51
|
Hou G, Harley ITW, Lu X, Zhou T, Xu N, Yao C, Qin Y, Ouyang Y, Ma J, Zhu X, Yu X, Xu H, Dai D, Ding H, Yin Z, Ye Z, Deng J, Zhou M, Tang Y, Namjou B, Guo Y, Weirauch MT, Kottyan LC, Harley JB, Shen N. SLE non-coding genetic risk variant determines the epigenetic dysfunction of an immune cell specific enhancer that controls disease-critical microRNA expression. Nat Commun 2021; 12:135. [PMID: 33420081 PMCID: PMC7794586 DOI: 10.1038/s41467-020-20460-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
Since most variants that impact polygenic disease phenotypes localize to non-coding genomic regions, understanding the consequences of regulatory element variants will advance understanding of human disease mechanisms. Here, we report that the systemic lupus erythematosus (SLE) risk variant rs2431697 as likely causal for SLE through disruption of a regulatory element, modulating miR-146a expression. Using epigenomic analysis, genome-editing and 3D chromatin structure analysis, we show that rs2431697 tags a cell-type dependent distal enhancer specific for miR-146a that physically interacts with the miR-146a promoter. NF-kB binds the disease protective allele in a sequence-specific manner, increasing expression of this immunoregulatory microRNA. Finally, CRISPR activation-based modulation of this enhancer in the PBMCs of SLE patients attenuates type I interferon pathway activation by increasing miR-146a expression. Our work provides a strategy to define non-coding RNA functional regulatory elements using disease-associated variants and provides mechanistic links between autoimmune disease risk genetic variation and disease etiology.
Collapse
Affiliation(s)
- Guojun Hou
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200032, China
- Shanghai Institute of Rheumatology, China-Australia Centre for Personalized Immunology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001, China
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, 518040, China
| | - Isaac T W Harley
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
- Division of Rheumatology, School of Medicine, University of Colorado, Aurora, Colorado, 80045, USA
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, Colorado, 80045, USA
| | - Xiaoming Lu
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| | - Tian Zhou
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001, China
| | - Ning Xu
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001, China
| | - Chao Yao
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences(SIBS), University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, 200031, China
| | - Yuting Qin
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001, China
| | - Ye Ouyang
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001, China
| | - Jianyang Ma
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001, China
| | - Xinyi Zhu
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001, China
| | - Xiang Yu
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001, China
| | - Hong Xu
- Department of Obstetrics and Gynecology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200127, China
- Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200127, China
| | - Dai Dai
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001, China
| | - Huihua Ding
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001, China
| | - Zhihua Yin
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, 518040, China
| | - Zhizhong Ye
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, 518040, China
| | - Jun Deng
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001, China
| | - Mi Zhou
- Sheng Yushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University (SJTU), Shanghai, 200240, China
| | - Yuanjia Tang
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001, China
| | - Bahram Namjou
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| | - Ya Guo
- Sheng Yushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University (SJTU), Shanghai, 200240, China
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45229, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| | - Leah C Kottyan
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45229, USA
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| | - John B Harley
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45229, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
- US Department of Veterans Affairs Medical Center, Cincinnati, Ohio, 45229, USA
| | - Nan Shen
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200032, China.
- Shanghai Institute of Rheumatology, China-Australia Centre for Personalized Immunology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001, China.
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, 518040, China.
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45229, USA.
| |
Collapse
|
52
|
Abstract
The cGAS-STING signalling pathway has emerged as a key mediator of inflammation in the settings of infection, cellular stress and tissue damage. Underlying this broad involvement of the cGAS-STING pathway is its capacity to sense and regulate the cellular response towards microbial and host-derived DNAs, which serve as ubiquitous danger-associated molecules. Insights into the structural and molecular biology of the cGAS-STING pathway have enabled the development of selective small-molecule inhibitors with the potential to target the cGAS-STING axis in a number of inflammatory diseases in humans. Here, we outline the principal elements of the cGAS-STING signalling cascade and discuss the general mechanisms underlying the association of cGAS-STING activity with various autoinflammatory, autoimmune and degenerative diseases. Finally, we outline the chemical nature of recently developed cGAS and STING antagonists and summarize their potential clinical applications.
Collapse
|
53
|
Seizures in steroid-responsive encephalopathy. Neurol Sci 2020; 42:521-530. [PMID: 33219869 DOI: 10.1007/s10072-020-04891-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/06/2020] [Indexed: 10/22/2022]
Abstract
Steroid-responsive encephalopathy is a general term for diseases that are characterized by diffuse brain injury and respond well to corticosteroids or immunosuppressive agents, including Hashimoto's encephalopathy (HE), limbic encephalitis (LE), systemic lupus erythematosus encephalopathy (SLEE), antineutrophil cytoplasmic antibodies (ANCA)-associated systemic vasculitis encephalopathy (AASV), viral encephalitis (VE), and primary central nervous system lymphoma (PCNSL). Epilepsy and status epilepticus are the main manifestations of steroid-responsive encephalopathy. The spectrum of "autoimmune epilepsy" diseases, which has been approved by the epilepsy diagnostic recommendations of the International Antiepileptic League, is characterized by a high prevalence of epilepsy in central nervous system (CNS) autoimmune diseases and a variety of neuron-specific autoantibodies. Steroid-responsive encephalopathy with different causes may have different pathogeneses and has been suggested to be associated with some internal commonality producing seizure as the main symptom. Determining the regularity of seizures caused by steroid-responsive encephalopathy and implementing appropriate measures will help us improve the prognosis of patients. This paper summarizes the epidemiology, seizure onset, seizure type, and other characteristics of seizures in steroid-responsive encephalopathy (including HE, LE, SLEE, ANCA-associated systemic vasculitis encephalopathy, VE, and PCNSL) and then discusses the use of antiepileptic drugs to treat steroid-responsive encephalopathy.
Collapse
|
54
|
Ma R, Ortiz Serrano TP, Davis J, Prigge AD, Ridge KM. The cGAS-STING pathway: The role of self-DNA sensing in inflammatory lung disease. FASEB J 2020; 34:13156-13170. [PMID: 32860267 PMCID: PMC8121456 DOI: 10.1096/fj.202001607r] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022]
Abstract
The presence of DNA in the cytosol is usually a sign of microbial infections, which alerts the host innate immune system to mount a defense response. Cyclic GMP-AMP synthase (cGAS) is a critical cytosolic DNA sensor that elicits robust innate immune responses through the production of the second messenger, cyclic GMP-AMP (cGAMP), which binds and activates stimulator of interferon genes (STING). However, cGAS binds to DNA irrespective of DNA sequence, therefore, self-DNA leaked from the nucleus or mitochondria can also serve as a cGAS ligand to activate this pathway and trigger extensive inflammatory responses. Dysregulation of the cGAS-STING pathway is responsible for a broad array of inflammatory and autoimmune diseases. Recently, evidence has shown that self-DNA release and cGAS-STING pathway over-activation can drive lung disease, making this pathway a promising therapeutic target for inflammatory lung disease. Here, we review recent advances on the cGAS-STING pathway governing self-DNA sensing, highlighting its role in pulmonary disease.
Collapse
Affiliation(s)
- Ruihua Ma
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tatiana P Ortiz Serrano
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jennifer Davis
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Andrew D Prigge
- Division of Critical Care Medicine, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Karen M Ridge
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
55
|
Tocut M, Shoenfeld Y, Zandman-Goddard G. Systemic lupus erythematosus: an expert insight into emerging therapy agents in preclinical and early clinical development. Expert Opin Investig Drugs 2020; 29:1151-1162. [PMID: 32755494 DOI: 10.1080/13543784.2020.1807004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Systemic lupus erythematosus (SLE) is a chronic disease that is potentially fatal. There is no cure for SLE and the medications used are associated with toxic side effects. In the era of revolutionary emerging novel biologic agents, the design and investigation of targeted therapy for these patients is necessary. Novel therapies under investigation in phase II-III clinical trials showed promising results. Therapies can target various pathways involved in SLE including cytokines, signal transduction inhibitors, B-cell depletion and interference with co-stimulation. Of interest is the proof of concept of sequential therapy. AREAS COVERED We performed an extensive literature search via PubMed, Medline, Elsevier Science and Springer Link databases between the years 2014-2020 using the following terms: SLE, novel treatments. We have reviewed 232 articles and selected those articles that (i) focus on phase II-III emerging therapies and (ii) offer new findings from existing therapies, which reveal breakthrough concepts in SLE treatment. EXPERT OPINION It is still difficult to crack the puzzle of a successful SLE treatment approach. New strategies with potential may encompass the targeting of more than one protein. Another way forward is to identify each SLE patient and personalize therapy by clinical manifestations, disease activity, serology and activated protein.
