51
|
Alshanski I, Toraskar S, Shitrit A, Gordon-Levitan D, Jain P, Kikkeri R, Hurevich M, Yitzchaik S. Biocatalysis versus Molecular Recognition in Sialoside-Selective Neuraminidase Biosensing. ACS Chem Biol 2023; 18:605-614. [PMID: 36792550 PMCID: PMC10028605 DOI: 10.1021/acschembio.2c00913] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Sialic acid recognition and hydrolysis are essential parts of cellular function and pathogen infectivity. Neuraminidases are enzymes that detach sialic acid from sialosides, and their inhibition is a prime target for viral infection treatment. The connectivity and type of sialic acid influence the recognition and hydrolysis activity of the many different neuraminidases. The common strategies to evaluate neuraminidase activity, recognition, and inhibition rely on extensive labeling and require a large amount of sialylated glycans. The above limitations make the effort of finding viral inhibitors extremely difficult. We used synthetic sialylated glycans and developed a label-free electrochemical method to show that sialoside structural features lead to selective neuraminidase biosensing. We compared Neu5Ac to Neu5Gc sialosides to evaluate the organism-dependent neuraminidase selectivity-sensitivity relationship. We demonstrated that the type of surface and the glycan monolayer density direct the response to either binding or enzymatic activity. We proved that while the hydrophobic glassy carbon surface increases the interaction with the enzyme hydrophobic interface, the negatively charged interface of the lipoic acid monolayer on gold repels the protein and enables biocatalysis. We showed that the sialoside monolayers can serve as tools to evaluate the inhibition of neuraminidases both by biocatalysis and molecular recognition.
Collapse
Affiliation(s)
- Israel Alshanski
- The Institute of Chemistry and Center of Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Suraj Toraskar
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, India
| | - Ariel Shitrit
- The Institute of Chemistry and Center of Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Daniel Gordon-Levitan
- The Institute of Chemistry and Center of Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Prashant Jain
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, India
| | - Raghavendra Kikkeri
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, India
| | - Mattan Hurevich
- The Institute of Chemistry and Center of Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Shlomo Yitzchaik
- The Institute of Chemistry and Center of Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
52
|
McQuaid C, Solorzano A, Dickerson I, Deane R. Uptake of severe acute respiratory syndrome coronavirus 2 spike protein mediated by angiotensin converting enzyme 2 and ganglioside in human cerebrovascular cells. Front Neurosci 2023; 17:1117845. [PMID: 36875642 PMCID: PMC9980911 DOI: 10.3389/fnins.2023.1117845] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Introduction There is clinical evidence of neurological manifestations in coronavirus disease-19 (COVID-19). However, it is unclear whether differences in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)/spike protein (SP) uptake by cells of the cerebrovasculature contribute to significant viral uptake to cause these symptoms. Methods Since the initial step in viral invasion is binding/uptake, we used fluorescently labeled wild type and mutant SARS-CoV-2/SP to study this process. Three cerebrovascular cell types were used (endothelial cells, pericytes, and vascular smooth muscle cells), in vitro. Results There was differential SARS-CoV-2/SP uptake by these cell types. Endothelial cells had the least uptake, which may limit SARS-CoV-2 uptake into brain from blood. Uptake was time and concentration dependent, and mediated by angiotensin converting enzyme 2 receptor (ACE2), and ganglioside (mono-sialotetrahexasylganglioside, GM1) that is predominantly expressed in the central nervous system and the cerebrovasculature. SARS-CoV-2/SPs with mutation sites, N501Y, E484K, and D614G, as seen in variants of interest, were also differentially taken up by these cell types. There was greater uptake compared to that of the wild type SARS-CoV-2/SP, but neutralization with anti-ACE2 or anti-GM1 antibodies was less effective. Conclusion The data suggested that in addition to ACE2, gangliosides are also an important entry point of SARS-CoV-2/SP into these cells. Since SARS-CoV-2/SP binding/uptake is the initial step in the viral penetration into cells, a longer exposure and higher titer are required for significant uptake into the normal brain. Gangliosides, including GM1, could be an additional potential SARS-CoV-2 and therapeutic target at the cerebrovasculature.
Collapse
Affiliation(s)
| | | | | | - Rashid Deane
- Department of Neuroscience, Del Monte Institute Neuroscience, University of Rochester, University of Rochester Medical Center (URMC), Rochester, NY, United States
| |
Collapse
|
53
|
Wang Y, Yang Y, Guo J, Ju H, Chen Y. Tumor identification via in vivo portable Raman detection of sialic acid with a dual gold nanoprobe system. Chem Sci 2023; 14:923-927. [PMID: 36755728 PMCID: PMC9890552 DOI: 10.1039/d2sc05163j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
A dual gold nanoprobe system was designed for in vivo portable Raman detection of sialic acid (SA) for tumor identification. The dual gold nanoprobe system contained two gold nanoprobes, Au10-DTTC/PEG-PBA and Au40-PEG-SA. Au10-DTTC/PEG-PBA was constructed on a 10 nm gold nanoparticle modified with 3,3'-diethylthia tricarbocyanine iodide (DTTCI) as the Raman reporter and 3-aminophenylboronic acid (APBA) through a thiol PEG succinimidyl carboxymethyl ester (HS-PEG-NHS) linker for specific recognition of SA. Au40-PEG-SA was constructed on a 40 nm gold nanoparticle modified with SA through HS-PEG-NHS. For in vivo detection of SA, Au10-DTTC/PEG-PBA and Au40-PEG-SA were subsequently injected into tumor xenografted mice with optimal interval and retention times. Through the specific recognition between PBA and SA, the conjugates of Au10-DTTC/PEG-PBA and Au40-PEG-SA formed in the tumor region emitted strong SERS signals of DTTC, which could be detected by a portable Raman detector. This work provides a convenient and portable method to detect SA in tumor xenografted mice, which is useful for family-stay identification and clinical cleavage of tumors.
Collapse
Affiliation(s)
- Yuru Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Yuanjiao Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Jingxing Guo
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of TechnologyWuhan 430070P. R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Yunlong Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| |
Collapse
|
54
|
Martínez-Bailén M, Rojo J, Ramos-Soriano J. Multivalent glycosystems for human lectins. Chem Soc Rev 2023; 52:536-572. [PMID: 36545903 DOI: 10.1039/d2cs00736c] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human lectins are involved in a wide variety of biological processes, both physiological and pathological, which have attracted the interest of the scientific community working in the glycoscience field. Multivalent glycosystems have been employed as useful tools to understand carbohydrate-lectin binding processes as well as for biomedical applications. The review shows the different scaffolds designed for a multivalent presentation of sugars and their corresponding binding studies to lectins and in some cases, their biological activities. We summarise this research by organizing based on lectin types to highlight the progression in this active field. The paper provides an overall picture of how these contributions have furnished relevant information on this topic to help in understanding and participate in these carbohydrate-lectin interactions.
Collapse
Affiliation(s)
- Macarena Martínez-Bailén
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain.
| | - Javier Rojo
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain.
| | - Javier Ramos-Soriano
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain.
| |
Collapse
|
55
|
Hunter C, Gao Z, Chen HM, Thompson N, Wakarchuk W, Nitz M, Withers SG, Willis LM. Attenuation of Polysialic Acid Biosynthesis in Cells by the Small Molecule Inhibitor 8-Keto-sialic acid. ACS Chem Biol 2023; 18:41-48. [PMID: 36577399 DOI: 10.1021/acschembio.2c00638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Sialic acids are key mediators of cell function, particularly with regard to cellular interactions with the surrounding environment. Reagents that modulate the display of specific sialyl glycoforms at the cell surface would be useful biochemical tools and potentially allow for therapeutic intervention in numerous challenging chronic diseases. While multiple strategies are being explored for the control of cell surface sialosides, none that shows high selectivity between sialyltransferases or that targets a specific sialyl glycoform has yet to emerge. Here, we describe a strategy to block the formation of α2,8-linked sialic acid chains (oligo- and polysialic acid) through the use of 8-keto-sialic acid as a chain-terminating metabolic inhibitor that, if incorporated, cannot be elongated. 8-Keto-sialic acid is nontoxic at effective concentrations and serves to block polysialic acid synthesis in cancer cell lines and primary immune cells, with minimal effects on other sialyl glycoforms.
Collapse
Affiliation(s)
- Carmanah Hunter
- Department of Biological Sciences, University of Alberta, Edmonton, T6G 2R3, Canada
| | - Zhizeng Gao
- Department of Chemistry, University of British Columbia, Vancouver, V6T 1Z1, Canada
| | - Hong-Ming Chen
- Department of Chemistry, University of Toronto, Toronto, M5S 3H6, Canada
| | - Nicole Thompson
- Department of Biological Sciences, University of Alberta, Edmonton, T6G 2R3, Canada
| | - Warren Wakarchuk
- Department of Biological Sciences, University of Alberta, Edmonton, T6G 2R3, Canada
| | - Mark Nitz
- Department of Chemistry, University of Toronto, Toronto, M5S 3H6, Canada
| | - Stephen G Withers
- Department of Chemistry, University of British Columbia, Vancouver, V6T 1Z1, Canada
| | - Lisa M Willis
- Department of Biological Sciences, University of Alberta, Edmonton, T6G 2R3, Canada
| |
Collapse
|
56
|
Red Meat Derived Glycan, N-acetylneuraminic Acid (Neu5Ac) Is a Major Sialic Acid in Different Skeletal Muscles and Organs of Nine Animal Species-A Guideline for Human Consumers. Foods 2023; 12:foods12020337. [PMID: 36673429 PMCID: PMC9858279 DOI: 10.3390/foods12020337] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/29/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Sialic acids (Sias) are acidic monosaccharides and red meat is a notable dietary source of Sia for humans. Among the Sias, N-acetylneuraminic acid (Neu5Ac) and 2-keto-3-deoxy-D-glycero-D-galacto-2-nonulosonic acid (KDN) play multiple roles in immunity and brain cognition. On the other hand, N-glycolylneuraminic acid (Neu5Gc) is a non-human Sia capable of potentiating cancer and inflammation in the human body. However, their expression within the animal kingdom remains unknown. We determined Neu5Ac and KDN in skeletal muscle and organs across a range (n = 9) of species using UHPLC and found that (1) caprine skeletal muscle expressed the highest Neu5Ac (661.82 ± 187.96 µg/g protein) following by sheep, pig, dog, deer, cat, horse, kangaroo and cattle; (2) Among organs, kidney contained the most Neu5Ac (1992−3050 µg/g protein) across species; (3) ~75−98% of total Neu5Ac was conjugated, except for in dog and cat muscle (54−58%); (4) <1% of total Sia was KDN, in which ~60−100% was unconjugated, with the exception of sheep liver and goat muscle (~12−25%); (5) Neu5Ac was the major Sia in almost all tested organs. This study guides consumers to the safest red meat relating to Neu5Ac and Neu5Gc content, though the dog and cat meat are not conventional red meat globally.
Collapse
|
57
|
Nakagawa T, Iwaki Y, Wu D, Hane M, Sato C, Kitajima K. Identification and characterization of a deaminoneuraminic acid (Kdn)-specific aldolase from Sphingobacterium species. Glycobiology 2023; 33:47-56. [PMID: 36036828 DOI: 10.1093/glycob/cwac053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 01/12/2023] Open
Abstract
Sialic acid (Sia) is a group of acidic sugars with a 9-carbon backbone, and classified into 3 species based on the substituent group at C5 position: N-acetylneuraminic acid (Neu5Ac), N-glycolylneuraminic acid (Neu5Gc), and deaminoneuraminic acid (Kdn). In Escherichia coli, the sialate aldolase or N-acetylneuraminate aldolase (NanA) is known to catabolize these Sia species into pyruvate and the corresponding 6-carbon mannose derivatives. However, in bacteria, very little is known about the catabolism of Kdn, compared with Neu5Ac. In this study, we found a novel Kdn-specific aldolase (Kdn-aldolase), which can exclusively degrade Kdn, but not Neu5Ac or Neu5Gc, from Sphingobacterium sp., which was previously isolated from a Kdn-assimilating bacterium. Kdn-aldolase had the optimal pH and temperature at 7.0-8.0 and 50 °C, respectively. It also had the synthetic activity of Kdn from pyruvate and mannose. Site-specific mutagenesis revealed that N50 residue was important for the Kdn-specific reaction. Existence of the Kdn-aldolase suggests that Kdn-specific metabolism may play a specialized role in some bacteria.
