51
|
Procko E, Ferrin-O'Connell I, Ng SL, Gaudet R. Distinct structural and functional properties of the ATPase sites in an asymmetric ABC transporter. Mol Cell 2006; 24:51-62. [PMID: 17018292 DOI: 10.1016/j.molcel.2006.07.034] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Revised: 07/10/2006] [Accepted: 07/26/2006] [Indexed: 12/31/2022]
Abstract
The ABC transporter associated with antigen processing (TAP) shuttles cytosolic peptides into the endoplasmic reticulum for loading onto class I MHC molecules. Transport is fueled by ATP binding and hydrolysis at two distinct cytosolic ATPase sites. One site comprises consensus motifs shared among most ABC transporters, while the second has substituted, degenerate motifs. Biochemical and crystallography experiments with a TAP cytosolic domain demonstrate that the consensus ATPase site has high catalytic activity and facilitates ATP-dependent dimerization of the cytosolic domains, which is an important conformational change during transport. In contrast, the degenerate site is defective in dimerization and ATP hydrolysis. Full-length TAP mutagenesis demonstrates the necessity for at least one consensus site, supporting our conclusion that the consensus site is the principal facilitator of substrate transport. Since asymmetry of the ATPase site motifs is a feature of many mammalian homologs, our proposed model has broad implications for ABC transporters.
Collapse
Affiliation(s)
- Erik Procko
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
52
|
Marrero I, Huffman D, Kalil J, Sercarz EE, Coelho V. TAP1-/- mice present oligoclonal BV-BJ expansions following the rejection of grafts bearing self antigens. Immunology 2006; 118:461-71. [PMID: 16895555 PMCID: PMC1782321 DOI: 10.1111/j.1365-2567.2006.02387.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Our previous work showed that transporter associated with antigen processing 1 (TAP1)-/- (H-2b) mice rejected grafts from H-2b mice which display a normal density of class I major histocompatibility complex (MHC) molecules at the cell surface. Our results indicated that H-2b molecules themselves may be a target in this kind of rejection and that CD4+ T cells play a major role in this autoreactive process. Our data also suggested that TAP1-/- mice, in addition to the well-recognized phenotype of class I and CD8+ T-cell deficiency, present a functional alteration in their autoreactive CD4+ T-cell repertoires. In this model of inflammatory autoreactivity to modified self, we have analysed T-cell receptor (TCR) V-beta-J-beta (BV-BJ) usage by complementarity determining region 3 (CDR3) length spectratyping in splenocytes from naïve TAP1-/- mice and transplanted TAP1-/- mice that rejected B6 heart grafts or responded to synthetic self H-2Kb peptides. Importantly, oligoclonal T-cell expansions shared by different animals were detected in the peripheral T-cell repertoire of transplanted TAP1-/- mice. Such public expansions were also induced in vitro by H-2Kb peptides, suggesting that dominant class I peptides can induce preferential expansions of restricted T-cell populations during rejection. Some of these public T-cell expansions were also detected in transplanted mice even before in vitro stimulation with peptides, indicating that post-transplantation expansion of these populations had occurred in vivo. The functional activity of these T-cell populations awaits elucidation, as do the underlying mechanisms involved in the inflammatory autoreactive process, in TAP1-/- mice.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 2
- ATP-Binding Cassette Transporters/genetics
- Animals
- Antigen Presentation
- Autoantigens
- Autoimmunity
- CD4-Positive T-Lymphocytes/immunology
- Cell Proliferation
- Complementarity Determining Regions/immunology
- Cytotoxicity, Immunologic
- Graft Rejection/immunology
- H-2 Antigens/immunology
- Heart Transplantation
- In Situ Hybridization, Fluorescence
- Lymphocyte Activation
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Models, Animal
- Receptors, Antigen, T-Cell, alpha-beta/immunology
Collapse
Affiliation(s)
- Idania Marrero
- Immunology Laboratory, Heart Institute (InCor), São Paulo University School of MedicineSão Paulo, Brazil
- Institute for Investigation in Immunology (iii), Millennium InstituteSão Paulo, Brazil
| | - Donald Huffman
- Division of Immune Regulation, La Jolla Institute for Allergy and ImmunologySan Diego, CA, USA
| | - Jorge Kalil
- Immunology Laboratory, Heart Institute (InCor), São Paulo University School of MedicineSão Paulo, Brazil
- Institute for Investigation in Immunology (iii), Millennium InstituteSão Paulo, Brazil
| | - Eli E Sercarz
- Department of Immune Regulation, Torrey Pines Institute for Molecular StudiesSan Diego, CA, USA
| | - Verônica Coelho
- Immunology Laboratory, Heart Institute (InCor), São Paulo University School of MedicineSão Paulo, Brazil
- Institute for Investigation in Immunology (iii), Millennium InstituteSão Paulo, Brazil
| |
Collapse
|
53
|
Keusekotten K, Leonhardt RM, Ehses S, Knittler MR. Biogenesis of functional antigenic peptide transporter TAP requires assembly of pre-existing TAP1 with newly synthesized TAP2. J Biol Chem 2006; 281:17545-51. [PMID: 16624807 DOI: 10.1074/jbc.m602360200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The transporter associated with antigen processing (TAP) is essential for the delivery of antigenic peptides from the cytosol into the endoplasmic reticulum (ER), where they are loaded onto major histocompatibility complex class I molecules. TAP is a heterodimeric transmembrane protein that comprises the homologous subunits TAP1 and TAP2. As for many other oligomeric protein complexes, which are synthesized in the ER, the process of subunit assembly is essential for TAP to attain a native functional state. Here, we have analyzed the individual requirements of TAP1 and TAP2 for the formation of a functional TAP complex. Unlike TAP1, TAP2 is very unstable when expressed in isolation. We show that heterodimerization of TAP subunits is required for maintaining a stable level of TAP2. By using an in vitro expression system we demonstrate that the biogenesis of functional TAP depends on the assembly of preexisting TAP1 with newly synthesized TAP2, but not vice versa. The pore forming core transmembrane domain (core TMD) of in vitro expressed TAP2 is necessary and sufficient to allow functional complex formation with pre-existing TAP1. We propose that the observed assembly mechanism of TAP protects newly synthesized TAP2 from rapid degradation and controls the number of transport active transporter molecules. Our findings open up new possibilities to investigate functional and structural properties of TAP and provide a powerful model system to address the biosynthetic assembly of oligomeric transmembrane proteins in the ER.
Collapse
Affiliation(s)
- Kirstin Keusekotten
- Institute for Genetics, University of Cologne, Zuelpicher Strasse 47, D-50674 Cologne, Germany
| | | | | | | |
Collapse
|
54
|
Satoh E, Mabuchi T, Satoh H, Asahara T, Nukui H, Naganuma H. Reduced expression of the transporter associated with antigen processing 1 molecule in malignant glioma cells, and its restoration by interferon-gamma and -beta. J Neurosurg 2006; 104:264-71. [PMID: 16509500 DOI: 10.3171/jns.2006.104.2.264] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECT It remains unclear whether malignant glioma cells can deliver tumor antigens efficiently to major histocompatibility complex (MHC) Class I molecules. To elucidate the mechanism of antigen presentation in malignant gliomas, the authors examined the expression of the transporter associated with antigen processing 1 (TAP1), which transports antigens to MHC Class I molecules, and low-molecular-mass polypeptide 2 (LMP2), which is a subunit of a proteasome. They also analyzed the effects of interferon (IFN)-gamma and IFN-beta on the expression of these molecules. METHODS Five glioma cells expressed undetectable or very low levels of TAP1 protein and did not express TAP1 messenger (m)RNA. Normal brain tissue and glioma tissue specimens also showed undetectable levels of TAP1 protein and the same levels of LMP2 protein as lymphoblastoid B cells. Treatments of the tumor cells with IFN-gamma, or -beta enhanced the expression of both TAP1 protein and mRNA as well as the expression of MHC Class I molecules. The expression of LMP2 protein was not altered by the IFN treatments. The authors analyzed structural alterations in the TAP1 promoter region in eight malignant glioma cell lines. Single nucleotide polymorphism was found in 446 bp up-stream of the translation start site of the TAP1 gene, and a point mutation was found in 34 bp upstream of the TAP1 gene. CONCLUSIONS Malignant glioma cells may be less immunogenic due to low levels of TAP1 expression. Upregulated expression of TAP1 and MHC Class I molecules by IFN-gamma and -beta may enhance antigen presentation in malignant glioma cells.
Collapse
Affiliation(s)
- Eiji Satoh
- Department of Neurosurgery, University of Yamanashi, Faculty of Medicine, Yamanashi, Japan.
| | | | | | | | | | | |
Collapse
|
55
|
Zhao C, Tampé R, Abele R. TAP and TAP-like--brothers in arms? Naunyn Schmiedebergs Arch Pharmacol 2006; 372:444-50. [PMID: 16525794 DOI: 10.1007/s00210-005-0028-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Accepted: 12/07/2005] [Indexed: 10/24/2022]
Abstract
The transporter associated with antigen processing like (TAPL, ABCB9) is a member of the ATP-binding cassette (ABC) transporter family. Moreover, TAPL belongs to the TAP family due to its high sequence homology to TAP1 and TAP2. TAPL forms a homodimer which is localized in lysosomes with a minor fraction in the ER. It functions as an ATP-dependent peptide transporter which shows a broad peptide specificity ranging from 6-mer up to 59-mer peptides. In contrast to TAP, TAPL transports peptides with low affinity but high efficiency. This review will briefly summarize current knowledge about the structural organization and possible physiological function of TAPL in antigen processing and presentation.
