51
|
Bhatta S, Blair JA, Casadesus G. Luteinizing Hormone Involvement in Aging Female Cognition: Not All Is Estrogen Loss. Front Endocrinol (Lausanne) 2018; 9:544. [PMID: 30319538 PMCID: PMC6165885 DOI: 10.3389/fendo.2018.00544] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/28/2018] [Indexed: 01/29/2023] Open
Abstract
Pervasive age-related dysfunction in hypothalamic-pituitary-gonadal (HPG) axis is associated with cognitive impairments in aging as well as pathogenesis of age-related neurodegenerative diseases such as the Alzheimer's disease (AD). As a major regulator of the HPG axis, the steroid hormone estrogen has been widely studied for its role in regulation of memory. Although estrogen modulates both cognition as well as cognition associated morphological components in a healthy state, the benefits of estrogen replacement therapy on cognition and disease seem to diminish with advancing age. Emerging data suggests an important role for luteinizing hormone (LH) in CNS function, which is another component of the HPG axis that becomes dysregulated during aging, particularly in menopause. The goal of this review is to highlight the current existing literature on LH and provide new insights on possible mechanisms of its action.
Collapse
Affiliation(s)
- Sabina Bhatta
- School of Biomedical Sciences, Kent State University, Kent, OH, United States
| | - Jeffrey A. Blair
- School of Biomedical Sciences, Kent State University, Kent, OH, United States
| | - Gemma Casadesus
- School of Biomedical Sciences, Kent State University, Kent, OH, United States
- Department of Biological Sciences, Kent State University, Kent, OH, United States
- *Correspondence: Gemma Casadesus
| |
Collapse
|
52
|
Sundström-Poromaa I. The Menstrual Cycle Influences Emotion but Has Limited Effect on Cognitive Function. VITAMINS AND HORMONES 2018; 107:349-376. [DOI: 10.1016/bs.vh.2018.01.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
53
|
Merlo S, Spampinato SF, Sortino MA. Estrogen and Alzheimer's disease: Still an attractive topic despite disappointment from early clinical results. Eur J Pharmacol 2017; 817:51-58. [DOI: 10.1016/j.ejphar.2017.05.059] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/13/2017] [Accepted: 05/30/2017] [Indexed: 01/06/2023]
|
54
|
Kerschbaum HH, Hofbauer I, Gföllner A, Ebner B, Bresgen N, Bäuml KHT. Sex, age, and sex hormones affect recall of words in a directed forgetting paradigm. J Neurosci Res 2017; 95:251-259. [PMID: 27870411 DOI: 10.1002/jnr.23973] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 09/19/2016] [Accepted: 09/28/2016] [Indexed: 11/09/2022]
Abstract
During the course of serious discussion, an unexpected interruption may induce forgetting of the original topic of a conversation. Sex, age, and sex hormone levels may affect frequency and extension of forgetting. In a list-method directed forgetting paradigm, subjects have to learn two word lists. After learning list 1, subjects receive either a forget or a remember list 1 cue. When the participants had learned list 2 and completed a distraction task, they were asked to write down as many recalled items as possible, starting either with list 1 or list 2 items. In the present study, 96 naturally cycling women, 60 oral contraceptive users, 56 postmenopausal women, and 41 young men were assigned to one of these different experimental conditions. Forget-cued young subjects recall fewer list 1 items (list 1 forgetting) but more list 2 items (list 2 enhancement) compared with remember-cued subjects. However, forget-cued postmenopausal women showed reduced list 1 forgetting but enhanced list 2 retention. Remember-cued naturally cycling women recalled more list 1 items than oral contraceptive users, young men, and postmenopausal women. In forget-cued follicular women, salivary progesterone correlated positively with recalled list 2 items. Salivary 17β-estradiol did not correlate with recalled list 1 or list 2 items in either remember- or forget-cued young women. However, salivary 17β-estradiol correlated with item recall in remember-cued postmenopausal women. Our findings suggest that sex hormones do not globally modulate verbal memory or forgetting, but selectively affect cue-specific processing. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hubert H Kerschbaum
- Department of Cell Biology, University of Salzburg, Salzburg, Austria.,Centre for Cognitive Neuroscience Salzburg (CCNS), University of Salzburg, Salzburg, Austria
| | - Ildiko Hofbauer
- Department of Cell Biology, University of Salzburg, Salzburg, Austria
| | - Anna Gföllner
- Department of Cell Biology, University of Salzburg, Salzburg, Austria
| | - Birgit Ebner
- Department of Cell Biology, University of Salzburg, Salzburg, Austria
| | - Nikolaus Bresgen
- Department of Cell Biology, University of Salzburg, Salzburg, Austria
| | | |
Collapse
|
55
|
Iron Deficiency Anemia, Not Iron Deficiency, Is Associated with Reduced Attention in Healthy Young Women. Nutrients 2017; 9:nu9111216. [PMID: 29113086 PMCID: PMC5707688 DOI: 10.3390/nu9111216] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 11/01/2017] [Accepted: 11/02/2017] [Indexed: 12/14/2022] Open
Abstract
Women of reproductive age are at increased risk for iron deficiency (ID) and iron deficiency anemia (IDA), with both implicated in decreased cognitive function (CF). Obesity may complicate this association via inflammatory-mediated ferritin elevation. This cross-sectional study examined the association between hematological iron status (iron replete (IR), ID or IDA) and CF in healthy, young (18-35 years) women of normal-weight (NW: BMI 18.5-24.9 kg/m²) or obese-weight (OB: BMI >30 kg/m²). Participants completed a validated, computer-based cognition assessment evaluating impulsivity, attention, information processing, memory and executive function; CF reported as z-scores (mean ± SD). Iron status and CF were compared between groups via ANOVA, with adjustment for potential confounders (BMI, physical activity, C-reactive protein) via ANCOVA. A total of 157 NW and 142 OB women (25.8 ± 5.1 years) participated. Prevalence of ID and IDA were 14% and 6% respectively, with no significant difference between NW and OB groups. Women with IDA scored significantly lower on attention (although within normal range; ±1 z-score), compared to ID (IDA: -0.75 ± 1.89; ID: 0.53 ± 1.37; p = 0.004) but not IR (0.03 ± 1.33, p = 0.21) groups; there were no significant differences between ID and IR groups (p = 0.34). Adjustment for confounders did not significantly alter these results. In conclusion, women with IDA showed significantly reduced attention compared to women with ID.
Collapse
|
56
|
Carrier J, Semba K, Deurveilher S, Drogos L, Cyr-Cronier J, Lord C, Sekerovick Z. Sex differences in age-related changes in the sleep-wake cycle. Front Neuroendocrinol 2017; 47:66-85. [PMID: 28757114 DOI: 10.1016/j.yfrne.2017.07.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/09/2017] [Accepted: 07/19/2017] [Indexed: 02/06/2023]
Abstract
Age-related changes in sleep and circadian regulation occur as early as the middle years of life. Research also suggests that sleep and circadian rhythms are regulated differently between women and men. However, does sleep and circadian rhythms regulation age similarly in men and women? In this review, we present the mechanisms underlying age-related differences in sleep and the current state of knowledge on how they interact with sex. We also address how testosterone, estrogens, and progesterone fluctuations across adulthood interact with sleep and circadian regulation. Finally, we will propose research avenues to unravel the mechanisms underlying sex differences in age-related effects on sleep.
Collapse
Affiliation(s)
- Julie Carrier
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montréal, Québec, Canada; Institut Universitaire de Gériatrie de Montréal, Université de Montréal, Montréal, Québec, Canada; Département de psychologie, Université de Montréal, Montréal, Québec, Canada.
| | - Kazue Semba
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Psychology & Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Samuel Deurveilher
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Lauren Drogos
- Departments of Physiology & Pharmacology and Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Jessica Cyr-Cronier
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montréal, Québec, Canada
| | - Catherine Lord
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montréal, Québec, Canada
| | - Zoran Sekerovick
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montréal, Québec, Canada
| |
Collapse
|
57
|
Gervais NJ, Mong JA, Lacreuse A. Ovarian hormones, sleep and cognition across the adult female lifespan: An integrated perspective. Front Neuroendocrinol 2017; 47:134-153. [PMID: 28803147 PMCID: PMC7597864 DOI: 10.1016/j.yfrne.2017.08.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 12/22/2022]
Abstract
Loss of ovarian function in women is associated with sleep disturbances and cognitive decline, which suggest a key role for estrogens and/or progestins in modulating these symptoms. The effects of ovarian hormones on sleep and cognitive processes have been studied in separate research fields that seldom intersect. However, sleep has a considerable impact on cognitive function. Given the tight connections between sleep and cognition, ovarian hormones may influence selective aspects of cognition indirectly, via the modulation of sleep. In support of this hypothesis, a growing body of evidence indicates that the development of sleep disorders following menopause contributes to accelerated cognitive decline and dementia in older women. This paper draws from both the animal and human literature to present an integrated view of the effects of ovarian hormones on sleep and cognition across the adult female lifespan.
Collapse
Affiliation(s)
- Nicole J Gervais
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, 135 Hicks Way, Amherst, MA 01003, United States.
| | - Jessica A Mong
- Department of Pharmacology, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, United States
| | - Agnès Lacreuse
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, 135 Hicks Way, Amherst, MA 01003, United States
| |
Collapse
|
58
|
Leeners B, Kruger THC, Geraedts K, Tronci E, Mancini T, Ille F, Egli M, Röblitz S, Saleh L, Spanaus K, Schippert C, Zhang Y, Hengartner MP. Lack of Associations between Female Hormone Levels and Visuospatial Working Memory, Divided Attention and Cognitive Bias across Two Consecutive Menstrual Cycles. Front Behav Neurosci 2017; 11:120. [PMID: 28725187 PMCID: PMC5495858 DOI: 10.3389/fnbeh.2017.00120] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/06/2017] [Indexed: 11/24/2022] Open
Abstract
Background: Interpretation of observational studies on associations between prefrontal cognitive functioning and hormone levels across the female menstrual cycle is complicated due to small sample sizes and poor replicability. Methods: This observational multisite study comprised data of n = 88 menstruating women from Hannover, Germany, and Zurich, Switzerland, assessed during a first cycle and n = 68 re-assessed during a second cycle to rule out practice effects and false-positive chance findings. We assessed visuospatial working memory, attention, cognitive bias and hormone levels at four consecutive time-points across both cycles. In addition to inter-individual differences we examined intra-individual change over time (i.e., within-subject effects). Results: Estrogen, progesterone and testosterone did not relate to inter-individual differences in cognitive functioning. There was a significant negative association between intra-individual change in progesterone and change in working memory from pre-ovulatory to mid-luteal phase during the first cycle, but that association did not replicate in the second cycle. Intra-individual change in testosterone related negatively to change in cognitive bias from menstrual to pre-ovulatory as well as from pre-ovulatory to mid-luteal phase in the first cycle, but these associations did not replicate in the second cycle. Conclusions: There is no consistent association between women's hormone levels, in particular estrogen and progesterone, and attention, working memory and cognitive bias. That is, anecdotal findings observed during the first cycle did not replicate in the second cycle, suggesting that these are false-positives attributable to random variation and systematic biases such as practice effects. Due to methodological limitations, positive findings in the published literature must be interpreted with reservation.