Collapse
Affiliation(s)
- Takahiro Nakagawa
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya 464-8601, Japan.,Bioscience and Biotechnology Center, and Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Yuya Iwaki
- Bioscience and Biotechnology Center, and Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Di Wu
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya 464-8601, Japan.,Bioscience and Biotechnology Center, and Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Masaya Hane
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya 464-8601, Japan.,Bioscience and Biotechnology Center, and Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Chihiro Sato
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya 464-8601, Japan.,Bioscience and Biotechnology Center, and Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Ken Kitajima
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya 464-8601, Japan.,Bioscience and Biotechnology Center, and Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
58
|
The Synthesis of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine Kinase (GNE), α-dystroglycan, and β-galactoside α-2,3-sialyltransferase 6 (ST3Gal6) By Skeletal Muscle Cell As a Response To Infection with Trichinella Spiralis. Helminthologia 2022; 59:217-225. [PMID: 36694833 PMCID: PMC9831521 DOI: 10.2478/helm-2022-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/17/2022] [Indexed: 12/23/2022] Open
Abstract
The Nurse cell of the parasitic nematode Trichinella spiralis is a unique structure established after genetic, morphological and functional modification of a small portion of invaded skeletal muscle fiber. Even if the newly developed cytoplasm of the Nurse cell is no longer contractile, this structure remains well integrated within the surrounding healthy tissue. Our previous reports suggested that this process is accompanied by an increased local biosynthesis of sialylated glycoproteins. In this work we examined the expressions of three proteins, functionally associated with the process of sialylation. The enzyme UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) is a key initiator of the sialic acid biosynthetic pathway. The α-dystroglycan was the only identified sialylated glycoprotein in skeletal muscles by now, bearing sialyl-α-2,3-Gal-β-1,4-Gl-cNAc-β-1,2-Man-α-1-O-Ser/Thr glycan. The third protein of interest for this study was the enzyme β-galactoside α-2,3-sialyltransferase 6 (ST3Gal6), which transfers sialic acid preferably onto Gal-β-1,4-GlcNAc as an acceptor, and thus it was considered as a suitable candidate for the sialylation of the α-dystroglycan. The expressions of the three proteins were analyzed by real time-PCR and immunohistochemistry on modified methacarn fixed paraffin tissue sections of mouse skeletal muscle samples collected at days 0, 14 and 35 post infection. According to our findings, the up-regulation of GNE was a characteristic of the early and the late stage of the Nurse cell development. Additional features of this process were the elevated expressions of α-dystroglycan and the enzyme ST3Gal6. We provided strong evidence that an increased local synthesis of sialic acids is a trait of the Nurse cell of T. spiralis, and at least in part due to an overexpression of α-dystroglycan. In addition, circumstantially we suggest that the enzyme ST3Gal6 is engaged in the process of sialylation of the major oligosaccharide component of α-dystroglycan.
Collapse
|
59
|
Chinoy ZS, Friscourt F. Expanding the Strain‐Promoted 1,3‐Dipolar Cycloaddition Arsenal for a More Selective Bioorthogonal Labeling in Living Cells. Isr J Chem 2022. [DOI: 10.1002/ijch.202200055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zoeisha S. Chinoy
- Institut Européen de Chimie et Biologie Université de Bordeaux 2 rue Robert Escarpit 33607 Pessac France
- Institut des Sciences Moléculaires CNRS UMR5255 33405 Talence France
| | - Frédéric Friscourt
- Institut Européen de Chimie et Biologie Université de Bordeaux 2 rue Robert Escarpit 33607 Pessac France
- Institut des Sciences Moléculaires CNRS UMR5255 33405 Talence France
| |
Collapse
|
60
|
Konietzny PB, Peters H, Hofer ML, Gerling-Driessen UIM, de Vries RP, Peters T, Hartmann L. Enzymatic Sialylation of Synthetic Multivalent Scaffolds: From 3'-Sialyllactose Glycomacromolecules to Novel Neoglycosides. Macromol Biosci 2022; 22:e2200358. [PMID: 36112275 DOI: 10.1002/mabi.202200358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/12/1912] [Indexed: 01/15/2023]
Abstract
Sialoglycans play a key role in many biological recognition processes and sialylated conjugates of various types have successfully been applied, e.g., as antivirals or in antitumor therapy. A key feature for high affinity binding of such conjugates is the multivalent presentation of sialoglycans which often possess synthetic challenges. Here, the combination is described of solid phase polymer synthesis and enzymatic sialylation yielding 3'-sialyllactose-presenting precision glycomacromolecules. CMP-Neu5Ac synthetase from Neisseria meningitidis (NmCSS) and sialyltransferase from Pasteurella multocida (PmST1) are combined in a one-pot reaction giving access to sequence-defined sialylated macromolecules. Surprisingly, when employing Tris(hydroxymethyl)aminomethane (Tris) as a buffer, formation of significant amounts of α-linked Tris-sialoside is observed as a side reaction. Further exploring and exploiting this unusual sialylation reaction, different neoglycosidic structures are synthesized showing that PmST1 can be used to derive both, sialylation on natural carbohydrates as well as on synthetic hydroxylated scaffolds.
Collapse
Affiliation(s)
- Patrick B Konietzny
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Hannelore Peters
- Institute of Chemistry and Metabolomics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Marc L Hofer
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Ulla I M Gerling-Driessen
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Robert P de Vries
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Thomas Peters
- Institute of Chemistry and Metabolomics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Laura Hartmann
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| |
Collapse
|
61
|
Casto-Boggess LD, Holland LA, Lawer-Yolar PA, Lucas JA, Guerrette JR. Microscale Quantification of the Inhibition of Neuraminidase Using Capillary Nanogel Electrophoresis. Anal Chem 2022; 94:16151-16159. [PMID: 36343965 PMCID: PMC9686991 DOI: 10.1021/acs.analchem.2c03584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neuraminidase inhibitors modulate infections that involve sialic acids, making quantitative analyses of this inhibitory effect important for selecting and designing potential therapeutics. An automated nanogel capillary electrophoresis system is developed that integrates a 5 nL enzyme inhibition reaction in line with a 5 min separation-based assay of the enzymatic product to quantify inhibition as the half maximal inhibitory concentration (IC50) and inhibitor constant (Ki). A neuraminidase enzyme from Clostridium perfringens is non-covalently immobilized in a thermally tunable nanogel positioned in the thermally controlled region of the capillary by increasing the capillary temperature to 37 °C. Aqueous inhibitor solutions are loaded into the capillary during the nanogel patterning step to surround the enzyme zone. The capillary electrophoresis separation provides a means to distinguish the de-sialylated product, enabling the use of sialyllactose which contains the trisaccharide motif observed on serine/threonine-linked (O-linked) glycans. A universal nanogel patterning scheme is developed that does not require pre-mixing of enzymes with inhibitors when an automated capillary electrophoresis instrument is used, thus reducing the consumption of enzymes and enabling adaption of the method to different inhibitors. The universal approach is successfully applied to two classical neuraminidase inhibitors with different electrophoretic mobilities. The IC50 and Ki values obtained for N-acetyl-2,3-dehydro-2-deoxyneuraminic acid (DANA) are 13 ± 3 and 5.0 ± 0.9 μM, respectively, and 28 ± 3 and 11 ± 1 μM, respectively, for Siastatin B. These values agree with literature reports and reflect the weaker inhibition anticipated for Siastatin B in comparison to DANA.
Collapse
Affiliation(s)
- Laura D Casto-Boggess
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia26505, United States
| | - Lisa A Holland
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia26505, United States
| | - Paul A Lawer-Yolar
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia26505, United States
| | - John A Lucas
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia26505, United States
| | - Jessica R Guerrette
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia26505, United States
| |
Collapse
|
62
|
Şener Uslupehlivan E, Deveci R, Şahar U, İzzetoğlu S. Glycan analysis of Lamin A/C protein at G2/M and S phases of the cell cycle. Cell Biochem Biophys 2022; 80:689-698. [PMID: 36180658 DOI: 10.1007/s12013-022-01102-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/20/2022] [Indexed: 11/28/2022]
Abstract
During mitosis, phosphorylation and dephosphorylation of lamins triggers the nuclear envelope disassembly/assembly. However, it hasn't been known whether lamin proteins undergo any modification other than phosphorylation during the cell cycle. Glycosylation of lamin proteins is one of the less studied post-translational modification. Glycosylation and phosphorylation compete for the same positions and interplay between two modifications generate a post-translational code in the cell. Based on this, we hypothesized that glycosylation of lamin A/C protein may be important in the regulation of the structural organization of the nuclear lamina during interphase and mitosis. We analysed the glycan units of lamin A/C protein in lung carcinoma cells synchronized at G2/M and S phases via CapLC-ESI-MS/MS. Besides, the outermost glycan units were determined using lectin blotting and gold-conjugated antibody and lectin staining. TEM studies also allowed us to observe the localization of glycosylated lamin A/C protein. With this study, we determined that lamin A/C protein shows O-glycosylation at G2/M and S phases of the cell cycle. In addition to O-GlcNAcylation and O-GalNAcylation, lamin A/C is found to be contain Gal, Fuc, Man, and Sia sugars at G2/M and S phases for the first time. Having found the glycan units of the lamin A/C protein suggests that glycosylation might have a role in the nuclear organization during the cell cycle.
Collapse
Affiliation(s)
- Ecem Şener Uslupehlivan
- Faculty of Science, Department of Biology, Molecular Biology Section, Ege University, Izmir, Turkey
| | - Remziye Deveci
- Faculty of Science, Department of Biology, Molecular Biology Section, Ege University, Izmir, Turkey
| | - Umut Şahar
- Faculty of Science, Department of Biology, Molecular Biology Section, Ege University, Izmir, Turkey
| | - Savaş İzzetoğlu
- Faculty of Science, Department of Biology, Molecular Biology Section, Ege University, Izmir, Turkey.
| |
Collapse
|
63
|
Cheng H, Wang PG. Machine assembly of carbohydrates with more than 1,000 sugar units. Nature 2022; 610:266-267. [PMID: 36175562 DOI: 10.1038/d41586-022-02927-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
64
|
Wagt S, de Haan N, Wang W, Zhang T, Wuhrer M, Lageveen-Kammeijer GSM. N-Glycan Isomer Differentiation by Zero Flow Capillary Electrophoresis Coupled to Mass Spectrometry. Anal Chem 2022; 94:12954-12959. [PMID: 36098998 PMCID: PMC9523619 DOI: 10.1021/acs.analchem.2c02840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Isomeric N-glycans often vastly differ
in their
biological activities, hence the need for methods that allow resolving
and structurally characterizing them in biological material. Here,
we established a zero flow approach using capillary electrophoresis
in combination with (tandem) mass spectrometry to allow structural
characterization of isomeric N-glycans at high sensitivity.
Additionally, diagnostic fragment ion ratios were identified, indicative
for the antenna carrying specifically linked sialic acids. In total,
208 N-glycans were characterized in human plasma,
with 57 compositions showing multiple isomers.
