdom of Saudi Arabia
| | - Mufsir Kuniyil
- Department
of Chemistry, Koneru Lakshmaiah Education
Foundation, Vaddeswaram, Guntur, Andhra Pradesh 522502, India
| | - Majad Khan
- Chemistry
Department, King Fahd University of Petroleum
& Minerals, Dhahran 31261, Kingdom of Saudi Arabia
| | - Abdulrahman A. Al-Warthan
- Department
of Chemistry, College of Science, King Saud
University, P.O. 2455, Riyadh 11451, Kingdom of Saudi Arabia
| | - Mohammed Rafiq H. Siddiqui
- Department
of Chemistry, College of Science, King Saud
University, P.O. 2455, Riyadh 11451, Kingdom of Saudi Arabia
| | - Muhammad Nawaz Tahir
- Chemistry
Department, King Fahd University of Petroleum
& Minerals, Dhahran 31261, Kingdom of Saudi Arabia
| |
Collapse
|
73
|
Lin J, Ren W, Li A, Yao C, Chen T, Ma X, Wang X, Wu A. Crystal-Amorphous Core-Shell Structure Synergistically Enabling TiO 2 Nanoparticles' Remarkable SERS Sensitivity for Cancer Cell Imaging. ACS APPLIED MATERIALS & INTERFACES 2020; 12:4204-4211. [PMID: 31789506 DOI: 10.1021/acsami.9b17150] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Exploring novel surface-enhanced Raman scattering (SERS) active materials with high detection sensitivity, excellent biocompatibility, low biotoxicity, and good spectral stability is urgently required for efficacious cancer cell diagnosis. Herein, black TiO2 nanoparticles (B-TiO2 NPs) with crystal-amorphous core-shell structure are successfully developed. Remarkable SERS activity is derived from the synergistic effect of the promising crystal-amorphous core-shell structure. Abundant excitons can be generated by high-efficiency exciton transitions in the crystal core, a feature that provides sufficient charge source. Significantly, the novel crystal-amorphous heterojunction enables the efficient exciton separation at the crystal-amorphous interface, which can effectively facilitate charge transfer from the crystal core to the amorphous shell and results in exciton enrichment at the amorphous shell. Kelvin probe force microscopy (KPFM) confirms the Fermi level of the amorphous layer shifting to a relatively low position compared to that of the crystal core, allowing efficient photoinduced charge transfer (PICT) between the amorphous shell and probe molecules. The first-principles density functional theory (DFT) calculations further indicate that the amorphous shell structure possesses a narrow band gap and a relatively high electronic density of state (DOS), which can effectively promote vibration coupling with target molecules. Moreover, MCF-7 drug-resistant (MCF-7/ADR) breast cancer cells can be quickly and accurately diagnosed based on the high-sensitivity B-TiO2-based SERS bioprobe. To the best of our knowledge, this is the first time the crystal-amorphous core-shell heterojunction enhancement of the TiO2-molecule PICT process, which widens the application of semiconductor-based SERS platforms in precision diagnosis and treatment of cancer, has been investigated.
Collapse
Affiliation(s)
- Jie Lin
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering , Chinese Academy of Sciences , 1219 ZhongGuan West Road , Ningbo 315201 , P. R. China
| | - Wenzhi Ren
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering , Chinese Academy of Sciences , 1219 ZhongGuan West Road , Ningbo 315201 , P. R. China
| | - Anran Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Ministry of Education, School of Chemistry and Environment , Beihang University , Beijing 100191 , P. R. China
| | - Chenyang Yao
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering , Chinese Academy of Sciences , 1219 ZhongGuan West Road , Ningbo 315201 , P. R. China
| | - Tianxiang Chen
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering , Chinese Academy of Sciences , 1219 ZhongGuan West Road , Ningbo 315201 , P. R. China
| | - Xuehua Ma
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering , Chinese Academy of Sciences , 1219 ZhongGuan West Road , Ningbo 315201 , P. R. China
| | - Xiaotian Wang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Ministry of Education, School of Chemistry and Environment , Beihang University , Beijing 100191 , P. R. China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering , Chinese Academy of Sciences , 1219 ZhongGuan West Road , Ningbo 315201 , P. R. China
| |
Collapse
|
74
|
Grewal MS, Yabu H. Biomimetic catechol-based adhesive polymers for dispersion of polytetrafluoroethylene (PTFE) nanoparticles in an aqueous medium. RSC Adv 2020; 10:4058-4063. [PMID: 35492658 PMCID: PMC9048857 DOI: 10.1039/c9ra10606e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/18/2020] [Indexed: 11/21/2022] Open
Abstract
Biomimetic synthetic functional materials are valuable for a large number of practical applications with improved or tunable performance. In this paper, we present a series of mussel-inspired biomimetic catechol-containing copolymers synthesized from dopamine methacrylamide (DMA) and 2-(2-ethoxyethoxy)ethyl acrylate (EEA) and abbreviated as poly(PDMA-PEEA). The successfully synthesized adhesive polymers allow adhering polytetrafluoroethylene (PTFE) and were used for coating PTFE particles in organic solvent and re-dispersion in an aqueous medium. Adhesive polymer coated PTFE particles were efficiently used as a nanoreactor for generating silver (Ag) metal nanoparticles (NPs).
