51
|
Affiliation(s)
- Kenji Matsuura
- Laboratory of Insect Ecology, Graduate School of AgricultureKyoto University Kyoto Japan
| |
Collapse
|
52
|
Liu W, Wang BQ, Liu-Fu G, Fung WK, Zhou JY. X-chromosome genetic association test incorporating X-chromosome inactivation and imprinting effects. J Genet 2019. [DOI: 10.1007/s12041-019-1146-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
53
|
Liu W, Wang BQ, Liu-Fu G, Fung WK, Zhou JY. X-chromosome genetic association test incorporating X-chromosome inactivation and imprinting effects. J Genet 2019; 98:99. [PMID: 31767819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Studies have shown that many complex diseases are sex-determined. When conducting genetic association studies on X-chromosome, there are two important epigenetic factors which should be considered simultaneously: X-chromosome inactivation and genomic imprinting. Currently, there have been several association tests accounting for the information on X-chromosome inactivation. However, these tests do not take the imprinting effects into account. In this paper, we propose a novel association test simultaneously incorporating X-chromosome inactivation and imprinting effects based on case-parent trios and control-parent trios for female offspring and case-control data for male offspring, denoted by MLRXCII. Extensive simulation studies are carried out to investigate the type I error rate and the test power of the proposed MLRXCII . Simulation results demonstrate that the proposed test controls the type I error rate well andis more powerful than the existing method when imprinting effects exist. The proposed MLRXCII test is valid and powerful in genetic association studies on X-chromosome for qualitative traits and thus is recommended in practice.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Organ Failure Research, Ministry of Education, and Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, People's Republic of China. ,
| | | | | | | | | |
Collapse
|
54
|
Sokolov VA, Abdyrakhmanova EA. On the Possibility of Experimental Modification of Imprinting in Apomictic Plants. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419080143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
55
|
Abundances of placental imprinted genes CDKN1C, PHLDA2 and IGF-2 are related to low birth weight and early catch-up growth in full-term infants born small for gestational age. PLoS One 2019; 14:e0218278. [PMID: 31194812 PMCID: PMC6564030 DOI: 10.1371/journal.pone.0218278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/29/2019] [Indexed: 11/28/2022] Open
Abstract
Children born small for gestational age (SGA) generally have a catch-up growth and rapid weight gain in the first years of life, which is a high risk of insulin resistance and cardiovascular diseases later in life. It was reported that the level of imprinted genes IGF-2, CDKN1C and PHLDA2 regulates placental growth. We assessed these imprinted genes expression levels in placental tissue and their influences on catch-up growth of full-term SGA infants. The protein and mRNA levels of placental CDKN1C, PHLDA2 and IGF-2 were analyzed in 29 full-term SGA and 29 full-term infants born appropriate for gestational age (AGA) using quantitative RT-PCR and Western blot assay, respectively. Catch-up growth was indicated by increased standard deviation score (ΔSDS) of weight at 1, 3 and 6 months relative to birth weight (BW). Correlations between indicated variables were evaluated using Pearson correlation coefficient analysis. Compared to AGA infants, CDKN1C and PHLDA2 levels were significantly increased, whereas IGF-2 was significantly reduced in SGA infants. The value of ΔSDS was significantly higher in SGA than that in AGA infants. For SGA status, Pearson analysis shows i) a negative correlation of CDKN1C and PHLDA2 abundances with BW, and a positive correlation of IGF-2 with BW, ii) no correlation between the three imprinted gene abundances and placental weight (PW), and between PW and BW, iii) a positive correlation of PHLDA2 abundance with CDKN1C, and iv) a positive correlation of CDKN1C and PHLDA2 abundances with ΔSDS, and a negative correlation of IGF-2 with ΔSDS at 1, 3 and 6 months. Taken together, increased CDKN1C and PHLDA2 and reduced IGF-2 abundances in placental tissue were related to BW and early period catch-up growth in full-term SGA infants. Placental CDKN1C, PHLDA2 and IGF-2 level monitoring may be useful for predicting and preventing the development of SGA.
Collapse
|
56
|
Rubenstein DR, Ågren JA, Carbone L, Elde NC, Hoekstra HE, Kapheim KM, Keller L, Moreau CS, Toth AL, Yeaman S, Hofmann HA. Coevolution of Genome Architecture and Social Behavior. Trends Ecol Evol 2019; 34:844-855. [PMID: 31130318 DOI: 10.1016/j.tree.2019.04.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/03/2019] [Accepted: 04/17/2019] [Indexed: 01/02/2023]
Abstract
Although social behavior can have a strong genetic component, it can also result in selection on genome structure and function, thereby influencing the evolution of the genome itself. Here we explore the bidirectional links between social behavior and genome architecture by considering variation in social and/or mating behavior among populations (social polymorphisms) and across closely related species. We propose that social behavior can influence genome architecture via associated demographic changes due to social living. We establish guidelines to exploit emerging whole-genome sequences using analytical approaches that examine genome structure and function at different levels (regulatory vs structural variation) from the perspective of both molecular biology and population genetics in an ecological context.
Collapse
Affiliation(s)
- Dustin R Rubenstein
- Columbia University, Department of Ecology, Evolution, and Environmental Biology and Center for Integrative Animal Behavior, New York, NY 10027, USA.
| | - J Arvid Ågren
- Harvard University, Department of Organismic and Evolutionary Biology, Cambridge, MA 02138, USA
| | - Lucia Carbone
- Oregon Health & Science University, Department of Medicine, KCVI, Portland, OR 97239, USA; Oregon National Primate Research Center, Division of Genetics, Beaverton, OR 97006, USA
| | - Nels C Elde
- University of Utah School of Medicine, Department of Human Genetics, Salt Lake City, UT 84112, USA
| | - Hopi E Hoekstra
- Harvard University, Department of Organismic and Evolutionary Biology, Cambridge, MA 02138, USA; Harvard University, Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Cambridge, MA 02138, USA
| | - Karen M Kapheim
- Utah State University, Department of Biology, Logan, UT 84322, USA
| | - Laurent Keller
- University of Lausanne, Department of Ecology and Evolution, Biophore, UNIL, 1015 Lausanne, Switzerland
| | - Corrie S Moreau
- Cornell University, Departments of Entomology and Ecology and Evolutionary Biology, Ithaca, NY 14850, USA
| | - Amy L Toth
- Iowa State University, Department of Ecology, Evolution, and Organismal Biology and Department of Entomology, Ames, IA 50011, USA
| | - Sam Yeaman
- University of Calgary, Department of Biological Sciences, Calgary, AB T2N 1N4, Canada
| | - Hans A Hofmann
- The University of Texas at Austin, Department of Integrative Biology and Institute for Cellular and Molecular Biology, 2415 Speedway C-0990, Austin, TX 78712, USA.
| |
Collapse
|
57
|
O'Brien EK, Wolf JB. Evolutionary Quantitative Genetics of Genomic Imprinting. Genetics 2019; 211:75-88. [PMID: 30389806 PMCID: PMC6325703 DOI: 10.1534/genetics.118.301373] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/23/2018] [Indexed: 01/03/2023] Open
Abstract
Genomic imprinting shapes the genotype-phenotype relationship by creating an asymmetry between the influences of paternally and maternally inherited gene copies. Consequently, imprinting can impact heritable and nonheritable variation, resemblance of relatives, and evolutionary dynamics. Although previous analyses have identified some of the quantitative genetic consequences of imprinting, we lack a framework that cleanly separates the influence of imprinting from other components of variation, particularly dominance. Here we apply a simple orthogonal genetic model to evaluate the roles of genetic (additive and dominance) and epigenetic (imprinting) effects. Imprinting increases the resemblance of relatives who share the expressed allele, and therefore increases variance among families of full or half-siblings. However, only part of this increased variance is heritable and contributes to selection responses. When selection is within, or among, families sharing only a single parent (half-siblings), which is common in selective breeding programs, imprinting can alter overall responses. Selection is more efficient when it acts among families sharing the expressed parent, or within families sharing the parent with lower expression. Imprinting also affects responses to sex-specific selection. When selection is on the sex whose gene copy has lower expression, the response is diminished or delayed the next generation, although the long-term response is unaffected. Our findings have significant implications for understanding patterns of variation, interpretation of short-term selection responses, and the efficacy of selective breeding programs, demonstrating the importance of considering the independent influence of genomic imprinting in quantitative genetics.
Collapse
Affiliation(s)
- Eleanor K O'Brien
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, BA2 7AY, United Kingdom
| | - Jason B Wolf
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, BA2 7AY, United Kingdom
| |
Collapse
|
58
|
Baroux C, Grossniklaus U. Seeds-An evolutionary innovation underlying reproductive success in flowering plants. Curr Top Dev Biol 2018; 131:605-642. [PMID: 30612632 DOI: 10.1016/bs.ctdb.2018.11.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
"Seeds nourish, seeds unite, seeds endure, seeds defend, seeds travel," explains the science writer Thor Hanson in his book The Triumph of Seeds (2015). The seed is an ultimate product of land plant evolution. The nursing and protective organization of the seed enable a unique parental care of the progeny that has fueled seed plant radiation. Seeds promote dispersal and optimize offspring production and thus reproductive fitness through biological adaptations that integrate environmental and developmental cues. The composite structure of seeds, uniting tissues that originate from three distinct organisms, enables the partitioning of tasks during development, maturation, and storage, while a sophisticated interplay between the compartments allows the fine-tuning of embryonic growth, as well as seed maturation, dormancy, and germination. In this review, we will highlight peculiarities in the development and evolution of the different seed compartments and focus on the molecular mechanisms underlying the interactions between them.