Collapse
Affiliation(s)
- Sander Wagt
- Leiden University Medical Center, Center for Proteomics and Metabolomics, 2300 RC Leiden, The Netherlands
| | - Noortje de Haan
- Leiden University Medical Center, Center for Proteomics and Metabolomics, 2300 RC Leiden, The Netherlands
| | - Wenjun Wang
- Leiden University Medical Center, Center for Proteomics and Metabolomics, 2300 RC Leiden, The Netherlands
| | - Tao Zhang
- Leiden University Medical Center, Center for Proteomics and Metabolomics, 2300 RC Leiden, The Netherlands
| | - Manfred Wuhrer
- Leiden University Medical Center, Center for Proteomics and Metabolomics, 2300 RC Leiden, The Netherlands
| | | |
Collapse
|
65
|
Yang Y, Akashi Y, Shimomura O, Tateno H, Saito S, Hiemori K, Miyazaki Y, Furuta T, Kitaguchi D, Kuroda Y, Pakavarin L, Oda T. Glycan expression profile of signet ring cell gastric cancer cells and potential applicability of rBC2LCN-targeted lectin drug conjugate therapy. Gastric Cancer 2022; 25:896-905. [PMID: 35715659 DOI: 10.1007/s10120-022-01312-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/25/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Signet ring cell carcinoma (SRC) is a distinct subtype of gastric cancer (GC); however, the specific characteristics of cancer cell surface glycans and glycosylation remain unclear. In this study, we investigated SRC-specific glycans using lectin microarray and evaluated the potential applicability of a glycan-targeting therapy. METHODS SRC cell lines (NUGC-4 and KATO-III) and non-SRC (NSRC) cell lines (NCI-N87, SNU-1, and MKN-45) were subjected to lectin microarray analysis to identify the SRC-specific glycans. Additionally, we performed immunohistochemical lectin staining and evaluated the anti-tumor effects of lectin drug conjugates (LDCs) using high-affinity lectins for SRC. RESULTS Among the 96 lectins tested, 11 high-affinity and 8 low-affinity lectins were identified for SRC. Glycan-binding motifs varied in the high-affinity lectins, but 5 (62.5%) low-affinity lectins bound the same glycan structure, α2-6-linked sialic acids. The ratio of signal intensity in SRC to NSRC (SRC/NSRC) was highest in the rBC2LCN lectin (1.930-fold), followed by the BPL lectin (1.786-fold). rBC2LCN lectin showed high affinity for both SRC cell lines and one of the three NSRC cell lines (NCI-N87). The therapeutic effects of the LDC, rBC2LCN-PE38 (rBC2LCN, and Pseudomonas exotoxin A), showed cytocidal effects in vitro and tumor regression in in vivo mouse xenograft models. CONCLUSION We reported specific glycan profiles in SRC cells, showing reduced α2-6-linked sialic acids. Additionally, we found a targeted therapy using rBC2LCN lectin might be applicable as an alternative treatment option for patients with SRC.
Collapse
Affiliation(s)
- Yu Yang
- Department of Gastrointestinal and Hepato-Billiary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yoshimasa Akashi
- Department of Gastrointestinal and Hepato-Billiary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Osamu Shimomura
- Department of Gastrointestinal and Hepato-Billiary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hiroaki Tateno
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Sayoko Saito
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Keiko Hiemori
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Yoshihiro Miyazaki
- Department of Gastrointestinal and Hepato-Billiary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Tomoaki Furuta
- Department of Gastrointestinal and Hepato-Billiary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Daichi Kitaguchi
- Department of Gastrointestinal and Hepato-Billiary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yukihito Kuroda
- Department of Gastrointestinal and Hepato-Billiary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Louphrasitthiphol Pakavarin
- Department of Gastrointestinal and Hepato-Billiary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Tatsuya Oda
- Department of Gastrointestinal and Hepato-Billiary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| |
Collapse
|
66
|
Layer-by-layer assembly of composite conductive fiber-based organic electrochemical transistor for highly sensitive detection of sialic acid. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
67
|
In vivo imaging of fluorescent albumin modified with pyruvylated-human-type complex oligosaccharide reveals sialylation-like biodistribution and kinetics. Bioorg Med Chem 2022; 70:116943. [PMID: 35905685 DOI: 10.1016/j.bmc.2022.116943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 11/20/2022]
Abstract
Both pyruvylation and sialylation onto the terminus of oligosaccharides of N-glycoproteins seem to be structurally and functionally similar with a property of conferring negative charge. However, detailed molecular characteristics of pyruvylation and sialylation in vivo were elusive. Here, to investigate an effect of terminal pyruvylation to N-glycan on in vivo biodistribution and kinetics, we prepared human serum albumin (HSA) modified with pyruvylated N-glycan (PvG), conjugated with HiLyte Fluor 750 (FL750-PvGHSA). In vivo imaging by using FL750-PvGHSA revealed that terminally pyruvylated N-glycoalbumin was excreted like sialylated N-glycoalbumin, suggesting that pyruvylation mimics sialylation in in vivo biodistribution and kinetics of N-glycoproteins. Terminal pyruvylation onto N-glycans can be a potential tool for a novel glycoengineering strategy.
Collapse
|
68
|
Obukhova PS, Ziganshina MM, Shilova NV, Chinarev AA, Pazynina GV, Nokel AY, Terenteva AV, Khasbiullina NR, Sukhikh GT, Ragimov AA, Salimov EL, Butvilovskaya VI, Polyakova SM, Saha J, Bovin NV. Antibodies Against Unusual Forms of Sialylated Glycans. Acta Naturae 2022; 14:85-92. [PMID: 35923565 PMCID: PMC9307978 DOI: 10.32607/actanaturae.11631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/22/2022] [Indexed: 11/20/2022] Open
Abstract
Previous studies have shown that in the blood of healthy donors (1) there are
no natural antibodies against sialylated glycoproteins, which contain
Neu5Acα (N-acetylneuraminic acid) as the most widespread form of human
sialic acid, and (2) there is a moderate level of antibodies capable of binding
unnatural oligosaccharides, where Neu5Ac is beta-linked to a typical mammalian
glycan core. In the present study, we investigated antibodies against
βNeu5Ac in more detail and verified the presence of Kdn (2-keto-3-deoxy-
D-glycero-D-galacto-nonulosonic acid) as a possible cause behind their
appearance in humans, taking into account the expected cross-reactivity to Kdn
glycans, which are found in bacterial glycoconjugates in both the α- and
β-forms. We observed the binding of peripheral blood immunoglobulins to
sialyllactosamines (where “sialyl” is Kdn or neuraminic acid) in
only a very limited number of donors, while the binding to monosaccharide Kdn
occurred in all samples, regardless of the configuration of the glycosidic bond
of the Kdn moiety. In some individuals, the binding level of some of the
immunoglobulins was high. This means that bacterial Kdn glycoconjugates are
very unlikely to induce antibodies to βNeu5Ac glycans in humans. To
determine the reason for the presence of these antibodies, we focused on
noninfectious pathologies, as well as on a normal state in which a significant
change in the immune system occurs: namely, pregnancy. As a result, we found
that 2/3 of pregnant women have IgM in the blood against
Neu5Acβ2-3Galβ1-4GlcNAcβ. Moreover, IgG class antibodies against
Neu5Acβ2-3Galβ1-4GlcNAcβ and
Neu5Acβ2-6Galβ1-4GlcNAcβ were also detected in eluates from the
placenta. Presumably, these antibodies block fetal antigens.
Collapse
Affiliation(s)
- P. S. Obukhova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after V.I. Kulakov of the Ministry of Health care of Russian Federation, Moscow, 117997 Russia
| | - M. M. Ziganshina
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after V.I. Kulakov of the Ministry of Health care of Russian Federation, Moscow, 117997 Russia
| | - N. V. Shilova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after V.I. Kulakov of the Ministry of Health care of Russian Federation, Moscow, 117997 Russia
| | - A. A. Chinarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
| | - G. V. Pazynina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
| | - A. Y. Nokel
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after V.I. Kulakov of the Ministry of Health care of Russian Federation, Moscow, 117997 Russia
| | - A. V. Terenteva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after V.I. Kulakov of the Ministry of Health care of Russian Federation, Moscow, 117997 Russia
| | - N. R. Khasbiullina
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after V.I. Kulakov of the Ministry of Health care of Russian Federation, Moscow, 117997 Russia
| | - G. T. Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after V.I. Kulakov of the Ministry of Health care of Russian Federation, Moscow, 117997 Russia
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health care of the Russian Federation (Sechenov University), Moscow, 119991 Russia
| | - A. A. Ragimov
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health care of the Russian Federation (Sechenov University), Moscow, 119991 Russia
| | - E. L. Salimov
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health care of the Russian Federation (Sechenov University), Moscow, 119991 Russia
| | - V. I. Butvilovskaya
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, 119991 Russia
| | - S. M. Polyakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
- Synthaur LLC, Moscow, 117997 Russia
| | - J. Saha
- Centre of Biomedical Research, Sanjay Gandhi PostGraduate Institute of Medical Science, Lucknow, 226014 India
| | - N. V. Bovin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
- Centre for Kode Technology Innovation, Auckland University of Technology, Auckland, 1010 New Zealand
| |
Collapse
|
69
|
Brás-Costa C, Chaves AFA, Cajado-Carvalho D, da Silva Pires D, Andrade-Silva D, Serrano SMT. Profilings of subproteomes of lectin-binding proteins of nine Bothrops venoms reveal variability driven by different glycan types. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140795. [PMID: 35662639 DOI: 10.1016/j.bbapap.2022.140795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Snake venom proteomes have long been investigated to explore a multitude of biologically active components that are used for prey capture and defense, and are involved in the pathological effects observed upon mammalian envenomation. Glycosylation is a major protein post-translational modification in venoms and contributes to the diversification of proteomes. We have shown that Bothrops venoms are markedly defined by their content of glycoproteins, and that most N-glycan structures of eight Bothrops venoms contain sialic acid, while bisected N-acetylglucosamine was identified in Bothrops cotiara venom. To further investigate the mechanisms involved in the generation of different venoms by related snakes, here the glycoproteomes of nine Bothrops venoms (Bothrops atrox, B. cotiara, Bothrops erythromelas, Bothrops fonsecai, B. insularis, Bothrops jararaca, Bothrops jararacussu, Bothrops moojeni and Bothrops neuwiedi) were comparatively analyzed by enrichment with three lectins of different specificities, recognizing bisecting N-acetylglucosamine- and sialic acid-containing glycoproteins, and mass spectrometry. The lectin capture strategy generated venom fractions enriched with several glycoproteins, including metalloprotease, serine protease, and L- amino acid oxidase, in addition to various types of low abundant enzymes. The different contents of lectin-enriched proteins underscore novel aspects of the variability of the glycoprotein subproteomes of Bothrops venoms and point to the role of distinct types of glycan chains in generating different venoms by closely related snake species.
Collapse
Affiliation(s)
- Carolina Brás-Costa
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Alison Felipe Alencar Chaves
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Daniela Cajado-Carvalho
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - David da Silva Pires
- Laboratory of Cell Cycle, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Débora Andrade-Silva
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Solange M T Serrano
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil.
| |
Collapse
|
70
|
Glycan-Lectin Interactions as Novel Immunosuppression Drivers in Glioblastoma. Int J Mol Sci 2022; 23:ijms23116312. [PMID: 35682991 PMCID: PMC9181495 DOI: 10.3390/ijms23116312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/23/2022] [Accepted: 06/03/2022] [Indexed: 02/04/2023] Open
Abstract
Despite diagnostic and therapeutic improvements, glioblastoma (GB) remains one of the most threatening brain tumor in adults, underlining the urgent need of new therapeutic targets. Lectins are glycan-binding proteins that regulate several biological processes through the recognition of specific sugar motifs. Lectins and their ligands are found on immune cells, endothelial cells and, also, tumor cells, pointing out a strong correlation among immunity, tumor microenvironment and vascularization. In GB, altered glycans and lectins contribute to tumor progression and immune evasion, shaping the tumor-immune landscape promoting immunosuppressive cell subsets, such as myeloid-derived suppressor cells (MDSCs) and M2-macrophages, and affecting immunoeffector populations, such as CD8+ T cells and dendritic cells (DCs). Here, we discuss the latest knowledge on the immune cells, immune related lectin receptors (C-type lectins, Siglecs, galectins) and changes in glycosylation that are involved in immunosuppressive mechanisms in GB, highlighting their interest as possible novel therapeutical targets.