Collapse
Affiliation(s)
- Chenguang Zhao
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Marie-Curie-Str. 9, 60439, Frankfurt am Main, Germany
| | | | | |
Collapse
|
56
|
Halenius A, Momburg F, Reinhard H, Bauer D, Lobigs M, Hengel H. Physical and Functional Interactions of the Cytomegalovirus US6 Glycoprotein with the Transporter Associated with Antigen Processing. J Biol Chem 2006; 281:5383-90. [PMID: 16356928 DOI: 10.1074/jbc.m510223200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The endoplasmic reticulum-resident human cytomegalovirus glycoprotein US6 (gpUS6) inhibits peptide translocation by the transporter associated with antigen processing (TAP) to prevent loading of major histocompatibility complex class I molecules and antigen presentation to CD8+ T cells. TAP is formed by two subunits, TAP1 and TAP2, each containing one multispanning transmembrane domain (TMD) and a cytosolic nucleotide binding domain. Here we reported that the blockade of TAP by gpUS6 is species-restricted, i.e. gpUS6 inhibits human TAP but not rat TAP. Co-expression of human and rat subunits of TAP demonstrates independent binding of gpUS6 to human TAP1 and TAP2, whereas gpUS6 does not bind to rat TAP subunits. gpUS6 associates with preformed TAP1/2 heterodimers but not with unassembled TAP subunits. To locate domains of TAP required for gpUS6 binding and function, we took advantage of reciprocal human/rat intrachain TAP chimeras. Each TAP subunit forms two contact sites within its TMD interacting with gpUS6. The dominant gpUS6-binding site on TAP2 maps to an N-terminal loop, whereas inhibition of peptide transport is mediated by a C-terminal loop of the TMD. For TAP1, two gpUS6 binding domains are formed by loops of the C-terminal TMD. The domain required for TAP inactivation is built by a distal loop of the C-terminal TMD, indicating a topology of TAP1 comprising 10 endoplasmic reticulum transmembrane segments. By forming multimeric complexes, gpUS6 reaches the distant target domains to arrest peptide transport. The data revealed a nonanalogous multipolar bridging of the TAP TMDs by gpUS6.
Collapse
Affiliation(s)
- Anne Halenius
- Division of Viral Infections, Robert Koch-Institute, Nordurfer 20, 13353 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
57
|
Leonhardt RM, Keusekotten K, Bekpen C, Knittler MR. Critical role for the tapasin-docking site of TAP2 in the functional integrity of the MHC class I-peptide-loading complex. THE JOURNAL OF IMMUNOLOGY 2005; 175:5104-14. [PMID: 16210614 DOI: 10.4049/jimmunol.175.8.5104] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The transporter associated with Ag processing (TAP) translocates antigenic peptides into the endoplasmic reticulum for binding onto MHC class I (MHC I) molecules. Tapasin organizes a peptide-loading complex (PLC) by recruiting MHC I and accessory chaperones to the N-terminal regions (N domains) of the TAP subunits TAP1 and TAP2. To investigate the function of the tapasin-docking sites of TAP in MHC I processing, we expressed N-terminally truncated variants of TAP1 and TAP2 in combination with wild-type chains, as fusion proteins or as single subunits. Strikingly, TAP variants lacking the N domain in TAP2, but not in TAP1, build PLCs that fail to generate stable MHC I-peptide complexes. This correlates with a substantially reduced recruitment of accessory chaperones into the PLC demonstrating their important role in the quality control of MHC I loading. However, stable surface expression of MHC I can be rescued in post-endoplasmic reticulum compartments by a proprotein convertase-dependent mechanism.
Collapse
|
58
|
Abele R, Tampé R. Modulation of the antigen transport machinery TAP by friends and enemies. FEBS Lett 2005; 580:1156-63. [PMID: 16359665 DOI: 10.1016/j.febslet.2005.11.048] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2005] [Revised: 11/18/2005] [Accepted: 11/21/2005] [Indexed: 12/12/2022]
Abstract
The transporter associated with antigen processing (TAP) is a key factor of the major histocompatibility complex (MHC) class I antigen presentation pathway. This ABC transporter translocates peptides derived mainly from proteasomal degradation from the cytosol into the ER lumen for loading onto MHC class I molecules. Manifold mechanisms have evolved to regulate TAP activity. During infection, TAP expression is upregulated by interferon-gamma. Furthermore, the assembly and stability of the transport complex is promoted by various auxiliary factors. However, tumors and viruses have developed sophisticated strategies to escape the immune surveillance by suppressing TAP function. The activity of TAP can be impaired on the transcriptional or translational level, by enhanced degradation or by inhibition of peptide translocation. In this review, we briefly summarize existing data concerning the regulation of the TAP complex.
Collapse
Affiliation(s)
- Rupert Abele
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Marie-Curie-Str. 9, D-60439 Frankfurt/M., Germany
| | | |
Collapse
|
59
|
Benoit LA, Shannon J, Chamberlain JW, Miller RG. Influence of xenogeneic beta2-microglobulin on functional recognition of H-2Kb by the NK cell inhibitory receptor Ly49C. THE JOURNAL OF IMMUNOLOGY 2005; 175:3542-53. [PMID: 16148097 DOI: 10.4049/jimmunol.175.6.3542] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NK cells maintain self-tolerance through expression of inhibitory receptors that bind MHC class I (MHC-I) molecules. MHC-I can exist on the cell surface in several different forms, including "peptide-receptive" or PR-MHC-I that can bind exogenous peptide. PR-MHC-I molecules are short lived and, for H-2K(b), comprise approximately 10% of total MHC-I. In the present study, we confirm that signaling through the mouse NK inhibitory receptor Ly49C requires the presence of PR-K(b) and that this signaling is prevented when PR-K(b) is ablated by pulsing with a peptide that can bind to it with high affinity. Although crystallographic data indicate that Ly49C can engage H-2K(b) loaded with high-affinity peptide, our data suggest that this interaction does not generate an inhibitory signal. We also show that no signaling occurs when the PR-K(b) complex has mouse beta(2)-microglobulin (beta(2)m) replaced with human beta(2)m, although replacement with bovine beta(2)m has no effect. Furthermore, we show that beta(2)m exchange occurs preferentially in the PR-K(b) component of total H-2K(b). These conclusions were reached in studies modulating the sensitivity to lysis of both NK-resistant syngeneic lymphoblasts and NK-sensitive RMA-S tumor cells. We also show, using an in vivo model of lymphocyte recirculation, that engrafted lymphocytes are unable to survive NK attack when otherwise syngeneic lymphocytes express human beta(2)m. These findings suggest a qualitative extension of the "missing self" hypothesis to include NK inhibitory receptors that are restricted to the recognition of unstable forms of MHC-I, thus enabling NK cells to respond more quickly to events that decrease MHC-I synthesis.
Collapse
Affiliation(s)
- Loralyn A Benoit
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
60
|
Davanture S, Leignadier J, Milani P, Soubeyran P, Malissen B, Malissen M, Schmitt-Verhulst AM, Boyer C. Selective defect in antigen-induced TCR internalization at the immune synapse of CD8 T cells bearing the ZAP-70(Y292F) mutation. THE JOURNAL OF IMMUNOLOGY 2005; 175:3140-9. [PMID: 16116204 DOI: 10.4049/jimmunol.175.5.3140] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cbl proteins have been implicated in ligand-induced TCR/CD3 down-modulation, but underlying mechanisms are unclear. We analyzed the effect of mutation of a cbl-binding site on ZAP-70 (ZAP-Y292F) on dynamics, internalization, and degradation of the TCR/CD3 complex in response to distinct stimuli. Naive CD8 T cells expressing the P14 transgenic TCR from ZAP-Y292F mice were selectively affected in TCR/CD3 down-modulation in response to antigenic stimulation, whereas neither anti-CD3 Ab-, and PMA-induced TCR down-modulation, nor constitutive receptor endocytosis/cycling were impaired. We further established that the defect in TCR/CD3 down-modulation in response to Ag was paralleled by an impaired TCR/CD3 internalization and CD3zeta degradation. Analysis of T/APC conjugates revealed that delayed redistribution of TCR at the T/APC contact zone was paralleled by a delay in TCR internalization in the synaptic zone in ZAP-Y292F compared with ZAP-wild-type T cells. Cbl recruitment to the synapse was also retarded in ZAP-Y292F T cells, although F-actin and LFA-1 redistribution was similar for both cell types. This study identifies a step involving ZAP-70/cbl interaction that is critical for rapid internalization of the TCR/CD3 complex at the CD8 T cell/APC synapse.
Collapse
Affiliation(s)
- Suzel Davanture
- Centre d'Immunologie de Marseille-Luminy, Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/Université de la Méditerranée, Marseille, Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Bates SE, Robey R, Knutsen T, Honjo Y, Litman T, Dean M. New ABC transporters in multi-drug resistance. ACTA ACUST UNITED AC 2005. [DOI: 10.1517/14728222.4.5.561] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
62
|
Dissanayake SK, Tuera N, Ostrand-Rosenberg S. Presentation of Endogenously Synthesized MHC Class II-Restricted Epitopes by MHC Class II Cancer Vaccines Is Independent of Transporter Associated with Ag Processing and the Proteasome. THE JOURNAL OF IMMUNOLOGY 2005; 174:1811-9. [PMID: 15699107 DOI: 10.4049/jimmunol.174.4.1811] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cell-based vaccines consisting of invariant chain-negative tumor cells transfected with syngeneic MHC class II (MHC II) and costimulatory molecule genes are prophylactic and therapeutic agents for the treatment of murine primary and metastatic cancers. Vaccine efficacy is due to direct presentation of endogenously synthesized, MHC II-restricted tumor peptides to CD4+ T cells. Because the vaccine cells lack invariant chain, we have hypothesized that, unlike professional APC, the peptide-binding groove of newly synthesized MHC II molecules may be accessible to peptides, allowing newly synthesized MHC II molecules to bind peptides that have been generated in the proteasome and transported into the endoplasmic reticulum via the TAP complex. To test this hypothesis, we have compared the Ag presentation activity of multiple clones of TAP-negative and TAP-positive tumor cells transfected with I-Ak genes and the model Ag hen egg white lysozyme targeted to the endoplasmic reticulum or cytoplasm. Absence of TAP does not diminish Ag presentation of three hen egg white lysozyme epitopes. Likewise, cells treated with proteasomal and autophagy inhibitors are as effective APC as untreated cells. In contrast, drugs that block endosome function significantly inhibit Ag presentation. Coculture experiments demonstrate that the vaccine cells do not release endogenously synthesized molecules that are subsequently endocytosed and processed in endosomal compartments. Collectively, these data indicate that vaccine cell presentation of MHC II-restricted endogenously synthesized epitopes occurs via a mechanism independent of the proteasome and TAP complex, and uses a pathway that overlaps with the classical endosomal pathway for presentation of exogenously synthesized molecules.