Collapse
Affiliation(s)
- Célia Baroux
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland.
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| |
Collapse
|
59
|
Pignatta D, Novitzky K, Satyaki PRV, Gehring M. A variably imprinted epiallele impacts seed development. PLoS Genet 2018; 14:e1007469. [PMID: 30395602 PMCID: PMC6237401 DOI: 10.1371/journal.pgen.1007469] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 11/15/2018] [Accepted: 10/05/2018] [Indexed: 12/17/2022] Open
Abstract
The contribution of epigenetic variation to phenotypic variation is unclear. Imprinted genes, because of their strong association with epigenetic modifications, represent an opportunity for the discovery of such phenomena. In mammals and flowering plants, a subset of genes are expressed from only one parental allele in a process called gene imprinting. Imprinting is associated with differential DNA methylation and chromatin modifications between parental alleles. In flowering plants imprinting occurs in a seed tissue - endosperm. Proper endosperm development is essential for the production of viable seeds. We previously showed that in Arabidopsis thaliana intraspecific imprinting variation is correlated with naturally occurring DNA methylation polymorphisms. Here, we investigated the mechanisms and function of allele-specific imprinting of the class IV homeodomain leucine zipper (HD-ZIP) transcription factor HDG3. In imprinted strains, HDG3 is expressed primarily from the methylated paternally inherited allele. We manipulated the methylation state of endogenous HDG3 in a non-imprinted strain and demonstrated that methylation of a proximal transposable element is sufficient to promote HDG3 expression and imprinting. Gain of HDG3 imprinting was associated with earlier endosperm cellularization and changes in seed weight. These results indicate that epigenetic variation alone is sufficient to explain imprinting variation and demonstrate that epialleles can underlie variation in seed development phenotypes.
Collapse
Affiliation(s)
- Daniela Pignatta
- Whitehead Institute for Biomedical Research, Cambridge, MA, United States of America
| | - Katherine Novitzky
- Whitehead Institute for Biomedical Research, Cambridge, MA, United States of America
| | - P. R. V. Satyaki
- Whitehead Institute for Biomedical Research, Cambridge, MA, United States of America
| | - Mary Gehring
- Whitehead Institute for Biomedical Research, Cambridge, MA, United States of America
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- * E-mail:
| |
Collapse
|
60
|
Kincaid-Smith J, Picard MAL, Cosseau C, Boissier J, Severac D, Grunau C, Toulza E. Parent-of-Origin-Dependent Gene Expression in Male and Female Schistosome Parasites. Genome Biol Evol 2018; 10:840-856. [PMID: 29447366 PMCID: PMC5861417 DOI: 10.1093/gbe/evy037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2018] [Indexed: 12/16/2022] Open
Abstract
Schistosomes are the causative agents of schistosomiasis, a neglected tropical disease affecting over 230 million people worldwide. Additionally to their major impact on human health, they are also models of choice in evolutionary biology. These parasitic flatworms are unique among the common hermaphroditic trematodes as they have separate sexes. This so-called “evolutionary scandal” displays a female heterogametic genetic sex-determination system (ZZ males and ZW females), as well as a pronounced adult sexual dimorphism. These phenotypic differences are determined by a shared set of genes in both sexes, potentially leading to intralocus sexual conflicts. To resolve these conflicts in sexually selected traits, molecular mechanisms such as sex-biased gene expression could occur, but parent-of-origin gene expression also provides an alternative. In this work we investigated the latter mechanism, that is, genes expressed preferentially from either the maternal or the paternal allele, in Schistosoma mansoni species. To this end, transcriptomes from male and female hybrid adults obtained by strain crosses were sequenced. Strain-specific single nucleotide polymorphism (SNP) markers allowed us to discriminate the parental origin, while reciprocal crosses helped to differentiate parental expression from strain-specific expression. We identified genes containing SNPs expressed in a parent-of-origin manner consistent with paternal and maternal imprints. Although the majority of the SNPs was identified in mitochondrial and Z-specific loci, the remaining SNPs found in male and female transcriptomes were situated in genes that have the potential to explain sexual differences in schistosome parasites. Furthermore, we identified and validated four new Z-specific scaffolds.
Collapse
Affiliation(s)
- Julien Kincaid-Smith
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia, Perpignan, France
| | - Marion A L Picard
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Céline Cosseau
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia, Perpignan, France
| | - Jérôme Boissier
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia, Perpignan, France
| | - Dany Severac
- MGX, BioCampus Montpellier, CNRS, INSERM, Université de Montpellier, France
| | - Christoph Grunau
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia, Perpignan, France
| | - Eve Toulza
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia, Perpignan, France
| |
Collapse
|
61
|
Khamlichi AA, Feil R. Parallels between Mammalian Mechanisms of Monoallelic Gene Expression. Trends Genet 2018; 34:954-971. [PMID: 30217559 DOI: 10.1016/j.tig.2018.08.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/06/2018] [Accepted: 08/16/2018] [Indexed: 02/06/2023]
Abstract
Different types of monoallelic gene expression are present in mammals, some of which are highly flexible, whereas others are more rigid. These include allelic exclusion at antigen receptor loci, the expression of olfactory receptor genes, genomic imprinting, X-chromosome inactivation, and random monoallelic expression (MAE). Although these processes play diverse biological roles, and arose through different selective pressures, the underlying epigenetic mechanisms show striking resemblances. Regulatory transcriptional events are important in all systems, particularly in the specification of MAE. Combined with comparative studies between species, this suggests that the different MAE systems found in mammals may have evolved from analogous ancestral processes.
Collapse
Affiliation(s)
- Ahmed Amine Khamlichi
- Institute of Pharmacology and Structural Biology (IPBS), Centre National de la Recherche Scientifique (CNRS) and Paul Sabatier University (UPS), 205 route de Narbonne, 31077 Toulouse, France.
| | - Robert Feil
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS and the University of Montpellier, 1919 route de Mende, 34293 Montpellier, France.
| |
Collapse
|
62
|
Roth M, Florez-Rueda AM, Paris M, Städler T. Wild tomato endosperm transcriptomes reveal common roles of genomic imprinting in both nuclear and cellular endosperm. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:1084-1101. [PMID: 29953688 DOI: 10.1111/tpj.14012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/01/2018] [Accepted: 06/20/2018] [Indexed: 05/06/2023]
Abstract
Genomic imprinting is a conspicuous feature of the endosperm, a triploid tissue nurturing the embryo and synchronizing angiosperm seed development. An unknown subset of imprinted genes (IGs) is critical for successful seed development and should have highly conserved functions. Recent genome-wide studies have found limited conservation of IGs among distantly related species, but there is a paucity of data from closely related lineages. Moreover, most studies focused on model plants with nuclear endosperm development, and comparisons with properties of IGs in cellular-type endosperm development are lacking. Using laser-assisted microdissection, we characterized parent-specific expression in the cellular endosperm of three wild tomato lineages (Solanum section Lycopersicon). We identified 1025 candidate IGs and 167 with putative homologs previously identified as imprinted in distantly related taxa with nuclear-type endosperm. Forty-two maternally expressed genes (MEGs) and 17 paternally expressed genes (PEGs) exhibited conserved imprinting status across all three lineages, but differences in power to assess imprinted expression imply that the actual degree of conservation might be higher than that directly estimated (20.7% for PEGs and 10.4% for MEGs). Regardless, the level of shared imprinting status was higher for PEGs than for MEGs, indicating dissimilar evolutionary trajectories. Expression-level data suggest distinct epigenetic modulation of MEGs and PEGs, and gene ontology analyses revealed MEGs and PEGs to be enriched for different functions. Importantly, our data provide evidence that MEGs and PEGs interact in modulating both gene expression and the endosperm cell cycle, and uncovered conserved cellular functions of IGs uniting taxa with cellular- and nuclear-type endosperm.
Collapse
Affiliation(s)
- Morgane Roth
- Plant Ecological Genetics, Institute of Integrative Biology & Zurich-Basel Plant Science Center, ETH Zurich, 8092, Zurich, Switzerland
| | - Ana M Florez-Rueda
- Plant Ecological Genetics, Institute of Integrative Biology & Zurich-Basel Plant Science Center, ETH Zurich, 8092, Zurich, Switzerland
| | - Margot Paris
- Plant Ecological Genetics, Institute of Integrative Biology & Zurich-Basel Plant Science Center, ETH Zurich, 8092, Zurich, Switzerland
| | - Thomas Städler
- Plant Ecological Genetics, Institute of Integrative Biology & Zurich-Basel Plant Science Center, ETH Zurich, 8092, Zurich, Switzerland
| |
Collapse
|
63
|
Muyle A, Zemp N, Fruchard C, Cegan R, Vrana J, Deschamps C, Tavares R, Hobza R, Picard F, Widmer A, Marais GAB. Genomic imprinting mediates dosage compensation in a young plant XY system. NATURE PLANTS 2018; 4:677-680. [PMID: 30104649 DOI: 10.1038/s41477-018-0221-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/16/2018] [Indexed: 05/06/2023]
Abstract
Sex chromosomes have repeatedly evolved from a pair of autosomes. Consequently, X and Y chromosomes initially have similar gene content, but ongoing Y degeneration leads to reduced expression and eventual loss of Y genes1. The resulting imbalance in gene expression between Y genes and the rest of the genome is expected to reduce male fitness, especially when protein networks have components from both autosomes and sex chromosomes. A diverse set of dosage compensating mechanisms that alleviates these negative effects has been described in animals2-4. However, the early steps in the evolution of dosage compensation remain unknown, and dosage compensation is poorly understood in plants5. Here, we describe a dosage compensation mechanism in the evolutionarily young XY sex determination system of the plant Silene latifolia. Genomic imprinting results in higher expression from the maternal X chromosome in both males and females. This compensates for reduced Y expression in males, but results in X overexpression in females and may be detrimental. It could represent a transient early stage in the evolution of dosage compensation. Our finding has striking resemblance to the first stage proposed by Ohno6 for the evolution of X inactivation in mammals.