Collapse
|
71
|
Protein Engineering of Pasteurella multocida α2,3-Sialyltransferase with Reduced α2,3-Sialidase Activity and Application in Synthesis of 3′-Sialyllactose. Catalysts 2022. [DOI: 10.3390/catal12060579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Sialyltransferases are key enzymes for the production of sialosides. The versatility of Pasteurella multocida α2,3-sialyltransferase 1 (PmST1) causes difficulties in the efficient synthesis of α2,3-linked sialylatetd compounds, especial its α2,3-sialidase activity. In the current study, the α2,3-sialidase activity of PmST1 was further reduced by rational design-based protein engineering. Three double mutants PMG1 (M144D/R313Y), PMG2 (M144D/R313H) and PMG3 (M144D/R313N) were designed and constructed using M144D as the template and kinetically investigated. In comparison with M144D, the α2,3-sialyltransferase activity of PMG2 was enhanced by 1.4-fold, while its α2,3-sialidase activity was reduced by 4-fold. Two PMG2-based triple mutants PMG2-1 (M144D/R313H/T265S) and PMG2-2 (M144D/R313H/E271F) were then designed, generated and characterized. Compared with PMG2, triple mutants showed slightly improved α2,3-sialyltransferase activity, but their α2,3-sialidase activities were increased by 2.1–2.9 fold. In summary, PMG2 was used for preparative-scale production of 3′-SL (3′-sialyllactose) with a yield of >95%. These new PmST1 mutants could be potentially utilized for efficient synthesis of α2,3-linked sialosides. This work provides a guide to designing and constructing efficient sialyltransferases.
Collapse
|
72
|
Halder S, Addanki RB, Moktan S, Kancharla PK. Glycosyl o-[1-( p-MeO-Phenyl)vinyl]benzoates (PMPVB) as Easily Accessible, Stable, and Reactive Glycosyl Donors for O-, S-, and C-Glycosylations under Brønsted Acid Catalysis. J Org Chem 2022; 87:7033-7055. [PMID: 35559689 DOI: 10.1021/acs.joc.2c00093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Methods suitable for the synthesis of both O- and S-glycosylations are relatively rare because commonly used promoters like halonium sources or gold catalysts are incompatible with thiols as nucleophiles. Here, we present (p-MeO)phenylvinylbenzoates (PMPVB) as easily accessible, stable, and reactive alkene-based glycosyl donors that can be activated with catalytic amounts of a Brønsted acid. This activation protocol not only allows us to synthesize O-glycosides but also can successfully provide S- and C-linked glycosides. The armed and disarmed donors lead to product formation in 5 min, showcasing the high reactivity of the donors. Competitive experiments show that the PMPVB donors are much more reactive than the corresponding PVB donors even under NIS/TMSOTf conditions, whereas PVB donors are not reactive enough to be efficiently activated under Brønsted acid conditions. The potential of the catalytic glycosylation protocol has also been showcased by synthesizing trisaccharides. The Brønsted acid activation of PMPVB donors also allows access to C-glycosides in a stereoselective fashion. The easy accessibility of the donor aglycon on a multigram scale in just two steps makes the PMPVB donors highly attractive alternatives.
Collapse
Affiliation(s)
- Suvendu Halder
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Rupa Bai Addanki
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sangay Moktan
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Pavan K Kancharla
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
73
|
Liu F, Simpson AB, D'Costa E, Bunn FS, van Leeuwen SS. Sialic acid, the secret gift for the brain. Crit Rev Food Sci Nutr 2022; 63:9875-9894. [PMID: 35531941 DOI: 10.1080/10408398.2022.2072270] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The human brain grows rapidly in early life which requires adequate nutrition. Human milk provides optimal nutrition for the developing brain, and breastfeeding significantly improves the cognition development of infants. These benefits have been largely attributed to human milk oligosaccharides (HMOS), associated with sialic acid (Sia). Subsequently, sialylated HMOS present a vital source of exogenous Sia to infants. Sialic acid is a key molecule essential for proper development of gangliosides, and therefore critical in brain development and function. Recent pre-clinical studies suggest dietary supplementation with Sia or sialylated oligosaccharides enhances intelligence and cognition performance in early and later life. Furthermore, emerging evidence suggests the involvement of Sia in brain homeostasis and disbalance correlates with common pathologies such as Alzheimer's disease (AD). Therefore, this review will discuss early brain health and development and the role of Sia in this process. Additionally, studies associating breastfeeding and specific HMOS to benefits in cognitive development are critically assessed. Furthermore, the review will assess studies implying the potential role of HMOS and microbiota in brain development via the gut-brain axis. Finally, the review will summarize recent advances regarding the role of Sia in neurodegenerative disease in later life and potential roles of dietary Sia sources.
Collapse
Affiliation(s)
- Fan Liu
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anna Bella Simpson
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Esmée D'Costa
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Fanny Sophia Bunn
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sander S van Leeuwen
- Department of Laboratory Medicine, Sector Human Nutrition and Health, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
74
|
Cheng Y, Kong RM, Hu W, Tian X, Zhang L, Xia L, Qu F. Colorimetric-assisted photoelectrochemical sensing for dual-model detection of sialic acid via oxidation-power mediator integration. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
75
|
The role of the cell surface glycocalyx in drug delivery to and through the endothelium. Adv Drug Deliv Rev 2022; 184:114195. [PMID: 35292326 DOI: 10.1016/j.addr.2022.114195] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/05/2022] [Accepted: 03/08/2022] [Indexed: 11/20/2022]
Abstract
Cell membranes are key interfaces where materials engineering meets biology. Traditionally regarded as just the location of receptors regulating the uptake of molecules, we now know that all mammalian cell membranes are 'sugar coated'. These sugars, or glycans, form a matrix bound at the cell membrane via proteins and lipids, referred to as the glycocalyx, which modulate access to cell membrane receptors crucial for interactions with drug delivery systems (DDS). Focusing on the key blood-tissue barrier faced by most DDS to enable transport from the place of administration to target sites via the circulation, we critically assess the design of carriers for interactions at the endothelial cell surface. We also discuss the current challenges for this area and provide opportunities for future research efforts to more fully engineer DDS for controlled, efficient, and targeted interactions with the endothelium for therapeutic application.
Collapse
|
76
|
Pu H, Xu L. Molecularly Imprinted Nanoparticles Synthesized by Electrochemically Mediated Atom Transfer Radical Precipitation Polymerization. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202100478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hang Pu
- School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 P. R. China
- Chongqing Key Laboratory of Soft‐Matter Material Chemistry and Function Manufacturing Southwest University Chongqing 400715 P. R. China
| | - Lan Xu
- School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 P. R. China
- Chongqing Key Laboratory of Soft‐Matter Material Chemistry and Function Manufacturing Southwest University Chongqing 400715 P. R. China
| |
Collapse
|
77
|
Sgambati E, Tani A, Leri M, Delfino G, Zecchi-Orlandini S, Bucciantini M, Nosi D. Correlation between Sialylation Status and Cell Susceptibility to Amyloid Toxicity. Cells 2022; 11:cells11040601. [PMID: 35203252 PMCID: PMC8870280 DOI: 10.3390/cells11040601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 02/04/2023] Open
Abstract
The interaction between the cell membrane and misfolded protein species plays a crucial role in the development of neurodegeneration. This study was designed to clarify the relationship between plasma membrane composition in terms of the differently linked sialic acid (Sia) content and cell susceptibility to toxic and misfolded Aβ-42 peptides. The sialylation status in different cell lines was investigated by lectin histochemistry and confocal immunofluorescence and then correlated with the different propensities to bind amyloid fibrils and with the relative cell susceptibility to amyloid damage. This study reveals that expressions of Sias α2,3 and α2,6 linked to galactose/N-acetyl-galactosamine, and PolySia are positively correlated with Aβ-42-induced cell toxicity. PolySia shows an early strong interaction with amyloid fibrils, favoring their binding to GM1 ganglioside containing α2,3 galactose-linked Sia and a loss of cell viability. Our findings demonstrate that cell lines with a prevailing plastic neuron-like phenotype and high monoSia and PolySia contents are highly susceptible to amyloid Aβ-42 toxicity. This toxicity may involve a change in neuron metabolism and promote a compensative/protective increase in PolySia, which, in turn, could favor amyloid binding to GM1, thus exacerbating cell dysmetabolism and further amyloid aggregation.
Collapse
Affiliation(s)
- Eleonora Sgambati
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, Pesche, 86090 Isernia, Italy;
| | - Alessia Tani
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (A.T.); (S.Z.-O.); (D.N.)
| | - Manuela Leri
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy;
| | - Giovanni Delfino
- Department of Biology (BIO), University of Florence, Via Giorgio La Pira 4, 50121 Florence, Italy;
| | - Sandra Zecchi-Orlandini
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (A.T.); (S.Z.-O.); (D.N.)
| | - Monica Bucciantini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy;
- Correspondence:
| | - Daniele Nosi
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (A.T.); (S.Z.-O.); (D.N.)
| |
Collapse
|
78
|
Cheng B, Wan Y, Tang Q, Du Y, Xu F, Huang Z, Qin W, Chen X. A Photocaged Azidosugar for
Light‐Controlled
Metabolic Labeling of
Cell‐Surface
Sialoglycans. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Bo Cheng
- College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
- Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 China
| | - Yi Wan
- College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
- Peking‐Tsinghua Center for Life Sciences Peking University Beijing 100871 China
| | - Qi Tang
- College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
- Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 China
| | - Yifei Du
- College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
- Peking‐Tsinghua Center for Life Sciences Peking University Beijing 100871 China
| | - Feiyang Xu
- College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
- Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 China
| | - Zhimin Huang
- College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
- Peking‐Tsinghua Center for Life Sciences Peking University Beijing 100871 China
| | - Wei Qin
- College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
- Peking‐Tsinghua Center for Life Sciences Peking University Beijing 100871 China
| | - Xing Chen
- College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
- Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 China
- Peking‐Tsinghua Center for Life Sciences Peking University Beijing 100871 China
- Synthetic and Functional Biomolecules Center Peking University Beijing 100871 China
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| |
Collapse
|
79
|
Alshanski I, Shitrit A, Sukhran Y, Unverzagt C, Hurevich M, Yitzchaik S. Effect of Interfacial Properties on Impedimetric Biosensing of the Sialylation Process with a Biantennary N-Glycan-Based Monolayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:849-855. [PMID: 34989586 DOI: 10.1021/acs.langmuir.1c02995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sensing enzymatic sialylation provides new tools for the evaluation of pathological events and pathogen invasion. Enzymatic sialylation is usually monitored via fluorescence or metabolic labeling, which requires relatively large amounts of the glycan substrate with limited availability. Using a label-free biosensor requires smaller quantities of substrates because the interactions induce measurable changes to an interface, which can be translated into a signal. The downside of label-free biosensors is that they are very sensitive to changes at the interface, and the properties of the surface layer can play a major role. Electrochemical impedance spectroscopy was used here to follow the enzymatic sialylation of a biantennary N-glycan acceptor in mixed monolayers. The surfaces contained either neutral, positively or negatively charged, or zwitterionic functional groups. The systems were characterized by contact potential difference, ellipsometry, and contact angle analyses. We found that the characteristics of the mixed monolayer have a profound effect on the biosensing of the enzymatic sialylation. Positively charged layers were found to adsorb the enzyme under the reaction conditions. Negatively charged and zwitterionic surfaces were nonresponsive to enzymatic sialylation. Only the neutral mixed monolayers provided signals that were related directly to enzymatic sialylation. This work demonstrates the importance of appropriate interface properties for monitoring enzymatic sialylation processes.
