51
|
Tetrahydroxystilbene glucoside extends mouse life span via upregulating neural klotho and downregulating neural insulin or insulin-like growth factor 1. Neurobiol Aging 2015; 36:1462-70. [DOI: 10.1016/j.neurobiolaging.2014.11.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 10/26/2014] [Accepted: 11/04/2014] [Indexed: 02/08/2023]
|
52
|
Akintola AA, van Heemst D. Insulin, aging, and the brain: mechanisms and implications. Front Endocrinol (Lausanne) 2015; 6:13. [PMID: 25705204 PMCID: PMC4319489 DOI: 10.3389/fendo.2015.00013] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 01/21/2015] [Indexed: 12/12/2022] Open
Abstract
There is now an impressive body of literature implicating insulin and insulin signaling in successful aging and longevity. New information from in vivo and in vitro studies concerning insulin and insulin receptors has extended our understanding of the physiological role of insulin in the brain. However, the relevance of these to aging and longevity remains to be elucidated. Here, we review advances in our understanding of the physiological role of insulin in the brain, how insulin gets into the brain, and its relevance to aging and longevity. Furthermore, we examine possible future therapeutic applications and implications of insulin in the context of available models of delayed and accelerated aging.
Collapse
Affiliation(s)
- Abimbola A. Akintola
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, Netherlands
- *Correspondence: Abimbola A. Akintola, Department of Gerontology and Geriatrics, Leiden University Medical Center, C7-124, Albinusdreef 2, Leiden 2333 ZA, Netherlands e-mail:
| | - Diana van Heemst
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
53
|
Neal-Perry G, Yao D, Shu J, Sun Y, Etgen AM. Insulin-like growth factor-I regulates LH release by modulation of kisspeptin and NMDA-mediated neurotransmission in young and middle-aged female rats. Endocrinology 2014; 155:1827-37. [PMID: 24617524 PMCID: PMC3990844 DOI: 10.1210/en.2013-1682] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study investigated potential mechanisms by which age and IGF-I receptor (IGF-Ir) signaling in the neuroendocrine hypothalamus affect estradiol-positive feedback effects on GnRH neuronal activation and on kisspeptin and N-methyl-D-aspartate (NMDA)-induced LH release and on the abundance of NMDA receptor subunits Nr1 and Nr2b and Kiss1r transcript and protein in the hypothalamus of young and middle-aged female rats. We infused vehicle, IGF-I, or JB-1, a selective antagonist of IGF-Ir, into the third ventricle of ovariectomized female rats primed with estradiol or vehicle and injected with vehicle, kisspeptin (3 or 30 nmol/kg), or NMDA (15 or 30 mg/kg). Regardless of dose, NMDA and kisspeptin resulted in significantly more LH release, GnRH/c-Fos colabeling, and c-Fos immunoreative cells in young than in middle-aged females. Estradiol priming significantly increased Kiss1r, Nr1, and Nr2b receptor transcript and protein abundance in young but not middle-aged female hypothalamus. JB-1 attenuated kisspeptin and NMDA-induced LH release, numbers of GnRH/c-Fos and c-Fos cells, and Kiss1r, Nr1, and Nr2b transcript and protein abundance in young females to levels observed in middle-aged females. IGF-I significantly enhanced NMDA and kisspeptin-induced LH release in middle-aged females without increasing numbers of GnRH/c-Fos or c-Fos immunoreactive cells. IGF-I infusion in middle-aged females also increased Kiss1r, Nr1, and Nr2b protein and transcript to levels that were equivalent to young estradiol-primed females. These findings indicate that age-related changes in estradiol-regulated responsiveness to excitatory input from glutamate and kisspeptin reflect reduced IGF-Ir signaling.
Collapse
MESH Headings
- Aging
- Animals
- Female
- Gene Expression Regulation, Developmental/drug effects
- Hypothalamo-Hypophyseal System/growth & development
- Hypothalamo-Hypophyseal System/metabolism
- Hypothalamus/cytology
- Hypothalamus/drug effects
- Hypothalamus/growth & development
- Hypothalamus/metabolism
- Infusions, Intraventricular
- Insulin-Like Growth Factor I/administration & dosage
- Insulin-Like Growth Factor I/analogs & derivatives
- Insulin-Like Growth Factor I/antagonists & inhibitors
- Insulin-Like Growth Factor I/metabolism
- Kisspeptins/metabolism
- Luteinizing Hormone/metabolism
- N-Methylaspartate/metabolism
- Nerve Tissue Proteins/agonists
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neuroendocrine Cells/cytology
- Neuroendocrine Cells/drug effects
- Neuroendocrine Cells/metabolism
- Oligopeptides/administration & dosage
- Oligopeptides/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptor, IGF Type 1/agonists
- Receptor, IGF Type 1/antagonists & inhibitors
- Receptor, IGF Type 1/metabolism
- Receptors, G-Protein-Coupled/biosynthesis
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Kisspeptin-1
- Receptors, N-Methyl-D-Aspartate/agonists
- Receptors, N-Methyl-D-Aspartate/genetics
- Receptors, N-Methyl-D-Aspartate/metabolism
- Signal Transduction/drug effects
- Synaptic Transmission/drug effects
Collapse
Affiliation(s)
- Genevieve Neal-Perry
- Department of Obstetrics and Gynecology (G.N.-P., J.S., Y.S., A.M.E.) and the Dominick P. Purpura Department of Neuroscience (G.N.-P., A.M.E.), Albert Einstein College of Medicine, Bronx, New York 10461; and Internal Medicine of Tongji Hospital (D.Y.), Huazhong University of Science and Technology, Wuhan 430030, R.P. China
| | | | | | | | | |
Collapse
|
54
|
The three genetics (nuclear DNA, mitochondrial DNA, and gut microbiome) of longevity in humans considered as metaorganisms. BIOMED RESEARCH INTERNATIONAL 2014; 2014:560340. [PMID: 24868529 PMCID: PMC4017728 DOI: 10.1155/2014/560340] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 03/25/2014] [Indexed: 02/03/2023]
Abstract
Usually the genetics of human longevity is restricted to the nuclear genome (nDNA). However it is well known that the nDNA interacts with a physically and functionally separated genome, the mitochondrial DNA (mtDNA) that, even if limited in length and number of genes encoded, plays a major role in the ageing process. The complex interplay between nDNA/mtDNA and the environment is most likely involved in phenomena such as ageing and longevity. To this scenario we have to add another level of complexity represented by the microbiota, that is, the whole set of bacteria present in the different part of our body with their whole set of genes. In particular, several studies investigated the role of gut microbiota (GM) modifications in ageing and longevity and an age-related GM signature was found. In this view, human being must be considered as “metaorganism” and a more holistic approach is necessary to grasp the complex dynamics of the interaction between the environment and nDNA-mtDNA-GM of the host during ageing. In this review, the relationship between the three genetics and human longevity is addressed to point out that a comprehensive view will allow the researchers to properly address the complex interactions that occur during human lifespan.
Collapse
|
55
|
Licht CMM, van Turenhout LC, Deijen JB, Koppes LLJ, van Mechelen W, Twisk JWR, Drent ML. The Association between IGF-1 Polymorphisms, IGF-1 Serum Levels, and Cognitive Functions in Healthy Adults: The Amsterdam Growth and Health Longitudinal Study. Int J Endocrinol 2014; 2014:181327. [PMID: 25114679 PMCID: PMC4120488 DOI: 10.1155/2014/181327] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 06/19/2014] [Accepted: 06/20/2014] [Indexed: 01/24/2023] Open
Abstract
Several studies have demonstrated an association between polymorphisms in the insulin-like growth factor-1 (IGF-1) gene and IGF-1 serum levels. IGF-1 levels have been associated with cognitive functioning in older persons and growth hormone deficient patients. The present study investigates whether IGF-1 polymorphisms, IGF-1 levels, and cognition are interconnected in healthy adults. Data of 277 participants (mean age: 42.4 years) of the Amsterdam Growth and Health Longitudinal Study on IGF-1 promoter polymorphisms, IGF-1 serum level, spatial working memory (SWM), paired associate learning (PAL), and IQ tests were analyzed. (M)ANOVAs were applied to confirm the associations between IGF-1 polymorphisms and IGF-1 levels and between IGF-1 levels and cognition. Three groups were distinguished based on specific IGF-1 polymorphism alleles: a homozygote 192 bp/192 bp genotype, a heterozygote 192 bp/x genotype, and a noncarrier x/x genotype. Although different IGF-1 levels were found for the three genotypes, performance on all cognitive tasks and IQ measures was similar. Despite the associations between IGF-1 polymorphisms and IGF-1 levels, no association was found between cognition and IGF-1 levels. It seems that IGF-1 does not play a role in the cognitive performance of healthy middle-aged adults. Possible, IGF-1 fulfills a more developmental and protective role in cognition which becomes apparent during childhood, old-age, or disease.
