51
|
Class I PI3K regulatory subunits control differentiation of dendritic cell subsets and regulate Flt3L mediated signal transduction. Sci Rep 2022; 12:12311. [PMID: 35853935 PMCID: PMC9296662 DOI: 10.1038/s41598-022-16548-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 07/12/2022] [Indexed: 11/18/2022] Open
Abstract
Dendritic cells (DCs) play pivotal roles in initiating and shaping both innate and adaptive immune responses. The spatiotemporal expression of transcription factor networks and activation of specific signal transduction pathways determine the specification, distribution and differentiation of DC subsets. Even though pioneering studies have established indispensable roles for specific catalytic subunits (p110δ and p110γ) in immune cells, functions of the regulatory subunits, particularly of Class I PI3K, within the hematopoietic system remain incompletely understood. In the study presented here, we deleted the key regulatory subunits—p85α and p85β of the Class IA PI3K in hematopoietic cells and studied its impact on DC differentiation. Our studies identify that a deficiency of p85 causes increased differentiation of conventional DC (cDC) 2 and plasmacytoid DC (pDC) subsets in the spleen. On the other hand, DC numbers in the bone marrow (BM), thymus and lymph nodes were decreased in p85 mutant mice. Analysis of DC-specific progenitors and precursors indicated increased numbers in the BM and spleen of p85 deficient mice. In-vitro differentiation studies demonstrated augmented DC-differentiation capacities of p85 deficient BM cells in the presence of GM-CSF and Flt3L. BM chimera studies established that p85 deficiency affects DC development through cell intrinsic mechanisms. Molecular studies revealed increased proliferation of DCs and common DC progenitors (CDPs) in the absence of p85 and altered signal transduction pathways in p85 mutant DC subsets in response to Flt3L. In essence, data presented here, for the first time, unequivocally establish that the P85α subunit of class IA PI3Ks has an indispensable role in the development and maintenance of DCs.
Collapse
|
52
|
A human adipose tissue cell-type transcriptome atlas. Cell Rep 2022; 40:111046. [PMID: 35830816 DOI: 10.1016/j.celrep.2022.111046] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 04/29/2022] [Accepted: 06/13/2022] [Indexed: 12/19/2022] Open
Abstract
The importance of defining cell-type-specific genes is well acknowledged. Technological advances facilitate high-resolution sequencing of single cells, but practical challenges remain. Adipose tissue is composed primarily of adipocytes, large buoyant cells requiring extensive, artefact-generating processing for separation and analysis. Thus, adipocyte data are frequently absent from single-cell RNA sequencing (scRNA-seq) datasets, despite being the primary functional cell type. Here, we decipher cell-type-enriched transcriptomes from unfractionated human adipose tissue RNA-seq data. We profile all major constituent cell types, using 527 visceral adipose tissue (VAT) or 646 subcutaneous adipose tissue (SAT) samples, identifying over 2,300 cell-type-enriched transcripts. Sex-subset analysis uncovers a panel of male-only cell-type-enriched genes. By resolving expression profiles of genes differentially expressed between SAT and VAT, we identify mesothelial cells as the primary driver of this variation. This study provides an accessible method to profile cell-type-enriched transcriptomes using bulk RNA-seq, generating a roadmap for adipose tissue biology.
Collapse
|
53
|
Zhao L, Zhang S, Kepp O, Kroemer G, Liu P. Dendritic cell transfer for cancer immunotherapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 370:33-64. [PMID: 35798506 DOI: 10.1016/bs.ircmb.2022.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Dendritic cells (DCs) play a major role in cancer immunosurveillance as they bridge innate and adaptive immunity by detecting tumor-associated antigens and presenting them to T lymphocytes. The adoptive transfer of antigen loaded DCs has been proposed as an immunotherapeutic approach for the treatment of various types of cancer. Nevertheless, despite promising preclinical data, the therapeutic efficacy of DC transfer is still deceptive in cancer patients. Here we summarize recent findings in DC biology with a special focus on the development of actionable therapeutic strategies and discuss experimental and clinical approaches that aim at improving the efficacy of DC-based immunotherapies, including, but not limited to, optimized DC production and antigen loading, stimulated maturation, the co-treatment with additional immunotherapies, as well as the inhibition of DC checkpoints.
Collapse
Affiliation(s)
- Liwei Zhao
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France; Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
| | - Shuai Zhang
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France; Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
| | - Oliver Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France; Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France; Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France; Institut du Cancer Paris Carpem, Department of Biology, Hôpital Européen Georges Pompidou, APHP, Paris, France.
| | - Peng Liu
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France; Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
| |
Collapse
|
54
|
Thomas J, Torok MA, Agrawal K, Pfau T, Vu TT, Lyberger J, Chang H, Castillo AMM, Chen M, Remaily B, Kim K, Xie Z, Dillhoff ME, Kulp SK, Behbehani GK, Cruz-Monserrate Z, Ganesan LP, Owen DH, Phelps MA, Coss CC, Mace TA. The Neonatal Fc Receptor Is Elevated in Monocyte-Derived Immune Cells in Pancreatic Cancer. Int J Mol Sci 2022; 23:7066. [PMID: 35806069 PMCID: PMC9266939 DOI: 10.3390/ijms23137066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 12/16/2022] Open
Abstract
The neonatal Fc receptor (FcRn) is responsible for recycling of IgG antibodies and albumin throughout the body. This mechanism has been exploited for pharmaceutic delivery across an array of diseases to either enhance or diminish this function. Monoclonal antibodies and albumin-bound nanoparticles are examples of FcRn-dependent anti-cancer therapeutics. Despite its importance in drug delivery, little is known about FcRn expression in circulating immune cells. Through time-of-flight mass cytometry (CyTOF) we were able to characterize FcRn expression in peripheral blood mononuclear cell (PBMC) populations of pancreatic ductal adenocarcinoma (PDAC) patients and non-cancer donors. Furthermore, we were able to replicate these findings in an orthotopic murine model of PDAC. Altogether, we found that in both patients and mice with PDAC, FcRn was elevated in migratory and resident classical dendritic cell type 2 (cDC2) as well as monocytic and granulocytic myeloid-derived suppressor cell (MDSC) populations compared to tumor-free controls. Furthermore, PBMCs from PDAC patients had elevated monocyte, dendritic cells and MDSCs relative to non-cancer donor PBMCs. Future investigations into FcRn activity may further elucidate possible mechanisms of poor efficacy of antibody immunotherapies in patients with PDAC.
Collapse
Affiliation(s)
- Justin Thomas
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 496 W. 12th Ave., Columbus, OH 43210, USA; (J.T.); (T.T.V.); (A.M.M.C.); (M.C.); (B.R.); (K.K.); (Z.X.); (S.K.K.); (M.A.P.)
| | - Molly A. Torok
- The James Comprehensive Cancer Center, The Ohio State University, 496 W. 12th Ave., Columbus, OH 43210, USA; (M.A.T.); (K.A.); (T.P.); (Z.C.-M.); (D.H.O.)
| | - Kriti Agrawal
- The James Comprehensive Cancer Center, The Ohio State University, 496 W. 12th Ave., Columbus, OH 43210, USA; (M.A.T.); (K.A.); (T.P.); (Z.C.-M.); (D.H.O.)
| | - Timothy Pfau
- The James Comprehensive Cancer Center, The Ohio State University, 496 W. 12th Ave., Columbus, OH 43210, USA; (M.A.T.); (K.A.); (T.P.); (Z.C.-M.); (D.H.O.)
| | - Trang T. Vu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 496 W. 12th Ave., Columbus, OH 43210, USA; (J.T.); (T.T.V.); (A.M.M.C.); (M.C.); (B.R.); (K.K.); (Z.X.); (S.K.K.); (M.A.P.)
| | - Justin Lyberger
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 420 W. 12th Ave., Columbus, OH 43210, USA; (J.L.); (H.C.); (G.K.B.)
| | - Hsiaochi Chang
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 420 W. 12th Ave., Columbus, OH 43210, USA; (J.L.); (H.C.); (G.K.B.)
| | - Alyssa Marie M. Castillo
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 496 W. 12th Ave., Columbus, OH 43210, USA; (J.T.); (T.T.V.); (A.M.M.C.); (M.C.); (B.R.); (K.K.); (Z.X.); (S.K.K.); (M.A.P.)
| | - Min Chen
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 496 W. 12th Ave., Columbus, OH 43210, USA; (J.T.); (T.T.V.); (A.M.M.C.); (M.C.); (B.R.); (K.K.); (Z.X.); (S.K.K.); (M.A.P.)
| | - Bryan Remaily
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 496 W. 12th Ave., Columbus, OH 43210, USA; (J.T.); (T.T.V.); (A.M.M.C.); (M.C.); (B.R.); (K.K.); (Z.X.); (S.K.K.); (M.A.P.)
| | - Kyeongmin Kim
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 496 W. 12th Ave., Columbus, OH 43210, USA; (J.T.); (T.T.V.); (A.M.M.C.); (M.C.); (B.R.); (K.K.); (Z.X.); (S.K.K.); (M.A.P.)
| | - Zhiliang Xie
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 496 W. 12th Ave., Columbus, OH 43210, USA; (J.T.); (T.T.V.); (A.M.M.C.); (M.C.); (B.R.); (K.K.); (Z.X.); (S.K.K.); (M.A.P.)
| | - Mary E. Dillhoff
- Division of Surgical Oncology, Department of Internal Medicine, The Ohio State University, 420 W. 12th Ave., Columbus, OH 43210, USA;
| | - Samuel K. Kulp
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 496 W. 12th Ave., Columbus, OH 43210, USA; (J.T.); (T.T.V.); (A.M.M.C.); (M.C.); (B.R.); (K.K.); (Z.X.); (S.K.K.); (M.A.P.)
| | - Gregory K. Behbehani
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 420 W. 12th Ave., Columbus, OH 43210, USA; (J.L.); (H.C.); (G.K.B.)
| | - Zobeida Cruz-Monserrate
- The James Comprehensive Cancer Center, The Ohio State University, 496 W. 12th Ave., Columbus, OH 43210, USA; (M.A.T.); (K.A.); (T.P.); (Z.C.-M.); (D.H.O.)
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, The Ohio State University, 420 W. 12th Ave., Columbus, OH 43210, USA
| | - Latha P. Ganesan
- Division of Rheumatology and Immunology, Department of Internal Medicine, The Ohio State University, 420 W. 12th Ave., Columbus, OH 43210, USA;
| | - Dwight H. Owen
- The James Comprehensive Cancer Center, The Ohio State University, 496 W. 12th Ave., Columbus, OH 43210, USA; (M.A.T.); (K.A.); (T.P.); (Z.C.-M.); (D.H.O.)
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, 420 W. 12th Ave., Columbus, OH 43210, USA
| | - Mitch A. Phelps
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 496 W. 12th Ave., Columbus, OH 43210, USA; (J.T.); (T.T.V.); (A.M.M.C.); (M.C.); (B.R.); (K.K.); (Z.X.); (S.K.K.); (M.A.P.)
- The James Comprehensive Cancer Center, The Ohio State University, 496 W. 12th Ave., Columbus, OH 43210, USA; (M.A.T.); (K.A.); (T.P.); (Z.C.-M.); (D.H.O.)
| | - Christopher C. Coss
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 496 W. 12th Ave., Columbus, OH 43210, USA; (J.T.); (T.T.V.); (A.M.M.C.); (M.C.); (B.R.); (K.K.); (Z.X.); (S.K.K.); (M.A.P.)
- The James Comprehensive Cancer Center, The Ohio State University, 496 W. 12th Ave., Columbus, OH 43210, USA; (M.A.T.); (K.A.); (T.P.); (Z.C.-M.); (D.H.O.)
| | - Thomas A. Mace
- The James Comprehensive Cancer Center, The Ohio State University, 496 W. 12th Ave., Columbus, OH 43210, USA; (M.A.T.); (K.A.); (T.P.); (Z.C.-M.); (D.H.O.)