Collapse
Affiliation(s)
- Manjit Singh Grewal
- WPI-Advanced Institute of Materials Research (WPI-AIMR), Tohoku University 2-1-1, Katahira Aoba-Ku Sendai 980-8577 Japan
| | - Hiroshi Yabu
- WPI-Advanced Institute of Materials Research (WPI-AIMR), Tohoku University 2-1-1, Katahira Aoba-Ku Sendai 980-8577 Japan
| |
Collapse
|
75
|
Abstract
Solar radiation is becoming increasingly appreciated because of its influence on living matter and the feasibility of its application for a variety of purposes. It is an available and everlasting natural source of energy, rapidly gaining ground as a supplement and alternative to the nonrenewable energy feedstock. Actually, an increasing interest is involved in the development of efficient materials as the core of photocatalytic and photothermal processes, allowing solar energy harvesting and conversion for many technological applications, including hydrogen production, CO2 reduction, pollutants degradation, as well as organic syntheses. Particularly, photosensitive nanostructured hybrid materials synthesized coupling inorganic semiconductors with organic compounds, and polymers or carbon-based materials are attracting ever-growing research attention since their peculiar properties overcome several limitations of photocatalytic semiconductors through different approaches, including dye or charge transfer complex sensitization and heterostructures formation. The aim of this review was to describe the most promising recent advances in the field of hybrid nanostructured materials for sunlight capture and solar energy exploitation by photocatalytic processes. Beside diverse materials based on metal oxide semiconductors, emerging photoactive systems, such as metal-organic frameworks (MOFs) and hybrid perovskites, were discussed. Finally, future research opportunities and challenges associated with the design and development of highly efficient and cost-effective photosensitive nanomaterials for technological claims were outlined.
Collapse
|
76
|
|
77
|
Peng Y, Liu Q, Chen S. Structural Engineering of Semiconductor Nanoparticles by Conjugated Interfacial Bonds. CHEM REC 2020; 20:41-50. [DOI: 10.1002/tcr.201900010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/17/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Yi Peng
- Department of Chemistry and Biochemistry University of California 1156 High Street Santa Cruz CA 95064 USA
| | - Qiming Liu
- Department of Chemistry and Biochemistry University of California 1156 High Street Santa Cruz CA 95064 USA
| | - Shaowei Chen
- Department of Chemistry and Biochemistry University of California 1156 High Street Santa Cruz CA 95064 USA
| |
Collapse
|
78
|
Fujisawa JI, Kaneko N, Hanaya M. Interfacial charge-transfer transitions in ZnO induced exclusively by adsorption of aromatic thiols. Chem Commun (Camb) 2020; 56:4090-4093. [DOI: 10.1039/d0cc00567c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Interfacial charge-transfer transitions useful for applications in optical biosensing and photoenergy conversion were first observed in ZnO by adsorption of aromatic thiols.
Collapse
Affiliation(s)
| | - Naohito Kaneko
- Graduate School of Science and Technology
- Gunma University
- Japan
| | - Minoru Hanaya
- Graduate School of Science and Technology
- Gunma University
- Japan
| |
Collapse
|
79
|
Changede R, Cai H, Wind SJ, Sheetz MP. Integrin nanoclusters can bridge thin matrix fibres to form cell-matrix adhesions. NATURE MATERIALS 2019; 18:1366-1375. [PMID: 31477904 PMCID: PMC7455205 DOI: 10.1038/s41563-019-0460-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/11/2019] [Indexed: 05/17/2023]
Abstract
Integrin-mediated cell-matrix adhesions are key to sensing the geometry and rigidity of extracellular environments and influence vital cellular processes. In vivo, the extracellular matrix is composed of fibrous arrays. To understand the fibre geometries that are required for adhesion formation, we patterned nanolines of various line widths and arrangements in single, crossing or paired arrays with the integrin-binding peptide Arg-Gly-Asp. Single thin lines (width ≤30 nm) did not support cell spreading or formation of focal adhesions, despite the presence of a high density of Arg-Gly-Asp, but wide lines (>40 nm) did. Using super-resolution microscopy, we observed stable, dense integrin clusters formed on parallel (within 110 nm) or crossing thin lines (mimicking a matrix mesh) similar to those on continuous substrates. These dense clusters bridged the line pairs by recruiting activated but unliganded integrins, as verified by integrin mutants unable to bind ligands that coclustered with ligand-bound integrins when present in an active extended conformation. Thus, in a fibrous extracellular matrix mesh, stable integrin nanoclusters bridge between thin (≤30 nm) matrix fibres and bring about downstream consequences of cell motility and growth.
Collapse
Affiliation(s)
- Rishita Changede
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore.
| | - Haogang Cai
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
- Center for Nanoscale Materials, Nanoscience and Technology Division, Argonne National laboratory, Lemont, IL, USA
| | - Shalom J Wind
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA
| | - Michael P Sheetz
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore.
- Molecular Mechanomedicine Program, Biochemistry and Molecular Biology Department, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
80
|
Lin Z, Yan J, Cai Q, Wen X, Dong H, Mu C. A sandwich-like electron transport layer to assist highly efficient planar perovskite solar cells. NANOSCALE 2019; 11:21917-21926. [PMID: 31701980 DOI: 10.1039/c9nr07876b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Co-modification of an electron transport layer (ETL) with metal oxides and organic molecules can optimize the structure of the ETL and improve the performance of perovskite solar cells (PSCs). Here, a sandwich-structured ETL consisting of MgO/SnO2/EA was designed by co-modifying a SnO2 ETL with magnesium oxide (MgO) and ethanolamine (EA). The device with an ETL modified with MgO and EA has excellent performance in enhancing electron transport and blocking holes. It also inhibits the formation of deep defect states and improves the stability of the device. The introduction of MgO effectively improves the open-circuit voltage (VOC) of the device, while EA increases the short-circuit current density (JSC). The optimal efficiency of the PSC using the ETL co-modified with MgO and EA is 20.23%, which is much higher than that of the device with the unmodified SnO2 ETL (17.94%). The method described here provides an effective way to develop high performance ETLs co-modified with metal oxides and organic compounds for perovskite-based optoelectronic devices.
