51
|
Bari MA, Kindzierski WB, Spink D. Twelve-year trends in ambient concentrations of volatile organic compounds in a community of the Alberta Oil Sands Region, Canada. ENVIRONMENT INTERNATIONAL 2016; 91:40-50. [PMID: 26909813 DOI: 10.1016/j.envint.2016.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 01/19/2016] [Accepted: 02/10/2016] [Indexed: 06/05/2023]
Abstract
Environmental exposure to volatile organic compounds (VOCs) in ambient air is one of a number of concerns that the First Nation Community of Fort McKay, Alberta has related to development of Canada's oil sands. An in-depth investigation of trends in ambient air VOC levels in Fort McKay was undertaken to better understand the role and possible significance of emissions from Alberta's oil sands development. A non-parametric trend detection method was used to investigate trends in emissions and ambient VOC concentrations over a 12-year (2001-2012) period. Relationships between ambient VOC concentrations and production indicators of oil sands operations around Fort McKay were also examined. A weak upward trend (significant at 90% confidence level) was found for ambient concentrations of total VOCs based on sixteen detected species with an annual increase of 0.64μg/m(3) (7.2%) per year (7.7μg/m(3) increase per decade). Indicators of production (i.e., annual bitumen production and mined oil sands quantities) were correlated with ambient total VOC concentrations. Only one of 29 VOC species evaluated (1-butene) showed a statistically significant upward trend (p=0.05). Observed geometric (arithmetic) mean and maximum ambient concentrations of selected VOCs of public health concern for most recent three years of the study period (2010-2012) were below chronic and acute health risk screening criteria of the U.S. Agency for Toxic Substances and Disease Registry and U.S. Environmental Protection Agency. Thirty-two VOCs are recommended for tracking in future air quality investigations in the community to better understand whether changes are occurring over time in relation to oil sands development activities and to inform policy makers about whether or not these changes warrant additional attention.
Collapse
Affiliation(s)
- Md Aynul Bari
- School of Public Health, University of Alberta, 3-57 South Academic Building, 11405-87 Avenue, Edmonton, Alberta T6G 1C9, Canada.
| | - Warren B Kindzierski
- School of Public Health, University of Alberta, 3-57 South Academic Building, 11405-87 Avenue, Edmonton, Alberta T6G 1C9, Canada
| | - David Spink
- Pravid Environmental Inc., 62 Lucerne Crescent, St. Albert, Alberta T8N 2R2, Canada
| |
Collapse
|
52
|
Warneke C, Trainer M, de Gouw JA, Parrish DD, Fahey DW, Ravishankara AR, Middlebrook AM, Brock CA, Roberts JM, Brown SS, Neuman JA, Lerner BM, Lack D, Law D, Hübler G, Pollack I, Sjostedt S, Ryerson TB, Gilman JB, Liao J, Holloway J, Peischl J, Nowak JB, Aikin K, Min KE, Washenfelder RA, Graus MG, Richardson M, Markovic MZ, Wagner NL, Welti A, Veres PR, Edwards P, Schwarz JP, Gordon T, Dube WP, McKeen S, Brioude J, Ahmadov R, Bougiatioti A, Lin JJ, Nenes A, Wolfe GM, Hanisco TF, Lee BH, Lopez-Hilfiker FD, Thornton JA, Keutsch FN, Kaiser J, Mao J, Hatch C. Instrumentation and Measurement Strategy for the NOAA SENEX Aircraft Campaign as Part of the Southeast Atmosphere Study 2013. ATMOSPHERIC MEASUREMENT TECHNIQUES 2016; 9:3063-3093. [PMID: 29619117 PMCID: PMC5880326 DOI: 10.5194/amt-9-3063-2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Natural emissions of ozone-and-aerosol-precursor gases such as isoprene and monoterpenes are high in the southeast of the US. In addition, anthropogenic emissions are significant in the Southeast US and summertime photochemistry is rapid. The NOAA-led SENEX (Southeast Nexus) aircraft campaign was one of the major components of the Southeast Atmosphere Study (SAS) and was focused on studying the interactions between biogenic and anthropogenic emissions to form secondary pollutants. During SENEX, the NOAA WP-3D aircraft conducted 20 research flights between 27 May and 10 July 2013 based out of Smyrna, TN. Here we describe the experimental approach, the science goals and early results of the NOAA SENEX campaign. The aircraft, its capabilities and standard measurements are described. The instrument payload is summarized including detection limits, accuracy, precision and time resolutions for all gas-and-aerosol phase instruments. The inter-comparisons of compounds measured with multiple instruments on the NOAA WP-3D are presented and were all within the stated uncertainties, except two of the three NO2 measurements. The SENEX flights included day- and nighttime flights in the Southeast as well as flights over areas with intense shale gas extraction (Marcellus, Fayetteville and Haynesville shale). We present one example flight on 16 June 2013, which was a daytime flight over the Atlanta region, where several crosswind transects of plumes from the city and nearby point sources, such as power plants, paper mills and landfills, were flown. The area around Atlanta has large biogenic isoprene emissions, which provided an excellent case for studying the interactions between biogenic and anthropogenic emissions. In this example flight, chemistry in and outside the Atlanta plumes was observed for several hours after emission. The analysis of this flight showcases the strategies implemented to answer some of the main SENEX science questions.