Collapse
Affiliation(s)
- Samudra K Dissanayake
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | | | | |
Collapse
|
63
|
Ehses S, Leonhardt RM, Hansen G, Knittler MR. Functional Role of C-Terminal Sequence Elements in the Transporter Associated with Antigen Processing. THE JOURNAL OF IMMUNOLOGY 2004; 174:328-39. [PMID: 15611256 DOI: 10.4049/jimmunol.174.1.328] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TAP delivers antigenic peptides into the endoplasmic reticulum (ER) that are subsequently bound by MHC class I molecules. TAP consists of two subunits (TAP1 and TAP2), each with a transmembrane (TMD) and a nucleotide-binding (NBD) domain. The two TAP-NBDs have distinct biochemical properties and control different steps during the peptide translocation process. We noted previously that the nonhomologous C-terminal tails of rat TAP1 and TAP2 determine the distinct functions of TAP-NBD1 and -NBD2. To identify the sequence elements responsible for the asymmetrical NBD function, we constructed chimeric rat TAP variants in which we systematically exchanged sequence regions of different length between the two TAP-NBDs. Our fine-mapping studies demonstrate that a nonhomologous region containing the alpha6/beta10-loop in conjunction with the downstream switch region is directly responsible for the functional separation of the TAP-NBDs. The alpha6/beta10-loop determines the nonsynonymous nucleotide binding of NBD1 and NBD2, whereas the switch region seems to play a critical role in regulating the functional cross-talk between the structural domains of TAP. Based on our findings, we postulate that these two sequence elements build a minimal functional unit that controls the asymmetry of the two TAP-NBDs.
Collapse
Affiliation(s)
- Sarah Ehses
- Institute for Genetics, University of Cologne, Zülpicher Strasse 47, 50674 Cologne, Germany
| | | | | | | |
Collapse
|
64
|
Assounga AG, Warner CM. Transcription of major histocompatibility complex class I (Kb) and transporter associated with antigen processing 1 and 2 genes is up-regulated with age. Immunology 2004; 113:378-83. [PMID: 15500625 PMCID: PMC1782576 DOI: 10.1111/j.1365-2567.2004.01967.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The transporter associated with antigen processing 1 and 2 (TAP1 and TAP2) genes belong to the ATP-binding cassette family of transporter genes. They provide peptides necessary for the assembly of major histocompatibility complex (MHC) class I molecules by transporting these peptides into the endoplasmic reticulum. As MHC class I protein expression increases with age, we have explored the effect of age on the transcription of MHC class I genes (Kb) and TAP1 and TAP2 genes in C57BL/6 mice. Blood and spleen lymphocytes were isolated from mice aged from 3 months to over 24 months. RNA was extracted and mRNA for Kb, TAP1, TAP2 was quantified using slot-blot hybridization followed by densitometry. There was a parallel age-related increase (1.5-fold) in blood lymphocyte mRNA of these genes from 3 months to 21 months. In mice over 24 months old there was a decrease in Kb and TAP1 mRNA, but an increase in TAP2 mRNA. In spleen lymphocytes an age-related increase in all three mRNA species occurred throughout life. While MHC class I and Tap genes underwent very similar age-related changes, MHC class I mRNA was about 50 times more abundant than either TAP1 or TAP2 mRNA.
Collapse
Affiliation(s)
- Alain G Assounga
- Department of Biology, North-eastern University, Boston, MA, USA.
| | | |
Collapse
|
65
|
Prasanna SJ, Nandi D. The MHC-encoded class I molecule, H-2Kk, demonstrates distinct requirements of assembly factors for cell surface expression: roles of TAP, Tapasin and β2-microglobulin. Mol Immunol 2004; 41:1029-45. [PMID: 15302165 DOI: 10.1016/j.molimm.2004.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2004] [Indexed: 11/24/2022]
Abstract
Major histocompatibility complex encoded class I (MHC-I) molecules display peptides derived from endogenous proteins for perusal by CD8+ T lymphocytes. H6, a mouse hepatoma cell line, expresses low levels of surface H-2Dd but not H-2Kk. Surface H-2Dd molecules are unstable and their levels, but not H-2Kk, are induced at 22 degrees C. Immunoprecipitation experiments revealed that H-2Kk, H-2Dd and beta2-microglobulin (beta2m) are expressed intracellularly; however no conformed MHC-I are present. Transcriptional profiling of factors required for MHC-I assembly demonstrated greatly reduced levels of the Transporter associated with antigen processing (Tap)2 subunit. The role of key assembly molecules in the MHC-I pathway was investigated by ectopic expression studies. Overexpression of beta2m enhanced surface H-2Dd, but not H-2Kk, levels whereas overexpression of TAP2 rescued surface H-2Kk, but not H-2Dd, levels. Interestingly, Tapasin plays a dual role: first, in quality control by reducing the induced surface expression of TAP2-mediated H-2Kk and beta2m-mediated H-2Dd levels. Secondly, Tapasin overexpression increases Tap2 transcripts and cooperates with TAPl or human beta2m to enhance surface H-2Kk expression; this synergy is TAP-dependent as demonstrated by infected cell protein 47 (ICP47) inhibition studies. Unlike the well studied H-2 MHC-I alleles, H-2Kb, H-2Db, H-2Kd and H-2Dd, a functional TAP is "essential" for H-2Kk cell surface expression.
Collapse
Affiliation(s)
- S Jyothi Prasanna
- Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| | | |
Collapse
|
66
|
Abele R, Tampé R. The ABCs of Immunology: Structure and Function of TAP, the Transporter Associated with Antigen Processing. Physiology (Bethesda) 2004; 19:216-24. [PMID: 15304636 DOI: 10.1152/physiol.00002.2004] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The transporter associated with antigen processing (TAP) is essential for peptide delivery from the cytosol into the lumen of the endoplasmic reticulum (ER), where these peptides are loaded on major histocompatibility complex (MHC) I molecules. Loaded MHC I leave the ER and display their antigenic cargo on the cell surface to cytotoxic T cells. Subsequently, virus-infected or malignantly transformed cells can be eliminated. Here we discuss the structure, function, and mechanism of TAP as a central part of the peptide-loading complex. Furthermore, aspects of virus and tumor escape strategies are presented.
Collapse
Affiliation(s)
- Rupert Abele
- Institute of Biochemistry, Biozentrum Frankfurt, Johann Wolfgang Goethe-University, D-60439 Frankfurt am Main, Germany
| | | |
Collapse
|
67
|
Agrawal S, Reemtsma K, Bagiella E, Oluwole SF, Braunstein NS. Role of TAP-1 and/or TAP-2 antigen presentation defects in tumorigenicity of mouse melanoma. Cell Immunol 2004; 228:130-7. [PMID: 15219464 DOI: 10.1016/j.cellimm.2004.04.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2004] [Accepted: 04/20/2004] [Indexed: 11/30/2022]
Abstract
Mutations in transporters associated with antigen processing (TAP-1 and -2) required for the transport of cytosolic endogenous peptides to the endoplasmic reticulum correlate with increased metastatic potential and reduced host survival in several malignancies. To address the possible function of TAP as a "tumor suppressor" gene, we show that correction of TAP-1 and/or TAP-2 defects in B16 mouse melanoma enhanced the cell surface expression of MHC class I molecules and significantly reduced the rate of subcutaneous tumor growth and pulmonary metastatic burden. Cytotoxic assays confirmed increased sensitivity of TAP-1 and/or TAP-2 transfected clones of B16 melanoma to cytotoxic T lymphocytes. These results indicate that the expression of TAP limits the malignant potential of tumors with implications for CD8(+) T cell-based immunotherapy in controlling growth of certain TAP-deficient malignancies.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 2
- ATP Binding Cassette Transporter, Subfamily B, Member 3
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/immunology
- Animals
- Antigen Presentation/genetics
- Antigen Presentation/immunology
- Blotting, Northern
- Cytotoxicity Tests, Immunologic
- Flow Cytometry
- Histocompatibility Antigens Class I/immunology
- Immunotherapy
- Lung Neoplasms/genetics
- Lung Neoplasms/immunology
- Lung Neoplasms/pathology
- Male
- Melanoma, Experimental/genetics
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- RNA, Neoplasm/chemistry
- RNA, Neoplasm/genetics
- T-Lymphocytes, Cytotoxic
- Transfection
Collapse
Affiliation(s)
- Shefali Agrawal
- Department of Surgery, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| | | | | | | | | |
Collapse
|
68
|
Boname JM, de Lima BD, Lehner PJ, Stevenson PG. Viral degradation of the MHC class I peptide loading complex. Immunity 2004; 20:305-17. [PMID: 15030774 DOI: 10.1016/s1074-7613(04)00047-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Revised: 12/08/2003] [Accepted: 01/21/2004] [Indexed: 10/26/2022]
Abstract
The murine gamma-herpesvirus-68 MK3 protein inhibits CD8(+) T cell recognition by ubiquitinating the cytoplasmic tails of classical MHC class I heavy chains. Here we show that MK3 also provides the first example of a protein that degrades tapasin and TAP. The degradation was MK3 RING finger dependent and primarily affected TAP. MK3 associated with TAP1 in the absence of tapasin or TAP2, suggesting that TAP1 was a primary binding partner in the peptide loading complex. TAP2 also played a major role in MK3 stability and function. By degrading TAP, therefore, MK3 limited its own expression. However, TAP degradation also broadened the MK3 inhibitory repertoire and achieved a remarkable resistance to MHC class I upregulation by interferon-gamma, suggesting that it represents a specific adaptation to immune evasion in lymphoid tissue.