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, The Ohio State University, 420 W. 12th Ave., Columbus, OH 43210, USA
| |
Collapse
|
55
|
Lamiable O, Brewerton M, Ronchese F. IL-13 in dermal type-2 dendritic cell specialization: from function to therapeutic targeting. Eur J Immunol 2022; 52:1047-1057. [PMID: 35652857 DOI: 10.1002/eji.202149677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/14/2022] [Accepted: 06/01/2022] [Indexed: 11/06/2022]
Abstract
Skin functions as a barrier protecting the host against physical, thermal, chemical changes and microbial insults. The skin is populated by several immune cell types which are crucial to host defence and to maintain self-tolerance as well as equilibrium with beneficial microbiota. Conventional dendritic cells (cDCs) are antigen-presenting cells that patrol the skin and all other non-lymphoid tissues for self or foreign antigens, then migrate to draining lymph nodes to initiate T cell responses. This review article describes recent developments on skin cDC specialization, focusing on the role of IL-13, a cytokine essential to allergic immune responses that is also secreted at steady state by type-2 innate lymphoid cells in healthy skin and is required for dermal cDC differentiation. Furthermore, we contextualize how different therapeutics that block IL-13 signaling and were recently approved for the treatment of atopic dermatitis might affect cDCs in human skin. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Olivier Lamiable
- Malaghan Institute of Medical Research, Wellington, 6012, New Zealand
| | - Maia Brewerton
- Malaghan Institute of Medical Research, Wellington, 6012, New Zealand.,Department of Clinical Immunology & Allergy, Auckland City Hospital, Auckland, New Zealand
| | - Franca Ronchese
- Malaghan Institute of Medical Research, Wellington, 6012, New Zealand
| |
Collapse
|
56
|
Kim HJ, Ji YR, Lee YM. Crosstalk between angiogenesis and immune regulation in the tumor microenvironment. Arch Pharm Res 2022; 45:401-416. [PMID: 35759090 PMCID: PMC9250479 DOI: 10.1007/s12272-022-01389-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022]
Abstract
Cancer creates a complex tumor microenvironment (TME) composed of immune cells, stromal cells, blood vessels, and various other cellular and extracellular elements. It is essential for the development of anti-cancer combination therapies to understand and overcome this high heterogeneity and complexity as well as the dynamic interactions between them within the TME. Recent treatment strategies incorporating immune-checkpoint inhibitors and anti-angiogenic agents have brought many changes and advances in clinical cancer treatment. However, there are still challenges for immune suppressive tumors, which are characterized by a lack of T cell infiltration and treatment resistance. In this review, we will investigate the crosstalk between immunity and angiogenesis in the TME. In addition, we will look at strategies designed to enhance anti-cancer immunity, to convert "immune suppressive tumors" into "immune activating tumors," and the mechanisms by which these strategies enhance effector immune cell infiltration.
Collapse
Affiliation(s)
- Hei Jung Kim
- Vessel-Organ Interaction Research Center, VOICE (MRC), Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Young Rae Ji
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, USA
| | - You Mie Lee
- Vessel-Organ Interaction Research Center, VOICE (MRC), Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea.
- Department of Molecular Pathophysiology, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea.
| |
Collapse
|
57
|
Tumor draining lymph nodes, immune response, and radiotherapy: Towards a revisal of therapeutic principles. Biochim Biophys Acta Rev Cancer 2022; 1877:188704. [DOI: 10.1016/j.bbcan.2022.188704] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/06/2022] [Accepted: 02/21/2022] [Indexed: 12/20/2022]
|
58
|
Dendritic Cells and Their Immunotherapeutic Potential for Treating Type 1 Diabetes. Int J Mol Sci 2022; 23:ijms23094885. [PMID: 35563276 PMCID: PMC9099521 DOI: 10.3390/ijms23094885] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 12/15/2022] Open
Abstract
Type 1 diabetes (T1D) results from the destruction of pancreatic beta cells through a process that is primarily mediated by T cells. Emerging evidence suggests that dendritic cells (DCs) play a crucial role in initiating and developing this debilitating disease. DCs are professional antigen-presenting cells with the ability to integrate signals arising from tissue infection or injury that present processed antigens from these sites to naïve T cells in secondary lymphoid organs, thereby triggering naïve T cells to differentiate and modulate adaptive immune responses. Recent advancements in our knowledge of the various subsets of DCs and their cellular structures and methods of orchestration over time have resulted in a better understanding of how the T cell response is shaped. DCs employ various arsenal to maintain their tolerance, including the induction of effector T cell deletion or unresponsiveness and the generation and expansion of regulatory T cell populations. Therapies that suppress the immunogenic effects of dendritic cells by blocking T cell costimulatory pathways and proinflammatory cytokine production are currently being sought. Moreover, new strategies are being developed that can regulate DC differentiation and development and harness the tolerogenic capacity of these cells. Here, in this report, we focus on recent advances in the field of DC immunology and evaluate the prospects of DC-based therapeutic strategies to treat T1D.
Collapse
|
59
|
Iberg CA, Bourque J, Fallahee I, Son S, Hawiger D. TNF-α sculpts a maturation process in vivo by pruning tolerogenic dendritic cells. Cell Rep 2022; 39:110657. [PMID: 35417681 PMCID: PMC9113652 DOI: 10.1016/j.celrep.2022.110657] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 02/16/2022] [Accepted: 03/18/2022] [Indexed: 12/12/2022] Open
Abstract
It remains unclear how the pro-immunogenic maturation of conventional dendritic cells (cDCs) abrogates their tolerogenic functions. Here, we report that the loss of tolerogenic functions depends on the rapid death of BTLAhi cDC1s, which, in the steady state, are present in systemic peripheral lymphoid organs and promote tolerance that limits subsequent immune responses. A canonical inducer of maturation, lipopolysaccharide (LPS), initiates a burst of tumor necrosis factor alpha (TNF-α) production and the resultant acute death of BTLAhi cDC1s mediated by tumor necrosis factor receptor 1. The ablation of these individual tolerogenic cDCs is amplified by TNF-α produced by neighboring cells. This loss of tolerogenic cDCs is transient, accentuating the restoration of homeostatic conditions through biological turnover of cDCs in vivo. Therefore, our results reveal that the abrogation of tolerogenic functions during an acute immunogenic maturation depends on an ablation of the tolerogenic cDC population, resulting in a dynamic remodeling of the cDC functional landscape.
Collapse
Affiliation(s)
- Courtney A Iberg
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Jessica Bourque
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Ian Fallahee
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Sungho Son
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Daniel Hawiger
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
60
|
Hardonnière K, Szely N, El Ali Z, Pallardy M, Kerdine-Römer S. Models of Dendritic Cells to Assess Skin Sensitization. FRONTIERS IN TOXICOLOGY 2022; 4:851017. [PMID: 35373185 PMCID: PMC8971372 DOI: 10.3389/ftox.2022.851017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
Allergic contact dermatitis (ACD) is a complex skin pathology occurring in reaction against environmental substances found in the workplace (cement, hair dyes, textile dyes), in the private environment (e.g., household products, cosmetic ingredients), or following skin exposure to drugs. Many cells are involved in the initiation of ACD during the sensitization phase. The four key events (KE) of skin sensitization AOP are covalent binding to skin proteins (KE1), keratinocyte activation (KE2), activation of DCs (KE3), and T-cell activation and proliferation (KE4), leading to the adverse outcome of ACD. Dendritic cells (DCs) are thus playing a key role in ACD pathophysiology. Indeed, in the presence of chemical sensitizers, DCs migrate from the skin to the draining lymph nodes and present peptide-chemical conjugates to T cells, leading to their activation and proliferation. In vitro methods have been actively developed to assess the activation of DCs by chemicals to establish a reliable in vitro sensitization test. Therefore, this review will detail the most used methods and protocols to develop DC models in vitro. Three different models of DCs will be addressed: 1) DCs derived from Cord Blood (CD34-DCs), 2) DCs derived from Monocytes (Mo-DCs), and 3) DCs derived from mice Bone-Marrow (BM-DCs). In addition, a model of exposition to contact sensitizers to assess KE3 of skin sensitization will be detailed for each of the models presented.
Collapse
|
61
|
Larsen SE, Williams BD, Rais M, Coler RN, Baldwin SL. It Takes a Village: The Multifaceted Immune Response to Mycobacterium tuberculosis Infection and Vaccine-Induced Immunity. Front Immunol 2022; 13:840225. [PMID: 35359957 PMCID: PMC8960931 DOI: 10.3389/fimmu.2022.840225] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/08/2022] [Indexed: 11/18/2022] Open
Abstract
Despite co-evolving with humans for centuries and being intensely studied for decades, the immune correlates of protection against Mycobacterium tuberculosis (Mtb) have yet to be fully defined. This lapse in understanding is a major lag in the pipeline for evaluating and advancing efficacious vaccine candidates. While CD4+ T helper 1 (TH1) pro-inflammatory responses have a significant role in controlling Mtb infection, the historically narrow focus on this cell population may have eclipsed the characterization of other requisite arms of the immune system. Over the last decade, the tuberculosis (TB) research community has intentionally and intensely increased the breadth of investigation of other immune players. Here, we review mechanistic preclinical studies as well as clinical anecdotes that suggest the degree to which different cell types, such as NK cells, CD8+ T cells, γ δ T cells, and B cells, influence infection or disease prevention. Additionally, we categorically outline the observed role each major cell type plays in vaccine-induced immunity, including Mycobacterium bovis bacillus Calmette-Guérin (BCG). Novel vaccine candidates advancing through either the preclinical or clinical pipeline leverage different platforms (e.g., protein + adjuvant, vector-based, nucleic acid-based) to purposefully elicit complex immune responses, and we review those design rationales and results to date. The better we as a community understand the essential composition, magnitude, timing, and trafficking of immune responses against Mtb, the closer we are to reducing the severe disease burden and toll on human health inflicted by TB globally.
Collapse
Affiliation(s)
- Sasha E. Larsen
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States
| | - Brittany D. Williams
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,Department of Global Health, University of Washington, Seattle, WA, United States
| | - Maham Rais
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States
| | - Rhea N. Coler
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,Department of Global Health, University of Washington, Seattle, WA, United States,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| | - Susan L. Baldwin
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,*Correspondence: Susan L. Baldwin,
| |
Collapse
|
62
|
Bourque J, Hawiger D. Variegated Outcomes of T Cell Activation by Dendritic Cells in the Steady State. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:539-547. [PMID: 35042789 DOI: 10.4049/jimmunol.2100932] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022]
Abstract
Conventional dendritic cells (cDC) control adaptive immunity by sensing damage- and pathogen-associated molecular patterns and then inducing defined differentiation programs in T cells. Nevertheless, in the absence of specific proimmunogenic innate signals, generally referred to as the steady state, cDC also activate T cells to induce specific functional fates. Consistent with the maintenance of homeostasis, such specific outcomes of T cell activation in the steady state include T cell clonal anergy, deletion, and conversion of peripheral regulatory T cells (pTregs). However, the robust induction of protolerogenic mechanisms must be reconciled with the initiation of autoimmune responses and cancer immunosurveillance that are also observed under homeostatic conditions. Here we review the diversity of fates and functions of T cells involved in the opposing immunogenic and tolerogenic processes induced in the steady state by the relevant mechanisms of systemic cDC present in murine peripheral lymphoid organs.
