51
|
Benedetti A, Fiore PF, Madaro L, Lozanoska-Ochser B, Bouché M. Targeting PKCθ Promotes Satellite Cell Self-Renewal. Int J Mol Sci 2020; 21:ijms21072419. [PMID: 32244482 PMCID: PMC7177808 DOI: 10.3390/ijms21072419] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/23/2020] [Accepted: 03/30/2020] [Indexed: 11/16/2022] Open
Abstract
Skeletal muscle regeneration following injury depends on the ability of satellite cells (SCs) to proliferate, self-renew, and eventually differentiate. The factors that regulate the process of self-renewal are poorly understood. In this study we examined the role of PKCθ in SC self-renewal and differentiation. We show that PKCθ is expressed in SCs, and its active form is localized to the chromosomes, centrosomes, and midbody during mitosis. Lack of PKCθ promotes SC symmetric self-renewal division by regulating Pard3 polarity protein localization, without affecting the overall proliferation rate. Genetic ablation of PKCθ or its pharmacological inhibition in vivo did not affect SC number in healthy muscle. By contrast, after induction of muscle injury, lack or inhibition of PKCθ resulted in a significant expansion of the quiescent SC pool. Finally, we show that lack of PKCθ does not alter the inflammatory milieu after acute injury in muscle, suggesting that the enhanced self-renewal ability of SCs in PKCθ-/- mice is not due to an alteration in the inflammatory milieu. Together, these results suggest that PKCθ plays an important role in SC self-renewal by stimulating their expansion through symmetric division, and it may represent a promising target to manipulate satellite cell self-renewal in pathological conditions.
Collapse
|
52
|
Philipson BI, O'Connor RS, May MJ, June CH, Albelda SM, Milone MC. 4-1BB costimulation promotes CAR T cell survival through noncanonical NF-κB signaling. Sci Signal 2020; 13:13/625/eaay8248. [PMID: 32234960 DOI: 10.1126/scisignal.aay8248] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Clinical response to chimeric antigen receptor (CAR) T cell therapy is correlated with CAR T cell persistence, especially for CAR T cells that target CD19+ hematologic malignancies. 4-1BB-costimulated CAR (BBζ) T cells exhibit longer persistence after adoptive transfer than do CD28-costimulated CAR (28ζ) T cells. 4-1BB signaling improves T cell persistence even in the context of 28ζ CAR activation, which indicates distinct prosurvival signals mediated by the 4-1BB cytoplasmic domain. To specifically study signal transduction by CARs, we developed a cell-free, ligand-based activation and ex vivo culture system for CD19-specific CAR T cells. We observed greater ex vivo survival and subsequent expansion of BBζ CAR T cells when compared to 28ζ CAR T cells. We showed that only BBζ CARs activated noncanonical nuclear factor κB (ncNF-κB) signaling in T cells basally and that the anti-CD19 BBζ CAR further enhanced ncNF-κB signaling after ligand engagement. Reducing ncNF-κB signaling reduced the expansion and survival of anti-CD19 BBζ T cells and was associated with a substantial increase in the abundance of the most pro-apoptotic isoforms of Bim. Although our findings do not exclude the importance of other signaling differences between BBζ and 28ζ CARs, they demonstrate the necessary and nonredundant role of ncNF-κB signaling in promoting the survival of BBζ CAR T cells, which likely underlies the engraftment persistence observed with this CAR design.
Collapse
Affiliation(s)
- Benjamin I Philipson
- Medical Scientist Training Program, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Roddy S O'Connor
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J May
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Carl H June
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Steven M Albelda
- Department of Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael C Milone
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
53
|
Myers DR, Wheeler B, Roose JP. mTOR and other effector kinase signals that impact T cell function and activity. Immunol Rev 2020; 291:134-153. [PMID: 31402496 DOI: 10.1111/imr.12796] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 07/11/2019] [Indexed: 12/27/2022]
Abstract
T cells play important roles in autoimmune diseases and cancer. Following the cloning of the T cell receptor (TCR), the race was on to map signaling proteins that contributed to T cell activation downstream of the TCR as well as co-stimulatory molecules such as CD28. We term this "canonical TCR signaling" here. More recently, it has been appreciated that T cells need to accommodate increased metabolic needs that stem from T cell activation in order to function properly. A central role herein has emerged for mechanistic/mammalian target of rapamycin (mTOR). In this review we briefly cover canonical TCR signaling to set the stage for discussion on mTOR signaling, mRNA translation, and metabolic adaptation in T cells. We also discuss the role of mTOR in follicular helper T cells, regulatory T cells, and other T cell subsets. Our lab recently uncovered that "tonic signals", which pass through proximal TCR signaling components, are robustly and selectively transduced to mTOR to promote baseline translation of various mRNA targets. We discuss insights on (tonic) mTOR signaling in the context of T cell function in autoimmune diseases such as lupus as well as in cancer immunotherapy through CAR-T cell or checkpoint blockade approaches.
Collapse
Affiliation(s)
- Darienne R Myers
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Benjamin Wheeler
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Jeroen P Roose
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
54
|
Katoh T. Facile Preparation of 3-Substituted-2,6-difluoropyridines and Application to the Synthesis of 2,3,6-Trisubstituted Pyridines for PKCθ Inhibitors. J SYN ORG CHEM JPN 2020. [DOI: 10.5059/yukigoseikyokaishi.78.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
55
|
Fiore PF, Benedetti A, Sandonà M, Madaro L, De Bardi M, Saccone V, Puri PL, Gargioli C, Lozanoska-Ochser B, Bouché M. Lack of PKCθ Promotes Regenerative Ability of Muscle Stem Cells in Chronic Muscle Injury. Int J Mol Sci 2020; 21:ijms21030932. [PMID: 32023816 PMCID: PMC7037041 DOI: 10.3390/ijms21030932] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 12/12/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic disease characterized by muscle wasting and chronic inflammation, leading to impaired satellite cells (SCs) function and exhaustion of their regenerative capacity. We previously showed that lack of PKCθ in mdx mice, a mouse model of DMD, reduces muscle wasting and inflammation, and improves muscle regeneration and performance at early stages of the disease. In this study, we show that muscle regeneration is boosted, and fibrosis reduced in mdxθ−/− mice, even at advanced stages of the disease. This phenotype was associated with a higher number of Pax7 positive cells in mdxθ−/− muscle compared with mdx muscle, during the progression of the disease. Moreover, the expression level of Pax7 and Notch1, the pivotal regulators of SCs self-renewal, were upregulated in SCs isolated from mdxθ−/− muscle compared with mdx derived SCs. Likewise, the expression of the Notch ligands Delta1 and Jagged1 was higher in mdxθ−/− muscle compared with mdx. The expression level of Delta1 and Jagged1 was also higher in PKCθ−/− muscle compared with WT muscle following acute injury. In addition, lack of PKCθ prolonged the survival and sustained the differentiation of transplanted myogenic progenitors. Overall, our results suggest that lack of PKCθ promotes muscle repair in dystrophic mice, supporting stem cells survival and maintenance through increased Delta-Notch signaling.
Collapse
MESH Headings
- Animals
- Cardiotoxins/adverse effects
- Cell Differentiation
- Cells, Cultured
- Male
- Mice
- Mice, Inbred mdx
- Muscle, Skeletal/cytology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/injuries
- Muscle, Skeletal/physiology
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/therapy
- PAX7 Transcription Factor/metabolism
- Protein Kinase C-theta/genetics
- Receptor, Notch1/metabolism
- Regeneration
- Signal Transduction
- Stem Cell Transplantation
- Stem Cells/cytology
- Stem Cells/drug effects
- Stem Cells/metabolism
Collapse
Affiliation(s)
- Piera Filomena Fiore
- Department of AHFMO, University of Rome “la Sapienza”, Via A. Scarpa 14, 00161 Rome, Italy; (P.F.F.); (A.B.); (M.S.); (L.M.); (B.L.-O.)
| | - Anna Benedetti
- Department of AHFMO, University of Rome “la Sapienza”, Via A. Scarpa 14, 00161 Rome, Italy; (P.F.F.); (A.B.); (M.S.); (L.M.); (B.L.-O.)
| | - Martina Sandonà
- Department of AHFMO, University of Rome “la Sapienza”, Via A. Scarpa 14, 00161 Rome, Italy; (P.F.F.); (A.B.); (M.S.); (L.M.); (B.L.-O.)
- IRCCS Fondazione Santa Lucia (FSL), e00143 Rome, Italy; (M.D.B.); (V.S.)
| | - Luca Madaro
- Department of AHFMO, University of Rome “la Sapienza”, Via A. Scarpa 14, 00161 Rome, Italy; (P.F.F.); (A.B.); (M.S.); (L.M.); (B.L.-O.)
- IRCCS Fondazione Santa Lucia (FSL), e00143 Rome, Italy; (M.D.B.); (V.S.)
| | - Marco De Bardi
- IRCCS Fondazione Santa Lucia (FSL), e00143 Rome, Italy; (M.D.B.); (V.S.)
| | - Valentina Saccone
- IRCCS Fondazione Santa Lucia (FSL), e00143 Rome, Italy; (M.D.B.); (V.S.)
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Pier Lorenzo Puri
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA;
| | - Cesare Gargioli
- Department of Biology, Tor Vergata University, 00133 Rome, Italy;
| | - Biliana Lozanoska-Ochser
- Department of AHFMO, University of Rome “la Sapienza”, Via A. Scarpa 14, 00161 Rome, Italy; (P.F.F.); (A.B.); (M.S.); (L.M.); (B.L.-O.)
| | - Marina Bouché
- Department of AHFMO, University of Rome “la Sapienza”, Via A. Scarpa 14, 00161 Rome, Italy; (P.F.F.); (A.B.); (M.S.); (L.M.); (B.L.-O.)
- Correspondence: ; Tel.: +39-06-4976-6755
| |
Collapse
|
56
|
Verma NK, Chalasani MLS, Scott JD, Kelleher D. CG-NAP/Kinase Interactions Fine-Tune T Cell Functions. Front Immunol 2019; 10:2642. [PMID: 31781123 PMCID: PMC6861388 DOI: 10.3389/fimmu.2019.02642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/24/2019] [Indexed: 01/04/2023] Open
Abstract
CG-NAP, also known as AKAP450, is an anchoring/adaptor protein that streamlines signal transduction in various cell types by localizing signaling proteins and enzymes with their substrates. Great efforts are being devoted to elucidating functional roles of this protein and associated macromolecular signaling complex. Increasing understanding of pathways involved in regulating T lymphocytes suggests that CG-NAP can facilitate dynamic interactions between kinases and their substrates and thus fine-tune T cell motility and effector functions. As a result, new binding partners of CG-NAP are continually being uncovered. Here, we review recent advances in CG-NAP research, focusing on its interactions with kinases in T cells with an emphasis on the possible role of this anchoring protein as a target for therapeutic intervention in immune-mediated diseases.
Collapse
Affiliation(s)
- Navin Kumar Verma
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | | | - John D Scott
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, United States
| | - Dermot Kelleher
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore.,Departments of Medicine and Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
57
|
Pan Y, Deng W, Xie J, Zhang S, Wan ECK, Li L, Tao H, Hu Z, Chen Y, Ma L, Gao J, Zhong XP. Graded diacylglycerol kinases α and ζ activities ensure mucosal-associated invariant T-cell development in mice. Eur J Immunol 2019; 50:192-204. [PMID: 31710099 DOI: 10.1002/eji.201948289] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/27/2019] [Accepted: 11/07/2019] [Indexed: 01/22/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells participate in both protective immunity and pathogenesis of diseases. Most murine MAIT cells express an invariant TCRVα19-Jα33 (iVα19) TCR, which triggers signals crucial for their development. However, signal pathways downstream of the iVα19TCR and their regulation in MAIT cells are unknown. Diacylglycerol (DAG) is a critical second messenger that relays the TCR signal to multiple downstream signaling cascades. DAG is terminated by DAG kinase (DGK)-mediated phosphorylation and conversion to phosphatidic acid. We have demonstrated here that downregulation of DAG caused by enhanced DGK activity impairs late-stage MAIT cell maturation in both thymus and spleen. Moreover, deficiency of DGKζ but not DGKα by itself causes modest decreases in MAIT cells, and deficiency of both DGKα and ζ results in severe reductions of MAIT cells in an autonomous manner. Our studies have revealed that DAG signaling is not only critical but also must be tightly regulated by DGKs for MAIT cell development and that both DGKα and, more prominently, DGKζ contribute to the overall DGK activity for MAIT cell development.