Collapse
Affiliation(s)
- Milena Tocut
- Department of Internal Medicine C, Wolfson Medical Center , Holon, Israel.,Sackler Faculty of Medicine, Tel-Aviv University , Tel Aviv, Israel
| | - Yehuda Shoenfeld
- Sackler Faculty of Medicine, Tel-Aviv University , Tel Aviv, Israel.,Center for Autoimmune Diseases, Sheba Medical Center , Ramat Gan, Israel.,I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
| | - Gisele Zandman-Goddard
- Department of Internal Medicine C, Wolfson Medical Center , Holon, Israel.,Sackler Faculty of Medicine, Tel-Aviv University , Tel Aviv, Israel
| |
Collapse
|
56
|
Tao SS, Wu GC, Zhang Q, Zhang TP, Leng RX, Pan HF, Ye DQ. TREX1 As a Potential Therapeutic Target for Autoimmune and Inflammatory Diseases. Curr Pharm Des 2020; 25:3239-3247. [PMID: 31475890 DOI: 10.2174/1381612825666190902113218] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/27/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND OBJECTIVES The 3' repair exonuclease 1 (TREX1) gene is the major DNA-specific 3'-5 'exonuclease of mammalian cells which reduces single- and double-stranded DNA (ssDNA and dsDNA) to prevent undue immune activation mediated by the nucleic acid. TREX1 is also a crucial suppressor of selfrecognition that protects the host from inappropriate autoimmune activations. It has been revealed that TREX1 function is necessary to prevent host DNA accumulating after cell death which could actuate an autoimmune response. In the manuscript, we will discuss in detail the latest advancement to study the role of TREX1 in autoimmune disease. METHODS As a pivotal cytoprotective, antioxidant, anti-apoptotic, immunosuppressive, as well as an antiinflammatory molecule, the functional mechanisms of TREX1 were multifactorial. In this review, we will briefly summarize the latest advancement in studying the role of TREX1 in autoimmune disease, and discuss its potential as a therapeutic target for these diseases. RESULTS Deficiency of TREX1 in human patients and murine models is characterized by systemic inflammation and the disorder of TREX1 functions drives inflammatory responses leading to autoimmune disease. Moreover, much more studies revealed that mutations in TREX1 have been associated with a range of autoimmune disorders. But it is also unclear whether the mutations of TREX1 play a causal role in the disease progression, and whether manipulation of TREX1 has a beneficial effect in the treatment of autoimmune diseases. CONCLUSION Integration of functional TREX1 biology into autoimmune diseases may further deepen our understanding of the development and pathogenesis of autoimmune diseases and provide new clues and evidence for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Sha-Sha Tao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Guo-Cui Wu
- School of Nursing, Anhui Medical University, 15 Feicui Road, Hefei, Anhui, China
| | - Qin Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Tian-Ping Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Rui-Xue Leng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| |
Collapse
|
57
|
Sato S, Temmoku J, Fujita Y, Yashiro-Furuya M, Matsuoka N, Asano T, Kobayashi H, Watanabe H, Migita K. Autoantibodies associated with neuropsychiatric systemic lupus erythematosus: the quest for symptom-specific biomarkers. Fukushima J Med Sci 2020; 66:1-9. [PMID: 32173681 PMCID: PMC7269884 DOI: 10.5387/fms.2020-02] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that affects multiple organs, including the central nervous system. Neuropsychiatric SLE (NPSLE) is a severe and potentially fatal condition. Several factors including autoantibodies have been implicated in the pathogenesis of NPSLE. However, definitive biomarkers of NPSLE are yet to be identified owing to the complexity of this disease. This is a major barrier to accurate and timely diagnosis of NPSLE. Studies have identified several autoantibodies associated with NPSLE;some of these autoantibodies are well investigated and regarded as symptom-specific. In this review, we discuss recent advances in our understanding of the manifestations and pathogenesis of NPSLE. In addition, we describe representative symptom-specific autoantibodies that are considered to be closely associated with the pathogenesis of NPSLE.
Collapse
Affiliation(s)
- Shuzo Sato
- Department of Rheumatology, Fukushima Medical University School of Medicine
| | - Jumpei Temmoku
- Department of Rheumatology, Fukushima Medical University School of Medicine
| | - Yuya Fujita
- Department of Rheumatology, Fukushima Medical University School of Medicine
| | | | - Naoki Matsuoka
- Department of Rheumatology, Fukushima Medical University School of Medicine
| | - Tomoyuki Asano
- Department of Rheumatology, Fukushima Medical University School of Medicine
| | - Hiroko Kobayashi
- Department of Rheumatology, Fukushima Medical University School of Medicine
| | - Hiroshi Watanabe
- Department of Rheumatology, Fukushima Medical University School of Medicine
| | - Kiyoshi Migita
- Department of Rheumatology, Fukushima Medical University School of Medicine
| |
Collapse
|
58
|
Yi C, Li Q, Xiao J. Familial chilblain lupus due to a novel mutation in TREX1 associated with Aicardi-Goutie'res syndrome. Pediatr Rheumatol Online J 2020; 18:32. [PMID: 32293470 PMCID: PMC7158086 DOI: 10.1186/s12969-020-00423-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 04/03/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Familial chilblain lupus (FCL) is a rare, chronic form of cutaneous lupus erythematosus, which is characterized by painful bluish-red inflammatory cutaneous lesions in acral locations. Mutations in TREX1, SAMHD1 and STING have been described in FCL patients. Less than 10 TREX1 mutation positive FCL families have been described in the literature. CASE PRESENTATION Genetic study was performed in a large, nonconsanguineous Chinese family with 13 members over 4 generations affected by chilblain lupus. Whole exome sequencing was performed for the index patient. Significant variant detection was subsequently validated by resequencing using Sanger sequencing in the index patient and other family members. A novel pathogenic mutation TREX1 p.Asp18His was iditified in the index patient. The mutation was present in affected individuals and was absent in non-affected individuals in the familiy. CONCLUSIONS We present a four-generation Chinese family with FCL caused by a novel heterozygous mutation TREX1 p.Asp18His, which had been reported in a patient with Aicardi-Goutie'res syndrome. This is the first reported Chinese family with FCL based on mutation in TREX1.
Collapse
Affiliation(s)
- Cuili Yi
- grid.12955.3a0000 0001 2264 7233Pediatric Rheumatology Unit, Pediatric Department, The First Affilated Hospital of Xiamen University, No. 55 Zhenhai Road, Xiamen, Fujian China
| | - Qiyuan Li
- Genokon Medical Laboratory, Xiamen, China
| | - Jihong Xiao
- Pediatric Rheumatology Unit, Pediatric Department, The First Affilated Hospital of Xiamen University, No. 55 Zhenhai Road, Xiamen, Fujian, China.
| |
Collapse
|
59
|
Riley JS, Tait SW. Mitochondrial DNA in inflammation and immunity. EMBO Rep 2020; 21:e49799. [PMID: 32202065 PMCID: PMC7132203 DOI: 10.15252/embr.201949799] [Citation(s) in RCA: 543] [Impact Index Per Article: 108.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/31/2020] [Accepted: 03/03/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are cellular organelles that orchestrate a vast range of biological processes, from energy production and metabolism to cell death and inflammation. Despite this seemingly symbiotic relationship, mitochondria harbour within them a potent agonist of innate immunity: their own genome. Release of mitochondrial DNA into the cytoplasm and out into the extracellular milieu activates a plethora of different pattern recognition receptors and innate immune responses, including cGAS‐STING, TLR9 and inflammasome formation leading to, among others, robust type I interferon responses. In this Review, we discuss how mtDNA can be released from the mitochondria, the various inflammatory pathways triggered by mtDNA release and its myriad biological consequences for health and disease.
Collapse
Affiliation(s)
- Joel S Riley
- Cancer Research UK Beatson Institute, Glasgow, UK.,Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Stephen Wg Tait
- Cancer Research UK Beatson Institute, Glasgow, UK.,Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
60
|
Demirkaya E, Sahin S, Romano M, Zhou Q, Aksentijevich I. New Horizons in the Genetic Etiology of Systemic Lupus Erythematosus and Lupus-Like Disease: Monogenic Lupus and Beyond. J Clin Med 2020; 9:E712. [PMID: 32151092 PMCID: PMC7141186 DOI: 10.3390/jcm9030712] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/12/2020] [Accepted: 02/21/2020] [Indexed: 02/05/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a clinically and genetically heterogeneous autoimmune disease. The etiology of lupus and the contribution of genetic, environmental, infectious and hormonal factors to this phenotype have yet to be elucidated. The most straightforward approach to unravel the molecular pathogenesis of lupus may rely on studies of patients who present with early-onset severe phenotypes. Typically, they have at least one of the following clinical features: childhood onset of severe disease (<5 years), parental consanguinity, and presence of family history for autoimmune diseases in a first-degree relative. These patients account for a small proportion of patients with lupus but they inform considerable knowledge about cellular pathways contributing to this inflammatory phenotype. In recent years with the aid of new sequencing technologies, novel or rare pathogenic variants have been reported in over 30 genes predisposing to SLE and SLE-like diseases. Future studies will likely discover many more genes with private variants associated to lupus-like phenotypes. In addition, genome-wide association studies (GWAS) have identified a number of common alleles (SNPs), which increase the risk of developing lupus in adult age. Discovery of a possible shared immune pathway in SLE patients, either with rare or common variants, can provide important clues to better understand this complex disorder, it's prognosis and can help guide new therapeutic approaches. The aim of this review is to summarize the current knowledge of the clinical presentation, genetic diagnosis and mechanisms of disease in patents with lupus and lupus-related phenotypes.
Collapse
Affiliation(s)
- Erkan Demirkaya
- Schulich School of Medicine & Dentistry, Department of Paediatrics, Division of Paediatric Rheumatology, University of Western Ontario, London, ON N6A 5W9, Canada;
| | - Sezgin Sahin
- Van Training and Research Hospital, Department of Paediatric Rheumatology, 65000 Van, Turkey;
| | - Micol Romano
- Schulich School of Medicine & Dentistry, Department of Paediatrics, Division of Paediatric Rheumatology, University of Western Ontario, London, ON N6A 5W9, Canada;
- Department of Pediatric Rheumatology, ASST-PINI-CTO, 20122 Milano, Italy
| | - Qing Zhou
- Life Sciences Institute, Zhejiang University, Hang Zhou 310058, China;
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, MD 20892, USA;
| |
Collapse
|
61
|
Schwartz N, Stock AD, Putterman C. Neuropsychiatric lupus: new mechanistic insights and future treatment directions. Nat Rev Rheumatol 2020; 15:137-152. [PMID: 30659245 DOI: 10.1038/s41584-018-0156-8] [Citation(s) in RCA: 255] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Patients with systemic lupus erythematosus (SLE) frequently show symptoms of central nervous system (CNS) involvement, termed neuropsychiatric SLE (NPSLE). The CNS manifestations of SLE are diverse and have a broad spectrum of severity and prognostic implications. Patients with NPSLE typically present with nonspecific symptoms, such as headache and cognitive impairment, but might also experience devastating features, such as memory loss, seizures and stroke. Some features of NPSLE, in particular those related to coagulopathy, have been characterized and an evidence-based treatment algorithm is available. The cognitive and affective manifestations of NPSLE, however, remain poorly understood. Various immune effectors have been evaluated as contributors to its pathogenesis, including brain-reactive autoantibodies, cytokines and cell-mediated inflammation. Additional brain-intrinsic elements (such as resident microglia, the blood-brain barrier and other neurovascular interfaces) are important facilitators of NPSLE. As yet, however, no unifying model has been found to underlie the pathogenesis of NPSLE, suggesting that this disease has multiple contributors and perhaps several distinct aetiologies. This heterogeneity presents a challenge for clinicians who have traditionally relied on empirical judgement in choosing treatment modalities for patients with NPSLE. Improved understanding of this manifestation of SLE might yield further options for managing this disease.