Collapse
Affiliation(s)
- Zhichao Lin
- Department of Chemistry Renmin University of China, Beijing, 100872, P. R. China.
| | | | | | | | | | | |
Collapse
|
81
|
Prediction of Absorption Spectrum Shifts in Dyes Adsorbed on Titania. Sci Rep 2019; 9:16983. [PMID: 31740733 PMCID: PMC6861231 DOI: 10.1038/s41598-019-53534-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/04/2019] [Indexed: 01/04/2023] Open
Abstract
Dye adsorption on metal-oxide films often results in small to substantial absorption shifts relative to the solution phase, with undesirable consequences for the performance of dye-sensitized solar cells and optical sensors. While density functional theory is frequently used to model such behaviour, it is too time-consuming for rapid assessment. In this paper, we explore the use of supervised machine learning to predict whether dye adsorption on titania is likely to induce a change in its absorption characteristics. The physicochemical features of each dye were encoded as a numeric vector whose elements are the counts of molecular fragments and topological indices. Various classification models were subsequently trained to predict the type of absorption shift i.e. blue, red or unchanged (|Δλ| ≤ 10 nm). The models were able to predict the nature of the shift with a good likelihood (~80%) of success when applied to unseen data.
Collapse
|
82
|
Computational aspects of anthocyanidins and anthocyanins: A review. Food Chem 2019; 297:124898. [DOI: 10.1016/j.foodchem.2019.05.172] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 01/27/2023]
|
83
|
Lastra RO, Paunesku T, Gutama B, Reyes F, François J, Martinez S, Xin L, Brown K, Zander A, Raha S, Protic M, Nanavati D, Bi Y, Woloschak GE. Protein Binding Effects of Dopamine Coated Titanium Dioxide Shell Nanoparticles. PRECISION NANOMEDICINE 2019. [DOI: 10.33218/prnano2(4).190802.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Non-targeted nanoparticles are capable of entering cells, passing through different subcellular compartments and accumulating on their surface a protein corona that changes over time. In this study, we used metal oxide nanoparticles with iron-oxide core covered with titanium dioxide shell (Fe3O4@TiO2), with a single layer of covalently bound dopamine covering the nanoparticle surface. Mixing nanoparticles with cellular protein isolates showed that these nanoparticles can form complexes with numerous cellular proteins. The addition of non-toxic quantities of nano-particles to HeLa cell culture resulted in their non-specific uptake and accumulation of protein corona on nanoparticle surface. TfRC, Hsp90 and PARP were followed as representative protein components of nanoparticle corona; each protein bound to nanoparticles with different affinity. The presence of nanoparticles in cells also mildly modulated gene expression on the level of mRNA. In conclusion, cells exposed to non-targeted nanoparticles show subtle but numerous changes that are consistent from one experiment to another.
Collapse
Affiliation(s)
- Ruben O. Lastra
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine
| | - Tatjana Paunesku
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine
| | - Barite Gutama
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine
| | - Filiberto Reyes
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine
| | - Josie François
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine
| | - Shelby Martinez
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine
| | - Lun Xin
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine
| | - Koshonna Brown
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine
| | - Alia Zander
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine
| | - Sumita Raha
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine
| | - Miroslava Protic
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine
| | - Dhaval Nanavati
- Proteomics Core, Northwestern University Chemistry of Life Processes Institute
| | - Yingtao Bi
- Department of Biomedical Informatics, Northwestern University Feinberg School of Medicine
| | | |
Collapse
|
84
|
Schechtel E, Dören R, Frerichs H, Panthöfer M, Mondeshki M, Tremel W. Mixed Ligand Shell Formation upon Catechol Ligand Adsorption on Hydrophobic TiO 2 Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12518-12531. [PMID: 31487189 DOI: 10.1021/acs.langmuir.9b02496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Modifying the surfaces of metal oxide nanoparticles (NPs) with monolayers of ligands provides a simple and direct method to generate multifunctional coatings by altering their surface properties. This works best if the composition of the monolayers can be controlled. Mussel-inspired, noninnocent catecholates stand out from other ligands like carboxylates and amines because they are redox-active and allow for highly efficient surface binding and enhanced electron transfer to the surface. However, a comprehensive understanding of their surface chemistry, including surface coverage and displacement of the native ligand, is still lacking. Here, we unravel the displacement of oleate (OA) ligands on hydrophobic, OA-stabilized TiO2 NPs by catecholate ligands using a combination of one- and two-dimensional nuclear magnetic resonance (NMR) spectroscopy techniques. Conclusive pictures of the ligand shells before and after surface modification with catecholate were obtained by 1H and 13C NMR spectroscopy (the 13C chemical shift being more sensitive and with a broader range). The data could be explained using a Langmuir-type approach. Gradual formation of a mixed ligand shell was observed, and the surface processes of catecholate adsorption and OA desorption were quantified. Contrary to the prevailing view, catecholate displaces only a minor fraction (∼20%) of the native OA ligand shell. At the same time, the total ligand density more than doubled from 2.3 nm-2 at native oleate coverage to 4.8 nm-2 at maximum catecholate loading. We conclude that the catecholate ligand adsorbs preferably to unoccupied Ti surface sites rather than replacing native OA ligands. This unexpected behavior, reminiscent of the Vroman effect for protein corona formation, appears to be a fundamental feature in the widely used surface modification of hydrophobic metal oxide NPs with catecholate ligands. Moreover, our findings show that ligand displacement on OA-capped TiO2 NPs is not suited for a full ligand shell refunctionalization because it produces only mixed ligand shells. Therefore, our results contribute to a better understanding and performance of photocatalytic applications based on catecholate ligand-sensitized TiO2 NPs.