Collapse
Affiliation(s)
- Yun Pan
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC.,School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Wenhai Deng
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC.,School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jinhai Xie
- School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Shimeng Zhang
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC.,Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Edwin C K Wan
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC.,Department of Microbiology, Immunology, & Cell Biology and Department of Neuroscience, West Virginia University, Morgantown, WV
| | - Lei Li
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC.,Department of Breast and Thyroid Surgery and Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huishan Tao
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC.,Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiming Hu
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC.,Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yongping Chen
- Department of Infectious Diseases, the First Affiliated Hospital of Wenzhou Medical University and Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, Wenzhou, China
| | - Li Ma
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Jimin Gao
- School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiao-Ping Zhong
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC.,Department of Immunology and Duke Cancer Institute, Duke University Medical Center, Durham, NC.,Duke Cancer Institute, Duke University Medical Center, Durham, NC
| |
Collapse
|
58
|
Thuille N, Siegmund K, Klepsch V, Schörgenhuber J, Danklmaier S, Leitges M, Baier G. Loss-of-function phenotype of a PKCθ T219A knockin mouse strain. Cell Commun Signal 2019; 17:141. [PMID: 31694643 PMCID: PMC6836476 DOI: 10.1186/s12964-019-0466-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/22/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Protein kinase C θ has been established as an important signaling intermediate in T-effector-cell activation and survival pathways by controlling activity of the key transcription factors NF-κB and NFAT. Previous studies identified an activation-induced auto-phosphorylation site at Thr-219, located between the tandem C1 domains of the regulatory fragment in PKCθ, as a structural requirement for its correct membrane translocation and the subsequent transactivation of downstream signals leading to IL-2 production in a human T cell line. METHODS The present work aimed to define the role of this phosphorylation switch on PKCθ in a physiological context through a homozygous T219A knockin mouse strain. T cell activation was analyzed by H3-thymidine uptake (proliferative response), qRT-PCR and luminex measurements (cytokine production). NFAT and NF-κB transactivation responses were estimated by Gel mobility shift and Alpha Screen assays. Frequencies of T cell subsets were analyzed by flow cytometry. RESULTS Despite a normal T cell development, in vitro activated effector T cells clearly revealed a requirement of Thr-219 phosphorylation site on PKCθ for a transactivation of NF-κB and NFAT transcription factors and, subsequently, robust IL-2 and IFN-γ expression. CONCLUSION This phenotype is reminiscent of the PKCθ knockout T cells, physiologically validating that this (p) Thr-219 auto-phosphorylation site indeed critically regulates PKCθ function in primary mouse T cells.
Collapse
Affiliation(s)
- Nikolaus Thuille
- Department for Pharmacology and Genetics, Medical University Innsbruck, Innsbruck, Austria.
| | - Kerstin Siegmund
- Department for Pharmacology and Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Victoria Klepsch
- Department for Pharmacology and Genetics, Medical University Innsbruck, Innsbruck, Austria
| | | | - Sarah Danklmaier
- Department for Pharmacology and Genetics, Medical University Innsbruck, Innsbruck, Austria
| | | | - Gottfried Baier
- Department for Pharmacology and Genetics, Medical University Innsbruck, Innsbruck, Austria.
| |
Collapse
|
59
|
Mohammed SG, Ibrahim IAH, Mahmoud MF, Mahmoud AA. Carvedilol protects against hepatic ischemia/reperfusion injury in high-fructose/high-fat diet-fed mice: Role of G protein-coupled receptor kinase 2 and 5. Toxicol Appl Pharmacol 2019; 382:114750. [DOI: 10.1016/j.taap.2019.114750] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/26/2019] [Accepted: 09/09/2019] [Indexed: 12/28/2022]
|
60
|
Collier PN, Twin HC, Knegtel RMA, Boyall D, Brenchley G, Davis CJ, Keily S, Mak C, Miller A, Pierard F, Settimo L, Bolton CM, Chiu P, Curnock A, Doyle E, Tanner AJ, Jimenez JM. Discovery of Selective, Orally Bioavailable Pyrazolopyridine Inhibitors of Protein Kinase Cθ (PKCθ) That Ameliorate Symptoms of Experimental Autoimmune Encephalomyelitis. ACS Med Chem Lett 2019; 10:1134-1139. [PMID: 31417666 DOI: 10.1021/acsmedchemlett.9b00134] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/27/2019] [Indexed: 11/28/2022] Open
Abstract
PKCθ plays an important role in T cell biology and is a validated target for a number of disease states. A series of potent and selective PKCθ inhibitors were designed and synthesized starting from a HTS hit compound. Cell activity, while initially a challenge to achieve, was built into the series by transforming the nitrile unit of the scaffold into a primary amine, the latter predicted to form a new hydrogen bond to Asp508 near the entrance of the ATP binding site of PKCθ. Significant improvements in physiochemical parameters were observed on introduction of an oxetane group proximal to a primary amine leading to compound 22, which demonstrated a reduction of symptoms in a mouse model of multiple sclerosis.
Collapse
Affiliation(s)
- Philip N. Collier
- Vertex Pharmaceuticals Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Elisabeth Doyle
- Vertex Pharmaceuticals Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | | | | |
Collapse
|
61
|
Siegmund K, Thuille N, Posch N, Fresser F, Leitges M, Baier G. Novel mutant mouse line emphasizes the importance of protein kinase C theta for CD4 + T lymphocyte activation. Cell Commun Signal 2019; 17:56. [PMID: 31138259 PMCID: PMC6537413 DOI: 10.1186/s12964-019-0364-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/14/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The protein kinase C theta (PKCθ) has an important and non-redundant function downstream of the antigen receptor and co-receptor complex in T lymphocytes. PKCθ is not only essential for activation of NF-κB, AP-1 and NFAT and subsequent interleukin-2 expression, but also critical for positive selection and development of regulatory T lymphocytes in the thymus. Several domains regulate its activity, such as a pseudosubstrate sequence mediating an auto-inhibitory intramolecular interaction, the tandem C1 domains binding diacylglycerol, and phosphorylation at conserved tyrosine, threonine as well as serine residues throughout the whole length of the protein. To address the importance of the variable domain V1 at the very N-terminus, which is encoded by exon 2, a mutated version of PKCθ was analyzed for its ability to stimulate T lymphocyte activation. METHODS T cell responses were analyzed with promoter luciferase reporter assays in Jurkat T cells transfected with PKCθ expression constructs. A mouse line expressing mutated instead of wild type PKCθ was analyzed in comparison to PKCθ-deficient and wild type mice for thymic development and T cell subsets by flow cytometry and T cell activation by quantitative RT-PCR, luminex analysis and flow cytometry. RESULTS In cell lines, the exon 2-replacing mutation impaired the transactivation of interleukin-2 expression by constitutively active mutant form of PKCθ. Moreover, analysis of a newly generated exon 2-mutant mouse line (PKCθ-E2mut) revealed that the N-terminal replacement mutation results in an hypomorph mutant of PKCθ combined with reduced PKCθ protein levels in CD4+ T lymphocytes. Thus, PKCθ-dependent functions in T lymphocytes were affected resulting in impaired thymic development of single positive T lymphocytes in vivo. In particular, there was diminished generation of regulatory T lymphocytes. Furthermore, early activation responses such as interleukin-2 expression of CD4+ T lymphocytes were significantly reduced even though cell viability was not affected. Thus, PKCθ-E2mut mice show a phenotype similar to conventional PKCθ-deficient mice. CONCLUSION Taken together, PKCθ-E2mut mice show a phenotype similar to conventional PKCθ-deficient mice. Both our in vitro T cell culture experiments and ex vivo analyses of a PKCθ-E2-mutant mouse line independently validate the importance of PKCθ downstream of the antigen-receptor complex for activation of CD4+ T lymphocytes.
Collapse
Affiliation(s)
- Kerstin Siegmund
- Department for Pharmacology and Genetics, Medical University Innsbruck, Division of Translational Cell Genetics, Peter Mayr Str. 1a, A-6020 Innsbruck, Austria
| | - Nikolaus Thuille
- Department for Pharmacology and Genetics, Medical University Innsbruck, Division of Translational Cell Genetics, Peter Mayr Str. 1a, A-6020 Innsbruck, Austria
| | - Nina Posch
- Department for Pharmacology and Genetics, Medical University Innsbruck, Division of Translational Cell Genetics, Peter Mayr Str. 1a, A-6020 Innsbruck, Austria
| | - Friedrich Fresser
- Department for Pharmacology and Genetics, Medical University Innsbruck, Division of Translational Cell Genetics, Peter Mayr Str. 1a, A-6020 Innsbruck, Austria
| | | | - Gottfried Baier
- Department for Pharmacology and Genetics, Medical University Innsbruck, Division of Translational Cell Genetics, Peter Mayr Str. 1a, A-6020 Innsbruck, Austria
| |
Collapse
|
62
|
Siegmund K, Thuille N, Posch N, Fresser F, Leitges M, Baier G. Novel mutant mouse line emphasizes the importance of protein kinase C theta for CD4 + T lymphocyte activation. Cell Commun Signal 2019. [PMID: 31138259 PMCID: PMC6537413 DOI: 10.1186/s12964-019-0364-0#] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The protein kinase C theta (PKCθ) has an important and non-redundant function downstream of the antigen receptor and co-receptor complex in T lymphocytes. PKCθ is not only essential for activation of NF-κB, AP-1 and NFAT and subsequent interleukin-2 expression, but also critical for positive selection and development of regulatory T lymphocytes in the thymus. Several domains regulate its activity, such as a pseudosubstrate sequence mediating an auto-inhibitory intramolecular interaction, the tandem C1 domains binding diacylglycerol, and phosphorylation at conserved tyrosine, threonine as well as serine residues throughout the whole length of the protein. To address the importance of the variable domain V1 at the very N-terminus, which is encoded by exon 2, a mutated version of PKCθ was analyzed for its ability to stimulate T lymphocyte activation. METHODS T cell responses were analyzed with promoter luciferase reporter assays in Jurkat T cells transfected with PKCθ expression constructs. A mouse line expressing mutated instead of wild type PKCθ was analyzed in comparison to PKCθ-deficient and wild type mice for thymic development and T cell subsets by flow cytometry and T cell activation by quantitative RT-PCR, luminex analysis and flow cytometry. RESULTS In cell lines, the exon 2-replacing mutation impaired the transactivation of interleukin-2 expression by constitutively active mutant form of PKCθ. Moreover, analysis of a newly generated exon 2-mutant mouse line (PKCθ-E2mut) revealed that the N-terminal replacement mutation results in an hypomorph mutant of PKCθ combined with reduced PKCθ protein levels in CD4+ T lymphocytes. Thus, PKCθ-dependent functions in T lymphocytes were affected resulting in impaired thymic development of single positive T lymphocytes in vivo. In particular, there was diminished generation of regulatory T lymphocytes. Furthermore, early activation responses such as interleukin-2 expression of CD4+ T lymphocytes were significantly reduced even though cell viability was not affected. Thus, PKCθ-E2mut mice show a phenotype similar to conventional PKCθ-deficient mice. CONCLUSION Taken together, PKCθ-E2mut mice show a phenotype similar to conventional PKCθ-deficient mice. Both our in vitro T cell culture experiments and ex vivo analyses of a PKCθ-E2-mutant mouse line independently validate the importance of PKCθ downstream of the antigen-receptor complex for activation of CD4+ T lymphocytes.
Collapse
Affiliation(s)
- Kerstin Siegmund
- 0000 0000 8853 2677grid.5361.1Department for Pharmacology and Genetics, Medical University Innsbruck, Division of Translational Cell Genetics, Peter Mayr Str. 1a, A-6020 Innsbruck, Austria
| | - Nikolaus Thuille
- 0000 0000 8853 2677grid.5361.1Department for Pharmacology and Genetics, Medical University Innsbruck, Division of Translational Cell Genetics, Peter Mayr Str. 1a, A-6020 Innsbruck, Austria
| | - Nina Posch
- 0000 0000 8853 2677grid.5361.1Department for Pharmacology and Genetics, Medical University Innsbruck, Division of Translational Cell Genetics, Peter Mayr Str. 1a, A-6020 Innsbruck, Austria
| | - Friedrich Fresser
- 0000 0000 8853 2677grid.5361.1Department for Pharmacology and Genetics, Medical University Innsbruck, Division of Translational Cell Genetics, Peter Mayr Str. 1a, A-6020 Innsbruck, Austria
| | | | - Gottfried Baier
- 0000 0000 8853 2677grid.5361.1Department for Pharmacology and Genetics, Medical University Innsbruck, Division of Translational Cell Genetics, Peter Mayr Str. 1a, A-6020 Innsbruck, Austria
| |
Collapse
|
63
|
Zhao H, Tong G, Liu J, Wang J, Zhang H, Bai J, Hou L, Zhang Z. IP3R and RyR channels are involved in traffic-related PM 2.5-induced disorders of calcium homeostasis. Toxicol Ind Health 2019; 35:339-348. [PMID: 31023176 DOI: 10.1177/0748233719843763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Traffic-related PM2.5 can result in immune system damage and diseases; however, the possible mechanism of its effect remains unclear. Calcium (Ca2+) is a critical signaling molecule in a variety of cells. Indeed, Ca2+ is involved in numerous basic functions, including cell growth and death. In this study, Jurkat T cells were used to explore the possible mechanisms of PM2.5-elicited intracellular Ca2+signal responses. The results indicate that PM2.5 could raise the level of intracellular Ca2+ concentration ([Ca2+]i). The [Ca2+]i in Jurkat T cells significantly decreased after treatment with heparin as an inhibitor of inositol trisphosphate receptors (IP3 R), or procaine as an inhibitor of ryanodine receptors (RyR). The expression of calmodulin (CAM) protein decreased in a time-dependent manner after exposure to PM2.5, whereas the activity of Ca2+-Mg2+-ATPase seemed to show a slight drop trend after exposure to PM2.5. Our findings demonstrate that PM2.5 stimulation to Jurkat T cells would result in an increase in [Ca2+]i, which is modulated by IP3 R and RyR, as well as CAM.