Collapse
Affiliation(s)
- Aline Muyle
- Laboratoire "Biométrie et Biologie Evolutive", CNRS/Université Lyon 1, Lyon, France.
| | - Niklaus Zemp
- Genetic Diversity Centre (GDC), ETH Zurich, Zurich, Switzerland
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Cécile Fruchard
- Laboratoire "Biométrie et Biologie Evolutive", CNRS/Université Lyon 1, Lyon, France
| | - Radim Cegan
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jan Vrana
- Institute of Experimental Botany, Center of the Hana Region for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | | | - Raquel Tavares
- Laboratoire "Biométrie et Biologie Evolutive", CNRS/Université Lyon 1, Lyon, France
| | - Roman Hobza
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
- Institute of Experimental Botany, Center of the Hana Region for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Franck Picard
- Laboratoire "Biométrie et Biologie Evolutive", CNRS/Université Lyon 1, Lyon, France
| | - Alex Widmer
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Gabriel A B Marais
- Laboratoire "Biométrie et Biologie Evolutive", CNRS/Université Lyon 1, Lyon, France
| |
Collapse
|
64
|
Maternal care boosted by paternal imprinting in mammals. PLoS Biol 2018; 16:e2006599. [PMID: 30063711 PMCID: PMC6067684 DOI: 10.1371/journal.pbio.2006599] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/26/2018] [Indexed: 12/16/2022] Open
Abstract
In mammals, mothers are the primary caregiver, programmed, in part, by hormones produced during pregnancy. High-quality maternal care is essential for the survival and lifelong health of offspring. We previously showed that the paternally silenced imprinted gene pleckstrin homology-like domain family A member 2 (Phlda2) functions to negatively regulate a single lineage in the mouse placenta called the spongiotrophoblast, a major source of hormones in pregnancy. Consequently, the offspring's Phlda2 gene dosage may influence the quality of care provided by the mother. Here, we show that wild-type (WT) female mice exposed to offspring with three different doses of the maternally expressed Phlda2 gene-two active alleles, one active allele (the extant state), and loss of function-show changes in the maternal hypothalamus and hippocampus during pregnancy, regions important for maternal-care behaviour. After birth, WT dams exposed in utero to offspring with the highest Phlda2 dose exhibit decreased nursing and grooming of pups and increased focus on nest building. Conversely, 'paternalised' dams, exposed to the lowest Phlda2 dose, showed increased nurturing of their pups, increased self-directed behaviour, and a decreased focus on nest building, behaviour that was robustly maintained in the absence of genetically modified pups. This work raises the intriguing possibility that imprinting of Phlda2 contributed to increased maternal care during the evolution of mammals.
Collapse
|
65
|
Pegoraro M, Marshall H, Lonsdale ZN, Mallon EB. Do social insects support Haig's kin theory for the evolution of genomic imprinting? Epigenetics 2018; 12:725-742. [PMID: 28703654 PMCID: PMC5739101 DOI: 10.1080/15592294.2017.1348445] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although numerous imprinted genes have been described in several lineages, the phenomenon of genomic imprinting presents a peculiar evolutionary problem. Several hypotheses have been proposed to explain gene imprinting, the most supported being Haig's kinship theory. This theory explains the observed pattern of imprinting and the resulting phenotypes as a competition for resources between related individuals, but despite its relevance it has not been independently tested. Haig's theory predicts that gene imprinting should be present in eusocial insects in many social scenarios. These lineages are therefore ideal for testing both the theory's predictions and the mechanism of gene imprinting. Here we review the behavioral evidence of genomic imprinting in eusocial insects, the evidence of a mechanism for genomic imprinting and finally we evaluate recent results showing parent of origin allele specific expression in honeybees in the light of Haig's theory.
Collapse
Affiliation(s)
- Mirko Pegoraro
- a Department of Genetics and Genome Biology , University of Leicester , UK
| | - Hollie Marshall
- a Department of Genetics and Genome Biology , University of Leicester , UK
| | - Zoë N Lonsdale
- a Department of Genetics and Genome Biology , University of Leicester , UK
| | - Eamonn B Mallon
- a Department of Genetics and Genome Biology , University of Leicester , UK
| |
Collapse
|
66
|
The sperm factor: paternal impact beyond genes. Heredity (Edinb) 2018; 121:239-247. [PMID: 29959427 DOI: 10.1038/s41437-018-0111-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 06/12/2018] [Accepted: 06/16/2018] [Indexed: 12/20/2022] Open
Abstract
The fact that sperm carry more than the paternal DNA has only been discovered just over a decade ago. With this discovery, the idea that the paternal condition may have direct implications for the fitness of the offspring had to be revisited. While this idea is still highly debated, empirical evidence for paternal effects is accumulating. Male condition not only affects male fertility but also offspring early development and performance later in life. Several factors have been identified as possible carriers of non-genetic information, but we still know little about their origin and function and even less about their causation. I consider four possible non-mutually exclusive adaptive and non-adaptive explanations for the existence of paternal effects in an evolutionary context. In addition, I provide a brief overview of the main non-genetic components found in sperm including DNA methylation, chromatin modifications, RNAs and proteins. I discuss their putative functions and present currently available examples for their role in transferring non-genetic information from the father to the offspring. Finally, I identify some of the most important open questions and present possible future research avenues.
Collapse
|
67
|
Mokkonen M, Koskela E, Procyshyn T, Crespi B. Socio-reproductive Conflicts and the Father's Curse Dilemma. Am Nat 2018; 192:250-262. [PMID: 30016171 DOI: 10.1086/698216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Evolutionary conflicts between males and females can manifest over sexually antagonistic interactions at loci or over sexually antagonistic interests within a locus. The latter form of conflict, intralocus sexual conflict, arises from sexually antagonistic selection and constrains the fitness of individuals through a phenotypic compromise. These conflicts, and socio-reproductive interactions in general, are commonly mediated by hormones, and thus predictive insights can be gained from studying their mediating effects. Here, we integrate several lines of evidence to describe a novel, hormonally mediated reproductive dilemma that we call the father's curse, which results from an intralocus conflict between mating and parental efforts. Essentially, a genetic locus exerts pleiotropic and antagonistic effects on the mating effort of one individual and the parental effort of a related individual who is the primary provider of parental care. We outline the criteria for operation of the father's curse dilemma, provide evidence of the phenomenon, and discuss the predictions and outcomes arising from its dynamics. By integrating the effects of hormones into socio-reproductive conflicts and socio-reproductive effort, clearer links between genotypes, phenotypes, and fitness can be established.
Collapse
|
68
|
Piórkowska K, Żukowski K, Ropka-Molik K, Tyra M. Detection of genetic variants between different Polish Landrace and Puławska pigs by means of RNA-seq analysis. Anim Genet 2018; 49:215-225. [PMID: 29635698 DOI: 10.1111/age.12654] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2018] [Indexed: 02/06/2023]
Abstract
Variant calling analysis based on RNA sequencing data provides information about gene variants. RNA-seq is cheaper and faster than is DNA sequencing. However, it requires individual hard filters during data processing due to post-transcriptional modifications such as splicing and RNA editing. In the present study, RNA-seq transcriptome data on two Polish pig breeds (Puławska, PUL, n = 8, and Polish Landrace, PL, n = 8) were included. The pig breeds are significantly different with regard to meat qualities such as texture, water exudation, growth traits and fat content in carcasses. A total of 2451 significant mutations were identified by a chi square tests, and functional analysis was carried out using Panther, KEGG and Kobas. Interesting missense gene variants and mutations located in regulatory regions were found in a few genes related to fatty acid metabolism and lipid storage such as ACSL5, ALDH3A2, FADS1, SCD, PLA2G12A and ATGL. A validation of mutational influences on pig traits was performed for ALDH3A2, ATGL, PLA2G12A and MYOM1 variants using association analysis including 215 pigs of the PL and PUL breeds. The ALDH3A2ENSSSCT00000019636.2:c.470T>C polymorphism was found to affect the weight of the ham and loin eye area. In turn, an ENSSSCT00000004091.2:c.2836G>A MYOM1 mutation, which could be implicated in myofibrillar network organisation, had an effect on meatiness and loin texture parameters. The study aimed to estimate the usefulness of RNA-seq results for a purpose other than differentially expressed gene analysis. The analysis performed indicated interesting gene variants that could be used in the future as markers during selection.