Collapse
Affiliation(s)
- Eugen Schechtel
- Institut für Anorganische Chemie und Analytische Chemie , Johannes Gutenberg-Universität Mainz , Duesbergweg 10-14 , D-55128 Mainz , Germany
| | - René Dören
- Institut für Anorganische Chemie und Analytische Chemie , Johannes Gutenberg-Universität Mainz , Duesbergweg 10-14 , D-55128 Mainz , Germany
| | - Hajo Frerichs
- Institut für Anorganische Chemie und Analytische Chemie , Johannes Gutenberg-Universität Mainz , Duesbergweg 10-14 , D-55128 Mainz , Germany
| | - Martin Panthöfer
- Institut für Anorganische Chemie und Analytische Chemie , Johannes Gutenberg-Universität Mainz , Duesbergweg 10-14 , D-55128 Mainz , Germany
| | - Mihail Mondeshki
- Institut für Anorganische Chemie und Analytische Chemie , Johannes Gutenberg-Universität Mainz , Duesbergweg 10-14 , D-55128 Mainz , Germany
| | - Wolfgang Tremel
- Institut für Anorganische Chemie und Analytische Chemie , Johannes Gutenberg-Universität Mainz , Duesbergweg 10-14 , D-55128 Mainz , Germany
| |
Collapse
|
85
|
Kaviani M, Di Valentin C. Rational design of nanosystems for simultaneous drug delivery and photodynamic therapy by quantum mechanical modeling. NANOSCALE 2019; 11:15576-15588. [PMID: 31403155 DOI: 10.1039/c9nr03763b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Drug delivery systems are based on reversible interactions between carriers and drugs. Spacers are often introduced to tailor the type of interaction and to keep drugs intact. Here, we model a drug delivery system based on a functionalized curved TiO2 nanoparticle of realistic size (700 atoms - 2.2 nm) by the neurotransmitter dopamine to carry the anticancer chemotherapeutic agent doxorubicin (DOX). The multiscale quantum chemical study aims at unraveling the nature and mechanism of the interactions between the components and the electronic properties of the composite system. We simulate the temperature effect through molecular dynamics runs of thermal annealing. Dopamine binds preferentially to low coordinated Ti sites on the nanoparticle through dissociated bidentate and chelate modes involving the diol groups. DOX is tethered by H-bonds, π-π stacking, dipole-dipole interactions and dispersion forces. Comparing different coverage densities of the spacer on the nanoparticle surface, we assess the best conditions for an effective drug transport and release: only at full coverage, DOX does not slip among the dopamine molecules to reach the nanoparticle surface, which is crucial to avoid the formation of stable coordinative bonds with under-coordinated Ti atoms. Finally, given the strong absorption properties and fluorescence of DOX and of the TiO2 photocatalyst, we model the effect of light irradiation through excited state calculations to localize excitons and to follow the charge carrier's life path. This fundamental study on the nature and mechanism of drug/carrier interaction provides a solid ground for the rational design of new experimental protocols for a more efficient drug transport and release and its combination with photodynamic therapy.
Collapse
Affiliation(s)
- Moloud Kaviani
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy.
| | - Cristiana Di Valentin
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy.
| |
Collapse
|
86
|
Rahimi B, Ebrahimi A. Photocatalytic process for total arsenic removal using an innovative BiVO4/TiO2/LED system from aqueous solution: Optimization by response surface methodology (RSM). J Taiwan Inst Chem Eng 2019; 101:64-79. [DOI: 10.1016/j.jtice.2019.04.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
87
|
Zhang C, Turyanska L, Cao H, Zhao L, Fay MW, Temperton R, O'Shea J, Thomas NR, Wang K, Luan W, Patanè A. Hybrid light emitting diodes based on stable, high brightness all-inorganic CsPbI 3 perovskite nanocrystals and InGaN. NANOSCALE 2019; 11:13450-13457. [PMID: 31287481 DOI: 10.1039/c9nr03707a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Despite important advances in the synthesis of inorganic perovskite nanocrystals (NCs), the long-term instability and degradation of their quantum yield (QY) over time need to be addressed to enable the further development and exploitation of these nanomaterials. Here we report stable CsPbI3 perovskite NCs and their use in hybrid light emitting diodes (LEDs), which combine in one system the NCs and a blue GaN-based LED. Nanocrystals with improved morphological and optical properties are obtained by optimizing the post-synthesis replacement of oleic acid ligands with iminodibenzoic acid: the NCs have a long shelf-life (>2 months), stability under different environmental conditions, and a high QY, of up to 90%, in the visible spectral range. Ligand replacement enables the engineering of the morphological and optical properties of the NCs. Furthermore, the NCs can be used to coat the surface of a GaN-LED to realize a stable diode where they are excited by blue light from the LED under low current injection conditions, resulting in emissions at distinct wavelengths in the visible range. The high QY and fluorescence lifetime in the nanosecond range are key parameters for visible light communication, an emerging technology that requires high-performance visible light sources for secure, fast energy-efficient wireless transmission.
Collapse
Affiliation(s)
- Chengxi Zhang
- School of Physics and Astronomy, University of Nottingham, NG7 2RD, UK. and East China University of Science and Technology, Shanghai 200237, China
| | - Lyudmila Turyanska
- School of Physics and Astronomy, University of Nottingham, NG7 2RD, UK. and School of Chemistry, University of Lincoln, Lincoln LN6 7TS, UK
| | - Haicheng Cao
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Lixia Zhao
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Michael W Fay
- Nanoscale and Microscale Research Centre, University of Nottingham, NG7 2RD, UK
| | - Robert Temperton
- School of Physics and Astronomy, University of Nottingham, NG7 2RD, UK.
| | - James O'Shea
- School of Physics and Astronomy, University of Nottingham, NG7 2RD, UK.
| | - Neil R Thomas
- Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, University Park, NG7 2RD, UK
| | - Kaiyou Wang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Weiling Luan
- East China University of Science and Technology, Shanghai 200237, China
| | - Amalia Patanè
- School of Physics and Astronomy, University of Nottingham, NG7 2RD, UK.