Collapse
Affiliation(s)
- Huichao Zhao
- 1 Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Guoqiang Tong
- 1 Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Jiejing Liu
- 1 Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Jing Wang
- 1 Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Hongmei Zhang
- 1 Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Jianying Bai
- 1 Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Lifang Hou
- 2 Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,3 Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Zhihong Zhang
- 1 Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| |
Collapse
|
64
|
Diacylglycerol kinase control of protein kinase C. Biochem J 2019; 476:1205-1219. [DOI: 10.1042/bcj20180620] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 12/27/2022]
Abstract
Abstract
The diacylglycerol kinases (DGK) are lipid kinases that transform diacylglycerol (DAG) into phosphatidic acid (PA) in a reaction that terminates DAG-based signals. DGK provide negative regulation to conventional and novel protein kinase C (PKC) enzymes, limiting local DAG availability in a tissue- and subcellular-restricted manner. Defects in the expression/activity of certain DGK isoforms contribute substantially to cognitive impairment and mental disorders. Abnormal DGK overexpression in tumors facilitates invasion and resistance to chemotherapy preventing tumor immune destruction by tumor-infiltrating lymphocytes. Effective translation of these findings into therapeutic approaches demands a better knowledge of the physical and functional interactions between the DGK and PKC families. DGKζ is abundantly expressed in the nervous and immune system, where physically and functionally interacts with PKCα. The latest discoveries suggest that PDZ-mediated interaction facilitates spatial restriction of PKCα by DGKζ at the cell–cell contact sites in a mechanism where the two enzymes regulate each other. In T lymphocytes, DGKζ interaction with Sorting Nexin 27 (SNX27) guarantees the basal control of PKCα activation. SNX27 is a trafficking component required for normal brain function whose deficit has been linked to Alzheimer's disease (AD) pathogenesis. The enhanced PKCα activation as the result of SNX27 silencing in T lymphocytes aligns with the recent correlation found between gain-of-function PKCα mutations and AD and suggests that disruption of the mechanisms that provides a correct spatial organization of DGKζ and PKCα may lie at the basis of immune and neuronal synapse impairment.
Collapse
|
65
|
Rodríguez-Jorge O, Kempis-Calanis LA, Abou-Jaoudé W, Gutiérrez-Reyna DY, Hernandez C, Ramirez-Pliego O, Thomas-Chollier M, Spicuglia S, Santana MA, Thieffry D. Cooperation between T cell receptor and Toll-like receptor 5 signaling for CD4 + T cell activation. Sci Signal 2019; 12:12/577/eaar3641. [PMID: 30992399 DOI: 10.1126/scisignal.aar3641] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CD4+ T cells recognize antigens through their T cell receptors (TCRs); however, additional signals involving costimulatory receptors, for example, CD28, are required for proper T cell activation. Alternative costimulatory receptors have been proposed, including members of the Toll-like receptor (TLR) family, such as TLR5 and TLR2. To understand the molecular mechanism underlying a potential costimulatory role for TLR5, we generated detailed molecular maps and logical models for the TCR and TLR5 signaling pathways and a merged model for cross-interactions between the two pathways. Furthermore, we validated the resulting model by analyzing how T cells responded to the activation of these pathways alone or in combination, in terms of the activation of the transcriptional regulators CREB, AP-1 (c-Jun), and NF-κB (p65). Our merged model accurately predicted the experimental results, showing that the activation of TLR5 can play a similar role to that of CD28 activation with respect to AP-1, CREB, and NF-κB activation, thereby providing insights regarding the cross-regulation of these pathways in CD4+ T cells.
Collapse
Affiliation(s)
- Otoniel Rodríguez-Jorge
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, 62210 Cuernavaca, México.,Escuela de Estudios Superiores de Axochiapan, Universidad Autónoma del Estado de Morelos, 62951 Axochiapan, México
| | - Linda A Kempis-Calanis
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, 62210 Cuernavaca, México
| | - Wassim Abou-Jaoudé
- Computational System Biology Team, Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, École Normale Supérieure, Université PSL, 75005 Paris, France
| | - Darely Y Gutiérrez-Reyna
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, 62210 Cuernavaca, México
| | - Céline Hernandez
- Computational System Biology Team, Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, École Normale Supérieure, Université PSL, 75005 Paris, France
| | - Oscar Ramirez-Pliego
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, 62210 Cuernavaca, México
| | - Morgane Thomas-Chollier
- Computational System Biology Team, Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, École Normale Supérieure, Université PSL, 75005 Paris, France
| | | | - Maria A Santana
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, 62210 Cuernavaca, México.
| | - Denis Thieffry
- Computational System Biology Team, Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, École Normale Supérieure, Université PSL, 75005 Paris, France.
| |
Collapse
|
66
|
Xie J, Han X, Zhao C, Canonigo-Balancio AJ, Yates JR, Li Y, Lillemeier BF, Altman A. Phosphotyrosine-dependent interaction between the kinases PKCθ and Zap70 promotes proximal TCR signaling. Sci Signal 2019; 12:12/577/eaar3349. [PMID: 30992398 DOI: 10.1126/scisignal.aar3349] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Protein kinase C-θ (PKCθ) is an important component of proximal T cell receptor (TCR) signaling. We previously identified the amino-terminal C2 domain of PKCθ as a phosphotyrosine (pTyr)-binding domain. Using a mutant form of PKCθ that cannot bind pTyr (PKCθHR2A), we showed that pTyr binding by PKCθ was required for TCR-induced T cell activation, proliferation, and TH2 cell differentiation but not for T cell development. Using tandem mass spectrometry and coimmunoprecipitation, we identified the kinase ζ-associated protein kinase of 70 kDa (Zap70) as a binding partner of the PKCθ pTyr-binding pocket. Tyr126 of Zap70 directly bound to PKCθ, and the interdomain B residues Tyr315 and Tyr319 were indirectly required for binding to PKCθ, reflecting their role in promoting the open conformation of Zap70. PKCθHR2A-expressing CD4+ T cells displayed defects not only in known PKCθ-dependent signaling events, such as nuclear factor κB (NF-κB) activation and TH2 cell differentiation, but also in full activation of Zap70 itself and in the activating phosphorylation of linker of activation of T cells (LAT) and phospholipase C-γ1 (PLCγ1), signaling proteins that are traditionally considered to be activated independently of PKC. These findings demonstrate that PKCθ plays an important role in a positive feedback regulatory loop that modulates TCR-proximal signaling and, moreover, provide a mechanistic explanation for earlier reports that documented an important role for PKCθ in T cell Ca2+ signaling. This PKCθ-Zap70 interaction could potentially serve as a promising and highly selective immunosuppressive drug target in autoimmunity and organ transplantation.
Collapse
Affiliation(s)
- Jiji Xie
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Xuemei Han
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Chensi Zhao
- State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510006, China
| | | | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yingqiu Li
- State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Björn F Lillemeier
- Nomis Center for Immunobiology and Microbial Pathogenesis & Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Amnon Altman
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA.
| |
Collapse
|
67
|
Chen ZL, Gong BN, Wang QL, Xiao ZH, Deng C, Wang WQ, Li Y. Characterisation of amphioxus protein kinase C-δ/θ reveals a unique proto-V3 domain suggesting an evolutionary mechanism for PKC-θ unique V3. FISH & SHELLFISH IMMUNOLOGY 2019; 84:1100-1107. [PMID: 30408601 DOI: 10.1016/j.fsi.2018.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/29/2018] [Accepted: 11/01/2018] [Indexed: 06/08/2023]
Abstract
A primitive adaptive immune system has recently been suggested to be present in a basal chordate amphioxus (Branchiostoma belcheri, Bb), making it an ideal model for studying the origin of adaptive immune. The novel protein kinase C isoform PKC-θ, but not its closest isoform PKC-δ, plays a critical role for mammalian T-cell activation via translocation to immunological synapse (IS) mediated by a unique PKC-θ V3 domain containing one PxxP motif. To understand the evolution of this unique PKC-θ V3 domain and the primitive adaptive immune system in amphioxus, we comparatively studied the orthologs of PKC-δ and -θ from amphioxus and other species. Phylogenetic analysis showed BbPKC-δ/θ to be the common ancestor of vertebrate PKC-δ and PKC-θ, with a V3 domain containing two PxxP motifs. One motif is conserved in both zebrafish and mammalian PKC-θ but is absent in PKC-δ V3 domain of these species, and has already emerged in drosophila PKC-δ. The other non-conserved motif emerged in BbPKC-δ/θ, and only retained in Danio rerio PKC-δ (DrPKC-δ) but lost in mammalian PKC-δ and -θ. Comparative analyses of the sequence and function of BbPKC-δ/θ, DrPKC-δ, DrPKC-θ and Homo sapiens PKC-θ (HsPKC-θ) in IS translocation and T-cell receptor (TCR)-induced NF-κB activation revealed that retention of the conserved PxxP motif and loss of the non-conserved PxxP motif in mammalian PKC-θ and loss of both PxxP motifs in mammalian PKC-δ accomplish the unique function of PKC-θ in T cells. Together, this study suggests an evolutionary mechanism for PKC-θ unique V3 and reveals BbPKC-δ/θ is the common ancestor of PKC-δ and -θ with a functional proto-V3 domain, supplying new evidence for the existence of primitive adaptive immune system in amphioxus.
Collapse
Affiliation(s)
- Zhi-Long Chen
- State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Bei-Ni Gong
- State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Qi-Long Wang
- State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Zhi-Hui Xiao
- State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Chong Deng
- State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Wen-Qian Wang
- State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Yingqiu Li
- State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, PR China.
| |
Collapse
|
68
|
Tang R, Langdon WY, Zhang J. Regulation of immune responses by E3 ubiquitin ligase Cbl-b. Cell Immunol 2018; 340:103878. [PMID: 30442330 DOI: 10.1016/j.cellimm.2018.11.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 12/21/2022]
Abstract
Casitas B lymphoma-b (Cbl-b), a RING finger E3 ubiquitin ligase, has been identified as a critical regulator of adaptive immune responses. Cbl-b is essential for establishing the threshold for T cell activation and regulating peripheral T cell tolerance through various mechanisms. Intriguingly, recent studies indicate that Cbl-b also modulates innate immune responses, and plays a key role in host defense to pathogens and anti-tumor immunity. These studies suggest that targeting Cbl-b may represent a potential therapeutic strategy for the management of human immune-related disorders such as autoimmune diseases, infections, tumors, and allergic airway inflammation. In this review, we summarize the latest developments regarding the roles of Cbl-b in innate and adaptive immunity, and immune-mediated diseases.
Collapse
Affiliation(s)
- Rong Tang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Wallace Y Langdon
- School of Biological Sciences, University of Western Australia, Perth, Australia
| | - Jian Zhang
- Department of Pathology, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
69
|
Fu X, Xu M, Song Y, Li Y, Zhang H, Zhang J, Zhang C. Enhanced interaction between SEC2 mutant and TCR Vβ induces MHC II-independent activation of T cells via PKCθ/NF-κB and IL-2R/STAT5 signaling pathways. J Biol Chem 2018; 293:19771-19784. [PMID: 30352872 DOI: 10.1074/jbc.ra118.003668] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/23/2018] [Indexed: 11/06/2022] Open
Abstract
SEC2, a major histocompatibility complex class II (MHC II)-dependent T-cell mitogen, binds MHC II and T-cell receptor (TCR) Vβs to induce effective co-stimulating signals for clonal T-cell expansion. We previously characterized a SEC2 mutant with increased recognition of TCR Vβs, ST-4, which could intensify NF-κB signaling transduction, leading to IL-2 production and T-cell activation. In this study, we found that in contrast to SEC2, ST-4 could induce murine CD4+ T-cell proliferation in a Vβ8.2- and Vβ8.3-specific manner in the absence of MHC II+ antigen-presenting cells (APCs). Furthermore, although IL-2 secretion in response to either SEC2 or ST-4 stimulation was accompanied by up-regulation of protein kinase Cθ (PKCθ), inhibitor of κB (IκB), α and β IκB kinase (IKKα/β), IκBα, and NF-κB in mouse splenocytes, only ST-4 could activate CD4+ T cells in the absence of MHC II+ APCs through the PKCθ/NF-κB signaling pathway. The PKCθ inhibitor AEB071 significantly suppressed SEC2/ST-4-induced T-cell proliferation, CD69 and CD25 expression, and IL-2 secretion with or without MHC II+ APCs. Further, SEC2/ST-4-induced changes in PKCθ/NF-κB signaling were significantly relieved by AEB071 in a dose-dependent manner. Using Lck siRNA, we found that Lck controlled SEC2/ST-4-induced phosphorylation of PKCθ. We also demonstrated that the IL-2R/STAT5 pathway is essential for SEC2/ST-4-induced T-cell activation. Collectively, our data demonstrate that an enhanced ST-4-TCR interaction can compensate for lack of MHC II and stimulate MHC II-free CD4+ T-cell proliferation via PKCθ/NF-κB and IL-2R/STAT5 signaling pathways. Compared with SEC2, intensified PKCθ/NF-κB and IL-2R/STAT5 signals induced by ST-4 lead to enhanced T-cell activation. The results of this study will facilitate better understanding of TCR-based immunotherapies for cancer.