Collapse
Affiliation(s)
- K Piórkowska
- Department of Animal Molecular Biology, National Research Institute of Animal Production, 32-083, Balice, Poland
| | - K Żukowski
- Department of Cattle Breeding, National Research Institute of Animal Production, 32-083, Balice, Poland
| | - K Ropka-Molik
- Department of Animal Molecular Biology, National Research Institute of Animal Production, 32-083, Balice, Poland
| | - M Tyra
- Department of Pig Breeding, National Research Institute of Animal Production, 32-083, Balice, Poland
| |
Collapse
|
69
|
Povilus RA, Diggle PK, Friedman WE. Evidence for parent-of-origin effects and interparental conflict in seeds of an ancient flowering plant lineage. Proc Biol Sci 2018; 285:20172491. [PMID: 29436495 PMCID: PMC5829200 DOI: 10.1098/rspb.2017.2491] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/19/2018] [Indexed: 01/09/2023] Open
Abstract
Theoretical and empirical studies have long connected the evolutionary innovation of endosperm, a genetically biparental product of a double fertilization process unique to flowering plants (angiosperms), to conflicting parental interests over offspring provisioning. Yet, none of these studies examined interparental conflict in representatives of any of the most ancient angiosperm lineages. We performed reciprocal interploidy crosses in the water lily Nymphaea thermarum, a member of one of the most ancient angiosperm lineages, Nymphaeales. We find that an excess of paternal genomes is associated with an increase in endosperm growth. By contrast, maternal ploidy negatively influences development or growth of all seed components, regardless of paternal genome dosage. Most relevant to the conflict over distribution of maternal resources, however, is that growth of the perisperm (seed storage tissue derived from the maternal sporophyte, found in all Nymphaeales) is unaffected by paternal genome dosage-ensuring maternal control of maternal resources. We conclude that the evolutionary transfer of embryo-nourishing function from a genetically biparental endosperm to a genetically maternal perisperm can be viewed as an effective maternal strategy to recapture control of resource distribution among progeny, and thus that interparental conflict has influenced the evolution of seed development in this ancient angiosperm lineage.
Collapse
Affiliation(s)
- Rebecca A Povilus
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Pamela K Diggle
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - William E Friedman
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
- Arnold Arboretum of Harvard University, 1300 Centre Street, Boston, MA 02131, USA
| |
Collapse
|
70
|
Liu H, Shang X, Zhu H. LncRNA/DNA binding analysis reveals losses and gains and lineage specificity of genomic imprinting in mammals. Bioinformatics 2018; 33:1431-1436. [PMID: 28052924 DOI: 10.1093/bioinformatics/btw818] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/20/2016] [Indexed: 11/14/2022] Open
Abstract
Motivation Genomic imprinting is regulated by lncRNAs and is important for embryogenesis, physiology and behaviour in mammals. Aberrant imprinting causes diseases and disorders. Experimental studies have examined genomic imprinting primarily in humans and mice, thus leaving some fundamental issues poorly addressed. The cost of experimentally examining imprinted genes in many tissues in diverse species makes computational analysis of lncRNAs' DNA binding sites valuable. Results We performed lncRNA/DNA binding analysis in imprinting clusters from multiple mammalian clades and discovered the following: (i) lncRNAs and imprinting sites show significant losses and gains and distinct lineage-specificity; (ii) binding of lncRNAs to promoters of imprinted genes may occur widely throughout the genome; (iii) a considerable number of imprinting sites occur in only evolutionarily more derived species; and (iv) multiple lncRNAs may bind to the same imprinting sites, and some lncRNAs have multiple DNA binding motifs. These results suggest that the occurrence of abundant lncRNAs in mammalian genomes makes genomic imprinting a mechanism of adaptive evolution at the epigenome level. Availability and Implementation The data and program are available at the database LongMan at lncRNA.smu.edu.cn. Contact zhuhao@smu.edu.cn. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Haihua Liu
- Bioinformatics Section, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaoxiao Shang
- Bioinformatics Section, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hao Zhu
- Bioinformatics Section, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
71
|
Christians JK, Leavey K, Cox BJ. Associations between imprinted gene expression in the placenta, human fetal growth and preeclampsia. Biol Lett 2018; 13:rsbl.2017.0643. [PMID: 29187609 DOI: 10.1098/rsbl.2017.0643] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 11/01/2017] [Indexed: 01/06/2023] Open
Abstract
Genomic imprinting is essential for normal placental and fetal growth. One theory to explain the evolution of imprinting is the kinship theory (KT), which predicts that genes that are paternally expressed will promote fetal growth, whereas maternally expressed genes will suppress growth. We investigated the expression of imprinted genes using microarray measurements of expression in term placentae. Correlations between birthweight and the expression levels of imprinted genes were more significant than for non-imprinted genes, but did not tend to be positive for paternally expressed genes and negative for maternally expressed genes. Imprinted genes were more dysregulated in preeclampsia (a disorder associated with placental insufficiency) than randomly selected genes, and we observed an excess of patterns of dysregulation in preeclampsia that would be expected to reduce nutrient allocation to the fetus, given the predictions of the KT. However, we found no evidence of coordinated regulation among these imprinted genes. A few imprinted genes have previously been shown to be associated with fetal growth and preeclampsia, and our results indicate that this is true for a broader set of imprinted genes.
Collapse
Affiliation(s)
- Julian K Christians
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Katherine Leavey
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Brian J Cox
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
72
|
Laurin C, Cuellar-Partida G, Hemani G, Smith GD, Yang J, Evans DM. Partitioning Phenotypic Variance Due to Parent-of-Origin Effects Using Genomic Relatedness Matrices. Behav Genet 2018; 48:67-79. [PMID: 29098496 PMCID: PMC5752821 DOI: 10.1007/s10519-017-9880-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/21/2017] [Indexed: 12/28/2022]
Abstract
We propose a new method, G-REMLadp, to estimate the phenotypic variance explained by parent-of-origin effects (POEs) across the genome. Our method uses restricted maximum likelihood analysis of genome-wide genetic relatedness matrices based on individuals' phased genotypes. Genome-wide SNP data from parent child duos or trios is required to obtain relatedness matrices indexing the parental origin of offspring alleles, as well as offspring phenotype data to partition the trait variation into variance components. To calibrate the power of G-REMLadp to detect non-null POEs when they are present, we provide an analytic approximation derived from Haseman-Elston regression. We also used simulated data to quantify the power and Type I Error rates of G-REMLadp, as well as the sensitivity of its variance component estimates to violations of underlying assumptions. We subsequently applied G-REMLadp to 36 phenotypes in a sample of individuals from the Avon Longitudinal Study of Parents and Children (ALSPAC). We found that the method does not seem to be inherently biased in estimating variance due to POEs, and that substantial correlation between parental genotypes is necessary to generate biased estimates. Our empirical results, power calculations and simulations indicate that sample sizes over 10000 unrelated parent-offspring duos will be necessary to detect POEs explaining < 10% of the variance with moderate power. We conclude that POEs tagged by our genetic relationship matrices are unlikely to explain large proportions of the phenotypic variance (i.e. > 15%) for the 36 traits that we have examined.
Collapse
Affiliation(s)
- Charles Laurin
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Gabriel Cuellar-Partida
- Faculty of Medicine, Translational Research Institute, The University of Queensland Diamantina Institute, Brisbane, QLD, Australia
| | - Gibran Hemani
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - George Davey Smith
- Faculty of Medicine, Translational Research Institute, The University of Queensland Diamantina Institute, Brisbane, QLD, Australia
| | - Jian Yang
- Institute for Molecular Bioscience and Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - David M Evans
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.
- Faculty of Medicine, Translational Research Institute, The University of Queensland Diamantina Institute, Brisbane, QLD, Australia.
| |
Collapse
|
73
|
Xiong W, Wang C, Zhang X, Yang Q, Shao R, Lai J, Du C. Highly interwoven communities of a gene regulatory network unveil topologically important genes for maize seed development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:1143-1156. [PMID: 29072883 DOI: 10.1111/tpj.13750] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/10/2017] [Accepted: 10/17/2017] [Indexed: 06/07/2023]
Abstract
The complex interactions between transcription factors (TFs) and their target genes in a spatially and temporally specific manner are crucial to all cellular processes. Reconstruction of gene regulatory networks (GRNs) from gene expression profiles can help to decipher TF-gene regulations in a variety of contexts; however, the inevitable prediction errors of GRNs hinder optimal data mining of RNA-Seq transcriptome profiles. Here we perform an integrative study of Zea mays (maize) seed development in order to identify key genes in a complex developmental process. First, we reverse engineered a GRN from 78 maize seed transcriptome profiles. Then, we studied collective gene interaction patterns and uncovered highly interwoven network communities as the building blocks of the GRN. One community, composed of mostly unknown genes interacting with opaque2, brittle endosperm1 and shrunken2, contributes to seed phenotypes. Another community, composed mostly of genes expressed in the basal endosperm transfer layer, is responsible for nutrient transport. We further integrated our inferred GRN with gene expression patterns in different seed compartments and at various developmental stages and pathways. The integration facilitated a biological interpretation of the GRN. Our yeast one-hybrid assays verified six out of eight TF-promoter bindings in the reconstructed GRN. This study identified topologically important genes in interwoven network communities that may be crucial to maize seed development.