Collapse
Affiliation(s)
- C Warneke
- Cooperative Institute for Research in Environmental Sciences, Univ. of Colorado, Boulder
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO
| | - M Trainer
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO
| | - J A de Gouw
- Cooperative Institute for Research in Environmental Sciences, Univ. of Colorado, Boulder
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO
| | - D D Parrish
- Cooperative Institute for Research in Environmental Sciences, Univ. of Colorado, Boulder
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO
| | - D W Fahey
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO
| | - A R Ravishankara
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO
| | - A M Middlebrook
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO
| | - C A Brock
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO
| | - J M Roberts
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO
| | - S S Brown
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO
| | - J A Neuman
- Cooperative Institute for Research in Environmental Sciences, Univ. of Colorado, Boulder
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO
| | - B M Lerner
- Cooperative Institute for Research in Environmental Sciences, Univ. of Colorado, Boulder
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO
| | - D Lack
- Cooperative Institute for Research in Environmental Sciences, Univ. of Colorado, Boulder
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO
| | - D Law
- Cooperative Institute for Research in Environmental Sciences, Univ. of Colorado, Boulder
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO
| | - G Hübler
- Cooperative Institute for Research in Environmental Sciences, Univ. of Colorado, Boulder
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO
| | - I Pollack
- Cooperative Institute for Research in Environmental Sciences, Univ. of Colorado, Boulder
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO
| | - S Sjostedt
- Cooperative Institute for Research in Environmental Sciences, Univ. of Colorado, Boulder
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO
| | - T B Ryerson
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO
| | - J B Gilman
- Cooperative Institute for Research in Environmental Sciences, Univ. of Colorado, Boulder
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO
| | - J Liao
- Cooperative Institute for Research in Environmental Sciences, Univ. of Colorado, Boulder
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO
| | - J Holloway
- Cooperative Institute for Research in Environmental Sciences, Univ. of Colorado, Boulder
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO
| | - J Peischl
- Cooperative Institute for Research in Environmental Sciences, Univ. of Colorado, Boulder
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO
| | - J B Nowak
- Cooperative Institute for Research in Environmental Sciences, Univ. of Colorado, Boulder
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO
| | - K Aikin
- Cooperative Institute for Research in Environmental Sciences, Univ. of Colorado, Boulder
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO
| | - K-E Min
- Cooperative Institute for Research in Environmental Sciences, Univ. of Colorado, Boulder
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO
| | - R A Washenfelder
- Cooperative Institute for Research in Environmental Sciences, Univ. of Colorado, Boulder
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO
| | - M G Graus
- Cooperative Institute for Research in Environmental Sciences, Univ. of Colorado, Boulder
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO
| | - M Richardson
- Cooperative Institute for Research in Environmental Sciences, Univ. of Colorado, Boulder
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO
| | - M Z Markovic
- Cooperative Institute for Research in Environmental Sciences, Univ. of Colorado, Boulder
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO
| | - N L Wagner
- Cooperative Institute for Research in Environmental Sciences, Univ. of Colorado, Boulder
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO
| | - A Welti
- Cooperative Institute for Research in Environmental Sciences, Univ. of Colorado, Boulder
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO
| | - P R Veres
- Cooperative Institute for Research in Environmental Sciences, Univ. of Colorado, Boulder
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO
| | - P Edwards
- Cooperative Institute for Research in Environmental Sciences, Univ. of Colorado, Boulder
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO
| | - J P Schwarz
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO
| | - T Gordon
- Cooperative Institute for Research in Environmental Sciences, Univ. of Colorado, Boulder
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO
| | - W P Dube
- Cooperative Institute for Research in Environmental Sciences, Univ. of Colorado, Boulder
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO
| | - S McKeen
- Cooperative Institute for Research in Environmental Sciences, Univ. of Colorado, Boulder
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO
| | - J Brioude
- Cooperative Institute for Research in Environmental Sciences, Univ. of Colorado, Boulder
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO
| | - R Ahmadov
- Cooperative Institute for Research in Environmental Sciences, Univ. of Colorado, Boulder
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO
| | | | - J J Lin
- Georgia Institute of Technology, Atlanta, GA
| | - A Nenes
- Georgia Institute of Technology, Atlanta, GA
- Foundation for Research and Technology Hellas, Greece
- National Observatory of Athens, Greece
| | - G M Wolfe
- NASA Goddard Space Flight Center, Greenbelt, MD
- University of Maryland Baltimore County
| | - T F Hanisco
- NASA Goddard Space Flight Center, Greenbelt, MD
| | - B H Lee
- University of Washington, Madison, WI
| | | | | | - F N Keutsch
- University of Wisconsin-Madison, Madison, WI
| | - J Kaiser
- University of Wisconsin-Madison, Madison, WI
| | - J Mao
- Geophysical Fluid Dynamics Laboratory, NOAA, Princeton, NJ
- Princeton University
| | - C Hatch
- Department of Chemistry, Hendrix College, 1600 Washington Ave., Conway, AR, USA
| |
Collapse
|
53
|
Morgott DA. Anthropogenic and biogenic sources of Ethylene and the potential for human exposure: A literature review. Chem Biol Interact 2015; 241:10-22. [DOI: 10.1016/j.cbi.2015.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
54
|
Propper R, Wong P, Bui S, Austin J, Vance W, Alvarado Á, Croes B, Luo D. Ambient and Emission Trends of Toxic Air Contaminants in California. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:11329-11339. [PMID: 26340590 DOI: 10.1021/acs.est.5b02766] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
After initiating a toxic air contaminant (TAC) identification and control program in 1984, the California Air Resources Board adopted regulations to reduce TAC emissions from cars, trucks, stationary sources, and consumer products. This study quantifies ambient concentration and emission trends for the period 1990-2012 for seven TACs that are responsible for most of the known cancer risk associated with airborne exposure in California. Of these seven, diesel particulate matter (DPM) is the most important; however DPM is not measured directly. Based on a novel surrogate method, DPM concentrations declined 68%, even though the state's population increased 31%, diesel vehicle-miles-traveled increased 81%, and the gross state product (GSP) increased 74%. Based on monitoring data, concentrations of benzene, 1,3-butadiene, perchloroethylene, and hexavalent chromium declined 88-94%. Also, the ambient and emissions trends for each of these four TACs were similar. Furthermore, these declines generally occurred earlier in California than elsewhere. However, formaldehyde and acetaldehyde, which are formed in the air photochemically from volatile organic compounds (VOCs), declined only 20-21%. The collective cancer risk from exposure to these seven reviewed TACs declined 76%. Significant reduction in cancer risk to California residents from implementation of air toxics controls (especially for DPM) is expected to continue.