Collapse
Affiliation(s)
- Jessica Bourque
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO
| | - Daniel Hawiger
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO
| |
Collapse
|
63
|
Peil J, Bock F, Kiefer F, Schmidt R, Heindl LM, Cursiefen C, Schlereth SL. New Therapeutic Approaches for Conjunctival Melanoma-What We Know So Far and Where Therapy Is Potentially Heading: Focus on Lymphatic Vessels and Dendritic Cells. Int J Mol Sci 2022; 23:1478. [PMID: 35163401 PMCID: PMC8835854 DOI: 10.3390/ijms23031478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/25/2022] Open
Abstract
Conjunctival melanoma (CM) accounts for 5% of all ocular melanomas and arises from malignantly transformed melanocytes in the conjunctival epithelium. Current therapies using surgical excision in combination with chemo- or cryotherapy still have high rates for recurrences and metastatic disease. Lately, novel signal transduction-targeted and immune checkpoint inhibitors like cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitors, programmed cell death protein-1 (PD-1) receptor inhibitors, BRAF- or MEK-inhibitors for systemic treatment of melanoma have improved the outcome even for unresectable cutaneous melanoma, improving patient survival dramatically. The use of these therapies is now also recommended for CM; however, the immunological background of CM is barely known, underlining the need for research to better understand the immunological basics when treating CM patients with immunomodulatory therapies. Immune checkpoint inhibitors activate tumor defense by interrupting inhibitory interactions between tumor cells and T lymphocytes at the so-called checkpoints. The tumor cells exploit these inhibitory targets on T-cells that are usually used by dendritic cells (DCs). DCs are antigen-presenting cells at the forefront of immune response induction. They contribute to immune tolerance and immune defense but in the case of tumor development, immune tolerance is often prevalent. Enhancing the immune response via DCs, interfering with the lymphatic pathways during immune cell migration and tumor development and specifically targeting tumor cells is a major therapeutic opportunity for many tumor entities including CM. This review summarizes the current knowledge on the function of lymphatic vessels in tumor growth and immune cell transport and continues to compare DC subsets in CM with related melanomas, such as cutaneous melanoma and mucosal melanoma.
Collapse
Affiliation(s)
- Jennifer Peil
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (J.P.); (F.B.); (L.M.H.); (C.C.)
| | - Felix Bock
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (J.P.); (F.B.); (L.M.H.); (C.C.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| | - Friedemann Kiefer
- European Institute for Molecular Imaging (EIMI), University of Münster, 48149 Münster, Germany;
| | - Rebecca Schmidt
- Department of Oral, Maxillofacial and Plastic Facial Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany;
| | - Ludwig M. Heindl
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (J.P.); (F.B.); (L.M.H.); (C.C.)
| | - Claus Cursiefen
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (J.P.); (F.B.); (L.M.H.); (C.C.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| | - Simona L. Schlereth
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (J.P.); (F.B.); (L.M.H.); (C.C.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| |
Collapse
|
64
|
Bourque J, Hawiger D. Applications of Antibody-Based Antigen Delivery Targeted to Dendritic Cells In Vivo. Antibodies (Basel) 2022; 11:antib11010008. [PMID: 35225867 PMCID: PMC8884005 DOI: 10.3390/antib11010008] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/11/2022] [Accepted: 01/20/2022] [Indexed: 02/06/2023] Open
Abstract
Recombinant immunoglobulins, derived from monoclonal antibodies recognizing the defined surface epitopes expressed on dendritic cells, have been employed for the past two decades to deliver antigens to dendritic cells in vivo, serving as critical tools for the investigation of the corresponding T cell responses. These approaches originated with the development of the recombinant chimeric antibody against a multilectin receptor, DEC-205, which is present on subsets of murine and human conventional dendritic cells. Following the widespread application of antigen targeting through DEC-205, similar approaches then utilized other epitopes as entry points for antigens delivered by specific antibodies to multiple types of dendritic cells. Overall, these antigen-delivery methodologies helped to reveal the mechanisms underlying tolerogenic and immunogenic T cell responses orchestrated by dendritic cells. Here, we discuss the relevant experimental strategies as well as their future perspectives, including their translational relevance.
Collapse
Affiliation(s)
| | - Daniel Hawiger
- Correspondence: ; Tel.: +1-314-977-8875; Fax: +1-314-977-8717
| |
Collapse
|
65
|
Tang XZ, Kreuk LSM, Cho C, Metzger RJ, Allen CDC. Bronchus-associated macrophages efficiently capture and present soluble inhaled antigens and are capable of local Th2 cell activation. eLife 2022; 11:63296. [PMID: 36173678 PMCID: PMC9560158 DOI: 10.7554/elife.63296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
In allergic asthma, allergen inhalation leads to local Th2 cell activation and peribronchial inflammation. However, the mechanisms for local antigen capture and presentation remain unclear. By two-photon microscopy of the mouse lung, we established that soluble antigens in the bronchial airway lumen were efficiently captured and presented by a population of CD11c+ interstitial macrophages with high CX3CR1-GFP and MHC class II expression. We refer to these cells as Bronchus-Associated Macrophages (BAMs) based on their localization underneath the bronchial epithelium. BAMs were enriched in collagen-rich regions near some airway branchpoints, where inhaled antigens are likely to deposit. BAMs engaged in extended interactions with effector Th2 cells and promoted Th2 cytokine production. BAMs were also often in contact with dendritic cells (DCs). After exposure to inflammatory stimuli, DCs migrated to draining lymph nodes, whereas BAMs remained lung resident. We propose that BAMs act as local antigen presenting cells in the lung and also transfer antigen to DCs.
Collapse
Affiliation(s)
- Xin-Zi Tang
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States,Sandler Asthma Basic Research Center, University of California, San FranciscoSan FranciscoUnited States,Biomedical Sciences Graduate Program, University of California, San FranciscoSan FranciscoUnited States
| | - Lieselotte S M Kreuk
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States,Sandler Asthma Basic Research Center, University of California, San FranciscoSan FranciscoUnited States
| | - Cynthia Cho
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States,Sandler Asthma Basic Research Center, University of California, San FranciscoSan FranciscoUnited States
| | - Ross J Metzger
- Department of Anatomy, University of California, San FranciscoSan FranciscoUnited States
| | - Christopher D C Allen
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States,Sandler Asthma Basic Research Center, University of California, San FranciscoSan FranciscoUnited States,Department of Anatomy, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
66
|
De Leeuw E, Bosteels C, Lambrecht BN, Hammad H. Isolation of Conventional Murine Lung Dendritic Cell Subsets. Methods Mol Biol 2022; 2506:237-255. [PMID: 35771476 DOI: 10.1007/978-1-0716-2364-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the lungs, immune cells make contact with different antigens every day. This requires an adequate immune response. Dendritic cells (DCs) form a dense network in the respiratory mucosa and continuously sample inhaled allergens. They play an important role in bridging innate and adaptive immunity. DCs are classically divided into plasmacytoid DCs (pDCs) and conventional DCs (cDCs). cDCs in the steady-state are further subdivided into cDC1s and cDC2s based on their ontogeny and distinct non-redundant functions. Recently, a hyperactivated state of cDC2s has been described that arises during inflammation, coined inflammatory cDC2s (inf-cDC2s) that phenotypically mimics monocyte-derived cells and has a hybrid cDC1/macrophage functional identity. This chapter describes different enrichment methods and a fluorescence-activated cell sorting protocol that in combination allow for discrimination and isolation of pure DC subsets from the murine lung. The chapter represents an up-to-date, universal framework that can be adapted to other tissues and species which is an added value in intra- and interspecies comparative research.
Collapse
Affiliation(s)
- Elisabeth De Leeuw
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Cédric Bosteels
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Hamida Hammad
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium.
- Department of Internal Medicine, Ghent University, Ghent, Belgium.
| |
Collapse
|
67
|
Luciani C, Hager FT, Cerovic V, Lelouard H. Dendritic cell functions in the inductive and effector sites of intestinal immunity. Mucosal Immunol 2022; 15:40-50. [PMID: 34465895 DOI: 10.1038/s41385-021-00448-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/09/2021] [Accepted: 08/15/2021] [Indexed: 02/04/2023]
Abstract
The intestine is constantly exposed to foreign antigens, which are mostly innocuous but can sometimes be harmful. Therefore, the intestinal immune system has the delicate task of maintaining immune tolerance to harmless food antigens while inducing tailored immune responses to pathogens and regulating but tolerating the microbiota. Intestinal dendritic cells (DCs) play a central role in these functions as sentinel cells able to prime and polarize the T cell responses. DCs are deployed throughout the intestinal mucosa but with local specializations along the gut length and between the diffuse effector sites of the gut lamina propria (LP) and the well-organized immune inductive sites comprising isolated lymphoid follicles (ILFs), Peyer's patches (PPs), and other species-specific gut-associated lymphoid tissues (GALTs). Understanding the specificities of each intestinal DC subset, how environmental factors influence DC functions, and how these can be modulated is key to harnessing the therapeutic potential of mucosal adaptive immune responses, whether by enhancing the efficacy of mucosal vaccines or by increasing tolerogenic responses in inflammatory disorders. In this review, we summarize recent findings related to intestinal DCs in steady state and upon inflammation, with a special focus on their functional specializations, highly dependent on their microenvironment.
Collapse
Affiliation(s)
| | | | - Vuk Cerovic
- Institute of Molecular Medicine, RWTH Aachen University, Aachen, Germany.
| | | |
Collapse
|
68
|
Zhao L, Pan Y. SSCS: A Stage Supervised Subtyping System for Colorectal Cancer. Biomedicines 2021; 9:biomedicines9121815. [PMID: 34944631 PMCID: PMC8698601 DOI: 10.3390/biomedicines9121815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer (CRC) is heterogeneous and deadly, and the exact cause of the disease is unknown. Recent progress indicated that CRC is not a single disease, but a group of diseases with significant heterogeneity. Three previous CRC subtyping systems: microsatellite instability (MSI), consensus molecular subtypes (CMS), and tumor-node-metastases (TNM) stage were evaluated for their molecular and clinical implications. Results suggested that the MSI and CMS systems are prognostic and predictive mostly in early-stage CRC. As the stage remains an influential factor for CRC subtype analysis, we developed a new subtyping system named stage supervised CRC subtypes (SSCS), in order to better stratify CRC biologically and clinically. Our subtyping system can be used to classify CRC patients into five subtypes (SSCS1-5). SSCS1 was found to have the highest frequency of MSI-H cases compared to the remaining four subtypes. SSCS2 had the most favorable prognosis, whereas the worst prognosis was seen in SSCS4. SSCS3 had cell cycle and metabolism-related gene sets upregulation, and SSCS5 subtype was enriched with amplicon-associated gene sets. Moreover, tumor-infiltrating fibroblast was found to be predictive for poor disease-free survival (DFS) only within the SSCS4 subtype. Conventional dendritic cells (cDC), on the contrary, were associated with favorable DFS in the SSCS3 subtype. Our study provides a new subtyping system SSCS, which can be used for better stratify CRC patients compared to current standards. Further exploration of the subtype-specific cell types has the potential to be novel therapies for CRC.
Collapse
Affiliation(s)
- Lan Zhao
- Department of Medicine, Stanford University, Palo Alto, CA 94305, USA
- Correspondence: or
| | - Yi Pan
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen University Town, Shenzhen 518055, China;
| |
Collapse
|
69
|
Mayer JU, Hilligan KL, Chandler JS, Eccles DA, Old SI, Domingues RG, Yang J, Webb GR, Munoz-Erazo L, Hyde EJ, Wakelin KA, Tang SC, Chappell SC, von Daake S, Brombacher F, Mackay CR, Sher A, Tussiwand R, Connor LM, Gallego-Ortega D, Jankovic D, Le Gros G, Hepworth MR, Lamiable O, Ronchese F. Homeostatic IL-13 in healthy skin directs dendritic cell differentiation to promote T H2 and inhibit T H17 cell polarization. Nat Immunol 2021; 22:1538-1550. [PMID: 34795444 DOI: 10.1038/s41590-021-01067-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/05/2021] [Indexed: 01/27/2023]
Abstract
The signals driving the adaptation of type 2 dendritic cells (DC2s) to diverse peripheral environments remain mostly undefined. We show that differentiation of CD11blo migratory DC2s-a DC2 population unique to the dermis-required IL-13 signaling dependent on the transcription factors STAT6 and KLF4, whereas DC2s in lung and small intestine were STAT6-independent. Similarly, human DC2s in skin expressed an IL-4 and IL-13 gene signature that was not found in blood, spleen and lung DCs. In mice, IL-13 was secreted homeostatically by dermal innate lymphoid cells and was independent of microbiota, TSLP or IL-33. In the absence of IL-13 signaling, dermal DC2s were stable in number but remained CD11bhi and showed defective activation in response to allergens, with diminished ability to support the development of IL-4+GATA3+ helper T cells (TH), whereas antifungal IL-17+RORγt+ TH cells were increased. Therefore, homeostatic IL-13 fosters a noninflammatory skin environment that supports allergic sensitization.