Collapse
Affiliation(s)
- Brigitte Leeners
- Department of Reproductive Endocrinology, University Hospital ZürichZurich, Switzerland
| | - Tillmann H C Kruger
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Medical School HannoverHannover, Germany
| | - Kirsten Geraedts
- Department of Reproductive Endocrinology, University Hospital ZürichZurich, Switzerland
| | - Enrico Tronci
- Department of Computer Science, Sapienza Università di RomaRome, Italy
| | - Toni Mancini
- Department of Computer Science, Sapienza Università di RomaRome, Italy
| | - Fabian Ille
- Center of Competence in Aerospace, Biomedical Science and Technology, Lucerne University of Applied Sciences and ArtsLucerne, Switzerland
| | - Marcel Egli
- Center of Competence in Aerospace, Biomedical Science and Technology, Lucerne University of Applied Sciences and ArtsLucerne, Switzerland
| | - Susanna Röblitz
- Computational Systems Biology Group, Zuse InstituteBerlin, Germany
| | - Lanja Saleh
- Institute of Clinical Chemistry, University Hospital ZürichZurich, Switzerland
| | - Katharina Spanaus
- Institute of Clinical Chemistry, University Hospital ZürichZurich, Switzerland
| | - Cordula Schippert
- Department of Gynaecology and Obstetrics, Hannover Medical SchoolHanover, Germany
| | - Yuangyuang Zhang
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Medical School HannoverHannover, Germany
| | - Michael P Hengartner
- Department of Applied Psychology, Zurich University for Applied Sciences (ZHAW)Zurich, Switzerland
| |
Collapse
|
59
|
Blakemore J, Naftolin F. Aromatase: Contributions to Physiology and Disease in Women and Men. Physiology (Bethesda) 2017; 31:258-69. [PMID: 27252161 DOI: 10.1152/physiol.00054.2015] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aromatase (estrogen synthetase; EC 1.14.14.1) catalyzes the demethylation of androgens' carbon 19, producing phenolic 18-carbon estrogens. Aromatase is most widely known for its roles in reproduction and reproductive system diseases, and as a target for inhibitor therapy in estrogen-sensitive diseases including cancer, endometriosis, and leiomyoma (141, 143). However, all tissues contain estrogen receptor-expressing cells, the majority of genes have a complete or partial estrogen response element that regulates their expression (61), and there are plentiful nonreceptor effects of estrogens (79); therefore, the effect of aromatase through the provision of estrogen is almost universal in terms of health and disease. This review will provide a brief but comprehensive overview of the enzyme, its role in steroidogenesis, the problems that arise with its functional mutations and mishaps, the roles in human physiology of aromatase and its product estrogens, its current clinical roles, and the effects of aromatase inhibitors. While much of the story is that of the consequences of the formation of its product estrogens, we also will address alternative enzymatic roles of aromatase as a demethylase or nonenzymatic actions of this versatile molecule. Although this short review is meant to be thorough, it is by no means exhaustive; rather, it is meant to reflect the cutting-edge, exciting properties and possibilities of this ancient enzyme and its products.
Collapse
|
60
|
Hiroi R, Weyrich G, Koebele SV, Mennenga SE, Talboom JS, Hewitt LT, Lavery CN, Mendoza P, Jordan A, Bimonte-Nelson HA. Benefits of Hormone Therapy Estrogens Depend on Estrogen Type: 17β-Estradiol and Conjugated Equine Estrogens Have Differential Effects on Cognitive, Anxiety-Like, and Depressive-Like Behaviors and Increase Tryptophan Hydroxylase-2 mRNA Levels in Dorsal Raphe Nucleus Subregions. Front Neurosci 2016; 10:517. [PMID: 28008302 PMCID: PMC5143618 DOI: 10.3389/fnins.2016.00517] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 10/26/2016] [Indexed: 11/23/2022] Open
Abstract
Decreased serotonin (5-HT) function is associated with numerous cognitive and affective disorders. Women are more vulnerable to these disorders and have a lower rate of 5-HT synthesis than men. Serotonergic neurons in the dorsal raphe nucleus (DRN) are a major source of 5-HT in the forebrain and play a critical role in regulation of stress-related disorders. In particular, polymorphisms of tryptophan hydroxylase-2 (TpH2, the brain-specific, rate-limiting enzyme for 5-HT biosynthesis) are implicated in cognitive and affective disorders. Administration of 17β-estradiol (E2), the most potent naturally circulating estrogen in women and rats, can have beneficial effects on cognitive, anxiety-like, and depressive-like behaviors. Moreover, E2 increases TpH2 mRNA in specific subregions of the DRN. Although conjugated equine estrogens (CEE) are a commonly prescribed estrogen component of hormone therapy in menopausal women, there is a marked gap in knowledge regarding how CEE affects these behaviors and the brain 5-HT system. Therefore, we compared the effects of CEE and E2 treatments on behavior and TpH2 mRNA. Female Sprague-Dawley rats were ovariectomized, administered either vehicle, CEE, or E2 and tested on a battery of cognitive, anxiety-like, and depressive-like behaviors. The brains of these animals were subsequently analyzed for TpH2 mRNA. Both CEE and E2 exerted beneficial behavioral effects, although efficacy depended on the distinct behavior and for cognition, on the task difficulty. Compared to CEE, E2 generally had more robust anxiolytic and antidepressant effects. E2 increased TpH2 mRNA in the caudal and mid DRN, corroborating previous findings. However, CEE increased TpH2 mRNA in the caudal and rostral, but not the mid, DRN, suggesting that distinct estrogens can have subregion-specific effects on TpH2 gene expression. We also found differential correlations between the level of TpH2 mRNA in specific DRN subregions and behavior, depending on the type of behavior. These distinct associations imply that cognition, anxiety-like, and depressive-like behaviors are modulated by unique serotonergic neurocircuitry, opening the possibility of novel avenues of targeted treatment for different types of cognitive and affective disorders.
Collapse
Affiliation(s)
- Ryoko Hiroi
- Department of Psychology, Arizona State UniversityTempe, AZ, USA; Arizona Alzheimer's ConsortiumPhoenix, AZ, USA
| | - Giulia Weyrich
- Department of Psychology, Arizona State UniversityTempe, AZ, USA; Arizona Alzheimer's ConsortiumPhoenix, AZ, USA
| | - Stephanie V Koebele
- Department of Psychology, Arizona State UniversityTempe, AZ, USA; Arizona Alzheimer's ConsortiumPhoenix, AZ, USA
| | - Sarah E Mennenga
- Department of Psychology, Arizona State UniversityTempe, AZ, USA; Arizona Alzheimer's ConsortiumPhoenix, AZ, USA
| | - Joshua S Talboom
- Department of Psychology, Arizona State UniversityTempe, AZ, USA; Arizona Alzheimer's ConsortiumPhoenix, AZ, USA
| | - Lauren T Hewitt
- Department of Psychology, Arizona State UniversityTempe, AZ, USA; Arizona Alzheimer's ConsortiumPhoenix, AZ, USA
| | - Courtney N Lavery
- Department of Psychology, Arizona State UniversityTempe, AZ, USA; Arizona Alzheimer's ConsortiumPhoenix, AZ, USA
| | - Perla Mendoza
- Department of Psychology, Arizona State UniversityTempe, AZ, USA; Arizona Alzheimer's ConsortiumPhoenix, AZ, USA
| | - Ambra Jordan
- Department of Psychology, Arizona State UniversityTempe, AZ, USA; Arizona Alzheimer's ConsortiumPhoenix, AZ, USA
| | - Heather A Bimonte-Nelson
- Department of Psychology, Arizona State UniversityTempe, AZ, USA; Arizona Alzheimer's ConsortiumPhoenix, AZ, USA
| |
Collapse
|
61
|
Osmanovic-Barilar J, Salkovic-Petrisi M. Evaluating the Role of Hormone Therapy in Postmenopausal Women with Alzheimer’s Disease. Drugs Aging 2016; 33:787-808. [DOI: 10.1007/s40266-016-0407-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
62
|
Kohama SG, Renner L, Landauer N, Weiss AR, Urbanski HF, Park B, Voytko ML, Neuringer M. Effect of Ovarian Hormone Therapy on Cognition in the Aged Female Rhesus Macaque. J Neurosci 2016; 36:10416-10424. [PMID: 27707975 PMCID: PMC5050333 DOI: 10.1523/jneurosci.0909-16.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 07/14/2016] [Accepted: 08/20/2016] [Indexed: 01/18/2023] Open
Abstract
Studies of the effect of hormone therapy on cognitive function in menopausal women have been equivocal, in part due to differences in the type and timing of hormone treatment. Here we cognitively tested aged female rhesus macaques on (1) the delayed response task of spatial working memory, (2) a visuospatial attention task that measured spatially and temporally cued reaction times, and (3) a simple reaction time task as a control for motor speed. After task acquisition, animals were ovariectomized (OVX). Their performance was compared with intact controls for 2 months, at which time no group differences were found. The OVX animals were then assigned to treatment with either a subcutaneous sham implant (OVX), 17-β estradiol (E) implant (OVX+E) or E implant plus cyclic oral progesterone (OVX+EP). All groups were then tested repeatedly over 12 months. The OVX+E animals performed significantly better on the delayed response task than all of the other groups for much of the 12 month testing period. The OVX+EP animals also showed improved performance in the delayed response task, but only at 30 s delays and with performance levels below that of OVX+E animals. The OVX+E animals also performed significantly better in the visuospatial attention task, particularly in the most challenging invalid cue condition; this difference also was maintained across the 12 month testing period. Simple reaction time was not affected by hormonal manipulation. These data demonstrate that chronic, continuous administration of E can exert multiple beneficial cognitive effects in aged, OVX rhesus macaque females. SIGNIFICANCE STATEMENT Hormone therapy after menopause is controversial. We tested the effects of hormone replacement in aged rhesus macaques, soon after surgically-induced menopause [ovariectomy (OVX)], on tests of memory and attention. Untreated ovarian-intact and OVX animals were compared with OVX animals receiving estradiol (E) alone or E with progesterone (P). E was administered in a continuous fashion via subcutaneous implant, whereas P was administered orally in a cyclic fashion. On both tests, E-treated animals performed better than the other 3 experimental groups across 1 year of treatment. Thus, in this monkey model, chronic E administered soon after the loss of ovarian hormones had long-term benefits for cognitive function.
Collapse
Affiliation(s)
- Steven G Kohama
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon 97006-3448
| | - Lauren Renner
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon 97006-3448
| | - Noelle Landauer
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon 97006-3448
| | - Alison R Weiss
- Department of Psychology, Emory University, Atlanta, Georgia 30322
| | - Henryk F Urbanski
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon 97006-3448, Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon 97239-3098
| | - Byung Park
- School of Public Health, Oregon Health and Science University and Portland State University, Portland, Oregon 97239-3098, and
| | - Mary Lou Voytko
- Department of Neurobiology and Anatomy and the Interdisciplinary Program in Neuroscience, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1010
| | - Martha Neuringer
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon 97006-3448,
| |
Collapse
|
63
|
Fengler S, Roeske S, Heber I, Reetz K, Schulz JB, Riedel O, Wittchen HU, Storch A, Linse K, Baudrexel S, Hilker R, Mollenhauer B, Witt K, Schmidt N, Balzer-Geldsetzer M, Dams J, Dodel R, Gräber S, Pilotto A, Petrelli A, Fünkele S, Kassubek J, Kalbe E. Verbal memory declines more in female patients with Parkinson's disease: the importance of gender-corrected normative data. Psychol Med 2016; 46:2275-2286. [PMID: 27193073 DOI: 10.1017/s0033291716000908] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Data on gender-specific profiles of cognitive functions in patients with Parkinson's disease (PD) are rare and inconsistent, and possible disease-confounding factors have been insufficiently considered. METHOD The LANDSCAPE study on cognition in PD enrolled 656 PD patients (267 without cognitive impairment, 66% male; 292 with mild cognitive impairment, 69% male; 97 with PD dementia, 69% male). Raw values and age-, education-, and gender-corrected Z scores of a neuropsychological test battery (CERAD-Plus) were compared between genders. Motor symptoms, disease duration, l-dopa equivalent daily dose, depression - and additionally age and education for the raw value analysis - were taken as covariates. RESULTS Raw-score analysis replicated results of previous studies in that female PD patients were superior in verbal memory (word list learning, p = 0.02; recall, p = 0.03), while men outperformed women in visuoconstruction (p = 0.002) and figural memory (p = 0.005). In contrast, gender-corrected Z scores showed that men were superior in verbal memory (word list learning, p = 0.02; recall, p = 0.02; recognition, p = 0.04), while no difference was found for visuospatial tests. This picture could be observed both in the overall analysis of PD patients as well as in a differentiated group analysis. CONCLUSIONS Normative data corrected for gender and other sociodemographic variables are relevant, since they may elucidate a markedly different cognitive profile compared to raw scores. Our study also suggests that verbal memory decline is stronger in women than in men with PD. Future studies are needed to replicate these findings, examine the progression of gender-specific cognitive decline in PD and define different underlying mechanisms of this dysfunction.