Collapse
Affiliation(s)
- Carmilla M. M. Licht
- Department of Clinical Neuropsychology, VU University, Van der Boechorststraat 1, 1081 BT Amsterdam, The Netherlands
- Neuroscience Campus Amsterdam, VU University, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
- Department of Epidemiology and Biostatistics, The EMGO Institute for Health and Care Research, VU University Medical Center, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | - Lise C. van Turenhout
- Department of Internal Medicine, Endocrine Section, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Jan Berend Deijen
- Department of Clinical Neuropsychology, VU University, Van der Boechorststraat 1, 1081 BT Amsterdam, The Netherlands
- Neuroscience Campus Amsterdam, VU University, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
- *Jan Berend Deijen:
| | - Lando L. J. Koppes
- Work and Employment Division, Netherlands Organization for Applied Scientific Research (TNO), Polarisavenue 151, 2132 JJ Hoofddorp, The Netherlands
| | - Willem van Mechelen
- Department of Public and Occupational Health, EMGO Institute for Health and Care Research, VU University Medical Center, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
- Body@Work, Research Center on Physical Activity, Work and Health, TNO-VU University Medical Center, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | - Jos W. R. Twisk
- Department of Epidemiology and Biostatistics, The EMGO Institute for Health and Care Research, VU University Medical Center, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
- Department of Health Sciences, Faculty of Earth and Life Sciences, VU University, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Madeleine L. Drent
- Department of Clinical Neuropsychology, VU University, Van der Boechorststraat 1, 1081 BT Amsterdam, The Netherlands
- Neuroscience Campus Amsterdam, VU University, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
- Department of Internal Medicine, Endocrine Section, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
56
|
Sohrabji F, Williams M. Stroke neuroprotection: oestrogen and insulin-like growth factor-1 interactions and the role of microglia. J Neuroendocrinol 2013; 25:1173-81. [PMID: 23763366 PMCID: PMC5630268 DOI: 10.1111/jne.12059] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 05/30/2013] [Accepted: 06/09/2013] [Indexed: 12/25/2022]
Abstract
Oestrogen has been shown to be neuroprotective for stroke and other neural injury models. Oestrogen promotes a neuroprotective phenotype through myriad actions, including stimulating neurogenesis, promoting neuronal differentiation and survival, suppressing neuroinflammation and maintaining the integrity of the blood-brain barrier. At the molecular level, oestrogen directly modulates genes that are beneficial for repair and regeneration via the canonical oestrogen receptor. Increasingly, evidence indicates that oestrogen acts in concert with growth factors to initiate neuroprotection. Oestrogen and insulin-like growth factor (IGF)-1 act cooperatively to influence cell survival, and combined steroid hormone/growth factor interaction has been well documented in the context of neurones and astrocytes. Here, we summarise the evidence that oestrogen-mediated neuroprotection is critically dependent on IGF-1 signalling, and specifically focus on microglia as the source of IGF-1 and the locus of oestrogen-IGF-1 interactions in stroke neuroprotection.
Collapse
Affiliation(s)
- F Sohrabji
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, TAMHSC College of Medicine, Bryan, TX, USA
| | | |
Collapse
|
57
|
Michalakis K, Goulis DG, Vazaiou A, Mintziori G, Polymeris A, Abrahamian-Michalakis A. Obesity in the ageing man. Metabolism 2013; 62:1341-9. [PMID: 23831443 DOI: 10.1016/j.metabol.2013.05.019] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 05/15/2013] [Accepted: 05/29/2013] [Indexed: 12/20/2022]
Abstract
As the population is ageing globally, both ageing and obesity are recognized as major public health challenges. The aim of this narrative review is to present and discuss the current evidence on the changes in body composition, energy balance and endocrine environment that occur in the ageing man. Obesity in the ageing man is related to changes in both body weight and composition due to alterations in energy intake and total energy expenditure. In addition, somatopenia (decreased GH secretion), late-onset hypogonadism (LOH), changes in thyroid and adrenal function, as well as changes in appetite-related peptides (leptin, ghrelin) and, most importantly, insulin action are related to obesity, abnormal energy balance, redistribution of the adipose tissue and sarcopenia (decreased muscle mass). A better understanding of the complex relationship of ageing-related endocrine changes and obesity could lead to more effective interventions for elderly men.
Collapse
Affiliation(s)
- K Michalakis
- First Department of Internal Medicine, National and Kapodestrian University of Athens, School of Medicine, "Laiko" General Hospital, Athens, Greece
| | | | | | | | | | | |
Collapse
|
58
|
Hong SL, Longo KA, Gosney E, Kopchick JJ. Increased metabolic flexibility and complexity in a long-lived growth hormone insensitive mouse model. J Gerontol A Biol Sci Med Sci 2013; 69:274-81. [PMID: 23788654 DOI: 10.1093/gerona/glt090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The goal of this study was to test whether the "loss of the complexity" hypothesis can be applied to compare the metabolic patterns of mouse models with known differences in metabolic and endocrine function as well as life span. Here, we compare the complexity of locomotor activity and metabolic patterns (energy expenditure, VO₂, and respiratory quotient) of the long-lived growth hormone receptor gene deleted mice (GHR(-/-)) and their wild-type littermates. Using approximate entropy as a measure of complexity, we observed greater metabolic complexity, as indicated by greater irregularity in the physiological fluctuations of the GHR(-/-) mice. Further analysis of the data also revealed lower energy costs of locomotor activity and a stronger relationship between locomotor activity and respiratory quotient in the GHR(-/-) mice relative to controls. These findings suggest underlying differences in metabolic modulation in the GHR(-/-) mice revealed especially through measures of complexity of their time-dependent fluctuations.
Collapse
Affiliation(s)
- S Lee Hong
- Irvine Hall 246, 1 Ohio University, Athens, OH 45701.
| | | | | | | |
Collapse
|
59
|
Overexpression of phosphatase and tensin homolog improves fitness and decreases Plasmodium falciparum development in Anopheles stephensi. Microbes Infect 2013; 15:775-87. [PMID: 23774695 DOI: 10.1016/j.micinf.2013.05.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/29/2013] [Accepted: 05/30/2013] [Indexed: 11/22/2022]
Abstract
The insulin/insulin-like growth factor signaling (IIS) cascade is highly conserved and regulates diverse physiological processes such as metabolism, lifespan, reproduction and immunity. Transgenic overexpression of Akt, a critical regulator of IIS, was previously shown to shorten mosquito lifespan and increase resistance to the human malaria parasite Plasmodium falciparum. To further understand how IIS controls mosquito physiology and resistance to malaria parasite infection, we overexpressed an inhibitor of IIS, phosphatase and tensin homolog (PTEN), in the Anopheles stephensi midgut. PTEN overexpression inhibited phosphorylation of the IIS protein FOXO, an expected target for PTEN, in the midgut of A. stephensi. Further, PTEN overexpression extended mosquito lifespan and increased resistance to P. falciparum development. The reduction in parasite development did not appear to be due to alterations in an innate immune response, but rather was associated with increased expression of genes regulating autophagy and stem cell maintenance in the midgut and with enhanced midgut barrier integrity. In light of previous success in genetically targeting the IIS pathway to alter mosquito lifespan and malaria parasite transmission, these data confirm that multiple strategies to genetically manipulate IIS can be leveraged to generate fit, resistant mosquitoes for malaria control.
Collapse
|
60
|
Zhang Q, Steinle JJ. DNA-PK phosphorylation of IGFBP-3 is required to prevent apoptosis in retinal endothelial cells cultured in high glucose. Invest Ophthalmol Vis Sci 2013; 54:3052-7. [PMID: 23557743 DOI: 10.1167/iovs.12-11533] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
PURPOSE The goal of this study was to determine whether Compound 49b stimulates insulin-like growth factor binding protein-3 (IGFBP-3) activation in retinal endothelial cells (REC) through DNA-dependent protein kinase (DNA-PK). METHODS REC were grown in a normal glucose (5 mM) or high glucose medium (25 mM). Some cells were transfected with protein kinase A (PKA) siRNA, following treatment with 50 nM Compound 49b, a novel β-adrenergic receptor agonist. Cell proteins were extracted and analyzed for DNA-PK expression by Western blotting. Additional cells were treated with or without NU7441 (a specific DNA-PK inhibitor) prior to Compound 49b treatment. Cell lysates were processed for IGFBP-3 ELISA analyses and Western blotting to measure casein kinase 2 (CK2). Immunoprecipitation for total and phospho-IGFBP-3, cell proliferation and cell death measurements were done after transfection with the S(156)A IGFBP-3 mutation (key phosphorylation site involved in DNA-PK) plasmid DNA. RESULTS Compound 49b required DNA-PK to activate IGFBP-3 in REC. IGFBP-3 activation was significantly reduced following treatment with either the DNA-PK inhibitor or following transfection with the IGFBP-3 S(156)A mutant plasmid (P < 0.05). Significant increases in cell death and decreases in cell proliferation were also observed in cells transfected with the IGFBP-3 S(156)A mutant plasmid (P < 0.05). Casein kinase levels were not altered after treatment with NU7741 or Compound 49b. CONCLUSIONS Our findings suggest Compound 49b induces DNA-PK levels through PKA activity. DNA-PK is required for Compound 49b-induced IGFBP-3 expression, leading to inhibition of REC cell death.
Collapse
Affiliation(s)
- Qiuhua Zhang
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | | |
Collapse
|
61
|
Sohrabji F, Selvamani A, Balden R. Revisiting the timing hypothesis: biomarkers that define the therapeutic window of estrogen for stroke. Horm Behav 2013; 63:222-30. [PMID: 22728278 PMCID: PMC3483414 DOI: 10.1016/j.yhbeh.2012.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 06/11/2012] [Accepted: 06/12/2012] [Indexed: 02/06/2023]
Abstract
Significantly extended life expectancy coupled with contemporary sedentary lifestyles and poor nutrition has created a global epidemic of cardiovascular disease and stroke. For women, this issue is complicated by the discrepant outcomes of hormone therapy (HT) for stroke incidence and severity as well as the therapeutic complications for stroke associated with advancing age. Here we propose that the impact of estrogen therapy cannot be considered in isolation, but should include age-related changes in endocrine, immune, and nucleic acid mediators that collaborate with estrogen to produce neuroprotective effects commonly seen in younger, healthier demographics. Due to their role as modulators of ischemic cell death, the post-stroke inflammatory response, and neuronal survival and regeneration, this review proposes that Insulin-like Growth Factor (IGF)-1, Vitamin D, and discrete members of the family of non-coding RNA peptides called microRNAs (miRNAs) may be crucial biochemical markers that help determine the neuroprotective "window" of HT. Specifically, IGF-1 confers neuroprotection in concert with, and independently of, estrogen and failure of the insulin/IGF-1 axis is associated with metabolic disturbances that increase the risk for stroke. Vitamin D and miRNAs regulate and complement IGF-1 mediated function and neuroprotective efficacy via modulation of IGF-1 availability and neural stem cell and immune cell proliferation, differentiation and secretions. Together, age-related decline of these factors differentially affects stroke risk, severity, and outcome, and may provide a novel therapeutic adjunct to traditional HT practices.