Collapse
Affiliation(s)
- Johannes U Mayer
- Malaghan Institute of Medical Research, Wellington, New Zealand
- Department of Dermatology and Allergology, Phillips University Marburg, Marburg, Germany
| | - Kerry L Hilligan
- Malaghan Institute of Medical Research, Wellington, New Zealand
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - David A Eccles
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Samuel I Old
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Rita G Domingues
- Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Jianping Yang
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Greta R Webb
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | | | - Evelyn J Hyde
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | | | | | | | | | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town component & Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology, Health Science Faculty, University of Cape Town, Cape Town, South Africa
| | - Charles R Mackay
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Roxane Tussiwand
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Immune Regulation Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Lisa M Connor
- Malaghan Institute of Medical Research, Wellington, New Zealand
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - David Gallego-Ortega
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Centre for Single-Cell Technology, School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW, Australia
| | - Dragana Jankovic
- Immunoparasitology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Graham Le Gros
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Matthew R Hepworth
- Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | | | - Franca Ronchese
- Malaghan Institute of Medical Research, Wellington, New Zealand.
| |
Collapse
|
70
|
Ehnert S, Relja B, Schmidt-Bleek K, Fischer V, Ignatius A, Linnemann C, Rinderknecht H, Huber-Lang M, Kalbitz M, Histing T, Nussler AK. Effects of immune cells on mesenchymal stem cells during fracture healing. World J Stem Cells 2021; 13:1667-1695. [PMID: 34909117 PMCID: PMC8641016 DOI: 10.4252/wjsc.v13.i11.1667] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/31/2021] [Accepted: 09/03/2021] [Indexed: 02/06/2023] Open
Abstract
In vertebrates, bone is considered an osteoimmune system which encompasses functions of a locomotive organ, a mineral reservoir, a hormonal organ, a stem cell pool and a cradle for immune cells. This osteoimmune system is based on cooperatively acting bone and immune cells, cohabitating within the bone marrow. They are highly interdependent, a fact that is confounded by shared progenitors, mediators, and signaling pathways. Successful fracture healing requires the participation of all the precursors, immune and bone cells found in the osteoimmune system. Recent evidence demonstrated that changes of the immune cell composition and function may negatively influence bone healing. In this review, first the interplay between different immune cell types and osteoprogenitor cells will be elaborated more closely. The separate paragraphs focus on the specific cell types, starting with the cells of the innate immune response followed by cells of the adaptive immune response, and the complement system as mediator between them. Finally, a brief overview on the challenges of preclinical testing of immune-based therapeutic strategies to support fracture healing will be given.
Collapse
Affiliation(s)
- Sabrina Ehnert
- Siegfried Weller Research Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Tübingen 72076, Germany
| | - Borna Relja
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto-von-Guericke University, Magdeburg 39120, Germany
| | - Katharina Schmidt-Bleek
- Julius Wolff Institute and Berlin Institute of Health Center of Regenerative Therapies, Charité - University Medicine Berlin, Berlin 13353, Germany
| | - Verena Fischer
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm 89091, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm 89091, Germany
| | - Caren Linnemann
- Siegfried Weller Research Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Tübingen 72076, Germany
| | - Helen Rinderknecht
- Siegfried Weller Research Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Tübingen 72076, Germany
| | - Markus Huber-Lang
- Institute for Clinical and Experimental Trauma-Immunology (ITI), University Hospital Ulm, Ulm 89091, Germany
| | - Miriam Kalbitz
- Department of Trauma and Orthopedic Surgery, University Hospital Erlangen Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany
| | - Tina Histing
- Siegfried Weller Research Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Tübingen 72076, Germany
| | - Andreas K Nussler
- Siegfried Weller Research Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Tübingen 72076, Germany
| |
Collapse
|
71
|
Huang YK, Busuttil RA, Boussioutas A. The Role of Innate Immune Cells in Tumor Invasion and Metastasis. Cancers (Basel) 2021; 13:5885. [PMID: 34884995 PMCID: PMC8656477 DOI: 10.3390/cancers13235885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Metastasis is considered one of the hallmarks of cancer and enhanced tumor invasion and metastasis is significantly associated with cancer mortality. Metastasis occurs via a series of integrated processes involving tumor cells and the tumor microenvironment. The innate immune components of the microenvironment have been shown to engage with tumor cells and not only regulate their proliferation and survival, but also modulate the surrounding environment to enable cancer progression. In the era of immune therapies, it is critical to understand how different innate immune cell populations are involved in this process. This review summarizes recent literature describing the roles of innate immune cells during the tumor metastatic cascade.
Collapse
Affiliation(s)
- Yu-Kuan Huang
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3010, Australia; (Y.-K.H.); (R.A.B.)
| | - Rita A. Busuttil
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3010, Australia; (Y.-K.H.); (R.A.B.)
| | - Alex Boussioutas
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3010, Australia; (Y.-K.H.); (R.A.B.)
- Department of Gastroenterology, The Alfred Hospital, Melbourne, VIC 3004, Australia
- Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| |
Collapse
|
72
|
Costa AC, Santos JMO, Gil da Costa RM, Medeiros R. Impact of immune cells on the hallmarks of cancer: A literature review. Crit Rev Oncol Hematol 2021; 168:103541. [PMID: 34801696 DOI: 10.1016/j.critrevonc.2021.103541] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/15/2021] [Accepted: 11/15/2021] [Indexed: 12/20/2022] Open
Abstract
Tumor-infiltrating immune cells (TIICs) are critical players in the tumor microenvironment, modulating cancer cell functions. TIICs are highly heterogenic and plastic and may either suppress cancers or provide support for tumor growth. A wide range of studies have shed light on how tumor-associated macrophages, dendritic cells, neutrophils, mast cells, natural killer cells and lymphocytes contribute for the establishment of several hallmarks of cancer and became the basis for successful immunotherapies. Many of those TIICs play pivotal roles in several hallmarks of cancer. This review contributes to elucidate the multifaceted roles of immune cells in cancer development, highlighting molecular components that constitute promising therapeutic targets. Additional studies are needed to clarify the relation between TIICs and hallmarks such as enabling replicative immortality, evading growth suppressors, sustaining proliferative signaling, resisting cell death and genome instability and mutation, to further explore their therapeutic potential and improve the outcomes of cancer patients.
Collapse
Affiliation(s)
- Alexandra C Costa
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), 4200-319, Porto, Portugal.
| | - Joana M O Santos
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), 4200-319, Porto, Portugal.
| | - Rui M Gil da Costa
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; Postgraduate Programme in Adult Health (PPGSAD), Department of Morphology, Federal University of Maranhão (UFMA), and UFMA University Hospital (HUUFMA), 65080-805, São Luís, Brazil.
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), 4200-319, Porto, Portugal; Virology Service, Portuguese Oncology Institute of Porto (IPO Porto), 4200-072, Porto, Portugal; CEBIMED, Faculty of Health Sciences of the Fernando Pessoa University, 4249-004, Porto, Portugal; Research Department of the Portuguese League Against Cancer-Regional Nucleus of the North (Liga Portuguesa Contra o Cancro-Núcleo Regional do Norte), 4200-177, Porto, Portugal.
| |
Collapse
|
73
|
Wu Z, Hu T, Chintoan-Uta C, Macdonald J, Stevens MP, Sang H, Hume DA, Kaiser P, Balic A. Development of novel reagents to chicken FLT3, XCR1 and CSF2R for the identification and characterization of avian conventional dendritic cells. Immunology 2021; 165:171-194. [PMID: 34767637 DOI: 10.1111/imm.13426] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/30/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
Conventional dendritic cells (cDC) are bone marrow-derived immune cells that play a central role in linking innate and adaptive immunity. cDCs efficiently uptake, process and present antigen to naïve T cells, driving clonal expansion of antigen-specific T-cell responses. In chicken, vital reagents are lacking for the efficient and precise identification of cDCs. In this study, we have developed several novel reagents for the identification and characterization of chicken cDCs. Chicken FLT3 cDNA was cloned and a monoclonal antibody to cell surface FLT3 was generated. This antibody identified a distinct FLT3HI splenic subset which lack expression of signature markers for B cells, T cells or monocyte/macrophages. By combining anti-FLT3 and CSF1R-eGFP transgenic expression, three major populations within the mononuclear phagocyte system were identified in the spleen. The cDC1 subset of mammalian cDCs express the chemokine receptor XCR1. To characterize chicken cDCs, a synthetic chicken chemokine (C motif) ligand (XCL1) peptide conjugated to Alexa Fluor 647 was developed (XCL1AF647 ). Flow cytometry staining of XCL1AF647 on splenocytes showed that all chicken FLT3HI cells exclusively express XCR1, supporting the hypothesis that this population comprises bona fide chicken cDCs. Further analysis revealed that chicken cDCs expressed CSF1R but lacked the expression of CSF2R. Collectively, the cell surface phenotypes of chicken cDCs were partially conserved with mammalian XCR1+ cDC1, with distinct differences in CSF1R and CSF2R expression compared with mammalian orthologues. These original reagents allow the efficient identification of chicken cDCs to investigate their important roles in the chicken immunity and diseases.
Collapse
Affiliation(s)
- Zhiguang Wu
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Tuanjun Hu
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK
| | | | - Joni Macdonald
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Mark P Stevens
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Helen Sang
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK
| | - David A Hume
- Translational Research Institute, Mater Research Institute-University of Queensland, Woolloongabba, Qld, Australia
| | - Pete Kaiser
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Adam Balic
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK
| |
Collapse
|
74
|
Lu Y, Shi Y, You J. Strategy and clinical application of up-regulating cross presentation by DCs in anti-tumor therapy. J Control Release 2021; 341:184-205. [PMID: 34774890 DOI: 10.1016/j.jconrel.2021.11.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 12/20/2022]
Abstract
The cross presentation of exogenous antigen (Ag) by dendritic cells (DCs) facilitates a diversified mode of T-cell activation, orchestrates specific humoral and cellular immunity, and contributes to an efficient anti-tumor immune response. DCs-mediated cross presentation is subject to both intrinsic and extrinsic factors, including the homing and phenotype of DCs, the spatiotemporal trafficking and degradation kinetics of Ag, and multiple microenvironmental clues, with many details largely unexplored. Here, we systemically review the current mechanistic understanding and regulation strategies of cross presentation by heterogeneous DC populations. We also provide insights into the future exploitation of DCs cross presentation for a better clinical efficacy in anti-tumor therapy.
Collapse
Affiliation(s)
- Yichao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
75
|
Zhang Y, Huang H, Coleman M, Ziemys A, Gopal P, Kazmi SM, Brekken RA. VEGFR2 activity on myeloid cells mediates immune suppression in the tumor microenvironment. JCI Insight 2021; 6:150735. [PMID: 34673569 PMCID: PMC8675197 DOI: 10.1172/jci.insight.150735] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022] Open
Abstract
Angiogenesis, a hallmark of cancer, is induced by vascular endothelial growth factor–A (hereafter VEGF). As a result, anti-VEGF therapy is commonly used for cancer treatment. Recent studies have found that VEGF expression is also associated with immune suppression in patients with cancer. This connection has been investigated in preclinical and clinical studies by evaluating the therapeutic effect of combining antiangiogenic reagents with immune therapy. However, the mechanisms of how anti-VEGF strategies enhance immune therapy are not fully understood. We and others have shown selective elevation of VEGFR2 expression on tumor-associated myeloid cells in tumor-bearing animals. Here, we investigated the function of VEGFR2+ myeloid cells in regulating tumor immunity and found VEGF induced an immunosuppressive phenotype in VEGFR2+ myeloid cells, including directly upregulating the expression of programmed cell death 1 ligand 1. Moreover, we found that VEGF blockade inhibited the immunosuppressive phenotype of VEGFR2+ myeloid cells, increased T cell activation, and enhanced the efficacy of immune checkpoint blockade. This study highlights the function of VEGFR2 on myeloid cells and provides mechanistic insight on how VEGF inhibition potentiates immune checkpoint blockade.