| |
Collapse
|
88
|
Tyrosinase-encapsulated liposomes: Toward enzyme-induced in situ sensitization of semiconductor for sensitive photoelectrochemical immunoassay. Biosens Bioelectron 2019; 136:128-131. [DOI: 10.1016/j.bios.2019.04.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/04/2019] [Accepted: 04/18/2019] [Indexed: 11/20/2022]
|
89
|
Katir N, Marcotte N, Michlewska S, Ionov M, El Brahmi N, Bousmina M, Majoral JP, Bryszewska M, El Kadib A. Dendrimer for Templating the Growth of Porous Catechol-Coordinated Titanium Dioxide Frameworks: Toward Hemocompatible Nanomaterials. ACS APPLIED NANO MATERIALS 2019; 2:2979-2990. [DOI: 10.1021/acsanm.9b00382] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Nadia Katir
- Euromed Research Center, Engineering Division, Euro-Med University of Fès (UEMF), Route de Meknes, Rond-point de Bensouda, 30070, Fès, Morocco
| | - Nathalie Marcotte
- Institut Charles Gerhardt Montpellier, UMR 5253 CNRS/ENSCM/UM, 240 Avenue du Professeur Emile Jeanbrau, 34090 Montpellier Cedex 5, France
| | - Sylwia Michlewska
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland
| | - Maksim Ionov
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland
| | - Nabil El Brahmi
- Euromed Research Center, Engineering Division, Euro-Med University of Fès (UEMF), Route de Meknes, Rond-point de Bensouda, 30070, Fès, Morocco
| | - Mosto Bousmina
- Euromed Research Center, Engineering Division, Euro-Med University of Fès (UEMF), Route de Meknes, Rond-point de Bensouda, 30070, Fès, Morocco
| | - Jean Pierre Majoral
- Laboratoire de Chimie de Coordination, CNRS, 205 route de Narbonne, 31077 Toulouse, France
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland
| | - Abdelkrim El Kadib
- Euromed Research Center, Engineering Division, Euro-Med University of Fès (UEMF), Route de Meknes, Rond-point de Bensouda, 30070, Fès, Morocco
| |
Collapse
|
90
|
Magro M, Baratella D, Molinari S, Venerando A, Salviulo G, Chemello G, Olivotto I, Zoppellaro G, Ugolotti J, Aparicio C, Tucek J, Fifi AP, Radaelli G, Zboril R, Vianello F. Biologically safe colloidal suspensions of naked iron oxide nanoparticles for in situ antibiotic suppression. Colloids Surf B Biointerfaces 2019; 181:102-111. [PMID: 31125918 DOI: 10.1016/j.colsurfb.2019.05.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 01/28/2023]
Abstract
A category of naked maghemite nanoparticles (γ-Fe2O3), named surface active maghemite nanoparticles (SAMNs), is characterized by biological safety, high water colloidal stability and a surface chemistry permitting the binding of ligands. In the present study, the interaction between SAMNs and an antibiotic displaying chelating properties (oxytetracycline, OxyTC) was extensively structurally and magnetically characterized. OxyTC emerged as an ideal probe for providing insights into the colloidal properties of SAMNs. At the same time, SAMNs turned out as an elective tool for water remediation from OxyTC. Therefore, a dilute colloidal suspension of SAMNs was used for the removal of OxyTC in large volume tanks where, to simulate a real in situ application, a population of zebrafish (Danio rerio) was introduced. Interestingly, SAMNs led to the complete removal of the drug without any sign of toxicity for the animal model. Moreover, OxyTC immobilized on SAMNs surface resulted safe for sensitive Escherichia coli bacteria strain. Thus, SAMNs were able to recover the drug and to suppress its antibiotic activity envisaging their feasibility as competitive option for water remediation from OxyTC in more nature related scenarios. The present contribution stimulates the use of novel smart colloidal materials to cope with complex environmental issues.
Collapse
Affiliation(s)
- Massimiliano Magro
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università, Legnaro, Agripolis, 35020, Italy; Regional Centre of Advanced Technologies and Materials, Palacky University in Olomouc, Šlechtitelů, Olomouc, 78371, Czech Republic
| | - Davide Baratella
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università, Legnaro, Agripolis, 35020, Italy
| | - Simone Molinari
- Department of Geosciences, University of Padua, via Gradenigo 6, Padova, 35131, Italy
| | - Andrea Venerando
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università, Legnaro, Agripolis, 35020, Italy
| | - Gabriella Salviulo
- Department of Geosciences, University of Padua, via Gradenigo 6, Padova, 35131, Italy
| | - Giulia Chemello
- Department of Life and Environmental Sciences, Marche Polytechnic University, via Brecce Bianche, Ancona, 60131, Italy
| | - Ike Olivotto
- Department of Life and Environmental Sciences, Marche Polytechnic University, via Brecce Bianche, Ancona, 60131, Italy
| | - Giorgio Zoppellaro
- Regional Centre of Advanced Technologies and Materials, Palacky University in Olomouc, Šlechtitelů, Olomouc, 78371, Czech Republic
| | - Juri Ugolotti
- Regional Centre of Advanced Technologies and Materials, Palacky University in Olomouc, Šlechtitelů, Olomouc, 78371, Czech Republic
| | - Claudia Aparicio
- Regional Centre of Advanced Technologies and Materials, Palacky University in Olomouc, Šlechtitelů, Olomouc, 78371, Czech Republic
| | - Jiri Tucek
- Regional Centre of Advanced Technologies and Materials, Palacky University in Olomouc, Šlechtitelů, Olomouc, 78371, Czech Republic
| | - Anna P Fifi
- BioTecnologie BT S.r.l., Agrifood Technology Park of Umbria, Frazione Pantalla, Pantalla, 06059, Italy
| | - Giuseppe Radaelli
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università, Legnaro, Agripolis, 35020, Italy
| | - Radek Zboril
- Regional Centre of Advanced Technologies and Materials, Palacky University in Olomouc, Šlechtitelů, Olomouc, 78371, Czech Republic
| | - Fabio Vianello
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università, Legnaro, Agripolis, 35020, Italy.