Collapse
Affiliation(s)
- S Fengler
- Department of Medical Psychology,University Hospital Cologne,Germany
| | - S Roeske
- Department of Neurology,University Hospital Bonn, and German Center for Neurodegenerative Diseases (DZNE),Bonn,Germany
| | - I Heber
- Department of Neurology,Medical Faculty,RWTH Aachen University,Germany
| | - K Reetz
- Department of Neurology,Medical Faculty,RWTH Aachen University,Germany
| | - J B Schulz
- Department of Neurology,Medical Faculty,RWTH Aachen University,Germany
| | - O Riedel
- Leibniz-Institute of Prevention Research and Epidemiology,Department of Clinical Epidemiology,Bremen,Germany
| | - H U Wittchen
- Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden,Germany
| | - A Storch
- Division of Neurodegenerative Diseases,Department of Neurology,Technische Universität Dresden,Germany
| | - K Linse
- Division of Neurodegenerative Diseases,Department of Neurology,Technische Universität Dresden,Germany
| | - S Baudrexel
- Department of Neurology,J.W. Goethe University,Frankfurt/Main,Germany
| | - R Hilker
- Department of Neurology,J.W. Goethe University,Frankfurt/Main,Germany
| | - B Mollenhauer
- Department of Neuropathology,University Medical Center Goettingen,Germany
| | - K Witt
- Department of Neurology,Christian Albrechts University,Kiel,Germany
| | - N Schmidt
- Department of Neurology,Christian Albrechts University,Kiel,Germany
| | | | - J Dams
- Department of Neurology,Philipps University Marburg,Germany
| | - R Dodel
- Department of Neurology,Philipps University Marburg,Germany
| | - S Gräber
- Department of Neurodegenerative Diseases,Hertie Institute for Clinical Brain Research and German Center for Neurodegenerative Diseases (DZNE), University Tübingen, and German Center for Neurodegenerative Diseases, Tübingen,Germany
| | - A Pilotto
- Department of Neurodegenerative Diseases,Hertie Institute for Clinical Brain Research and German Center for Neurodegenerative Diseases (DZNE), University Tübingen, and German Center for Neurodegenerative Diseases, Tübingen,Germany
| | - A Petrelli
- Institute of Gerontology & Center for Neuropsychological Diagnostics and Intervention (CeNDI), University of Vechta,Germany
| | - S Fünkele
- Department of Neurology,University of Ulm,Germany
| | - J Kassubek
- Department of Neurology,University of Ulm,Germany
| | - E Kalbe
- Department of Medical Psychology,University Hospital Cologne,Germany
| |
Collapse
|
64
|
Stenbæk DS, Fisher PM, Budtz-Jørgensen E, Pinborg A, Hjordt LV, Jensen PS, Knudsen GM, Frokjaer VG. Sex hormone manipulation slows reaction time and increases labile mood in healthy women. Psychoneuroendocrinology 2016; 68:39-46. [PMID: 26943343 DOI: 10.1016/j.psyneuen.2016.02.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/23/2016] [Accepted: 02/22/2016] [Indexed: 11/24/2022]
Abstract
BACKGROUND Women show increased risk of depressive symptoms in life phases where ovarian steroid hormone levels fluctuate or decline rapidly. The risk mechanisms may include changes in mental state and affective cognition possibly mediated by serotonergic neurotransmission. METHODS In a randomized controlled double-blinded trial, 61 healthy women (mean age 24.3±4.9 years) were tested with measures of affective verbal memory, reaction time, mental distress, and serotonin transporter binding at baseline and at follow-up after receiving gonadotropin-releasing hormone agonist (GnRHa) or placebo intervention. Women also reported daily mood profiles during intervention. We tested direct effects of intervention and indirect effects through changes in serotonin transporter binding on verbal affective memory, simple reaction time and self-reported measures of mental distress, and further effects of GnRHa on daily mood. RESULTS GnRHa induced an increase in simple reaction time (p=0.03) and more pronounced fluctuations in daily self-reported mood in a manner dependent on baseline mood (p=0.003). Verbal affective memory recall, overall self-perceived mental distress, and serotonin transporter binding were not affected. CONCLUSIONS In healthy women transient sex-steroid hormone fluctuations decrease speed of information processing and further produce more labile mood only in women with elevated levels of mood disturbances at baseline.
Collapse
Affiliation(s)
- D S Stenbæk
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen O, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| | - P M Fisher
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen O, Denmark.
| | - E Budtz-Jørgensen
- Department of Biostatistics, University of Copenhagen, Oster Farimagsgade 5, 1014 Copenhagen K, Denmark.
| | - A Pinborg
- Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark; Fertility Department, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen O, Denmark.
| | - L V Hjordt
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen O, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| | - P S Jensen
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen O, Denmark.
| | - G M Knudsen
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen O, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| | - V G Frokjaer
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen O, Denmark.
| |
Collapse
|
65
|
The impact of biological sex and sex hormones on cognition in a rat model of early, pre-motor Parkinson's disease. Neuroscience 2016; 345:297-314. [PMID: 27235739 DOI: 10.1016/j.neuroscience.2016.05.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/13/2016] [Accepted: 05/18/2016] [Indexed: 12/25/2022]
Abstract
Parkinson's disease (PD) is well known for motor deficits such as bradykinesia. However, patients often experience additional deficits in working memory, behavioral selection, decision-making and other executive functions. Like other features of PD, the incidence and severity of these cognitive symptoms differ in males and females. However, preclinical models have not been used to systematically investigate the roles that sex or sex hormones may play in these complex signs. To address this, we used a Barnes maze spatial memory paradigm to compare the effects of a bilateral nigrostriatal dopamine lesion model of early PD on cognitive behaviors in adult male and female rats and in adult male rats that were gonadectomized or gonadectomized and supplemented with testosterone or estradiol. We found that dopamine lesions produced deficits in working memory and other executive operations, albeit only in male rats where circulating androgen levels were physiological. In males where androgen levels were depleted, lesions produced no additional Barnes maze deficits and attenuated those previously linked to androgen deprivation. We also found that while most measures of Barnes maze performance were unaffected by dopamine lesions in the females, lesions did induce dramatic shifts from their preferred use of thigmotactic navigation to the use of spatially guided place strategies similar to those normally preferred by males. These and other sex- and sex hormone-specific differences in the effects of nigrostriatal dopamine lesions on executive function highlight the potential of gonadal steroids as protective and/or therapeutic for the cognitive symptoms of PD. However, their complexity also indicates the need for a more thorough understanding of androgen and estrogen effects in guiding the development of hormone therapies that might effectively address these non-motor signs.
Collapse
|
66
|
Phillips KA, Regan MM, Ribi K, Francis PA, Puglisi F, Bellet M, Spazzapan S, Karlsson P, Budman DR, Zaman K, Abdi EA, Domchek SM, Feng Y, Price KN, Coates AS, Gelber RD, Maruff P, Boyle F, Forbes JF, Ahles T, Fleming GF, Bernhard J. Adjuvant ovarian function suppression and cognitive function in women with breast cancer. Br J Cancer 2016; 114:956-64. [PMID: 27092785 PMCID: PMC4984913 DOI: 10.1038/bjc.2016.71] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 02/23/2016] [Accepted: 02/27/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND To examine the effect on cognitive function of adjuvant ovarian function suppression (OFS) for breast cancer. METHODS The Suppression of Ovarian Function (SOFT) trial randomised premenopausal women with hormone receptor-positive breast cancer to 5 years adjuvant endocrine therapy with tamoxifen+OFS, exemestane+OFS or tamoxifen alone. The Co-SOFT substudy assessed objective cognitive function and patient reported outcomes at randomisation (T0), and 1 year later (T1); the primary endpoint was change in global cognitive function, measured by the composite objective cognitive function score. Data were compared for the pooled tamoxifen+OFS and exemestane+OFS groups vs the tamoxifen alone group using the Wilcoxon rank-sum test. RESULTS Of 86 participants, 74 underwent both T0 and T1 cognitive testing; 54 randomised to OFS+ either tamoxifen (28) or exemestane (26) and 20 randomised to tamoxifen alone. There was no significant difference in the changes in the composite cognitive function scores between the OFS+ tamoxifen or exemestane groups and the tamoxifen group (mean±s.d., -0.21±0.92 vs -0.04±0.49, respectively, P=0.71, effect size=-0.20), regardless of prior chemotherapy status, and adjusting for baseline characteristics. CONCLUSIONS The Co-SOFT study, although limited by small samples size, provides no evidence that adding OFS to adjuvant oral endocrine therapy substantially affects global cognitive function.
Collapse
Affiliation(s)
- Kelly-Anne Phillips
- Division of Cancer Medicine, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC 3002, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
- Australia and New Zealand Breast Cancer Trials Group (ANZBCTG), Platt Street, Waratah, NSW 2298, Australia
- International Breast Cancer Study Group, Bern CH-3008, Switzerland
| | - Meredith M Regan
- International Breast Cancer Study Group Statistical Center, Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
- Harvard Medical School, Department of Medicine, Boston, MA 02115, USA
| | - Karin Ribi
- International Breast Cancer Study Group Coordinating Center, Effingerstrasse 40, Bern CH-3008, Switzerland
| | - Prudence A Francis
- Division of Cancer Medicine, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC 3002, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
- Australia and New Zealand Breast Cancer Trials Group (ANZBCTG), Platt Street, Waratah, NSW 2298, Australia
- International Breast Cancer Study Group, Bern CH-3008, Switzerland
| | - Fabio Puglisi
- International Breast Cancer Study Group, Bern CH-3008, Switzerland
- Department of Medical Oncology, University Hospital of Udine, Piazzale S.M. Misericordia 15, Udine 33100, Italy
- School of Medical Oncology, The University of Udine, Udine 33100, Italy
| | - Meritxell Bellet
- Vall d'Hebron Institute of Oncology (VHIO) and Vall d'Hebron University Hospital, Barcelona 08035, Spain
- SOLTI Group, Barcelona 08008, Spain
| | - Simon Spazzapan
- International Breast Cancer Study Group, Bern CH-3008, Switzerland
- CRO Aviano, IRCCS, National Cancer Institute, Via F. Gallini 2, Aviano 33081, Italy
| | - Per Karlsson
- International Breast Cancer Study Group, Bern CH-3008, Switzerland
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Röda stråket 16, Gothenburg 413 45, Sweden
| | - Daniel R Budman
- Monter Cancer Center of the North Shore-LIJ Health System, 450 Lakeville Road, Lake Success, NY 11042, USA
- NRG Oncology, Four Penn Center, 1600 JFK Blvd, Suite 1020, Philadelphia, PA 19103, USA
| | - Khalil Zaman
- International Breast Cancer Study Group, Bern CH-3008, Switzerland
- Department of Oncology, Breast Center CHUV, Rue du Bugnon 46, Lausanne 1011, Switzerland
| | - Ehtesham A Abdi
- Australia and New Zealand Breast Cancer Trials Group (ANZBCTG), Platt Street, Waratah, NSW 2298, Australia
- International Breast Cancer Study Group, Bern CH-3008, Switzerland
- Tweed Heads Hospital, Tweed Heads, Griffith University, Gold Coast, Powell Street, Tweed Heads, NSW 2485, Australia
| | - Susan M Domchek
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- ECOG-ACRIN, 1818 Market Street, Suite 1100, Philadelphia, PA 19103, USA
| | - Yang Feng
- International Breast Cancer Study Group Statistical Center, Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Karen N Price
- International Breast Cancer Study Group Statistical Center, Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
- Frontier Science and Technology Research Foundation
| | - Alan S Coates
- Australia and New Zealand Breast Cancer Trials Group (ANZBCTG), Platt Street, Waratah, NSW 2298, Australia
- International Breast Cancer Study Group, Bern CH-3008, Switzerland
- University of Sydney, Sydney, NSW 2006, Australia
| | - Richard D Gelber
- International Breast Cancer Study Group Statistical Center, Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
- Frontier Science and Technology Research Foundation
- Harvard T.H. Chan School of Public Health, Department of Biostatistics, Boston, MA 02115, USA
| | - Paul Maruff
- Cogstate Ltd, 2/255 Bourke Street, Melbourne, VIC 3000, Australia
| | - Frances Boyle
- Australia and New Zealand Breast Cancer Trials Group (ANZBCTG), Platt Street, Waratah, NSW 2298, Australia
- International Breast Cancer Study Group, Bern CH-3008, Switzerland
- Mater Hospital, 40 Rocklands Road, North Sydney, NSW 2060, Australia
| | - John F Forbes
- International Breast Cancer Study Group, Bern CH-3008, Switzerland
- University of Newcastle, Calvary Mater Newcastle Hospital, Australia
- Australia and New Zealand Breast Cancer Trials Group (ANZBCTG), NBN Telethon Mater Institute, Locked Bag 7 HRMC, Newcastle, NSW 2298, Australia
| | - Tim Ahles
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan-Kettering Cancer Center, 641 Lexington Ave Fl 7, New York, NY 10022, USA
- Alliance for Clinical Trials in Oncology, Chicago, IL 60637, USA
| | - Gini F Fleming
- Alliance for Clinical Trials in Oncology, Chicago, IL 60637, USA
- The University of Chicago Medical Center, 5841 South Maryland Ave, MC 2115, Chicago, IL 60637, USA
| | - Jürg Bernhard
- International Breast Cancer Study Group Coordinating Center, Effingerstrasse 40, Bern CH-3008, Switzerland
- Inselspital, Bern University Hospital, Bern CH-3010, Switzerland
| |
Collapse
|
67
|
Koebele SV, Bimonte-Nelson HA. Modeling menopause: The utility of rodents in translational behavioral endocrinology research. Maturitas 2016; 87:5-17. [PMID: 27013283 DOI: 10.1016/j.maturitas.2016.01.015] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 01/25/2016] [Indexed: 01/31/2023]
Abstract
The human menopause transition and aging are each associated with an increase in a variety of health risk factors including, but not limited to, cardiovascular disease, osteoporosis, cancer, diabetes, stroke, sexual dysfunction, affective disorders, sleep disturbances, and cognitive decline. It is challenging to systematically evaluate the biological underpinnings associated with the menopause transition in the human population. For this reason, rodent models have been invaluable tools for studying the impact of gonadal hormone fluctuations and eventual decline on a variety of body systems. While it is essential to keep in mind that some of the mechanisms associated with aging and the transition into a reproductively senescent state can differ when translating from one species to another, animal models provide researchers with opportunities to gain a fundamental understanding of the key elements underlying reproduction and aging processes, paving the way to explore novel pathways for intervention associated with known health risks. Here, we discuss the utility of several rodent models used in the laboratory for translational menopause research, examining the benefits and drawbacks in helping us to better understand aging and the menopause transition in women. The rodent models discussed are ovary-intact, ovariectomy, and 4-vinylcylohexene diepoxide for the menopause transition. We then describe how these models may be implemented in the laboratory, particularly in the context of cognition. Ultimately, we aim to use these animal models to elucidate novel perspectives and interventions for maintaining a high quality of life in women, and to potentially prevent or postpone the onset of negative health consequences associated with these significant life changes during aging.