Collapse
Affiliation(s)
- Yuqing Zhang
- Hamon Center for Therapeutic Oncology Research, UT Southwestern, Dallas, United States of America
| | - Huocong Huang
- Hamon Center for Therapeutic Oncology Research, UT Southwestern, Dallas, United States of America
| | - Morgan Coleman
- Hamon Center for Therapeutic Oncology Research, UT Southwestern, Dallas, United States of America
| | - Arturas Ziemys
- Program of Mathematics in Medicine, Houston Methodist Research Institute, Houston, United States of America
| | - Purva Gopal
- Department of Pathology, UT Southwestern, Dallas, United States of America
| | - Syed M Kazmi
- Division of Hematology and Oncology, UT Southwestern, Dallas, United States of America
| | - Rolf A Brekken
- Hamon Center for Therapeutic Oncology Research, UT Southwestern, Dallas, United States of America
| |
Collapse
|
76
|
Gjorgoska M, Rižner TL. Estrogens and the Schrödinger's Cat in the Ovarian Tumor Microenvironment. Cancers (Basel) 2021; 13:cancers13195011. [PMID: 34638494 PMCID: PMC8508344 DOI: 10.3390/cancers13195011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Ovarian cancer is a complex pathology for which we require effective screening and therapeutical strategies. Apart from the cancer cell portion, there exist plastic immune and non-immune cell populations, jointly constituting the context-adaptive tumor microenvironment, which is pivotal in tumorigenesis. Estrogens might be synthesized in the ovarian tumor tissue and actively contribute to the shaping of an immunosuppressive microenvironment. Current immune therapies have limited effectiveness as a multitude of factors influence the outcome. A thorough understanding of the ovarian cancer biology is crucial in the efforts to reestablish homeostasis. Abstract Ovarian cancer is a heterogeneous disease affecting the aging ovary, in concert with a complex network of cells and signals, together representing the ovarian tumor microenvironment. As in the “Schrödinger’s cat” thought experiment, the context-dependent constituents of the—by the time of diagnosis—well-established tumor microenvironment may display a tumor-protective and -destructive role. Systemic and locally synthesized estrogens contribute to the formation of a pro-tumoral microenvironment that enables the sustained tumor growth, invasion and metastasis. Here we focus on the estrogen biosynthetic and metabolic pathways in ovarian cancer and elaborate their actions on phenotypically plastic, estrogen-responsive, aging immune cells of the tumor microenvironment, altogether highlighting the multicomponent-connectedness and complexity of cancer, and contributing to a broader understanding of the ovarian cancer biology.
Collapse
|
77
|
Posttranslational modifications by ADAM10 shape myeloid antigen-presenting cell homeostasis in the splenic marginal zone. Proc Natl Acad Sci U S A 2021; 118:2111234118. [PMID: 34526403 DOI: 10.1073/pnas.2111234118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2021] [Indexed: 12/26/2022] Open
Abstract
The spleen contains phenotypically and functionally distinct conventional dendritic cell (cDC) subpopulations, termed cDC1 and cDC2, which each can be divided into several smaller and less well-characterized subsets. Despite advances in understanding the complexity of cDC ontogeny by transcriptional programming, the significance of posttranslational modifications in controlling tissue-specific cDC subset immunobiology remains elusive. Here, we identified the cell-surface-expressed A-disintegrin-and-metalloproteinase 10 (ADAM10) as an essential regulator of cDC1 and cDC2 homeostasis in the splenic marginal zone (MZ). Mice with a CD11c-specific deletion of ADAM10 (ADAM10ΔCD11c) exhibited a complete loss of splenic ESAMhi cDC2A because ADAM10 regulated the commitment, differentiation, and survival of these cells. The major pathways controlled by ADAM10 in ESAMhi cDC2A are Notch, signaling pathways involved in cell proliferation and survival (e.g., mTOR, PI3K/AKT, and EIF2 signaling), and EBI2-mediated localization within the MZ. In addition, we discovered that ADAM10 is a molecular switch regulating cDC2 subset heterogeneity in the spleen, as the disappearance of ESAMhi cDC2A in ADAM10ΔCD11c mice was compensated for by the emergence of a Clec12a+ cDC2B subset closely resembling cDC2 generally found in peripheral lymph nodes. Moreover, in ADAM10ΔCD11c mice, terminal differentiation of cDC1 was abrogated, resulting in severely reduced splenic Langerin+ cDC1 numbers. Next to the disturbed splenic cDC compartment, ADAM10 deficiency on CD11c+ cells led to an increase in marginal metallophilic macrophage (MMM) numbers. In conclusion, our data identify ADAM10 as a molecular hub on both cDC and MMM regulating their transcriptional programming, turnover, homeostasis, and ability to shape the anatomical niche of the MZ.
Collapse
|
78
|
Mattiola I, Mantovani A, Locati M. The tetraspan MS4A family in homeostasis, immunity, and disease. Trends Immunol 2021; 42:764-781. [PMID: 34384709 DOI: 10.1016/j.it.2021.07.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 01/20/2023]
Abstract
The membrane-spanning 4A (MS4A) family includes 18 members with a tetraspan structure in humans. They are differentially and selectively expressed in immunocompetent cells, such as B cells (CD20/MS4A1) and macrophages (MS4A4A), and associate with, and modulate the signaling activity of, different classes of immunoreceptor, including pattern recognition receptors (PRRs) and Ig receptors. Evidence from preclinical models and genetic evidence from humans suggest that members of the MS4A family have key roles in different pathological settings, including cancer, infectious diseases, and neurodegeneration. Therefore, MS4A family members might serve as candidate biomarkers and therapeutic targets for various conditions.
Collapse
Affiliation(s)
- Irene Mattiola
- Humanitas Clinical and Research Center IRCCS, Rozzano, Italy; Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charitè - Universitätsmedizin Berlin, Germany; Berlin Institute of Health, Berlin, Germany; Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, Berlin, Germany.
| | - Alberto Mantovani
- Humanitas Clinical and Research Center IRCCS, Rozzano, Italy; Department of Biomedical Sciences, Humanitas University, Rozzano, Italy; The William Harvey Research Institute, Queen Mary University of London, London, UK.
| | - Massimo Locati
- Humanitas Clinical and Research Center IRCCS, Rozzano, Italy; Department of Medical Biotechnologies and Translation Medicine, University of Milan, Italy.
| |
Collapse
|
79
|
Liu Y, Wang X, Yang F, Zheng Y, Ye T, Yang L. Immunomodulatory Role and Therapeutic Potential of Non-Coding RNAs Mediated by Dendritic Cells in Autoimmune and Immune Tolerance-Related Diseases. Front Immunol 2021; 12:678918. [PMID: 34394079 PMCID: PMC8360493 DOI: 10.3389/fimmu.2021.678918] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/15/2021] [Indexed: 02/05/2023] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells that act as a bridge between innate immunity and adaptive immunity. After activation, DCs differentiate into subtypes with different functions, at which point they upregulate co-stimulatory molecules and produce various cytokines and chemokines. Activated DCs also process antigens for presentation to T cells and regulate the differentiation and function of T cells to modulate the immune state of the body. Non-coding RNAs, RNA transcripts that are unable to encode proteins, not only participate in the pathological mechanisms of autoimmune-related diseases but also regulate the function of immune cells in these diseases. Accumulating evidence suggests that dysregulation of non-coding RNAs contributes to DC differentiation, functions, and so on, consequently producing effects in various autoimmune diseases. In this review, we summarize the main non-coding RNAs (miRNAs, lncRNAs, circRNAs) that regulate DCs in pathological mechanisms and have tremendous potential to give rise to novel therapeutic targets and strategies for multiple autoimmune diseases and immune tolerance-related diseases.
Collapse
Affiliation(s)
- Yifeng Liu
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoze Wang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Fan Yang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Yanyi Zheng
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Tinghong Ye
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Li Yang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
80
|
Abstract
Myocardial infarction (MI) is an irreversible damage of the heart muscle, which often leads to adverse cardiac remodeling and progressive heart failure. After MI, immune cells play a vital role in the clearance of the dying tissue and cardiac remodeling. Post-MI events include the release of danger signals by necrotic cardiomyocytes and the migration of the inflammatory cells, such as dendritic cells, neutrophils, monocytes, and macrophages, into the site of the cardiac injury to digest the cell debris and secrete a variety of inflammatory factors activating the inflammatory response. In this review, we focus on the role of immune cells in the cardiac remodeling after MI and the novel immunotherapies targeting immune cells.
Collapse
|
81
|
Sernoskie SC, Jee A, Uetrecht JP. The Emerging Role of the Innate Immune Response in Idiosyncratic Drug Reactions. Pharmacol Rev 2021; 73:861-896. [PMID: 34016669 DOI: 10.1124/pharmrev.120.000090] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Idiosyncratic drug reactions (IDRs) range from relatively common, mild reactions to rarer, potentially life-threatening adverse effects that pose significant risks to both human health and successful drug discovery. Most frequently, IDRs target the liver, skin, and blood or bone marrow. Clinical data indicate that most IDRs are mediated by an adaptive immune response against drug-modified proteins, formed when chemically reactive species of a drug bind to self-proteins, making them appear foreign to the immune system. Although much emphasis has been placed on characterizing the clinical presentation of IDRs and noting implicated drugs, limited research has focused on the mechanisms preceding the manifestations of these severe responses. Therefore, we propose that to address the knowledge gap between drug administration and onset of a severe IDR, more research is required to understand IDR-initiating mechanisms; namely, the role of the innate immune response. In this review, we outline the immune processes involved from neoantigen formation to the result of the formation of the immunologic synapse and suggest that this framework be applied to IDR research. Using four drugs associated with severe IDRs as examples (amoxicillin, amodiaquine, clozapine, and nevirapine), we also summarize clinical and animal model data that are supportive of an early innate immune response. Finally, we discuss how understanding the early steps in innate immune activation in the development of an adaptive IDR will be fundamental in risk assessment during drug development. SIGNIFICANCE STATEMENT: Although there is some understanding that certain adaptive immune mechanisms are involved in the development of idiosyncratic drug reactions, the early phase of these immune responses remains largely uncharacterized. The presented framework refocuses the investigation of IDR pathogenesis from severe clinical manifestations to the initiating innate immune mechanisms that, in contrast, may be quite mild or clinically silent. A comprehensive understanding of these early influences on IDR onset is crucial for accurate risk prediction, IDR prevention, and therapeutic intervention.
Collapse
Affiliation(s)
- Samantha Christine Sernoskie
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy (S.C.S., J.P.U.), and Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (A.J., J.P.U.)
| | - Alison Jee
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy (S.C.S., J.P.U.), and Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (A.J., J.P.U.)
| | - Jack Paul Uetrecht
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy (S.C.S., J.P.U.), and Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (A.J., J.P.U.)
| |
Collapse
|
82
|
Sohn M, Na HY, Shin HS, Ryu SH, Park S, In H, Choi W, Park JS, Hwang S, Chu MK, Park CG. Global Gene Expression of T Cells Is Differentially Regulated by Peritoneal Dendritic Cell Subsets in an IL-2 Dependent Manner. Front Immunol 2021; 12:648348. [PMID: 34079542 PMCID: PMC8165281 DOI: 10.3389/fimmu.2021.648348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/29/2021] [Indexed: 12/23/2022] Open
Abstract
Dendritic cells (DCs) in peripheral tissues may have a unique role to regulate innate and adaptive immune responses to antigens that enter the tissues. Peritoneal cavity is the body compartment surrounding various tissues and organs and housing diverse immune cells. Here, we investigated the specialized features of classical DC (cDC) subsets following the intraperitoneal injection of a model antigen ovalbumin (OVA). Peritoneal cDC1s were superior to cDC2s in activating OVA-specific CD8 T cells, while both cDCs were similar in stimulating OVA-specific CD4 T cells. Each peritoneal cDC subset differentially regulated the homing properties of CD8 T cells. CD8 T cells stimulated by cDC1s displayed a higher level of lung-homing receptor CCR4, whereas those stimulated by cDC2s prominently expressed various homing receptors including gut-homing molecules CCR9 and α4β7. Also, we found that cDC1s played a dominating role over cDC2s in controlling the overall gene expression of CD8 T cells. Soluble factor(s) emanating from CD8 T cells stimulated by peritoneal cDC1s were responsible for mediating this dominance of cDC1s, and we identified IL-2 as a soluble factor regulating the global gene expression of T cells. Collectively, our study indicates that different peritoneal cDC subsets effectively diversify T cell responses by altering the level of cytokines, such as IL-2, in the milieu.