Collapse
Affiliation(s)
- Israel Alshanski
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Ariel Shitrit
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Yonatan Sukhran
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Carlo Unverzagt
- Bioorganic Chemistry, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Mattan Hurevich
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Shlomo Yitzchaik
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem 91904, Israel
| |
Collapse
|
80
|
Marullo S, Scott MGH, Enslen H, Coureuil M. Mechanical Activation of the β 2-Adrenergic Receptor by Meningococcus: A Historical and Future Perspective Analysis of How a Bacterial Probe Can Reveal Signalling Pathways in Endothelial Cells, and a Unique Mode of Receptor Activation Involving Its N-Terminal Glycan Chains. Front Endocrinol (Lausanne) 2022; 13:883568. [PMID: 35586623 PMCID: PMC9108228 DOI: 10.3389/fendo.2022.883568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
More than 12 years have passed since the seminal observation that meningococcus, a pathogen causing epidemic meningitis in humans, occasionally associated with infectious vasculitis and septic shock, can promote the translocation of β-arrestins to the cell surface beneath bacterial colonies. The cellular receptor used by the pathogen to induce signalling in host cells and allowing it to open endothelial cell junctions and reach meninges was unknown. The involvement of β-arrestins, which are scaffolding proteins regulating G protein coupled receptor signalling and function, incited us to specifically investigate this class of receptors. In this perspective article we will summarize the events leading to the discovery that the β2-adrenergic receptor is the receptor that initiates the signalling cascades induced by meningococcus in host cells. This receptor, however, cannot mediate cell infection on its own. It needs to be pre-associated with an "early" adhesion receptor, CD147, within a hetero-oligomeric complex, stabilized by the cytoskeletal protein α-actinin 4. It then required several years to understand how the pathogen actually activates the signalling receptor. Once bound to the N-terminal glycans of the β2-adrenergic receptor, meningococcus provides a mechanical stimulation that induces the biased activation of β-arrestin-mediated signalling pathways. This activating mechanical stimulus can be reproduced in the absence of any pathogen by applying equivalent forces on receptor glycans. Mechanical activation of the β2-adrenergic receptor might have a physiological role in signalling events promoted in the context of cell-to-cell interaction.
Collapse
Affiliation(s)
- Stefano Marullo
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France
- *Correspondence: Stefano Marullo,
| | - Mark G. H. Scott
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Hervé Enslen
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Mathieu Coureuil
- Université de Paris, Institut-Necker-Enfants-Malades, INSERM U1151, CNRS UMR 8253, Paris, France
| |
Collapse
|
81
|
Kim S, Lee J, Oh DB, Kwon O. Marine invertebrate sialyltransferase of the sea squirt Ciona savignyi sialylated core 1 O-linked glycans. Int J Biol Macromol 2022; 194:366-376. [PMID: 34813786 DOI: 10.1016/j.ijbiomac.2021.11.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/01/2021] [Accepted: 11/12/2021] [Indexed: 11/30/2022]
Abstract
An invertebrate sialyltransferase, cST3Gal-I, identified from the sea squirt Ciona savignyi, was functionally characterized in vitro using recombinant enzyme expressed in yeast strains. cST3Gal-I was localized to the Golgi membrane when expressed in Saccharomyces cerevisiae. Enzymatic characterization for substrate specificity and kinetic property indicate that cST3Gal-I prefers O-glycans, rather than N-glycan, of asialoglycoproteins as substrates. Interestingly, C. savignyi sialyltransferase exhibited effectively Neu5Ac transfer to core 1 O-glycan, Gal β(1,3)GalNAc, compared to orthologous human glycosyltransferase. Further, it is shown that cST3Gal-I catalyzes the formation of α(2,3)-linkage, through lectin blot analysis with Maackia amurensis lectin and by linkage-specific sialidase treatments. The putative active sites of cST3Gal-I for putative acid/base catalysts and sialic acid acceptor/donor substrate bindings were also identical to the counterpart residues of a mammalian enzyme, porcine ST3Gal-I, as predicted through homologous structure modeling. These results could imply that an ancestral tunicate ST3Gal-I in C. savignyi would prefer O-glycan onto glycoproteins as its sialic acid acceptor than vertebrate enzymes.
Collapse
Affiliation(s)
- Seonghun Kim
- Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup 56212, South Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Daejeon 34113, South Korea.
| | - Jinhyuk Lee
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, South Korea; Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Daejeon 34113, South Korea
| | - Doo-Byoung Oh
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, South Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Daejeon 34113, South Korea
| | - Ohsuk Kwon
- SME Support Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, South Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Daejeon 34113, South Korea
| |
Collapse
|
82
|
Fischer S, Mathias S, Stadermann A, Yang S, Schmieder V, Zeh N, Schmidt N, Richter P, Wright S, Zimmermann E, Ley Y, van der Meer J, Hartsch T, Bernloehr C, Otte K, Bradl H, Gamer M, Schulz P. Loss of a Newly Discovered microRNA in Chinese Hamster Ovary Cells Leads to Upregulation of NGNA Sialylation on Monoclonal Antibodies. Biotechnol Bioeng 2021; 119:832-844. [PMID: 34935124 PMCID: PMC9306616 DOI: 10.1002/bit.28015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 11/30/2022]
Abstract
Chinese hamster ovary (CHO) cells are known not to express appreciable levels of the sialic acid residue N‐glycolylneuraminic acid (NGNA) on monoclonal antibodies. However, we actually have identified a recombinant CHO cell line expressing an IgG with unusually high levels of NGNA sialylation (>30%). Comprehensive multi‐OMICs based experimental analyses unraveled the root cause of this atypical sialylation: (1) expression of the cytidine monophosphate‐N‐acetylneuraminic acid hydroxylase (CMAH) gene was spontaneously switched on, (2) CMAH mRNA showed an anti‐correlated expression to the newly discovered Cricetulus griseus (cgr) specific microRNA cgr‐miR‐111 and exhibits two putative miR‐111 binding sites, (3) miR‐111 expression depends on the transcription of its host gene SDK1, and (4) a single point mutation within the promoter region of the sidekick cell adhesion molecule 1 (SDK1) gene generated a binding site for the transcriptional repressor histone H4 transcription factor HINF‐P. The resulting transcriptional repression of SDK1 led to a downregulation of its co‐expressed miR‐111 and hence to a spontaneous upregulation of CMAH expression finally increasing NGNA protein sialylation.
Collapse
Affiliation(s)
- Simon Fischer
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach, Germany
| | - Sven Mathias
- Early Stage Bioprocess Development, Bioprocess Development Biologicals, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach, Germany.,Institute of Applied Biotechnology, University of Applied Sciences, Hubertus-Liebrecht Strasse 35, 88400, Biberach, Germany
| | - Anna Stadermann
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach, Germany
| | - Shumin Yang
- Process Science, Boehringer Ingelheim Fremont Inc., Fremont, CA, USA
| | - Valerie Schmieder
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach, Germany
| | - Nikolas Zeh
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach, Germany
| | - Nicoletta Schmidt
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach, Germany
| | - Patrick Richter
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach, Germany
| | - Sara Wright
- Analytical Science, Boehringer Ingelheim Fremont Inc., Fremont, CA, USA
| | - Eike Zimmermann
- Analytical Science, Boehringer Ingelheim Fremont Inc., Fremont, CA, USA
| | - Yan Ley
- Analytical Science, Boehringer Ingelheim Fremont Inc., Fremont, CA, USA
| | | | | | - Christian Bernloehr
- Early Stage Bioprocess Development, Bioprocess Development Biologicals, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach, Germany
| | - Kerstin Otte
- Institute of Applied Biotechnology, University of Applied Sciences, Hubertus-Liebrecht Strasse 35, 88400, Biberach, Germany
| | - Harald Bradl
- Protein Science, Bioprocess & Analytical Development, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach, Germany
| | - Martin Gamer
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach, Germany
| | - Patrick Schulz
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach, Germany
| |
Collapse
|
83
|
Hugonnet M, Singh P, Haas Q, von Gunten S. The Distinct Roles of Sialyltransferases in Cancer Biology and Onco-Immunology. Front Immunol 2021; 12:799861. [PMID: 34975914 PMCID: PMC8718907 DOI: 10.3389/fimmu.2021.799861] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/02/2021] [Indexed: 12/24/2022] Open
Abstract
Aberrant glycosylation is a key feature of malignant transformation. Hypersialylation, the enhanced expression of sialic acid-terminated glycoconjugates on the cell surface, has been linked to immune evasion and metastatic spread, eventually by interaction with sialoglycan-binding lectins, including Siglecs and selectins. The biosynthesis of tumor-associated sialoglycans involves sialyltransferases, which are differentially expressed in cancer cells. In this review article, we provide an overview of the twenty human sialyltransferases and their roles in cancer biology and immunity. A better understanding of the individual contribution of select sialyltransferases to the tumor sialome may lead to more personalized strategies for the treatment of cancer.
Collapse
Affiliation(s)
- Marjolaine Hugonnet
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Bern Center for Precision Medicine (BCPM), University of Bern, Bern, Switzerland
| | - Pushpita Singh
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Quentin Haas
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Stephan von Gunten
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Bern Center for Precision Medicine (BCPM), University of Bern, Bern, Switzerland
| |
Collapse
|
84
|
Rana R, Rani S, Kumar V, Nakhate KT, Ajazuddin, Gupta U. Sialic Acid Conjugated Chitosan Nanoparticles: Modulation to Target Tumour Cells and Therapeutic Opportunities. AAPS PharmSciTech 2021; 23:10. [PMID: 34862568 DOI: 10.1208/s12249-021-02170-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/22/2021] [Indexed: 12/24/2022] Open
Abstract
Targeted delivery of therapeutics forestalls the dreadful delocalized effects, drug toxicities and needless immunosuppression. Cancer cells are bounteous with sialic acid and the differential expression of glycosyl transferase, glycosidase and monosaccharide transporter compared to healthy tissues. The current study entails the development and characterisation of sialic acid (SA)-labelled chitosan nanoparticles encapsulating gemcitabine (GEM). Chitosan (CS) was conjugated with SA using coupling reaction and characterised spectroscopically. Furthermore, different concentrations of chitosan and tripolyphosphate (TPP) were optimised to fabricate surface modified chitosan nanoparticles. SA conjugated chitosan nanoparticles encapsulating GEM (SA-CS_GEM NPs) of 232 ± 9.69 nm with narrow distribution (PDI < 0.5) and zeta potential of - 19 ± 0.97 mV was fabricated. GEM was successfully loaded in the SA-CS NPs, depicting prolonged and biphasic drug release pattern more elated at low pH. Pronounced cellular uptake (FITC tagged) and cytotoxicity (IC50 487.4 nM) was observed in SA-CS_GEM NPs against A549 cells. IC50 for SA-CS_GEM NPs plunged with an increase in the time points from 24 to 72 h. Concentration-dependent haemolytic study confirmed significant haemocompatibility of SA-CS_GEM NPs. Pharmacokinetic study was performed on Sprague-Dawley rats and the kinetic parameters were calculated using PKSolver 2.0. Results demonstrated a consequential refinement of 2.98 times in modified SA-CS_GEM NPs with a significant increase in retention time, bioavailability and elimination half-life, and decrease in elimination rate constant and volume of distribution in comparison to CS_GEM NPs. Therefore, SA-CS shell core nanoparticles could be a beneficial approach to target and treat NSCLC (non-small cell lung cancer) and direct for research possibilities to target the other tumour cells.