Collapse
Affiliation(s)
- Noa Schwartz
- Division of Rheumatology, Hospital for Special Surgery, New York, NY, USA
| | - Ariel D Stock
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Chaim Putterman
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA. .,Division of Rheumatology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA.
| |
Collapse
|
62
|
Skarlis C, Argyriou E, Mavragani CP. Lymphoma in Sjögren’s Syndrome: Predictors and Therapeutic Options. CURRENT TREATMENT OPTIONS IN RHEUMATOLOGY 2020. [DOI: 10.1007/s40674-020-00138-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
63
|
TREX1 531C>T Polymorphism is Associated with High Proviral Load Levels in HTLV-1-Infected Persons. Viruses 2019; 12:v12010007. [PMID: 31861565 PMCID: PMC7019804 DOI: 10.3390/v12010007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 02/06/2023] Open
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) deregulates the immune system and cell cycle, resulting in loss of immune tolerance and disease, including HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Three prime repair exonuclease 1 (TREX1) maintains innate immune tolerance of the host and host-cell permissiveness to retroviral infections. TREX1 polymorphisms may influence the course of infection and autoimmune manifestations. The influence of TREX1 531C/T polymorphism was investigated in HTLV-1 infection and development of symptoms among 151 persons infected with HTLV-1 (32 HAM/TSP, 19 rheumatologic manifestations, two dermatitis, five more than one diagnosis, two probable HAM/TSP, and 91 asymptomatic individuals) and 100 uninfected persons in the control group. Polymorphism genotyping and proviral load quantification were performed by real-time polymerase chain reaction (PCR) and antinuclear antibodies (ANAs) were screened by an indirect immunofluorescence assay. No statistically significant difference was found in polymorphism genotype and allele frequencies between the infected and control groups. HAM/TSP patients showed higher frequency of TT genotype than asymptomatic persons (p = 0.0339). Proviral load was significantly higher among individuals with CT/TT genotypes and CC genotype carriers had lower proviral load and higher levels of proinflammatory cytokines. ANAs were present only in the HAM/TSP group. TREX1 531C>T polymorphism seems to be associated with TREX-1 regulation and HTLV-1 infection.
Collapse
|
64
|
Abstract
DNA has been known to be a potent immune stimulus for more than half a century. However, the underlying molecular mechanisms of DNA-triggered immune response have remained elusive until recent years. Cyclic GMP-AMP synthase (cGAS) is a major cytoplasmic DNA sensor in various types of cells that detect either invaded foreign DNA or aberrantly located self-DNA. Upon sensing of DNA, cGAS catalyzes the formation of cyclic GMP-AMP (cGAMP), which in turn activates the ER-localized adaptor protein MITA (also named STING) to elicit the innate immune response. The cGAS-MITA axis not only plays a central role in host defense against pathogen-derived DNA but also acts as a cellular stress response pathway by sensing aberrantly located self-DNA, which is linked to the pathogenesis of various human diseases. In this review, we summarize the spatial and temporal mechanisms of host defense to cytoplasmic DNA mediated by the cGAS-MITA axis and discuss the association of malfunctions of this axis with autoimmune and other diseases.
Collapse
Affiliation(s)
- Ming-Ming Hu
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China; ,
| | - Hong-Bing Shu
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China; ,
| |
Collapse
|
65
|
Carrozzo M, Porter S, Mercadante V, Fedele S. Oral lichen planus: A disease or a spectrum of tissue reactions? Types, causes, diagnostic algorhythms, prognosis, management strategies. Periodontol 2000 2019; 80:105-125. [PMID: 31090143 DOI: 10.1111/prd.12260] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oral lichen planus and lichenoid lesions comprise a group of disorders of the oral mucosa that likely represent a common reaction pattern to 1 or more unknown antigens. The coexistence of hyperkeratotic striation/reticulation, varying degrees of mucosal inflammation from mild erythema to severe widespread ulceration, and a band-like infiltrate of mononuclear inflammatory cells including activated T lymphocytes, macrophages, and dendritic cells, are considered suggestive of oral lichen planus and lichenoid lesions. Several classification systems of oral lichen planus and lichenoid lesions have been attempted, although none seem to be comprehensive. In this paper, we present a classification of oral lichen planus and lichenoid lesions that includes oral lichen planus, oral lichenoid contact lesions, oral lichenoid drug reactions, oral lichenoid lesions of graft vs. host disease, discoid lupus erythematosus, and systemic lupus erythematosus, lichen planus-like variant of paraneoplastic pemphigus/paraneoplastic autoimmune multiorgan syndrome, chronic ulcerative stomatitis, lichen planus pemphigoides, solitary fixed drug eruptions, and lichen sclerosus. We present the clinical and diagnostic aspects of oral lichen planus and lichenoid lesions, and discuss related treatment options.
Collapse
Affiliation(s)
- Marco Carrozzo
- Centre for Oral Health Research, Oral Medicine Department, Newcastle University, Newcastle upon Tyne, UK
| | - Stephen Porter
- UCL Eastman Dental Institute, University College London, London, UK
| | | | - Stefano Fedele
- UCL Eastman Dental Institute, University College London, London, UK.,NIHR University College London Hospitals Biomedical Research Centre, London, UK
| |
Collapse
|
66
|
|
67
|
Nezos A, Evangelopoulos ME, Mavragani CP. Genetic contributors and soluble mediators in prediction of autoimmune comorbidity. J Autoimmun 2019; 104:102317. [PMID: 31444033 DOI: 10.1016/j.jaut.2019.102317] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 08/03/2019] [Indexed: 12/20/2022]
Abstract
Comorbidities including subclinical atherosclerosis, neuropsychological aberrations and lymphoproliferation represent a major burden among patients with systemic autoimmune diseases; they occur either as a result of intrinsic disease related characteristics including therapeutic interventions or traditional risk factors similar to those observed in general population. Soluble molecules recently shown to contribute to subclinical atherosclerosis in the context of systemic lupus erythematosus (SLE) include among others B-cell activating factor (BAFF), hyperhomocysteinemia, parathormone (PTH) levels and autoantibodies against oxidized lipids. Variations of the 5, 10- methylenetetrahydrofolate reductase (MTHFR) gene -the main genetic determinant of hyperhomocystenemia in humans-as well the interferon regulatory factor-8 (IRF8), FcγRIIA and BAFF genes have been all linked to subclinical atherosclerosis in SLE. BAFF variants have been also found to confer increased risk for subclinical atherosclerosis and lymphoma development in Sjogren's syndrome (SS) patients. Other genes shown to be implicated in SS lymphoproliferation include genes involved a. in inflammatory responses such as the NFκB regulator Tumor necrosis factor alpha-induced protein 3 (TNFAIP3) and the Leukocyte immunoglobulin-like receptor A3 (LILRA3) immunoreceptor, b. B cell activation and signaling (BAFF/BAFF-receptor), c. type I IFN pathway such as three-prime repair exonuclease 1 (TREX1), d. epigenetic processes including DNA methylation (MTHFR rs1801133, 677T allele) and e. genomic instability (MTHFR rs1801131, 1298C allele). Emerging soluble biomarkers for SS related lymphoma include mediators of B cell growth and germinal center formation such as BAFF, FMS-like tyrosine kinase 3 ligand (Flt-3L) and CXCL13 as well as inflammatory contributors such as inteleukin (IL)-17, IL-18, ASC, LILRA3 and the extracellular lipoprotein-associated phospholipase A2 (Lp-PLA2). In regard to fatigue and neuropsychologic features in the setting of SS, contributing factors such as BAFF variants, antibodies against neuropeptides, proteins involved in nervous system function as well as inflammatory cytokines have been reported.
Collapse
Affiliation(s)
- Adrianos Nezos
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria-Eleutheria Evangelopoulos
- First Department of Neurology, Demyelinating Diseases Unit, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Clio P Mavragani
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Joint Academic Rheumatology Program, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece.
| |
Collapse
|
68
|
Ablasser A, Chen ZJ. cGAS in action: Expanding roles in immunity and inflammation. Science 2019; 363:363/6431/eaat8657. [PMID: 30846571 DOI: 10.1126/science.aat8657] [Citation(s) in RCA: 698] [Impact Index Per Article: 116.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
DNA is highly immunogenic. It represents a key pathogen-associated molecular pattern (PAMP) during infection. Host DNA can, however, also act as a danger-associated molecular pattern (DAMP) and elicit strong inflammatory responses. The cGAS-STING pathway has emerged as a major pathway that detects intracellular DNA. Here, we highlight recent advances on how cGAS and STING mediate inflammatory responses and how these are regulated, allowing cells to readily respond to infections and noxious agents while avoiding the inappropriate sensing of self-DNA. A particular focus is placed on the role of cGAS in the context of sterile inflammatory conditions. Manipulating cGAS or STING may open the door for new therapeutic strategies for the treatment of acute and chronic inflammation relevant to many human diseases.
Collapse
Affiliation(s)
- Andrea Ablasser
- Global Health Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Zhijian J Chen
- Howard Hughes Medical Institute, Department of Molecular Biology, Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA.
| |
Collapse
|
69
|
Motwani M, Pesiridis S, Fitzgerald KA. DNA sensing by the cGAS-STING pathway in health and disease. Nat Rev Genet 2019; 20:657-674. [PMID: 31358977 DOI: 10.1038/s41576-019-0151-1] [Citation(s) in RCA: 948] [Impact Index Per Article: 158.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2019] [Indexed: 12/18/2022]
Abstract
The detection of pathogens through nucleic acid sensors is a defining principle of innate immunity. RNA-sensing and DNA-sensing receptors sample subcellular compartments for foreign nucleic acids and, upon recognition, trigger immune signalling pathways for host defence. Over the past decade, our understanding of how the recognition of nucleic acids is coupled to immune gene expression has advanced considerably, particularly for the DNA-sensing receptor cyclic GMP-AMP synthase (cGAS) and its downstream signalling effector stimulator of interferon genes (STING), as well as the molecular components and regulation of this pathway. Moreover, the ability of self-DNA to engage cGAS has emerged as an important mechanism fuelling the development of inflammation and implicating the cGAS-STING pathway in human inflammatory diseases and cancer. This detailed mechanistic and biological understanding is paving the way for the development and clinical application of pharmacological agonists and antagonists in the treatment of chronic inflammation and cancer.