Collapse
Affiliation(s)
- Xuanhe Fu
- From the Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, China and.,the School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 WenHua Road, Shenyang 110016, China
| | - Mingkai Xu
- From the Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, China and
| | - Yubo Song
- From the Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, China and
| | - Yongqiang Li
- From the Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, China and
| | - Huiwen Zhang
- From the Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, China and
| | - Jinghai Zhang
- the School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 WenHua Road, Shenyang 110016, China
| | - Chenggang Zhang
- From the Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, China and
| |
Collapse
|
70
|
GWAS analysis using interspecific backcross progenies reveals superior blue catfish alleles responsible for strong resistance against enteric septicemia of catfish. Mol Genet Genomics 2018; 293:1107-1120. [PMID: 29737402 DOI: 10.1007/s00438-018-1443-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 05/02/2018] [Indexed: 12/11/2022]
Abstract
Infectious diseases pose significant threats to the catfish industry. Enteric septicemia of catfish (ESC) caused by Edwardsiella ictaluri is the most devastating disease for catfish aquaculture, causing huge economic losses annually. Channel catfish and blue catfish exhibit great contrast in resistance against ESC, with channel catfish being highly susceptible and blue catfish being highly resistant. As such, the interspecific backcross progenies provide an ideal system for the identification of quantitative trait locus (QTL). We previously reported one significant QTL on linkage group (LG) 1 using the third-generation backcrosses, but the number of founders used to make the second- and third-generation backcross progenies was very small. Although the third-generation backcross progenies provided a greater power for fine mapping than the first-generation backcrosses, some major QTL for disease resistance may have been missing due to the small numbers of founders used to produce the higher generation backcrosses. In this study, we performed a genome-wide association study using first-generation backcrosses with the catfish 690 K SNP arrays to identify additional ESC disease resistance QTL, especially those at the species level. Two genomic regions on LG1 and LG23 were determined to be significantly associated with ESC resistance as revealed by a mixed linear model and family-based association test. Examination of the resistance alleles indicated their origin from blue catfish, indicating that at least two major disease resistance loci exist among blue catfish populations. Upon further validation, markers linked with major ESC disease resistance QTL should be useful for marker-assisted introgression, allowing development of highly ESC resistant breeds of catfish.
Collapse
|
71
|
Wang H, Wang C, Wang L, Liu T, Wang Z, You H, Zheng Y, Luo D. Orai1 downregulation impairs lymphocyte function in type 2 diabetes mellitus. Biochem Biophys Res Commun 2018; 500:384-390. [PMID: 29654766 DOI: 10.1016/j.bbrc.2018.04.083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 11/25/2022]
Abstract
BACKGROUND/AIMS It has been suggested that diabetes is associated with immune dysfunction, in which Ca2+ signaling malfunction in lymphocyte may contributes most. However, the pattern of the Ca2+ signal disorder and the mechanism(s) that explains the change are unclear. Here, in this study we aimed to investigate possible changes and mechanism(s) accounting for the internal Ca2+ signals in diabetic T lymphocyte upon stimulation. METHODS AND RESULTS Using Fura-2-AM, we found a significant decrease in Ca2+ influx induced by thapsigargin (TG) and anti-CD3 antibody (OKT3) in T lymphocytes from blood of both diabetes patients and animals. Furthermore, a downregulated Orai1 protein expression, but not mRNA, was also observed in these cells using western blot and qRT-PCR, respectively. In addition, in high-glucose and agonist treated Jurkat T cells, Ca2+ entry and the release of interleukin-2 (IL-2) were also decreased. Orai1 expression reduced, while stromal interaction molecule 1 (STIM1) and other downstream proteins remained unchanged. CONCLUSION This study demonstrates that the declined Orai1 expression, at least partly, contributes to the downregulated Ca2+ entry during lymphocyte excitation, providing an important mechanism for T lymphocyte malfunction in diabetes.
Collapse
Affiliation(s)
- Haoyang Wang
- Department of Pharmacology, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Cong Wang
- Department of Pharmacology, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Limin Wang
- Department of Pharmacology, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Tiantian Liu
- Department of Pharmacology, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Zhiqiang Wang
- Department of Pharmacology, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Hongjie You
- Department of Pharmacology, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Yuanyuan Zheng
- Department of Pharmacology, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Dali Luo
- Department of Pharmacology, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
72
|
Abstract
The CARMA1-BCL10-MALT1 (CBM) signalosome is a central mediator of T cell receptor and B cell receptor-induced NF-κB signaling that regulates multiple lymphocyte functions. While caspase-recruitment domain (CARD) membrane-associated guanylate kinase (MAGUK) protein 1 (CARMA1) nucleates B cell lymphoma 10 (BCL10) filament formation through interactions between CARDs, mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) is a paracaspase with structural similarity to caspases, which recruits TNF receptor-associated factor 6 (TRAF6) for K63-linked polyubiquitination. Here we present cryo-electron microscopy (cryo-EM) structure of the BCL10 CARD filament at 4.0-Å resolution. The structure redefines CARD-CARD interactions compared with the previous EM structure determined from a negatively stained sample. Surprisingly, time-lapse confocal imaging shows that BCL10 polymerizes in a unidirectional manner. CARMA1, the BCL10 nucleator, serves as a hub for formation of star-shaped filamentous networks of BCL10 and significantly decreases the lag period of BCL10 polymerization. Cooperative MALT1 interaction with BCL10 filaments observed under EM suggests immediate dimerization of MALT1 in the BCL10 filamentous scaffold. In addition, TRAF6 cooperatively decorates CBM filaments to form higher-order assemblies, likely resulting in all-or-none activation of the downstream pathway. Collectively, these data reveal biophysical mechanisms in the assembly of the CARMA1-BCL10-MALT1-TRAF6 complex for signal transduction.
Collapse
|
73
|
Hart M, Rheinheimer S, Leidinger P, Backes C, Menegatti J, Fehlmann T, Grässer F, Keller A, Meese E. Identification of miR-34a-target interactions by a combined network based and experimental approach. Oncotarget 2018; 7:34288-99. [PMID: 27144431 PMCID: PMC5085156 DOI: 10.18632/oncotarget.9103] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 04/16/2016] [Indexed: 12/25/2022] Open
Abstract
Circulating miRNAs have been associated with numerous human diseases. The lack of understanding the functional roles of blood-born miRNAs limits, however, largely their value as disease marker. In a systems biology analysis we identified miR-34a as strongly associated with pathogenesis. Genome-wide analysis of miRNAs in blood cell fractions highlighted miR-34a as most significantly up-regulated in CD3+ cells of lung cancer patients. By our in silico analysis members of the protein kinase C family (PKC) were indicated as miR-34a target genes. Using a luciferase assay, we confirmed binding of miR-34a-5p to target sequences within the 3′UTRs of five PKC family members. To verify the biological effect, we transfected HEK 293T and Jurkat cells with miR-34a-5p causing reduced endogenous protein levels of PKC isozymes. By combining bioinformatics approaches with experimental validation, we demonstrate that one of the most relevant disease associated miRNAs has the ability to control the expression of a gene family.
Collapse
Affiliation(s)
- Martin Hart
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| | | | - Petra Leidinger
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| | - Christina Backes
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Jennifer Menegatti
- Institute of Virology, Saarland University Medical School, 66421 Homburg, Germany
| | - Tobias Fehlmann
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Friedrich Grässer
- Institute of Virology, Saarland University Medical School, 66421 Homburg, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
74
|
Hoeger B, Serwas NK, Boztug K. Human NF-κB1 Haploinsufficiency and Epstein-Barr Virus-Induced Disease-Molecular Mechanisms and Consequences. Front Immunol 2018; 8:1978. [PMID: 29403474 PMCID: PMC5778108 DOI: 10.3389/fimmu.2017.01978] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/20/2017] [Indexed: 01/11/2023] Open
Abstract
Nuclear factor kappa-light-chain-enhancer of activated B cells 1 (NF-κB1)-related human primary immune deficiencies have initially been characterized as defining a subgroup of common variable immunodeficiencies (CVIDs), representing intrinsic B-cell disorders with antibody deficiency and recurrent infections of various kind. Recent evidence indicates that NF-κB1 haploinsufficiency underlies a variable type of combined immunodeficiency (CID) affecting both B and T lymphocyte compartments, with a broadened spectrum of disease manifestations, including Epstein–Barr virus (EBV)-induced lymphoproliferative disease and immediate life-threatening consequences. As part of this review series focused on EBV-related primary immunodeficiencies, we discuss the current clinical and molecular understanding of monoallelic NFKB1 germline mutations with special focus on the emerging context of EBV-associated disease. We outline mechanistic implications of dysfunctional NF-κB1 in B and T cells and discuss the fatal relation of impaired T-cell function with the inability to clear EBV infections. Finally, we compare common and suggested treatment angles in the context of this complex disease.
Collapse
Affiliation(s)
- Birgit Hoeger
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Nina Kathrin Serwas
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.,Department of Pediatrics, St. Anna Kinderspital and Children's Cancer Research Institute, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
75
|
Unexpected positive control of NFκB and miR-155 by DGKα and ζ ensures effector and memory CD8+ T cell differentiation. Oncotarget 2018; 7:33744-64. [PMID: 27014906 PMCID: PMC5085116 DOI: 10.18632/oncotarget.8164] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/04/2016] [Indexed: 11/25/2022] Open
Abstract
Signals from the T-cell receptor (TCR) and γ-chain cytokine receptors play crucial roles in initiating activation and effector/memory differentiation of CD8 T-cells. We report here that simultaneous deletion of both diacylglycerol kinase (DGK) α and ζ (DKO) severely impaired expansion of CD8 effector T cells and formation of memory CD8 T-cells after Listeria monocytogenes infection. Moreover, ablation of both DGKα and ζ in preformed memory CD8 T-cells triggered death and impaired homeostatic proliferation of these cells. DKO CD8 T-cells were impaired in priming due to decreased expression of chemokine receptors and migration to the draining lymph nodes. Moreover, DKO CD8 T-cells were unexpectedly defective in NFκB-mediated miR-155 transcript, leading to excessive SOCS1 expression and impaired γ-chain cytokine signaling. Our data identified a DGK-NFκB-miR-155-SOCS1 axis that bridges TCR and γ-chain cytokine signaling for robust CD8 T-cell primary and memory responses to bacterial infection.
Collapse
|
76
|
A Abdullah A, Abdullah R, A Nazariah Z, N Balakrishnan K, Firdaus J Abdullah F, A Bala J, Mohd-Lila MA. Cyclophilin A as a target in the treatment of cytomegalovirus infections. Antivir Chem Chemother 2018; 26:2040206618811413. [PMID: 30449131 PMCID: PMC6243413 DOI: 10.1177/2040206618811413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 10/12/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Viruses are obligate parasites that depend on the cellular machinery of the host to regenerate and manufacture their proteins. Most antiviral drugs on the market today target viral proteins. However, the more recent strategies involve targeting the host cell proteins or pathways that mediate viral replication. This new approach would be effective for most viruses while minimizing drug resistance and toxicity. METHODS Cytomegalovirus replication, latency, and immune response are mediated by the intermediate early protein 2, the main protein that determines the effectiveness of drugs in cytomegalovirus inhibition. This review explains how intermediate early protein 2 can modify the action of cyclosporin A, an immunosuppressive, and antiviral drug. It also links all the pathways mediated by cyclosporin A, cytomegalovirus replication, and its encoded proteins. RESULTS Intermediate early protein 2 can influence the cellular cyclophilin A pathway, affecting cyclosporin A as a mediator of viral replication or anti-cytomegalovirus drug. CONCLUSION Cyclosporin A has a dual function in cytomegalovirus pathogenesis. It has the immunosuppressive effect that establishes virus replication through the inhibition of T-cell function. It also has an anti-cytomegalovirus effect mediated by intermediate early protein 2. Both of these functions involve cyclophilin A pathway.