| |
Collapse
|
91
|
Ronchi C, Selli D, Pipornpong W, Di Valentin C. Proton Transfers at a Dopamine-Functionalized TiO 2 Interface. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2019; 123:7682-7695. [PMID: 30976374 PMCID: PMC6453025 DOI: 10.1021/acs.jpcc.8b04921] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/19/2018] [Indexed: 05/27/2023]
Abstract
Despite the many successful syntheses and applications of dopamine-functionalized TiO2 nanohybrids, there has not yet been an atomistic understanding of the interaction of this 1,2-dihydroxybenzene derivative ligand with the titanium dioxide surfaces. In this work, on the basis of a wide set of dispersion-corrected hybrid density functional theory (DFT) calculations and density functional tight binding (DFTB) molecular dynamics simulations, we present a detailed study of the adsorption modes, patterns of growth, and configurations of dopamine on the anatase (101) TiO2 surface, with reference to the archetype of 1,2-dihydroxybenzene ligands, i.e., catechol. At low coverage, the isolated dopamine molecule prefers to bend toward the surface, coordinating the NH2 group to a Ti5c ion. At high coverage, the packed molecules succeed in bending toward the surface only in some monolayer configurations. When they do, we observe a proton transfer from the surface to the ethyl-amino group, forming terminal NH3 + species, which highly interact with the O atoms of a neighboring dopamine molecule. This strong Coulombic interaction largely stabilizes the self-assembled monolayer. On the basis of these results, we predict that improving the probability of dopamine molecules being free to bend toward the surface through thermodynamic versus kinetic growth conditions will lead to a monolayer of fully protonated dopamine molecules.
Collapse
Affiliation(s)
- Costanza Ronchi
- Dipartimento
di Scienza dei Materiali, Università
di Milano-Bicocca, via R. Cozzi 55, I-20125 Milano, Italy
| | - Daniele Selli
- Dipartimento
di Scienza dei Materiali, Università
di Milano-Bicocca, via R. Cozzi 55, I-20125 Milano, Italy
| | - Waranyu Pipornpong
- Dipartimento
di Scienza dei Materiali, Università
di Milano-Bicocca, via R. Cozzi 55, I-20125 Milano, Italy
- Department
of Chemistry, Faculty of Science, Chulalongkorn
University, Bangkok 10330, Thailand
| | - Cristiana Di Valentin
- Dipartimento
di Scienza dei Materiali, Università
di Milano-Bicocca, via R. Cozzi 55, I-20125 Milano, Italy
| |
Collapse
|
92
|
Chen Y, Xie A, Cui J, Lang J, Yan Y, Li C, Dai J. UV-Driven Antifouling Paper Fiber Membranes for Efficient Oil–Water Separation. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b05930] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
| | | | | | - Jihui Lang
- College of Physics, Jilin Normal University, Siping 136000, China
| | | | | | | |
Collapse
|
93
|
Malik R, Goyal A, Yadav S, Gupta N, Goel N, Kaushik A, Kumar V, Tikoo KB, Singhal S. Functionalized magnetic nanomaterials for rapid and effective adsorptive removal of fluoroquinolones: Comprehensive experimental cum computational investigations. JOURNAL OF HAZARDOUS MATERIALS 2019; 364:621-634. [PMID: 30391852 DOI: 10.1016/j.jhazmat.2018.10.058] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 06/08/2023]
Abstract
Alarming growth of pharmaceutical residues in aquatic environment has elevated concerns about their potential impact on human health. Taking cognizance of this, the present study is focussed on the coating of cobalt ferrite nanoparticles with different functionalities and to use them as adsorbents for pharmaceutical waste. The thickness of the coating was analysed using Small angle X-ray scattering technique. Thorough study of the isotherms and kinetics were performed suggesting monolayer adsorption and pseudo kinetic order model, respectively. To get an insight of the interactions liable for adsorption of fluoroquinolones over the functionalized magnetic nanoparticles computational studies were undertaken. The results demonstrated substantial evidence proposing remarkable potential of these nanostructures as adsorbents for different pollutants with an additional advantage of stability and facile recoverability with a view to treat wastewater.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - K B Tikoo
- HR-TEM Facility Lab, NIPER, Punjab, India
| | | |
Collapse
|
94
|
Magro M, Baratella D, Miotto G, Frömmel J, Šebela M, Kopečná M, Agostinelli E, Vianello F. Enzyme self-assembly on naked iron oxide nanoparticles for aminoaldehyde biosensing. Amino Acids 2019; 51:679-690. [PMID: 30725223 DOI: 10.1007/s00726-019-02704-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/16/2019] [Indexed: 11/28/2022]
Abstract
The preservation of enzymatic activity is a fundamental requirement for exploiting hybrid nano-bio-conjugates, and the control over protein-nanoparticle interactions, leading to stable and catalytically active hybrids, represents the key for designing new biosensing platforms. In this scenario, surface active maghemite nanoparticles (SAMNs) represent a new class of naked magnetic nanoparticles, displaying peculiar electrocatalytic features and the ability to selectively bind proteins. Recombinant aminoaldehyde dehydrogenase from tomato (SlAMADH1) was used as a model protein, and successfully immobilized by self-assembly on the surface of naked SAMNs, where its enzymatic activity resulted preserved for more than 6 months. The hybrid nanomaterial (SAMN@SlAMADH1) was characterized by UV-Vis spectroscopy, mass spectrometry, and TEM microscopy, and applied for the development of a biosensor for the determination of aminoaldehydes in alcoholic beverages. Measurements were carried out in a low volume electrochemical flow cell comprising a SAMN modified carbon paste electrode for the coulometric determination of the NADH produced during the enzymatic catalysis. The present findings, besides representing the first example of an electrochemical biosensor for aminoaldehydes in an alcoholic matrix, open the door to the use of immobilized enzymes on naked metal oxides nanomaterials for biosensing.