Collapse
Affiliation(s)
- Moah Sohn
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Hye Young Na
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.,Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyun Soo Shin
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Seul Hye Ryu
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Sejung Park
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyunju In
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Wanho Choi
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Ji Soo Park
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Soomin Hwang
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Min Kyung Chu
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Chae Gyu Park
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.,Therapeutic Antibody Research Center, GENUV Inc., Seoul, South Korea.,Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
83
|
Vanderkerken M, Baptista AP, De Giovanni M, Fukuyama S, Browaeys R, Scott CL, Norris PS, Eberl G, Di Santo JP, Vivier E, Saeys Y, Hammad H, Cyster JG, Ware CF, Tumanov AV, De Trez C, Lambrecht BN. ILC3s control splenic cDC homeostasis via lymphotoxin signaling. J Exp Med 2021; 218:e20190835. [PMID: 33724364 PMCID: PMC7970251 DOI: 10.1084/jem.20190835] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/12/2020] [Accepted: 02/05/2021] [Indexed: 12/13/2022] Open
Abstract
The spleen contains a myriad of conventional dendritic cell (cDC) subsets that protect against systemic pathogen dissemination by bridging antigen detection to the induction of adaptive immunity. How cDC subsets differentiate in the splenic environment is poorly understood. Here, we report that LTα1β2-expressing Rorgt+ ILC3s, together with B cells, control the splenic cDC niche size and the terminal differentiation of Sirpα+CD4+Esam+ cDC2s, independently of the microbiota and of bone marrow pre-cDC output. Whereas the size of the splenic cDC niche depended on lymphotoxin signaling only during a restricted time frame, the homeostasis of Sirpα+CD4+Esam+ cDC2s required continuous lymphotoxin input. This latter property made Sirpα+CD4+Esam+ cDC2s uniquely susceptible to pharmacological interventions with LTβR agonists and antagonists and to ILC reconstitution strategies. Together, our findings demonstrate that LTα1β2-expressing Rorgt+ ILC3s drive splenic cDC differentiation and highlight the critical role of ILC3s as perpetual regulators of lymphoid tissue homeostasis.
Collapse
MESH Headings
- Animals
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/immunology
- Cell Adhesion Molecules/metabolism
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Female
- Immunity, Innate
- Lymphoid Tissue/cytology
- Lymphoid Tissue/immunology
- Lymphoid Tissue/metabolism
- Lymphotoxin beta Receptor/genetics
- Lymphotoxin beta Receptor/immunology
- Lymphotoxin beta Receptor/metabolism
- Lymphotoxin-alpha/genetics
- Lymphotoxin-alpha/immunology
- Lymphotoxin-alpha/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/immunology
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
- Spleen/cytology
- Spleen/immunology
- Spleen/metabolism
- Mice
Collapse
Affiliation(s)
- Matthias Vanderkerken
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGhent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Antonio P. Baptista
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGhent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Marco De Giovanni
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
| | - Satoshi Fukuyama
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Robin Browaeys
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Charlotte L. Scott
- Laboratory of Myeloid Cell Ontogeny and Functional Specialization, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Paula S. Norris
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Gerard Eberl
- Institut Pasteur, Microenvironment and Immunity Unit, Paris, France
- Institut National de la Santé et de la Recherche Médicale U1224, Paris, France
| | - James P. Di Santo
- Institut Pasteur, Innate Immunity Unit, Department of Immunology, Paris, France
- Institut National de la Santé et de la Recherche Médicale U1223, Paris, France
| | - Eric Vivier
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France
- Aix Marseille University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d’Immunologie de Marseille-Luminy, Marseille, France
- Assistance Publique - Hôpitaux de Marseille, Hôpital de la Timone, Service d’Immunologie, Marseille-Immunopôle, Marseille, France
| | - Yvan Saeys
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Hamida Hammad
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGhent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Jason G. Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
| | - Carl F. Ware
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Alexei V. Tumanov
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Carl De Trez
- Laboratory of Cellular and Molecular Immunology, Vrij Universiteit Brussel, Brussels, Belgium
| | - Bart N. Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGhent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
84
|
Nutritional immunity: the impact of metals on lung immune cells and the airway microbiome during chronic respiratory disease. Respir Res 2021; 22:133. [PMID: 33926483 PMCID: PMC8082489 DOI: 10.1186/s12931-021-01722-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022] Open
Abstract
Nutritional immunity is the sequestration of bioavailable trace metals such as iron, zinc and copper by the host to limit pathogenicity by invading microorganisms. As one of the most conserved activities of the innate immune system, limiting the availability of free trace metals by cells of the immune system serves not only to conceal these vital nutrients from invading bacteria but also operates to tightly regulate host immune cell responses and function. In the setting of chronic lung disease, the regulation of trace metals by the host is often disrupted, leading to the altered availability of these nutrients to commensal and invading opportunistic pathogenic microbes. Similarly, alterations in the uptake, secretion, turnover and redox activity of these vitally important metals has significant repercussions for immune cell function including the response to and resolution of infection. This review will discuss the intricate role of nutritional immunity in host immune cells of the lung and how changes in this fundamental process as a result of chronic lung disease may alter the airway microbiome, disease progression and the response to infection.
Collapse
|
85
|
Schineis P, Kotkowska ZK, Vogel-Kindgen S, Friess MC, Theisen M, Schwyter D, Hausammann L, Subedi S, Varypataki EM, Waeckerle-Men Y, Kolm I, Kündig TM, Høgset A, Gander B, Halin C, Johansen P. Photochemical internalization (PCI)-mediated activation of CD8 T cells involves antigen uptake and CCR7-mediated transport by migratory dendritic cells to draining lymph nodes. J Control Release 2021; 332:96-108. [PMID: 33609623 DOI: 10.1016/j.jconrel.2021.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 01/22/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022]
Abstract
Antigen cross-presentation to cytotoxic CD8+ T cells is crucial for the induction of anti-tumor and anti-viral immune responses. Recently, co-encapsulation of photosensitizers and antigens into microspheres and subsequent photochemical internalization (PCI) of antigens in antigen presenting cells has emerged as a promising new strategy for inducing antigen-specific CD8+ T cell responses in vitro and in vivo. However, the exact cellular mechanisms have hardly been investigated in vivo, i.e., which cell types take up antigen-loaded microspheres at the site of injection, or in which secondary lymphoid organ does T cell priming occur? We used spray-dried poly(lactic-co-glycolic acid) (PLGA) microspheres loaded with ovalbumin and the photosensitizer tetraphenyl chlorine disulfonate (TPCS2a) to investigate these processes in vivo. Intravital microscopy and flow cytometric analysis of the murine ear skin revealed that dendritic cells (DCs) take up PLGA microspheres in peripheral tissues. Illumination then caused photoactivation of TPCS2a and induced local tissue inflammation that enhanced CCR7-dependent migration of microsphere-containing DCs to tissue-draining lymph nodes (LNs), i.e., the site of CD8+ T cell priming. The results contribute to a better understanding of the functional mechanism of PCI-mediated vaccination and highlight the importance of an active transport of vaccine microspheres by antigen presenting cells to draining LNs.
Collapse
Affiliation(s)
- Philipp Schineis
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Zuzanna K Kotkowska
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland; Department of Dermatology, University of Zurich, Gloriastrasse 31, 8091 Zurich, Switzerland
| | - Sarah Vogel-Kindgen
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Mona C Friess
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Martine Theisen
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - David Schwyter
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Lucy Hausammann
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Saurav Subedi
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Eleni M Varypataki
- Department of Dermatology, University of Zurich, Gloriastrasse 31, 8091 Zurich, Switzerland
| | - Ying Waeckerle-Men
- Department of Dermatology, University of Zurich, Gloriastrasse 31, 8091 Zurich, Switzerland
| | - Isabel Kolm
- Department of Dermatology, University Hospital Zurich, Gloriastrasse 31, 8091 Zurich, Switzerland
| | - Thomas M Kündig
- Department of Dermatology, University of Zurich, Gloriastrasse 31, 8091 Zurich, Switzerland; Department of Dermatology, University Hospital Zurich, Gloriastrasse 31, 8091 Zurich, Switzerland
| | - Anders Høgset
- PCI Biotech AS, Ullernchauséen 64, 0379 Oslo, Norway
| | - Bruno Gander
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland.
| | - Pål Johansen
- Department of Dermatology, University of Zurich, Gloriastrasse 31, 8091 Zurich, Switzerland; Department of Dermatology, University Hospital Zurich, Gloriastrasse 31, 8091 Zurich, Switzerland.
| |
Collapse
|
86
|
Wooster AL, Girgis LH, Brazeale H, Anderson TS, Wood LM, Lowe DB. Dendritic cell vaccine therapy for colorectal cancer. Pharmacol Res 2021; 164:105374. [PMID: 33348026 PMCID: PMC7867624 DOI: 10.1016/j.phrs.2020.105374] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer-related deaths in the United States despite an array of available treatment options. Current standard-of-care interventions for this malignancy include surgical resection, chemotherapy, and targeted therapies depending on the disease stage. Specifically, infusion of anti-vascular endothelial growth factor agents in combination with chemotherapy was an important development in improving the survival of patients with advanced colorectal cancer, while also helping give rise to other forms of anti-angiogenic therapies. Yet, one approach by which tumor angiogenesis may be further disrupted is through the administration of a dendritic cell (DC) vaccine targeting tumor-derived blood vessels, leading to cytotoxic immune responses that decrease tumor growth and synergize with other systemic therapies. Early generations of such vaccines exhibited protection against various forms of cancer in pre-clinical models, but clinical results have historically been disappointing. Sipuleucel-T (Provenge®) was the first, and to-date, only dendritic cell-based therapy to receive FDA approval after significantly increasing overall survival in prostate cancer patients. The unparalleled success of Sipuleucel-T has helped revitalize the clinical development of dendritic cell vaccines, which will be examined in this review. We also highlight the promise of these vaccines to instill anti-angiogenic immunity for individuals with advanced colorectal cancer.
Collapse
Affiliation(s)
- Amanda L Wooster
- Department of Immunotherotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, United States
| | - Lydia H Girgis
- Department of Immunotherotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, United States
| | - Hayley Brazeale
- Department of Immunotherotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, United States
| | - Trevor S Anderson
- Department of Immunotherotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, United States
| | - Laurence M Wood
- Department of Immunotherotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, United States
| | - Devin B Lowe
- Department of Immunotherotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, United States.
| |
Collapse
|
87
|
Dysregulation of the gut-brain-skin axis and key overlapping inflammatory and immune mechanisms of psoriasis and depression. Biomed Pharmacother 2021; 137:111065. [PMID: 33540138 DOI: 10.1016/j.biopha.2020.111065] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/14/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022] Open
Abstract
The occurrence, progression and recurrence of psoriasis are thought to be related to mood and psychological disorders such as depression. Psoriasis can lead to depression, and depression, in turn, exacerbates psoriasis. No specific mechanism can explain the association between psoriasis and depression. The gut-brain-skin axis has been used to explain correlations among the gut microbiota, emotional states and systemic and skin inflammation, and this axis may be associated with overlapping mechanisms between psoriasis and depression. Therefore, in the context of the gut-brain-skin axis, we systematically summarized and comparatively analysed the inflammatory and immune mechanisms of psoriasis and depression and illustrated the dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis and the gut microbiota. This review provides a theoretical basis and new targets for the treatment of psoriasis and depression.