Collapse
Affiliation(s)
- Farida Sohrabji
- Department of Neuroscience and Experimental Therapeutics, Women's Health in Neuroscience Program, Texas A&M Health Science Center, College Station, TX 77843-1114, USA.
| | | | | |
Collapse
|
62
|
Samaras TT. Shorter height is related to lower cardiovascular disease risk - a narrative review. Indian Heart J 2013; 65:66-71. [PMID: 23438615 PMCID: PMC3861069 DOI: 10.1016/j.ihj.2012.12.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 12/19/2012] [Indexed: 11/22/2022] Open
Abstract
Numerous Western studies have shown a negative correlation between height and cardiovascular disease. However, these correlations do not prove causation. This review provides a variety of studies showing short people have little to no cardiovascular disease. When shorter people are compared to taller people, a number of biological mechanisms evolve favoring shorter people, including reduced telomere shortening, lower atrial fibrillation, higher heart pumping efficiency, lower DNA damage, lower risk of blood clots, lower left ventricular hypertrophy and superior blood parameters. The causes of increased heart disease among shorter people in the developed world are related to lower income, excessive weight, poor diet, lifestyle factors, catch-up growth, childhood illness and poor environmental conditions. For short people in developed countries, the data indicate that a plant-based diet, leanness and regular exercise can substantially reduce the risk of cardiovascular disease.
Collapse
|
63
|
Ziegler AN, Schneider JS, Qin M, Tyler WA, Pintar JE, Fraidenraich D, Wood TL, Levison SW. IGF-II promotes stemness of neural restricted precursors. Stem Cells 2012; 30:1265-76. [PMID: 22593020 DOI: 10.1002/stem.1095] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Insulin-like growth factor (IGF)-I and IGF-II regulate brain development and growth through the IGF type 1 receptor (IGF-1R). Less appreciated is that IGF-II, but not IGF-I, activates a splice variant of the insulin receptor (IR) known as IR-A. We hypothesized that IGF-II exerts distinct effects from IGF-I on neural stem/progenitor cells (NSPs) via its interaction with IR-A. Immunofluorescence revealed high IGF-II in the medial region of the subventricular zone (SVZ) comprising the neural stem cell niche, with IGF-II mRNA predominant in the adjacent choroid plexus. The IGF-1R and the IR isoforms were differentially expressed with IR-A predominant in the medial SVZ, whereas the IGF-1R was more abundant laterally. Similarly, IR-A was more highly expressed by NSPs, whereas the IGF-1R was more highly expressed by lineage restricted cells. In vitro, IGF-II was more potent in promoting NSP expansion than either IGF-I or standard growth medium. Limiting dilution and differentiation assays revealed that IGF-II was superior to IGF-I in promoting stemness. In vivo, NSPs propagated in IGF-II migrated to and took up residence in periventricular niches while IGF-I-treated NSPs predominantly colonized white matter. Knockdown of IR or IGF-1R using shRNAs supported the conclusion that the IGF-1R promotes progenitor proliferation, whereas the IR is important for self-renewal. Q-PCR revealed that IGF-II increased Oct4, Sox1, and FABP7 mRNA levels in NSPs. Our data support the conclusion that IGF-II promotes the self-renewal of neural stem/progenitors via the IR. By contrast, IGF-1R functions as a mitogenic receptor to increase precursor abundance.
Collapse
Affiliation(s)
- Amber N Ziegler
- Department of Neurology and Neuroscience, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, USA
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Puche JE, Castilla-Cortázar I. Human conditions of insulin-like growth factor-I (IGF-I) deficiency. J Transl Med 2012; 10:224. [PMID: 23148873 PMCID: PMC3543345 DOI: 10.1186/1479-5876-10-224] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 11/07/2012] [Indexed: 12/13/2022] Open
Abstract
Insulin-like growth factor I (IGF-I) is a polypeptide hormone produced mainly by the liver in response to the endocrine GH stimulus, but it is also secreted by multiple tissues for autocrine/paracrine purposes. IGF-I is partly responsible for systemic GH activities although it possesses a wide number of own properties (anabolic, antioxidant, anti-inflammatory and cytoprotective actions). IGF-I is a closely regulated hormone. Consequently, its logical therapeutical applications seems to be limited to restore physiological circulating levels in order to recover the clinical consequences of IGF-I deficiency, conditions where, despite continuous discrepancies, IGF-I treatment has never been related to oncogenesis. Currently the best characterized conditions of IGF-I deficiency are Laron Syndrome, in children; liver cirrhosis, in adults; aging including age-related-cardiovascular and neurological diseases; and more recently, intrauterine growth restriction. The aim of this review is to summarize the increasing list of roles of IGF-I, both in physiological and pathological conditions, underlying that its potential therapeutical options seem to be limited to those proven states of local or systemic IGF-I deficiency as a replacement treatment, rather than increasing its level upper the normal range.
Collapse
Affiliation(s)
- Juan E Puche
- Applied Molecular Medicine Institute (IMMA), School of Medicine, Department of Medical Physiology, Universidad CEU San Pablo, Madrid, Spain
| | - Inma Castilla-Cortázar
- Applied Molecular Medicine Institute (IMMA), School of Medicine, Department of Medical Physiology, Universidad CEU San Pablo, Madrid, Spain
| |
Collapse
|
65
|
Takasao N, Tsuji-Naito K, Ishikura S, Tamura A, Akagawa M. Cinnamon extract promotes type I collagen biosynthesis via activation of IGF-I signaling in human dermal fibroblasts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:1193-1200. [PMID: 22233457 DOI: 10.1021/jf2043357] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The breakdown of collagenous networks with aging results in hypoactive changes in the skin. Accordingly, reviving stagnant collagen synthesis can help protect dermal homeostasis against aging. We searched for type I collagen biosynthesis-inducing substances in various foods using human dermal fibroblasts and found that cinnamon extract facilitates collagen biosynthesis. Cinnamon extract potently up-regulated both mRNA and protein expression levels of type I collagen without cytotoxicity. We identified cinnamaldehyde as a major active component promoting the expression of collagen by HPLC and NMR analysis. Since insulin-like growth factor-I (IGF-I) is the most potent stimulator of collagen biosynthesis in fibroblasts, we examined the effect of cinnamaldehyde on IGF-I signaling. Treatment with cinnamaldehyde significantly increased the phosphorylation levels of the IGF-I receptor and its downstream signaling molecules such as insulin receptor substrate-1 and Erk1/2 in an IGF-I-independent manner. These results suggested that cinnamon extract is useful in antiaging treatment of skin.
Collapse
Affiliation(s)
- Naoko Takasao
- Department of Biological Chemistry, Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Naka-ku, Sakai, Japan
| | | | | | | | | |
Collapse
|
66
|
Friedrich N, Schneider HJ, Haring R, Nauck M, Völzke H, Kroemer HK, Dörr M, Klotsche J, Jung-Sievers C, Pittrow D, Lehnert H, März W, Pieper L, Wittchen HU, Wallaschofski H, Stalla GK. Improved prediction of all-cause mortality by a combination of serum total testosterone and insulin-like growth factor I in adult men. Steroids 2012; 77:52-8. [PMID: 22037276 DOI: 10.1016/j.steroids.2011.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 10/11/2011] [Accepted: 10/11/2011] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Lower levels of anabolic hormones in older age are well documented. Several studies suggested that low insulin-like growth factor I (IGF-I) or testosterone levels were related to increased mortality. The aim of the present study was to investigate the combined influence of low IGF-I and low testosterone on all-cause mortality in men. METHODS AND RESULTS From two German prospective cohort studies, the DETECT study and SHIP, 3942 men were available for analyses. During 21,838 person-years of follow-up, 8.4% (n=330) of men died. Cox model analyses with age as timescale and adjusted for potential confounders revealed that men with levels below the 10th percentile of at least one hormone [hazard ratio (HR) 1.38 (95% confidence-interval (CI) 1.06-1.78), p=0.02] and two hormones [HR 2.88 (95% CI 1.32-6.29), p<0.01] showed a higher risk of all-cause mortality compared to men with non-low hormones. The associations became non-significant by using the 20th percentile as cut-off showing that the specificity increased with lower cut-offs for decreased hormone levels. The inclusion of both IGF-I and total testosterone in a mortality prediction model with common risk factors resulted in a significant integrated discrimination improvement of 0.5% (95% CI 0.3-0.7%, p=0.03). CONCLUSIONS Our results prove that multiple anabolic deficiencies have a higher impact on mortality than a single anabolic deficiency and suggest that assessment of more than one anabolic hormone as a biomarker improve the prediction of all-cause mortality.