Collapse
Affiliation(s)
- Ralph Propper
- California Air Resources Board, 1001 "I" Street, P.O. Box 2815, Sacramento, California 95812, United States
| | - Patrick Wong
- California Air Resources Board, 1001 "I" Street, P.O. Box 2815, Sacramento, California 95812, United States
| | - Son Bui
- California Air Resources Board, 1001 "I" Street, P.O. Box 2815, Sacramento, California 95812, United States
| | - Jeff Austin
- California Air Resources Board, 1001 "I" Street, P.O. Box 2815, Sacramento, California 95812, United States
| | - William Vance
- California Air Resources Board, 1001 "I" Street, P.O. Box 2815, Sacramento, California 95812, United States
| | - Álvaro Alvarado
- California Air Resources Board, 1001 "I" Street, P.O. Box 2815, Sacramento, California 95812, United States
| | - Bart Croes
- California Air Resources Board, 1001 "I" Street, P.O. Box 2815, Sacramento, California 95812, United States
| | - Dongmin Luo
- California Air Resources Board, 1001 "I" Street, P.O. Box 2815, Sacramento, California 95812, United States
| |
Collapse
|
55
|
Pusede SE, Steiner AL, Cohen RC. Temperature and recent trends in the chemistry of continental surface ozone. Chem Rev 2015; 115:3898-918. [PMID: 25950502 DOI: 10.1021/cr5006815] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Allison L Steiner
- §Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | |
Collapse
|
56
|
Zhang R, Wang G, Guo S, Zamora ML, Ying Q, Lin Y, Wang W, Hu M, Wang Y. Formation of urban fine particulate matter. Chem Rev 2015; 115:3803-55. [PMID: 25942499 DOI: 10.1021/acs.chemrev.5b00067] [Citation(s) in RCA: 497] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Renyi Zhang
- §State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, People's Republic of China
| | | | - Song Guo
- §State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, People's Republic of China
| | | | | | | | | | - Min Hu
- §State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Yuan Wang
- #Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
57
|
Lurmann F, Avol E, Gilliland F. Emissions reduction policies and recent trends in Southern California's ambient air quality. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2015; 65:324-35. [PMID: 25947128 PMCID: PMC5737709 DOI: 10.1080/10962247.2014.991856] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
UNLABELLED To assess accountability and effectiveness of air regulatory policies, we reviewed more than 20 years of monitoring data, emissions estimates, and regulatory policies across several southern California communities participating in a long-term study of children's health. Between 1994 and 2011, air quality improved for NO2 and PM2.5 in virtually all the monitored communities. Average NO2 declined 28% to 53%, and PM2.5 decreased 13% to 54%. Year-to-year PM2.5 variability at lower pollution sites was large compared to changes in long-term trends. PM10 and O3 decreases were largest in communities that were initially among the most polluted. Trends in annual average NO2, PM2.5, and PM10 concentrations in higher pollution communities were generally consistent with NOx, ROG, SOx, PM2.5, and PM10 emissions decreases. Reductions observed at one of the higher PM2.5 sites, Mira Loma, were generally within the range expected from reductions observed in ROG, NOx, SOx, and PM2.5 emissions. Despite a 38% increase in regional motor vehicle activity, vigorous economic growth, and a 30% population increase, total estimated emissions of NOx, ROG, SOx, PM2.5, and PM10 decreased by 54%, 65%, 40%, 21%, and 15%, respectively, during the 20-year time period. Emission control strategies in California have achieved dramatic reductions in ambient NO2, O3, PM2.5, and PM10. However, additional reductions will still be needed to achieve current health-based clean air standards. IMPLICATIONS For many cities facing the challenge of reducing air pollution to meet health-based standards, the emission control policies and pollution reduction programs adopted in southern California should serve as an example of the potential success of aggressive, comprehensive, and integrated approaches. Policies targeting on-road mobile emissions were the single most important element for observed improvements in the Los Angeles region. However, overall program success was the result of a much broader approach designed to achieve emission reductions across all major pollutants and emissions categories.
Collapse
Affiliation(s)
- Fred Lurmann
- a Sonoma Technology, Incorporated , Petaluma , CA , USA
| | | | | |
Collapse
|
58
|
Simon H, Reff A, Wells B, Xing J, Frank N. Ozone trends across the United States over a period of decreasing NOx and VOC emissions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:186-95. [PMID: 25517137 DOI: 10.1021/es504514z] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In this work, we evaluate ambient ozone trends at urban, suburban, and rural monitoring sites across the United States over a period of decreasing NOx and VOC emissions (1998-2013). We find that decreasing ozone trends generally occur in the summer, in less urbanized areas, and at the upper end of the ozone distribution. Conversely, increasing ozone trends generally occur in the winter, in more urbanized areas, and at the lower end of the ozone distribution. The 95(th) percentile ozone concentrations decreased at urban, suburban, and rural monitors by 1-2 ppb/yr in the summer and 0.5-1 ppb/yr in the winter. In the summer, there are both increasing and decreasing trends in fifth percentile ozone concentrations of less than 0.5 ppb/yr at urban and suburban monitors, while fifth percentile ozone concentrations at rural monitors decreased by up to 1 ppb/yr. In the winter, fifth percentile ozone concentrations generally increased by 0.1-1 ppb/yr. These results demonstrate the large scale success of U.S. control strategies targeted at decreasing peak ozone concentrations. In addition, they indicate that as anthropogenic NOx emissions have decreased, the ozone distribution has been compressed, leading to less spatial and temporal variability.