Collapse
|
88
|
Gerhard GM, Bill R, Messemaker M, Klein AM, Pittet MJ. Tumor-infiltrating dendritic cell states are conserved across solid human cancers. J Exp Med 2021; 218:e20200264. [PMID: 33601412 PMCID: PMC7754678 DOI: 10.1084/jem.20200264] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/23/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
Dendritic cells (DCs) contribute a small fraction of the tumor microenvironment but are emerging as an essential antitumor component based on their ability to foster T cell immunity and immunotherapy responses. Here, we discuss our expanding view of DC heterogeneity in human tumors, as revealed with meta-analysis of single-cell transcriptome profiling studies. We further examine tumor-infiltrating DC states that are conserved across patients, cancer types, and species and consider the fundamental and clinical relevance of these findings. Finally, we provide an outlook on research opportunities to further explore mechanisms governing tumor-infiltrating DC behavior and functions.
Collapse
Affiliation(s)
- Genevieve M. Gerhard
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Ruben Bill
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Marius Messemaker
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Allon M. Klein
- Department of Systems Biology, Harvard Medical School, Boston, MA
| | - Mikael J. Pittet
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Department of Oncology, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
89
|
Bajana S, Thomas K, Georgescu C, Zhao Y, Wren JD, Kovats S, Sun XH. Augmenting E Protein Activity Impairs cDC2 Differentiation at the Pre-cDC Stage. Front Immunol 2020; 11:577718. [PMID: 33391258 PMCID: PMC7775562 DOI: 10.3389/fimmu.2020.577718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/12/2020] [Indexed: 11/24/2022] Open
Abstract
Dendritic cell (DC) specification and differentiation are controlled by a circuit of transcription factors, which regulate the expression of DC effector genes as well as the transcription factors themselves. E proteins are a widely expressed basic helix-loop-helix family of transcription factors whose activity is suppressed by their inhibitors, ID proteins. Loss-of-function studies have demonstrated the essential role of both E and ID proteins in different aspects of DC development. In this study, we employed a gain-of-function approach to illustrate the importance of the temporal control of E protein function in maintaining balanced differentiation of conventional DC (cDC) subsets, cDC1 and cDC2. We expressed an E protein mutant, ET2, which dimerizes with endogenous E proteins to overcome inhibition by ID proteins and activate the transcription of E protein targets. Induction of ET2 expression at the hematopoietic progenitor stage led to a dramatic reduction in cDC2 precursors (pre-cDC2s) with little impact on pre-cDC1s. Consequently, we observed decreased numbers of cDC2s in the spleen and lung, as well as in FLT3L-driven bone marrow-derived DC cultures. Furthermore, in mice bearing ET2, we detected increased expression of the IRF8 transcription factor in cDC2s, in which IRF8 is normally down-regulated and IRF4 up-regulated. This aberrant expression of IRF8 induced by ET2 may contribute to the impairment of cDC2 differentiation. In addition, analyses of the transcriptomes of splenic cDC1s and cDC2s revealed that ET2 expression led to a shift, at least in part, of the transcriptional profile characteristic of cDC2s to that of cDC1. Together, these results suggest that a precise control of E protein activity is crucial for balanced DC differentiation.
Collapse
Affiliation(s)
- Sandra Bajana
- Program in Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Kevin Thomas
- Program in Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Constantin Georgescu
- Program in Genes and Human Diseases, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Ying Zhao
- Program in Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Jonathan D. Wren
- Program in Genes and Human Diseases, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Susan Kovats
- Program in Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Xiao-Hong Sun
- Program in Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| |
Collapse
|
90
|
Park SC, Shim D, Kim H, Bak Y, Choi DY, Yoon JH, Kim CH, Shin SJ. Fms-Like Tyrosine Kinase 3-Independent Dendritic Cells Are Major Mediators of Th2 Immune Responses in Allergen-Induced Asthmatic Mice. Int J Mol Sci 2020; 21:ijms21249508. [PMID: 33327561 PMCID: PMC7765069 DOI: 10.3390/ijms21249508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/25/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
Dendritic cells (DCs) are the main mediators of Th2 immune responses in allergic asthma, and Fms-like tyrosine kinase 3 ligand (Flt3L) is an important growth factor for the development and homeostasis of DCs. This study identified the DC populations that primarily cause the initiation and development of allergic lung inflammation using Fms-like tyrosine kinase 3 (Flt3) knockout (KO) mice with allergen-induced allergic asthma. We observed type 2 allergic lung inflammation with goblet cell hyperplasia in Flt3 KO mice, despite a significant reduction in total DCs, particularly CD103+ DCs, which was barely detected. In addition, bone marrow-derived dendritic cells (BMDCs) from Flt3 KO mice directed Th2 immune responses in vitro, and the adoptive transfer of these BMDCs exacerbated allergic asthma with more marked Th2 responses than that of BMDCs from wild-type (WT) mice. Furthermore, we found that Flt3L regulated the in vitro expression of OX40 ligand (OX40L) in DCs, which is correlated with DC phenotype in in vivo models. In conclusion, we revealed that Flt3-independent CD11b+ DCs direct Th2 responses with the elevated OX40L and are the primary cause of allergic asthma. Our findings suggest that Flt3 is required to control type 2 allergic inflammation.
Collapse
Affiliation(s)
- Sang Chul Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07441, Korea;
| | - Dahee Shim
- Department of Microbiology, Yonsei University College of Medicine, Seoul 03722, Korea; (D.S.); (H.K.); (Y.B.)
| | - Hongmin Kim
- Department of Microbiology, Yonsei University College of Medicine, Seoul 03722, Korea; (D.S.); (H.K.); (Y.B.)
- Brain Korea 21 Program for Leading Universities and Students (PLUS) Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Yeeun Bak
- Department of Microbiology, Yonsei University College of Medicine, Seoul 03722, Korea; (D.S.); (H.K.); (Y.B.)
- Brain Korea 21 Program for Leading Universities and Students (PLUS) Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Da Yeon Choi
- Hallym University Industry-Academic Cooperation Foundation, Chuncheon 24252, Korea;
| | - Joo-Heon Yoon
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Korea;
- Global Research Laboratory for Allergic Airway Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
- The Airway Mucus Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Chang-Hoon Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Korea;
- The Airway Mucus Institute, Yonsei University College of Medicine, Seoul 03722, Korea
- Correspondence: (C.-H.K.); (S.J.S.); Tel.: +82-2-2228-3609 (C.-H.K.); +82-2-2228-1813 (S.J.S.)
| | - Sung Jae Shin
- Brain Korea 21 Program for Leading Universities and Students (PLUS) Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
- Global Research Laboratory for Allergic Airway Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
- Correspondence: (C.-H.K.); (S.J.S.); Tel.: +82-2-2228-3609 (C.-H.K.); +82-2-2228-1813 (S.J.S.)
| |
Collapse
|
91
|
Wilkie H, Janssen E, Leyva-Castillo JM, Geha RS. DOCK8 Expression in Regulatory T Cells Maintains their Stability and Limits Contact Hypersensitivity. J Invest Dermatol 2020; 141:1503-1511.e3. [PMID: 33171169 DOI: 10.1016/j.jid.2020.09.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/14/2020] [Accepted: 09/16/2020] [Indexed: 12/25/2022]
Abstract
Chronic dermatitis is a hallmark of Dedicator of cytokinesis 8 (DOCK8) deficiency. The migration of DOCK8-deficient T cells to the skin and their survival there have been reported to be defective. Surprisingly, we found that Dock8-/- mice demonstrated an exaggerated contact hypersensitivity (CHS) response to oxazolone with increased ear swelling, T-cell infiltration, and expression of Ifng. To understand the mechanisms of persistent skin inflammation in DOCK8 deficiency, we examined mice with selective deficiency of DOCK8 in T cells or T regulatory cells (Tregs) and found that both have exaggerated CHS. Moreover, oral tolerance to oxazolone, mediated by Tregs, was impaired in Dock8-/- mice. Transfer of Tregs from oxazolone-sensitized wild-type mice, but not Dock8-/- mice, reduced the CHS response of Dock8-/- recipients. Lack of DOCK8 in Tregs resulted in their acquisition of a pathogenic FOXP3+T-bet+IFNγ+ phenotype at CHS sites and promoted their conversion into ex-Tregs. The transfer of Tregs from Dock8-/- mice increased the CHS response of wild-type recipients to oxazolone. Thus, DOCK8 expression in Tregs limits CHS by promoting Treg stability and fitness in inflamed skin. Interventions aimed at ameliorating Treg function may be useful in treating skin inflammation in DOCK8 deficiency.
Collapse
Affiliation(s)
- Hazel Wilkie
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Erin Janssen
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Juan Manuel Leyva-Castillo
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
92
|
Arranz E, De Prado Á, Fiz-López A, Arribas E, Garrote JA, Bernardo D. Human intestinal dendritic cell and macrophage subsets in coeliac disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 358:85-104. [PMID: 33707058 DOI: 10.1016/bs.ircmb.2020.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dendritic cells (DC) and macrophages (Mϕ) constitute the most abundant antigen presenting cells in the human intestinal mucosa. In resting conditions, they are essential to maintain the mechanisms of immune tolerance toward food antigens and commensals, at the time that they keep the capacity to initiate and maintain antigen-specific pro-inflammatory immune responses toward invading pathogens. Nevertheless, this delicate equilibrium between immunity and tolerance is not perfect, like in coeliac disease (CD), where DC and Mϕ drive the development of antigen-specific immune responses toward dietary gluten peptides. In this review, we provide therefore a comprehensive discussion about CD pathogenesis, the human intestinal immune system and the biology of intestinal DC and Mϕ both in resting conditions and in CD. Last, but not least, we discuss about all the remaining issues pending to be studied regarding DC and Mϕ contribution toward CD pathogenesis. This may allow the identification of unique and specific factors which may be useful in the clinical practice, as well as identify new therapeutic targets in order to reestablish the loss intestinal homeostasis in CD.
Collapse
Affiliation(s)
- Eduardo Arranz
- Mucosal Immunology Lab. Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid-CSIC, Valladolid, Spain
| | - Ángel De Prado
- Mucosal Immunology Lab. Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid-CSIC, Valladolid, Spain
| | - Aida Fiz-López
- Mucosal Immunology Lab. Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid-CSIC, Valladolid, Spain
| | - Elisa Arribas
- Mucosal Immunology Lab. Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid-CSIC, Valladolid, Spain
| | - José A Garrote
- Mucosal Immunology Lab. Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid-CSIC, Valladolid, Spain; Servicio de Análisis Clínicos, Hospital Universitario Río Hortega, Valladolid, Spain
| | - David Bernardo
- Mucosal Immunology Lab. Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid-CSIC, Valladolid, Spain.
| |
Collapse
|
93
|
Summers KM, Bush SJ, Hume DA. Network analysis of transcriptomic diversity amongst resident tissue macrophages and dendritic cells in the mouse mononuclear phagocyte system. PLoS Biol 2020; 18:e3000859. [PMID: 33031383 PMCID: PMC7575120 DOI: 10.1371/journal.pbio.3000859] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 10/20/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
The mononuclear phagocyte system (MPS) is a family of cells including progenitors, circulating blood monocytes, resident tissue macrophages, and dendritic cells (DCs) present in every tissue in the body. To test the relationships between markers and transcriptomic diversity in the MPS, we collected from National Center for Biotechnology Information Gene Expression Omnibus (NCBI-GEO) a total of 466 quality RNA sequencing (RNA-seq) data sets generated from mouse MPS cells isolated from bone marrow, blood, and multiple tissues. The primary data were randomly downsized to a depth of 10 million reads and requantified. The resulting data set was clustered using the network analysis tool BioLayout. A sample-to-sample matrix revealed that MPS populations could be separated based upon tissue of origin. Cells identified as classical DC subsets, cDC1s and cDC2s, and lacking Fcgr1 (encoding the protein CD64) were contained within the MPS cluster, no more distinct than other MPS cells. A gene-to-gene correlation matrix identified large generic coexpression clusters associated with MPS maturation and innate immune function. Smaller coexpression gene clusters, including the transcription factors that drive them, showed higher expression within defined isolated cells, including monocytes, macrophages, and DCs isolated from specific tissues. They include a cluster containing Lyve1 that implies a function in endothelial cell (EC) homeostasis, a cluster of transcripts enriched in intestinal macrophages, and a generic lymphoid tissue cDC cluster associated with Ccr7. However, transcripts encoding Adgre1, Itgax, Itgam, Clec9a, Cd163, Mertk, Mrc1, Retnla, and H2-a/e (encoding class II major histocompatibility complex [MHC] proteins) and many other proposed macrophage subset and DC lineage markers each had idiosyncratic expression profiles. Coexpression of immediate early genes (for example, Egr1, Fos, Dusp1) and inflammatory cytokines and chemokines (tumour necrosis factor [Tnf], Il1b, Ccl3/4) indicated that all tissue disaggregation and separation protocols activate MPS cells. Tissue-specific expression clusters indicated that all cell isolation procedures also co-purify other unrelated cell types that may interact with MPS cells in vivo. Comparative analysis of RNA-seq and single-cell RNA-seq (scRNA-seq) data from the same lung cell populations indicated that MPS heterogeneity implied by global cluster analysis may be even greater at a single-cell level. This analysis highlights the power of large data sets to identify the diversity of MPS cellular phenotypes and the limited predictive value of surface markers to define lineages, functions, or subpopulations.
