51
|
Macpherson T, Churchland A, Sejnowski T, DiCarlo J, Kamitani Y, Takahashi H, Hikida T. Natural and Artificial Intelligence: A brief introduction to the interplay between AI and neuroscience research. Neural Netw 2021; 144:603-613. [PMID: 34649035 DOI: 10.1016/j.neunet.2021.09.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022]
Abstract
Neuroscience and artificial intelligence (AI) share a long history of collaboration. Advances in neuroscience, alongside huge leaps in computer processing power over the last few decades, have given rise to a new generation of in silico neural networks inspired by the architecture of the brain. These AI systems are now capable of many of the advanced perceptual and cognitive abilities of biological systems, including object recognition and decision making. Moreover, AI is now increasingly being employed as a tool for neuroscience research and is transforming our understanding of brain functions. In particular, deep learning has been used to model how convolutional layers and recurrent connections in the brain's cerebral cortex control important functions, including visual processing, memory, and motor control. Excitingly, the use of neuroscience-inspired AI also holds great promise for understanding how changes in brain networks result in psychopathologies, and could even be utilized in treatment regimes. Here we discuss recent advancements in four areas in which the relationship between neuroscience and AI has led to major advancements in the field; (1) AI models of working memory, (2) AI visual processing, (3) AI analysis of big neuroscience datasets, and (4) computational psychiatry.
Collapse
Affiliation(s)
- Tom Macpherson
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Anne Churchland
- Cold Spring Harbor Laboratory, Neuroscience, Cold Spring Harbor, NY, USA
| | - Terry Sejnowski
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, CA, USA; Division of Biological Sciences, University of California San Diego, CA, USA
| | - James DiCarlo
- Brain and Cognitive Sciences, Massachusetts Institute of Technology, MA, USA
| | - Yukiyasu Kamitani
- Department of Neuroinformatics, ATR Computational Neuroscience Laboratories, Kyoto, Japan; Graduate School of Informatics, Kyoto University, Kyoto, Japan
| | - Hidehiko Takahashi
- Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Osaka, Japan.
| |
Collapse
|
52
|
Pan WX, Coddington LT, Dudman JT. Dissociable contributions of phasic dopamine activity to reward and prediction. Cell Rep 2021; 36:109684. [PMID: 34496245 DOI: 10.1016/j.celrep.2021.109684] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/07/2021] [Accepted: 08/18/2021] [Indexed: 01/06/2023] Open
Abstract
Sensory cues that precede reward acquire predictive (expected value) and incentive (drive reward-seeking action) properties. Mesolimbic dopamine neurons' responses to sensory cues correlate with both expected value and reward-seeking action. This has led to the proposal that phasic dopamine responses may be sufficient to inform value-based decisions, elicit actions, and/or induce motivational states; however, causal tests are incomplete. Here, we show that direct dopamine neuron stimulation, both calibrated to physiological and greater intensities, at the time of reward can be sufficient to induce and maintain reward seeking (reinforcing) although replacement of a cue with stimulation is insufficient to induce reward seeking or act as an informative cue. Stimulation of descending cortical inputs, one synapse upstream, are sufficient for reinforcement and cues to future reward. Thus, physiological activation of mesolimbic dopamine neurons can be sufficient for reinforcing properties of reward without being sufficient for the predictive and incentive properties of cues.
Collapse
Affiliation(s)
- Wei-Xing Pan
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.
| | - Luke T Coddington
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Joshua T Dudman
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.
| |
Collapse
|
53
|
Furman DJ, Zhang Z, Chatham CH, Good M, Badre D, Hsu M, Kayser AS. Augmenting Frontal Dopamine Tone Enhances Maintenance over Gating Processes in Working Memory. J Cogn Neurosci 2021; 33:1753-1765. [PMID: 33054556 DOI: 10.1162/jocn_a_01641] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The contents of working memory must be maintained in the face of distraction, but updated when appropriate. To manage these competing demands of stability and flexibility, maintained representations in working memory are complemented by distinct gating mechanisms that selectively transmit information into and out of memory stores. The operations of such dopamine-dependent gating systems in the midbrain and striatum and their complementary dopamine-dependent memory maintenance operations in the cortex may therefore be dissociable. If true, selective increases in cortical dopamine tone should preferentially enhance maintenance over gating mechanisms. To test this hypothesis, tolcapone, a catechol-O-methyltransferase inhibitor that preferentially increases cortical dopamine tone, was administered in a randomized, double-blind, placebo-controlled, within-subject fashion to 49 participants who completed a hierarchical working memory task that varied maintenance and gating demands. Tolcapone improved performance in a condition with higher maintenance requirements and reduced gating demands, reflected in a reduction in the slope of RTs across the distribution. Resting-state fMRI data demonstrated that the degree to which tolcapone improved performance in individual participants correlated with increased connectivity between a region important for stimulus response mappings (left dorsal premotor cortex) and cortical areas implicated in visual working memory, including the intraparietal sulcus and fusiform gyrus. Together, these results provide evidence that augmenting cortical dopamine tone preferentially improves working memory maintenance.