Collapse
Affiliation(s)
- Heather Simon
- Office of Air Quality Planning and Standards, U.S. EPA , Research Triangle Park, North Carolina 27711, United States
| | | | | | | | | |
Collapse
|
59
|
Zhao Y, Wingen LM, Perraud V, Greaves J, Finlayson-Pitts BJ. Role of the reaction of stabilized Criegee intermediates with peroxy radicals in particle formation and growth in air. Phys Chem Chem Phys 2015; 17:12500-14. [DOI: 10.1039/c5cp01171j] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We investigate the particle formation mechanism from ozonolysis, and find that it is highly dependent on the structure of the alkene.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Chemistry
- University of California
- Irvine
- USA
| | - Lisa M. Wingen
- Department of Chemistry
- University of California
- Irvine
- USA
| | | | - John Greaves
- Department of Chemistry
- University of California
- Irvine
- USA
| | | |
Collapse
|
60
|
Zhu X, Chen J, Yu X, Zhu X, Gao X, Cen K. Controllable synthesis of novel hierarchical V2O5/TiO2 nanofibers with improved acetone oxidation performance. RSC Adv 2015. [DOI: 10.1039/c5ra01001b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A controllable strategy to fabricate novel hierarchical V2O5/TiO2 nanofiber catalysts was proposed. The catalysts were found to present high oxidation performance for acetone. The reaction mechanism of catalytic oxidation was also investigated.
Collapse
Affiliation(s)
- Xuecheng Zhu
- State Key Laboratory of Clean Energy Utilization
- Zhejiang University
- Hangzhou 310027
- China
| | - Jinghuan Chen
- State Key Laboratory of Clean Energy Utilization
- Zhejiang University
- Hangzhou 310027
- China
| | - Xinning Yu
- State Key Laboratory of Clean Energy Utilization
- Zhejiang University
- Hangzhou 310027
- China
| | - Xinbo Zhu
- State Key Laboratory of Clean Energy Utilization
- Zhejiang University
- Hangzhou 310027
- China
| | - Xiang Gao
- State Key Laboratory of Clean Energy Utilization
- Zhejiang University
- Hangzhou 310027
- China
| | - Kefa Cen
- State Key Laboratory of Clean Energy Utilization
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
61
|
Zhao Y, Hennigan CJ, May AA, Tkacik DS, de Gouw JA, Gilman JB, Kuster WC, Borbon A, Robinson AL. Intermediate-volatility organic compounds: a large source of secondary organic aerosol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:13743-50. [PMID: 25375804 DOI: 10.1021/es5035188] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Secondary organic aerosol (SOA) is a major component of atmospheric fine particle mass. Intermediate-volatility organic compounds (IVOCs) have been proposed to be an important source of SOA. We present a comprehensive analysis of atmospheric IVOC concentrations and their SOA production using measurements made in Pasadena, California during the California at the Nexus of Air Quality and Climate Change (CalNex) study. The campaign-average concentration of primary IVOCs was 6.3 ± 1.9 μg m(-3) (average ± standard deviation), which is comparable to the concentration of organic aerosol but only 7.4 ± 1.2% of the concentration of speciated volatile organic compounds. Only 8.6 ± 2.2% of the mass of the primary IVOCs was speciated. Almost no weekend/weekday variation in the ambient concentration of both speciated and total primary IVOCs was observed, suggesting that petroleum-related sources other than on-road diesel vehicles contribute substantially to the IVOC emissions. Primary IVOCs are estimated to produce about 30% of newly formed SOA in the afternoon during CalNex, about 5 times that from single-ring aromatics. The importance of IVOCs in SOA formation is expected to be similar in many urban environments.