Collapse
Affiliation(s)
- Nele Friedrich
- Institute of Clinical Chemistry and Laboratory Medicine, Ernst Moritz Arndt University, Greifswald, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Pan Z, Chang C. Gender and the regulation of longevity: implications for autoimmunity. Autoimmun Rev 2011; 11:A393-403. [PMID: 22182796 DOI: 10.1016/j.autrev.2011.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
For humans and other animals, gender has an influence not only on their physical attributes, but also on life span. In humans, females have a longer life span than males. The reasons for this are not entirely clear. The role of gender in the regulation of longevity may be linked to gender specific genetic differences, including the expression of sex hormone patterns and the changes in these patterns during an individual's lifetime. In addition, the effect of sex hormones on other physiologic responses to environmental influences on cellular stress and oxidative damage may play a role in longevity. Gender can impact many disease states, including autoimmune diseases, and the factors that affect the development of autoimmune diseases and the regulation of longevity may share common mechanistic pathways. Other factors that may play a role include telomere and telomerase related differences, caloric restriction and changes in mitochondrial DNA. Inflammatory and regulatory pathways such as insulin/IGF signaling and Target of Rapamycin (TOR) signaling may also play a role in longevity and aging-related diseases such as Alzheimer's. The role of gender differences in the regulation of these pathways or factors is not entirely clear. The role of X-chromosome inactivation in longevity has also yet to be fully elucidated.
Collapse
Affiliation(s)
- Zhen Pan
- Nemours/A.I duPont Hospital for children, Division of Allergy, Asthma and Immunology, USA
| | | |
Collapse
|
68
|
Saini A, Al-Shanti N, Sharples AP, Stewart CE. Sirtuin 1 regulates skeletal myoblast survival and enhances differentiation in the presence of resveratrol. Exp Physiol 2011; 97:400-18. [PMID: 22125309 DOI: 10.1113/expphysiol.2011.061028] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Sirtuin 1 also known as NAD-dependent deacetylase sirtuin 1, is a protein that in humans is encoded by the Sirt1 gene. Sirt1 is an enzyme that deacetylates proteins that contribute to cellular regulation and is a key regulator of cell defenses and survival in response to stress. Deletion of Sirt1 abolishes the increase in lifespan induced by calorie restriction or sublethal cytokine stress, indicating that Sirt1 promotes longevity and survival. We have demonstrated that administration of a sublethal dose of tumour necrosis factor-α (TNF-α; 1.25 ng ml(-1)) inhibits myotube formation, and co-incubation with insulin-like growth factor I (IGF-I; 1.5 ng ml(-1)) facilitates C2 myoblast death rather than rescuing differentiation. A higher dose of TNF-α (10 ng ml(-1)) resulted in significant apoptosis, which was rescued by IGF-I (1.5 ng ml(-1); 50% rescue; P < 0.05). We aimed to investigate the role of Sirt1 in the conflicting roles of IGF-I. Quantitative real-time PCR revealed that Sirt1 expression was elevated in myoblasts following incubation of 10 ng ml(-1) TNF-α or 1.25 ng ml(-1) TNF-α plus IGF-I (fivefold and 7.2-fold increases versus control, respectively; P < 0.05). A dose of 10 ng ml(-1) TNF-α induced ∼21 ± 0.7% apoptosis, which was reduced (∼50%; P < 0.05) when administered with IGF-I. Likewise, Sirt1 expression was elevated following 10 ng ml(-1) TNF-α administration, but was reduced (∼30%; P < 0.05) in the presence of IGF-I. C2C12 myoblasts, a subclone of the C2 cell line produced for their differentiation potential and used to examine intrinsic ageing, unlike C2 cells, do not die in the presence of TNF-α and do not upregulate Sirt1. As conditions that induced the greatest myoblast stress/damage resulted in elevated Sirt1 expression, we investigated the effects of Sirt1 gene silencing. Treatment with 10 ng ml(-1) TNF-α or co-incubation with 1.25 ng ml(-1) TNF-α and 1.5 ng ml(-1) IGF-I resulted in apoptosis (20.33 ± 2.08 and 19 ± 2.65%, respectively), which was increased when myoblasts were pretreated with Sirt1 small interfering RNA (31 ± 2.65 and 27.33 ± 2.52%, respectively; P < 0.05) and was reduced (14.33 ± 3.05%, P < 0.05 and 12.78 ± 4.52%, P = 0.054) by resveratrol, which also significantly rescued the block on differentiation. In conclusion, Sirt1 expression increases in conditons of stress, potentially serving to reduce or dampen myoblast death.
Collapse
Affiliation(s)
- Amarjit Saini
- Institute for Biomedical Research into Human Movement and Health, Manchester Metropolitan University, Oxford Road, Manchester M1 5GD, UK.
| | | | | | | |
Collapse
|
69
|
Sun Y, Todd BJ, Thornton K, Etgen AM, Neal-Perry G. Differential effects of hypothalamic IGF-I on gonadotropin releasing hormone neuronal activation during steroid-induced LH surges in young and middle-aged female rats. Endocrinology 2011; 152:4276-87. [PMID: 21914776 PMCID: PMC3199007 DOI: 10.1210/en.2011-1051] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Interactions between brain IGF-I receptors and estrogen receptors regulate female reproductive physiology and behavior. The present study investigated potential mechanisms by which IGF-I receptors in the neuroendocrine hypothalamus regulate GnRH neuronal activation and LH release in young and middle-aged female rats under estradiol (E2) positive feedback conditions. We infused vehicle, IGF-I, or JB-1, a selective antagonist of IGF-I receptors, into the third ventricle of ovariectomized female rats primed with E2 and progesterone or vehicle. In young females, blockade of IGF-I receptors attenuated the steroid hormone-induced LH surge, reduced the percent of GnRH neurons expressing c-fos on the day of the LH surge, and decreased the total number of neurons expressing c-fos in the preoptic area. Middle-aged females had fewer GnRH neurons expressing c-fos during the LH surge than young females, and the LH surge amplitude was attenuated. Infusion of an IGF-I dose previously shown to increase LH surge amplitude did not increase the percent of GnRH neurons expressing c-fos in middle-aged females. Brain IGF-I receptor blockade did not modify E2 induction of progestin receptor-immunoreactive neurons in the preoptic area, arcuate, or ventromedial hypothalamus of young rats. These findings indicate that brain IGF-I receptors are required for E2 activation of GnRH neurons in young rats and for robust GnRH release from axon terminals in middle-aged females. IGF-I likely exerts its effects by actions on E2-sensitive neurons that are upstream of GnRH neurons and terminals.
Collapse
Affiliation(s)
- Yan Sun
- Department of Obstetrics/Gynecology and Women's Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Ullmann 1211, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
70
|
Urfer SR, Greer K, Wolf NS. Age-related cataract in dogs: a biomarker for life span and its relation to body size. AGE (DORDRECHT, NETHERLANDS) 2011; 33:451-60. [PMID: 20607428 PMCID: PMC3168595 DOI: 10.1007/s11357-010-9158-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 06/14/2010] [Indexed: 05/29/2023]
Abstract
Clinical data from 72 dog breeds of varying size and life expectancy were grouped according to breed body mass and tested for prevalence at ages 4 to 5, ages 7 to 10, and lifetime incidence of non-hereditary, age-related cataract (ARC). The incidence of ARC was found to be directly related to the relative life expectancies in the breed groups: The smallest dog breeds had a lower ARC prevalence between ages 4 and 5 than mid-size breeds and these, in turn, a lower prevalence than the giant breeds. A similar sequence was evident for ages 7 to 10 and for overall lifetime incidence of ARC. These differences became more significant when comparing small and giant breeds only. We could also confirm the inverse relationship between body size and life expectancy in these same sets of dog breeds. Our results show that body size, life expectancy, and ARC incidence are interrelated in dogs. Given that ARC has been shown to be at least partially caused by oxidative damage to lens epithelial cells and the internal lens, we suggest that it can be considered not only as a general biomarker for life expectancy in the canine and possibly other species, but also for the systemic damages produced by reactive oxygen species. This suggests new approaches to examine the gene expression pathways affecting the above-noted linkages.
Collapse
Affiliation(s)
- Silvan R. Urfer
- Department of Pathology, University of Washington, Seattle, WA 98195-7470 USA
| | - Kimberly Greer
- School of Natural Sciences and Mathematics, Indiana University East, Richmond, IN 47374 USA
| | - Norman S. Wolf
- Department of Pathology, University of Washington, Seattle, WA 98195-7470 USA
| |
Collapse
|
71
|
Greer KA, Hughes LM, Masternak MM. Connecting serum IGF-1, body size, and age in the domestic dog. AGE (DORDRECHT, NETHERLANDS) 2011; 33:475-483. [PMID: 20865338 PMCID: PMC3168604 DOI: 10.1007/s11357-010-9182-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 09/02/2010] [Indexed: 05/29/2023]
Abstract
Many investigations in recent years have targeted understanding the genetic and biochemical basis of aging. Collectively, genetic factors and biological mechanisms appear to influence longevity in general and specifically; reduction of the insulin/IGF-1 signaling cascade has extended life span in diverse species. Genetic alteration of mammals for life extension indicates correlation to serum IGF-1 levels in mice, and IGF-1 levels have been demonstrated as a physiological predictor of frailty with aging in man. Longevity and aging data in the dog offer a close measure of the natural multifactorial longevity interactions of genetic influence, IGF-1 signaling, and environmental factors such as exposure, exercise, and lifestyle. The absence of genetic alteration more closely represents the human longevity status, and the unique species structure of the canine facilitates analyses not possible in other species. These investigations aimed to measure serum IGF-1 in numerous purebred and mixed-breed dogs of variable size and longevity in comparison to age, gender, and spay/neuter differences. The primary objective of this investigation was to determine plasma IGF-1 levels in the adult dog, including a wide range of breeds and adult body weight. The sample set includes animals ranging from just a few months of age through 204 months and ranging in size from 5 to 160 lb. Four groups were evaluated for serum IGF-1 levels, including intact and neutered males, and intact and spayed females. IGF-1 loss over time, as a function of age, decreases in all groups with significant differences between males and females. The relationship between IGF-1 and weight differs depending upon spay/neuter status, but there is an overall increase in IGF-1 levels with increasing weight. The data, currently being interrogated further for delineation of IGF-1 receptor variants and sex differences, are being collected longitudinally and explored for longevity associations previously unavailable in non-genetically modified mammals.