Collapse
Affiliation(s)
- Wenwei Xiong
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
- Department of Biology, Montclair State University, Montclair, NJ, 07043, USA
| | - Chunlei Wang
- National Maize Improvement Center, China Agricultural University, Beijing, 100083, China
| | - Xiangbo Zhang
- National Maize Improvement Center, China Agricultural University, Beijing, 100083, China
| | - Qinghua Yang
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ruixin Shao
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jinsheng Lai
- National Maize Improvement Center, China Agricultural University, Beijing, 100083, China
| | - Chunguang Du
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
- Department of Biology, Montclair State University, Montclair, NJ, 07043, USA
| |
Collapse
|
74
|
Bruechle NO, Steuernagel P, Zerres K, Kurth I, Eggermann T, Knopp C. Uniparental disomy as an unexpected cause of Meckel-Gruber syndrome: report of a case. Pediatr Nephrol 2017. [PMID: 28620746 DOI: 10.1007/s00467-017-3710-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Meckel-Gruber syndrome (MKS, OMIM #607361) is a rare pre- or perinatal lethal autosomal recessive ciliopathy caused by mutations in at least 12 known genes. It has a clinical and genetic overlap with other viable ciliopathies, especially Joubert syndrome and Joubert syndrome-related disorders. MKS is characterized by multicystic kidney dysplasia, central nervous system malformations (usually occipital encephalocele), ductal plate malformation of the liver, and postaxial polydactyly. CASE DIAGNOSIS We identified a homozygous mutation in TMEM67 (MKS3) in a fetus affected by MKS; however, only the mother was a carrier of the respective mutation. Genotyping with polymorphic microsatellite markers and single nucleotide polymorphism (SNP) array revealed a maternal uniparental disomy (UPD) of the entire chromosome 8 (upd(8)mat), harboring TMEM67. CONCLUSIONS This is the first reported case of UPD as a cause of MKS. The possible underlying mechanisms for uniparental disomy (UPD) are reviewed. Even if rare, awareness of UPD and comprehensive work-up in the case of unexpected homozygosity for a recessive mutation is essential for accurate genetic counseling and assessment of the risk of recurrence.
Collapse
Affiliation(s)
- Nadia Ortiz Bruechle
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.,Institute of Pathology, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Peter Steuernagel
- Institute of Human Genetics, Hospital Oldenburg, Rahel-Straus-Straße 10, 26133, Oldenburg, Germany
| | - Klaus Zerres
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Ingo Kurth
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Thomas Eggermann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Cordula Knopp
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| |
Collapse
|
75
|
Yuan J, Chen S, Jiao W, Wang L, Wang L, Ye W, Lu J, Hong D, You S, Cheng Z, Yang DL, Chen ZJ. Both maternally and paternally imprinted genes regulate seed development in rice. THE NEW PHYTOLOGIST 2017; 216:373-387. [PMID: 28295376 DOI: 10.1111/nph.14510] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/01/2017] [Indexed: 05/20/2023]
Abstract
Genetic imprinting refers to the unequal expression of paternal and maternal alleles of a gene in sexually reproducing organisms, including mammals and flowering plants. Although many imprinted genes have been identified in plants, the functions of these imprinted genes have remained largely uninvestigated. We report genome-wide analysis of gene expression, DNA methylation and small RNAs in the rice endosperm and functional tests of five imprinted genes during seed development using Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated gene9 (CRISPR/Cas9) gene editing technology. In the rice endosperm, we identified 162 maternally expressed genes (MEGs) and 95 paternally expressed genes (PEGs), which were associated with miniature inverted-repeat transposable elements, imprinted differentially methylated loci and some 21-22 small interfering RNAs (siRNAs) and long noncoding RNAs (lncRNAs). Remarkably, one-third of MEGs and nearly one-half of PEGs were associated with grain yield quantitative trait loci. Most MEGs and some PEGs were expressed specifically in the endosperm. Disruption of two MEGs increased the amount of small starch granules and reduced grain and embryo size, whereas mutation of three PEGs reduced starch content and seed fertility. Our data indicate that both MEGs and PEGs in rice regulate nutrient metabolism and endosperm development, which optimize seed development and offspring fitness to facilitate parental-offspring coadaptation. These imprinted genes and mechanisms could be used to improve the grain yield of rice and other cereal crops.
Collapse
Affiliation(s)
- Jingya Yuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Sushu Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Wu Jiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Longfei Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Limei Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Wenxue Ye
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Jie Lu
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Delin Hong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Siliang You
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Zhukuan Cheng
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Beijing, 100101, China
| | - Dong-Lei Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Z Jeffrey Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
76
|
Abstract
The Modern Evolutionary Synthesis (MS) forged in the mid-twentieth century was built on a notion of heredity that excluded soft inheritance, the inheritance of the effects of developmental modifications. However, the discovery of molecular mechanisms that generate random and developmentally induced epigenetic variations is leading to a broadening of the notion of biological heredity that has consequences for ideas about evolution. After presenting some old challenges to the MS that were raised, among others, by Karl Popper, I discuss recent research on epigenetic inheritance, which provides experimental and theoretical support for these challenges. There is now good evidence that epigenetic inheritance is ubiquitous and is involved in adaptive evolution and macroevolution. I argue that the many evolutionary consequences of epigenetic inheritance open up new research areas and require the extension of the evolutionary synthesis beyond the current neo-Darwinian model.
Collapse
Affiliation(s)
- Eva Jablonka
- The Cohn Institute for the History and Philosophy of Science and Ideas, Tel-Aviv University, Tel-Aviv 69978, Israel
| |
Collapse
|
77
|
Abstract
The maize endosperm consists of three major compartmentalized cell types: the starchy endosperm (SE), the basal endosperm transfer cell layer (BETL), and the aleurone cell layer (AL). Differential genetic programs are activated in each cell type to construct functionally and structurally distinct cells. To compare gene expression patterns involved in maize endosperm cell differentiation, we isolated transcripts from cryo-dissected endosperm specimens enriched with BETL, AL, or SE at 8, 12, and 16 days after pollination (DAP). We performed transcriptome profiling of coding and long noncoding transcripts in the three cell types during differentiation and identified clusters of the transcripts exhibiting spatio-temporal specificities. Our analysis uncovered that the BETL at 12 DAP undergoes the most dynamic transcriptional regulation for both coding and long noncoding transcripts. In addition, our transcriptome analysis revealed spatio-temporal regulatory networks of transcription factors, imprinted genes, and loci marked with histone H3 trimethylated at lysine 27. Our study suggests that various regulatory mechanisms contribute to the genetic networks specific to the functions and structures of the cell types of the endosperm.
Collapse
|
78
|
Jiang H, Moreno-Romero J, Santos-González J, De Jaeger G, Gevaert K, Van De Slijke E, Köhler C. Ectopic application of the repressive histone modification H3K9me2 establishes post-zygotic reproductive isolation in Arabidopsis thaliana. Genes Dev 2017; 31:1272-1287. [PMID: 28743695 PMCID: PMC5558928 DOI: 10.1101/gad.299347.117] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/27/2017] [Indexed: 11/24/2022]
Abstract
Hybrid seed lethality as a consequence of interspecies or interploidy hybridizations is a major mechanism of reproductive isolation in plants. This mechanism is manifested in the endosperm, a dosage-sensitive tissue supporting embryo growth. Deregulated expression of imprinted genes such as ADMETOS (ADM) underpin the interploidy hybridization barrier in Arabidopsis thaliana; however, the mechanisms of their action remained unknown. In this study, we show that ADM interacts with the AT hook domain protein AHL10 and the SET domain-containing SU(VAR)3-9 homolog SUVH9 and ectopically recruits the heterochromatic mark H3K9me2 to AT-rich transposable elements (TEs), causing deregulated expression of neighboring genes. Several hybrid incompatibility genes identified in Drosophila encode for dosage-sensitive heterochromatin-interacting proteins, which has led to the suggestion that hybrid incompatibilities evolve as a consequence of interspecies divergence of selfish DNA elements and their regulation. Our data show that imbalance of dosage-sensitive chromatin regulators underpins the barrier to interploidy hybridization in Arabidopsis, suggesting that reproductive isolation as a consequence of epigenetic regulation of TEs is a conserved feature in animals and plants.
Collapse
Affiliation(s)
- Hua Jiang
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Linnean Center of Plant Biology, Uppsala 75007, Sweden
| | - Jordi Moreno-Romero
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Linnean Center of Plant Biology, Uppsala 75007, Sweden
| | - Juan Santos-González
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Linnean Center of Plant Biology, Uppsala 75007, Sweden
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Kris Gevaert
- Department of Biochemistry, Ghent University, Ghent 9052, Belgium
- VIB Center for Medical Biotechnology, Ghent 9052, Belgium
| | - Eveline Van De Slijke
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Linnean Center of Plant Biology, Uppsala 75007, Sweden
| |
Collapse
|
79
|
O'Brien EK, Wolf JB. The coadaptation theory for genomic imprinting. Evol Lett 2017; 1:49-59. [PMID: 30283638 PMCID: PMC6121825 DOI: 10.1002/evl3.5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 02/23/2017] [Accepted: 03/21/2017] [Indexed: 12/14/2022] Open
Abstract
Imprinted genes are peculiar in that expression of the two copies differs depending on whether the copy was maternally or paternally inherited. The discovery of this striking pattern of gene expression inspired myriad evolutionary theories, the most successful of which identify scenarios that create an asymmetry between the maternally and paternally inherited gene copies that favors silencing of one of the copies. Most notably, imprinting can evolve when gene dosage affects kin interactions (typically involving conflict) or when silencing enhances coadaptation by coordinating traits expressed by interacting kin. Although we have a well-established theory for the former process (the "Kinship Theory"), the coadaptation process has only been explored for the specific case of interactions between mothers and offspring. Here, we fill this critical gap in our understanding by developing a general "Coadaptation Theory" that explains how imprinting can evolve to coordinate interactions between all types of relatives. Using a simple model in which fitness of an individual is determined by an interaction between its own phenotype (and hence genotype) and that of its social partner(s), we find that when the relatedness of interactants differs through their maternally versus paternally inherited gene copies, then selection favors expression of the allele through which relatedness is higher. The predictions of this Coadaptation Theory potentially apply whenever a gene underlies traits that mediate the outcome of conspecific interactions, regardless of their mechanism or the type of organism, and therefore provide a potential explanation for enigmatic patterns of imprinting, including those underlying adult traits. By providing simple testable predictions that often directly contrast with those derived from alternative theories, our model should play an important role in consolidating our understanding of the evolution of imprinting across genes and species, which will ultimately provide crucial insights into imprinted gene function and dysfunction.