Collapse
Affiliation(s)
- Jessica M Boname
- Division of Virology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom
| | | | | | | |
Collapse
|
69
|
Bouabe H, Knittler MR. The distinct nucleotide binding states of the transporter associated with antigen processing (TAP) are regulated by the nonhomologous C-terminal tails of TAP1 and TAP2. ACTA ACUST UNITED AC 2004; 270:4531-46. [PMID: 14622282 DOI: 10.1046/j.1432-1033.2003.03848.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The transporter associated with antigen processing (TAP) delivers peptides into the lumen of the endoplasmic reticulum for binding onto major histocompatibility complex class I molecules. TAP comprises two polypeptides, TAP1 and TAP2, each with an N-terminal transmembrane domain and a C-terminal cytosolic nucleotide binding domain (NBD). The two NBDs have distinct intrinsic nucleotide binding properties. In the resting state of TAP, the NBD1 has a much higher binding activity for ATP than the NBD2, while the binding of ADP to the two NBDs is equivalent. To attribute the different nucleotide binding behaviour of NBD1 and NBD2 to specific sequences, we generated chimeric TAP1 and TAP2 polypeptides in which either the nonhomologous C-terminal tails downstream of the Walker B motif, or the core NBDs which are enclosed by the conserved Walker A and B motifs, were reciprocally exchanged. Our biochemical and functional studies on the different TAP chimeras show that the distinct nucleotide binding behaviour of TAP1 and TAP2 is controlled by the nonhomologous C-terminal tails of the two TAP chains. In addition, our data suggest that the C-terminal tail of TAP2 is required for a functional transporter by regulating ATP binding. Further experiments indicate that ATP binding to NBD2 is important because it prevents simultaneous uptake of ATP by TAP1. We propose that the C-terminal tails of TAP1 and TAP2 play a crucial regulatory role in the coordination of nucleotide binding and ATP hydrolysis by TAP.
Collapse
Affiliation(s)
- Hicham Bouabe
- Institute for Genetics, University of Cologne, Germany
| | | |
Collapse
|
70
|
Chefalo PJ, Grandea AG, Van Kaer L, Harding CV. Tapasin-/- and TAP1-/- macrophages are deficient in vacuolar alternate class I MHC (MHC-I) processing due to decreased MHC-I stability at phagolysosomal pH. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:5825-33. [PMID: 12794107 DOI: 10.4049/jimmunol.170.12.5825] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Alternate class I MHC (MHC-I) Ag processing via cytosolic or vacuolar pathways leads to cross-presentation of exogenous Ag to CD8 T cells. Vacuolar alternate MHC-I processing involves phagolysosomal Ag proteolysis and peptide binding to MHC-I in post-Golgi compartments. We report the first study of alternate MHC-I Ag processing in tapasin(-/-) cells and experiments with tapasin(-/-) and TAP1(-/-) macrophages that characterize alternate MHC-I processing. Tapasin promotes retention of MHC-I in the endoplasmic reticulum (ER) for loading with high affinity peptides, whereas tapasin(-/-) cells allow poorly loaded MHC-I molecules to exit the ER. Hypothetically, we considered that a large proportion of post-Golgi MHC-I on tapasin(-/-) cells might be peptide-receptive, enhancing alternate MHC-I processing. In contrast, alternate MHC-I processing was diminished in both tapasin(-/-) and TAP1(-/-) macrophages. Nonetheless, these cells efficiently presented exogenous peptide, suggesting a loss of MHC-I stability or function specific to vacuolar processing compartments. Tapasin(-/-) and TAP1(-/-) macrophages had decreased MHC-I stability and increased susceptibility of MHC-I to inactivation by acidic conditions (correlating with vacuolar pH). Incubation of tapasin(-/-) or TAP1(-/-) cells at 26 degrees C decreased susceptibility of MHC-I to acid pH and reversed the deficiency in alternate MHC-I processing. Thus, tapasin and TAP are required for MHC-I to bind ER-derived stabilizing peptides to achieve the stability needed for alternate MHC-I processing via peptide exchange in acidic vacuolar processing compartments. Acidic pH destabilizes MHC-I, but also promotes peptide exchange, thereby enhancing alternate MHC-I Ag processing. These results are consistent with alternate MHC-I Ag processing mechanisms that involve binding of peptides to MHC-I within acidic vacuolar compartments.
Collapse
Affiliation(s)
- Peter J Chefalo
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
71
|
Vertegaal ACO, Kuiperij HB, Houweling A, Verlaan M, van der Eb AJ, Zantema A. Differential expression of tapasin and immunoproteasome subunits in adenovirus type 5- versus type 12-transformed cells. J Biol Chem 2003; 278:139-46. [PMID: 12407112 DOI: 10.1074/jbc.m206267200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Adenovirus type 12 (Ad12)-transformed baby rat kidney (BRK) cells are oncogenic in syngeneic immunocompetent rats in contrast to adenovirus type 5 (Ad5)-transformed BRK cells, which are not oncogenic in these animals. A significant factor contributing to the difference in oncogenicity may be the low levels of major histocompatibility complex (MHC) class I membrane expression in Ad12-transformed BRK cells as compared with those in Ad5-transformed BRK cells, which presumably results in escape from killing by cytotoxic T lymphocytes. Here we show that, in addition to the decreased levels of expression of the MHC class I heavy chain and the peptide transporter Tap-2, the expression levels of the chaperone Tapasin and the immunoproteasome components MECL-1, PA28-alpha, and PA28-beta also are much lower in Ad12- than in Ad5-transformed BRK cells. The low expression levels of these proteins may contribute to the escape from killing by cytotoxic T lymphocytes, because the generation of optimal peptides and loading of these peptides on MHC class I require these components. Increased levels of phosphorylated signal transducer and activator of transcription-1 protein and expression of IFN regulatory factor-7 were found in Ad5- versus Ad12-transformed BRK cells. Therefore, the critical alteration leading to the plethora of differences may be an interferon (-related) effect.
Collapse
Affiliation(s)
- Alfred C O Vertegaal
- Medical Genetic Centre-Department of Molecular Cell Biology, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
72
|
Heintke S, Chen M, Ritz U, Lankat-Buttgereit B, Koch J, Abele R, Seliger B, Tampé R. Functional cysteine-less subunits of the transporter associated with antigen processing (TAP1 and TAP2) by de novo gene assembly. FEBS Lett 2003; 533:42-6. [PMID: 12505156 DOI: 10.1016/s0014-5793(02)03746-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Within the adaptive immune system the transporter associated with antigen processing (TAP) plays a pivotal role in loading of peptides onto major histocompatibility (MHC) class I molecules. As a central tool to investigate the structure and function of the TAP complex, we created cysteine-less human TAP subunits by de novo gene synthesis, replacing all 19 cysteines in TAP1 and TAP2. After expression in TAP-deficient human fibroblasts, cysteine-less TAP1 and TAP2 are functional with respect to adenosine triphosphate (ATP)-dependent peptide transport and inhibition by ICP47 from herpes simplex virus. Cysteine-less TAP1 and TAP2 restore maturation and intracellular trafficking of MHC class I molecules to the cell surface.
Collapse
Affiliation(s)
- Susanne Heintke
- Institut für Biochemie, Biozentrum, Johann Wolfgang Goethe-Universität Frankfurt, Marie Curie Str. 9, D-60439, Frankfurt/M, Germany
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Andersen MLM, Ruhwald M, Nissen MH, Buus S, Claesson MH. Self-peptides with intermediate capacity to bind and stabilize MHC class I molecules may be immunogenic. Scand J Immunol 2003; 57:21-7. [PMID: 12542794 DOI: 10.1046/j.1365-3083.2003.01182.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Thirty self-peptides were selected on the basis of their predicted binding to H-2b molecules. The binding of peptides was ascertained experimentally by biochemical (KD measurements) and cellular [major histocompatibility complex class I (MHC-I) stabilization] assays. A weak, but significant, correlation between KD measurements and MHC-I stabilization was observed. Mice (n = 99) were immunized with individual peptides. Twenty-eight peptides were found to induce peptide-specific cytotoxic activity, and a total of 84 mice developed significant cytotoxic T lymphocyte (CTL) responses after immunization. Only one of the 21 mice immunized with high-affinity peptides developed a peptide-specific CTL response of 29 lytic units per 106 splenocytes, whereas 11 of the 42 mice immunized with intermediate-affinity peptides developed peptide-specific CTL responses at this level (P < 0.05). These observations suggest the absence of tolerance towards most MHC-I-restricted self-peptides and that strong antiself immunity can be generated preferentially towards self-peptides with an intermediate affinity for MHC-I. These data should be considered in the design of tumour vaccines based on MHC-I-binding self-peptides.
Collapse
Affiliation(s)
- M L M Andersen
- Laboratory of Cellular Immunology, Department of Medical Anatomy, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
74
|
Ramirez MC, Sigal LJ. Macrophages and dendritic cells use the cytosolic pathway to rapidly cross-present antigen from live, vaccinia-infected cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:6733-42. [PMID: 12471104 DOI: 10.4049/jimmunol.169.12.6733] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Professional APCs (pAPC) can process and present on their own MHC class I molecules Ags acquired from Ag donor cells (ADC). This phenomenon of cross-presentation is essential in the induction of CD8(+) T cell responses to viruses that do not infect pAPC and possibly contributes to the induction of CD8(+) responses to many other viruses. However, little is known about the mechanisms underlying this process. In this study, we show that dendritic cells and macrophages cross-present a model Ag supplied by vaccinia virus-infected ADC via the cytosolic route. Strikingly, we also found that cross-presentation of Ags provided by vaccinia-infected cells occurs within a couple of hours of pAPC/ADC interaction, that the duration of cross-presentation lasts for only 16 h, and that cross-presentation can occur at early times of infection when the ADC are still alive.