Collapse
Affiliation(s)
- Ashwaq A Abdullah
- 1 Institute of Bioscience, University Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 2 Department of Microbiology, Faculty of Applied Science, Taiz University, Taiz, Yemen
| | - Rasedee Abdullah
- 1 Institute of Bioscience, University Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 3 Department of Veterinary Laboratory Diagnosis, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| | - Zeenathul A Nazariah
- 1 Institute of Bioscience, University Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 4 Department of Pathology and Microbiology, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| | - Krishnan N Balakrishnan
- 4 Department of Pathology and Microbiology, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| | - Faez Firdaus J Abdullah
- 5 Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| | - Jamilu A Bala
- 4 Department of Pathology and Microbiology, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 6 Department of Medical Laboratory Science, Faculty of Allied Health Sciences, Bayero University Kano, Kano, Nigeria
| | - Mohd-Azmi Mohd-Lila
- 1 Institute of Bioscience, University Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 4 Department of Pathology and Microbiology, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| |
Collapse
|
77
|
SRC1 promotes Th17 differentiation by overriding Foxp3 suppression to stimulate RORγt activity in a PKC-θ-dependent manner. Proc Natl Acad Sci U S A 2017; 115:E458-E467. [PMID: 29282318 DOI: 10.1073/pnas.1717789115] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Th17 cells are major players in multiple autoimmune diseases and are developmentally contingent on reciprocal functionality between the transcription factor Retineic acid receptor-related orphan nuclear receptor gamma (RORγt) and Forkhead box protein P3 (Foxp3). Here we deciphered a previously unappreciated role of Steroid receptor coactivator 1 (SRC1) in defining the lineage decision for the development of Th17 versus induced T-regulatory (iTreg) cells. We demonstrate that SRC1 functions as a critical coactivator for RORγt in vivo to promote the functional dominance of RORγt over Foxp3 and thus establishing an unopposed Th17 differentiation program. In the absence of SRC1, T cell polarization resulted in decreased IL-17+ and increased Foxp3+ cells during both in vitro differentiation and in vivo development of experimental autoimmune encephalomyelitis. Mechanistically, T cell receptor (TCR) signaling molecule protein kinase C theta (PKC-θ)-mediated phosphorylation of SRC1 is important for inducing enhanced RORγt-SRC1 interaction, stable DNA binding, and resultant IL-17A transcription. Furthermore, phospho-SRC1-mediated recruitment of CARM1 induced prominent asymmetric dimethylation of H3R17 while preventing repressive H3K9 trimethylation and hence further modifying the IL-17 locus for optimal transcription. Moreover, binding of phospho-SRC1 to RORγt displaced bound Foxp3, leading to prompt degradation of the dissociated Foxp3 via a ubiquitin-proteosomal pathway and hence reversing the inhibitory action of Foxp3 on RORγt activity. Thus, SRC1 acts as a crucial molecular mediator to integrate positive PKC-θ-dependent TCR signals to induce peak RORγt activity and establish phenotypic dominance of Th17 over the iTreg pathway.
Collapse
|
78
|
Hage-Sleiman R, Hamze AB, El-Hed AF, Attieh R, Kozhaya L, Kabbani S, Dbaibo G. Ceramide inhibits PKCθ by regulating its phosphorylation and translocation to lipid rafts in Jurkat cells. Immunol Res 2017; 64:869-86. [PMID: 26798039 DOI: 10.1007/s12026-016-8787-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Protein kinase C theta (PKCθ) is a novel, calcium-independent member of the PKC family of kinases that was identified as a central player in T cell signaling and proliferation. Upon T cell activation by antigen-presenting cells, PKCθ gets phosphorylated and activated prior to its translocation to the immunological synapse where it couples with downstream effectors. PKCθ may be regulated by ceramide, a crucial sphingolipid that is known to promote differentiation, growth arrest, and apoptosis. To further investigate the mechanism, we stimulated human Jurkat T cells with either PMA or anti-CD3/anti-CD28 antibodies following induction of ceramide accumulation by adding exogenous ceramide, bacterial sphingomyelinase, or Fas ligation. Our results suggest that ceramide regulates the PKCθ pathway through preventing its critical threonine 538 (Thr538) phosphorylation and subsequent activation, thereby inhibiting the kinase's translocation to lipid rafts. Moreover, this inhibition is not likely to be a generic effect of ceramide on membrane reorganization. Other lipids, namely dihydroceramide, palmitate, and sphingosine, did not produce similar effects on PKCθ. Addition of the phosphatase inhibitors okadaic acid and calyculin A reversed the inhibition exerted by ceramide, and this suggests involvement of a ceramide-activated protein phosphatase. Such previously undescribed mechanism of regulation of PKCθ raises the possibility that ceramide, or one of its derivatives, and may prove valuable in novel therapeutic approaches for disorders involving autoimmunity or excessive inflammation-where PKCθ plays a critical role.
Collapse
Affiliation(s)
- Rouba Hage-Sleiman
- Department of Biology, Faculty of Sciences, Lebanese University, Hadath, Lebanon
| | - Asmaa B Hamze
- Department of Biomedical Science, Faculty of Health Sciences, Global University, Batrakiyye, Beirut, Lebanon
| | - Aimée F El-Hed
- Department of Pediatrics and Adolescent Medicine, Center for Infectious Diseases Research, Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, PO Box 11-0236 Riad El Solh, Beirut, Lebanon
| | - Randa Attieh
- Department of Pediatrics and Adolescent Medicine, Center for Infectious Diseases Research, Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, PO Box 11-0236 Riad El Solh, Beirut, Lebanon
| | - Lina Kozhaya
- Department of Pediatrics and Adolescent Medicine, Center for Infectious Diseases Research, Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, PO Box 11-0236 Riad El Solh, Beirut, Lebanon
| | - Sarah Kabbani
- Department of Pediatrics and Adolescent Medicine, Center for Infectious Diseases Research, Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, PO Box 11-0236 Riad El Solh, Beirut, Lebanon
| | - Ghassan Dbaibo
- Department of Pediatrics and Adolescent Medicine, Center for Infectious Diseases Research, Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, PO Box 11-0236 Riad El Solh, Beirut, Lebanon.
| |
Collapse
|
79
|
Kumar A, Gordy LE, Bezbradica JS, Stanic AK, Hill TM, Boothby MR, Van Kaer L, Joyce S. NF-κB Protects NKT Cells from Tumor Necrosis Factor Receptor 1-induced Death. Sci Rep 2017; 7:15594. [PMID: 29142275 PMCID: PMC5688132 DOI: 10.1038/s41598-017-15461-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/18/2017] [Indexed: 01/19/2023] Open
Abstract
Semi-invariant natural killer T (NKT) cells are innate-like lymphocytes with immunoregulatory properties. NKT cell survival during development requires signal processing by activated RelA/NF-κB. Nonetheless, the upstream signal(s) integrated by NF-κB in developing NKT cells remains incompletely defined. We show that the introgression of Bcl-xL-coding Bcl2l1 transgene into NF-κB signalling-deficient IκBΔN transgenic mouse rescues NKT cell development and differentiation in this mouse model. We reasoned that NF-κB activation was protecting developing NKT cells from death signals emanating either from high affinity agonist recognition by the T cell receptor (TCR) or from a death receptor, such as tumor necrosis factor receptor 1 (TNFR1) or Fas. Surprisingly, the single and combined deficiency in PKC-θ or CARMA-1-the two signal transducers at the NKT TCR proximal signalling node-only partially recapitulated the NKT cell deficiency observed in IκBΔN tg mouse. Accordingly, introgression of the Bcl2l1 transgene into PKC-θ null mouse failed to rescue NKT cell development. Instead, TNFR1-deficiency, but not the Fas-deficiency, rescued NKT cell development in IκBΔN tg mice. Consistent with this finding, treatment of thymocytes with an antagonist of the inhibitor of κB kinase -which blocks downstream NF-κB activation- sensitized NKT cells to TNF-α-induced cell death in vitro. Hence, we conclude that signal integration by NF-κB protects developing NKT cells from death signals emanating from TNFR1, but not from the NKT TCR or Fas.
Collapse
Affiliation(s)
- Amrendra Kumar
- Veterans Administration Tennessee Valley Healthcare System, Nashville, USA
- Department of Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Laura E Gordy
- Department of Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jelena S Bezbradica
- Department of Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Aleksandar K Stanic
- Department of Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Timothy M Hill
- Department of Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, 10996, USA
| | - Mark R Boothby
- Department of Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Luc Van Kaer
- Department of Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Sebastian Joyce
- Veterans Administration Tennessee Valley Healthcare System, Nashville, USA.
- Department of Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| |
Collapse
|
80
|
Zeng Q, Luo P, Gu J, Liang B, Liu Q, Zhang A. PKC θ-mediated Ca 2+/NF-AT signalling pathway may be involved in T-cell immunosuppression in coal-burning arsenic-poisoned population. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 55:44-50. [PMID: 28823652 DOI: 10.1016/j.etap.2017.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 07/17/2017] [Accepted: 08/06/2017] [Indexed: 06/07/2023]
Abstract
Arsenic poisoning is a worldwide endemic disease that affects thousands of people. Growing evidence from animal, cell, and human studies indicates that arsenic has deleterious effects on the immune system. The present investigation is a population-based study that observed changes in the proliferation of human T-cells and IL-2 and INF-γ mRNA expression. Our results show that coal-burning arsenic can cause T-cell immunosuppression in the population, and participates in the occurrence and development of arsenic poisoning. In addition, we analyzed the intracellular calcium index, expression of protein kinase C theta (PKC θ) and phosphorylated PKC θ, and the DNA-binding activity of NF-AT in peripheral blood mononuclear cells (PBMCs). Our analysis demonstrates that the PKC θ-mediated Ca2+/NF-AT signalling pathway may be involved in the T-cell immunosuppression of coal-burning arsenic-poisoned population. This study provides important data for a mechanistic understanding of endemic arsenic poisoning.
Collapse
Affiliation(s)
- Qibing Zeng
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Peng Luo
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Junying Gu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Bing Liang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Qizhan Liu
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Aihua Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, Guizhou Medical University, Guiyang 550025, Guizhou, China.
| |
Collapse
|
81
|
Ge Y, Paisie TK, Newman JRB, McIntyre LM, Concannon P. UBASH3A Mediates Risk for Type 1 Diabetes Through Inhibition of T-Cell Receptor-Induced NF-κB Signaling. Diabetes 2017; 66:2033-2043. [PMID: 28607106 PMCID: PMC5482087 DOI: 10.2337/db16-1023] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 03/20/2017] [Indexed: 01/19/2023]
Abstract
Although over 40 type 1 diabetes (T1D) risk loci have been mapped in humans, the causative genes and variants for T1D are largely unknown. Here, we investigated a candidate gene in the 21q22.3 risk locus-UBASH3A, which is primarily expressed in T cells where it is thought to play a largely redundant role. Genetic variants in UBASH3A have been shown to be associated with several autoimmune diseases in addition to T1D. However, the molecular mechanism underlying these genetic associations is unresolved. Our study reveals a previously unrecognized role of UBASH3A in human T cells: UBASH3A attenuates the NF-κB signal transduction upon T-cell receptor (TCR) stimulation by specifically suppressing the activation of the IκB kinase complex. We identify novel interactions of UBASH3A with nondegradative polyubiquitin chains, TAK1 and NEMO, suggesting that UBASH3A regulates the NF-κB signaling pathway by an ubiquitin-dependent mechanism. Finally, we show that risk alleles at rs11203203 and rs80054410, two T1D-associated variants in UBASH3A, increase UBASH3A expression in human primary CD4+ T cells upon TCR stimulation, inhibiting NF-κB signaling via its effects on the IκB kinase complex and resulting in reduced IL2 gene expression.