Collapse
Affiliation(s)
- Kimberly A Greer
- Indiana University East, 2325 Chester Blvd, Richmond, IN 47374, USA.
| | | | | |
Collapse
|
72
|
Kaeberlein M. Longevity genomics across species. Curr Genomics 2011; 8:73-8. [PMID: 18660849 DOI: 10.2174/138920207780368196] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 02/23/2007] [Accepted: 02/26/2007] [Indexed: 01/01/2023] Open
Abstract
Unbiased genome-wide studies of longevity in S. cerevisiae and C. elegans have led to the identification of more than one hundred genes that determine life span in one or both organisms. Key pathways have been uncovered linking nutrient and growth factor cues to longevity. Quantitative measures of the degree to which aging is evolutionary conserved are now possible. A major challenge for the future is determining which of these genes play a similar role in human aging and using that information to develop therapies toward age-associated diseases.
Collapse
Affiliation(s)
- Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
73
|
|
74
|
|
75
|
Anisimov VN, Piskunova TS, Popovich IG, Zabezhinski MA, Tyndyk ML, Egormin PA, Yurova MV, Rosenfeld SV, Semenchenko AV, Kovalenko IG, Poroshina TE, Berstein LM. Gender differences in metformin effect on aging, life span and spontaneous tumorigenesis in 129/Sv mice. Aging (Albany NY) 2011; 2:945-58. [PMID: 21164223 PMCID: PMC3034183 DOI: 10.18632/aging.100245] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Studies in mammals have led to the suggestion that hyperglycemia and hyperinsulinemia are important factors both in aging and in the development of cancer. It is possible that the life-prolonging effects of calorie restriction are due to decreasing IGF-1 levels. A search of pharmacological modulators of insulin/IGF-1 signaling pathway (which mimetic effects of life span extending mutations or calorie restriction) could be a perspective direction in regulation of longevity. Antidiabetic biguanides are most promising among them. The chronic treatment of inbred 129/Sv mice with metformin (100 mg/kg in drinking water) slightly modified the food consumption but failed to influence the dynamics of body weight, decreased by 13.4% the mean life span of male mice and slightly increased the mean life span of female mice (by 4.4%). The treatment with metformin failed influence spontaneous tumor incidence in male 129/Sv mice, decreased by 3.5 times the incidence of malignant neoplasms in female mice while somewhat stimulated formation of benign vascular tumors in the latter.
Collapse
Affiliation(s)
- Vladimir N Anisimov
- N.N.Petrov Research Institute of Oncology, Pesochny-2, St.Petersburg 197758, Russia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Anisimov VN, Berstein LM, Popovich IG, Zabezhinski MA, Egormin PA, Piskunova TS, Semenchenko AV, Tyndyk ML, Yurova MN, Kovalenko IG, Poroshina TE. If started early in life, metformin treatment increases life span and postpones tumors in female SHR mice. Aging (Albany NY) 2011; 3:148-57. [PMID: 21386129 PMCID: PMC3082009 DOI: 10.18632/aging.100273] [Citation(s) in RCA: 213] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 02/20/2011] [Indexed: 02/03/2023]
Abstract
Hyperglycemia and hyperinsulinemia accelerate both aging and cancer. Antidiabetic biguanides such as metformin decrease glucose, insulin and IGF-1 level. Metformin increases lifespan and prevents cancer in mice, although its effects vary, depending on mice strain and gender. Here we showed that chronic treatment of female outbred SHR mice with metformin started at the age of 3, 9 or 15 months decreased body temperature and postponed age-related switch-off of estrous function. Surprisingly, metformin did not affect levels of serum cholesterol, triglycerides, glucose and insulin. Treatment with metformin started at the age of 3 months increased mean life span by 14% and maximum life span by 1 month. The treatment started at the age of 9 months insignificantly increased mean life span by only 6%, whereas the treatment started at the age of 15 months failed to increase life span. The mean life span of tumor-free mice was increased by 21% in 'the youngest group', by 7% in 'middle-aged group' and in contrast was reduced by 13% in 'the oldest group'. When started at the age of 3 and 9 months, metformin delayed the first tumor detection by 22% and 25%, correspondingly. Thus, in female SHR mice, metformin increased life span and postponed tumors when started at the young and middle but not at the old age. In contrast, metformin improves reproductive function when started at any age.
Collapse
Affiliation(s)
- Vladimir N Anisimov
- N.N. Petrov Research Institute of Oncology, Pesochny-2, St. Petersburg, Russia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Selvamani A, Sohrabji F. The neurotoxic effects of estrogen on ischemic stroke in older female rats is associated with age-dependent loss of insulin-like growth factor-1. J Neurosci 2010; 30:6852-61. [PMID: 20484627 PMCID: PMC2887690 DOI: 10.1523/jneurosci.0761-10.2010] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 03/15/2010] [Accepted: 03/29/2010] [Indexed: 01/30/2023] Open
Abstract
Hormone therapy to postmenopausal females increases the risk and severity of ischemic stroke. Our previous work using an animal model of menopause (reproductive senescence) shows that middle cerebral artery occlusion (MCAo) causes a larger cortical-striatal infarct in this older acyclic group compared with younger females. Moreover, although estrogen treatment is neuroprotective in younger females, estrogen paradoxically increases infarct volume in acyclic females. We hypothesized that the neurotoxic effects of estrogen in older females occurs because of decreased availability of IGF-1, a neuroprotectant that decreases with advancing age and is downregulated by estrogen treatment. Our data show that plasma IGF-1 levels are significantly reduced in reproductive senescent females and further reduced by estrogen at all ages. The neuroprotective effect of estrogen on MCAo-induced cortical infarct volume in mature adult female is reversed by intracerebroventricular injections of IGF-1 receptor antagonist JB-1. Similarly, estrogens neurotoxic effects on cortical infarct volume in senescent females is attenuated by concurrent IGF-1 treatment, and reversed when IGF-1 is infused 4 h after the onset of ischemia (delayed IGF-1 treatment). Delayed IGF-1/estrogen treatment also suppressed ischemia-induced ERK1 phosphorylation, reduced protein oxidation, and stimulated an early increase in prostaglandin E(2) at the infarct site. IGF-1 treatment was only protective in senescent females that received estrogen, indicating that the neuroprotective actions of this peptide require interaction with the steroid hormone receptor. These data support the hypothesis that stroke severity in older females is associated with decreased IGF-1 and further indicate that short-term postischemic IGF-1 therapy may be beneficial for stroke.
Collapse
Affiliation(s)
- Amutha Selvamani
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, College Station, Texas 77843
| | - Farida Sohrabji
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, College Station, Texas 77843
| |
Collapse
|
78
|
Todd BJ, Merhi ZO, Shu J, Etgen AM, Neal-Perry GS. Hypothalamic insulin-like growth factor-I receptors are necessary for hormone-dependent luteinizing hormone surges: implications for female reproductive aging. Endocrinology 2010; 151:1356-66. [PMID: 20097715 PMCID: PMC2840696 DOI: 10.1210/en.2009-1009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Brain IGF-I receptors are required for maintenance of estrous cycles in young adult female rats. Circulating and hypothalamic IGF-I levels decrease with aging, suggesting a role for IGF-I in the onset of reproductive senescence. Therefore, the present study investigated potential mechanisms of action of brain IGF-I receptors in the regulation of LH surges in young adult and middle-aged rats. We continuously infused IGF-I, the selective IGF-I receptor antagonist JB-1, or vehicle into the third ventricle of ovariectomized young adult and middle-aged female rats primed with estradiol and progesterone. Pharmacological blockade of IGF-I receptors attenuated and delayed the LH surge in young adult rats, reminiscent of the LH surge pattern that heralds the onset of reproductive senescence in middle-aged female rats. Infusion of IGF-I alone had no effect on the LH surge but reversed JB-1 attenuation of the surge in young females. In middle-aged rats, infusion of low doses of IGF-I partially restored LH surge amplitude, and infusion of JB-1 completely obliterated the surge. Intraventricular infusion of IGF-I or JB-1 did not modify pituitary sensitivity to exogenous GnRH or GnRH peptide content in the anterior or mediobasal hypothalamus in either young or middle-aged rats. These findings support the hypothesis that brain IGF-I receptor signaling is necessary for GnRH neuron activation under estrogen-positive feedback conditions and that decreased brain IGF-I signaling in middle-aged females contributes, in part, to LH surge dysfunction by disrupting estradiol-sensitive processes that affect GnRH neuron activation and/or GnRH release.