Collapse
|
75
|
Kutsch O, Vey T, Kerkau T, Hünig T, Schimpl A. HIV type 1 abrogates TAP-mediated transport of antigenic peptides presented by MHC class I. Transporter associated with antigen presentation. AIDS Res Hum Retroviruses 2002; 18:1319-25. [PMID: 12487820 DOI: 10.1089/088922202320886361] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Downregulation of MHC class I expression following human immunodeficiency virus 1 (HIV-1) infection is thought to play an important role in viral escape from immune recognition by cytotoxic T-lymphocytes (CTLs). Since exogenous addition of HIV-1-derived peptides restores susceptibility of HIV-1-infected cells to CTL-mediated lysis, we tested whether endogenous peptide loading is impaired in these cells. Our results show that in HIV-1-infected cells the ability of the transporter associated with antigen presentation (TAP) to translocate antigenic peptides from the cytosol to the lumen of the ER for presentation on MHC class I molecules is abolished. These data suggest that interference with the supply of antigenic peptides to the MHC class I pathway provides an additional mechanism by which HIV-1 evades the CTL-mediated immune response.
Collapse
Affiliation(s)
- O Kutsch
- Institute of Immunobiology and Virology, The Julius-Maximilians University, Würzburg, Germany.
| | | | | | | | | |
Collapse
|
76
|
Grommé M, Neefjes J. Antigen degradation or presentation by MHC class I molecules via classical and non-classical pathways. Mol Immunol 2002; 39:181-202. [PMID: 12200050 DOI: 10.1016/s0161-5890(02)00101-3] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Major histocompatibility complex (MHC) class I molecules usually present endogenous peptides at the cell surface. This is the result of a cascade of events involving various dedicated proteins like the peptide transporter associated with antigen processing (TAP) and the ER chaperone tapasin. However, alternative ways for class I peptide loading exist which may be highly relevant in a process called cross-priming. Both pathways are described here in detail. One major difference between these pathways is that the proteases involved in the generation of peptides are different. How proteases and peptidases influence peptide generation and degradation will be discussed. These processes determine the amount of peptides available for TAP translocation and class I binding and ultimately the immune response.
Collapse
Affiliation(s)
- Monique Grommé
- Division of Tumor Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | | |
Collapse
|
77
|
Herpes Viral Proteins Blocking the Transporter Associated with Antigen Processing TAP — From Genes to Function and Structure. Curr Top Microbiol Immunol 2002. [DOI: 10.1007/978-3-642-59421-2_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
78
|
Lankat-Buttgereit B, Tampé R. The transporter associated with antigen processing: function and implications in human diseases. Physiol Rev 2002; 82:187-204. [PMID: 11773612 DOI: 10.1152/physrev.00025.2001] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The adaptive immune systems have evolved to protect the organism against pathogens encountering the host. Extracellular occurring viruses or bacteria are mainly bound by antibodies from the humoral branch of the immune response, whereas infected or malignant cells are identified and eliminated by the cellular immune system. To enable the recognition, proteins are cleaved into peptides in the cytosol and are presented on the cell surface by class I molecules of the major histocompatibility complex (MHC). The transport of the antigenic peptides into the lumen of the endoplasmic reticulum (ER) and loading onto the MHC class I molecules is an essential process for the presentation to cytotoxic T lymphocytes. The delivery of these peptides is performed by the transporter associated with antigen processing (TAP). TAP is a heterodimer of TAP1 and TAP2, each subunit containing transmembrane domains and an ATP-binding motif. Sequence homology analysis revealed that TAP belongs to the superfamily of ATP-binding cassette transporters. Loss of TAP function leads to a loss of cell surface expression of MHC class I molecules. This may be a strategy for tumors and virus-infected cells to escape immune surveillance. Structure and function of the TAP complex as well as the implications of loss or downregulation of TAP is the topic of this review.
Collapse
|
79
|
Velarde G, Ford RC, Rosenberg MF, Powis SJ. Three-dimensional structure of transporter associated with antigen processing (TAP) obtained by single Particle image analysis. J Biol Chem 2001; 276:46054-63. [PMID: 11595746 DOI: 10.1074/jbc.m108435200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transporter associated with antigen processing (TAP) is an ATP binding cassette transporter responsible for peptide translocation into the lumen of the endoplasmic reticulum for assembly with major histocompatibility complex class I molecules. Immunoaffinity-purified TAP particles comprising TAP1 and TAP2 polypeptides, and TAP2 particles alone were characterized after detergent solubilization and studied by electron microscopy. Projection structures of TAP1+2 particles reveal a molecule approximately 10 nm across with a deeply staining central region, whereas TAP2 molecules are smaller in projection. A three-dimensional structure of TAP reveals it is isolated as a single heterodimeric complex, with the TAP1 and TAP2 subunits combining to create a central 3-nm-diameter pocket on the predicted endoplasmic reticulum-lumenal side. Its structural similarity to other ABC transporters demonstrates a common tertiary structure for this diverse family of membrane proteins.
Collapse
Affiliation(s)
- G Velarde
- Department of Biomolecular Sciences, UMIST, Manchester M60 1QD, United Kingdom
| | | | | | | |
Collapse
|
80
|
Abstract
ABC transporters are found in all known organisms, and approximately 1,100 different transporters belonging to this family have been described in the literature. The family is defined by homology within the ATP-binding cassette (ABC) region, which extends outside of the more typical Walker motifs found in all ATP-binding proteins. Most family members also contain transmembrane domains involved in recognition of substrates, which are transported across, into, and out of cell membranes, but some members utilize ABCs as engines to regulate ion channels. There are approximately 50 known ABC transporters in the human, and there are currently 13 genetic diseases associated with defects in 14 of these transporters. The most common genetic disease conditions include cystic fibrosis, Stargardt disease, age-related macular degeneration, adrenoleukodystrophy, Tangier disease, Dubin-Johnson syndrome and progressive familial intrahepatic cholestasis. At least 8 members of this family are involved in the transport of a variety of amphipathic compounds, including anticancer drugs, and some appear to contribute to the resistance of cancer cells to chemotherapy.
Collapse
Affiliation(s)
- M M Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4255, USA.
| | | |
Collapse
|
81
|
Daumke O, Knittler MR. Functional asymmetry of the ATP-binding-cassettes of the ABC transporter TAP is determined by intrinsic properties of the nucleotide binding domains. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:4776-86. [PMID: 11532014 DOI: 10.1046/j.1432-1327.2001.02406.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ATP-binding-cassette (ABC) transporter associated with antigen processing (TAP) delivers peptides into the ER. TAP consists of two polypeptides (TAP1 and TAP2) each with an N-terminal transmembrane (TMD) and a C-terminal nucleotide binding domain (NBD). The two highly homologous NBDs of TAP show different nucleotide binding specificites, and identical mutations in the domains can have different effects on peptide transport. We asked whether this functional asymmetry of the NBDs is an intrinsic property or is imposed by the TMDs to which they are linked. To investigate the functional interdependence of the TAP domains, we created various TAP variants in which TMDs and/or NBDs were exchanged. All TAP variants except those with two TMDs of TAP1 could assemble. The TMDs did not affect the different nucleotide binding properties of the NBDs. The TAP variant with switched NBDs showed active peptide transport while the variants with pairs of identical NBDs or TMDs were inactive. Although both types of TMDs and NBDs have to be present for peptide transport they do not have to be assorted as in wild-type TAP. Thus, TAP domains seem to preserve functional autonomy despite their fusion into single polypeptide chains. We propose that the two NBDs act as nonequivalent 'modules' that directly determine the functional asymmetry of the included ATP-binding-cassettes. This provides a new insight into the function of NBDs and opens up new possibilities to investigate the molecular mechanism of the 'NBD engine' in ABC transporters.
Collapse
Affiliation(s)
- O Daumke
- Institute for Genetics, University of Cologne, Germany
| | | |
Collapse
|
82
|
Chun T, Grandea AG, Lybarger L, Forman J, Van Kaer L, Wang CR. Functional roles of TAP and tapasin in the assembly of M3-N-formylated peptide complexes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:1507-14. [PMID: 11466371 DOI: 10.4049/jimmunol.167.3.1507] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
H2-M3 is a MHC class Ib molecule with a high propensity to bind N-formylated peptides. Due to the paucity of endogenous Ag, the majority of M3 is retained in the endoplasmic reticulum (ER). Upon addition of exogenous N-formylated peptides, M3 trafficks rapidly to the cell surface. To understand the mechanism underlying Ag presentation by M3, we examined the role of molecular chaperones in M3 assembly, particularly TAP and tapasin. M3-specific CTLs fail to recognize cells isolated from both TAP-deficient (TAP(o)) and tapasin-deficient mice, suggesting that TAP and tapasin are required for M3-restricted Ag presentation. Impaired M3 expression in TAP(o) mice is due to instability of the intracellular pool of M3. Addition of N-formylated peptides to TAP(o) cells stabilizes M3 in the ER and partially restores surface expression. Surprisingly, significant amounts of M3 are retained in the ER in tapasin-deficient mice, even in the presence of N-formylated peptides. Our results define the role of TAP and tapasin in the assembly of M3-peptide complexes. TAP is essential for stabilization of M3 in the ER, whereas tapasin is critical for loading of N-formylated peptides onto the intracellular pool of M3. However, neither TAP nor tapasin is required for ER retention of empty M3.
Collapse
Affiliation(s)
- T Chun
- Gwen Knapp Center for Lupus and Immunology Research, Committee on Immunology and Department of Pathology, University of Chicago, 924 East 57th Street, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
83
|
Akuta N, Chayama K, Suzuki F, Someya T, Kobayashi M, Tsubota A, Suzuki Y, Saitoh S, Arase Y, Ikeda K, Kumada H. Risk factors of hepatitis C virus-related liver cirrhosis in young adults: positive family history of liver disease and transporter associated with antigen processing 2(TAP2)*0201 Allele. J Med Virol 2001; 64:109-16. [PMID: 11360242 DOI: 10.1002/jmv.1025] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The aim of this study was to clinically characterize young patients with hepatitis-C-related cirrhosis. We compared 27 patients with liver cirrhosis (Group LC) who were anti-HCV positive, aged 40 years or less at the time of diagnosis, with 323 consecutive patients with HCV-related chronic hepatitis (Group CH) matched for age and gender. Furthermore, Group LC was divided into two arbitrary groups (29-35 years, n = 8 /36-40 years, n = 19), based on the age of patients at the time of diagnosis of liver cirrhosis. Patients' characteristics and family history were investigated, and the frequency of transporter associated with antigen processing 2 (TAP2) was determined. A family history of liver disease was present in 40.7% of Group LC but in 18.0% of Group CH (P < 0.05). The younger the age of diagnosis of cirrhosis in Group LC, the higher the frequency of a positive family history (29-35 years, 87.5%; 36-40 years, 21.1%, P < 0.05). The frequency of TAP2*0201 was significantly higher in young adult patients with HCV-related liver cirrhosis than in HCV carriers with normal ALT (P < 0.05), and tended to be higher than in uninfected normal subjects (P = 0.05). The cumulative survival rate of cirrhosis patients with family history of liver diseases was significantly lower than that of cirrhosis patients without such history (P < 0.05). Our findings suggest that a positive family history of liver disease and TAP2*0201 polymorphism may be risk factors for HCV-related liver cirrhosis in young adults.