Collapse
Affiliation(s)
- Mona Motwani
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Scott Pesiridis
- Innate Immunity Research Unit, GlaxoSmithKline, Collegeville, PA, USA
| | - Katherine A Fitzgerald
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
70
|
Nezos A, Makri P, Gandolfo S, De Vita S, Voulgarelis M, Crow MK, Mavragani CP. TREX1 variants in Sjogren's syndrome related lymphomagenesis. Cytokine 2019; 132:154781. [PMID: 31326279 DOI: 10.1016/j.cyto.2019.154781] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 06/28/2019] [Accepted: 07/09/2019] [Indexed: 12/28/2022]
Abstract
Genetic variants of the three-prime repair exonuclease 1 (TREX1) -an exonuclease involved in DNA repair and degradation- have been previously found to increase susceptibility to Aicardi Goutieres syndrome, familial chilblain lupus and systemic lupus erythematosus. We aimed to explore whether TREX1 common variants could influence the risk of primary Sjogren's syndrome (SS) and SS-related lymphoma. Three single nucleotide polymorphisms (SNPs) of the TREX1 gene (rs11797, rs3135941 and rs3135945) were evaluated in 229 SS, 89 SS-lymphoma (70 SS-MALT and 19 SS non-MALT) and 240 healthy controls by PCR-based assays. In available 52 peripheral blood and 26 minor salivary gland tissues from our SS cohort, mRNA expression of type I interferon (IFN) related genes and TREX1 was determined by real-time PCR. Significantly decreased prevalence of rs11797 A minor allele was detected in SS patients complicated by non-MALT lymphoma compared to controls (ΟR [95% CI]: 0.4 [0.2-0.9], p-value: 0.02). SS patients carrying the rs11797 AA genotype had increased type I IFN related gene mRNA expression in minor salivary gland tissues. These data support genetically related dampened type I IFN production as an additional mechanism for SS-related lymphomagenesis.
Collapse
Affiliation(s)
- Adrianos Nezos
- Department of Physiology, School of Medicine, National University of Athens, Athens, Greece
| | - Panagiota Makri
- Department of Physiology, School of Medicine, National University of Athens, Athens, Greece
| | - Saviana Gandolfo
- Rheumatology Clinic, Department of Medical and Biological Sciences, Azienda Ospedaliero-Universitaria 'S. Maria della Misericordia', Udine, Italy
| | - Salvatore De Vita
- Rheumatology Clinic, Department of Medical and Biological Sciences, Azienda Ospedaliero-Universitaria 'S. Maria della Misericordia', Udine, Italy
| | - Michael Voulgarelis
- Department of Pathophysiology, School of Medicine, National University of Athens, Athens, Greece
| | - Mary K Crow
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, Weill Medical College of Cornell University, New York, NY, USA
| | - Clio P Mavragani
- Department of Physiology, School of Medicine, National University of Athens, Athens, Greece; Department of Pathophysiology, School of Medicine, National University of Athens, Athens, Greece; Joint Academic Rheumatology Program, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece.
| |
Collapse
|
71
|
Durcan L, O'Dwyer T, Petri M. Management strategies and future directions for systemic lupus erythematosus in adults. Lancet 2019; 393:2332-2343. [PMID: 31180030 DOI: 10.1016/s0140-6736(19)30237-5] [Citation(s) in RCA: 361] [Impact Index Per Article: 60.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/03/2019] [Accepted: 01/23/2019] [Indexed: 12/13/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterised by the loss of self-tolerance and formation of nuclear autoantigens and immune complexes resulting in inflammation of multiple organs. The clinical presentation of SLE is heterogeneous, can involve one or more organs, including the skin, kidneys, joints, and nervous system, and take a chronic or relapsing and remitting disease course. SLE is most common in women and in those of non-white ethnicity. Because of the multitude of presentations, manifestations, and serological abnormalities in patients with SLE, diagnosis can be challenging. Therapeutic approaches predominantly involve immunomodulation and immunosuppression and are targeted to the specific organ manifestation, with the aim of achieving low disease activity. Despite many treatment advances and improved diagnostics, SLE continues to cause substantial morbidity and premature mortality. Current management strategies, although helpful, are limited by high failure rates and toxicity. An overreliance on corticosteroid therapy contributes to much of the long-term organ damage. In this Seminar, we outline the classification criteria for SLE, current treatment strategies and medications, the evidence supporting their use, and explore potential future therapies.
Collapse
Affiliation(s)
- Laura Durcan
- Department of Rheumatology, Beaumont Hospital, Dublin, Ireland; Department of Medicine, The Royal College of Surgeons of Ireland, Dublin, Ireland.
| | - Tom O'Dwyer
- School of Physiotherapy, Trinity College, Dublin, Ireland
| | - Michelle Petri
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MA, USA
| |
Collapse
|
72
|
Donlin LT, Park SH, Giannopoulou E, Ivovic A, Park-Min KH, Siegel RM, Ivashkiv LB. Insights into rheumatic diseases from next-generation sequencing. Nat Rev Rheumatol 2019; 15:327-339. [PMID: 31000790 PMCID: PMC6673602 DOI: 10.1038/s41584-019-0217-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Rheumatic diseases have complex aetiologies that are not fully understood, which makes the study of pathogenic mechanisms in these diseases a challenge for researchers. Next-generation sequencing (NGS) and related omics technologies, such as transcriptomics, epigenomics and genomics, provide an unprecedented genome-wide view of gene expression, environmentally responsive epigenetic changes and genetic variation. The integrated application of NGS technologies to samples from carefully phenotyped clinical cohorts of patients has the potential to solve remaining mysteries in the pathogenesis of several rheumatic diseases, to identify new therapeutic targets and to underpin a precision medicine approach to the diagnosis and treatment of rheumatic diseases. This Review provides an overview of the NGS technologies available, showcases important advances in rheumatic disease research already powered by these technologies and highlights NGS approaches that hold particular promise for generating new insights and advancing the field.
Collapse
Affiliation(s)
- Laura T Donlin
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Sung-Ho Park
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
| | - Eugenia Giannopoulou
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
- Biological Sciences Department, New York City College of Technology, City University of New York, New York, NY, USA
| | - Aleksandra Ivovic
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kyung-Hyun Park-Min
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Richard M Siegel
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lionel B Ivashkiv
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY, USA.
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA.
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
73
|
Mustelin T, Lood C, Giltiay NV. Sources of Pathogenic Nucleic Acids in Systemic Lupus Erythematosus. Front Immunol 2019; 10:1028. [PMID: 31139185 PMCID: PMC6519310 DOI: 10.3389/fimmu.2019.01028] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 04/23/2019] [Indexed: 12/19/2022] Open
Abstract
A hallmark of systemic lupus erythematosus (SLE), and several related autoimmune diseases, is the presence of autoantibodies against nucleic acids and nucleic acid-binding proteins, as well as elevated type I interferons (IFNs), which appear to be instrumental in disease pathogenesis. Here we discuss the sources and proposed mechanisms by which a range of cellular RNA and DNA species can become pathogenic and trigger the nucleic acid sensors that drive type I interferon production. Potentially SLE-promoting DNA may originate from pieces of chromatin, from mitochondria, or from reverse-transcribed cellular RNA, while pathogenic RNA may arise from mis-localized, mis-processed, ancient retroviral, or transposable element-derived transcripts. These nucleic acids may leak out from dying cells to be internalized and reacted to by immune cells or they may be generated and remain to be sensed intracellularly in immune or non-immune cells. The presence of aberrant DNA or RNA is normally counteracted by effective counter-mechanisms, the loss of which result in a serious type I IFN-driven disease called Aicardi-Goutières Syndrome. However, in SLE it remains unclear which mechanisms are most critical in precipitating disease: aberrant RNA or DNA, overly sensitive sensor mechanisms, or faulty counter-acting defenses. We propose that the clinical heterogeneity of SLE may be reflected, in part, by heterogeneity in which pathogenic nucleic acid molecules are present and which sensors and pathways they trigger in individual patients. Elucidation of these events may result in the recognition of distinct "endotypes" of SLE, each with its distinct therapeutic choices.
Collapse
Affiliation(s)
- Tomas Mustelin
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, United States
| | | | | |
Collapse
|
74
|
Duvvuri B, Lood C. Cell-Free DNA as a Biomarker in Autoimmune Rheumatic Diseases. Front Immunol 2019; 10:502. [PMID: 30941136 PMCID: PMC6433826 DOI: 10.3389/fimmu.2019.00502] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/25/2019] [Indexed: 12/11/2022] Open
Abstract
Endogenous DNA is primarily found intracellularly in nuclei and mitochondria. However, extracellular, cell-free (cf) DNA, has been observed in several pathological conditions, including autoimmune diseases, prompting the interest of developing cfDNA as a potential biomarker. There is an upsurge in studies considering cfDNA to stratify patients, monitor the treatment response and predict disease progression, thus evaluating the prognostic potential of cfDNA for autoimmune diseases. Since the discovery of elevated cfDNA levels in lupus patients in the 1960s, cfDNA research in autoimmune diseases has mainly focused on the overall quantification of cfDNA and the association with disease activity. However, with recent technological advancements, including genomic and methylomic sequencing, qualitative changes in cfDNA are being explored in autoimmune diseases, similar to the ones used in molecular profiling of cfDNA in cancer patients. Further, the intracellular origin, e.g., if derived from mitochondrial or nuclear source, as well as the complexing with carrier molecules, including LL-37 and HMGB1, has emerged as important factors to consider when analyzing the quality and inflammatory potential of cfDNA. The clinical relevance of cfDNA in autoimmune rheumatic diseases is strengthened by mechanistic insights into the biological processes that result in an enhanced release of DNA into the circulation during autoimmune and inflammatory conditions. Prior work have established an important role of accelerated apoptosis and impaired clearance in leakage of nucleic acids into the extracellular environment. Findings from more recent studies, including our own investigations, have demonstrated that NETosis, a neutrophil cell death process, can result in a selective extrusion of inflammatory mitochondrial DNA; a process which is enhanced in patients with lupus and rheumatoid arthritis. In this review, we will summarize the evolution of cfDNA, both nuclear and mitochondrial DNA, as biomarkers for autoimmune rheumatic diseases and discuss limitations, challenges and implications to establish cfDNA as a biomarker for clinical use. This review will also highlight recent advancements in mechanistic studies demonstrating mitochondrial DNA as a central component of cfDNA in autoimmune rheumatic diseases.