Collapse
|
85
|
Marini M, Tani A, Manetti M, Sgambati E. Overview of sialylation status in human nervous and skeletal muscle tissues during aging. Acta Histochem 2021; 123:151813. [PMID: 34753032 DOI: 10.1016/j.acthis.2021.151813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022]
Abstract
Sialic acids (Sias) are a large and heterogeneous family of electronegatively charged nine-carbon monosaccharides containing a carboxylic acid and are mostly found as terminal residues in glycans of glycoproteins and glycolipids such as gangliosides. They are linked to galactose or N-acetylgalactosamine via α2,3 or α2,6 linkage, or to other Sias via α2,8 or more rarely α2,9 linkage, resulting in mono, oligo and polymeric forms. Given their characteristics, Sias play a crucial role in a multitude of human tissue biological processes in physiological and pathological conditions, ranging from development and growth to adult life until aging. Here, we review the sialylation status in human adult life focusing on the nervous and skeletal muscle tissues, which both display significant structural and functional changes during aging, strongly impacting on the whole human body and, therefore, on the quality of life. In particular, this review highlights the fundamental roles played by different types of glycoconjugates Sias in several cellular biological processes in the nervous and skeletal muscle tissues during adult life, also discussing how changes in Sia content during aging may contribute to the physiological decline of physical and nervous functions and to the development of age-related degenerative pathologies. Based on our current knowledge, further in-depth investigations could help to develop novel prophylactic strategies and therapeutic approaches that, by maintaining and/or restoring the correct sialylation status in the nervous and skeletal muscle tissues, could contribute to aging slowing and the prevention of age-related pathologies.
Collapse
|
86
|
Lin S, Cheng Z, Li Q, Wang R, Yu F. Toward Sensitive and Reliable Surface-Enhanced Raman Scattering Imaging: From Rational Design to Biomedical Applications. ACS Sens 2021; 6:3912-3932. [PMID: 34726891 DOI: 10.1021/acssensors.1c01858] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Early specific detection through indicative biomarkers and precise visualization of lesion sites are urgent requirements for clinical disease diagnosis. However, current detection and optical imaging methods are insufficient for these demands. Molecular imaging technologies are being intensely studied for reliable medical diagnosis. In the past several decades, molecular imaging with surface-enhanced Raman scattering (SERS) has significant advances from analytical chemistry to medical science. SERS is the inelastic scattering generated from the interaction between photons and substances, presenting molecular structure information. The outstanding SERS virtues of high sensitivity, high specificity, and resistance to biointerference are highly advantageous for biomarker detection in a complex biological matrix. In this work, we review recent progress on the applications of SERS imaging in clinical diagnostics. With the assistance of SERS imaging, the detection of disease-related proteins, nucleic acids, small molecules, and pH of the cellular microenvironment can be implemented for adjuvant medical diagnosis. Moreover, multimodal imaging integrates the high penetration and high speed of other imaging modalities and imaging precision of SERS imaging, resulting in final complete and accurate imaging outcomes and exhibiting robust potential in the discrimination of pathological tissues and surgical navigation. As a promising molecular imaging technology, SERS imaging has achieved remarkable performance in clinical diagnostics and the biomedical realm. It is expected that this review will provide insights for further development of SERS imaging and promote the rapid progress and successful translation of advanced molecular imaging with clinical diagnostics.
Collapse
Affiliation(s)
- Shanshan Lin
- Key Laboratory of Hainan Trauma and Disaster Rescue, Laboratory of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Ziyi Cheng
- Key Laboratory of Hainan Trauma and Disaster Rescue, Laboratory of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Qifu Li
- Key Laboratory of Hainan Trauma and Disaster Rescue, Laboratory of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
| | - Rui Wang
- Key Laboratory of Hainan Trauma and Disaster Rescue, Laboratory of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Fabiao Yu
- Key Laboratory of Hainan Trauma and Disaster Rescue, Laboratory of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
87
|
Panova MV, Medvedev MG, Orlova AV, Kononov LO. Exhaustive Conformational Search for Sialyl Cation Reveals Possibility of Remote Participation of Acyl Groups. Chemphyschem 2021; 23:e202100788. [PMID: 34837303 DOI: 10.1002/cphc.202100788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/26/2021] [Indexed: 11/11/2022]
Abstract
Finding convenient ways for the stereoselective α-sialylation is important due to the high practical significance of α-sialic acid-containing glycans and neoglycoconjugates. It was proposed that sialylation stereoselectivity is determined by the structure of the sialyl cation (also known in biochemistry as "sialosyl cation"), a supposed intermediate in this reaction. Here we design a new approach for studying the conformational space of highly flexible sialyl cation and find 1625 unique conformers including those stabilized by covalent remote participation (also known as long-range participation) of 4-O-acetyl (4-OAc), 5-N-trifluoroacetyl (5-NTFA), as well as 7,8,9-OAc from both α and β sides. The most energetically stable sialyl cation conformers are featured by 4-OAc participation, closely followed by 5-NTFA- and 7-OAc-stabilized conformers; unstabilized sialyl cation conformers are ∼10 kcal mol-1 less stable than the 4-OAc-stabilized ones. Analysis of all the obtained conformers by means of substituents positions, side chain conformations and ring puckering led us to a new "eight-conformer hypothesis" which describes interconversions among the most important sialyl cation conformers and predicts that stronger remote participation of acyl groups favors β-anomers. Thus, selective synthesis of the desired α-sialosides requires minimization of acyl groups participation.
Collapse
Affiliation(s)
- Maria V Panova
- Laboratory of Glycochemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991, Moscow, Russian Federation
| | - Michael G Medvedev
- Group of Theoretical Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991, Moscow, Russian Federation
| | - Anna V Orlova
- Laboratory of Glycochemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991, Moscow, Russian Federation
| | - Leonid O Kononov
- Laboratory of Glycochemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991, Moscow, Russian Federation
| |
Collapse
|
88
|
Zhao T, Masuda T, Takai M. pH-Responsive Water-Soluble Polymer Carriers for Cell-Selective Metabolic Sialylation Labeling. Anal Chem 2021; 93:15420-15429. [PMID: 34727692 DOI: 10.1021/acs.analchem.1c03261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cell-surface sialic acids can be metabolically labeled and subsequently modified using bioorthogonal chemistry. The method has great potential for targeted therapy and imaging; however, distinguishing the sialylation of specific cells remains a major challenge. Here, we described a cell-selective metabolic sialylation labeling strategy based on water-soluble polymer carriers presented with pH-responsive N-azidoacetylmannosamine (ManNAz) release. 2-Methacryloyloxyethyl phosphorylcholine contributed to increased water solubility and reduced nonspecific attachment to cells. Lactobionic acid residues, used for cell selectivity, recognized overexpressed receptors on target hepatoma cells and mediated cellular internalization. ManNAz caged by acidic pH-responsive carbonated ester linkage on the polymer was released inside target cells and expressed as azido sialic acid. Additionally, longer copolymer carriers enhanced the metabolic labeling efficiency of sialylation. This approach provides a platform for cell-selective labeling of sialylation and can be applied to high-resolution bioimaging and targeted therapy.
Collapse
Affiliation(s)
- Tingbi Zhao
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Tsukuru Masuda
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Madoka Takai
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
89
|
Kawanishi K, Coker JK, Grunddal KV, Dhar C, Hsiao J, Zengler K, Varki N, Varki A, Gordts PL. Dietary Neu5Ac Intervention Protects Against Atherosclerosis Associated With Human-Like Neu5Gc Loss-Brief Report. Arterioscler Thromb Vasc Biol 2021; 41:2730-2739. [PMID: 34587757 PMCID: PMC8551057 DOI: 10.1161/atvbaha.120.315280] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 08/09/2021] [Indexed: 02/06/2023]
Abstract
Objective Species-specific pseudogenization of the CMAH gene during human evolution eliminated common mammalian sialic acid N-glycolylneuraminic acid (Neu5Gc) biosynthesis from its precursor N-acetylneuraminic acid (Neu5Ac). With metabolic nonhuman Neu5Gc incorporation into endothelia from red meat, the major dietary source, anti-Neu5Gc antibodies appeared. Human-like Ldlr-/-Cmah-/- mice on a high-fat diet supplemented with a Neu5Gc-enriched mucin, to mimic human red meat consumption, suffered increased atherosclerosis if human-like anti-Neu5Gc antibodies were elicited. Approach and Results We now ask whether interventional Neu5Ac feeding attenuates metabolically incorporated Neu5Gc-mediated inflammatory acceleration of atherogenesis in this Cmah-/-Ldlr-/- model system. Switching to a Neu5Gc-free high-fat diet or adding a 5-fold excess of Collocalia mucoid-derived Neu5Ac in high-fat diet protects against accelerated atherosclerosis. Switching completely from a Neu5Gc-rich to a Neu5Ac-rich diet further reduces severity. Remarkably, feeding Neu5Ac-enriched high-fat diet alone has a substantial intrinsic protective effect against atherosclerosis in Ldlr-/- mice even in the absence of dietary Neu5Gc but only in the human-like Cmah-null background. Conclusions Interventional Neu5Ac feeding can mitigate or prevent the red meat/Neu5Gc-mediated increased risk for atherosclerosis, and has an intrinsic protective effect, even in the absence of Neu5Gc feeding. These findings suggest that similar interventions should be tried in humans and that Neu5Ac-enriched diets alone should also be investigated further.
Collapse
Affiliation(s)
- Kunio Kawanishi
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla
- Department of Experimental Pathology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Joanna K Coker
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla
- Department of Medicine, University of California, San Diego, La Jolla
- Department of Pediatrics, University of California, San Diego, La Jolla
| | - Kaare V. Grunddal
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla
- Department of Medicine, University of California, San Diego, La Jolla
| | - Chirag Dhar
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla
| | - Jason Hsiao
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla
- Department of Medicine, University of California, San Diego, La Jolla
| | - Karsten Zengler
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla
- Department of Pediatrics, University of California, San Diego, La Jolla
- Department of Bioengineering, University of California, San Diego, La Jolla
- Center for Microbiome Innovation, University of California, San Diego, La Jolla
| | - Nissi Varki
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla
- Department of Bioengineering, University of California, San Diego, La Jolla
| | - Ajit Varki
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla
- Department of Medicine, University of California, San Diego, La Jolla
- Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla
| | - Philip L.S.M. Gordts
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla
- Department of Medicine, University of California, San Diego, La Jolla
| |
Collapse
|
90
|
Li C, Zhao M, Xiao L, Wei H, Wen Z, Hu D, Yu B, Sun Y, Gao J, Shen X, Zhang Q, Cao H, Huang J, Huang W, Li K, Huang M, Ni L, Yu T, Ji L, Xu Y, Liu G, Konerman MC, Zheng L, Wen Wang D. Prognostic Value of Elevated Levels of Plasma N-Acetylneuraminic Acid in Patients With Heart Failure. Circ Heart Fail 2021; 14:e008459. [PMID: 34711067 DOI: 10.1161/circheartfailure.121.008459] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 08/25/2021] [Indexed: 01/13/2023]
Abstract
BACKGROUND Cardiac sialylation is involved in a variety of physiological processes in the heart. Altered sialylation has been implicated in heart failure (HF) mice. However, its role in patients with HF is unclear, and the potential effect of modulation of cardiac sialylation is worth exploring. METHODS We first assessed the association between plasma N-acetylneuraminic acid levels and the incidence of adverse cardiovascular events in patients with HF over a median follow-up period of 2 years. Next, immunoblot analysis and lectin histochemistry were performed in cardiac tissue to determine the expression levels of neuraminidases and the extent of cardiac desialylation. Finally, the therapeutic impact of a neuraminidase inhibitor was evaluated in animal models of HF. RESULTS Among 1699 patients with HF, 464 (27%) died of cardiovascular-related deaths or underwent heart transplantation. We found that the elevated plasma N-acetylneuraminic acid level was independently associated with a higher risk of incident cardiovascular death and heart transplantation (third tertile adjusted hazard ratio, 2.11 [95% CI, 1.67-2.66], P<0.001). In addition, in cardiac tissues from patients with HF, neuraminidase expression was upregulated, accompanied by desialylation. Treatment with oseltamivir, a neuraminidase inhibitor, in HF mice infused with isoproterenol and angiotensin II significantly inhibited desialylation and ameliorated cardiac dysfunction. CONCLUSIONS This study uncovered a significant association between elevated plasma N-acetylneuraminic acid level and an increased risk of a poor clinical outcome in patients with HF. Our data support the notion that desialylation represents an important contributor to the progression of HF, and neuraminidase inhibition may be a potential therapeutic strategy for HF.