Collapse
Affiliation(s)
- Massimiliano Magro
- Department of Comparative Biomedicine and Food Science, University of Padua, Agripolis-Viale dell'Università 16, 35020, Legnaro, PD, Italy.,Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University in Olomouc, 17 Listopadu 12, 771 46, Olomouc, Czech Republic
| | - Davide Baratella
- Department of Comparative Biomedicine and Food Science, University of Padua, Agripolis-Viale dell'Università 16, 35020, Legnaro, PD, Italy
| | - Giovanni Miotto
- Department of Molecular Medicine, University of Padua, Via Gabelli 63, 35121, Padua, Italy.,Proteomic Center of Padua University, VIMM and Padua University Hospital, Via G. Orus 2b, 35129, Padua, Italy
| | - Jan Frömmel
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University in Olomouc, Šlechtitelu 11, 78371, Olomouc, Czech Republic
| | - Marek Šebela
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University in Olomouc, Šlechtitelu 11, 78371, Olomouc, Czech Republic
| | - Martina Kopečná
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University in Olomouc, Šlechtitelu 11, 78371, Olomouc, Czech Republic
| | - Enzo Agostinelli
- Department of Biochemical Sciences "A. Rossi Fanelli", University of Rome La Sapienza and CNR, Institute of Biology and Molecular Pathology, 00185, Rome, Italy.,International Polyamines Foundation-ONLUS, Via del Forte Tiburtino, 98, 00159, Rome, Italy
| | - Fabio Vianello
- Department of Comparative Biomedicine and Food Science, University of Padua, Agripolis-Viale dell'Università 16, 35020, Legnaro, PD, Italy. .,International Polyamines Foundation-ONLUS, Via del Forte Tiburtino, 98, 00159, Rome, Italy.
| |
Collapse
|
95
|
Guo L, Zhang X, Li P, Han R, Liu Y, Han X, Zhao B. Surface-enhanced Raman scattering (SERS) as a probe for detection of charge-transfer between TiO2 and CdS nanoparticles. NEW J CHEM 2019. [DOI: 10.1039/c8nj04003f] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The differences of charge transfer processes in different assemblies were observed by the optical method of SERS.
Collapse
Affiliation(s)
- Lin Guo
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun 130012
- People's Republic of China
| | - Xiaolei Zhang
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun 130012
- People's Republic of China
| | - Peng Li
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun 130012
- People's Republic of China
| | - Rui Han
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun 130012
- People's Republic of China
| | - Yawen Liu
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun 130012
- People's Republic of China
| | - Xiaoxia Han
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun 130012
- People's Republic of China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun 130012
- People's Republic of China
| |
Collapse
|
96
|
Ougaard Dohn A, Selli D, Fazio G, Ferraro L, Mortensen JJ, Civalleri B, Di Valentin C. Interfacing CRYSTAL/AMBER to Optimize QM/MM Lennard⁻Jones Parameters for Water and to Study Solvation of TiO₂ Nanoparticles. Molecules 2018; 23:molecules23112958. [PMID: 30428551 PMCID: PMC6278561 DOI: 10.3390/molecules23112958] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/01/2018] [Accepted: 11/06/2018] [Indexed: 11/28/2022] Open
Abstract
Metal oxide nanoparticles (NPs) are regarded as good candidates for many technological applications, where their functional environment is often an aqueous solution. The correct description of metal oxide electronic structure is still a challenge for local and semilocal density functionals, whereas hybrid functional methods provide an improved description, and local atomic function-based codes such as CRYSTAL17 outperform plane wave codes when it comes to hybrid functional calculations. However, the computational cost of hybrids are still prohibitive for systems of real sizes, in a real environment. Therefore, we here present and critically assess the accuracy of our electrostatic embedding quantum mechanical/molecular mechanical (QM/MM) coupling between CRYSTAL17 and AMBER16, and demonstrate some of its capabilities via the case study of TiO2 NPs in water. First, we produced new Lennard–Jones (LJ) parameters that improve the accuracy of water–water interactions in the B3LYP/TIP3P coupling. We found that optimizing LJ parameters based on water tri- to deca-mer clusters provides a less overstructured QM/MM liquid water description than when fitting LJ parameters only based on the water dimer. Then, we applied our QM/MM coupling methodology to describe the interaction of a 1 nm wide multilayer of water surrounding a spherical TiO2 nanoparticle (NP). Optimizing the QM/MM water–water parameters was found to have little to no effect on the local NP properties, which provide insights into the range of influence that can be attributed to the LJ term in the QM/MM coupling. The effect of adding additional water in an MM fashion on the geometry optimized nanoparticle structure is small, but more evident effects are seen in its electronic properties. We also show that there is good transferability of existing QM/MM LJ parameters for organic molecules–water interactions to our QM/MM implementation, even though these parameters were obtained with a different QM code and QM/MM implementation, but with the same functional.
Collapse
Affiliation(s)
- Asmus Ougaard Dohn
- Faculty of Physical Sciences and Science Institute, University of Iceland, 107 Reykjavík, Iceland.
| | - Daniele Selli
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via Cozzi 55, 20125 Milano, Italy.
| | - Gianluca Fazio
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via Cozzi 55, 20125 Milano, Italy.
| | - Lorenzo Ferraro
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via Cozzi 55, 20125 Milano, Italy.
| | - Jens Jørgen Mortensen
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Bartolomeo Civalleri
- Dipartimento di Chimica, Università di Torino and NIS Centre of Excellence, Via P. Giuria 7, I-10129 Torino, Italy.
| | - Cristiana Di Valentin
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via Cozzi 55, 20125 Milano, Italy.