Collapse
Affiliation(s)
- N Akuta
- Division of Gastroenterology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-0001, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Momburg F, Müllbacher A, Lobigs M. Modulation of transporter associated with antigen processing (TAP)-mediated peptide import into the endoplasmic reticulum by flavivirus infection. J Virol 2001; 75:5663-71. [PMID: 11356974 PMCID: PMC114279 DOI: 10.1128/jvi.75.12.5663-5671.2001] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In contrast to many other viruses that escape the cellular immune response by downregulating major histocompatibility complex (MHC) class I molecules, flavivirus infection can upregulate their cell surface expression. Previously we have presented evidence that during flavivirus infection, peptide supply to the endoplasmic reticulum is increased (A. Müllbacher and M. Lobigs, Immunity 3:207-214, 1995). Here we show that during the early phase of infection with different flaviviruses, the transport activity of the peptide transporter associated with antigen processing (TAP) is augmented by up to 50%. TAP expression is unaltered during infection, and viral but not host macromolecular synthesis is required for enhanced peptide transport. This study is the first demonstration of transient enhancement of TAP-dependent peptide import into the lumen of the endoplasmic reticulum as a consequence of a viral infection. We suggest that the increased supply of peptides for assembly with MHC class I molecules in flavivirus-infected cells accounts for the upregulation of MHC class I cell surface expression with the biological consequence of viral evasion of natural killer cell recognition.
Collapse
Affiliation(s)
- F Momburg
- Department of Molecular Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | | | | |
Collapse
|
85
|
The Transporter Associated With Antigen Processing (TAP): Structural Integrity, Expression, Function, and Its Clinical Relevance. Mol Med 2001. [DOI: 10.1007/bf03401948] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
86
|
Alberts P, Daumke O, Deverson EV, Howard JC, Knittler MR. Distinct functional properties of the TAP subunits coordinate the nucleotide-dependent transport cycle. Curr Biol 2001; 11:242-51. [PMID: 11250152 DOI: 10.1016/s0960-9822(01)00073-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND The transporter associated with antigen processing (TAP) consists of two polypeptides, TAP1 and TAP2. TAP delivers peptides into the ER and forms a "loading complex" with MHC class I molecules and accessory proteins. Our previous experiments indicated that nucleotide binding to TAP plays a critical role in the uptake of peptide and the release of assembled class I molecules. To investigate whether the conserved nucleotide binding domains (NBDs) of TAP1 and TAP2 are functionally equivalent, we created TAP variants in which only one of the two ATP binding sites was mutated. RESULTS Mutations in the NBDs had no apparent effect on the formation of the loading complex. However, both NBDs had to be functional for peptide uptake and transport. TAP1 binds ATP much more efficiently than does TAP2, while the binding of ADP by the two chains is essentially equivalent. Peptide-mediated release of MHC class I molecules from TAP was blocked only when the NBD of TAP1 was disrupted. A different NBD mutation that does not affect nucleotide binding has strikingly different effects on peptide transport activity depending on whether it is present in TAP1 or TAP2. CONCLUSIONS Our findings indicate that ATP binding to TAP1 is the initial step in energizing the transport process and support the view that ATP hydrolysis at one TAP chain induces ATP binding at the other chain; this leads to an alternating and interdependent catalysis of both NBDs. Furthermore, our data suggest that the peptide-mediated undocking of MHC class I is linked to the transport cycle of TAP by conformational signals arising predominantly from TAP1.
Collapse
Affiliation(s)
- P Alberts
- Institute for Genetics, University of Cologne, D-50674, Cologne, Germany
| | | | | | | | | |
Collapse
|
87
|
Ritz U, Momburg F, Pircher HP, Strand D, Huber C, Seliger B. Identification of sequences in the human peptide transporter subunit TAP1 required for transporter associated with antigen processing (TAP) function. Int Immunol 2001; 13:31-41. [PMID: 11133832 DOI: 10.1093/intimm/13.1.31] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The heterodimeric peptide transporter associated with antigen processing (TAP) consisting of the subunits TAP1 and TAP2 mediates the transport of cytosolic peptides into the lumen of the endoplasmic reticulum (ER). In order to accurately define domains required for peptide transporter function, a molecular approach based on the construction of a panel of human TAP1 mutants and their expression in TAP1(-/-) cells was employed. The characteristics and biological activity of the various TAP1 mutants were determined, and compared to that of wild-type TAP1 and TAP1(-/-) control cells. All mutant TAP1 proteins were localized in the ER and were capable of forming complexes with the TAP2 subunit. However, the TAP1 mutants analyzed transported peptides with different efficiencies and displayed a heterogeneous MHC class I surface expression pattern which was directly associated with their susceptibility to cytotoxic T lymphocyte-mediated lysis. Based on this study, the TAP1 mutants can be divided into three categories: those expressing a similar phenotype compared to TAP1(-/-) or wild-type TAP1 cells respectively, and those representing an intermediate phenotype in terms of peptide transport rate, MHC class I surface expression and immune recognition. Thus, the results provide evidence that specific regions in the TAP1 subunit are crucial for the proper processing and presentation of cytosolic antigens to MHC class I-restricted T cells, whereas others may play a minor role in this process.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 2
- ATP Binding Cassette Transporter, Subfamily B, Member 3
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/immunology
- ATP-Binding Cassette Transporters/metabolism
- ATP-Binding Cassette Transporters/physiology
- Amino Acid Sequence
- Animals
- Antigen Presentation/genetics
- Biological Transport, Active/genetics
- Biological Transport, Active/immunology
- Cytotoxicity Tests, Immunologic
- Dimerization
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Genetic Vectors/chemical synthesis
- Histocompatibility Antigens Class I/biosynthesis
- Histocompatibility Antigens Class I/genetics
- Humans
- Lymphocytic choriomeningitis virus/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mutagenesis, Site-Directed
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Peptide Fragments/physiology
- Sequence Deletion
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- T-Lymphocytes, Cytotoxic/virology
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- U Ritz
- Third Department of Internal Medicine, Johannes Gutenberg-University, Langenbeckstrasse 1, 55131 Mainz, Germany
| | | | | | | | | | | |
Collapse
|
88
|
Sigal LJ, Rock KL. Bone marrow-derived antigen-presenting cells are required for the generation of cytotoxic T lymphocyte responses to viruses and use transporter associated with antigen presentation (TAP)-dependent and -independent pathways of antigen presentation. J Exp Med 2000; 192:1143-50. [PMID: 11034604 PMCID: PMC2195864 DOI: 10.1084/jem.192.8.1143] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Bone marrow (BM)-derived professional antigen-presenting cells (pAPCs) are required for the generation of cytotoxic T lymphocyte (CTL) responses to vaccinia virus and poliovirus. Furthermore, these BM-derived pAPCs require a functional transporter associated with antigen presentation (TAP). In this report we analyze the requirements for BM-derived pAPCs and TAP in the initiation of CTL responses to lymphocytic choriomeningitis virus (LCMV) and influenza virus (Flu). Our results indicate a requirement for BM-derived pAPCs for the CTL responses to these viruses. However, we found that the generation of CTLs to one LCMV epitope (LCMV nucleoprotein 396-404) was dependent on BM-derived pAPCs but, surprisingly, TAP independent. The study of the CTL response to Flu confirmed the existence of this BM-derived pAPC-dependent/TAP-independent CTL response and indicated that the TAP-independent pathway is approximately 10-300-fold less efficient than the TAP-dependent pathway.
Collapse
Affiliation(s)
- L J Sigal
- Department of Pathology, University of Massachusetts Medical Center, Worcester, Massachusetts 01655, USA.
| | | |
Collapse
|
89
|
Lee CK, Rao DT, Gertner R, Gimeno R, Frey AB, Levy DE. Distinct requirements for IFNs and STAT1 in NK cell function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:3571-7. [PMID: 11034357 DOI: 10.4049/jimmunol.165.7.3571] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NK cell functions were examined in mice with a targeted mutation of the STAT1 gene, an essential mediator of IFN signaling. Mice deficient in STAT1 displayed impaired basal NK cytolytic activity in vitro and were unable to reject transplanted tumors in vivo, despite the presence of normal numbers of NK cells. IL-12 enhanced NK-mediated cytolysis, but poly(I:C) did not, and a similar phenotype occurred in mice lacking IFNalpha receptors. Molecules involved in activation and lytic function of NK cells (granzyme A, granzyme B, perforin, DAP10, and DAP12) were expressed at comparable levels in both wild-type and STAT1(-/-) mice, and serine esterase activity necessary for CTL function was normal, showing that the lytic machinery was intact. NK cells with normal cytolytic activity could be derived from STAT1(-/-) bone marrow progenitors in response to IL-15 in vitro, and enhanced NK lytic activity and normal levels of IFN-gamma were produced in response to IL-12 treatment in vivo. Despite these normal responses to cytokines, STAT1(-/-) mice could not reject the NK-sensitive tumor RMA-S, even following IL-12 treatment in vivo. Whereas in vitro NK cytolysis was also reduced in mice lacking both type I and type II IFN receptors, these mice resisted tumor challenge. These results demonstrate that both IFN-alpha and IFN-gamma are required to maintain NK cell function and define a STAT1-dependent but partially IFN-independent pathway required for NK-mediated antitumor activity.