Collapse
Affiliation(s)
- Stephanie V Koebele
- Department of Psychology, Arizona State University, Tempe, AZ 85287, United States; Arizona Alzheimer's Consortium, Phoenix, AZ 85006, United States
| | - Heather A Bimonte-Nelson
- Department of Psychology, Arizona State University, Tempe, AZ 85287, United States; Arizona Alzheimer's Consortium, Phoenix, AZ 85006, United States.
| |
Collapse
|
68
|
Jašarević E, Morrison KE, Bale TL. Sex differences in the gut microbiome-brain axis across the lifespan. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150122. [PMID: 26833840 DOI: 10.1098/rstb.2015.0122] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2015] [Indexed: 02/06/2023] Open
Abstract
In recent years, the bidirectional communication between the gut microbiome and the brain has emerged as a factor that influences immunity, metabolism, neurodevelopment and behaviour. Cross-talk between the gut and brain begins early in life immediately following the transition from a sterile in utero environment to one that is exposed to a changing and complex microbial milieu over a lifetime. Once established, communication between the gut and brain integrates information from the autonomic and enteric nervous systems, neuroendocrine and neuroimmune signals, and peripheral immune and metabolic signals. Importantly, the composition and functional potential of the gut microbiome undergoes many transitions that parallel dynamic periods of brain development and maturation for which distinct sex differences have been identified. Here, we discuss the sexually dimorphic development, maturation and maintenance of the gut microbiome-brain axis, and the sex differences therein important in disease risk and resilience throughout the lifespan.
Collapse
Affiliation(s)
- Eldin Jašarević
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathleen E Morrison
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tracy L Bale
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
69
|
Mendrek A, Mancini-Marïe A. Sex/gender differences in the brain and cognition in schizophrenia. Neurosci Biobehav Rev 2015; 67:57-78. [PMID: 26743859 DOI: 10.1016/j.neubiorev.2015.10.013] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/17/2015] [Accepted: 10/26/2015] [Indexed: 01/03/2023]
Abstract
The early conceptualizations of schizophrenia have noted some sex/gender differences in epidemiology and clinical expression of the disorder. Over the past few decades, the interest in differences between male and female patients has expanded to encompass brain morphology and neurocognitive function. Despite some variability and methodological shortcomings, a few patterns emerge from the available literature. Most studies of gross neuroanatomy show more enlarged ventricles and smaller frontal lobes in men than in women with schizophrenia; finding reflecting normal sexual dimorphism. In comparison, studies of brain asymmetry and specific corticolimbic structures, suggest a disturbance in normal sexual dimorphism. The neurocognitive findings are somewhat consistent with this picture. Studies of cognitive functions mediated by the lateral frontal network tend to show sex differences in patients which are in the same direction as those observed in the general population, whereas studies of processes mediated by the corticolimbic system more frequently reveal reversal of normal sexual dimorphisms. These trends are faint and future research would need to delineate neurocognitive differences between men and women with various subtypes of schizophrenia (e.g., early versus late onset), while taking into consideration hormonal status and gender of tested participants.
Collapse
Affiliation(s)
- Adrianna Mendrek
- Department of Psychology, Bishop's University, Sherbrooke, QC, Canada; Department of Psychiatry, Université de Montréal, Montreal, QC, Canada; Centre de recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montreal, QC, Canada.
| | - Adham Mancini-Marïe
- Department of Psychiatry, Université de Montréal, Montreal, QC, Canada; Centre de recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montreal, QC, Canada; Department of Psychiatry, Centre neuchâtelois de psychiatrie, Neuchâtel, Suisse
| |
Collapse
|
70
|
Buchanan ND, Dasari S, Rodriguez JL, Lee Smith J, Hodgson ME, Weinberg CR, Sandler DP. Post-treatment Neurocognition and Psychosocial Care Among Breast Cancer Survivors. Am J Prev Med 2015; 49:S498-508. [PMID: 26590645 PMCID: PMC4656130 DOI: 10.1016/j.amepre.2015.08.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/04/2015] [Accepted: 08/19/2015] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Chemotherapy for breast cancer has been associated with cognitive problems; however, the impact of adjuvant hormone therapy is less clear. No studies have explored provider discussions about cognitive concerns or factors associated with neurocognitive treatment. This study examined cognitive problems, factors associated with having a provider discussion, and receipt of neurocognitive treatment. METHODS Female breast cancer survivors (N=2,537) from the Sister Study and the Two Sister Study who were at least 1 year post-treatment were surveyed in 2012 about their cancer therapies (confirmed by medical records); cognitive concerns; related provider discussions; and neurocognitive treatment. A total of 2,296 women were included in the current 2014 analysis. Extensive covariate information was also ascertained for predictive multivariate models. RESULTS The prevalence of self-reported cognitive problems after treatment was 60%. Of those reporting cognitive problems, only 37% had discussed those concerns with a provider and 15% had been treated for cognitive symptoms. The odds of reported cognitive concerns that started during and after treatment were elevated for those who received only hormone therapy and no chemotherapy (OR=1.64, 95% CI=1.15, 2.33); chemotherapy and no hormone therapy (OR=5.63, 95% CI=3.52, 9.00); or both (OR=6.33, 95% CI=4.21, 9.54) compared with those reporting neither treatment. CONCLUSIONS The high prevalence of cognitive concerns underscores the importance of monitoring breast cancer survivors for potential neurocognitive effects of hormone and chemotherapy, discussions with survivors about those concerns, and treatment referrals. Monitoring changes over time can help to evaluate both psychosocial and neurocognitive care provided for survivors.
Collapse
Affiliation(s)
- Natasha D Buchanan
- Division of Cancer Prevention and Control, Epidemiology and Applied Research Branch, CDC, Atlanta, Georgia.
| | - Sabitha Dasari
- Northrop Grumman Corporation, Information Systems, Atlanta, Georgia
| | - Juan L Rodriguez
- Division of Cancer Prevention and Control, Epidemiology and Applied Research Branch, CDC, Atlanta, Georgia
| | - Judith Lee Smith
- Division of Cancer Prevention and Control, Epidemiology and Applied Research Branch, CDC, Atlanta, Georgia
| | | | - Clarice R Weinberg
- Biostatistics Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| |
Collapse
|
71
|
Vahaba DM, Remage-Healey L. Brain estrogen production and the encoding of recent experience. Curr Opin Behav Sci 2015; 6:148-153. [PMID: 27453921 DOI: 10.1016/j.cobeha.2015.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The vertebrate central nervous system integrates cognition and behavior, and it also acts as both a source and target for steroid hormones like estrogens. Recent exploration of brain estrogen production in the context of learning and memory has revealed several common themes. First, across vertebrates, the enzyme that synthesizes estrogens is expressed in brain regions that are characterized by elevated neural plasticity and is also integral to the acquisition, consolidation, and retrieval of recent experiences. Second, measurement and manipulation of estrogens reveal that the period following recent sensory experience is linked to estrogenic signaling in brain circuits underlying both spatial and vocal learning. Local brain estrogen production within cognitive circuits may therefore be important for the acquisition and/or consolidation of memories, and new directions testing these ideas will be discussed.
Collapse
Affiliation(s)
- Daniel M Vahaba
- Neuroscience & Behavior Program, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA, USA 01003
| | - Luke Remage-Healey
- Neuroscience & Behavior Program, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA, USA 01003
| |
Collapse
|
72
|
Gogos A, van den Buuse M. Comparing the effects of 17β-oestradiol and the selective oestrogen receptor modulators, raloxifene and tamoxifen, on prepulse inhibition in female rats. Schizophr Res 2015; 168:634-9. [PMID: 25979306 DOI: 10.1016/j.schres.2015.04.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 04/12/2015] [Accepted: 04/23/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND Evidence suggests that oestrogen plays a protective role against the development and severity of schizophrenia. However, while oestrogen may be beneficial as a treatment in schizophrenia, its chronic use is associated with side-effects. Selective oestrogen receptor modulators (SERMs) may provide an alternative, however little is known about the mechanism underlying their effects in schizophrenia. METHODS We investigated the effect of raloxifene and tamoxifen on dopaminergic-induced disruptions of prepulse inhibition (PPI). PPI measures sensorimotor gating and PPI disruptions are considered an endophenotype for schizophrenia. Adult female Sprague-Dawley rats were either intact, ovariectomized (OVX), OVX and 17β-oestradiol-treated, OVX and raloxifene-treated (low or high dose), or OVX and tamoxifen-treated (low or high dose). RESULTS The dopamine D1/D2 receptor agonist, apomorphine (0, 0.1, 0.3 and 1mg/kg), caused the expected dose-dependent disruption in PPI in intact and OVX rats. This PPI disruption was prevented in OVX rats treated with 17β-oestradiol, a high dose of raloxifene or a high dose of tamoxifen. In untreated OVX rats, average PPI was 55% after saline and 34% after 1mg/kg apomorphine treatment, a reduction of 21%. However, oestradiol-treated and raloxifene-treated OVX rats showed only a 7% PPI reduction, and tamoxifen-treated OVX rats had a 4% PPI reduction caused by apomorphine treatment. Startle amplitude was not different between the groups. CONCLUSION The SERMs, raloxifene and tamoxifen, can prevent dopamine D1/D2 receptor-mediated disruptions of sensorimotor gating, similar to oestradiol. These data lend support for the use of SERMs as a treatment for schizophrenia.