Collapse
Affiliation(s)
- Eleanor K. O'Brien
- Milner Centre for Evolution and Department of Biology & BiochemistryUniversity of BathClaverton DownBathBA2 7AYUnited Kingdom
| | - Jason B. Wolf
- Milner Centre for Evolution and Department of Biology & BiochemistryUniversity of BathClaverton DownBathBA2 7AYUnited Kingdom
| |
Collapse
|
80
|
Patten MM, Cowley M, Oakey RJ, Feil R. Regulatory links between imprinted genes: evolutionary predictions and consequences. Proc Biol Sci 2017; 283:rspb.2015.2760. [PMID: 26842569 PMCID: PMC4760173 DOI: 10.1098/rspb.2015.2760] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Genomic imprinting is essential for development and growth and plays diverse roles in physiology and behaviour. Imprinted genes have traditionally been studied in isolation or in clusters with respect to cis-acting modes of gene regulation, both from a mechanistic and evolutionary point of view. Recent studies in mammals, however, reveal that imprinted genes are often co-regulated and are part of a gene network involved in the control of cellular proliferation and differentiation. Moreover, a subset of imprinted genes acts in trans on the expression of other imprinted genes. Numerous studies have modulated levels of imprinted gene expression to explore phenotypic and gene regulatory consequences. Increasingly, the applied genome-wide approaches highlight how perturbation of one imprinted gene may affect other maternally or paternally expressed genes. Here, we discuss these novel findings and consider evolutionary theories that offer a rationale for such intricate interactions among imprinted genes. An evolutionary view of these trans-regulatory effects provides a novel interpretation of the logic of gene networks within species and has implications for the origin of reproductive isolation between species.
Collapse
Affiliation(s)
- Manus M Patten
- Department of Biology, Georgetown University, 37th and O Streets NW, Washington, DC 20057, USA
| | - Michael Cowley
- Center for Human Health and the Environment, Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Rebecca J Oakey
- Department of Medical and Molecular Genetics, King's College London, London SE1 9RT, UK
| | - Robert Feil
- Centre National de Recherche Scientifique (CNRS), Institute of Molecular Genetics (IGMM), 1919 route de Mende, Montpellier 34293, France University of Montpellier, 163 rue Auguste Broussonnet, Montpellier 34090, France Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
81
|
Gehring M, Satyaki PR. Endosperm and Imprinting, Inextricably Linked. PLANT PHYSIOLOGY 2017; 173:143-154. [PMID: 27895206 PMCID: PMC5210735 DOI: 10.1104/pp.16.01353] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/22/2016] [Indexed: 05/21/2023]
Abstract
Recent developments advance our understanding of imprinted gene expression in plants.
Collapse
Affiliation(s)
- Mary Gehring
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142 (M.G., P.R.S.); and
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (M.G.)
| | - P R Satyaki
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142 (M.G., P.R.S.); and
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (M.G.)
| |
Collapse
|
82
|
Klosinska M, Picard CL, Gehring M. Conserved imprinting associated with unique epigenetic signatures in the Arabidopsis genus. NATURE PLANTS 2016; 2:16145. [PMID: 27643534 PMCID: PMC5367468 DOI: 10.1038/nplants.2016.145] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/18/2016] [Indexed: 05/21/2023]
Abstract
In plants, imprinted gene expression occurs in endosperm seed tissue and is sometimes associated with differential DNA methylation between maternal and paternal alleles(1). Imprinting is theorized to have been selected for because of conflict between parental genomes in offspring(2), but most studies of imprinting have been conducted in Arabidopsis thaliana, an inbred primarily self-fertilizing species that should have limited parental conflict. We examined embryo and endosperm allele-specific expression and DNA methylation genome-wide in the wild outcrossing species Arabidopsis lyrata. Here we show that the majority of A. lyrata imprinted genes also exhibit parentally biased expression in A. thaliana, suggesting that there is evolutionary conservation in gene imprinting. Surprisingly, we discovered substantial interspecies differences in methylation features associated with paternally expressed imprinted genes (PEGs). Unlike in A. thaliana, the maternal allele of many A. lyrata PEGs was hypermethylated in the CHG context. Increased maternal allele CHG methylation was associated with increased expression bias in favour of the paternal allele. We propose that CHG methylation maintains or reinforces repression of maternal alleles of PEGs. These data suggest that the genes subject to imprinting are largely conserved, but there is flexibility in the epigenetic mechanisms employed between closely related species to maintain monoallelic expression. This supports the idea that imprinting of specific genes is a functional phenomenon, and not simply a byproduct of seed epigenomic reprogramming.
Collapse
Affiliation(s)
- Maja Klosinska
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | - Colette L Picard
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
- Computational and Systems Biology Graduate Program, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Mary Gehring
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
83
|
Vielle A, Callemeyn-Torre N, Gimond C, Poullet N, Gray JC, Cutter AD, Braendle C. Convergent evolution of sperm gigantism and the developmental origins of sperm size variability in Caenorhabditis nematodes. Evolution 2016; 70:2485-2503. [PMID: 27565121 DOI: 10.1111/evo.13043] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/08/2016] [Accepted: 08/08/2016] [Indexed: 01/01/2023]
Abstract
Sperm cells provide essential, if usually diminutive, ingredients to successful sexual reproduction. Despite this conserved function, sperm competition and coevolution with female traits can drive spectacular morphological change in these cells. Here, we characterize four repeated instances of convergent evolution of sperm gigantism in Caenorhabditis nematodes using phylogenetic comparative methods on 26 species. Species at the extreme end of the 50-fold range of sperm-cell volumes across the genus have sperm capable of comprising up to 5% of egg-cell volume, representing severe attenuation of the magnitude of anisogamy. Furthermore, we uncover significant differences in mean and variance of sperm size among genotypes, between sexes, and within and between individuals of identical genotypes. We demonstrate that the developmental basis of sperm size variation, both within and between species, becomes established during an early stage of sperm development at the formation of primary spermatocytes, while subsequent meiotic divisions contribute little further sperm size variability. These findings provide first insights into the developmental determinants of inter- and intraspecific sperm size differences in Caenorhabditis. We hypothesize that life history and ecological differences among species favored the evolution of alternative sperm competition strategies toward either many smaller sperm or fewer larger sperm.
Collapse
Affiliation(s)
- Anne Vielle
- University Nice Sophia Antipolis, CNRS, Inserm, IBV, Parc Valrose, 06100, Nice, France
| | | | - Clotilde Gimond
- University Nice Sophia Antipolis, CNRS, Inserm, IBV, Parc Valrose, 06100, Nice, France
| | - Nausicaa Poullet
- University Nice Sophia Antipolis, CNRS, Inserm, IBV, Parc Valrose, 06100, Nice, France
| | - Jeremy C Gray
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Christian Braendle
- University Nice Sophia Antipolis, CNRS, Inserm, IBV, Parc Valrose, 06100, Nice, France.
| |
Collapse
|
84
|
Wang X, Werren JH, Clark AG. Allele-Specific Transcriptome and Methylome Analysis Reveals Stable Inheritance and Cis-Regulation of DNA Methylation in Nasonia. PLoS Biol 2016; 14:e1002500. [PMID: 27380029 PMCID: PMC4933354 DOI: 10.1371/journal.pbio.1002500] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 06/03/2016] [Indexed: 11/18/2022] Open
Abstract
Gene expression divergence between closely related species could be attributed to both cis- and trans- DNA sequence changes during evolution, but it is unclear how the evolutionary dynamics of epigenetic marks are regulated. In eutherian mammals, biparental DNA methylation marks are erased and reset during gametogenesis, resulting in paternal or maternal imprints, which lead to genomic imprinting. Whether DNA methylation reprogramming exists in insects is not known. Wasps of the genus Nasonia are non-social parasitoids that are emerging as a model for studies of epigenetic processes in insects. In this study, we quantified allele-specific expression and methylation genome-wide in Nasonia vitripennis and Nasonia giraulti and their reciprocal F1 hybrids. No parent-of-origin effect in allelic expression was found for >8,000 covered genes, suggesting a lack of genomic imprinting in adult Nasonia. As we expected, both significant cis- and trans- effects are responsible for the expression divergence between N. vitripennis and N. giraulti. Surprisingly, all 178 differentially methylated genes are also differentially methylated between the two alleles in F1 hybrid offspring, recapitulating the parental methylation status with nearly 100% fidelity, indicating the presence of strong cis-elements driving the target of gene body methylation. In addition, we discovered that total and allele-specific expression are positively correlated with allele-specific methylation in a subset of the differentially methylated genes. The 100% cis-regulation in F1 hybrids suggests the methylation machinery is conserved and DNA methylation is targeted by cis features in Nasonia. The lack of genomic imprinting and parent-of-origin differentially methylated regions in Nasonia, together with the stable inheritance of methylation status between generations, suggests either a cis-regulatory motif for methylation at the DNA level or highly stable inheritance of an epigenetic signal in Nasonia. RNA-sequencing and whole-genome bisulfite sequencing in the hybrid offspring of two Nasonia parasitoid wasp species revealed strong cis-regulation of methylation and allele-specific expression. No gene was found to display genomic imprinting. The relationship between methylation of genomic DNA and expression of the genes that it encodes—and how this relationship changes during evolution—has been widely studied in mammals, but remains less well understood for insects. Here we analyze the expressed mRNA transcripts and genomic DNA methylation of the hybrid offspring of a pair of Nasonia parasitoid wasp species, producing a wealth of information about the regulation of gene expression. We find that variation in DNA sequence impacts expression on the same strand (called “cis-regulation”), and that cytosine methylation state is also associated in cis with the regulatory consequences of this base alteration. We show that these wasp species lack differential expression dependent on parent-of-origin (called “genomic imprinting”), and that in the hybrids the alleles retain the methylation status of the parental species in a strong cis-regulated fashion. Transcript abundances were also largely driven in a cis-regulated manner, consistent with a correlation between methylation status and expression levels. Despite the many differences between Nasonia and mammals in the impact of genomic DNA methylation, in both groups the use of methylated cytosine has been co-opted in ways that help tune gene expression.