Collapse
Affiliation(s)
- C K Lee
- Department of Pathology, Kaplan Comprehensive Cancer Center, New York University School of Medicine, NY 10016, USA
| | | | | | | | | | | |
Collapse
|
90
|
Price GE, Ou R, Jiang H, Huang L, Moskophidis D. Viral escape by selection of cytotoxic T cell-resistant variants in influenza A virus pneumonia. J Exp Med 2000; 191:1853-67. [PMID: 10839802 PMCID: PMC2213532 DOI: 10.1084/jem.191.11.1853] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2000] [Accepted: 03/20/2000] [Indexed: 12/11/2022] Open
Abstract
Antigenic variation is a strategy exploited by influenza viruses to promote survival in the face of the host adaptive immune response and constitutes a major obstacle to efficient vaccine development. Thus, variation in the surface glycoproteins hemagglutinin and neuraminidase is reflected by changes in susceptibility to antibody neutralization. This has led to the current view that antibody-mediated selection of influenza A viruses constitutes the basis for annual influenza epidemics and periodic pandemics. However, infection with this virus elicits a vigorous protective CD8(+) cytotoxic T lymphocyte (CTL) response, suggesting that CD8(+) CTLs might exert selection pressure on the virus. Studies with influenza A virus-infected transgenic mice bearing a T cell receptor (TCR) specific for viral nucleoprotein reveal that virus reemergence and persistence occurs weeks after the acute infection has apparently been controlled. The persisting virus is no longer recognized by CTLs, indicating that amino acid changes in the major viral nucleoprotein CTL epitope can be rapidly accumulated in vivo. These mutations lead to a total or partial loss of recognition by polyclonal CTLs by affecting presentation of viral peptide by class I major histocompatibility complex (MHC) molecules, or by interfering with TCR recognition of the mutant peptide-MHC complex. These data illustrate the distinct features of pulmonary immunity in selection of CTL escape variants. The likelihood of emergence and the biological impact of CTL escape variants on the clinical outcome of influenza pneumonia in an immunocompetent host, which is relevant for the design of preventive vaccines against this and other respiratory viral infections, are discussed.
Collapse
Affiliation(s)
- Graeme E. Price
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia 30912
| | - Rong Ou
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia 30912
| | - Hong Jiang
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia 30912
| | - Lei Huang
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia 30912
| | - Demetrius Moskophidis
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia 30912
| |
Collapse
|
91
|
Gays F, Unnikrishnan M, Shrestha S, Fraser KP, Brown AR, Tristram CM, Chrzanowska-Lightowlers ZM, Brooks CG. The mouse tumor cell lines EL4 and RMA display mosaic expression of NK-related and certain other surface molecules and appear to have a common origin. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:5094-102. [PMID: 10799866 DOI: 10.4049/jimmunol.164.10.5094] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
As a potential means for facilitating studies of NK cell-related molecules, we examined the expression of these molecules on a range of mouse tumor cell lines. Of the lines we initially examined, only EL4 and RMA expressed such molecules, both lines expressing several members of the Ly49 and NKRP1 families. Unexpectedly, several of the NK-related molecules, together with certain other molecules including CD2, CD3, CD4, CD32, and CD44, were often expressed in a mosaic manner, even on freshly derived clones, indicating frequent switching in expression. In each case examined, switching was controlled at the mRNA level, with expression of CD3zeta determining expression of the entire CD3-TCR complex. Each of the variable molecules was expressed independently, with the exception that CD3 was restricted to cells that also expressed CD2. Treatment with drugs that affect DNA methylation and histone acetylation could augment the expression of at least some of the variable molecules. The striking phenotypic similarity between EL4 and RMA led us to examine the state of their TCRbeta genes. Both lines had identical rearrangements on both chromosomes, indicating that RMA is in fact a subline of EL4. Overall, these findings suggest that EL4 is an NK-T cell tumor that may have retained a genetic mechanism that permits the variable expression of a restricted group of molecules involved in recognition and signaling.
Collapse
MESH Headings
- Acetylation/drug effects
- Animals
- Antigens, Ly
- Antigens, Surface/biosynthesis
- Antigens, Surface/genetics
- Azacitidine/pharmacology
- CD2 Antigens/biosynthesis
- CD2 Antigens/genetics
- CD3 Complex/biosynthesis
- CD3 Complex/genetics
- CD4 Antigens/biosynthesis
- CD4 Antigens/genetics
- Cell Lineage/genetics
- Cell Lineage/immunology
- Clone Cells
- DNA Methylation/drug effects
- Gene Expression Regulation, Neoplastic/immunology
- Genetic Variation/immunology
- Histones/metabolism
- Hyaluronan Receptors/biosynthesis
- Hyaluronan Receptors/genetics
- Hydroxamic Acids/pharmacology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lectins, C-Type
- Membrane Glycoproteins/biosynthesis
- Membrane Glycoproteins/genetics
- Mice
- Mosaicism/immunology
- NK Cell Lectin-Like Receptor Subfamily B
- RNA, Messenger/biosynthesis
- Receptors, Immunologic/biosynthesis
- Receptors, Immunologic/genetics
- Receptors, NK Cell Lectin-Like
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- F Gays
- Department of Microbiology, The Medical School, Newcastle, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Rehm A, Rohr A, Seitz C, Wonigeit K, Ziegler A, Uchanska-Ziegler B. Structurally diverse forms of HLA-B27 molecules are displayed in vivo in a cell type-dependent manner. Hum Immunol 2000; 61:408-18. [PMID: 10715518 DOI: 10.1016/s0198-8859(99)00176-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The formation of a trimeric complex, composed of heavy chain (HC), beta(2)-microglobulin (beta(2)m) and antigenic peptide, is generally believed to be a prerequisite for the expression of HLA class I molecules at the cell surface in vivo. Therefore, a possible role in immunological processes for HC/beta(2)m complexes devoid of peptide has not been seriously considered. Using a novel HLA-B*2705-transgenic rat model and monoclonal antibodies that distinguish between structurally different forms of HLA-B27 molecules, we demonstrate here that class I molecules which appear to lack antigenic peptides are expressed in abundance on a variety of cell types in lymphoid organs. These results imply a role for structurally diverse, possibly empty, MHC molecules in physiological T cell selection which has so far not been sufficiently appreciated.
Collapse
Affiliation(s)
- A Rehm
- Transplantationslabor, Klinik für Abdominal- und Transplantationschirurgie, Medizinische Hochschule Hannover, Hannover, Germany
| | | | | | | | | | | |
Collapse
|
93
|
Tomita M, Menconi MJ, Delude RL, Fink MP. Polarized transport of hydrophilic compounds across rat colonic mucosa from serosa to mucosa is temperature dependent. Gastroenterology 2000; 118:535-43. [PMID: 10702204 DOI: 10.1016/s0016-5085(00)70259-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS In both clinical and experimental studies, intestinal epithelial barrier function is routinely assessed by measuring mucosal permeability to various hydrophilic compounds. We performed experiments to determine whether permeation of several hydrophilic compounds across rat colonic mucosa is polarized. METHODS Sheets of colonic mucosa, stripped of the underlying seromuscular coats, were mounted in Ussing chambers. RESULTS The rates of permeation across colonic mucosa by numerous hydrophilic compounds (fluorescein isothiocyanate [FITC]-dextrans with molecular weights of 4000 [FD4] and 70,000 [FD70] daltons, fluorescein disulfonic acid [FS], lucifer yellow [LY], lactulose, and mannitol) were several times greater in the serosal-to-mucosal (S-->M) direction than in the opposite direction. Increased S-->M permeation by FD4, lactulose, and mannitol was evident at 37 degrees C, but not at 4 degrees C. Efflux of FD4 and FS in the S-->M direction was dose-dependently inhibited by verapamil, an inhibitor of the P-glycoprotein efflux system. Indomethacin, an anion transporter inhibitor, showed no effect on the S-->M permeation of FD4, FD70, FS, or LY. Adding an excess of unlabeled dextran (mol wt, 10,000 daltons) dose-dependently decreased the S-->M efflux of FD4, but not FS or LY. CONCLUSIONS The transport across rat colonic mucosa of a number of hydrophilic substances, including some compounds that are commonly used to measure intestinal permeability in clinical practice, is greater in the S-->M than in the M-->S direction. S-->M transport of these hydrophilic solutes is temperature dependent, suggesting that the process is an active one. S-->M transport of FD4 may occur via a process that manifests some degree of substrate specificity for polysaccharides.
Collapse
Affiliation(s)
- M Tomita
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Science, Tokyo, Japan
| | | | | | | |
Collapse
|
94
|
Fan R, Tykodi SS, Braciale TJ. Recognition of a sequestered self peptide by influenza virus-specific CD8+ cytolytic T lymphocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:1669-80. [PMID: 10657609 DOI: 10.4049/jimmunol.164.4.1669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Ag receptors on CD8+ CTL recognize foreign antigenic peptides associated with cell surface MHC class I molecules. Peptides derived from self proteins are also normally presented by MHC class I molecules. Here we report that an H-2Kd-restricted murine CD8+ CTL clone directed to an influenza hemagglutinin epitope can recognize a peptide derived from the murine mitochondrial aconitase enzyme in association with H-2Kd molecules. Surprisingly, this self peptide is not normally displayed on the cell surface associated with the restricting MHC class I molecule. Several lines of evidence suggest that this self peptide, although requiring association with the Kd molecule for CTL recognition, is not associated with this or other MHC class I allele under physiologic conditions in intact cells. Rather, it is sequestered in the cytoplasm associated with a carrier protein and is released only upon cell disruption. These results suggest a means of restricting the entry of self peptide into the class I pathway. In addition, this finding raises the possibility that self peptides sequestered within the cell can, after release from damaged cells, interact with MHC class I molecules on bystander cells and trigger autoimmune injury by virus-specific CTLs during viral infection.