Collapse
Affiliation(s)
- Bhargavi Duvvuri
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Christian Lood
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
75
|
Tsubata T. CD72 is a Negative Regulator of B Cell Responses to Nuclear Lupus Self-antigens and Development of Systemic Lupus Erythematosus. Immune Netw 2019; 19:e1. [PMID: 30838156 PMCID: PMC6399098 DOI: 10.4110/in.2019.19.e1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/04/2019] [Accepted: 02/07/2019] [Indexed: 12/22/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is the prototypic systemic autoimmune disease characterized by production of autoantibodies to various nuclear antigens and overexpression of genes regulated by IFN-I called IFN signature. Genetic studies on SLE patients and mutational analyses of mouse models demonstrate crucial roles of nucleic acid (NA) sensors in development of SLE. Although NA sensors are involved in induction of anti-microbial immune responses by recognizing microbial NAs, recognition of self NAs by NA sensors induces production of autoantibodies to NAs in B cells and production of IFN-I in plasmacytoid dendritic cells. Among various NA sensors, the endosomal RNA sensor TLR7 plays an essential role in development of SLE at least in mouse models. CD72 is an inhibitory B cell co-receptor containing an immunoreceptor tyrosine-based inhibition motif (ITIM) in the cytoplasmic region and a C-type lectin like-domain (CTLD) in the extracellular region. CD72 is known to regulate development of SLE because CD72 polymorphisms associate with SLE in both human and mice and CD72−/− mice develop relatively severe lupus-like disease. CD72 specifically recognizes the RNA-containing endogenous TLR7 ligand Sm/RNP by its extracellular CTLD, and inhibits B cell responses to Sm/RNP by ITIM-mediated signal inhibition. These findings indicate that CD72 inhibits development of SLE by suppressing TLR7-dependent B cell response to self NAs. CD72 is thus involved in discrimination of self-NAs from microbial NAs by specifically suppressing autoimmune responses to self-NAs.
Collapse
Affiliation(s)
- Takeshi Tsubata
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| |
Collapse
|
76
|
Almlöf JC, Nystedt S, Leonard D, Eloranta ML, Grosso G, Sjöwall C, Bengtsson AA, Jönsen A, Gunnarsson I, Svenungsson E, Rönnblom L, Sandling JK, Syvänen AC. Whole-genome sequencing identifies complex contributions to genetic risk by variants in genes causing monogenic systemic lupus erythematosus. Hum Genet 2019; 138:141-150. [PMID: 30707351 PMCID: PMC6373277 DOI: 10.1007/s00439-018-01966-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/13/2018] [Indexed: 01/01/2023]
Abstract
Systemic lupus erythematosus (SLE, OMIM 152700) is a systemic autoimmune disease with a complex etiology. The mode of inheritance of the genetic risk beyond familial SLE cases is currently unknown. Additionally, the contribution of heterozygous variants in genes known to cause monogenic SLE is not fully understood. Whole-genome sequencing of DNA samples from 71 Swedish patients with SLE and their healthy biological parents was performed to investigate the general genetic risk of SLE using known SLE GWAS risk loci identified using the ImmunoChip, variants in genes associated to monogenic SLE, and the mode of inheritance of SLE risk alleles in these families. A random forest model for predicting genetic risk for SLE showed that the SLE risk variants were mainly inherited from one of the parents. In the 71 patients, we detected a significant enrichment of ultra-rare ( ≤ 0.1%) missense and nonsense mutations in 22 genes known to cause monogenic forms of SLE. We identified one previously reported homozygous nonsense mutation in the C1QC (Complement C1q C Chain) gene, which explains the immunodeficiency and severe SLE phenotype of that patient. We also identified seven ultra-rare, coding heterozygous variants in five genes (C1S, DNASE1L3, DNASE1, IFIH1, and RNASEH2A) involved in monogenic SLE. Our findings indicate a complex contribution to the overall genetic risk of SLE by rare variants in genes associated with monogenic forms of SLE. The rare variants were inherited from the other parent than the one who passed on the more common risk variants leading to an increased genetic burden for SLE in the child. Higher frequency SLE risk variants are mostly passed from one of the parents to the offspring affected with SLE. In contrast, the other parent, in seven cases, contributed heterozygous rare variants in genes associated with monogenic forms of SLE, suggesting a larger impact of rare variants in SLE than hitherto reported.
Collapse
Affiliation(s)
- Jonas Carlsson Almlöf
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, 751 23, Uppsala, Sweden.
| | - Sara Nystedt
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, 751 23, Uppsala, Sweden
| | - Dag Leonard
- Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, 751 85, Uppsala, Sweden
| | - Maija-Leena Eloranta
- Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, 751 85, Uppsala, Sweden
| | - Giorgia Grosso
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, Rheumatology, Karolinska University Hospital, 171 77, Stockholm, Sweden
| | - Christopher Sjöwall
- Division of Neuro and Inflammation Sciences, Department of Clinical and Experimental Medicine, Rheumatology, Linköping University, 581 83, Linköping, Sweden
| | - Anders A Bengtsson
- Department of Clinical Sciences, Rheumatology, Lund University, Skåne University Hospital, 222 42, Lund, Sweden
| | - Andreas Jönsen
- Department of Clinical Sciences, Rheumatology, Lund University, Skåne University Hospital, 222 42, Lund, Sweden
| | - Iva Gunnarsson
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, Rheumatology, Karolinska University Hospital, 171 77, Stockholm, Sweden
| | - Elisabet Svenungsson
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, Rheumatology, Karolinska University Hospital, 171 77, Stockholm, Sweden
| | - Lars Rönnblom
- Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, 751 85, Uppsala, Sweden
| | - Johanna K Sandling
- Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, 751 85, Uppsala, Sweden
| | - Ann-Christine Syvänen
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, 751 23, Uppsala, Sweden
| |
Collapse
|
77
|
Ozpiskin OM, Zhang L, Li JJ. Immune targets in the tumor microenvironment treated by radiotherapy. Am J Cancer Res 2019; 9:1215-1231. [PMID: 30867826 PMCID: PMC6401500 DOI: 10.7150/thno.32648] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 01/11/2019] [Indexed: 12/12/2022] Open
Abstract
Radiotherapy (RT), the major anti-cancer modality for more than half of cancer patients after diagnosis, has the advantage of local tumor control with relatively less systematic side effects comparing to chemotherapy. However, the efficacy of RT is limited by acquired tumor resistance leading to the risks of relapse and metastasis. To further enhance the efficacy of RT, with the renaissances of targeted immunotherapy (TIT), increasing interests are raised on RT combined with TIT including cancer vaccines, T-cell therapy, and antibody-based immune checkpoint blockers (ICB) such as anti-CTLA-4 and anti-PD1/PD-L1. In achieving a significant synergy between RT and TIT, the dynamics of radiation-induced response in tumor cells and stromal cells, especially the cross-talk between tumor cells and immune cells in the irradiated tumor microenvironment (ITME) as highlighted in recent literature are to be elucidated. The abscopal effect refereeing the RT-induced priming function outside of ITME could be compromised by the immune-suppressive factors such as CD47 and PD-L1 on tumor cells and Treg induced or enhanced in the ITME. Cell surface receptors temporally or permanently induced and bioactive elements released from dead cells could serve antigenic source (radiation-associated antigenic proteins, RAAPs) to the host and have functions in immune regulation on the tumor. This review is attempted to summarize a cluster of factors that are inducible by radiation and targetable by antibodies, or have potential to be immune regulators to synergize tumor control with RT. Further characterization of immune regulators in ITME will deepen our understanding of the interplay among immune regulators in ITME and discover new effective targets for the combined modality with RT and TIT.
Collapse
|
78
|
Recent developments in systemic lupus erythematosus pathogenesis and applications for therapy. Curr Opin Rheumatol 2019; 30:222-228. [PMID: 29206660 DOI: 10.1097/bor.0000000000000474] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Systemic lupus erythematosus (SLE) pathogenesis is complex. Aberrancies of immune function that previously were described but not well understood are now becoming better characterized, in part through recognition of monogenic cases of lupus-like disease. RECENT FINDINGS We highlight here recent descriptions of metabolic dysfunction, cytokine dysregulation, signaling defects, and DNA damage pathways in SLE. Specifically, we review the effects of signaling abnormalities in mammalian target of rapamycin, Rho kinase, Bruton's tyrosine kinase, and Ras pathways. The importance of DNA damage sensing and repair pathways, and their influence on the overproduction of type I interferon in SLE are also reviewed. SUMMARY Recent findings in SLE pathogenesis expand on previous understandings of broad immune dysfunction. These findings have clinical applications, as the dysregulated pathways described here can be targeted by existing and preclinical therapies.
Collapse
|
79
|
de Amorim JC, Frittoli RB, Pereira D, Postal M, Dertkigil SSJ, Reis F, Costallat LTL, Appenzeller S. Epidemiology, characterization, and diagnosis of neuropsychiatric events in systemic lupus erythematosus. Expert Rev Clin Immunol 2019; 15:407-416. [DOI: 10.1080/1744666x.2019.1564040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jaqueline Cristina de Amorim
- Graduate Program of Child and Adolescent Health, School of Medical Science, University of Campinas, Campinas, Brazil
- Laboratory of Autoimmune Diseases, School of Medical Science, University of Campinas, Campinas, Brazil
| | - Renan Bazuco Frittoli
- Laboratory of Autoimmune Diseases, School of Medical Science, University of Campinas, Campinas, Brazil
- Graduate Program of Physiopathology, School of Medical Science, University of Campinas, Campinas, Brazil
| | - Danilo Pereira
- Laboratory of Autoimmune Diseases, School of Medical Science, University of Campinas, Campinas, Brazil
- Graduate Program of Physiopathology, School of Medical Science, University of Campinas, Campinas, Brazil
| | - Mariana Postal
- Laboratory of Autoimmune Diseases, School of Medical Science, University of Campinas, Campinas, Brazil
| | | | - Fabiano Reis
- Departament of Radiology, School of Medical Science, University of Campinas, Campinas, Brazil
| | - Lilian TL Costallat
- Rheumatology Unit, Department of Medicine-School of Medical Science, University of Campinas, Campinas, Brazil
| | - Simone Appenzeller
- Laboratory of Autoimmune Diseases, School of Medical Science, University of Campinas, Campinas, Brazil
- Rheumatology Unit, Department of Medicine-School of Medical Science, University of Campinas, Campinas, Brazil
| |
Collapse
|
80
|
Rego SL, Harvey S, Simpson SR, Hemphill WO, McIver ZA, Grayson JM, Perrino FW. TREX1 D18N mice fail to process erythroblast DNA resulting in inflammation and dysfunctional erythropoiesis. Autoimmunity 2018; 51:333-344. [PMID: 30422000 DOI: 10.1080/08916934.2018.1522305] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Anaemia is commonly observed in chronic inflammatory conditions, including systemic lupus erythematosus (SLE), where ∼50% of patients display clinical signs of anaemia. Mutation at the aspartate residue 18 of the three prime repair exonuclease 1 (TREX1) gene causes a monogenic form of cutaneous lupus in humans and the genetically precise TREX1 D18N mice recapitulate a lupus-like disease. TREX1 degrades single- and double-stranded DNA (dsDNA), and the link between failed DNA degradation by nucleases, including nucleoside-diphosphate kinases (NM23H1/H2) and Deoxyribonuclease II (DNase II), and anaemia prompted our studies to investigate whether TREX1 dysfunction contributes to anaemia. Utilizing the TREX1 D18N mice we demonstrate that (1) TREX1 mutant mice develop normocytic normochromic anaemia and (2) TREX1 exonuclease participates in the degradation of DNA originating from erythroblast nuclei during definitive erythropoiesis. Gene expression, hematocrit, hemoglobin, immunohistochemistry (IHC) and flow cytometry were used to quantify dysfunctional erythropoiesis. An altered response to induced anaemia in the TREX1 D18N mice was determined through IHC, flow cytometry, and interferon-stimulated gene (ISG) expression analysis of the liver, spleen and erythroblastic islands (EBIs). IHC, flow cytometry, and ISG expression studies were performed in vitro to determine the role of TREX1 in the degradation of erythroblast DNA within EBIs. The TREX1 D18N mice exhibit altered erythropoiesis including a 20% reduction in hematocrit, 10-20 fold increased erythropoietic gene expression levels in the spleen and phenotypic signs of normocytic normochromic anaemia. Anaemia in TREX1 D18N mice is accompanied by increased erythropoietin (Epo), normal hepcidin levels and the TREX1 D18N mice display an inappropriate response to anaemic challenge. Enhanced ISG expression results from failed processing and subsequent sensing of undegraded erythroblast DNA in EBIs. TREX1 participates in the degradation of erythroblast DNA in the EBI and TREX1 D18N mice exhibit a normocytic normochromic anaemia.