Collapse
Affiliation(s)
- Xu Wang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- Cornell Center for Comparative and Population Genomics, Cornell University, Ithaca, New York, United States of America
- * E-mail: (XW); (JHW); (AGC)
| | - John H. Werren
- Department of Biology, University of Rochester, Rochester, New York, United States of America
- * E-mail: (XW); (JHW); (AGC)
| | - Andrew G. Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- Cornell Center for Comparative and Population Genomics, Cornell University, Ithaca, New York, United States of America
- * E-mail: (XW); (JHW); (AGC)
| |
Collapse
|
85
|
Perez JD, Rubinstein ND, Dulac C. New Perspectives on Genomic Imprinting, an Essential and Multifaceted Mode of Epigenetic Control in the Developing and Adult Brain. Annu Rev Neurosci 2016; 39:347-84. [PMID: 27145912 DOI: 10.1146/annurev-neuro-061010-113708] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mammalian evolution entailed multiple innovations in gene regulation, including the emergence of genomic imprinting, an epigenetic regulation leading to the preferential expression of a gene from its maternal or paternal allele. Genomic imprinting is highly prevalent in the brain, yet, until recently, its central roles in neural processes have not been fully appreciated. Here, we provide a comprehensive survey of adult and developmental brain functions influenced by imprinted genes, from neural development and wiring to synaptic function and plasticity, energy balance, social behaviors, emotions, and cognition. We further review the widespread identification of parental biases alongside monoallelic expression in brain tissues, discuss their potential roles in dosage regulation of key neural pathways, and suggest possible mechanisms underlying the dynamic regulation of imprinting in the brain. This review should help provide a better understanding of the significance of genomic imprinting in the normal and pathological brain of mammals including humans.
Collapse
Affiliation(s)
- Julio D Perez
- Department of Molecular and Cellular Biology, Harvard University, Howard Hughes Medical Institute, Cambridge, Massachusetts 02138;
| | - Nimrod D Rubinstein
- Department of Molecular and Cellular Biology, Harvard University, Howard Hughes Medical Institute, Cambridge, Massachusetts 02138;
| | - Catherine Dulac
- Department of Molecular and Cellular Biology, Harvard University, Howard Hughes Medical Institute, Cambridge, Massachusetts 02138;
| |
Collapse
|
86
|
Abstract
Genomic imprinting, an inherently epigenetic phenomenon defined by parent of origin-dependent gene expression, is observed in mammals and flowering plants. Genome-scale surveys of imprinted expression and the underlying differential epigenetic marks have led to the discovery of hundreds of imprinted plant genes and confirmed DNA and histone methylation as key regulators of plant imprinting. However, the biological roles of the vast majority of imprinted plant genes are unknown, and the evolutionary forces shaping plant imprinting remain rather opaque. Here, we review the mechanisms of plant genomic imprinting and discuss theories of imprinting evolution and biological significance in light of recent findings.
Collapse
Affiliation(s)
- Jessica A Rodrigues
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Daniel Zilberman
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
87
|
Wilkins JF, Úbeda F, Van Cleve J. The evolving landscape of imprinted genes in humans and mice: Conflict among alleles, genes, tissues, and kin. Bioessays 2016; 38:482-9. [PMID: 26990753 DOI: 10.1002/bies.201500198] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Three recent genome-wide studies in mice and humans have produced the most definitive map to date of genomic imprinting (gene expression that depends on parental origin) by incorporating multiple tissue types and developmental stages. Here, we explore the results of these studies in light of the kinship theory of genomic imprinting, which predicts that imprinting evolves due to differential genetic relatedness between maternal and paternal relatives. The studies produce a list of imprinted genes with around 120-180 in mice and ~100 in humans. The studies agree on broad patterns across mice and humans including the complex patterns of imprinted expression at loci like Igf2 and Grb10. We discuss how the kinship theory provides a powerful framework for hypotheses that can explain these patterns. Finally, since imprinting is rare in the genome despite predictions from the kinship theory that it might be common, we discuss evolutionary factors that could favor biallelic expression.
Collapse
Affiliation(s)
| | - Francisco Úbeda
- School of Biological Sciences, Royal Holloway, University of London, Egham, UK
| | - Jeremy Van Cleve
- Department of Biology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
88
|
Furness AI, Morrison KR, Orr TJ, Arendt JD, Reznick DN. Reproductive mode and the shifting arenas of evolutionary conflict. Ann N Y Acad Sci 2015; 1360:75-100. [PMID: 26284738 DOI: 10.1111/nyas.12835] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/21/2015] [Accepted: 06/05/2015] [Indexed: 12/11/2022]
Abstract
In sexually reproducing organisms, the genetic interests of individuals are not perfectly aligned. Conflicts among family members are prevalent since interactions involve the transfer of limited resources between interdependent players. Intrafamilial conflict has traditionally been considered along three major axes: between the sexes, between parents and offspring, and between siblings. In these interactions, conflict is expected over traits in which the resulting phenotypic value is determined by multiple family members who have only partially overlapping fitness optima. We focus on four major categories of animal reproductive mode (broadcast spawning, egg laying, live bearing, and live bearing with matrotrophy) and identify the shared phenotypes or traits over which conflict is expected, and then review the empirical literature for evidence of their occurrence. Major transitions among reproductive mode, such as a shift from external to internal fertilization, an increase in egg-retention time, modifications of embryos and mothers for nutrient transfer, the evolution of postnatal parental care, and increased interaction with the kin network, mark key shifts that both change and expand the arenas in which conflict is played out.
Collapse
Affiliation(s)
- Andrew I Furness
- Department of Biology, University of California, Riverside, California.,Department of Ecology and Evolutionary Biology, University of California, Irvine, California
| | - Keenan R Morrison
- Department of Biology, University of California, Riverside, California
| | - Teri J Orr
- Department of Biology, University of California, Riverside, California.,Department of Biology, University of Massachusetts, Amherst, Massachusetts
| | - Jeff D Arendt
- Department of Biology, University of California, Riverside, California
| | - David N Reznick
- Department of Biology, University of California, Riverside, California
| |
Collapse
|
89
|
Cook N, Pannebakker BA, Tauber E, Shuker DM. DNA Methylation and Sex Allocation in the Parasitoid Wasp Nasonia vitripennis. Am Nat 2015; 186:513-8. [PMID: 26655574 DOI: 10.1086/682950] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The role of epigenetics in the control and evolution of behavior is being increasingly recognized. Here we test whether DNA methylation influences patterns of adaptive sex allocation in the parasitoid wasp Nasonia vitripennis. Female N. vitripennis allocate offspring sex broadly in line with local mate competition (LMC) theory. However, recent theory has highlighted how genomic conflict may influence sex allocation under LMC, conflict that requires parent-of-origin information to be retained by alleles through some form of epigenetic signal. We manipulated whole-genome DNA methylation in N. vitripennis females using the hypomethylating agent 5-aza-2'-deoxycytidine. Across two replicated experiments, we show that disruption of DNA methylation does not ablate the facultative sex allocation response of females, as sex ratios still vary with cofoundress number as in the classical theory. However, sex ratios are generally shifted upward when DNA methylation is disrupted. Our data are consistent with predictions from genomic conflict over sex allocation theory and suggest that sex ratios may be closer to the optimum for maternally inherited alleles.
Collapse
Affiliation(s)
- Nicola Cook
- School of Biology, University of St. Andrews, St. Andrews, Fife, United Kingdom
| | | | | | | |
Collapse
|
90
|
Andergassen D, Dotter CP, Kulinski TM, Guenzl PM, Bammer PC, Barlow DP, Pauler FM, Hudson QJ. Allelome.PRO, a pipeline to define allele-specific genomic features from high-throughput sequencing data. Nucleic Acids Res 2015. [PMID: 26202974 PMCID: PMC4666383 DOI: 10.1093/nar/gkv727] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Detecting allelic biases from high-throughput sequencing data requires an approach that maximises sensitivity while minimizing false positives. Here, we present Allelome.PRO, an automated user-friendly bioinformatics pipeline, which uses high-throughput sequencing data from reciprocal crosses of two genetically distinct mouse strains to detect allele-specific expression and chromatin modifications. Allelome.PRO extends approaches used in previous studies that exclusively analyzed imprinted expression to give a complete picture of the ‘allelome’ by automatically categorising the allelic expression of all genes in a given cell type into imprinted, strain-biased, biallelic or non-informative. Allelome.PRO offers increased sensitivity to analyze lowly expressed transcripts, together with a robust false discovery rate empirically calculated from variation in the sequencing data. We used RNA-seq data from mouse embryonic fibroblasts from F1 reciprocal crosses to determine a biologically relevant allelic ratio cutoff, and define for the first time an entire allelome. Furthermore, we show that Allelome.PRO detects differential enrichment of H3K4me3 over promoters from ChIP-seq data validating the RNA-seq results. This approach can be easily extended to analyze histone marks of active enhancers, or transcription factor binding sites and therefore provides a powerful tool to identify candidate cis regulatory elements genome wide.