Collapse
Affiliation(s)
- Yunliang Zhao
- Center for Atmospheric Particle Studies, Carnegie Mellon University , 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Alier M, Osto MD, Lin YH, Surratt JD, Tauler R, Grimalt JO, van Drooge BL. On the origin of water-soluble organic tracer compounds in fine aerosols in two cities: the case of Los Angeles and Barcelona. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:11649-11660. [PMID: 24385187 DOI: 10.1007/s11356-013-2460-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 12/12/2013] [Indexed: 06/03/2023]
Abstract
Water-soluble organic compounds (WSOCs), represented by anhydro-saccharides, dicarboxylic acids, and polyols, were analyzed by gas chromatography interfaced to mass spectrometry in extracts from 103 PM1 and 22 PM2.5 filter samples collected in an urban background and road site in Barcelona (Spain) and an urban background site in Los Angeles (USA), respectively, during 1-month intensive sampling campaigns in 2010. Both locations have similar Mediterranean climates, with relatively high solar radiation and frequent anti-cyclonic conditions, and are influenced by a complex mixture of emission sources. Multivariate curve resolution-alternating least squares analyses were applied on the database in order to resolve differences and similarities in WSOC compositions in the studied sites. Five consistent clusters for the analyzed compounds were obtained, representing primary regional biomass burning organic carbon, three secondary organic components (aged SOC, isoprene SOC, and α-pinene SOC), and a less clear component, called urban oxygenated organic carbon. This last component is probably influenced by in situ urban activities, such as food cooking and traffic emissions and oxidation processes.
Collapse
Affiliation(s)
- M Alier
- Department of Environmental Chemistry, Institute for Environmental Assessment and Water (IDAEA-CSIC), Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
63
|
Xue L, Wang T, Louie PKK, Luk CWY, Blake DR, Xu Z. Increasing external effects negate local efforts to control ozone air pollution: a case study of Hong Kong and implications for other Chinese cities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:10769-75. [PMID: 25133661 DOI: 10.1021/es503278g] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
It is challenging to reduce ground-level ozone (O3) pollution at a given locale, due in part to the contributions of both local and distant sources. We present direct evidence that the increasing regional effects have negated local control efforts for O3 pollution in Hong Kong over the past decade, by analyzing the daily maximum 8 h average O3 and Ox (=O3+NO2) concentrations observed during the high O3 season (September-November) at Air Quality Monitoring Stations. The locally produced Ox showed a statistically significant decreasing trend over 2002-2013 in Hong Kong. Analysis by an observation-based model confirms this decline in in situ Ox production, which is attributable to a reduction in aromatic hydrocarbons. However, the regional background Ox transported into Hong Kong has increased more significantly during the same period, reflecting contributions from southern/eastern China. The combined result is a rise in O3 and a nondecrease in Ox. This study highlights the urgent need for close cross-boundary cooperation to mitigate the O3 problem in Hong Kong. China's air pollution control policy applies primarily to its large cities, with little attention to developing areas elsewhere. The experience of Hong Kong suggests that this control policy does not effectively address secondary pollution, and that a coordinated multiregional program is required.
Collapse
Affiliation(s)
- Likun Xue
- Department of Civil and Environmental Engineering, the Hong Kong Polytechnic University , Hong Kong, China
| | | | | | | | | | | |
Collapse
|
64
|
Vijayaraghavan K, DenBleyker A, Ma L, Lindhjem C, Yarwood G. Trends in on-road vehicle emissions and ambient air quality in Atlanta, Georgia, USA, from the late 1990s through 2009. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2014; 64:808-16. [PMID: 25122954 PMCID: PMC4104822 DOI: 10.1080/10962247.2014.892039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/23/2014] [Accepted: 01/24/2014] [Indexed: 05/22/2023]
Abstract
On-road vehicle emissions of carbon monoxide (CO), nitrogen oxides (NO(x)), and volatile organic compounds (VOCs) during 1995-2009 in the Atlanta Metropolitan Statistical Area were estimated using the Motor Vehicle Emission Simulator (MOVES) model and data from the National Emissions Inventories and the State of Georgia. Statistically significant downward trends (computed using the nonparametric Theil-Sen method) in annual on-road CO, NO(x), and VOC emissions of 6.1%, 3.3%, and 6.0% per year, respectively, are noted during the 1995-2009 period despite an increase in total vehicle distance traveled. The CO and NO(x) emission trends are correlated with statistically significant downward trends in ambient air concentrations of CO and NO(x) in Atlanta ranging from 8.0% to 11.8% per year and from 5.8% to 8.7% per year, respectively, during similar time periods. Weather-adjusted summertime ozone concentrations in Atlanta exhibited a statistically significant declining trend of 2.3% per year during 2001-2009. Although this trend coexists with the declining trends in on-road NO(x), VOC, and CO emissions, identifying the cause of the downward trend in ozone is complicated by reductions in multiple precursors from different source sectors. Implications: Large reductions in on-road vehicle emissions of CO and NO(x) in Atlanta from the late 1990s to 2009, despite an increase in total vehicle distance traveled, contributed to a significant improvement in air quality through decreases in ambient air concentrations of CO and NO(x) during this time period. Emissions reductions in motor vehicles and other source sectors resulted in these improvements and the observed declining trend in ozone concentrations over the past decade. Although these historical trends cannot be extrapolated to the future because pollutant concentration contributions due to on-road vehicle emissions will likely become an increasingly smaller fraction of the atmospheric total, they provide an indication of the benefits of past control measures.