Collapse
MESH Headings
- Aconitate Hydratase/immunology
- Aconitate Hydratase/isolation & purification
- Aconitate Hydratase/metabolism
- Amino Acid Sequence
- Animals
- Antigen Presentation
- Carrier Proteins/immunology
- Carrier Proteins/metabolism
- Clone Cells
- Epitopes, T-Lymphocyte/metabolism
- H-2 Antigens/immunology
- H-2 Antigens/metabolism
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/metabolism
- Influenza A virus/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Knockout
- Mitochondria/enzymology
- Molecular Sequence Data
- Oligopeptides/immunology
- Oligopeptides/metabolism
- Subcellular Fractions/immunology
- Subcellular Fractions/metabolism
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- T-Lymphocytes, Cytotoxic/virology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- R Fan
- Beirne B. Carter Center for Immunology Research, Department of Microbiology, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
95
|
Glas R, Franksson L, Une C, Eloranta ML, Ohlén C, Orn A, Kärre K. Recruitment and activation of natural killer (NK) cells in vivo determined by the target cell phenotype. An adaptive component of NK cell-mediated responses. J Exp Med 2000; 191:129-38. [PMID: 10620611 PMCID: PMC2195802 DOI: 10.1084/jem.191.1.129] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Natural killer (NK) cells can spontaneously lyse certain virally infected and transformed cells. However, early in immune responses NK cells are further activated and recruited to tissue sites where they perform effector functions. This process is dependent on cytokines, but it is unclear if it is regulated by NK cell recognition of susceptible target cells. We show here that infiltration of activated NK cells into the peritoneal cavity in response to tumor cells is controlled by the tumor major histocompatibility complex (MHC) class I phenotype. Tumor cells lacking appropriate MHC class I expression induced NK cell infiltration, cytotoxic activation, and induction of transcription of interferon gamma in NK cells. The induction of these responses was inhibited by restoration of tumor cell MHC class I expression. The NK cells responding to MHC class I-deficient tumor cells were approximately 10 times as active as endogenous NK cells on a per cell basis. Although these effector cells showed a typical NK specificity in that they preferentially killed MHC class I-deficient cells, this specificity was even more distinct during induction of the intraperitoneal response. Observations are discussed in relation to a possible adaptive component of the NK response, i.e., recruitment/activation in response to challenges that only NK cells are able to neutralize.
Collapse
Affiliation(s)
- R Glas
- Microbiology Center, Karolinska Institute, S-171 77 Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
96
|
Ma H, Ke Y, Li Q, Kapp JA. Bovine and human insulin activate CD8+-autoreactive CTL expressing both type 1 and type 2 cytokines in C57BL/6 mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:86-92. [PMID: 10604997 DOI: 10.4049/jimmunol.164.1.86] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD8+ T cells down-regulate a variety of immune responses. For example, porcine and human insulin do not stimulate Abs in C57BL/6 mice because CD8+ T cells inhibit CD4+ helper T cells. By contrast, bovine insulin induces Ab in C57BL/6 mice, and removal of CD8+ T cells does not alter this response. This raises the question of whether porcine, but not bovine, insulin activates CD8+ T cells or whether both insulins activate CD8+ T cells but CD4+ helper T cells are differentially inhibited by them. In this study, we show that insulin-specific CD8+ CTL can be cultured from C57BL/6 mice primed with either bovine or human insulin in CFA. Thus, exogenous Ags, besides OVA, induce CD8+ CTL when administered in an adjuvant, suggesting this is a typical response. These CTL are H-2Kb restricted and produce IL-5, IL-10, IFN-gamma, and small amounts of IL-4, which is distinct from IFN-gamma and TNF-alpha that are typically secreted by virus-specific CTL. Moreover, the CTL primed with either bovine or human insulin recognize an A-chain peptide that is identical to the mouse insulin sequence. That foreign proteins, which are closely related to self-proteins, activated autoreactive, CD8+ T cells in vivo is a novel finding. It raises the possibility that self-reactive CTL may be activated by cross-reacting Ags and once activated they might participate in autoimmunity. These results also suggest that down-regulation of insulin-specific responses by autoreactive CD8+ T cells is most likely due to the differential sensitivity of bovine and human insulin-specific CD4+ T cells.
Collapse
Affiliation(s)
- H Ma
- Department of Ophthalmology, Winship Cancer Center, Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
97
|
Abele R, Tampé R. Function of the transport complex TAP in cellular immune recognition. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1461:405-19. [PMID: 10581370 DOI: 10.1016/s0005-2736(99)00171-6] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The transporter associated with antigen processing (TAP) is essential for peptide loading onto major histocompatibility complex (MHC) class I molecules by translocating peptides into the endoplasmic reticulum. The MHC-encoded ABC transporter works in concert with the proteasome and MHC class I molecules for the antigen presentation on the cell surface for T cell recognition. TAP forms a heterodimer where each subunit consists of a hydrophilic nucleotide binding domain and a hydrophobic transmembrane domain. The transport mechanism is a multistep process composed of an ATP-independent peptide association step which induces a structural reorganization of the transport complex that may trigger the ATP-driven transport of the peptide into the endoplasmic reticulum lumen. By using combinatorial peptide libraries, the substrate selectivity and the recognition principle of TAP have been elucidated. TAP maximizes the degree of substrate diversity in combination with high substrate affinity. This ABC transporter is also unique as it is closely associated with chaperone-like proteins involved in bonding of the substrate onto MHC molecules. Most interestingly, virus-infected and malignant cells have developed strategies to escape immune surveillance by affecting TAP expression or function.
Collapse
Affiliation(s)
- R Abele
- Institut für Physiologische Chemie, Philipps-Universität Marburg, Karl-von-Frisch-Str. 1, 35033, Marburg, Germany
| | | |
Collapse
|
98
|
Abstract
Major histocompatibility complex (MHC)-encoded glycoproteins bind peptide antigens through non-covalent interactions to generate complexes that are displayed on the surface of antigen-presenting cells (APC) for recognition by T cells. Peptide-binding site occupancy is necessary for stable assembly of newly synthesized MHC proteins and export from the endoplasmic reticulum (ER). The MHC class II antigen-processing pathway provides a mechanism for presentation of peptides generated in the endosomal pathway of APC. The chaperone protein, invariant chain, includes a surrogate peptide that stabilizes newly synthesized class II molecules during transport to endosomal compartments. The invariant chain-derived peptide must be replaced through a peptide exchange reaction that is promoted by acidic pH and the MHC-encoded co-factor HLA-DM. Peptide exchange reactions are not required for presentation of antigens by MHC class I molecules because they bind antigens during initial assembly in the ER. However, exchange reactions may play an important role in editing the repertoire of peptides presented by both class II and class I molecules, thus influencing the specificity of immunity and tolerance.
Collapse
Affiliation(s)
- P E Jensen
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | | | | | |
Collapse
|
99
|
Knittler MR, Alberts P, Deverson EV, Howard JC. Nucleotide binding by TAP mediates association with peptide and release of assembled MHC class I molecules. Curr Biol 1999; 9:999-1008. [PMID: 10508608 DOI: 10.1016/s0960-9822(99)80448-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Newly synthesised peptide-receptive major histocompatibility complex (MHC) class I molecules form a transient loading complex in the endoplasmic reticulum with the transporter associated with antigen processing (TAP) and a set of accessory proteins. Binding of peptide to the MHC class I molecule is necessary for dissociation of the MHC class I molecule from the complex with TAP, but other components of the complex might also be involved. To investigate the role of TAP in this process, mutations that block nucleotide binding were introduced into the ATP-binding site of TAP. RESULTS Mutant TAP formed apparently normal loading complexes with MHC class I molecules and accessory components, but had no nucleotide-binding or peptide-transport activity. Nevertheless, whereas wild-type loading complexes in detergent lysates could be dissociated by addition of peptides that bind MHC class I molecules, mutant complexes could not be dissociated in this way. Depletion of nucleotide diphosphates or triphosphates from wild-type lysates blocked peptide-mediated dissociation of MHC class I molecules, which could be reversed by readdition of nucleotide diphosphates or triphosphates. Complexes between mutant TAP and MHC class I molecules remained associated in vivo until they were degraded. Disruption of nucleotide binding also eliminated TAP's peptide-binding activity. CONCLUSIONS Peptide-mediated dissociation of the MHC class I molecule from the loading complex depends on conformational signals arising from TAP. Integrity of the nucleotide-binding site is required not only for transmission of this conformational signal to the loading complex, but also for binding of peptide to TAP. Thus, the dynamic activity of the loading complex is synchronised with the nucleotide-mediated peptide-binding and transport cycle of TAP.
Collapse
Affiliation(s)
- M R Knittler
- Institute for Genetics University of Cologne D-50674, Cologne, Germany.
| | | | | | | |
Collapse
|
100
|
Abstract
Polymerase chain reaction amplification of cDNA from rat intestine revealed the expression of a novel ABC transporter, TAPL (TAP-like). Subsequently, the protein sequence was deduced from the nucleotide sequence of cDNA carrying the entire coding region. TAPL is transcribed ubiquitously in various rat tissues. The protein, with 762 amino acid residues, has potential transmembrane domains, and an ATP-binding domain in its amino and carboxyl terminal regions, respectively, and is highly homologous to TAP1 and TAP2 (transporters associated with antigen presentation/processing): pairwise comparisons with TAPL demonstrated 39 and 41% of the residues are identical, respectively. These numerical values are essentially the same as that for TAP1 and TAP2 (39%), and the hydropathy profiles of TAPL, TAP1 and TAP2 are quite similar. The similarity among these three proteins suggests that they could be derived from a common ancestral gene. Furthermore, we found that there is a potential splicing isoform, sharing the amino terminal 720 amino acid residues of TAPL.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 2
- ATP Binding Cassette Transporter, Subfamily B, Member 3
- ATP-Binding Cassette Transporters/chemistry
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Amino Acid Sequence
- Animals
- Base Sequence
- Biological Transport
- Cloning, Molecular
- Cytoplasm/metabolism
- DNA, Complementary/analysis
- Endoplasmic Reticulum/metabolism
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class I/metabolism
- Intestinal Mucosa/metabolism
- Molecular Sequence Data
- Peptides/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Tissue Distribution
Collapse
Affiliation(s)
- Y Yamaguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | | | | | | | | |
Collapse
|