Collapse
Affiliation(s)
- Yan Ge
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL
- Genetics Institute, University of Florida, Gainesville, FL
| | - Taylor K Paisie
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL
- Genetics Institute, University of Florida, Gainesville, FL
- Genetics & Genomics Graduate Program, University of Florida, Gainesville, FL
| | - Jeremy R B Newman
- Genetics Institute, University of Florida, Gainesville, FL
- Department of Molecular Genetics & Microbiology, University of Florida, Gainesville, FL
| | - Lauren M McIntyre
- Genetics Institute, University of Florida, Gainesville, FL
- Department of Molecular Genetics & Microbiology, University of Florida, Gainesville, FL
| | - Patrick Concannon
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL
- Genetics Institute, University of Florida, Gainesville, FL
| |
Collapse
|
82
|
He Z, Wang F, Zhang J, Sen S, Pang Q, Luo S, Gwack Y, Sun Z. Regulation of Th17 Differentiation by IKKα-Dependent and -Independent Phosphorylation of RORγt. THE JOURNAL OF IMMUNOLOGY 2017; 199:955-964. [PMID: 28667162 DOI: 10.4049/jimmunol.1700457] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/31/2017] [Indexed: 01/05/2023]
Abstract
Transcription factor retinoid acid-related orphan receptor (ROR)γt transcriptionally regulates the genes required for differentiation of Th17 cells that mediate both protective and pathogenic immunity. However, little is known about the function of posttranslational modifications in the regulation of RORγt activity. Mass spectrometric analysis of immunoprecipitated RORγt from Th17 cells identified multiple phosphorylation sites. Systematic mutation analysis of the identified phosphorylation sites found that phosphorylation of S376 enhances whereas phosphorylation of S484 inhibits Th17 differentiation. IκB kinase (IKK)α binds and phosphorylates RORγt at S376 but not S484. Knockdown of IKKα, dominant-negative IKKα, and RORγt mutants incapable of interacting with IKKα all decrease Th17 differentiation. Furthermore, nonphosophorylatable RORγt mutant (S376A) impairs whereas phosphomimetic mutant (S376E) stimulates Th17 differentiation independent of IKKα. Therefore, IKKα-dependent phosphorylation of S376 stimulated whereas IKKα-independent phosphorylation of S484 inhibited RORγt function in Th17 differentiation.
Collapse
Affiliation(s)
- Zhiheng He
- Department of Molecular Immunology, Beckman Research Institute, City of Hope, Duarte, CA 91010
| | - Fei Wang
- Department of Molecular Immunology, Beckman Research Institute, City of Hope, Duarte, CA 91010
| | - Jing Zhang
- Department of Molecular Immunology, Beckman Research Institute, City of Hope, Duarte, CA 91010.,Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010
| | - Subha Sen
- Department of Molecular Immunology, Beckman Research Institute, City of Hope, Duarte, CA 91010
| | - Qihua Pang
- Department of Molecular Immunology, Beckman Research Institute, City of Hope, Duarte, CA 91010.,School of Life Sciences, South China Normal University, Guangzhou 510631, China; and
| | - Shengwei Luo
- Department of Molecular Immunology, Beckman Research Institute, City of Hope, Duarte, CA 91010.,School of Life Sciences, South China Normal University, Guangzhou 510631, China; and
| | - Yousang Gwack
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Zuoming Sun
- Department of Molecular Immunology, Beckman Research Institute, City of Hope, Duarte, CA 91010;
| |
Collapse
|
83
|
Zanin-Zhorov A, Kumari S, Hippen KL, Merkel SC, MacMillan ML, Blazar BR, Dustin ML. Human in vitro-induced regulatory T cells display Dlgh1dependent and PKC-θ restrained suppressive activity. Sci Rep 2017; 7:4258. [PMID: 28652577 PMCID: PMC5484704 DOI: 10.1038/s41598-017-04053-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 05/09/2017] [Indexed: 12/14/2022] Open
Abstract
In vitro induced human regulatory T cells (iTregs) have demonstrated in vivo therapeutic utility, but pathways regulating their function have not been elucidated. Here, we report that human iTregs generated in vitro from naïve cord blood cells preferentially recruit Disc large homolog 1 (Dlgh1) and exclude protein kinase C (PKC)-θ from immunological synapses formed on supported lipid bilayers with laterally mobile ICAM-1 and anti-CD3 mAb. Also, iTregs display elevated Dlgh1 overall and Dlgh1-dependent p38 phosphorylation, higher levels of phosphatase and tensin homolog (PTEN), and diminished Akt phosphorylation. Pharmacological interruption of PKC-θ increases and Dlgh1 silencing decreases the ability of iTregs to suppress interferon-γ production by CD4+CD25- effector T cells (Teff). Comparison with expanded cord blood-derived CD4+CD25hi tTreg and expanded Teffs from the same donors indicate that iTreg are intermediate between expanded CD4+CD25hi tTregs and Teffs, whereas modulation of suppressive activities by PKC-θ and Dlgh1 signaling pathways are shared.
Collapse
Affiliation(s)
- Alexandra Zanin-Zhorov
- Molecular Pathogenesis Program, Skirball Institute of Biomolecular Medicine, Department of Pathology, New York University School of Medicine, New York, NY, 10016, USA. .,Kadmon Corporation, LLC, New York, NY, 10016, USA.
| | - Sudha Kumari
- Molecular Pathogenesis Program, Skirball Institute of Biomolecular Medicine, Department of Pathology, New York University School of Medicine, New York, NY, 10016, USA.,Koch institute of Integrative Cancer Research, MIT, Cambridge, MA-02139, USA
| | - Keli L Hippen
- University of Minnesota Cancer Center and Department of Pediatrics, Division of Blood and Marrow Transplantation, Minneapolis, MN, 55455, USA
| | - Sarah C Merkel
- University of Minnesota Cancer Center and Department of Pediatrics, Division of Blood and Marrow Transplantation, Minneapolis, MN, 55455, USA
| | - Margaret L MacMillan
- University of Minnesota Cancer Center and Department of Pediatrics, Division of Blood and Marrow Transplantation, Minneapolis, MN, 55455, USA
| | - Bruce R Blazar
- University of Minnesota Cancer Center and Department of Pediatrics, Division of Blood and Marrow Transplantation, Minneapolis, MN, 55455, USA
| | - Michael L Dustin
- Molecular Pathogenesis Program, Skirball Institute of Biomolecular Medicine, Department of Pathology, New York University School of Medicine, New York, NY, 10016, USA. .,Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, UK.
| |
Collapse
|
84
|
Siegmund K, Thuille N, Wachowicz K, Hermann-Kleiter N, Baier G. Protein kinase C theta is dispensable for suppression mediated by CD25+CD4+ regulatory T cells. PLoS One 2017; 12:e0175463. [PMID: 28531229 PMCID: PMC5439664 DOI: 10.1371/journal.pone.0175463] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/27/2017] [Indexed: 12/24/2022] Open
Abstract
The activation of conventional T cells upon T cell receptor stimulation critically depends on protein kinase C theta (PKCθ). However, its role in regulatory T (Treg) cell function has yet to be fully elucidated. Using siRNA or the potent and PKC family-selective pharmacological inhibitor AEB071, we could show that murine Treg-mediated suppression in vitro is independent of PKCθ function. Likewise, Treg cells of PKCθ-deficient mice were fully functional, showing a similar suppressive activity as wild-type CD25+CD4+ T cells in an in vitro suppression assay. Furthermore, in vitro-differentiated wild-type and PKCθ-deficient iTreg cells showed comparable Foxp3 expression as well as suppressive activity. However, we observed a reduced percentage of Foxp3+CD25+ CD4+ T cells in the lymphatic organs of PKCθ-deficient mice. Taken together, our results suggest that while PKCθ is involved in Treg cell differentiation in vivo, it is dispensable for Treg-mediated suppression.
Collapse
Affiliation(s)
- Kerstin Siegmund
- Department for Pharmacology and Genetics, Medical University Innsbruck, Innsbruck, Austria
- * E-mail: (GB); (KS)
| | - Nikolaus Thuille
- Department for Pharmacology and Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Katarzyna Wachowicz
- Department for Pharmacology and Genetics, Medical University Innsbruck, Innsbruck, Austria
| | | | - Gottfried Baier
- Department for Pharmacology and Genetics, Medical University Innsbruck, Innsbruck, Austria
- * E-mail: (GB); (KS)
| |
Collapse
|
85
|
Katoh T, Tomata Y, Setoh M, Sasaki S, Takai T, Yoshitomi Y, Yukawa T, Nakagawa H, Fukumoto S, Tsukamoto T, Nakada Y. Practical application of 3-substituted-2,6-difluoropyridines in drug discovery: Facile synthesis of novel protein kinase C theta inhibitors. Bioorg Med Chem Lett 2017; 27:2497-2501. [PMID: 28400232 DOI: 10.1016/j.bmcl.2017.03.099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/30/2017] [Accepted: 03/31/2017] [Indexed: 12/11/2022]
Abstract
We previously reported a facile preparation method of 3-substituted-2,6-difluoropyridines, which were easily converted to 2,3,6-trisubstituted pyridines by nucleophilic aromatic substitution with good regioselectivity and yield. In this study, we demonstrate the synthetic utility of 3-substituted-2,6-difluoropyridines in drug discovery via their application in the synthesis of various 2,3,6-trisubstituted pyridines, including macrocyclic derivatives, as novel protein kinase C theta inhibitors in a moderate to good yield. This synthetic approach is useful for the preparation of 2,3,6-trisubstituted pyridines, which are a popular scaffold for drug candidates and biologically attractive compounds.
Collapse
Affiliation(s)
- Taisuke Katoh
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd, 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Yoshihide Tomata
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd, 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masaki Setoh
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd, 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Satoshi Sasaki
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd, 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Takafumi Takai
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd, 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yayoi Yoshitomi
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd, 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tomoya Yukawa
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd, 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Hideyuki Nakagawa
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd, 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Shoji Fukumoto
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd, 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tetsuya Tsukamoto
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd, 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yoshihisa Nakada
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd, 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
86
|
Predominant contribution of DGKζ over DGKα in the control of PKC/PDK‐1‐regulated functions in T cells. Immunol Cell Biol 2017; 95:549-563. [DOI: 10.1038/icb.2017.7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/16/2017] [Accepted: 01/31/2017] [Indexed: 12/14/2022]
|
87
|
Britton GJ, Mitchell RE, Burton BR, Wraith DC. Protein kinase C theta is required for efficient induction of IL-10-secreting T cells. PLoS One 2017; 12:e0171547. [PMID: 28158245 PMCID: PMC5291537 DOI: 10.1371/journal.pone.0171547] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/23/2017] [Indexed: 11/19/2022] Open
Abstract
Secretion of interleukin-10 (IL-10) by CD4+ T cells is an essential immunoregulatory mechanism. The work presented here assesses the role of the signaling molecule protein kinase C theta (PKCθ) in the induction of IL-10 expression in CD4+ T cells. Using wildtype and PKCθ-deficient Tg4 T cell receptor transgenic mice, we implemented a well-described protocol of repeated doses of myelin basic protein (MBP)Ac1-9[4Y] antigen to induce Tr1-like IL-10+ T cells. We find that PKCθ is required for the efficient induction of IL-10 following antigen administration. Both serum concentrations of IL-10 and the proportion of IL-10+ T cells were reduced in PKCθ-deficient mice relative to wildtype mice following [4Y] treatment. We further characterized the T cells of [4Y] treated PKCθ-deficient Tg4 mice and found reduced expression of the transcription factors cMaf, Nfil3 and FoxP3 and the surface receptors PD-1 and Tim3, all of which have been associated with the differentiation or function of IL-10+ T cells. Finally, we demonstrated that, unlike [4Y] treated wildtype Tg4 T cells, cells from PKCθ-deficient mice were unable to suppress the priming of naïve T cells in vitro and in vivo. In summary, we present data demonstrating a role for PKCθ in the induction of suppressive, IL-10-secreting T cells induced in TCR-transgenic mice following chronic antigen administration. This should be considered when contemplating PKCθ as a suitable drug target for inducing immune suppression and graft tolerance.
Collapse
Affiliation(s)
- Graham J. Britton
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Ruth E. Mitchell
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Bronwen R. Burton
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - David C. Wraith
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
88
|
van Eis MJ, Evenou J, Schuler W, Zenke G, Vangrevelinghe E, Wagner J, von Matt P. Indolyl-naphthyl-maleimides as potent and selective inhibitors of protein kinase C-α/β. Bioorg Med Chem Lett 2017; 27:781-786. [DOI: 10.1016/j.bmcl.2017.01.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/09/2017] [Accepted: 01/12/2017] [Indexed: 12/11/2022]
|
89
|
Schmid U, Stenzel W, Koschel J, Raptaki M, Wang X, Naumann M, Matuschewski K, Schlüter D, Nishanth G. The Deubiquitinating Enzyme Cylindromatosis Dampens CD8 + T Cell Responses and Is a Critical Factor for Experimental Cerebral Malaria and Blood-Brain Barrier Damage. Front Immunol 2017; 8:27. [PMID: 28203236 PMCID: PMC5285367 DOI: 10.3389/fimmu.2017.00027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/09/2017] [Indexed: 11/13/2022] Open
Abstract
Cerebral malaria is a severe complication of human malaria and may lead to death of Plasmodium falciparum-infected individuals. Cerebral malaria is associated with sequestration of parasitized red blood cells within the cerebral microvasculature resulting in damage of the blood-brain barrier and brain pathology. Although CD8+ T cells have been implicated in the development of murine experimental cerebral malaria (ECM), several other studies have shown that CD8+ T cells confer protection against blood-stage infections. Since the role of host deubiquitinating enzymes (DUBs) in malaria is yet unknown, we investigated how the DUB cylindromatosis (CYLD), an important inhibitor of several cellular signaling pathways, influences the outcome of ECM. Upon infection with Plasmodium berghei ANKA (PbA) sporozoites or PbA-infected red blood cells, at least 90% of Cyld-/- mice survived the infection, whereas all congenic C57BL/6 mice displayed signatures of ECM, impaired parasite control, and disruption of the blood-brain barrier integrity. Cyld deficiency prevented brain pathology, including hemorrhagic lesions, enhanced activation of astrocytes and microglia, infiltration of CD8+ T cells, and apoptosis of endothelial cells. Furthermore, PbA-specific CD8+ T cell responses were augmented in the blood of Cyld-/- mice with increased production of interferon-γ and granzyme B and elevated activation of protein kinase C-θ and nuclear factor "kappa light-chain enhancer" of activated B cells. Importantly, accumulation of CD8+ T cells in the brain of Cyld-/- mice was significantly reduced compared to C57BL/6 mice. Bone marrow chimera experiments showed that the absence of ECM signatures in infected Cyld-/- mice could be attributed to hematopoietic and radioresistant parenchymal cells, most likely endothelial cells that did not undergo apoptosis. Together, we were able to show that host deubiqutinating enzymes play an important role in ECM and that CYLD promotes ECM supporting it as a potential therapeutic target for adjunct therapy to prevent cerebral complications of severe malaria.