Collapse
Affiliation(s)
| | | | - Lan Ma
- ENVIRON International Corporation, Novato, CA, USA
| | | | - Greg Yarwood
- ENVIRON International Corporation, Novato, CA, USA
| |
Collapse
|
65
|
Rhoderick GC, Duewer DL, Apel E, Baldan A, Hall B, Harling A, Helmig D, Heo GS, Hueber J, Kim ME, Kim YD, Miller B, Montzka S, Riemer D. International comparison of a hydrocarbon gas standard at the picomol per mol level. Anal Chem 2014; 86:2580-9. [PMID: 24555659 DOI: 10.1021/ac403761u] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Studies of climate change increasingly recognize the diverse influences of hydrocarbons in the atmosphere, including roles in particulates and ozone formation. Measurements of key nonmethane hydrocarbons (NMHCs) suggest atmospheric mole fractions ranging from low picomoles per mol (ppt) to nanomoles per mol (ppb), depending on location and compound. To accurately establish mole fraction trends and to relate measurement records from many laboratories and researchers, it is essential to have accurate, stable, calibration standards. In February of 2008, the National Institute of Standards and Technology (NIST) developed and reported on picomoles per mol standards containing 18 nonmethane hydrocarbon compounds covering the mole fraction range of 60 picomoles per mol to 230 picomoles per mol. The stability of these gas mixtures was only characterized over a short time period (2 to 3 months). NIST recently prepared a suite of primary standard gas mixtures by gravimetric dilution to ascertain the stability of the 2008 picomoles per mol NMHC standards suite. The data from this recent chromatographic intercomparison of the 2008 to the 2011 suites confirm a much longer stability of almost 5 years for 15 of the 18 hydrocarbons; the double-bonded alkenes of propene, isobutene, and 1-pentene showed instability, in line with previous publications. The agreement between the gravimetric values from preparation and the analytical mole fractions determined from regression illustrate the internal consistency of the suite within ±2 pmol/mol. However, results for several of the compounds reflect stability problems for the three double-bonded hydrocarbons. An international intercomparison on one of the 2008 standards has also been completed. Participants included National Metrology Institutes, United States government laboratories, and academic laboratories. In general, results for this intercomparison agree to within about ±5% with the gravimetric mole fractions of the hydrocarbons.
Collapse
Affiliation(s)
- George C Rhoderick
- Chemical Sciences Division, Materials Measurement Laboratory, National Institute of Standards and Technology , 100 Bureau Drive, MS-8393, Gaithersburg, Maryland 20899-8393, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Rasmussen D, Hu J, Mahmud A, Kleeman MJ. The ozone-climate penalty: past, present, and future. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:14258-66. [PMID: 24187951 PMCID: PMC3990462 DOI: 10.1021/es403446m] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Climate change is expected to increase global mean temperatures leading to higher tropospheric ozone (O3) concentrations in already polluted regions, potentially eroding the benefits of expensive emission controls. The magnitude of the "O3-climate penalty" has generally decreased over the past three decades, which makes future predictions for climate impacts on air quality uncertain. Researchers attribute historical reductions in the O3-climate penalty to reductions in NOx emissions but have so far not extended this theory into a quantitative prediction for future effects. Here, we show that a three-dimensional air quality model can be used to map the behavior of the O3-climate penalty under varying NOx and VOC emissions in both NOx-limited and NOx-saturated conditions in Central and Southern California, respectively. Simulations suggest that the planned emissions control program for O3 precursors will not diminish the O3-climate penalty to zero as some observational studies might imply. The results further demonstrate that in a NOx-limited air basin, NOx control strategies alone are sufficient to both decrease the O3-climate penalty and mitigate O3 pollution, while in a NOx-saturated air basin, a modified emissions control plan that carefully chooses reductions in both NOx and VOC emissions may be necessary to eliminate the O3-climate penalty while simultaneously reducing base case O3 concentrations to desired levels. Additional modeling is needed to determine the behavior of the O3-climate penalty as NOx and VOC emissions evolve in other regions.