Collapse
Affiliation(s)
- Andrea Gogos
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, 30 Royal Parade, Parkville, VIC 3052, Australia.
| | - Maarten van den Buuse
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, 30 Royal Parade, Parkville, VIC 3052, Australia; School of Psychological Science, La Trobe University, Bundoora, VIC 3086, Australia
| |
Collapse
|
73
|
Merriman JD, Sereika SM, Brufsky AM, McAuliffe PF, McGuire KP, Myers JS, Phillips ML, Ryan CM, Gentry AL, Jones LD, Bender CM. Trajectories of self-reported cognitive function in postmenopausal women during adjuvant systemic therapy for breast cancer. Psychooncology 2015; 26:44-52. [PMID: 26486371 DOI: 10.1002/pon.4009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 08/10/2015] [Accepted: 09/25/2015] [Indexed: 01/29/2023]
Abstract
OBJECTIVE In a sample of 368 postmenopausal women, we (1) determined within-cohort and between-cohort relationships between adjuvant systemic therapy for breast cancer and self-reported cognitive function during the first 18 months of therapy and (2) evaluated the influence of co-occurring symptoms, neuropsychological function, and other covariates on relationships. METHODS We evaluated self-reported cognitive function, using the Patient Assessment of Own Functioning Inventory (PAOFI), and potential covariates (e.g., co-occurring symptom scores and neuropsychological function z-scores) in 158 women receiving aromatase inhibitor (AI) therapy alone, 104 women receiving chemotherapy followed by AI therapy, and 106 non-cancer controls. Patients were assessed before systemic therapy and then every 6 months, for a total of four assessments over 18 months. Controls were assessed at matched time points. Mixed-effects modeling was used to determine longitudinal relationships. RESULTS Controlling for covariates, patients enrolled before chemotherapy reported poorer global cognitive function (p < 0.001), memory (p < 0.001), language and communication (p < 0.001), and sensorimotor function (p = 0.002) after chemotherapy. These patients reported poorer higher-level cognitive and intellectual functions from before chemotherapy to 12 months after initiation of AI therapy (p < 0.001). Higher levels of depressive symptoms (p < 0.001), anxiety (p < 0.001), and fatigue (p = 0.040) at enrollment were predictors of poorer cognitive function over time. PAOFI total score was a predictor of executive function (p = 0.048) and visual working memory (p = 0.005) z-scores, controlling for covariates. CONCLUSIONS Findings provide further evidence of poorer self-reported cognitive function after chemotherapy and of relationships between co-occurring symptoms and cognitive changes. AI therapy alone does not have an impact on self-reported cognitive function. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- John D Merriman
- School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA
| | - Susan M Sereika
- School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adam M Brufsky
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Priscilla F McAuliffe
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Kandace P McGuire
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jamie S Myers
- School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mary L Phillips
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Amanda L Gentry
- School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lindsay D Jones
- School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
74
|
Tea Consumption and Cognitive Impairment: A Cross-Sectional Study among Chinese Elderly. PLoS One 2015; 10:e0137781. [PMID: 26359663 PMCID: PMC4567322 DOI: 10.1371/journal.pone.0137781] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 08/21/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Laboratorial and epidemiological researches suggested that tea exhibited potential neuroprotective effect which may prevent cognitive impairment, but there were few data among the elderly aged 60 years and above in China. OBJECTIVE The objective was to explore the relationship between characteristics of tea consumption and cognitive impairment. DESIGN We analyzed the baseline data from Zhejiang Major Public Health Surveillance Program (ZPHS) which was conducted in 2014. Totally 9,375 residents aged 60 years and above were recruited in this study. Face-to-face interview based on a self-developed questionnaire was performed for each participant. Detailed tea consumption habits were included in the questionnaire. Cognitive impairment screening was performed by using Mini-Mental State Examination (MMSE). Education-specific cut-off points for Chinese were applied to determine the status of cognitive impairment. Logistic regression analysis was used to calculate odds ratios (ORs) of cognitive impairment associated with tea consumption. RESULTS The means (SD) of MMSE scores for the subjects who did not consume tea and consumed <2 cups/d, 2-4 cups/d, ≥4 cups/d were 23.3 (SD = 5.61), 23.8 (SD = 5.60), 24.5 (SD = 5.63) and 25.0 (SD = 5.08), respectively. An inverse correlation was found between tea consumption (of all types) and prevalence of cognitive impairment. Volume of tea consumption was significantly associated with cognitive impairment: compared with non-consumption participants, those who consumed < 2 cups/d, 2-4 cups/d, and ≥4 cups/d were observed ORs of 0.77 (95% CI: 0.56, 1.07), 0.62 (95% CI: 0.47, 0.81), and 0.49 (95% CI: 0.36, 0.66), respectively. Compared with non-consumption, black tea presented a positive correlation with cognitive function after controlling for potential confounders (OR = 0.52, 95% CI: 0.28, 0.95), while green tea showed no significant difference (OR = 1.04, 95% CI: 0.72, 1.51). Participants who consumed weak tea, moderate tea or strong tea more often were observed a better cognitive status when compared with those who did not have tea, with an OR of 0.51 (95% CI: 0.28, 0.92), 0.32 (95% CI: 0.19, 0.56) and 0.42 (95% CI: 0.22, 0.78) after adjusting for the potential confounders. But there was no statistically significant difference between any two of these ORs. CONCLUSION Black tea consumption was association with better cognitive performance among the elderly aged 60 years and above in China, while green tea presented no correlation. The positive association of cognitive status with tea consumption was not limited to particular type of concentration.
Collapse
|
75
|
Berent-Spillson A, Briceno E, Pinsky A, Simmen A, Persad CC, Zubieta JK, Smith YR. Distinct cognitive effects of estrogen and progesterone in menopausal women. Psychoneuroendocrinology 2015; 59:25-36. [PMID: 26010861 PMCID: PMC4490102 DOI: 10.1016/j.psyneuen.2015.04.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 04/03/2015] [Accepted: 04/27/2015] [Indexed: 01/03/2023]
Abstract
The effects of postmenopausal hormone treatment on cognitive outcomes are inconsistent in the literature. Emerging evidence suggests that cognitive effects are influenced by specific hormone formulations, and that progesterone is more likely to be associated with positive outcomes than synthetic progestin. There are very few studies of unopposed progesterone in postmenopausal women, and none that use functional neuroimaging, a sensitive measure of neurobiological function. In this study of 29 recently postmenopausal women, we used functional MRI and neuropsychological measures to separately assess the effects of estrogen or progesterone treatment on visual and verbal cognitive function. Women were randomized to receive 90 days of either estradiol or progesterone counterbalanced with placebo. After each treatment arm, women were given a battery of verbal and visual cognitive function and working memory tests, and underwent functional MRI including verbal processing and visual working memory tasks. We found that both estradiol and progesterone were associated with changes in activation patterns during verbal processing. Compared to placebo, women receiving estradiol treatment had greater activation in the left prefrontal cortex, a region associated with verbal processing and encoding. Progesterone was associated with changes in regional brain activation patterns during a visual memory task, with greater activation in the left prefrontal cortex and right hippocampus compared to placebo. Both treatments were associated with a statistically non-significant increase in number of words remembered following the verbal task performed during the fMRI scanning session, while only progesterone was associated with improved neuropsychological measures of verbal working memory compared to placebo. These results point to potential cognitive benefits of both estrogen and progesterone.
Collapse
Affiliation(s)
- Alison Berent-Spillson
- University of Michigan, Psychiatry Department, MBNI, 205 Zina Pitcher Place, Ann Arbor, MI 48109, USA.
| | - Emily Briceno
- University of Michigan, Psychiatry Department, Neuropsychology Division, 2101 Commonwealth Blvd, Suite C, Ann Arbor, MI 48105, USA.
| | - Alana Pinsky
- University of Michigan Medical School, 1301 Catherine, Ann Arbor, MI, 48109, USA.
| | - Angela Simmen
- University of Michigan, Obstetrics and Gynecology Department, L4000 Womens SPC, 1500 E. Medical Center Dr, Ann Arbor, MI, 48109, USA.
| | - Carol C. Persad
- University of Michigan, Psychiatry Department, Neuropsychology Division, 2101 Commonwealth Blvd, Suite C, Ann Arbor, MI 48105, USA
| | - Jon-Kar Zubieta
- University of Michigan, Psychiatry Department, MBNI, 205 Zina Pitcher Place, Ann Arbor, MI 48109, USA.
| | - Yolanda R. Smith
- University of Michigan, Obstetrics and Gynecology Department, L4000 Womens SPC, 1500 E. Medical Center Dr, Ann Arbor, MI 48109, USA,Corresponding author: Alison Berent-Spillson, 1-734-615-4252
| |
Collapse
|
76
|
Shum C, Macedo SC, Warre-Cornish K, Cocks G, Price J, Srivastava DP. Utilizing induced pluripotent stem cells (iPSCs) to understand the actions of estrogens in human neurons. Horm Behav 2015; 74:228-42. [PMID: 26143621 PMCID: PMC4579404 DOI: 10.1016/j.yhbeh.2015.06.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 06/11/2015] [Accepted: 06/25/2015] [Indexed: 01/05/2023]
Abstract
This article is part of a Special Issue "Estradiol and Cognition". Over recent years tremendous progress has been made towards understanding the molecular and cellular mechanism by which estrogens exert enhancing effects on cognition, and how they act as a neuroprotective or neurotrophic agent in disease. Currently, much of this work has been carried out in animal models with only a limited number of studies using native human tissue or cells. Recent advances in stem cell technology now make it possible to reprogram somatic cells from humans into induced pluripotent stem cells (iPSCs), which can subsequently be differentiated into neurons of specific lineages. Importantly, the reprogramming of cells allows for the generation of iPSCs that retain the genetic "makeup" of the donor. Therefore, it is possible to generate iPSC-derived neurons from patients diagnosed with specific diseases, that harbor the complex genetic background associated with the disorder. Here, we review the iPSC technology and how it's currently being used to model neural development and neurological diseases. Furthermore, we explore whether this cellular system could be used to understand the role of estrogens in human neurons, and present preliminary data in support of this. We further suggest that the use of iPSC technology offers a novel system to not only further understand estrogens' effects in human cells, but also to investigate the mechanism by which estrogens are beneficial in disease. Developing a greater understanding of these mechanisms in native human cells will also aid in the development of safer and more effective estrogen-based therapeutics.
Collapse
Affiliation(s)
- Carole Shum
- Department of Basic and Clinical Neuroscience, Cell and Behaviour Unit, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Sara C Macedo
- Department of Basic and Clinical Neuroscience, Cell and Behaviour Unit, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK; Faculty of Engineering, Universidade do Porto, 4200-465 Porto, Portugal
| | - Katherine Warre-Cornish
- Department of Basic and Clinical Neuroscience, Cell and Behaviour Unit, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Graham Cocks
- Department of Basic and Clinical Neuroscience, Cell and Behaviour Unit, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Jack Price
- Department of Basic and Clinical Neuroscience, Cell and Behaviour Unit, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Deepak P Srivastava
- Department of Basic and Clinical Neuroscience, Cell and Behaviour Unit, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.
| |
Collapse
|
77
|
Walf AA, Koonce CJ, Frye CA. Progestogens' effects and mechanisms for object recognition memory across the lifespan. Behav Brain Res 2015; 294:50-61. [PMID: 26235328 DOI: 10.1016/j.bbr.2015.07.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/16/2015] [Accepted: 07/28/2015] [Indexed: 12/11/2022]
Abstract
This review explores the effects of female reproductive hormones, estrogens and progestogens, with a focus on progesterone and allopregnanolone, on object memory. Progesterone and its metabolites, in particular allopregnanolone, exert various effects on both cognitive and non-mnemonic functions in females. The well-known object recognition task is a valuable experimental paradigm that can be used to determine the effects and mechanisms of progestogens for mnemonic effects across the lifespan, which will be discussed herein. In this task there is little test-decay when different objects are used as targets and baseline valance for objects is controlled. This allows repeated testing, within-subjects designs, and longitudinal assessments, which aid understanding of changes in hormonal milieu. Objects are not aversive or food-based, which are hormone-sensitive factors. This review focuses on published data from our laboratory, and others, using the object recognition task in rodents to assess the role and mechanisms of progestogens throughout the lifespan. Improvements in object recognition performance of rodents are often associated with higher hormone levels in the hippocampus and prefrontal cortex during natural cycles, with hormone replacement following ovariectomy in young animals, or with aging. The capacity for reversal of age- and reproductive senescence-related decline in cognitive performance, and changes in neural plasticity that may be dissociated from peripheral effects with such decline, are discussed. The focus here will be on the effects of brain-derived factors, such as the neurosteroid, allopregnanolone, and other hormones, for enhancing object recognition across the lifespan.