Collapse
Affiliation(s)
- Brigitte J Todd
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
79
|
Jiang Y, Steinle JJ. Systemic propranolol reduces b-wave amplitude in the ERG and increases IGF-1 receptor phosphorylation in rat retina. Invest Ophthalmol Vis Sci 2009; 51:2730-5. [PMID: 20042659 DOI: 10.1167/iovs.09-4779] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To determine whether systemic application of propranolol, a nonselective beta-adrenergic receptor antagonist, with an osmotic pump will decrease the b-wave amplitude of the electroretinogram (ERG) and increase insulin-like growth factor (IGF)-1 receptor signaling. METHODS Young rats at 8 weeks of age were treated with saline, phentolamine, a nonselective alpha-adrenergic receptor antagonist, or propranolol, a nonselective beta-adrenergic receptor antagonist, delivered by osmotic pumps for 21 days. On the 21st day, all rats underwent electroretinographic analyses followed by collection of the retinas for protein assessment using Western blot analysis for IGF binding protein 3 (IGFBP3), IGF-1 receptor (IGF-1R), Akt, extracellular signal-related kinases 1 and 2 (ERK1/2), and vascular endothelial cell growth factor (VEGF). RESULTS Data indicate that 21 days of propranolol significantly decreased the b-wave amplitude of the ERG. The decrease in the b-wave amplitude occurred concurrently with a decrease in IGFBP3 levels and an increase in tyrosine phosphorylation of IGF-1 receptor on 1135/1136. This phosphorylation of IGF-1 receptor led to increased phosphorylation of Akt and ERK1/2. VEGF protein levels were also increased. CONCLUSIONS Overall, beta-adrenergic receptor antagonism produced a dysfunctional ERG, which occurred with an increase in IGF-1R phosphorylation and activation of VEGF. Systemic application of beta-adrenergic receptor antagonists may have detrimental effects on the retina.
Collapse
Affiliation(s)
- Youde Jiang
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | |
Collapse
|
80
|
Belfiore A, Frasca F, Pandini G, Sciacca L, Vigneri R. Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocr Rev 2009; 30:586-623. [PMID: 19752219 DOI: 10.1210/er.2008-0047] [Citation(s) in RCA: 751] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In mammals, the insulin receptor (IR) gene has acquired an additional exon, exon 11. This exon may be skipped in a developmental and tissue-specific manner. The IR, therefore, occurs in two isoforms (exon 11 minus IR-A and exon 11 plus IR-B). The most relevant functional difference between these two isoforms is the high affinity of IR-A for IGF-II. IR-A is predominantly expressed during prenatal life. It enhances the effects of IGF-II during embryogenesis and fetal development. It is also significantly expressed in adult tissues, especially in the brain. Conversely, IR-B is predominantly expressed in adult, well-differentiated tissues, including the liver, where it enhances the metabolic effects of insulin. Dysregulation of IR splicing in insulin target tissues may occur in patients with insulin resistance; however, its role in type 2 diabetes is unclear. IR-A is often aberrantly expressed in cancer cells, thus increasing their responsiveness to IGF-II and to insulin and explaining the cancer-promoting effect of hyperinsulinemia observed in obese and type 2 diabetic patients. Aberrant IR-A expression may favor cancer resistance to both conventional and targeted therapies by a variety of mechanisms. Finally, IR isoforms form heterodimers, IR-A/IR-B, and hybrid IR/IGF-IR receptors (HR-A and HR-B). The functional characteristics of such hybrid receptors and their role in physiology, in diabetes, and in malignant cells are not yet fully understood. These receptors seem to enhance cell responsiveness to IGFs.
Collapse
Affiliation(s)
- Antonino Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Ospedale Garibaldi-Nesima, 95122 Catania, Italy.
| | | | | | | | | |
Collapse
|
81
|
Avogaro A, de Kreutzenberg SV, Fadini GP. Insulin signaling and life span. Pflugers Arch 2009; 459:301-14. [DOI: 10.1007/s00424-009-0721-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 08/26/2009] [Indexed: 12/26/2022]
|
82
|
Gläser S, Friedrich N, Ewert R, Schäper C, Nauck M, Dörr M, Völzke H, Felix SB, Krebs A, Wallaschofski H, Koch B. Association between serum insulin-like growth factor (IGF) I and IGF binding protein-3 and lung function. J Clin Endocrinol Metab 2009; 94:2452-8. [PMID: 19401363 DOI: 10.1210/jc.2008-2662] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND There is strong evidence that IGF-I and IGF binding protein 3 (IGFBP-3), as central mediators of endocrine and finally metabolic or anabolic effects of GH, were associated with increased lung size in acromegaly or a decrease of respiratory muscle pressures in patients with GH deficiency. The aim of the present study was to further clarify the impact of IGF-I and IGFBP-3 levels on lung volumes and respiratory pressures in a general adult population. MATERIAL AND METHODS From the Study of Health in Pomerania, 1326 subjects aged 25 to 85 yr participated in standardized pulmonary function testing. IGF-I and IGFBP-3 levels were measured with the Immulite 2500 system. Multivariable linear regression analyses adjusted for age, sex, body mass index, physical activity, and smoking were performed. RESULTS In men, positive linear associations between IGF-I and IGF-I/IGFBP-3 ratio with forced expiratory volume in 1 sec (FEV1) as well as with forced vital capacity (FVC) were detected across all ages, whereas in women this positive association was only detectable above 50 yr. Furthermore, the analyses indicated positive linear relations of IGF-I/IGFBP-3 ratio with FEV1 and FVC, respectively. No significant relations between IGF-I or IGFBP-3 and maximal inspiratory pressure was detectable in both sexes. CONCLUSION In conclusion, higher IGF-I levels were associated with higher lung volumes in men, whereas in women this association was only detectable in subjects older than 50 yr. Higher IGF-I values were not associated with increased respiratory muscle strength measured as maximal inspiratory pressure.
Collapse
Affiliation(s)
- Sven Gläser
- Department of Internal Medicine B, Pulmonary Medicine and Infectious Diseases, Ernst-Moritz-Arndt University Greifswald, D-17475 Greifswald, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Relationships between cancer and aging: a multilevel approach. Biogerontology 2009; 10:323-38. [PMID: 19156531 DOI: 10.1007/s10522-008-9209-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 12/16/2008] [Indexed: 01/25/2023]
Abstract
The incidence of cancer increases with age in humans and in laboratory animals alike. There are different patterns of age-related distribution of tumors in different organs and tissues. Aging may increase or decrease the susceptibility of various tissues to initiation of carcinogenesis and usually facilitates promotion and progression of carcinogenesis. Aging may predispose to cancer in two ways: tissue accumulation of cells in late stages of carcinogenesis and alterations in internal homeostasis, in particular, alterations in immune and endocrine systems. Increased susceptibility to the effects of tumor promoters is found both in aged animals and aged humans, as predicted by the multistage model of carcinogenesis. Aging is associated with a number of events at the molecular, cellular and physiological levels that influence carcinogenesis and subsequent cancer growth. An improved understanding of age-associated variables impacting on the tumor microenvironment, as well as the cancer cells themselves, will result in improved treatment modalities in geriatric oncology.
Collapse
|
84
|
Scrable H, Medrano S, Ungewitter E. Running on empty: how p53 controls INS/IGF signaling and affects life span. Exp Gerontol 2009; 44:93-100. [PMID: 18598747 PMCID: PMC2764313 DOI: 10.1016/j.exger.2008.05.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 05/21/2008] [Accepted: 05/27/2008] [Indexed: 10/21/2022]
Abstract
In higher organisms dependent on the regenerative ability of tissue stem cells to maintain tissue integrity throughout adulthood, the failure of stem cells to replace worn out, dead, or damaged cells is seen as one mechanism that limits life span. In these organisms, tumor suppressors such as p53 are central participants in the control of longevity because they regulate stem cell proliferation. Several recent reports have identified p53 as a longevity gene in organisms such as Caenorhabditis elegans and Drosophila melanogaster, which lack proliferative stem cells in all but the germline and have relatively short life spans. This has forced us to reevaluate the role of p53 in the control of life span. We discuss how p53 might regulate longevity in both long- and short-lived species by controlling the activity of insulin-like molecules that operate in proliferating and non-proliferating compartments of adult somatic tissues. We also discuss the hierarchical structure of life span regulation where loss of p53 has life span extending effects. Finally, we suggest a molecular mechanism by which p53 might facilitate the response to severe nutrient deprivation that allows metabolically active cells to survive periods of starvation. Paradoxically, loss of p53 function in these cells would compromise life span.
Collapse
Affiliation(s)
- Heidi Scrable
- University of Virginia, Department of Neuroscience, Charlottesville, Virginia, USA.
| | | | | |
Collapse
|
85
|
Mesenchymal stem cell-mediated ectopic hematopoiesis alleviates aging-related phenotype in immunocompromised mice. Blood 2008; 113:2595-604. [PMID: 19074727 DOI: 10.1182/blood-2008-10-182246] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Subcutaneous transplants of bone marrow mesenchymal stem cells (BMMSCs) are capable of generating ectopic bone and organizing functional hematopoietic marrow elements in animal models. Here we report that immunocompromised mice received subcutaneous BMMSC transplants using hydroxyapatite tricalcium phosphate as a carrier suppressed age-related degeneration in multiple organs and benefited an increase in life span extension compared with control littermates. The newly organized ectopic bone/marrow system restores active hematopoiesis via the erythropoietin receptor/signal transducer and activator of transcription 5 (Stat5) pathway. Furthermore, the BMMSC recipient mice showed elevated level of Klotho and suppression of insulin-like growth factor I signaling, which may be the mechanism contributing to the alleviation of aging-like phenotypes and prolongation of life in the treated mice. This work reveals that erythropoietin receptor/Stat5 pathway contributes to BMMSC-organized ectopic hematopoiesis, which may offer a treatment paradigm of reversing age-related degeneration of multiple organs in adult immunocompromised mice.