Collapse
Affiliation(s)
- Ursula Schmid
- Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University Magdeburg , Magdeburg , Germany
| | - Werner Stenzel
- Department of Neuropathology, Charite , Berlin , Germany
| | - Josephin Koschel
- Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University Magdeburg , Magdeburg , Germany
| | - Maria Raptaki
- Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University Magdeburg , Magdeburg , Germany
| | - Xu Wang
- Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University Magdeburg , Magdeburg , Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Otto-von-Guericke University Magdeburg , Magdeburg , Germany
| | - Kai Matuschewski
- Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany; Department of Molecular Parasitology, Humboldt University, Berlin, Germany
| | - Dirk Schlüter
- Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Organ-Specific Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Gopala Nishanth
- Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University Magdeburg , Magdeburg , Germany
| |
Collapse
|
90
|
Britton GJ, Ambler R, Clark DJ, Hill EV, Tunbridge HM, McNally KE, Burton BR, Butterweck P, Sabatos-Peyton C, Hampton-O’Neil LA, Verkade P, Wülfing C, Wraith DC. PKCθ links proximal T cell and Notch signaling through localized regulation of the actin cytoskeleton. eLife 2017; 6:e20003. [PMID: 28112644 PMCID: PMC5310840 DOI: 10.7554/elife.20003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 01/22/2017] [Indexed: 11/16/2022] Open
Abstract
Notch is a critical regulator of T cell differentiation and is activated through proteolytic cleavage in response to ligand engagement. Using murine myelin-reactive CD4 T cells, we demonstrate that proximal T cell signaling modulates Notch activation by a spatiotemporally constrained mechanism. The protein kinase PKCθ is a critical mediator of signaling by the T cell antigen receptor and the principal costimulatory receptor CD28. PKCθ selectively inactivates the negative regulator of F-actin generation, Coronin 1A, at the center of the T cell interface with the antigen presenting cell (APC). This allows for effective generation of the large actin-based lamellum required for recruitment of the Notch-processing membrane metalloproteinase ADAM10. Such enhancement of Notch activation is critical for efficient T cell proliferation and Th17 differentiation. We reveal a novel mechanism that, through modulation of the cytoskeleton, controls Notch activation at the T cell:APC interface thereby linking T cell receptor and Notch signaling pathways.
Collapse
Affiliation(s)
- Graham J Britton
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Rachel Ambler
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Danielle J Clark
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Elaine V Hill
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Helen M Tunbridge
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Kerrie E McNally
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Bronwen R Burton
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Philomena Butterweck
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | | | - Lea A Hampton-O’Neil
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Paul Verkade
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Christoph Wülfing
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - David Cameron Wraith
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
91
|
Immunological Disorders: Regulation of Ca 2+ Signaling in T Lymphocytes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:397-424. [PMID: 28900926 DOI: 10.1007/978-3-319-57732-6_21] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Engagement of T cell receptors (TCRs) with cognate antigens triggers cascades of signaling pathways in helper T cells. TCR signaling is essential for the effector function of helper T cells including proliferation, differentiation, and cytokine production. It also modulates effector T cell fate by inducing cell death, anergy (nonresponsiveness), exhaustion, and generation of regulatory T cells. One of the main axes of TCR signaling is the Ca2+-calcineurin-nuclear factor of activated T cells (NFAT) signaling pathway. Stimulation of TCRs triggers depletion of intracellular Ca2+ store and, in turn, activates store-operated Ca2+ entry (SOCE) to raise the intracellular Ca2+ concentration. SOCE in T cells is mediated by the Ca2+ release-activated Ca2+ (CRAC) channels, which have been very well characterized in terms of their electrophysiological properties. Identification of STIM1 as a sensor to detect depletion of the endoplasmic reticulum (ER) Ca2+ store and Orai1 as the pore subunit of CRAC channels has dramatically advanced our understanding of the regulatory mechanism of Ca2+ signaling in T cells. In this review, we discuss our current understanding of Ca2+ signaling in T cells with specific focus on the mechanism of CRAC channel activation and regulation via protein interactions. In addition, we will discuss the role of CRAC channels in effector T cells, based on the analyses of genetically modified animal models.
Collapse
|
92
|
Spivak AM, Larragoite ET, Coletti ML, Macedo AB, Martins LJ, Bosque A, Planelles V. Janus kinase inhibition suppresses PKC-induced cytokine release without affecting HIV-1 latency reversal ex vivo. Retrovirology 2016; 13:88. [PMID: 27998278 PMCID: PMC5175306 DOI: 10.1186/s12977-016-0319-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/25/2016] [Indexed: 11/10/2022] Open
Abstract
Background Despite the durable viral suppression afforded by antiretroviral therapy, HIV-1 eradication will require strategies to target latently infected cells that persist in infected individuals. Protein kinase C (PKC) activation is a promising strategy to reactivate latent proviruses and allow for subsequent recognition and clearance of infected cells by the immune system. Ingenol derivatives are PKC agonists that induce latency reversal but also lead to T cell activation and the release of pro-inflammatory cytokines, which would be undesirable in vivo. In this work, we sought to identify compounds that would suppress pro-inflammatory cytokine production in the context of PKC activation. Design and methods We performed an in vitro screen to identify compounds that could dampen pro-inflammatory cytokine release associated with T cell activation, using IL-6 as a model cytokine. We then tested the ability of the most promising screening hit, the FDA-approved Janus Kinase (JAK) inhibitor ruxolitinib, to diminish release of multiple cytokines and its effect on latency reversal using cells from HIV-1-positive, aviremic participants. Results We demonstrate that co-administration of ruxolitinib with ingenol-3,20-dibenzoate significantly reduces pro-inflammatory cytokine release without impairing latency reversal ex vivo. Conclusion The combination of ingenol compounds and JAK inhibition represents a novel strategy for HIV-1 eradication. Electronic supplementary material The online version of this article (doi:10.1186/s12977-016-0319-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adam M Spivak
- Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Erin T Larragoite
- Department of Pathology, University of Utah School of Medicine, Emma Eccles Jones Medical Research Building Room 2520, 15 North Medical Drive East, Salt Lake City, UT, 84112, USA
| | - McKenna L Coletti
- Department of Pathology, University of Utah School of Medicine, Emma Eccles Jones Medical Research Building Room 2520, 15 North Medical Drive East, Salt Lake City, UT, 84112, USA
| | - Amanda B Macedo
- Department of Pathology, University of Utah School of Medicine, Emma Eccles Jones Medical Research Building Room 2520, 15 North Medical Drive East, Salt Lake City, UT, 84112, USA
| | - Laura J Martins
- Department of Pathology, University of Utah School of Medicine, Emma Eccles Jones Medical Research Building Room 2520, 15 North Medical Drive East, Salt Lake City, UT, 84112, USA
| | - Alberto Bosque
- Department of Pathology, University of Utah School of Medicine, Emma Eccles Jones Medical Research Building Room 2520, 15 North Medical Drive East, Salt Lake City, UT, 84112, USA
| | - Vicente Planelles
- Department of Pathology, University of Utah School of Medicine, Emma Eccles Jones Medical Research Building Room 2520, 15 North Medical Drive East, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
93
|
Chen SS, Hu Z, Zhong XP. Diacylglycerol Kinases in T Cell Tolerance and Effector Function. Front Cell Dev Biol 2016; 4:130. [PMID: 27891502 PMCID: PMC5103287 DOI: 10.3389/fcell.2016.00130] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/27/2016] [Indexed: 12/21/2022] Open
Abstract
Diacylglycerol kinases (DGKs) are a family of enzymes that regulate the relative levels of diacylglycerol (DAG) and phosphatidic acid (PA) in cells by phosphorylating DAG to produce PA. Both DAG and PA are important second messengers cascading T cell receptor (TCR) signal by recruiting multiple effector molecules, such as RasGRP1, PKCθ, and mTOR. Studies have revealed important physiological functions of DGKs in the regulation of receptor signaling and the development and activation of immune cells. In this review, we will focus on recent progresses in our understanding of two DGK isoforms, α and ζ, in CD8 T effector and memory cell differentiation, regulatory T cell development and function, and invariant NKT cell development and effector lineage differentiation.
Collapse
Affiliation(s)
- Shelley S Chen
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center Durham, NC, USA
| | - Zhiming Hu
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical CenterDurham, NC, USA; Institute of Biotherapy, School of Biotechnology, Southern Medical UniversityGuangzhou, China
| | - Xiao-Ping Zhong
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical CenterDurham, NC, USA; Department of Immunology, Duke University Medical CenterDurham, NC, USA; Hematologic Malignancies and Cellular Therapies Program, Duke Cancer Institute, Duke University Medical CenterDurham, NC, USA
| |
Collapse
|
94
|
Protein kinase Cθ controls type 2 innate lymphoid cell and T H2 responses to house dust mite allergen. J Allergy Clin Immunol 2016; 139:1650-1666. [PMID: 27746240 DOI: 10.1016/j.jaci.2016.08.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 07/14/2016] [Accepted: 08/08/2016] [Indexed: 11/24/2022]
Abstract
BACKGROUND Protein kinase C (PKC) θ, a serine/threonine kinase, is involved in TH2 cell activation and proliferation. Type 2 innate lymphoid cells (ILC2s) resemble TH2 cells and produce the TH2 cytokines IL-5 and IL-13 but lack antigen-specific receptors. The mechanism by which PKC-θ drives innate immune cells to instruct TH2 responses in patients with allergic lung inflammation remains unknown. OBJECTIVES We hypothesized that PKC-θ contributes to ILC2 activation and might be necessary for ILC2s to instruct the TH2 response. METHODS PRKCQ gene expression was assessed in innate lymphoid cell subsets purified from human PBMCs and mouse lung ILC2s. ILC2 activation and eosinophil recruitment, TH2-related cytokine and chemokine production, lung histopathology, interferon regulatory factor 4 (IRF4) mRNA expression, and nuclear factor of activated T cells (NFAT1) protein expression were determined. Adoptive transfer of ILC2s from wild-type mice was performed in wild-type and PKC-θ-deficient (PKC-θ-/-) mice. RESULTS Here we report that PKC-θ is expressed in both human and mouse ILC2s. Mice lacking PKC-θ had reduced ILC2 numbers, TH2 cell numbers and activation, airway hyperresponsiveness, and expression of the transcription factors IRF4 and NFAT1. Importantly, adoptive transfer of ILC2s restored eosinophil influx and IL-4, IL-5 and IL-13 production in lung tissue, as well as TH2 cell activation. The pharmacologic PKC-θ inhibitor (Compound 20) administered during allergen challenge reduced ILC2 numbers and activation, as well as airway inflammation and IRF4 and NFAT1 expression. CONCLUSIONS Therefore our findings identify PKC-θ as a critical factor for ILC2 activation that contributes to TH2 cell differentiation, which is associated with IRF4 and NFAT1 expression in allergic lung inflammation.
Collapse
|
95
|
Blewett MM, Xie J, Zaro BW, Backus KM, Altman A, Teijaro JR, Cravatt BF. Chemical proteomic map of dimethyl fumarate-sensitive cysteines in primary human T cells. Sci Signal 2016; 9:rs10. [PMID: 27625306 DOI: 10.1126/scisignal.aaf7694] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dimethyl fumarate (DMF) is an electrophilic drug that is used to treat autoimmune conditions, including multiple sclerosis and psoriasis. The mechanism of action of DMF is unclear but may involve the covalent modification of proteins or DMF serving as a prodrug that is converted to monomethyl fumarate (MMF). We found that DMF, but not MMF, blocked the activation of primary human and mouse T cells. Using a quantitative, site-specific chemical proteomic platform, we determined the DMF sensitivity of >2400 cysteine residues in human T cells. Cysteines sensitive to DMF, but not MMF, were identified in several proteins with established biochemical or genetic links to T cell function, including protein kinase Cθ (PKCθ). DMF blocked the association of PKCθ with the costimulatory receptor CD28 by perturbing a CXXC motif in the C2 domain of this kinase. Mutation of these DMF-sensitive cysteines also impaired PKCθ-CD28 interactions and T cell activation, designating the C2 domain of PKCθ as a key functional, electrophile-sensing module important for T cell biology.