Collapse
Affiliation(s)
| | | | | | - Michael J. Kleeman
- To whom correspondence should be addressed: , Phone: +1 (530) 752-8386. Fax: +1 (530) 752-7872
| |
Collapse
|
67
|
McDonald BC, Gentner DR, Goldstein AH, Harley RA. Long-term trends in motor vehicle emissions in u.s. urban areas. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:10022-31. [PMID: 23915291 DOI: 10.1021/es401034z] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A fuel-based approach is used to estimate long-term trends (1990-2010) in carbon monoxide (CO) emissions from motor vehicles. Non-methane hydrocarbons (NMHC) are estimated using ambient NMHC/CO ratios after controlling for nonvehicular sources. Despite increases in fuel use of ∼10-40%, CO running exhaust emissions from on-road vehicles decreased by ∼80-90% in Los Angeles, Houston, and New York City, between 1990 and 2010. The ratio of NMHC/CO was found to be 0.24 ± 0.04 mol C/mol CO over time in Los Angeles, indicating that both pollutants decreased at a similar rate and were improved by similar emission controls, whereas on-road data from other cities suggest rates of reduction in NMHC versus CO emissions may differ somewhat. Emission ratios of CO/NOx (nitrogen oxides = NO + NO2) and NMHC/NOx decreased by a factor of ∼4 between 1990 and 2007 due to changes in the relative emission rates of passenger cars versus diesel trucks, and slight uptick thereafter, consistent across all urban areas considered here. These pollutant ratios are expected to increase in future years due to (1) slowing rates of decrease in CO and NMHC emissions from gasoline vehicles and (2) significant advances in control of diesel NOx emissions.
Collapse
Affiliation(s)
- Brian C McDonald
- Department of Civil and Environmental Engineering, University of California, Berkeley , Berkeley, California 94720-1710, United States
| | | | | | | |
Collapse
|
68
|
Kim SY, Millet DB, Hu L, Mohr MJ, Griffis TJ, Wen D, Lin JC, Miller SM, Longo M. Constraints on carbon monoxide emissions based on tall tower measurements in the US Upper Midwest. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:8316-8324. [PMID: 23844675 DOI: 10.1021/es4009486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We interpret a full year of high-frequency CO measurements from a tall tower in the U.S. Upper Midwest with a time-reversed Lagrangian Particle Dispersion Model (STILT LPDM) and an Eulerian chemical transport model (GEOS-Chem CTM) to develop top-down constraints on U.S. CO sources in 2009. Our best estimate is that anthropogenic CO emissions in the U.S. Upper Midwest in 2009 were 2.9 Tg, 61% lower (a posteriori scale factor of 0.39) than our a priori prediction based on the U.S. EPA's National Emission Inventory for 2005 (NEI 2005). If the same bias applies across the contiguous U.S., the inferred CO emissions are 26 Tg/y, compared to the a priori estimate of 66 Tg/y. This discrepancy is significantly greater than would be expected based solely on emission decreases between 2005 and 2009 (EPA estimate: 23% decrease). Model transport error is an important source of uncertainty in the analysis, and we employ an ensemble of sensitivity runs using multiple meteorological data sets and model configurations to assess its impact on our results. A posteriori scale factors for the U.S. anthropogenic CO source from these sensitivity runs range from 0.22 to 0.64, corresponding to emissions of 1.6-4.8 Tg/y for the U.S. Upper Midwest and 15-42 Tg/y for the contiguous U.S. The data have limited sensitivity for constraining biomass + biofuel burning emissions and photochemical CO production from precursor organic compounds. Our finding of a NEI 2005 overestimate of CO emissions is consistent with recent assessments for individual cities and with earlier analyses based on the NEI 1999, implying the need for a better mechanism for refining such bottom-up emission estimates in response to top-down constraints.
Collapse
Affiliation(s)
- Su Youn Kim
- University of Minnesota , St. Paul, Minnesota 55108, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Cooper OR, Gao RS, Tarasick D, Leblanc T, Sweeney C. Long-term ozone trends at rural ozone monitoring sites across the United States, 1990-2010. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012jd018261] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|