Collapse
Affiliation(s)
- Chenze Li
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Institute of Myocardial Injury and Repair, Wuhan University, China (C.L.)
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital (C.L., L.X., H.W., Z.W., D.H., B.Y., Y.S., X.S., J.H., K.L., M.H., L.N., T.Y., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingming Zhao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China (M.Z.)
- The Institute of Cardiovascular Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (M.Z., J.G., Q.Z., H.C., L.J., Y.X., L.Z.)
| | - Lei Xiao
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital (C.L., L.X., H.W., Z.W., D.H., B.Y., Y.S., X.S., J.H., K.L., M.H., L.N., T.Y., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoran Wei
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital (C.L., L.X., H.W., Z.W., D.H., B.Y., Y.S., X.S., J.H., K.L., M.H., L.N., T.Y., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Wen
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital (C.L., L.X., H.W., Z.W., D.H., B.Y., Y.S., X.S., J.H., K.L., M.H., L.N., T.Y., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Hu
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital (C.L., L.X., H.W., Z.W., D.H., B.Y., Y.S., X.S., J.H., K.L., M.H., L.N., T.Y., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Yu
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital (C.L., L.X., H.W., Z.W., D.H., B.Y., Y.S., X.S., J.H., K.L., M.H., L.N., T.Y., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Sun
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital (C.L., L.X., H.W., Z.W., D.H., B.Y., Y.S., X.S., J.H., K.L., M.H., L.N., T.Y., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianing Gao
- The Institute of Cardiovascular Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (M.Z., J.G., Q.Z., H.C., L.J., Y.X., L.Z.)
| | - Xiaoqing Shen
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital (C.L., L.X., H.W., Z.W., D.H., B.Y., Y.S., X.S., J.H., K.L., M.H., L.N., T.Y., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhang
- The Institute of Cardiovascular Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (M.Z., J.G., Q.Z., H.C., L.J., Y.X., L.Z.)
| | - Huanhuan Cao
- The Institute of Cardiovascular Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (M.Z., J.G., Q.Z., H.C., L.J., Y.X., L.Z.)
| | - Jin Huang
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital (C.L., L.X., H.W., Z.W., D.H., B.Y., Y.S., X.S., J.H., K.L., M.H., L.N., T.Y., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Huang
- Department of Cardiology, Central Theater General Hospital of the Chinese People's Liberation Army, Wuhan, China (W.H.)
| | - Ke Li
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital (C.L., L.X., H.W., Z.W., D.H., B.Y., Y.S., X.S., J.H., K.L., M.H., L.N., T.Y., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Man Huang
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital (C.L., L.X., H.W., Z.W., D.H., B.Y., Y.S., X.S., J.H., K.L., M.H., L.N., T.Y., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Ni
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital (C.L., L.X., H.W., Z.W., D.H., B.Y., Y.S., X.S., J.H., K.L., M.H., L.N., T.Y., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Yu
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital (C.L., L.X., H.W., Z.W., D.H., B.Y., Y.S., X.S., J.H., K.L., M.H., L.N., T.Y., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Ji
- The Institute of Cardiovascular Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (M.Z., J.G., Q.Z., H.C., L.J., Y.X., L.Z.)
| | - Yangkai Xu
- The Institute of Cardiovascular Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (M.Z., J.G., Q.Z., H.C., L.J., Y.X., L.Z.)
| | - Gang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, School of Public Health (G.L.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Matthew C Konerman
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Institute for Health Care Policy and Innovation, University of Michigan, Veterans Affairs Center for Clinical Management Research, Ann Arbor (M.C.K.)
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (M.Z., J.G., Q.Z., H.C., L.J., Y.X., L.Z.)
- China National Clinical Research Center for Neurological Diseases, Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, The Capital Medical University, Beijing (L.Z.)
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital (C.L., L.X., H.W., Z.W., D.H., B.Y., Y.S., X.S., J.H., K.L., M.H., L.N., T.Y., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
91
|
Che ZY, Wang XY, Ma X, Ding SN. Bipolar electrochemiluminescence sensors: From signal amplification strategies to sensing formats. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214116] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
92
|
Jarahian M, Marofi F, Maashi MS, Ghaebi M, Khezri A, Berger MR. Re-Expression of Poly/Oligo-Sialylated Adhesion Molecules on the Surface of Tumor Cells Disrupts Their Interaction with Immune-Effector Cells and Contributes to Pathophysiological Immune Escape. Cancers (Basel) 2021; 13:5203. [PMID: 34680351 PMCID: PMC8534074 DOI: 10.3390/cancers13205203] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/28/2022] Open
Abstract
Glycans linked to surface proteins are the most complex biological macromolecules that play an active role in various cellular mechanisms. This diversity is the basis of cell-cell interaction and communication, cell growth, cell migration, as well as co-stimulatory or inhibitory signaling. Our review describes the importance of neuraminic acid and its derivatives as recognition elements, which are located at the outermost positions of carbohydrate chains linked to specific glycoproteins or glycolipids. Tumor cells, especially from solid tumors, mask themselves by re-expression of hypersialylated neural cell adhesion molecule (NCAM), neuropilin-2 (NRP-2), or synaptic cell adhesion molecule 1 (SynCAM 1) in order to protect themselves against the cytotoxic attack of the also highly sialylated immune effector cells. More particularly, we focus on α-2,8-linked polysialic acid chains, which characterize carrier glycoproteins such as NCAM, NRP-2, or SynCam-1. This characteristic property correlates with an aggressive clinical phenotype and endows them with multiple roles in biological processes that underlie all steps of cancer progression, including regulation of cell-cell and/or cell-extracellular matrix interactions, as well as increased proliferation, migration, reduced apoptosis rate of tumor cells, angiogenesis, and metastasis. Specifically, re-expression of poly/oligo-sialylated adhesion molecules on the surface of tumor cells disrupts their interaction with immune-effector cells and contributes to pathophysiological immune escape. Further, sialylated glycoproteins induce immunoregulatory cytokines and growth factors through interactions with sialic acid-binding immunoglobulin-like lectins. We describe the processes, which modulate the interaction between sialylated carrier glycoproteins and their ligands, and illustrate that sialic acids could be targets of novel therapeutic strategies for treatment of cancer and immune diseases.
Collapse
Affiliation(s)
- Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit Heidelberg, 69120 Heidelberg, Germany;
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran;
| | - Marwah Suliman Maashi
- Stem Cells and Regenerative Medicine Unit at King Fahad Medical Research Centre, Jeddah 11211, Saudi Arabia;
| | - Mahnaz Ghaebi
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan 4513956184, Iran;
| | - Abdolrahman Khezri
- Department of Biotechnology, Inland Norway University of Applied Sciences, 2418 Hamar, Norway;
| | - Martin R. Berger
- German Cancer Research Center, Toxicology and Chemotherapy Unit Heidelberg, 69120 Heidelberg, Germany;
| |
Collapse
|
93
|
Anjum S, Hashim M, Malik SA, Khan M, Lorenzo JM, Abbasi BH, Hano C. Recent Advances in Zinc Oxide Nanoparticles (ZnO NPs) for Cancer Diagnosis, Target Drug Delivery, and Treatment. Cancers (Basel) 2021; 13:4570. [PMID: 34572797 PMCID: PMC8468934 DOI: 10.3390/cancers13184570] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is regarded as one of the most deadly and mirthless diseases and it develops due to the uncontrolled proliferation of cells. To date, varieties of traditional medications and chemotherapies have been utilized to fight tumors. However, their immense drawbacks, such as reduced bioavailability, insufficient supply, and significant adverse effects, make their use limited. Nanotechnology has evolved rapidly in recent years and offers a wide spectrum of applications in the healthcare sectors. Nanoscale materials offer strong potential for curing cancer as they pose low risk and fewer complications. Several metal oxide NPs are being developed to diagnose or treat malignancies, but zinc oxide nanoparticles (ZnO NPs) have remarkably demonstrated their potential in the diagnosis and treatment of various types of cancers due to their biocompatibility, biodegradability, and unique physico-chemical attributes. ZnO NPs showed cancer cell specific toxicity via generation of reactive oxygen species and destruction of mitochondrial membrane potential, which leads to the activation of caspase cascades followed by apoptosis of cancerous cells. ZnO NPs have also been used as an effective carrier for targeted and sustained delivery of various plant bioactive and chemotherapeutic anticancerous drugs into tumor cells. In this review, at first we have discussed the role of ZnO NPs in diagnosis and bio-imaging of cancer cells. Secondly, we have extensively reviewed the capability of ZnO NPs as carriers of anticancerous drugs for targeted drug delivery into tumor cells, with a special focus on surface functionalization, drug-loading mechanism, and stimuli-responsive controlled release of drugs. Finally, we have critically discussed the anticancerous activity of ZnO NPs on different types of cancers along with their mode of actions. Furthermore, this review also highlights the limitations and future prospects of ZnO NPs in cancer theranostic.
Collapse
Affiliation(s)
- Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan; (M.H.); (S.A.M.); (M.K.)
| | - Mariam Hashim
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan; (M.H.); (S.A.M.); (M.K.)
| | - Sara Asad Malik
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan; (M.H.); (S.A.M.); (M.K.)
| | - Maha Khan
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan; (M.H.); (S.A.M.); (M.K.)
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avenida de Galicia 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Ourense, Spain;
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 15320, Pakistan;
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, Eure & Loir Campus, University of Orleans, 28000 Chartres, France;
| |
Collapse
|
94
|
Zhang X, Zhang C, Li N, Pan W, Fu M, Ong'achwa Machuki J, Ge K, Liu Z, Gao F. Gold-Bipyramid-Based Nanothernostics: FRET-Mediated Protein-Specific Sialylation Visualization and Oxygen-Augmenting Phototherapy against Hypoxic Tumor. Anal Chem 2021; 93:12103-12115. [PMID: 34428035 DOI: 10.1021/acs.analchem.1c02625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite several attempts, incorporating biological detection that supplies necessary biological information into therapeutic nanotheranostics for hypoxic tumor treatments is considered to be in its infancy. It is therefore imperative to consolidate biological detection and desirable phototherapy into a single nanosystem for maximizing theranostic advantages. Herein, we develop a versatile nanoprobe through combined fluorescence resonance energy transfer (FRET) and oxygen-augmenting strategy, namely APT, which enables glycosylation detection, O2 self-sufficiency, and collaborative phototherapy. Such APT nanoprobes were constructed by depositing platinum onto gold nano-bipyramids (Au NBPs), linking FITC fluorophore-labeled AS1411 aptamers for introducing FRET donors, and by conjugating G-quadruplex intercalated with TMPyP4 to their surfaces via the SH-DNA chain. By installing FRET acceptors on the glycan of targeted EpCAM glycoprotein using the metabolic glycan labeling and click chemistry, FRET signals appear on the cancerous cell membranes, not normal cells, when donors and acceptors are within an appropriate distance. This actualizes protein-specific glycosylation visualization while revealing glycan-based changes correlated with tumor progression. Interestingly, the deposited platinum scavenges excessive H2O2 as artificial nanoenzymes to transform O2 that alleviates tumor hypoxia and simultaneously elevates singlet oxygen (1O2) for inducing cancer cell apoptosis. Notably, the significant hyperthermia devastation was elicited via APT nanoprobes with phenomenal photothermal therapy (PTT) efficiency (71.8%) for thermally ablating cancer cells, resulting in synergistically enhanced photodynamic-hyperthermia therapy. Consequently, APT nanoprobes nearly actualized thorough tumor ablation while demonstrating highly curative biosafety. This work offers a new paradigm to rationally explore a combined FRET and oxygen-augmenting strategy with a focus on nanotheranostics for hypoxic tumor elimination.