Collapse
Affiliation(s)
- Daniel Andergassen
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3,1090 Vienna, Austria
| | - Christoph P Dotter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3,1090 Vienna, Austria
| | - Tomasz M Kulinski
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3,1090 Vienna, Austria
| | - Philipp M Guenzl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3,1090 Vienna, Austria
| | - Philipp C Bammer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3,1090 Vienna, Austria
| | - Denise P Barlow
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3,1090 Vienna, Austria
| | - Florian M Pauler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3,1090 Vienna, Austria
| | - Quanah J Hudson
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3,1090 Vienna, Austria
| |
Collapse
|
91
|
Baran Y, Subramaniam M, Biton A, Tukiainen T, Tsang EK, Rivas MA, Pirinen M, Gutierrez-Arcelus M, Smith KS, Kukurba KR, Zhang R, Eng C, Torgerson DG, Urbanek C, Li JB, Rodriguez-Santana JR, Burchard EG, Seibold MA, MacArthur DG, Montgomery SB, Zaitlen NA, Lappalainen T. The landscape of genomic imprinting across diverse adult human tissues. Genome Res 2015; 25:927-36. [PMID: 25953952 PMCID: PMC4484390 DOI: 10.1101/gr.192278.115] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/07/2015] [Indexed: 12/24/2022]
Abstract
Genomic imprinting is an important regulatory mechanism that silences one of the parental copies of a gene. To systematically characterize this phenomenon, we analyze tissue specificity of imprinting from allelic expression data in 1582 primary tissue samples from 178 individuals from the Genotype-Tissue Expression (GTEx) project. We characterize imprinting in 42 genes, including both novel and previously identified genes. Tissue specificity of imprinting is widespread, and gender-specific effects are revealed in a small number of genes in muscle with stronger imprinting in males. IGF2 shows maternal expression in the brain instead of the canonical paternal expression elsewhere. Imprinting appears to have only a subtle impact on tissue-specific expression levels, with genes lacking a systematic expression difference between tissues with imprinted and biallelic expression. In summary, our systematic characterization of imprinting in adult tissues highlights variation in imprinting between genes, individuals, and tissues.
Collapse
Affiliation(s)
- Yael Baran
- The Blavatnik School of Computer Science, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Meena Subramaniam
- Department of Medicine, University of California San Francisco, San Francisco, California 94158, USA
| | - Anne Biton
- Department of Medicine, University of California San Francisco, San Francisco, California 94158, USA
| | - Taru Tukiainen
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - Emily K Tsang
- Department of Pathology, Stanford University, Stanford, California 94305, USA; Biomedical Informatics Program, Stanford University, Stanford, California 94305, USA
| | - Manuel A Rivas
- Wellcome Trust Center for Human Genetics, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Matti Pirinen
- Institute for Molecular Medicine Finland, University of Helsinki, 00014 Helsinki, Finland
| | - Maria Gutierrez-Arcelus
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland
| | - Kevin S Smith
- Department of Pathology, Stanford University, Stanford, California 94305, USA; Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Kim R Kukurba
- Department of Pathology, Stanford University, Stanford, California 94305, USA; Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Rui Zhang
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Celeste Eng
- Department of Medicine, University of California San Francisco, San Francisco, California 94158, USA
| | - Dara G Torgerson
- Department of Medicine, University of California San Francisco, San Francisco, California 94158, USA
| | - Cydney Urbanek
- Integrated Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado 80206, USA
| | - Jin Billy Li
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | | | - Esteban G Burchard
- Department of Medicine, University of California San Francisco, San Francisco, California 94158, USA; Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California 94158, USA
| | - Max A Seibold
- Integrated Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado 80206, USA; Department of Pediatrics, National Jewish Health, Denver, Colorado 80206, USA; Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado-Denver, Denver, Colorado 80045, USA
| | - Daniel G MacArthur
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Stephen B Montgomery
- Department of Pathology, Stanford University, Stanford, California 94305, USA; Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Noah A Zaitlen
- Department of Medicine, University of California San Francisco, San Francisco, California 94158, USA
| | - Tuuli Lappalainen
- New York Genome Center, New York, New York 10013, USA; Department of Systems Biology, Columbia University, New York, New York 10032, USA
| |
Collapse
|
92
|
|
93
|
Abstract
A gene mediating interactions between mouse mothers and their pups has recently been claimed to support coadaptation rather than the kinship theory of genomic imprinting. This Formal Comment argues that this claim is unfounded.
Collapse
|
94
|
Imprinted genes in myeloid lineage commitment in normal and malignant hematopoiesis. Leukemia 2015; 29:1233-42. [PMID: 25703588 DOI: 10.1038/leu.2015.47] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 01/27/2015] [Accepted: 02/16/2015] [Indexed: 12/12/2022]
Abstract
Genomic imprinting is characterized by the parent-of-origin monoallelic expression of several diploid genes because of epigenetic regulation. Imprinted genes (IGs) are key factors in development, supporting the ability of a genotype to produce phenotypes in response to environmental stimuli. IGs are highly expressed during prenatal stages but are downregulated after birth. They also affect aspects of life other than growth such as cognition, behavior, adaption to novel environments, social dominance and memory consolidation. Deregulated genomic imprinting leads to developmental disorders and is associated with solid and blood cancer as well. Several data have been published highlighting the involvement of IGs in as early as the very small embryonic-like stem cells stage and further during myeloid lineage commitment in normal and malignant hematopoiesis. Therefore, we have assembled the current knowledge on the topic, based mainly on recent findings, trying not to focus on a particular cluster but rather to have a global view of several different IGs in hematopoiesis.
Collapse
|
95
|
Wolf JB, Brandvain Y. Gene interactions in the evolution of genomic imprinting. Heredity (Edinb) 2014; 113:129-37. [PMID: 24619179 PMCID: PMC4105456 DOI: 10.1038/hdy.2014.7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 12/02/2013] [Accepted: 12/05/2013] [Indexed: 12/24/2022] Open
Abstract
Numerous evolutionary theories have been developed to explain the epigenetic phenomenon of genomic imprinting. Here, we explore a subset of theories wherein non-additive genetic interactions can favour imprinting. In the simplest genic interaction--the case of underdominance--imprinting can be favoured to hide effectively low-fitness heterozygous genotypes; however, as there is no asymmetry between maternally and paternally inherited alleles in this model, other means of enforcing monoallelic expression may be more plausible evolutionary outcomes than genomic imprinting. By contrast, more successful interaction models of imprinting rely on an asymmetry between the maternally and paternally inherited alleles at a locus that favours the silencing of one allele as a means of coordinating the expression of high-fitness allelic combinations. For example, with interactions between autosomal loci, imprinting functionally preserves high-fitness genotypes that were favoured by selection in the previous generation. In this scenario, once a focal locus becomes imprinted, selection at interacting loci favours a matching imprint. Uniparental transmission generates similar asymmetries for sex chromosomes and cytoplasmic factors interacting with autosomal loci, with selection favouring the expression of either maternal or paternally derived autosomal alleles depending on the pattern of transmission of the uniparentally inherited factor. In a final class of models, asymmetries arise when genes expressed in offspring interact with genes expressed in one of its parents. Under such a scenario, a locus evolves to have imprinted expression in offspring to coordinate the interaction with its parent's genome. We illustrate these models and explore key links and differences using a unified framework.
Collapse
Affiliation(s)
- J B Wolf
- Department of Biology and Biochemistry, University of Bath, Bath, Claverton Down, UK
| | - Y Brandvain
- Department of Plant Biology, University of Minnesota, St Paul, MN, USA
| |
Collapse
|
96
|
Bai F, Settles AM. Imprinting in plants as a mechanism to generate seed phenotypic diversity. FRONTIERS IN PLANT SCIENCE 2014; 5:780. [PMID: 25674092 PMCID: PMC4307191 DOI: 10.3389/fpls.2014.00780] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/16/2014] [Indexed: 05/21/2023]
Abstract
Normal plant development requires epigenetic regulation to enforce changes in developmental fate. Genomic imprinting is a type of epigenetic regulation in which identical alleles of genes are expressed in a parent-of-origin dependent manner. Deep sequencing of transcriptomes has identified hundreds of imprinted genes with scarce evidence for the developmental importance of individual imprinted loci. Imprinting is regulated through global DNA demethylation in the central cell prior to fertilization and directed repression of individual loci with the Polycomb Repressive Complex 2 (PRC2). There is significant evidence for transposable elements and repeat sequences near genes acting as cis-elements to determine imprinting status of a gene, implying that imprinted gene expression patterns may evolve randomly and at high frequency. Detailed genetic analysis of a few imprinted loci suggests an imprinted pattern of gene expression is often dispensable for seed development. Few genes show conserved imprinted expression within or between plant species. These data are not fully explained by current models for the evolution of imprinting in plant seeds. We suggest that imprinting may have evolved to provide a mechanism for rapid neofunctionalization of genes during seed development to increase phenotypic diversity of seeds.
Collapse
Affiliation(s)
| | - A. M. Settles
- *Correspondence: A. M. Settles, Horticultural Sciences Department and Plant Molecular and Cellular Biology Program, University of Florida, P. O. Box 110690, Gainesville, FL 32611-0690, USA e-mail:
| |
Collapse
|