Collapse
|
86
|
Kirkpatrick B, Messias E, Harvey PD, Fernandez-Egea E, Bowie CR. Is schizophrenia a syndrome of accelerated aging? Schizophr Bull 2008; 34:1024-32. [PMID: 18156637 PMCID: PMC2632500 DOI: 10.1093/schbul/sbm140] [Citation(s) in RCA: 241] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Schizophrenia is associated with a number of anatomical and physiological abnormalities outside of the brain, as well as with a decrease in average life span estimated at 20% in the United States. Some studies suggest that this increased mortality is not entirely due to associated causes such as suicide and the use of psychotropic medications. In this article, in order to focus greater attention on the increased mortality associated with schizophrenia, we present a special case of the hypothesis that physiological abnormalities associated with schizophrenia make a contribution to the increased mortality of schizophrenia: specifically, the hypothesis that schizophrenia is a syndrome of accelerated aging. Evidence consistent with this hypothesis comes from several areas. The biological plausibility of the hypothesis is supported by the existence of established syndromes of accelerated aging and by the sharing of risk factors between schizophrenia and other age-related conditions. We propose methods for testing the hypothesis.
Collapse
Affiliation(s)
- Brian Kirkpatrick
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta, GA, USA.
| | - Erick Messias
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta, GA
| | - Philip D. Harvey
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA
| | - Emilio Fernandez-Egea
- Department of Psychiatry, Hospital Clinic, Institut d'Investigacions Biomediques August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain
| | | |
Collapse
|
87
|
Harper JM. Wild-derived mouse stocks: an underappreciated tool for aging research. AGE (DORDRECHT, NETHERLANDS) 2008; 30:135-45. [PMID: 19424863 PMCID: PMC2527627 DOI: 10.1007/s11357-008-9057-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Accepted: 04/14/2008] [Indexed: 05/27/2023]
Abstract
Virtually all biomedical research makes use of a relatively small pool of laboratory-adapted, inbred, isogenic stocks of mice. Although the advantages of these models are many, there are a number of disadvantages as well. When studying a multifaceted process such as aging, the problems associated with using laboratory stocks are greatly inflated. On the other hand, wild-derived mouse stocks, loosely defined here as either wild-caught individuals or the recent progeny of wild-caught individuals, have much to offer to biogerontology research. Hence, the aims of this review are threefold: (1) to (re)acquaint readers with the pros and cons of using a typical inbred laboratory mouse model for aging research; (2) to reintroduce the notion of using wild-derived mouse stocks in aging research as championed by Austad, Miller and others for more than a decade, and (3) to provide an overview of recent advances in biogerontology using wild-derived mouse stocks.
Collapse
Affiliation(s)
- James M Harper
- Department of Pathology and Geriatrics Center, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA.
| |
Collapse
|
88
|
Hinkal G, Donehower LA. How does suppression of IGF-1 signaling by DNA damage affect aging and longevity? Mech Ageing Dev 2008; 129:243-53. [PMID: 18374391 PMCID: PMC2396493 DOI: 10.1016/j.mad.2008.02.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 02/11/2008] [Accepted: 02/13/2008] [Indexed: 01/01/2023]
Abstract
Long-lived animals have evolved a robust set of defenses to maintain genomic integrity over their entire lifespan. The DNA damage response and DNA repair pathways are critical pillars of organismal defenses, minimizing somatic mutations in both post-mitotic and mitotic cells. These genomic maintenance systems not only prevent the premature emergence of cancers but may also maintain normal tissue function and organismal longevity. Genetic defects in a number of DNA repair and DNA damage response genes often leads to a dramatic increase in cancer incidence; in other cases, premature aging or progeroid syndromes may be induced. In this review, we discuss two recent reports of two nucleotide excision repair-deficient models that exhibit dramatic premature aging and shortened longevity. The DNA repair defects were also associated with a significant inhibition of the growth hormone/insulin-like growth factor 1 (GH/IGF-1) axis, an endocrine signaling pathway shown to influence aging and longevity in both vertebrates and invertebrates. Potential mechanisms of how DNA damage might affect IGF-1 signaling and aging are discussed, with a particular emphasis on the role of such signaling alterations in the adult tissue stem cell compartments.
Collapse
Affiliation(s)
- George Hinkal
- Departments of Molecular Virology and Microbiology, Molecular and Cellular Biology, and Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Lawrence A. Donehower
- Departments of Molecular Virology and Microbiology, Molecular and Cellular Biology, and Pediatrics, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
89
|
Chen RL, Kassem NA, Sadeghi M, Preston JE. Insulin-Like Growth Factor-II Uptake Into Choroid Plexus and Brain of Young and Old Sheep. J Gerontol A Biol Sci Med Sci 2008; 63:141-8. [DOI: 10.1093/gerona/63.2.141] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
90
|
Torres-Aleman I. Targeting insulin-like growth factor-1 to treat Alzheimer's disease. Expert Opin Ther Targets 2007; 11:1535-42. [DOI: 10.1517/14728222.11.12.1535] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
91
|
Swindell WR. Genotype-by-age interaction and identification of longevity-associated genes from microarray data. AGE (DORDRECHT, NETHERLANDS) 2007; 29:97-102. [PMID: 19424835 PMCID: PMC2267658 DOI: 10.1007/s11357-007-9033-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Accepted: 05/06/2007] [Indexed: 05/27/2023]
Abstract
Microarray-based comparisons of long-lived and normal mouse strains represent a promising approach for dissecting the basis of lifespan extension in higher organisms. Recently, Boylston et al. (2006) generated a genome-wide data set that allowed expression levels of Snell (Pit1 (dw/dw)) and Ames (Prop1 (df/df)) long-lived mice to be compared with age-matched control mice across different ages (6-24 months). Longevity-associated genes were identified as those genes exhibiting differential expression between long-lived and normal mice at every age examined. In this communication, an alternative approach to identifying longevity-associated genes is suggested and applied to the data sets considered by Boylston et al. (2006). Longevity-associated genes are defined as those exhibiting significant genotype-by-age interaction with respect to expression levels of long-lived and normal mice, and a total of 63 longevity-associated genes are identified. This approach may lend greater confidence to the inference that expression of identified genes specifically underlies aging differences between long-lived and normal genotypes.
Collapse
Affiliation(s)
- William R Swindell
- Department of Statistics and Probability, Michigan State University, A-413 Wells Hall, East Lansing, MI 48824, USA.
| |
Collapse
|
92
|
Kaeberlein M, Powers RW. Sir2 and calorie restriction in yeast: a skeptical perspective. Ageing Res Rev 2007; 6:128-40. [PMID: 17512264 DOI: 10.1016/j.arr.2007.04.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 04/04/2007] [Accepted: 04/09/2007] [Indexed: 02/07/2023]
Abstract
Activation of Sir2-family proteins in response to calorie restriction (CR) has been proposed as an evolutionarily conserved mechanism for life span extension. This idea has been called into question with the discovery that Sir2-family proteins are not required for life span extension from CR in yeast. We present here a historical perspective and critical evaluation of the model that CR acts through Sir2 in yeast, and interpret prior reports in light of more recent discoveries. Several specific cases where the Sir2 model of CR is inconsistent with experimental data are noted. These shortcomings must be considered along with evidence supporting a role for Sir2 in CR in order to fully evaluate the validity of this model.
Collapse
Affiliation(s)
- Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|
93
|
Roldan MB, White C, Witchel SF. Association of the GAA1013→GAG polymorphism of the insulin-like growth factor-1 receptor (IGF1R) gene with premature pubarche. Fertil Steril 2007; 88:410-7. [PMID: 17442315 DOI: 10.1016/j.fertnstert.2006.11.126] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Revised: 11/21/2006] [Accepted: 11/21/2006] [Indexed: 10/23/2022]
Abstract
OBJECTIVE A single-nucleotide polymorphism (SNP), the G variant in codon 1013 (GAA1013-->GAG) of the insulin-like growth factor-1 (IGF-1) receptor (IGFIR) gene, has been associated with higher IGF-1 concentrations in Caucasian subjects. Because elevated serum levels of IGF-1 have been described in children with premature pubarche (PP) and in adolescent girls with hyperandrogenism, we tested the a priori hypothesis that the frequency of the A-->G variant would be overrepresented among children with PP. DESIGN Case-control association study. SETTING University-based pediatric endocrinology practice. PATIENT(S) Sixty-nine children (63 girls and 6 boys) with PP, 52 adolescent girls with hyperandrogenism, and 92 healthy subjects. INTERVENTION(S) Blood was obtained for genotype analysis, glucose measurement, and hormone (A, insulin, 17-hydroxyprogesterone, and T) determinations. MAIN OUTCOME MEASURE(S) Frequency of the SNP in the IGF1R gene and correlation of this SNP with hormone concentrations. RESULT(S) Distribution of the G allele was statistically significantly different between the children with PP and the healthy control subjects, independent of insulin sensitivity. CONCLUSION(S) This common SNP in the IGF1R gene may be associated with PP caused by premature adrenarche in children. Because PP has been associated with higher IGF-1 concentrations, these data suggest a potential molecular basis for prior clinical observations of elevated IGF-1 concentrations in children with PP.
Collapse
Affiliation(s)
- Maria Belen Roldan
- Division of Endocrinology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | |
Collapse
|
94
|
Young GS, Kirkland JB. Rat models of caloric intake and activity: relationships to animal physiology and human health. Appl Physiol Nutr Metab 2007; 32:161-76. [PMID: 17486157 DOI: 10.1139/h06-082] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Every rodent experiment is based on important parameters concerning the levels of caloric intake and physical activity. In many cases, these decisions are not made consciously, but are based on traditional models. For experimental models directed at the study of caloric intake and activity, the selection of parameters is usually aimed at modeling human conditions, the ultimate goal of which is to gain insight into the pathophysiology of the disease process in man. In each model, it is important to understand the influence of diet, exercise, and genetic background on physiology and the development of disease states. Along the continuum of energy intake from caloric restriction to high-fat feeding, and of energy output from total inactivity to forced exercise, a number of models are used to study different disease states. In this paper, we will evaluate the influence of the quantity and composition of diet and exercise in several animal models, and will discuss how each model can be applied to various human conditions. This review will be limited to traditional models using the rat as the experimental animal, and although it is not an exhaustive list, the models presented are those most commonly represented in the literature. We will also review the mechanisms by which each affects rat physiology, and will compare these to the analogous mechanisms in the modeled human disease state. We hope that the information presented here will help researchers make choices among the available models and will encourage discussion on the interpretation and extrapolation of results obtained from traditional and novel rodent experiments on diet, exercise, and chronic disease.