Collapse
Affiliation(s)
- Xing Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.,Department of Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Caiyi Zhang
- The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, 221004 Xuzhou, China
| | - Na Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Wenzhen Pan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Mengying Fu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jeremiah Ong'achwa Machuki
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Kezhen Ge
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Zhao Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.,Department of Thyroid and Breast Surgery, Affiliated Hospital of Xuzhou Medical University, 221004 Xuzhou, China
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| |
Collapse
|
95
|
Zhang X, Dou P, Akhtar ML, Liu F, Hu X, Yang L, Yang D, Zhang X, Li Y, Qiao S, Li K, Tang R, Zhan C, Ma Y, Cheng Q, Bai Y, Han F, Nie H, Li Y. NEU4 inhibits motility of HCC cells by cleaving sialic acids on CD44. Oncogene 2021; 40:5427-5440. [PMID: 34282273 DOI: 10.1038/s41388-021-01955-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 06/19/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is an extremely metastatic tumor. Sialic acids (SAs) are associated with cancer development and metastasis. NEU4 is a sialidase that removes SAs from glycoconjugates, while the function of the NEU4 in HCC has not been clearly explored. In our research, we found the NEU4 expression was significantly down-regulated in HCC tissues, which was correlated with high grades and poor outcomes of HCC. The NEU4 expression could be regulated by histone acetylation. In the functional analysis of NEU4, the cell motility was inhibited when NEU4 was overexpressed, and restored when NEU4 expression was down-regulated. Similarly, NEU4 over-expressed HCC cells showed less metastasis in athymic nude mice. Further study revealed that NEU4 could inhibit cell migration by enzymatic decomposition of SAs. Our results verified a NEU4 active site (NEU4E235) and overexpressing inactivates NEU4E235A that weakens the inhibition ability to cell migration. Further, 70 kinds of specific interacting proteins of NEU4 including CD44 were identified through mass spectrum. Moreover, the α2,3-linked SAs on CD44 were decreased and the hyaluronic acid (HA) binding ability was increased when NEU4 over-expressed or activated. Additionally, the mutation of CD44 with six N-glycosylation sites showed less sensibility to NEU4 on cell migration compared with wild-type CD44. In summary, our results revealed the mechanism of low expression of NEU4 in HCC and its inhibitory effect on cell migration by removal of SAs on CD44, which may provide new treatment strategies to control the motility and metastasis of HCC.
Collapse
Affiliation(s)
- Xiaoqing Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Provence, China, 150008
| | - Peng Dou
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Provence, China, 150008
| | - Muhammad Luqman Akhtar
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Provence, China, 150008
| | - Fei Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Provence, China, 150008
| | - Xibo Hu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Provence, China, 150008
| | - Lijun Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Provence, China, 150008
| | - Depeng Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Provence, China, 150008
| | - Xiaohan Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Provence, China, 150008
| | - Yiqun Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Provence, China, 150008
| | - Shupei Qiao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Provence, China, 150008
| | - Kai Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Provence, China, 150008
| | - Ran Tang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Provence, China, 150008
| | - Chao Zhan
- The third affiliated hospital, Harbin Medical University, Harbin, Heilongjiang Provence, China, 150006
| | - Yue Ma
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Provence, China, 150008
| | - Qixiang Cheng
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Provence, China, 150008
| | - Yan Bai
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Provence, China, 150008
| | - Fang Han
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Provence, China, 150008
| | - Huan Nie
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Provence, China, 150008.
| | - Yu Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Provence, China, 150008.
| |
Collapse
|
96
|
Asressu KH, Chang C, Lam S, Wang C. Donor‐Reactivity‐Controlled Sialylation Reactions. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Kesatebrhan Haile Asressu
- Institute of Chemistry Academia Sinica Taipei 115 Taiwan
- Taiwan International Graduate Program (TIGP) Sustainable Chemical Science and Technology (SCST) Academia Sinica Taipei 115 Taiwan
- Department of Applied Chemistry National Yang Ming Chiao Tung University Hsinchu 300 Taiwan
| | - Chun‐Wei Chang
- Institute of Chemistry Academia Sinica Taipei 115 Taiwan
| | - Sarah Lam
- Institute of Chemistry Academia Sinica Taipei 115 Taiwan
| | - Cheng‐Chung Wang
- Institute of Chemistry Academia Sinica Taipei 115 Taiwan
- Taiwan International Graduate Program (TIGP) Sustainable Chemical Science and Technology (SCST) Academia Sinica Taipei 115 Taiwan
- Department of Applied Chemistry National Yang Ming Chiao Tung University Hsinchu 300 Taiwan
| |
Collapse
|
97
|
Passaponti S, Pavone V, Cresti L, Ietta F. The expression and role of glycans at the feto-maternal interface in humans. Tissue Cell 2021; 73:101630. [PMID: 34454366 DOI: 10.1016/j.tice.2021.101630] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/28/2022]
Abstract
During pregnancy, both the maternal endometrium and the blastocyst have highly glycosylated proteins with glycosylations controlled in a specific manner. Carbohydrates play a fundamental role in cell-cell and cell-matrix recognition and are involved in defining the structure and integrity of tissues. The uterus' secretions, which are rich in glycoproteins and glycogen and the presence of a functional glycocalyx on the uterine epithelium, establish a favourable milieu, which is essential for the correct implantation and subsequent development of the blastocyst. Likewise, carbohydrate residues such as fucose and sialic acid present at the placental level are determinant in creating an immuno-environment, which supports the mother's tolerance towards the fetal antigens. In this review, we explore the literature concerning the role of important glycan-epitopes at the feto-maternal interface in the human species. Moreover, we also show some unpublished interesting results on changes of glycan residues in human placenta tissues from the first trimester of pregnancy.
Collapse
Affiliation(s)
- Sofia Passaponti
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy.
| | - Valentina Pavone
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy.
| | - Laura Cresti
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy.
| | - Francesca Ietta
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy.
| |
Collapse
|
98
|
Choe HM, Luo ZB, Kang JD, Oh MJ, An HJ, Yin XJ. Pathological features in 'humanized' neonatal pig. Anim Biotechnol 2021; 34:301-309. [PMID: 34392816 DOI: 10.1080/10495398.2021.1962896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cytidine monophosphate-Nacetylneuraminic acid (Neu5Ac) hydroxylase (CMAH) and glycoprotein, alpha1, 3-galactosyltransferase (GGTA1) double knockout (DKO) pig models were produced to reduce immune reaction for xenotransplantation. However, the role of Neu5Gc and α-Gal in pigs has not been fully elucidated and it is necessary to consider the after-effect of inactivation of GGTA1 and CMAH in pigs. Hematological profiles of DKO pigs were analyzed through complete blood count (CBC). Histology of liver and spleen of DKO were investigated, and lectin blotting and mass spectrometry (MS) were performed to explore glycosylation changes in red blood cell (RBC) membranes of DKO pigs. DKO pigs showed common clinical signs such as weakness (100%), dyspnea (90%) and constipation (65%). DKO pigs revealed a significant decrease in RBC, hemoglobin (HGB) and hematocrit (HGB), and an increase in white blood cell (WBC), lymphocyte (LYM), monocyte (MON), and erythrocyte mean corpuscular volume (MCV). DKO piglets showed swollen liver and spleen, and exhibited raised deposition of hemosiderin and severe bleeding. Lectin assay and MS proved variations in glycosylation on RBC membranes. GGTA1/CMAH DKO pigs developed pathological features which are similar to anemic symptoms, and the variations in glycosylation on RBC membranes of DKO pigs may be attributed to the pathologies observed.
Collapse
Affiliation(s)
- Hak Myong Choe
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, China
| | - Zhao-Bo Luo
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, China
| | - Jin-Dan Kang
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, China
| | - Myung Jin Oh
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Korea
| | - Hyun Joo An
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Korea
| | - Xi-Jun Yin
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, China
| |
Collapse
|
99
|
Jahan M, Francis N, Wynn P, Wang B. The Potential for Sialic Acid and Sialylated Glycoconjugates as Feed Additives to Enhance Pig Health and Production. Animals (Basel) 2021; 11:ani11082318. [PMID: 34438776 PMCID: PMC8388453 DOI: 10.3390/ani11082318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary This review discusses the current challenges in the pig industry and the potential nutritional significance of sialic acid (Sia) and glycoconjugates (Sia-GC’s) for pig health and nutrition. Sia is a nine-carbon acidic sugar which is present in various organs and body fluids of humans and animals. Sias contribute to many beneficial biological functions including pathogen resistance, immunomodulation, gut microbiota development, gut maturation, anti-inflammation and neurodevelopment. The role of Sias in regulating the metabolism of pigs has seldom been reported. However, we have documented significant beneficial effects of specific Sia-GC’s on health and production performance of sows and piglets. These findings are reviewed in relation to other studies while noting the beneficial effects of the inclusion of Sia, Sia containing oligosaccharide or the sialo-protein lactoferrin in the diets of gilts and sows. The importance of the passive transfer of of Sia and Sia-GC’s through milk to the young and the implications for their growth and development is also reviewed. This information will assist in optimizing the composition of sow/gilt milk replacers designed to increases the survival of IUGR piglets or piglets with dams suffering from agalactia, a common problem in pig production systems worldwide. Abstract Swine are one of the most important agricultural species for human food production. Given the significant disease challenges confronting commercial pig farming systems, introduction of a new feed additive that can enhance animal performance by improving growth and immune status represents a major opportunity. One such candidate is sialic acid (Sia), a diverse family of nine-carbon acidic sugar, present in various organs and body fluid, as well as an essential structural and functional constituent of brain ganglioside of humans and animals. Sias are key monosaccharide and biomarker of sialylated milk oligosaccharide (Sia-MOS’s), sialylated glycoproteins and glycolipids in milk and all vertebrate cells. Sias accomplish many critical endogenous functions by virtue of their physiochemical properties and via recognition by intrinsic receptors. Human milk sialylated glycoconjugates (Sia-GC’s) are bioactive compounds known to act as prebiotics that promote gut microbiota development, gut maturation, pathogen resistance, immunomodulation, anti-inflammation and neurodevelopment. However, the importance of Sia in pig health, especially in the growth, development, immunity of developing piglet and in pig production remains unknown. This review aims to critically discuss the current status of knowledge of the biology and nutritional role of Sia and Sia-GC’s on health of both female sow and newborn piglets.
Collapse
Affiliation(s)
| | | | | | - Bing Wang
- Correspondence: ; Tel.: +61-2-6933-4549
| |
Collapse
|
100
|
Ling AJW, Chang LS, Babji AS, Latip J, Koketsu M, Lim SJ. Review of sialic acid's biochemistry, sources, extraction and functions with special reference to edible bird's nest. Food Chem 2021; 367:130755. [PMID: 34390910 DOI: 10.1016/j.foodchem.2021.130755] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 07/24/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022]
Abstract
Sialic acids are a group of nine-carbon α-keto acids. Sialic acid exists in more than 50 forms, with the natural types discovered as N-acetylneuraminic acid (Neu5Ac), deaminoneuraminic acid (2-keto-3-deoxy-nonulononic acid or Kdn), and N-glycolylneuraminic acid (Neu5Gc). Sialic acid level varies depending on the source, where edible bird's nest (EBN), predominantly Neu5Ac, is among the major sources of sialic acid. Due to its high nutritive value and complexity, sialic acid has been studied extensively through acid, aqueous, and enzymatic extraction. Although detection by chromatographic methods or mass spectrometry is common, the isolation and recovery work remained limited. Sialic acid is well-recognised for its bioactivities, including brain and cognition development, immune-enhancing, anti-hypertensive, anticancer, and skin whitening properties. Therefore, sialic acid can be used as a functional ingredient in the various industries. This paper reviews the current trend in the biochemistry, sources, extraction, and functions of sialic acids with special reference to EBN.
Collapse
Affiliation(s)
- Alvin Jin Wei Ling
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Lee Sin Chang
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| | - Abdul Salam Babji
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; Centre for Innovation and Technology Transfer (INOVASI@UKM), Chancellery, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| | - Jalifah Latip
- Department of Chemistry, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| | - Mamoru Koketsu
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Seng Joe Lim
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| |
Collapse
|