Collapse
Affiliation(s)
- Alicia A Walf
- Dept. of Psychology, The University at Albany-SUNY, Albany, NY 12222, USA; The Center for Life Sciences Research, The University at Albany-SUNY, Albany, NY 12222, USA; Institute of Arctic Biology, The University of Alaska-Fairbanks, Fairbanks, Alaska 99775, USA; The University of Alaska-Fairbanks, IDeA Network of Biomedical Excellence (INBRE), Fairbanks, Alaska 99775, USA; Cognitive Science Department, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Carolyn J Koonce
- Dept. of Psychology, The University at Albany-SUNY, Albany, NY 12222, USA; Institute of Arctic Biology, The University of Alaska-Fairbanks, Fairbanks, Alaska 99775, USA; The University of Alaska-Fairbanks, IDeA Network of Biomedical Excellence (INBRE), Fairbanks, Alaska 99775, USA
| | - Cheryl A Frye
- Dept. of Psychology, The University at Albany-SUNY, Albany, NY 12222, USA; Dept. of Biological Sciences, The University at Albany-SUNY, Albany, NY 12222, USA; The Center for Neuroscience, The University at Albany-SUNY, Albany, NY 12222, USA; The Center for Life Sciences Research, The University at Albany-SUNY, Albany, NY 12222, USA; Department of Chemistry and Biochemistry, The University of Alaska-Fairbanks, Fairbanks, Alaska 99775, USA; Institute of Arctic Biology, The University of Alaska-Fairbanks, Fairbanks, Alaska 99775, USA; The University of Alaska-Fairbanks, IDeA Network of Biomedical Excellence (INBRE), Fairbanks, Alaska 99775, USA.
| |
Collapse
|
78
|
|
79
|
Boissoneault J, Sklar A, Prather R, Nixon SJ. Acute effects of moderate alcohol on psychomotor, set shifting, and working memory function in older and younger social drinkers. J Stud Alcohol Drugs 2015; 75:870-9. [PMID: 25208205 DOI: 10.15288/jsad.2014.75.870] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
UNLABELLED ABSTRACT. OBJECTIVE Despite substantial attention being paid to the health benefits of moderate alcohol intake as a lifestyle, the acute effects of alcohol on psychomotor and working memory function in older adults are poorly understood. METHOD The effects of low to moderate doses of alcohol on neurobehavioral function were investigated in 39 older (55-70 years; 15 men) and 51 younger (25-35 years; 31 men) social drinkers. Subjects received one of three randomly assigned doses (placebo, .04 g/dl, or .065 g/dl target breath alcohol concentration). After beverage consumption, they completed the Trail Making Test Parts A and B and a working memory task requiring participants to determine whether probe stimuli were novel or had been presented in a preceding set of cue stimuli. Efficiency of working memory task performance was derived from accuracy and reaction time measures. RESULTS Alcohol was associated with poorer Trail Making Test Part B performance for older subjects. Working memory task results suggested an Age × Dose interaction for performance efficiency, with older but not younger adults demonstrating alcohol-related change. Directionality of change and whether effects on accuracy or reaction time drove the change depended on the novelty of probe stimuli. CONCLUSIONS This study replicates previous research indicating increased susceptibility of older adults to moderate alcohol-induced psychomotor and set-shifting impairment and suggests such susceptibility extends to working memory performance. Further research using additional tasks and assessing other neuropsychological domains is needed. (J. Stud. Alcohol Drugs, 75, 870-879, 2014).
Collapse
Affiliation(s)
- Jeff Boissoneault
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, Florida
| | - Alfredo Sklar
- Department of Psychiatry, University of Florida, Gainesville, Florida
| | - Robert Prather
- Department of Psychiatry, University of Florida, Gainesville, Florida
| | - Sara Jo Nixon
- Department of Psychiatry, University of Florida, Gainesville, Florida
| |
Collapse
|
80
|
Ali Shah SI. Emerging potential of parenteral estrogen as androgen deprivation therapy for prostate cancer. South Asian J Cancer 2015; 4:95-7. [PMID: 25992351 PMCID: PMC4418092 DOI: 10.4103/2278-330x.155699] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Androgen deprivation therapy (ADT) is a key management strategy for prostate cancer (PC), achieved commonly by administration of luteinizing hormone-releasing hormone agonist (LHRHa), ADT markedly suppresses both male and female sex hormones which results in "castration syndrome", a constellation of adverse events such as muscle weakness, impairment of glucose and lipid metabolism, impotence, osteoporosis, and fractures. Recent evidence suggests that estrogen, in the parenteral form, may emerge as an alternative to LHRHa as it offers potential benefits of arresting PC growth as well as avoiding some of the estrogen deficiency related toxicities of LHRHa by maintaining endogenous levels of estrogen.
Collapse
Affiliation(s)
- Syed Imran Ali Shah
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London W12 ONN, United Kingdom
| |
Collapse
|
81
|
Barha CK, Lieblich SE, Chow C, Galea LAM. Multiparity-induced enhancement of hippocampal neurogenesis and spatial memory depends on ovarian hormone status in middle age. Neurobiol Aging 2015; 36:2391-405. [PMID: 25998101 DOI: 10.1016/j.neurobiolaging.2015.04.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/16/2015] [Accepted: 04/17/2015] [Indexed: 12/13/2022]
Abstract
Menopause is associated with cognitive decline, and previous parity can increase or delay the trajectory of cognitive aging. Furthermore, parity enables the hippocampus to respond to estrogens in middle age. The present study investigated how previous parity and estrogens influence cognition, neurogenesis, and neuronal activation in response to memory retrieval in the hippocampus of middle-aged females. Multiparous and nulliparous rats were ovariectomized (OVX) or received sham surgery and were treated with vehicle, 17β-estradiol, 17α-estradiol, or estrone. Rats were trained on the spatial working and reference memory versions of the Morris water maze. Multiparous rats had a significantly greater density of immature neurons in the hippocampus, enhanced acquisition of working memory, but poorer reference memory compared with nulliparous rats. Furthermore, OVX increased, while treatment with estrogens reduced, the density of immature neurons, regardless of parity. OVX improved reference memory only in nulliparous rats. Thus, motherhood has long-lasting effects on the neuroplasticity and function of the hippocampus. These findings have wide-ranging implications for the treatment of age-associated decline in women.
Collapse
Affiliation(s)
- Cindy K Barha
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephanie E Lieblich
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carmen Chow
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Liisa A M Galea
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada; Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada; Brain Research Centre, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
82
|
Brandt N, Vierk R, Fester L, Zhou L, Imholz P, Rune GM. [Gender and the effects of steroid hormones in the central nervous system]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2015; 57:1054-60. [PMID: 25091372 DOI: 10.1007/s00103-014-2014-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Degenerative diseases of the central nervous system, the incidence and prevalence of which vary between men and women, often manifest in the hippocampus. Neurosteroids are hormones that are synthesized in the CNS, and it is here that they exert their influence. Estrogen and testosterone are examples of neurosteroid hormones. In the hippocampus, an area of the brain closely associated with learning and memory, the local synthesis of estrogen in females, but not in males, is essential for the plasticity and stability of the synapses. The inhibition of estrogen synthesis in the female hippocampus causes a reduction in long-term potentiation (LTP), an electrophysiological parameter of learning and memory, thus resulting in a significant loss of synapses. In light of this, the fact that estrogen has been attributed with many neuroprotective functions in degenerative diseases of the CNS suggests that therapeutic concepts involving the use of estrogen are possibly only effective in women, but not in men. These findings similarly provide a basis for explaining the gender dimorphism that has been found in certain degenerative illnesses of the CNS.
Collapse
Affiliation(s)
- N Brandt
- Institut für Neuroanatomie, Universitätsklinikum Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Deutschland
| | | | | | | | | | | |
Collapse
|
83
|
Li K, Huang X, Han Y, Zhang J, Lai Y, Yuan L, Lu J, Zeng D. Enhanced Neuroactivation during Working Memory Task in Postmenopausal Women Receiving Hormone Therapy: A Coordinate-Based Meta-Analysis. Front Hum Neurosci 2015; 9:35. [PMID: 25717297 PMCID: PMC4324146 DOI: 10.3389/fnhum.2015.00035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 01/13/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND AIM Hormone therapy (HT) has long been thought beneficial for controlling menopausal symptoms and human cognition. Studies have suggested that HT has a positive association with working memory, but no consistent relationship between HT and neural activity has been shown in any cognitive domain. The purpose of this meta-analysis was to assess the convergence of findings from published randomized control trials studies that examined brain activation changes in postmenopausal women. METHODS A systematic search for fMRI studies of neural responses during working memory tasks in postmenopausal women was performed. Studies were excluded if they were not treatment studies and did not contain placebo or blank controls. For the purpose of the meta-analysis, 8 studies were identified, with 103 postmenopausal women taking HT and 109 controls. RESULTS Compared with controls, postmenopausal women who took HT increased activation in the left frontal lobe, including superior frontal gyrus (BA 8), right middle frontal gyrus (BA 9), anterior lobe, paracentral lobule (BA 7), limbic lobe, and anterior cingulate (BA 32). Additionally, decreased activation is noted in the right limbic lobe, including parahippocampal gyrus (BA 28), left parietal lobe, and superior parietal lobule (BA 7). All regions were significant at p ≤ 0.05 with correction for multiple comparisons. CONCLUSION Hormone treatment is associated with BOLD signal activation in key anatomical areas during fMRI working memory tasks in healthy hormone-treated postmenopausal women. A positive correlation between activation and task performance suggests that hormone use may benefit working memory.
Collapse
Affiliation(s)
- Ke Li
- Key Laboratory for NeuroInformation of Ministry of Education, University of Electronic Science and Technology of China, Chengdu, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoyan Huang
- Key Laboratory for NeuroInformation of Ministry of Education, University of Electronic Science and Technology of China, Chengdu, China
| | - Yingping Han
- Key Laboratory for NeuroInformation of Ministry of Education, University of Electronic Science and Technology of China, Chengdu, China
| | - Jun Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuhan Lai
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Li Yuan
- Key Laboratory for NeuroInformation of Ministry of Education, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiaojiao Lu
- Key Laboratory for NeuroInformation of Ministry of Education, University of Electronic Science and Technology of China, Chengdu, China
| | - Dong Zeng
- Key Laboratory for NeuroInformation of Ministry of Education, University of Electronic Science and Technology of China, Chengdu, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
84
|
Wharton W, Gleason CE, Dowling NM, Carlsson CM, Brinton EA, Santoro MN, Neal-Perry G, Taylor H, Naftolin F, Lobo RA, Merriam G, Manson JE, Cedars MI, Miller VM, Black DM, Budoff M, Hodis HN, Harman SM, Asthana S. The KEEPS-Cognitive and Affective Study: baseline associations between vascular risk factors and cognition. J Alzheimers Dis 2015; 40:331-41. [PMID: 24430001 DOI: 10.3233/jad-130245] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Midlife vascular risk factors influence later cognitive decline and Alzheimer's disease (AD). The decrease in serum estradiol levels during menopause has been associated with cognitive impairment and increased vascular risk, such as high blood pressure (BP), which independently contributes to cognitive dysfunction and AD. We describe the extent to which vascular risk factors relate to cognition in healthy, middle-aged, recently postmenopausal women enrolled in the Kronos Early Estrogen Prevention Cognitive and Affective Study (KEEPS-Cog) at baseline. KEEPS-Cog is a double-blind, randomized, placebo-controlled, parallel group, clinical trial, investigating the efficacy of low-dose, transdermal 17β-estradiol and oral conjugated equine estrogen on cognition. All results are cross-sectional and represent baseline data only. Analyses confirm that the KEEPS-Cog cohort (n = 571) was middle aged (mean 52.7 years, range 42-59 years), healthy, and free of cognitive dysfunction. Higher systolic BP was weakly related to poorer performance in auditory working memory and attention (p = 0.004; adjusted for multiple comparisons p = 0.10). This relationship was not associated with endogenous hormone levels, and systolic BP was not related to any other cognitive domain. BP levels may be more sensitive than other vascular risk factors in detecting subtle differences in cognitive task performance in healthy, recently menopausal women. Lower BP early in menopause may affect cognitive domains known to be associated with AD.