Collapse
Affiliation(s)
- Megan M Blewett
- Department of Chemical Physiology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jiji Xie
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Balyn W Zaro
- Department of Chemical Physiology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Keriann M Backus
- Department of Chemical Physiology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Amnon Altman
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - John R Teijaro
- Department of Chemical Physiology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA. Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Benjamin F Cravatt
- Department of Chemical Physiology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
96
|
Singh BK, Kambayashi T. The Immunomodulatory Functions of Diacylglycerol Kinase ζ. Front Cell Dev Biol 2016; 4:96. [PMID: 27656643 PMCID: PMC5013040 DOI: 10.3389/fcell.2016.00096] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/22/2016] [Indexed: 12/13/2022] Open
Abstract
The generation of diacylglycerol (DAG) is critical for promoting immune cell activation, regulation, and function. Diacylglycerol kinase ζ (DGKζ) serves as an important negative regulator of DAG by enzymatically converting DAG into phosphatidic acid (PA) to shut down DAG-mediated signaling. Consequently, the loss of DGKζ increases DAG levels and the duration of DAG-mediated signaling. However, while the enhancement of DAG signaling is thought to augment immune cell function, the loss of DGKζ can result in both immunoactivation and immunomodulation depending on the cell type and function. In this review, we discuss how different immune cell functions can be selectively modulated by DGKζ. Furthermore, we consider how targeting DGKζ can be potentially beneficial for the resolution of human diseases by either promoting immune responses important for protection against infection or cancer or dampening immune responses in immunopathologic conditions such as allergy and septic shock.
Collapse
Affiliation(s)
- Brenal K Singh
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania Philadelphia, PA, USA
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
97
|
Pfeifhofer-Obermair C, Albrecht-Schgoer K, Peer S, Nairz M, Siegmund K, Klepsch V, Haschka D, Thuille N, Hermann-Kleiter N, Gruber T, Weiss G, Baier G. Role of PKCtheta in macrophage-mediated immune response to Salmonella typhimurium infection in mice. Cell Commun Signal 2016; 14:14. [PMID: 27465248 PMCID: PMC4964075 DOI: 10.1186/s12964-016-0137-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/22/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The serine/threonine protein kinase C (PKC) theta has been firmly implicated in T cell-mediated immunity. Because its role in macrophages has remained undefined, we employed PKCtheta-deficient (PKCtheta (-/-)) mice in order to investigate if PKCtheta plays a role in macrophage-mediated immune responses during bacterial infections. RESULTS Our results demonstrate that PKCtheta plays an important role in host defense against the Gram-negative, intracellular bacterium Salmonella typhimurium, as reflected both by markedly decreased survival and a significantly enhanced number of bacteria in spleen and liver of PKCtheta (-/-) mice, when compared to wild-type mice. Of note, albeit macrophages do not express detectable PKCtheta, PKCtheta mRNA expression was found to be profoundly upregulated during the first hours of lipopolysaccharide (LPS)/interferon-gamma (IFNgamma)-, but not IL-4-mediated cell polarization conditions in vitro. Mechanistically, despite expressing normal levels of classically activated macrophage (CAM) markers, PKCtheta-deficient CAMs expressed significantly higher levels of the anti-inflammatory cytokine IL-10 in vivo and in vitro when challenged with S. typhimurium or LPS/IFNgamma. Neutralization of IL-10 recovered immune control to S. typhimurium infection in PKCtheta-deficient macrophages. CONCLUSIONS Taken together, our data provide genetic evidence that PKCtheta promotes a potent pro-inflammatory CAM phenotype that is instrumental to mounting protective anti-bacterial immunity. Mechanistically, PKCtheta exerts a host-protective role against S. typhimurium infection, and acts as an essential link between TLR4/IFNgammaR signaling and selective suppression of the anti-inflammatory cytokine IL-10 at the onset of CAM differentiation in the course of a bacterial infection.
Collapse
Affiliation(s)
- Christa Pfeifhofer-Obermair
- Department for Pharmacology and Genetics, Division of Translational Cell Genetics, Peter Mayr Straße 1a, 6020 Innsbruck, Austria
- Department of Internal Medicine VI/Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Karin Albrecht-Schgoer
- Department for Pharmacology and Genetics, Division of Translational Cell Genetics, Peter Mayr Straße 1a, 6020 Innsbruck, Austria
| | - Sebastian Peer
- Department for Pharmacology and Genetics, Division of Translational Cell Genetics, Peter Mayr Straße 1a, 6020 Innsbruck, Austria
| | - Manfred Nairz
- Department of Internal Medicine VI/Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Kerstin Siegmund
- Department for Pharmacology and Genetics, Division of Translational Cell Genetics, Peter Mayr Straße 1a, 6020 Innsbruck, Austria
| | - Victoria Klepsch
- Department for Pharmacology and Genetics, Division of Translational Cell Genetics, Peter Mayr Straße 1a, 6020 Innsbruck, Austria
| | - David Haschka
- Department of Internal Medicine VI/Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Nikolaus Thuille
- Department for Pharmacology and Genetics, Division of Translational Cell Genetics, Peter Mayr Straße 1a, 6020 Innsbruck, Austria
| | - Natascha Hermann-Kleiter
- Department for Pharmacology and Genetics, Division of Translational Cell Genetics, Peter Mayr Straße 1a, 6020 Innsbruck, Austria
| | - Thomas Gruber
- Department for Pharmacology and Genetics, Division of Translational Cell Genetics, Peter Mayr Straße 1a, 6020 Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine VI/Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Gottfried Baier
- Department for Pharmacology and Genetics, Division of Translational Cell Genetics, Peter Mayr Straße 1a, 6020 Innsbruck, Austria
| |
Collapse
|
98
|
Ji X, Liu Y, Hurd R, Wang J, Fitzmaurice B, Nishina PM, Chang B. Retinal Pigment Epithelium Atrophy 1 (rpea1): A New Mouse Model With Retinal Detachment Caused by a Disruption of Protein Kinase C, θ. Invest Ophthalmol Vis Sci 2016; 57:877-88. [PMID: 26978024 PMCID: PMC4794085 DOI: 10.1167/iovs.15-17495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Retinal detachments (RDs), a separation of the light-sensitive tissue of the retina from its supporting layers in the posterior eye, isolate retinal cells from their normal supply of nourishment and can lead to their deterioration and death. We identified a new, spontaneous murine model of exudative retinal detachment, nm3342 (new mutant 3342, also referred to as rpea1: retinal pigment epithelium atrophy 1), which we characterize herein. Methods The chromosomal position for the recessive nm3342 mutation was determined by DNA pooling, and the causative mutation was discovered by comparison of whole exome sequences of mutant and wild-type controls. The effects of the mutation were examined in longitudinal studies by clinical evaluation, electroretinography (ERG), light microscopy, and marker and Western blot analyses. Results New mutant 3342, nm3342, also referred to as rpea1, causes an early-onset, complete RD on the ABJ/LeJ strain background, and central exudative RD and late-onset RPE atrophy on the C57BL/6J background. The ERG responses were normal at 2 months of age but deteriorate as mice age, concomitant with progressive pan-retinal photoreceptor loss. Genetic analysis localized rpea1 to mouse chromosome 2. By high-throughput sequencing of a whole exome capture library of an rpea1/rpea1 mutant and subsequent sequence analysis, a splice donor site mutation in the Prkcq (protein kinase C, θ) gene, was identified, leading to a skipping of exon 6, frame shift and premature termination. Homozygotes with a Prkcq-targeted null allele (Prkcqtm1Litt) have similar retinal phenotypes as homozygous rpea1 mice. We determined that the PKCθ protein is abundant in the lateral surfaces of RPE cells and colocalizes with both tight and adherens junction proteins. Phalloidin-stained RPE whole mounts showed abnormal RPE cell morphology with aberrant actin ring formation. Conclusions The homozygous Prkcqrpea1 and the null Prkcqtm1Litt mutants are reliable novel mouse models of RD and can also be used to study the effects of the disruption of PRKCQ (PKCθ) signaling in RPE cells.
Collapse
|
99
|
Chen FY, Zhou LF, Li XY, Zhao JW, Xu SF, Huang WH, Gao LJ, Hao SJ, Ye YP, Sun HX. Stephanthraniline A suppressed CD4(+) T cell-mediated immunological hepatitis through impairing PKCθ function. Eur J Pharmacol 2016; 789:370-384. [PMID: 27448502 DOI: 10.1016/j.ejphar.2016.06.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/12/2016] [Accepted: 06/15/2016] [Indexed: 01/06/2023]
Abstract
Stephanthraniline A (STA), a C21 steroid isolated from Stephanotis mucronata (Blanco) Merr., was previously shown to inhibit T cells activation and proliferation in vitro and in vivo. The purpose of this study was to further evaluate the in vivo immunosuppressive activity of STA and to elucidate its potential mechanisms. The results showed that pretreatment with STA significantly attenuated concanavalin A (Con A)-induced hepatitis and reduced CD4(+) T cells activation and aggregation in hepatic tissue in mice. STA directly suppressed the activation and proliferation of Con A-induced CD4(+) T cells, and inhibited NFAT, NFκB and MAPK signaling cascades in activated CD4(+) T cells in vitro. Moreover, it was proved that STA inhibited T cells activation and proliferation through proximal T cell-receptor (TCR) signaling- and Ca(2+) signaling-independent way. The molecular docking studies predicted that STA could tight bind to PKCθ via five hydrogen. The further findings indicated STA directly inhibited PKCθ kinase activity, and its phosphorylation in activated CD4(+) T cells in vitro. Collectively, the present study indicated that STA could protect against CD4(+) T cell-mediated immunological hepatitis in mice through PKCθ and its downstream NFAT, NFκB and MAPK signaling cascades. These results highlight the potential of STA as an effective leading compound for use in the treatment of CD4(+) T cell-mediated inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Feng-Yang Chen
- Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Li-Fei Zhou
- Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Xiao-Yu Li
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Jia-Wen Zhao
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Shi-Fang Xu
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Wen-Hai Huang
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Li-Juan Gao
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Shu-Juan Hao
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Yi-Ping Ye
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China.
| | - Hong-Xiang Sun
- Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
100
|
Katoh T, Takai T, Yukawa T, Tsukamoto T, Watanabe E, Mototani H, Arita T, Hayashi H, Nakagawa H, Klein MG, Zou H, Sang BC, Snell G, Nakada Y. Discovery and optimization of 1,7-disubstituted-2,2-dimethyl-2,3-dihydroquinazolin-4(1H)-ones as potent and selective PKCθ inhibitors. Bioorg Med Chem 2016; 24:2466-2475. [PMID: 27117263 DOI: 10.1016/j.bmc.2016.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 04/01/2016] [Accepted: 04/02/2016] [Indexed: 11/25/2022]
Abstract
A high-throughput screening campaign helped us to identify an initial lead compound (1) as a protein kinase C-θ (PKCθ) inhibitor. Using the docking model of compound 1 bound to PKCθ as a model, structure-based drug design was employed and two regions were identified that could be explored for further optimization, i.e., (a) a hydrophilic region around Thr442, unique to PKC family, in the inner part of the hinge region, and (b) a lipophilic region at the forefront of the ethyl moiety. Optimization of the hinge binder led us to find 1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-one as a potent and selective hinge binder, which resulted in the discovery of compound 5. Filling the lipophilic region with a suitable lipophilic substituent boosted PKCθ inhibitory activity and led to the identification of compound 10. The co-crystal structure of compound 10 bound to PKCθ confirmed that both the hydrophilic and lipophilic regions were fully utilized. Further optimization of compound 10 led us to compound 14, which demonstrated an improved pharmacokinetic profile and inhibition of IL-2 production in a mouse.
Collapse
Affiliation(s)
- Taisuke Katoh
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Takafumi Takai
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Takafumi Yukawa
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tetsuya Tsukamoto
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Etsurou Watanabe
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Hideyuki Mototani
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Takeo Arita
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Hiroki Hayashi
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Hideyuki Nakagawa
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Michael G Klein
- Takeda California, 10410 Science Center Drive, San Diego, CA 92121, USA
| | - Hua Zou
- Takeda California, 10410 Science Center Drive, San Diego, CA 92121, USA
| | - Bi-Ching Sang
- Takeda California, 10410 Science Center Drive, San Diego, CA 92121, USA
| | - Gyorgy Snell
- Takeda California, 10410 Science Center Drive, San Diego, CA 92121, USA
| | - Yoshihisa Nakada
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|