| |
Collapse
|
97
|
Peng Y, Lu B, Wu F, Zhang F, Lu JE, Kang X, Ping Y, Chen S. Point of Anchor: Impacts on Interfacial Charge Transfer of Metal Oxide Nanoparticles. J Am Chem Soc 2018; 140:15290-15299. [PMID: 30345757 DOI: 10.1021/jacs.8b08035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Photoinduced charge transfer across the metal oxide-organic ligand interface plays a key role in the diverse applications of metal oxide nanomaterials/nanostructures, such as photovoltaics, photocatalysis, and optoelectronics. Thus far, most studies are focused on molecular engineering of the organic chromophores, where the charge-transfer properties have been found to dictate the photo absorption efficiency and eventual device performance. Yet, as the chromophores are mostly bound onto the metal oxide surfaces by hydroxyl or carboxyl anchors, the impacts of the bonding interactions at the metal oxide-ligand interface on interfacial charge transfer have remained largely unexplored. Herein, acetylene derivatives are demonstrated as effective surface capping ligands for metal oxide nanoparticles, as exemplified with TiO2, RuO2, and ZnO. Experimental studies and first-principles calculations suggest the formation of M-O-C≡C- core-ligand linkages that lead to effective interfacial charge delocalization, in contrast to hopping/tunneling by the conventional M-O-CO- interfacial bonds in the carboxyl-capped counterparts. This leads to the generation of an interfacial state within the oxide bandgap and much enhanced sensitization of the nanoparticle photoluminescence emissions as well as photocatalytic activity, as manifested in the comparative studies with TiO2 nanoparticles functionalized with ethynylpyrene and pyrenecarboxylic acid. These results highlight the significance of the unique interfacial bonding chemistry by acetylene anchoring group in facilitating efficient charge transfer through the oxide-ligand interfacial linkage and hence the fundamental implication in their practical applications.
Collapse
Affiliation(s)
- Yi Peng
- Department of Chemistry and Biochemistry , University of California , 1156 High Street , Santa Cruz , California 95060 , United States
| | - Bingzhang Lu
- Department of Chemistry and Biochemistry , University of California , 1156 High Street , Santa Cruz , California 95060 , United States
| | - Feng Wu
- Department of Chemistry and Biochemistry , University of California , 1156 High Street , Santa Cruz , California 95060 , United States
| | - Fengqi Zhang
- New Energy Research Institute, School of Environment and Energy , South China University of Technology, Guangzhou Higher Education Mega Center , Guangzhou , Guangdong 510006 , China
| | - Jia En Lu
- Department of Chemistry and Biochemistry , University of California , 1156 High Street , Santa Cruz , California 95060 , United States
| | - Xiongwu Kang
- New Energy Research Institute, School of Environment and Energy , South China University of Technology, Guangzhou Higher Education Mega Center , Guangzhou , Guangdong 510006 , China
| | - Yuan Ping
- Department of Chemistry and Biochemistry , University of California , 1156 High Street , Santa Cruz , California 95060 , United States
| | - Shaowei Chen
- Department of Chemistry and Biochemistry , University of California , 1156 High Street , Santa Cruz , California 95060 , United States.,New Energy Research Institute, School of Environment and Energy , South China University of Technology, Guangzhou Higher Education Mega Center , Guangzhou , Guangdong 510006 , China
| |
Collapse
|
98
|
Fazio G, Selli D, Ferraro L, Seifert G, Di Valentin C. Curved TiO 2 Nanoparticles in Water: Short (Chemical) and Long (Physical) Range Interfacial Effects. ACS APPLIED MATERIALS & INTERFACES 2018; 10:29943-29953. [PMID: 29950088 PMCID: PMC6188221 DOI: 10.1021/acsami.8b08172] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 06/28/2018] [Indexed: 05/25/2023]
Abstract
In most technological applications, nanoparticles are immersed in a liquid environment. Understanding nanoparticles/liquid interfacial effects is extremely relevant. This work provides a clear and detailed picture of the type of chemistry and physics taking place at the prototypical TiO2 nanoparticles/water interface, which is crucial in photocatalysis and photoelectrochemistry. We present a multistep and multiscale investigation based on hybrid density functional theory (DFT), density functional tight-binding, and quantum mechanics/molecular mechanics calculations. We consider increasing water partial pressure conditions from ultra-high vacuum up to the bulk water environment. We first investigate single water molecule adsorption modes on various types of undercoordinated sites present on a realistic curved nanoparticle (2-3 nm) and then, by decorating all the adsorption sites, we study a full water monolayer to identify the degree of water dissociation, the Brønsted-Lowry basicity/acidity of the nanoparticle in water, the interface effect on crystallinity, surface energy, and electronic properties, such as the band gap and work function. Furthermore, we increase the water coverage by adding water multilayers up to a thickness of 1 nm and perform molecular dynamics simulations, which evidence layer structuring and molecular orientation around the curved nanoparticle. Finally, we clarify whether these effects arise as a consequence of the tension at the water drop surface around the nanosphere by simulating a bulk water up to a distance of 3 nm from the oxide surface. We prove that the nanoparticle/water interfacial effects go rather long range since the dipole orientation of water molecules is observed up to a distance of 5 Å, whereas water structuring extends at least up to a distance of 8 Å from the surface.
Collapse
Affiliation(s)
- Gianluca Fazio
- Dipartimento di
Scienza dei Materiali, Università
di Milano Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| | - Daniele Selli
- Dipartimento di
Scienza dei Materiali, Università
di Milano Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| | - Lorenzo Ferraro
- Dipartimento di
Scienza dei Materiali, Università
di Milano Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| | - Gotthard Seifert
- Institut für
Theoretische Chemie, Technische Universität
Dresden, D-01062 Dresden, Germany
| | - Cristiana Di Valentin
- Dipartimento di
Scienza dei Materiali, Università
di Milano Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| |
Collapse
|
99
|
Rana PJS, Singh P. Interaction of semiconducting TiO2 colloidal nanoparticles with Ruthenium bis(Terpyridine) complexes: Experimental and theoretical evidences. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
100
|
Jensen KT, Benson RL, Cardamone S, Thom AJW. Modeling Electron Transfers Using Quasidiabatic Hartree–Fock States. J Chem Theory Comput 2018; 14:4629-4639. [DOI: 10.1021/acs.jctc.8b00379] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kristopher T. Jensen
- Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge, CB2 1TN, UK
| | - Raz L. Benson
- Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge, CB2 1TN, UK
| | - Salvatore Cardamone
- Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge, CB2 1TN, UK
| | - Alex J. W. Thom
- Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge, CB2 1TN, UK
| |
Collapse
|