Collapse
Affiliation(s)
- Whitney Wharton
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA Emory Alzheimer's Disease Research Center, (ADRC) Atlanta, GA, USA
| | - Carey E Gleason
- Department of Medicine, University of Wisconsin, School of Medicine and Public Health, Madison, WI, USA Geriatric Research, Education and Clinical Center (GRECC), William S. Middleton Memorial Veterans Hospital, Madison, WI, USA Wisconsin Alzheimer's Disease Research Center, (ADRC) Madison, WI, USA
| | - N Maritza Dowling
- Department of Medicine, University of Wisconsin, School of Medicine and Public Health, Madison, WI, USA Wisconsin Alzheimer's Disease Research Center, (ADRC) Madison, WI, USA University of Wisconsin, Department of Biostatistics and Medical Informatics, Madison, WI, USA
| | - Cynthia M Carlsson
- Department of Medicine, University of Wisconsin, School of Medicine and Public Health, Madison, WI, USA Geriatric Research, Education and Clinical Center (GRECC), William S. Middleton Memorial Veterans Hospital, Madison, WI, USA Wisconsin Alzheimer's Disease Research Center, (ADRC) Madison, WI, USA
| | - Eliot A Brinton
- Cardiovascular Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - M Nanette Santoro
- Obstetrics & Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Hugh Taylor
- Obstetrics & Gynecology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Rogerio A Lobo
- Obstetrics & Gynecology, Columbia University School of Medicine, New York, NY, USA
| | - George Merriam
- VA Puget Sound Health Care System and Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, USA
| | - Joann E Manson
- Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marcelle I Cedars
- Obstetrics & Gynecology, University of California at San Francisco, San Francisco, CA, USA
| | - Virginia M Miller
- Surgery & Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Dennis M Black
- Epidemiology & Biostatistics, University of California at San Francisco, San Francisco, CA, USA
| | - Matthew Budoff
- Medicine, Los Angeles Biomedical Research Institute, Torrance, CA, USA
| | - Howard N Hodis
- Atherosclerosis Research Unit, University of Southern California, Los Angeles, CA, USA
| | - S Mitchell Harman
- Kronos Longevity Research Institute and Phoenix VA Medical Center, Phoenix, AZ, USA
| | - Sanjay Asthana
- Department of Medicine, University of Wisconsin, School of Medicine and Public Health, Madison, WI, USA Geriatric Research, Education and Clinical Center (GRECC), William S. Middleton Memorial Veterans Hospital, Madison, WI, USA Wisconsin Alzheimer's Disease Research Center, (ADRC) Madison, WI, USA
| |
Collapse
|
85
|
Sellers K, Raval P, Srivastava DP. Molecular signature of rapid estrogen regulation of synaptic connectivity and cognition. Front Neuroendocrinol 2015; 36:72-89. [PMID: 25159586 DOI: 10.1016/j.yfrne.2014.08.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 08/11/2014] [Accepted: 08/14/2014] [Indexed: 12/14/2022]
Abstract
There is now a growing appreciation that estrogens are capable of rapidly activating a number of signaling cascades within the central nervous system. In addition, there are an increasing number of studies reporting that 17β-estradiol, the major biologically active estrogen, can modulate cognition within a rapid time frame. Here we review recent studies that have begun to uncover the molecular and cellular framework which contributes to estrogens ability to rapidly modulate cognition. We first describe the mechanisms by which estrogen receptors (ERs) can couple to intracellular signaling cascades, either directly, or via the transactivation of other receptors. Subsequently, we review the evidence that estrogen can rapidly modulate both neuronal function and structure in the hippocampus and the cortex. Finally, we will discuss how estrogens may influence cognitive function through the modulation of neuronal structure, and the implications this may have on the treatment of a range of brain disorders.
Collapse
Affiliation(s)
- Katherine Sellers
- Department of Basic and Clinical Neuroscience, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, UK
| | - Pooja Raval
- Department of Basic and Clinical Neuroscience, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, UK
| | - Deepak P Srivastava
- Department of Basic and Clinical Neuroscience, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, UK.
| |
Collapse
|
86
|
Thomas J, Météreau E, Déchaud H, Pugeat M, Dreher JC. Hormonal treatment increases the response of the reward system at the menopause transition: a counterbalanced randomized placebo-controlled fMRI study. Psychoneuroendocrinology 2014; 50:167-80. [PMID: 25222702 DOI: 10.1016/j.psyneuen.2014.08.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 08/25/2014] [Accepted: 08/25/2014] [Indexed: 11/17/2022]
Abstract
Preclinical research using rodent models demonstrated that estrogens play neuroprotective effects if they are administered during a critical period near the time of cessation of ovarian function. In women, a number of controversial epidemiological studies reported that a neuroprotective effect of estradiol may be obtained on cognition and mood-related disorders if hormone therapy (HT) begins early at the beginning of menopause. Yet, little is known about the modulatory effects of early HT administration on brain activation near menopause. Here, we investigated whether HT, initiated early during the menopause transition, increases the response of the reward system, a key brain circuit involved in motivation and hedonic behavior. We used fMRI and a counterbalanced, double-blind, randomized and crossover placebo-controlled design to investigate whether sequential 17β-estradiol plus oral progesterone modulate reward-related brain activity. Each woman was scanned twice while presented with images of slot machines, once after receiving HT and once under placebo. The fMRI results demonstrate that HT, relative to placebo, increased the response of the striatum and ventromedial prefrontal cortex, two areas that have been shown to be respectively involved during reward anticipation and at the time of reward delivery. Our neuroimaging results bridge the gap between animal studies and human epidemiological studies of HT on cognition. These findings establish a neurobiological foundation for understanding the neurofunctional impact of early HT initiation on reward processing at the menopause transition.
Collapse
Affiliation(s)
- Julie Thomas
- Reward and Decision Making' Group, Cognitive Neuroscience Center, CNRS, UMR 5229, Lyon1 University, 67 Bd Pinel, 69675 Bron, France
| | - Elise Météreau
- Reward and Decision Making' Group, Cognitive Neuroscience Center, CNRS, UMR 5229, Lyon1 University, 67 Bd Pinel, 69675 Bron, France
| | - Henri Déchaud
- INSERM, Unit 863 IFR6, fédération d'endocrinologie, groupement hospitalier Est, Hospices Civils de Lyon, Lyon 1 University, 69 Bd Pinel, 69675 Bron, France
| | - Michel Pugeat
- INSERM, Unit 863 IFR6, fédération d'endocrinologie, groupement hospitalier Est, Hospices Civils de Lyon, Lyon 1 University, 69 Bd Pinel, 69675 Bron, France
| | - Jean-Claude Dreher
- Reward and Decision Making' Group, Cognitive Neuroscience Center, CNRS, UMR 5229, Lyon1 University, 67 Bd Pinel, 69675 Bron, France.
| |
Collapse
|
87
|
McNamara A, Moakes K, Aston P, Gavin C, Sterr A. The importance of the derivative in sex-hormone cycles: a reason why behavioural measures in sex-hormone studies are so mercurial. PLoS One 2014; 9:e111891. [PMID: 25426968 PMCID: PMC4245079 DOI: 10.1371/journal.pone.0111891] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 10/08/2014] [Indexed: 11/19/2022] Open
Abstract
To study the dynamic changes in cognition across the human menstrual cycle, twenty, healthy, naturally-cycling women undertook a lateralized spatial figural comparison task on twelve occasions at approximately 3-4 day intervals. Each session was conducted in laboratory conditions with response times, accuracy rates, eye movements, salivary estrogen and progesterone concentrations and Profile of Mood states questionnaire data collected on each occasion. The first two sessions of twelve for the response variables were discarded to avoid early effects of learning thereby providing 10 sessions spread across each participant's complete menstrual cycle. Salivary progesterone data for each participant was utilized to normalize each participant's data to a standard 28 day cycle. Data was analysed categorically by comparing peak progesterone (luteal phase) to low progesterone (follicular phase) to emulate two-session repeated measures typical studies. Neither a significant difference in reaction times or accuracy rates was found. Moreover no significant effect of lateral presentation was observed upon reaction times or accuracy rates although inter and intra individual variance was sizeable. We demonstrate that hormone concentrations alone cannot be used to predict the response times or accuracy rates. In contrast, we constructed a standard linear model using salivary estrogen, salivary progesterone and their respective derivative values and found these inputs to be very accurate for predicting variance observed in the reaction times for all stimuli and accuracy rates for right visual field stimuli but not left visual field stimuli. The identification of sex-hormone derivatives as predictors of cognitive behaviours is of importance. The finding suggests that there is a fundamental difference between the up-surge and decline of hormonal concentrations where previous studies typically assume all points near the peak of a hormonal surge are the same. How contradictory findings in sex-hormone research may have come about are discussed.
Collapse
Affiliation(s)
- Adam McNamara
- School of Psychology, University of Surrey, Guildford, United Kingdom
| | - Kaylee Moakes
- School of Psychology, University of Surrey, Guildford, United Kingdom
| | - Philip Aston
- Department of Mathematics, University of Surrey, Guildford, United Kingdom
| | - Christine Gavin
- Department of Mathematics, University of Surrey, Guildford, United Kingdom
| | - Annette Sterr
- School of Psychology, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
88
|
Sundström Poromaa I, Gingnell M. Menstrual cycle influence on cognitive function and emotion processing-from a reproductive perspective. Front Neurosci 2014; 8:380. [PMID: 25505380 PMCID: PMC4241821 DOI: 10.3389/fnins.2014.00380] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 11/07/2014] [Indexed: 12/17/2022] Open
Abstract
The menstrual cycle has attracted research interest ever since the 1930s. For many researchers the menstrual cycle is an excellent model of ovarian steroid influence on emotion, behavior, and cognition. Over the past years methodological improvements in menstrual cycle studies have been noted, and this review summarizes the findings of methodologically sound menstrual cycle studies in healthy women. Whereas the predominant hypotheses of the cognitive field state that sexually dimorphic cognitive skills that favor men are improved during menstrual cycle phases with low estrogen and that cognitive skills that favor women are improved during cycle phases with increased estrogen and/or progesterone, this review has not found sufficient evidence to support any of these hypotheses. Mental rotation has gained specific interest in this aspect, but a meta-analysis yielded a standardized mean difference in error rate of 1.61 (95% CI -0.35 to 3.57), suggesting, at present, no favor of an early follicular phase improvement in mental rotation performance. Besides the sexually dimorphic cognitive skills, studies exploring menstrual cycle effects on tasks that probe prefrontal cortex function, for instance verbal or spatial working memory, have also been reviewed. While studies thus far are few, results at hand suggest improved performance at times of high estradiol levels. Menstrual cycle studies on emotional processing, on the other hand, tap into the emotional disorders of the luteal phase, and may be of relevance for women with premenstrual disorders. Although evidence at present is limited, it is suggested that emotion recognition, consolidation of emotional memories, and fear extinction is modulated by the menstrual cycle in women. With the use of functional magnetic resonance imaging, several studies report changes in brain reactivity across the menstrual cycle, most notably increased amygdala reactivity in the luteal phase. Thus, to the extent that behavioral changes have been demonstrated over the course of the menstrual cycle, the best evidence suggests that differences in sexually dimorphic tasks are small and difficult to replicate. However, emotion-related changes are more consistently found, and are better associated with progesterone than with estradiol such that high progesterone levels are associated with increased amygdala reactivity and increased emotional memory.
Collapse
Affiliation(s)
| | - Malin Gingnell
- Department of Psychology, Uppsala University Uppsala, Sweden
| |
Collapse
|
89
|
Fortress AM, Frick KM. Epigenetic regulation of estrogen-dependent memory. Front Neuroendocrinol 2014; 35:530-49. [PMID: 24878494 PMCID: PMC4174980 DOI: 10.1016/j.yfrne.2014.05.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 05/15/2014] [Accepted: 05/16/2014] [Indexed: 02/09/2023]
Abstract
Hippocampal memory formation is highly regulated by post-translational histone modifications and DNA methylation. Accordingly, these epigenetic processes play a major role in the effects of modulatory factors, such as sex steroid hormones, on hippocampal memory. Our laboratory recently demonstrated that the ability of the potent estrogen 17β-estradiol (E2) to enhance hippocampal-dependent novel object recognition memory in ovariectomized female mice requires ERK-dependent histone H3 acetylation and DNA methylation in the dorsal hippocampus. Although these data provide valuable insight into the chromatin modifications that mediate the memory-enhancing effects of E2, epigenetic regulation of gene expression is enormously complex. Therefore, more research is needed to fully understand how E2 and other hormones employ epigenetic alterations to shape behavior. This review discusses the epigenetic alterations shown thus far to regulate hippocampal memory, briefly reviews the effects of E2 on hippocampal function, and describes in detail our work on epigenetic regulation of estrogenic memory enhancement.