Collapse
Affiliation(s)
- Genevieve S Young
- Department of Human Biology and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | | |
Collapse
|
95
|
Abstract
BACKGROUND The incidence of cancer increases with age in both humans and laboratory animals. A clear understanding of the causes of the age-related increase in cancer incidence is needed to develop a strategy for primary cancer prevention. METHODS We summarized the data available in the literature and our own experience in hormonal metabolic shifts in organisms and disturbances at tissue and cellular levels observed in natural aging and in different types of carcinogenesis in vivo. RESULTS There are incongruent patterns of age-related distribution of tumors in different organs and tissues. Aging may increase or decrease the susceptibility of various tissues to initiation of carcinogenesis and usually facilitates promotion and progression of carcinogenesis. Aging may predispose to cancer by at least two mechanisms: tissue accumulation of cells in late stages of carcinogenesis and alterations in internal homeostasis, in particular, alterations in immune and endocrine system. Increased susceptibility to the effects of tumor promoters is found in both aged animals and aged humans, as predicted by the multistage model of carcinogenesis. CONCLUSIONS Aging is associated with a number of events at the molecular, cellular and physiologic levels that influence carcinogenesis and subsequent cancer growth. A clearer understanding of these events will help in predicting and treating cancer more effectively.
Collapse
Affiliation(s)
- Vladimir N Anisimov
- Department of Carcinogenesis and Oncogerontology at N.N.Petrov Research Institute of Oncology, Pesochny-2, St. Petersburg 197758, Russia.
| |
Collapse
|
96
|
Sun LY, Bartke A. Adult Neurogenesis in the Hippocampus of Long-Lived Mice During Aging. J Gerontol A Biol Sci Med Sci 2007; 62:117-25. [PMID: 17339637 DOI: 10.1093/gerona/62.2.117] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ames dwarf mice live considerably longer than normal animals, exhibit apparently normal cognitive functions, and maintain them into advanced age. Neurogenesis occurs throughout adult life span in the dentate gyrus of mammalian hippocampus and has been suggested to play an important role in cognitive function. We now report that the total number of bromodeoxyuridine (BrdU)-labeled cells in this brain region in aged Ames dwarf mice was not different from that in aged normal mice, whereas the fraction of newly generated neurons was significantly increased by monitoring BrdU labeling and cell marker expression. Evidence of activation of anti-apoptosis signal transduction cascade was also found in the hippocampus of aged dwarf mice. Together with previous findings, the results may suggest that an increase in hippocampal insulin-like growth factor-I protein expression and subsequent activation of antiapoptotic signaling might contribute to survival of newly born neurons and subsequently to the delay of cognitive loss during aging in these long-lived dwarf mice.
Collapse
Affiliation(s)
- Liou Y Sun
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109-2200, USA.
| | | |
Collapse
|
97
|
Salvioli S, Olivieri F, Marchegiani F, Cardelli M, Santoro A, Bellavista E, Mishto M, Invidia L, Capri M, Valensin S, Sevini F, Cevenini E, Celani L, Lescai F, Gonos E, Caruso C, Paolisso G, De Benedictis G, Monti D, Franceschi C. Genes, ageing and longevity in humans: problems, advantages and perspectives. Free Radic Res 2007; 40:1303-23. [PMID: 17090420 DOI: 10.1080/10715760600917136] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Many epidemiological data indicate the presence of a strong familial component of longevity that is largely determined by genetics, and a number of possible associations between longevity and allelic variants of genes have been described. A breakthrough strategy to get insight into the genetics of longevity is the study of centenarians, the best example of successful ageing. We review the main results regarding nuclear genes as well as the mitochondrial genome, focusing on the investigations performed on Italian centenarians, compared to those from other countries. These studies produced interesting results on many putative "longevity genes". Nevertheless, many discrepancies are reported, likely due to the population-specific interactions between gene pools and environment. New approaches, including large-scale studies using high-throughput techniques, are urgently needed to overcome the limits of traditional association studies performed on a limited number of polymorphisms in order to make substantial progress to disentangle the genetics of a trait as complex as human longevity.
Collapse
Affiliation(s)
- S Salvioli
- Department of Experimental Pathology, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Yamaza H, Komatsu T, To K, Toyama H, Chiba T, Higami Y, Shimokawa I. Involvement of Insulin-Like Growth Factor-1 in the Effect of Caloric Restriction: Regulation of Plasma Adiponectin and Leptin. J Gerontol A Biol Sci Med Sci 2007; 62:27-33. [PMID: 17301034 DOI: 10.1093/gerona/62.1.27] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Insulin-like growth factor (IGF)-1 signaling might partly mediate effects of caloric restriction (CR), an experimental intervention for increasing longevity in mammals. The present study evaluated effects of recombinant human (rh)IGF-1 infusion on adipokine levels in CR and transgenic (Tg) dwarf rats with the reduced growth hormone-IGF-1 axis, which shared similar body weight and food intake. At 9 months of age, each rat received a continuous infusion of rhIGF-1 for 14 days, and rats received an injection of glucose after overnight fasting. Infusion of rhIGF-1 had metabolic effects in all rat groups although it did not affect insulin sensitivity in any of the groups. In addition, plasma adiponectin was decreased to the control group levels and plasma leptin was further reduced in CR and Tg rats. The similarity of phenotypes and adipokine responses to rhIGF-1 between CR and Tg rats supports a role for reduced IGF-1 signaling in the CR effect.
Collapse
Affiliation(s)
- Haruyoshi Yamaza
- Pathology & Gerontology, Nagasaki University Graduate School of Biomedical Sciences, 12-4 Sakamoto 1-chome, Nagasaki City 852-8523, Japan.
| | | | | | | | | | | | | |
Collapse
|
99
|
Willcox DC, Willcox BJ, Hsueh WC, Suzuki M. Genetic determinants of exceptional human longevity: insights from the Okinawa Centenarian Study. AGE (DORDRECHT, NETHERLANDS) 2006; 28:313-32. [PMID: 22253498 PMCID: PMC3259160 DOI: 10.1007/s11357-006-9020-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 09/30/2006] [Accepted: 10/01/2006] [Indexed: 05/31/2023]
Abstract
Centenarians represent a rare phenotype appearing in roughly 10-20 per 100,000 persons in most industrialized countries but as high as 40-50 per 100,000 persons in Okinawa, Japan. Siblings of centenarians in Okinawa have been found to have cumulative survival advantages such that female centenarian siblings have a 2.58-fold likelihood and male siblings a 5.43-fold likelihood (versus their birth cohorts) of reaching the age of 90 years. This is indicative of a strong familial component to longevity. Centenarians may live such extraordinarily long lives in large part due to genetic variations that either affect the rate of aging and/or have genes that result in decreased susceptibility to age-associated diseases. Some of the most promising candidate genes appear to be those involved in regulatory pathways such as insulin signaling, immunoinflammatory response, stress resistance or cardiovascular function. Although gene variants with large beneficial effects have been suggested to exist, only APOE, an important regulator of lipoproteins has been consistently associated with a longer human lifespan across numerous populations. As longevity is a very complex trait, several issues challenge our ability to identify its genetic influences, such as control for environmental confounders across time, the lack of precise phenotypes of aging and longevity, statistical power, study design and availability of appropriate study populations. Genetic studies on the Okinawan population suggest that Okinawans are a genetically distinct group that has several characteristics of a founder population, including less genetic diversity, and clustering of specific gene variants, some of which may be related to longevity. Further work on this population and other genetic isolates would be of significant interest to the genetics of human longevity.
Collapse
Affiliation(s)
- D. Craig Willcox
- College of Nursing, Okinawa Prefectural University, 1-24-1 Yogi, Naha City, Okinawa Japan 902-0076
- Pacific Health Research Institute, 846 South Hotel Street, Suite 301, Honolulu, HI 96813 USA
| | - Bradley J. Willcox
- Pacific Health Research Institute, 846 South Hotel Street, Suite 301, Honolulu, HI 96813 USA
- Departments of Geriatric Medicine and Medicine, John A. Burns School of Medicine, University of Hawaii, 1356 Lusitana Street, 7F, Honolulu, HI 96813 USA
| | - Wen-Chi Hsueh
- School of Medicine, University of California San Francisco, 74 New Montgomery Street, Suite 600, San Francisco, CA 94105 USA
- 2200 Post Street, C433, San Francisco, CA 94143-1640 USA
| | - Makoto Suzuki
- Faculty of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa, Japan
| |
Collapse
|
100
|
Van Voorhies WA, Curtsinger JW, Rose MR. Do longevity mutants always show trade-offs? Exp Gerontol 2006; 41:1055-8. [PMID: 16790333 DOI: 10.1016/j.exger.2006.05.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 05/02/2006] [Accepted: 05/09/2006] [Indexed: 10/24/2022]
Abstract
A number of genetic mutations that substantially increase longevity have been discovered in model organisms. Although these long-lived mutants have provided many insights into the factors that affect longevity, the results from such studies should be interpreted with caution. In particular, at least some of these mutations may be poor guides to human medical intervention because they often have deleterious side effects on important biological functions.
Collapse
Affiliation(s)
- Wayne A Van Voorhies
- Molecular Biology Program, MSC 3MLS, New Mexico State University, Las Cruces, NM 88003, USA.
| | | | | |
Collapse
|