Collapse
Affiliation(s)
- Kim M. Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Stephen J. Bush
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - David A. Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
94
|
Zhang W, Lim SM, Hwang J, Ramalingam S, Kim M, Jin JO. Monophosphoryl lipid A-induced activation of plasmacytoid dendritic cells enhances the anti-cancer effects of anti-PD-L1 antibodies. Cancer Immunol Immunother 2020; 70:689-700. [PMID: 32902663 DOI: 10.1007/s00262-020-02715-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/31/2020] [Indexed: 12/23/2022]
Abstract
Monophosphoryl lipid A (MPLA) is a toll-like receptor 4 ligand that promotes immune activation in mice and humans, without undesired inflammation. Immunotherapy by the combining immune checkpoint blockade and MPLA has shown promising anti-cancer effects in both mice and humans. In this study, we explored how MPLA enhanced the anti-cancer effects of anti-PD-L1 antibodies (Abs). Anti-cancer immunity induced by the combination of anti-PD-L1 Abs and MPLA failed in CD4 and CD8 cell-depleted mice. Moreover, the combination treatment of anti-PD-L1 Abs and MPLA synergistically enhanced the activation of plasmacytoid dendritic cells (pDCs) in the mouse in vivo, while conventional DCs were not. In addition, mice treated with anti-PD-L1 Abs and MPLA were not protected from B16 melanoma by blockade of interferon-alpha receptor (IFNAR). The combination of anti-PD-L1 Abs and MPLA also promoted human peripheral blood pDC activation and induced IFN-α-dependent T cell activation. Therefore, these results demonstrate that MPLA enhances anti-PD-L1 Ab-mediated anti-cancer immunity through the activation and IFN-α production of pDCs.
Collapse
Affiliation(s)
- Wei Zhang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, 201508, China
| | - Seong-Min Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, Republic of Korea.,Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Juyoung Hwang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, 201508, China.,Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, Republic of Korea.,Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Srinivasan Ramalingam
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Myunghee Kim
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, Republic of Korea.,Department of Food Science and Technology, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Jun-O Jin
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, 201508, China. .,Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, Republic of Korea. .,Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
95
|
Lim K, Kim TH, Trzeciak A, Amitrano AM, Reilly EC, Prizant H, Fowell DJ, Topham DJ, Kim M. In situ neutrophil efferocytosis shapes T cell immunity to influenza infection. Nat Immunol 2020; 21:1046-1057. [PMID: 32747818 PMCID: PMC7791396 DOI: 10.1038/s41590-020-0746-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
Abstract
Early recruitment of neutrophils from the blood to sites of tissue infection is a hallmark of innate immune responses. However, little is known about the mechanisms by which apoptotic neutrophils are cleared in infected tissues during resolution and the immunological consequences of in situ efferocytosis. Using intravital multiphoton microscopy, we show previously unrecognized motility patterns of interactions between neutrophils and tissue-resident phagocytes within the influenza-infected mouse airway. Newly infiltrated inflammatory monocytes become a chief pool of phagocytes and play a key role in the clearance of highly motile apoptotic neutrophils during the resolution phase. Apoptotic neutrophils further release epidermal growth factor and promote the differentiation of monocytes into tissue-resident antigen-presenting cells for activation of antiviral T cell effector functions. Collectively, these results suggest that the presence of in situ neutrophil resolution at the infected tissue is critical for optimal CD8+ T cell-mediated immune protection.
Collapse
Affiliation(s)
- Kihong Lim
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, USA.
| | - Tae-Hyoun Kim
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, USA
| | - Alissa Trzeciak
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, USA
| | - Andrea M Amitrano
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, USA
| | - Emma C Reilly
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, USA
| | - Hen Prizant
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, USA
| | - Deborah J Fowell
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, USA
| | - David J Topham
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, USA
| | - Minsoo Kim
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
96
|
Chu KL, Batista NV, Girard M, Watts TH. Monocyte-Derived Cells in Tissue-Resident Memory T Cell Formation. THE JOURNAL OF IMMUNOLOGY 2020; 204:477-485. [PMID: 31964721 DOI: 10.4049/jimmunol.1901046] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/02/2019] [Indexed: 12/15/2022]
Abstract
There is currently much interest in how different dendritic cell and macrophage populations contribute to T cell-mediated immunity. Although conventional dendritic cell subsets have received much attention for their role in T cell priming, there is emerging evidence for a role for monocyte-derived APC (MoAPC) in tissue-resident memory T cell (Trm) formation. Cells of the monocyte/macrophage lineage play a key role in providing chemokines and cytokines for the localization, differentiation, and survival of Trm and Trm precursors. In addition, inflammatory MoAPC are the key providers of TNF superfamily costimulatory signals, a signal we refer to as signal 4 for T cell activation. Recent evidence suggests that signal 4 from MoAPC occurs postpriming and substantially increases Trm formation. Key questions remain, such as the Ag dependence of signal 4 and the specific mechanisms by which MoAPC-Trm interactions affect the long-term maintenance of Trm.
Collapse
Affiliation(s)
- Kuan-Lun Chu
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Nathália V Batista
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Mélanie Girard
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Tania H Watts
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
97
|
Soltani S, Mahmoudi M, Farhadi E. Dendritic Cells Currently under the Spotlight; Classification and Subset Based upon New Markers. Immunol Invest 2020; 50:646-661. [PMID: 32597286 DOI: 10.1080/08820139.2020.1783289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dendritic cells (DCs) are considered as a subset of mononuclear phagocytes that composed of multiple subsets with distinct phenotypic features. DCs play crucial roles in the initiation and modulation of immune responses to both allo- and auto-antigens during pathogenic settings, encompassing infectious diseases, cancer, autoimmunity, transplantation, as well as vaccination. DCs play a role in preventing autoimmunity via inducing tolerance to self-antigens. This review focus on the most common subsets of DCs in human. Owing to the low frequencies of DC cells in blood and tissues and also the lack of specific DC markers, studies of DCs have been greatly hindered. Human DCs arise by a dedicated pathway of lympho-myeloid hematopoiesis and give rise into specialized subtypes under the influence of transcription factors that are specific for each linage. In humans, the classification of DCs has been generally separated into the blood and cutaneous subsets, mainly because these parts are more comfortable to examine in humans.
Collapse
Affiliation(s)
- Samaneh Soltani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Farhadi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
98
|
Lee J, Boyce S, Powers J, Baer C, Sassetti CM, Behar SM. CD11cHi monocyte-derived macrophages are a major cellular compartment infected by Mycobacterium tuberculosis. PLoS Pathog 2020; 16:e1008621. [PMID: 32544188 PMCID: PMC7319360 DOI: 10.1371/journal.ppat.1008621] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/26/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
During tuberculosis, lung myeloid cells have two opposing roles: they are an intracellular niche occupied by Mycobacterium tuberculosis, and they restrict bacterial replication. Lung myeloid cells from mice infected with yellow-fluorescent protein expressing M. tuberculosis were analyzed by flow cytometry and transcriptional profiling to identify the cell types infected and their response to infection. CD14, CD38, and Abca1 were expressed more highly by infected alveolar macrophages and CD11cHi monocyte-derived cells compared to uninfected cells. CD14, CD38, and Abca1 "triple positive" (TP) cells had not only the highest infection rates and bacterial loads, but also a strong interferon-γ signature and nitric oxide synthetase-2 production indicating recognition by T cells. Despite evidence of T cell recognition and appropriate activation, these TP macrophages are a cellular compartment occupied by M. tuberculosis long-term. Defining the niche where M. tuberculosis resists elimination promises to provide insight into why inducing sterilizing immunity is a formidable challenge.
Collapse
Affiliation(s)
- Jinhee Lee
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Shayla Boyce
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jennifer Powers
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Christina Baer
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Christopher M. Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Samuel M. Behar
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
99
|
Schroth S, Glinton K, Luo X, Thorp EB. Innate Functions of Dendritic Cell Subsets in Cardiac Allograft Tolerance. Front Immunol 2020; 11:869. [PMID: 32431717 PMCID: PMC7214785 DOI: 10.3389/fimmu.2020.00869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/15/2020] [Indexed: 12/13/2022] Open
Abstract
Survival rates after heart transplant have significantly improved over the last decade. Nevertheless, long-term allograft viability after 10 years remains poor and the sequelae of transplant-associated immunosuppression increases morbidity. Although several studies have implicated roles for lymphocyte-mediated rejection, less is understood with respect to non-major histocompatibility, and innate immune reactivity, which influence graft viability. As immature and mature dendritic cells (DCs) engage in both Major Histocompatibility Complex (MHC)-dependent and MHC-independent immune responses, these cells are at the crossroads of therapeutic strategies that seek to achieve both allograft tolerance and suppression of innate immunity to the allograft. Here we review emerging roles of DC subsets and their molecular protagonists during allograft tolerance and allograft rejection, with a focus on cardiac transplant. New insight into emerging DC subsets in transplant will inform novel strategies for operational tolerance and amelioration of cardiac vasculopathy.
Collapse
Affiliation(s)
- Samantha Schroth
- Department of Pathology and Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Kristofor Glinton
- Department of Pathology and Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Xunrong Luo
- Department of Medicine, School of Medicine, Duke University, Durham, NC, United States
| | - Edward B. Thorp
- Department of Pathology and Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
100
|
Sommariva M, Gagliano N. E-Cadherin in Pancreatic Ductal Adenocarcinoma: A Multifaceted Actor during EMT. Cells 2020; 9:E1040. [PMID: 32331358 PMCID: PMC7226001 DOI: 10.3390/cells9041040] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/14/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a step-wise process observed in normal and tumor cells leading to a switch from epithelial to mesenchymal phenotype. In tumors, EMT provides cancer cells with a metastatic phenotype characterized by E-cadherin down-regulation, cytoskeleton reorganization, motile and invasive potential. E-cadherin down-regulation is known as a key event during EMT. However, E-cadherin expression can be influenced by the different experimental settings and environmental stimuli so that the paradigm of EMT based on the loss of E-cadherin determining tumor cell behavior and fate often becomes an open question. In this review, we aimed at focusing on some critical points in order to improve the knowledge of the dynamic role of epithelial cells plasticity in EMT and, specifically, address the role of E-cadherin as a marker for the EMT axis.
Collapse
Affiliation(s)
| | - Nicoletta Gagliano
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy;
| |
Collapse
|