Collapse
Affiliation(s)
- Ashley M Fortress
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States.
| |
Collapse
|
90
|
The Effects of Ethinylestradiol and Progestins (“the pill”) on Cognitive Function in Pre-menopausal Women. Neurochem Res 2014; 39:2288-300. [DOI: 10.1007/s11064-014-1444-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/18/2014] [Accepted: 09/23/2014] [Indexed: 11/27/2022]
|
91
|
Luine VN. Estradiol and cognitive function: past, present and future. Horm Behav 2014; 66:602-18. [PMID: 25205317 PMCID: PMC4318702 DOI: 10.1016/j.yhbeh.2014.08.011] [Citation(s) in RCA: 306] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/26/2014] [Accepted: 08/29/2014] [Indexed: 12/13/2022]
Abstract
A historical perspective on estradiol's enhancement of cognitive function is presented, and research, primarily in animals, but also in humans, is reviewed. Data regarding the mechanisms underlying the enhancements are discussed. Newer studies showing rapid effects of estradiol on consolidation of memory through membrane interactions and activation of inter-cellular signaling pathways are reviewed as well as studies focused on traditional genomic mechanisms. Recent demonstrations of intra-neuronal estradiol synthesis and possible actions as a neurosteroid to promote memory are discussed. This information is applied to the critical issue of the current lack of effective hormonal (or other) treatments for cognitive decline associated with menopause and aging. Finally, the critical period hypothesis for estradiol effects is discussed along with novel strategies for hormone/drug development. Overall, the historical record documents that estradiol positively impacts some aspects of cognitive function, but effective therapeutic interventions using this hormone have yet to be realized.
Collapse
Affiliation(s)
- Victoria N Luine
- Department of Psychology, Hunter College of CUNY, New York, NY, USA.
| |
Collapse
|
92
|
Hippocampal estradiol synthesis and its significance for hippocampal synaptic stability in male and female animals. Neuroscience 2014; 274:24-32. [DOI: 10.1016/j.neuroscience.2014.05.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 04/23/2014] [Accepted: 05/04/2014] [Indexed: 01/18/2023]
|
93
|
A systematic review of the impact of oral contraceptives on cognition. Contraception 2014; 90:111-6. [PMID: 24856205 DOI: 10.1016/j.contraception.2014.03.015] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 03/27/2014] [Accepted: 03/30/2014] [Indexed: 12/21/2022]
Abstract
Combined oral contraceptives (OCs) are the most commonly prescribed medication in women of reproductive age, but despite widespread use, their effect on cognitive performance remains controversial. Given strong evidence for the neurological impact of reproductive hormones, a clear rationale for investigation exists. This systematic review sought to identify, collate and critically appraise studies assessing the impact of OCs on cognition in healthy premenopausal women. Ovid MEDLINE, PsychINFO and EMBASE were comprehensively searched using relevant keywords for original peer-reviewed observational studies or randomised trials published after 1960. Of 1289 references screened, 22 studies were eligible for inclusion. Assembled evidence supports a cognitive impact of OCs restricted to specific domains; however, the quality of evidence is poor. The most consistent finding is improved verbal memory with OC use. Evidence is also emerging that differing progestin androgenicity may lead diverse OC formulations to differentially impact certain cognitive domains, such as visuospatial ability. At present, evidence is inconclusive, contradictory and limited by methodological inconsistencies. There is scope for further research in this area to definitively determine the cognitive impact of OCs.
Collapse
|
94
|
Keogh E, Cavill R, Moore DJ, Eccleston C. The effects of menstrual-related pain on attentional interference. Pain 2014; 155:821-827. [DOI: 10.1016/j.pain.2014.01.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 01/23/2014] [Accepted: 01/23/2014] [Indexed: 01/24/2023]
|
95
|
Increased prolactin levels are associated with impaired processing speed in subjects with early psychosis. PLoS One 2014; 9:e89428. [PMID: 24586772 PMCID: PMC3933530 DOI: 10.1371/journal.pone.0089428] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 01/20/2014] [Indexed: 11/19/2022] Open
Abstract
Hyperprolactinaemia, a common side effect of some antipsychotic drugs, is also present in drug-naïve psychotic patients and subjects at risk for psychosis. Recent studies in non-psychiatric populations suggest that increased prolactin may have negative effects on cognition. The aim of our study was to explore whether high plasma prolactin levels are associated with poorer cognitive functioning in subjects with early psychoses. We studied 107 participants: 29 healthy subjects and 78 subjects with an early psychosis (55 psychotic disorders with <3 years of illness, 23 high-risk subjects). Cognitive assessment was performed with the MATRICS Cognitive Consensus Cognitive Battery, and prolactin levels were determined as well as total cortisol levels in plasma. Psychopathological status was assessed and the use of psychopharmacological treatments (antipsychotics, antidepressants, benzodiazepines) recorded. Prolactin levels were negatively associated with cognitive performance in processing speed, in patients with a psychotic disorder and high-risk subjects. In the latter group, increased prolactin levels were also associated with impaired reasoning and problem solving and poorer general cognition. In a multiple linear regression analysis conducted in both high-risk and psychotic patients, controlling for potential confounders, prolactin and benzodiazepines were independently related to poorer cognitive performance in the speed of processing domain. A mediation analysis showed that both prolactin and benzodiazepine treatment act as mediators of the relationship between risperidone/paliperidone treatment and speed of processing. These results suggest that increased prolactin levels are associated with impaired processing speed in early psychosis. If these results are confirmed in future studies, strategies targeting reduction of prolactin levels may improve cognition in this population.
Collapse
|
96
|
Van Asten K, Neven P, Lintermans A, Wildiers H, Paridaens R. Aromatase inhibitors in the breast cancer clinic: focus on exemestane. Endocr Relat Cancer 2014; 21:R31-49. [PMID: 24434719 DOI: 10.1530/erc-13-0269] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Breast cancer is the most prevalent type of cancer in women and responsible for significant female cancer-related mortality worldwide. In the Western world, over 80% of breast cancers are hormone-receptor positive for which endocrine therapy is administered. The main anti-estrogen treatments in use consist of selective estrogen-receptor modulators, such as tamoxifen, and third-generation aromatase inhibitors (AIs), such as exemestane, letrozole, and anastrozole. In this review, the focus will lie on exemestane, its clinical use, and its side-effect profile. Exemestane is the only third-generation steroidal AI. Its efficacy as a first-line treatment in metastatic breast cancer has been demonstrated. Therefore, exemestane could be considered a valid first-line therapeutic option, but it also can be used in second-line or further situations. Exemestane is mostly used as part of sequential adjuvant treatment following tamoxifen, but in this setting it is also active in monotherapy. Furthermore, this AI has been studied in the neoadjuvant setting as presurgical treatment, and even as chemoprevention in high-risk healthy postmenopausal women. It may reverse side effects of tamoxifen, such as endometrial changes and thromboembolic disease but may also cause some inconvenient side effects itself. Additionally, there is a lack of total cross-resistance between exemestane and nonsteroidal AIs as far as their anti-tumoral efficacy is concerned; moreover the two classes of AIs display a nontotal overlapping toxicity profile. Taking together, exemestane can be considered as a useful treatment option at all stages of breast cancer.
Collapse
Affiliation(s)
- Kathleen Van Asten
- KU Leuven, Department of Oncology, Leuven, Belgium University Hospitals Leuven, Department of Gynecology and Obstetrics, Leuven, Belgium University Hospitals Leuven, Department of General Medical Oncology, Leuven, Belgium
| | | | | | | | | |
Collapse
|
97
|
Janelsins MC, Kesler SR, Ahles TA, Morrow GR. Prevalence, mechanisms, and management of cancer-related cognitive impairment. Int Rev Psychiatry 2014; 26:102-13. [PMID: 24716504 PMCID: PMC4084673 DOI: 10.3109/09540261.2013.864260] [Citation(s) in RCA: 462] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This review summarizes the current literature on cancer-related cognitive impairment (CRCI) with a focus on prevalence, mechanisms, and possible interventions for CRCI in those who receive adjuvant chemotherapy for non-central nervous system tumours and is primarily focused on breast cancer. CRCI is characterized as deficits in areas of cognition including memory, attention, concentration, and executive function. Development of CRCI can impair quality of life and impact treatment decisions. CRCI is highly prevalent; these problems can be detected in up to 30% of patients prior to chemotherapy, up to 75% of patients report some form of CRCI during treatment, and CRCI is still present in up to 35% of patients many years following completion of treatment. While the trajectory of CRCI is becoming better understood, the mechanisms underlying the development of CRCI are still obscure; however, host characteristics, immune dysfunction, neural toxicity, and genetics may play key roles in the development and trajectory of CRCI. Intervention research is limited, though strategies to maintain function are being studied with promising preliminary findings. This review highlights key research being conducted in these areas, both in patient populations and in animals, which will ultimately result in better understanding and effective treatments for CRCI.
Collapse
Affiliation(s)
- Michelle C. Janelsins
- Department of Surgery, Cancer Control, University of Rochester Medical Center, Rochester, NY
- James P. Wilmot Cancer Center, Rochester, NY
| | | | - Tim A. Ahles
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Gary R. Morrow
- Department of Surgery, Cancer Control, University of Rochester Medical Center, Rochester, NY
- James P. Wilmot Cancer Center, Rochester, NY
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
98
|
LeMoyne EL, Curnier D, Ellemberg D. Pregnancy and cognition: Deficits in inhibition are unrelated to changes in fitness. J Clin Exp Neuropsychol 2014; 36:178-85. [DOI: 10.1080/13803395.2013.875520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
99
|
Abstract
AbstractStudies in both rodents and humans have made much progress in shedding light on how fluctuations in ovarian hormones can affect memory in women across the lifespan. Specifically, advances in neuroscience have identified multiple memory systems that are each mediated by different brain areas. Two memory systems used to navigate an environment are ‘place’ and ‘response’ memory. They are defined as either using an allocentric strategy: using a spatial or cognitive map of the surroundings, or an egocentric strategy: using habitual-turns/movements, respectively. Studies in neuroendocrinology have shown that estrogen levels can bias a female to use one memory system over another to solve a task, such that high estrogen levels are associated with using place memory and low levels with using response memory. Furthermore, recent advances in identifying and localizing estrogen receptors in the rodent brain are uncovering which brain regions are affected by estrogen and providing insight into how hormonal fluctuations during the menstrual cycle, pregnancy, and menopause might affect which memory system is facilitated or impaired in women at different life stages. These studies can help point the way to improving cognitive health in women.
Collapse
|
100
|
Rettberg JR, Yao J, Brinton RD. Estrogen: a master regulator of bioenergetic systems in the brain and body. Front Neuroendocrinol 2014; 35:8-30. [PMID: 23994581 PMCID: PMC4024050 DOI: 10.1016/j.yfrne.2013.08.001] [Citation(s) in RCA: 322] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 08/09/2013] [Accepted: 08/10/2013] [Indexed: 01/12/2023]
Abstract
Estrogen is a fundamental regulator of the metabolic system of the female brain and body. Within the brain, estrogen regulates glucose transport, aerobic glycolysis, and mitochondrial function to generate ATP. In the body, estrogen protects against adiposity, insulin resistance, and type II diabetes, and regulates energy intake and expenditure. During menopause, decline in circulating estrogen is coincident with decline in brain bioenergetics and shift towards a metabolically compromised phenotype. Compensatory bioenergetic adaptations, or lack thereof, to estrogen loss could determine risk of late-onset Alzheimer's disease. Estrogen coordinates brain and body metabolism, such that peripheral metabolic state can indicate bioenergetic status of the brain. By generating biomarker profiles that encompass peripheral metabolic changes occurring with menopause, individual risk profiles for decreased brain bioenergetics and cognitive decline can be created. Biomarker profiles could identify women at risk while also serving as indicators of efficacy of hormone therapy or other preventative interventions.
Collapse
Affiliation(s)
- Jamaica R Rettberg
- Neuroscience Department, University of Southern California, Los Angeles, CA 90033, United States
| | - Jia Yao
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, United States
| | - Roberta Diaz Brinton
- Neuroscience Department, University of Southern California, Los Angeles, CA 90033, United States; Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, United States; Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States.
| |
Collapse
|