Collapse
Affiliation(s)
- Stephen L Rego
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Scott Harvey
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Sean R Simpson
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Wayne O Hemphill
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Zachariah A McIver
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jason M Grayson
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Fred W Perrino
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
81
|
Kothari PH, Kolar GR, Jen JC, Hajj‐Ali R, Bertram P, Schmidt RE, Atkinson JP. TREX1 is expressed by microglia in normal human brain and increases in regions affected by ischemia. Brain Pathol 2018; 28:806-821. [PMID: 30062819 PMCID: PMC6404532 DOI: 10.1111/bpa.12626] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 05/28/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Mutations in the three-prime repair exonuclease 1 (TREX1) gene have been associated with neurological diseases, including Retinal Vasculopathy with Cerebral Leukoencephalopathy (RVCL). However, the endogenous expression of TREX1 in human brain has not been studied. METHODS We produced a rabbit polyclonal antibody (pAb) to TREX1 to characterize TREX1 by Western blotting (WB) of cell lysates from normal controls and subjects carrying an RVCL frame-shift mutation. Dual staining was performed to determine cell types expressing TREX1 in human brain tissue. TREX1 distribution in human brain was further evaluated by immunohistochemical analyses of formalin-fixed, paraffin-embedded samples from normal controls and patients with RVCL and ischemic stroke. RESULTS After validating the specificity of our anti-TREX1 rabbit pAb, WB analysis was utilized to detect the endogenous wild-type and frame-shift mutant of TREX1 in cell lysates. Dual staining in human brain tissues from patients with RVCL and normal controls localized TREX1 to a subset of microglia and macrophages. Quantification of immunohistochemical staining of the cerebral cortex revealed that TREX1+ microglia were primarily in the gray matter of normal controls (22.7 ± 5.1% and 5.5 ± 1.9% of Iba1+ microglia in gray and white matter, respectively) and commonly in association with the microvasculature. In contrast, in subjects with RVCL, the TREX1+ microglia were predominantly located in the white matter of normal appearing cerebral cortex (11.8 ± 3.1% and 38.9 ± 5.8% of Iba1+ microglia in gray and white matter, respectively). The number of TREX1+ microglia was increased in ischemic brain lesions in central nervous system of RVCL and stroke patients. CONCLUSIONS TREX1 is expressed by a subset of microglia in normal human brain, often in close proximity to the microvasculature, and increases in the setting of ischemic lesions. These findings suggest a role for TREX1+ microglia in vessel homeostasis and response to ischemic injury.
Collapse
Affiliation(s)
- Parul H. Kothari
- Department of Biology and Biomedical Sciences Human & Statistical Genetics ProgramWashington University School of MedicineSt. LouisMO
- Division of Rheumatology, Immunology and Allergy, Department of MedicineBrigham and Women's Hospital, Harvard Medical SchoolBostonMA
- Channing Division of Network Medicine, Department of MedicineBrigham and Women's Hospital, Harvard Medical SchoolBostonMA
| | - Grant R. Kolar
- Department of Pathology & ImmunologyWashington University School of MedicineSt. LouisMO
- Department of Pathology and Department of OphthalmologySaint Louis University School of MedicineSt. LouisMO
| | - Joanna C. Jen
- Departments of Neurology and NeurobiologyUCLA School of MedicineLos AngelesCA
- Departments of Neurology, Otolaryngology, NeurosurgeryIcahn School of Medicine at Mount SinaiNew YorkNY
| | - Rula Hajj‐Ali
- Center for Vasculitis Care and ResearchCleveland Clinic Lerner College of Medicine, Orthopaedic and Rheumatologic InstituteClevelandOH
| | - Paula Bertram
- Department of Medicine, Division of RheumatologyWashington University School of MedicineSt. LouisMO
| | - Robert E. Schmidt
- Department of Pathology and Immunology, Division of NeuropathologyWashington University School of MedicineSt. LouisMO
| | - John P. Atkinson
- Department of Medicine, Division of RheumatologyWashington University School of MedicineSt. LouisMO
| |
Collapse
|
82
|
Alperin JM, Ortiz-Fernández L, Sawalha AH. Monogenic Lupus: A Developing Paradigm of Disease. Front Immunol 2018; 9:2496. [PMID: 30459768 PMCID: PMC6232876 DOI: 10.3389/fimmu.2018.02496] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 10/09/2018] [Indexed: 12/13/2022] Open
Abstract
Monogenic lupus is a form of systemic lupus erythematosus (SLE) that occurs in patients with a single gene defect. This rare variant of lupus generally presents with early onset severe disease, especially affecting the kidneys and central nervous system. To date, a significant number of genes have been implicated in monogenic lupus, providing valuable insights into a very complex disease process. Throughout this review, we will summarize the genes reported to be associated with monogenic lupus or lupus-like diseases, and the pathogenic mechanisms affected by the mutations involved upon inducing autoimmunity.
Collapse
Affiliation(s)
- Jessie M Alperin
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Lourdes Ortiz-Fernández
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Amr H Sawalha
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States.,Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
83
|
Crow MK, Olferiev M, Kirou KA. Type I Interferons in Autoimmune Disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2018; 14:369-393. [PMID: 30332560 DOI: 10.1146/annurev-pathol-020117-043952] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Type I interferons, which make up the first cytokine family to be described and are the essential mediators of antivirus host defense, have emerged as central elements in the immunopathology of systemic autoimmune diseases, with systemic lupus erythematosus as the prototype. Lessons from investigation of interferon regulation following virus infection can be applied to lupus, with the conclusion that sustained production of type I interferon shifts nearly all components of the immune system toward pathologic functions that result in tissue damage and disease. We review recent data, mainly from studies of patients with systemic lupus erythematosus, that provide new insights into the mechanisms of induction and the immunologic consequences of chronic activation of the type I interferon pathway. Current concepts implicate endogenous nucleic acids, driving both cytosolic sensors and endosomal Toll-like receptors, in interferon pathway activation and suggest targets for development of novel therapeutics that may restore the immune system to health.
Collapse
Affiliation(s)
- Mary K Crow
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, New York, New York 10021, USA;
| | - Mikhail Olferiev
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, New York, New York 10021, USA;
| | - Kyriakos A Kirou
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, New York, New York 10021, USA;
| |
Collapse
|
84
|
Matz KM, Guzman RM, Goodman AG. The Role of Nucleic Acid Sensing in Controlling Microbial and Autoimmune Disorders. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 345:35-136. [PMID: 30904196 PMCID: PMC6445394 DOI: 10.1016/bs.ircmb.2018.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Innate immunity, the first line of defense against invading pathogens, is an ancient form of host defense found in all animals, from sponges to humans. During infection, innate immune receptors recognize conserved molecular patterns, such as microbial surface molecules, metabolites produces during infection, or nucleic acids of the microbe's genome. When initiated, the innate immune response activates a host defense program that leads to the synthesis proteins capable of pathogen killing. In mammals, the induction of cytokines during the innate immune response leads to the recruitment of professional immune cells to the site of infection, leading to an adaptive immune response. While a fully functional innate immune response is crucial for a proper host response and curbing microbial infection, if the innate immune response is dysfunctional and is activated in the absence of infection, autoinflammation and autoimmune disorders can develop. Therefore, it follows that the innate immune response must be tightly controlled to avoid an autoimmune response from host-derived molecules, yet still unencumbered to respond to infection. In this review, we will focus on the innate immune response activated from cytosolic nucleic acids, derived from the microbe or host itself. We will depict how viruses and bacteria activate these nucleic acid sensing pathways and their mechanisms to inhibit the pathways. We will also describe the autoinflammatory and autoimmune disorders that develop when these pathways are hyperactive. Finally, we will discuss gaps in knowledge with regard to innate immune response failure and identify where further research is needed.
Collapse
Affiliation(s)
- Keesha M Matz
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - R Marena Guzman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Alan G Goodman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States; Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States.
| |
Collapse
|
85
|
An J, Woodward JJ, Lai W, Minie M, Sun X, Tanaka L, Snyder JM, Sasaki T, Elkon KB. Inhibition of Cyclic GMP-AMP Synthase Using a Novel Antimalarial Drug Derivative in Trex1-Deficient Mice. Arthritis Rheumatol 2018; 70:1807-1819. [PMID: 29781188 DOI: 10.1002/art.40559] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 05/10/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Type I interferon (IFN) is strongly implicated in the pathogenesis of systemic lupus erythematosus (SLE) as well as rare monogenic interferonopathies such as Aicardi-Goutières syndrome (AGS), a disease attributed to mutations in the DNA exonuclease TREX1. The DNA-activated type I IFN pathway cyclic GMP-AMP (cGAMP) synthase (cGAS) is linked to subsets of AGS and lupus. This study was undertaken to identify inhibitors of the DNA-cGAS interaction, and to test the lead candidate drug, X6, in a mouse model of AGS. METHODS Trex1-/- mice were treated orally from birth with either X6 or hydroxychloroquine (HCQ) for 8 weeks. Expression of IFN-stimulated genes (ISGs) was quantified by quantitative polymerase chain reaction. Multiple reaction monitoring by ultra-performance liquid chromatography coupled with tandem mass spectrometry was used to quantify the production of cGAMP and X6 drug concentrations in the serum and heart tissue of Trex1-/- mice. RESULTS On the basis of the efficacy-to-toxicity ratio established in vitro, drug X6 was selected as the lead candidate for treatment of Trex1-/- mice. X6 was significantly more effective than HCQ in attenuating ISG expression in mouse spleens (P < 0.01 for Isg15 and Isg20) and hearts (P < 0.05 for Isg15, Mx1, and Ifnb, and P < 0.01 for Cxcl10), and in reducing the production of cGAMP in mouse heart tissue (P < 0.05), thus demonstrating target engagement by the X6 compound. Of note, X6 was also more effective than HCQ in reducing ISG expression in vitro (P < 0.05 for IFI27 and MX1, and P < 0.01 for IFI44L and PKR) in human peripheral blood mononuclear cells from patients with SLE. CONCLUSION This study demonstrates that X6 is superior to HCQ for the treatment of an experimental autoimmune myocarditis mediated in vivo by the cGAS/stimulator of IFN genes (cGAS/STING) pathway. The findings suggest that drug X6 could be developed as a novel treatment for AGS and/or lupus to inhibit activation of the cGAS/STING pathway.
Collapse
Affiliation(s)
- Jie An
- University of Washington, Seattle
| | | | - Weinan Lai
- University of Washington, Seattle, and Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
86
|
Stam AH, Kothari PH, Shaikh A, Gschwendter A, Jen JC, Hodgkinson S, Hardy TA, Hayes M, Kempster PA, Kotschet KE, Bajema IM, van Duinen SG, Maat-Schieman MLC, de Jong PTVM, de Smet MD, de Wolff-Rouendaal D, Dijkman G, Pelzer N, Kolar GR, Schmidt RE, Lacey J, Joseph D, Fintak DR, Grand MG, Brunt EM, Liapis H, Hajj-Ali RA, Kruit MC, van Buchem MA, Dichgans M, Frants RR, van den Maagdenberg AMJM, Haan J, Baloh RW, Atkinson JP, Terwindt GM, Ferrari MD. Retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations. Brain 2018; 139:2909-2922. [PMID: 27604306 DOI: 10.1093/brain/aww217] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 07/11/2016] [Indexed: 02/02/2023] Open
Affiliation(s)
- Anine H Stam
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Parul H Kothari
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Aisha Shaikh
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Andreas Gschwendter
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians Universität, D-81377 München, Germany
| | - Joanna C Jen
- Department of Neurology, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Suzanne Hodgkinson
- Department of Neurology, Liverpool Hospital, Liverpool, New South Wales 2170, Australia
| | - Todd A Hardy
- Department of Neurology, Concord Repatriation General Hospital, Concord, New South Wales 2139, Australia.,Brain and Mind Centre, University of Sydney, Australia
| | - Michael Hayes
- Department of Neurology, Concord Repatriation General Hospital, Concord, New South Wales 2139, Australia
| | - Peter A Kempster
- Neurosciences Department, Monash Medical Centre, Clayton, Victoria 3168, Australia
| | - Katya E Kotschet
- Neurosciences Department, Monash Medical Centre, Clayton, Victoria 3168, Australia
| | - Ingeborg M Bajema
- Department of Pathology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Sjoerd G van Duinen
- Department of Pathology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Paulus T V M de Jong
- Department of Ophthalmology, Academic Medical Centre, 1100 DD Amsterdam, The Netherlands.,Department of Retinal Signaling, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1000 GC Amsterdam, The Netherlands.,Department of Ophthalmology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Marc D de Smet
- Department of Ophthalmology, Academic Medical Centre, 1100 DD Amsterdam, The Netherlands
| | | | - Greet Dijkman
- Department of Ophthalmology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Nadine Pelzer
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Grant R Kolar
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, 63110 USA
| | - Robert E Schmidt
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, 63110 USA
| | - JoAnne Lacey
- West County Radiology Group, Mercy Hospital in St Louis, MO 63141, USA
| | - Daniel Joseph
- The Retina Institute, Department of Ophthalmology, Washington University School of Medicine, St. Louis, Missouri, 63110 USA
| | - David R Fintak
- The Retina Institute, Department of Ophthalmology, Washington University School of Medicine, St. Louis, Missouri, 63110 USA
| | - M Gilbert Grand
- The Retina Institute, Department of Ophthalmology, Washington University School of Medicine, St. Louis, Missouri, 63110 USA
| | - Elizabeth M Brunt
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, 63110 USA
| | - Helen Liapis
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, 63110 USA
| | - Rula A Hajj-Ali
- Department of Rheumatic and Immunologic Disease, Cleveland Clinic, Cleveland, Ohio, 44195 USA
| | - Mark C Kruit
- Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Mark A van Buchem
- Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians Universität, D-81377 München, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Rune R Frants
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Arn M J M van den Maagdenberg
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Joost Haan
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands.,Department of Neurology, Alrijne Hospital, Leiderdorp, The Netherlands
| | - Robert W Baloh
- Department of Neurology, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - John P Atkinson
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Gisela M Terwindt
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Michel D Ferrari
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
87
|
The genetics and molecular pathogenesis of systemic lupus erythematosus (SLE) in populations of different ancestry. Gene 2018; 668:59-72. [DOI: 10.1016/j.gene.2018.05.041] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/13/2018] [Indexed: 01/21/2023]
|
88
|
Zardi EM, Giorgi C, Zardi DM. Diagnostic approach to neuropsychiatric lupus erythematosus: what should we do? Postgrad Med 2018; 130:536-547. [PMID: 29940795 DOI: 10.1080/00325481.2018.1492309] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Neuropsychiatric systemic lupus erythematosus is a diagnostic challenge due to the multifarious neurological and psychiatric manifestations that define it but, when suspected, diagnostic imaging can give a fundamental help. The advancements and variety of neuroimaging techniques allow us to perform more and more accurate evaluations of structure, perfusion, and metabolism of the brain and to detect cerebral and spinal lesions. Moreover, vascular districts of the neck and the brain, as well as the electrical brain and peripheral muscle activity may be accurately investigated, thus giving us a wide panoramic view. Although magnetic resonance is recognized as a fundamental neuroimaging technique to reach a correct diagnosis, the juxtaposition of other diagnostic techniques has improved the possibility to make diagnoses but has also increased the confusion about deciding which of them to use and when. Our aim was to combine the number of available techniques with the need to simplify the diagnostic path. Therefore, through the construction of an algorithm from an evidence based approach, we believe we are providing some added improvements to facilitate and expedite the diagnosis of NPSLE.
Collapse
Affiliation(s)
| | - Chiara Giorgi
- b Radiology Department , S Maria della Misericordia Hospital , Urbino , Italy
| | - Domenico Maria Zardi
- c Division of Cardiology, Faculty of Medicine and Psychology , University of Rome "Sapienza", Sant'Andrea Hospital , Rome , Italy
| |
Collapse
|
89
|
Delgado-Vega AM, Martínez-Bueno M, Oparina NY, López Herráez D, Kristjansdottir H, Steinsson K, Kozyrev SV, Alarcón-Riquelme ME. Whole Exome Sequencing of Patients from Multicase Families with Systemic Lupus Erythematosus Identifies Multiple Rare Variants. Sci Rep 2018; 8:8775. [PMID: 29884787 PMCID: PMC5993790 DOI: 10.1038/s41598-018-26274-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 05/03/2018] [Indexed: 01/30/2023] Open
Abstract
In an effort to identify rare alleles associated with SLE, we have performed whole exome sequencing of the most distantly related affected individuals from two large Icelandic multicase SLE families followed by Ta targeted genotyping of additional relatives. We identified multiple rare likely pathogenic variants in nineteen genes co-segregating with the disease through multiple generations. Gene co-expression and protein-protein interaction analysis identified a network of highly connected genes comprising several loci previously implicated in autoimmune diseases. These genes were significantly enriched for immune system development, lymphocyte activation, DNA repair, and V(D)J gene recombination GO-categories. Furthermore, we found evidence of aggregate association and enrichment of rare variants at the FAM71E1/EMC10 locus in an independent set of 4,254 European SLE-cases and 4,349 controls. Our study presents evidence supporting that multiple rare likely pathogenic variants, in newly identified genes involved in known disease pathogenic pathways, segregate with SLE at the familial and population level.
Collapse
Affiliation(s)
- Angélica M Delgado-Vega
- Department of Immunology, Genetics and Pathology, Uppsala University, The Rudbeck Laboratory, Uppsala, Sweden
| | - Manuel Martínez-Bueno
- Pfizer/University of Granada/Andalusian Government Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| | - Nina Y Oparina
- Institute for Environmental Medicine, Karolinska Institutet, Solna, Sweden.,Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - David López Herráez
- Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | | | | | - Sergey V Kozyrev
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Marta E Alarcón-Riquelme
- Pfizer/University of Granada/Andalusian Government Centre for Genomics and Oncological Research (GENYO), Granada, Spain. .,Institute for Environmental Medicine, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
90
|
McGlasson S, Wiseman S, Wardlaw J, Dhaun N, Hunt DPJ. Neurological Disease in Lupus: Toward a Personalized Medicine Approach. Front Immunol 2018; 9:1146. [PMID: 29928273 PMCID: PMC5997834 DOI: 10.3389/fimmu.2018.01146] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/07/2018] [Indexed: 12/11/2022] Open
Abstract
The brain and nervous system are important targets for immune-mediated damage in systemic lupus erythematosus (SLE), resulting in a complex spectrum of neurological syndromes. Defining nervous system disease in lupus poses significant challenges. Among the difficulties to be addressed are a diversity of clinical manifestations and a lack of understanding of their mechanistic basis. However, despite these challenges, progress has been made in the identification of pathways which contribute to neurological disease in SLE. Understanding the molecular pathogenesis of neurological disease in lupus will inform both classification and approaches to clinical trials.
Collapse
Affiliation(s)
- Sarah McGlasson
- MRC Institute of Genetics and Molecular Medicine, Edinburgh, United Kingdom
- The UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- The Anne Rowling Clinic, University of Edinburgh, Edinburgh, United Kingdom
| | - Stewart Wiseman
- The UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Joanna Wardlaw
- The UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Neeraj Dhaun
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - David P. J. Hunt
- MRC Institute of Genetics and Molecular Medicine, Edinburgh, United Kingdom
- The UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- The Anne Rowling Clinic, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
91
|
Lo MS. Insights Gained From the Study of Pediatric Systemic Lupus Erythematosus. Front Immunol 2018; 9:1278. [PMID: 29922296 PMCID: PMC5996073 DOI: 10.3389/fimmu.2018.01278] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/22/2018] [Indexed: 12/21/2022] Open
Abstract
The pathophysiology of systemic lupus erythematosus (SLE) has been intensely studied but remains incompletely defined. Currently, multiple mechanisms are known to contribute to the development of SLE. These include inadequate clearance of apoptotic debris, aberrant presentation of self nucleic antigens, loss of tolerance, and inappropriate activation of T and B cells. Genetic, hormonal, and environmental influences are also known to play a role. The study of lupus in children, in whom there is presumed to be greater genetic influence, has led to new understandings that are applicable to SLE pathophysiology as a whole. In particular, characterization of inherited disorders associated with excessive type I interferon production has elucidated specific mechanisms by which interferon is induced in SLE. In this review, we discuss several monogenic forms of lupus presenting in childhood and also review recent insights gained from cytokine and autoantibody profiling of pediatric SLE.
Collapse
Affiliation(s)
- Mindy S Lo
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
92
|
Elkon KB. Review: Cell Death, Nucleic Acids, and Immunity: Inflammation Beyond the Grave. Arthritis Rheumatol 2018; 70:805-816. [PMID: 29439290 PMCID: PMC5984680 DOI: 10.1002/art.40452] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/08/2018] [Indexed: 12/29/2022]
Abstract
Cells of the innate immune system are rigged with sensors that detect nucleic acids derived from microbes, especially viruses. It has become clear that these same sensors that respond to nucleic acids derived from damaged cells or defective intracellular processing are implicated in triggering diseases such as lupus and arthritis. The ways in which cells die and the concomitant presence of proteins and peptides that allow nucleic acids to re-enter cells profoundly influence innate immune responses. In this review, we briefly discusses different types of programmed necrosis, such as pyroptosis, necroptosis, and NETosis, and explains how nucleic acids can engage intracellular receptors and stimulate inflammation. Host protective mechanisms that include compartmentalization of receptors and nucleases as well as the consequences of nuclease deficiencies are explored. In addition, proximal and distal targets in the nucleic acid stimulation of inflammation are discussed in terms of their potential amenability to therapy for the attenuation of innate immune activation and disease pathogenesis.
Collapse
Affiliation(s)
- Keith B. Elkon
- Department of Medicine and Immunology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
93
|
Monogenic systemic lupus erythematosus: insights in pathophysiology. Rheumatol Int 2018; 38:1763-1775. [DOI: 10.1007/s00296-018-4048-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 05/10/2018] [Indexed: 01/02/2023]
|
94
|
Hiraki LT, Silverman ED. Genomics of Systemic Lupus Erythematosus: Insights Gained by Studying Monogenic Young-Onset Systemic Lupus Erythematosus. Rheum Dis Clin North Am 2018; 43:415-434. [PMID: 28711143 DOI: 10.1016/j.rdc.2017.04.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Systemic lupus erythematosus (SLE) is a systemic, autoimmune, multisystem disease with a heterogeneous clinical phenotype. Genome-wide association studies have identified multiple susceptibility loci, but these explain a fraction of the estimated heritability. This is partly because within the broad spectrum of SLE are monogenic diseases that tend to cluster in patients with young age of onset, and in families. This article highlights insights into the pathogenesis of SLE provided by these monogenic diseases. It examines genetic causes of complement deficiency, abnormal interferon production, and abnormalities of tolerance, resulting in monogenic SLE with overlapping clinical features, autoantibodies, and shared inflammatory pathways.
Collapse
Affiliation(s)
- Linda T Hiraki
- Division of Rheumatology, SickKids Hospital, SickKids Research Institute, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada; Department of Paediatrics, University of Toronto, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada; Epidemiology, Dalla Lana School of Public Health, 155 College Street, Toronto, Ontario M5T 3M7, Canada
| | - Earl D Silverman
- Division of Rheumatology, SickKids Hospital, SickKids Research Institute, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada; Department of Paediatrics, University of Toronto, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
95
|
Abstract
PURPOSE OF REVIEW To review recent scientific advances and therapeutic approaches in the expanding field of type I interferonopathies. Type I interferonopathies represent a genetically and phenotypically heterogenous group of disorders of the innate immune system caused by constitutive activation of antiviral type I interferon (IFN). Clinically, type I interferonopathies are characterized by autoinflammation and varying degrees of autoimmunity or immunodeficiency. The elucidation of the underlying genetic causes has revealed novel cell-intrinsic mechanisms that protect the organism against inappropriate immune recognition of self nucleic acids by cytosolic nucleic acid sensors. The type I IFN system is subject to a tight and complex regulation. Disturbances of its checks and balances can spark an unwanted immune response causing uncontrolled type I IFN signaling. Novel mechanistic insight into pathways that control the type I IFN system is providing opportunities for targeted therapeutic approaches by repurposing drugs such as Janus kinase inhibitors or reverse transcriptase inhibitors.
Collapse
|
96
|
Abstract
The type I interferon pathway has been implicated in the pathogenesis of a number of rheumatic diseases, including systemic lupus erythematosus, Sjögren syndrome, myositis, systemic sclerosis, and rheumatoid arthritis. In normal immune responses, type I interferons have a critical role in the defence against viruses, yet in many rheumatic diseases, large subgroups of patients demonstrate persistent activation of the type I interferon pathway. Genetic variations in type I interferon-related genes are risk factors for some rheumatic diseases, and can explain some of the heterogeneity in type I interferon responses seen between patients within a given disease. Inappropriate activation of the immune response via Toll-like receptors and other nucleic acid sensors also contributes to the dysregulation of the type I interferon pathway in a number of rheumatic diseases. Theoretically, differences in type I interferon activity between patients might predict response to immune-based therapies, as has been demonstrated for rheumatoid arthritis. A number of type I interferon and type I interferon pathway blocking therapies are currently in clinical trials, the results of which are promising thus far. This Review provides an overview of the many ways in which the type I interferon system affects rheumatic diseases.
Collapse
Affiliation(s)
- Theresa L. Wampler Muskardin
- Colton Center for Autoimmunity, Department of Medicine, New York University School of Medicine, New York, NY, USA
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Timothy B. Niewold
- Colton Center for Autoimmunity, Department of Medicine, New York University School of Medicine, New York, NY, USA
- Division of Rheumatology, Department of Medicine and Pediatrics, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
97
|
Hedrich CM, Smith EMD, Beresford MW. Juvenile-onset systemic lupus erythematosus (jSLE) - Pathophysiological concepts and treatment options. Best Pract Res Clin Rheumatol 2018; 31:488-504. [PMID: 29773269 DOI: 10.1016/j.berh.2018.02.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The systemic autoimmune/inflammatory condition systemic lupus erythematosus (SLE) manifests before the age of 16 years in 10-20% of all cases. Clinical courses are more severe, and organ complications are more common in patients with juvenile SLE. Varying gender distribution in different age groups and increasing severity with younger age and the presence of monogenic disease in early childhood indicate distinct differences in the pathophysiology of juvenile versus adult-onset SLE. Regardless of these differences, classification criteria and treatment options are identical. In this article, we discuss age-specific pathomechanisms of juvenile-onset SLE, which are currently available and as future treatment options, and propose reclassification of different forms of SLE along the inflammatory spectrum from autoinflammation to autoimmunity.
Collapse
Affiliation(s)
- Christian M Hedrich
- Department of Women's & Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, UK; Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, UK.
| | - Eve M D Smith
- Department of Women's & Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, UK; Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, UK
| | - Michael W Beresford
- Department of Women's & Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, UK; Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, UK
| |
Collapse
|
98
|
Tarbell KV, Egen JG. Breaking self-tolerance during autoimmunity and cancer immunity: Myeloid cells and type I IFN response regulation. J Leukoc Biol 2018; 103:1117-1129. [PMID: 29393979 DOI: 10.1002/jlb.3mir1017-400r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 12/18/2017] [Accepted: 12/21/2017] [Indexed: 02/28/2024] Open
Abstract
The generation and regulation of innate immune signals are key determinants of autoimmune pathogenesis. Emerging evidence suggests that parallel processes operating in the setting of solid tumors can similarly determine the balance between tolerance and immunity and ultimately the effectiveness of the antitumor immune response. In both contexts, self-specific responses start with innate immune cell activation that leads to the initial break in self-tolerance, which can be followed by immune response amplification and maturation through innate-adaptive crosstalk, and finally immune-mediated tissue/tumor destruction that can further potentiate inflammation. Of particular importance for these processes is type I IFN, which is induced in response to endogenous ligands, such as self-nucleic acids, and acts on myeloid cells to promote the expansion of autoreactive or tumor-specific T cells and their influx into the target tissue. Evidence from the study of human disease pathophysiology and genetics and mouse models of disease has revealed an extensive and complex network of negative regulatory pathways that has evolved to restrain type I IFN production and activity. Here, we review the overlapping features of self- and tumor-specific immune responses, including the central role that regulators of the type I IFN response and innate immune cell activation play in maintaining tolerance, and discuss how a better understanding of the pathophysiology of autoimmunity can help to identify new approaches to promote immune-mediated tumor destruction.
Collapse
Affiliation(s)
- Kristin V Tarbell
- Department of Oncology, Amgen, Inc., South San Francisco, California, USA
| | - Jackson G Egen
- Department of Oncology, Amgen, Inc., South San Francisco, California, USA
| |
Collapse
|
99
|
Kretschmer S, Lee-Kirsch MA. Type I interferon-mediated autoinflammation and autoimmunity. Curr Opin Immunol 2017; 49:96-102. [DOI: 10.1016/j.coi.2017.09.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/16/2017] [Indexed: 12/21/2022]
|
100
|
Abstract
PURPOSE OF REVIEW Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease known for its clinical heterogeneity. Over time, new insights into the complex genetic origin of SLE have started to explain some of this clinical variability. These findings, reviewed here, have also yielded important understanding in the immune mechanisms behind SLE pathogenesis. RECENT FINDINGS Several new monogenic disorders with lupus-like phenotype have been described. These can be organized into physiologic pathways that parallel mechanisms of disease in SLE. Examples include genes important for DNA damage repair (e.g., TREX1), nucleic acid sensing and type I interferon overproduction (e.g., STING, TREX1), apoptosis (FASLG), tolerance (PRKCD), and clearance of self-antigen (DNASE1L3). Further study of monogenic lupus may lead to better genotype/phenotype correlations in SLE. Eventually, the ability to understand individual patients according to their genetic profile may allow the development of more targeted and personalized approaches to therapy.
Collapse
Affiliation(s)
- Mindy S Lo
- Division of Immunology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|