Collapse
Affiliation(s)
- Daniella J Furman
- University of California, San Francisco.,University of California, Berkeley
| | | | | | | | | | - Ming Hsu
- University of California, Berkeley
| | - Andrew S Kayser
- University of California, San Francisco.,University of California, Berkeley.,VA Northern California Health Care System
| |
Collapse
|
54
|
Wolf C, Lappe M. Vision as oculomotor reward: cognitive contributions to the dynamic control of saccadic eye movements. Cogn Neurodyn 2021; 15:547-568. [PMID: 34367360 PMCID: PMC8286912 DOI: 10.1007/s11571-020-09661-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/12/2020] [Accepted: 12/28/2020] [Indexed: 01/08/2023] Open
Abstract
Humans and other primates are equipped with a foveated visual system. As a consequence, we reorient our fovea to objects and targets in the visual field that are conspicuous or that we consider relevant or worth looking at. These reorientations are achieved by means of saccadic eye movements. Where we saccade to depends on various low-level factors such as a targets' luminance but also crucially on high-level factors like the expected reward or a targets' relevance for perception and subsequent behavior. Here, we review recent findings how the control of saccadic eye movements is influenced by higher-level cognitive processes. We first describe the pathways by which cognitive contributions can influence the neural oculomotor circuit. Second, we summarize what saccade parameters reveal about cognitive mechanisms, particularly saccade latencies, saccade kinematics and changes in saccade gain. Finally, we review findings on what renders a saccade target valuable, as reflected in oculomotor behavior. We emphasize that foveal vision of the target after the saccade can constitute an internal reward for the visual system and that this is reflected in oculomotor dynamics that serve to quickly and accurately provide detailed foveal vision of relevant targets in the visual field.
Collapse
Affiliation(s)
- Christian Wolf
- Institute for Psychology, University of Muenster, Fliednerstrasse 21, 48149 Münster, Germany
| | - Markus Lappe
- Institute for Psychology, University of Muenster, Fliednerstrasse 21, 48149 Münster, Germany
| |
Collapse
|
55
|
Macedo-Lima M, Remage-Healey L. Dopamine Modulation of Motor and Sensory Cortical Plasticity among Vertebrates. Integr Comp Biol 2021; 61:316-336. [PMID: 33822047 PMCID: PMC8600016 DOI: 10.1093/icb/icab019] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Goal-directed learning is a key contributor to evolutionary fitness in animals. The neural mechanisms that mediate learning often involve the neuromodulator dopamine. In higher order cortical regions, most of what is known about dopamine's role is derived from brain regions involved in motivation and decision-making, while significantly less is known about dopamine's potential role in motor and/or sensory brain regions to guide performance. Research on rodents and primates represents over 95% of publications in the field, while little beyond basic anatomy is known in other vertebrate groups. This significantly limits our general understanding of how dopamine signaling systems have evolved as organisms adapt to their environments. This review takes a pan-vertebrate view of the literature on the role of dopamine in motor/sensory cortical regions, highlighting, when available, research on non-mammalian vertebrates. We provide a broad perspective on dopamine function and emphasize that dopamine-induced plasticity mechanisms are widespread across all cortical systems and associated with motor and sensory adaptations. The available evidence illustrates that there is a strong anatomical basis-dopamine fibers and receptor distributions-to hypothesize that pallial dopamine effects are widespread among vertebrates. Continued research progress in non-mammalian species will be crucial to further our understanding of how the dopamine system evolved to shape the diverse array of brain structures and behaviors among the vertebrate lineage.
Collapse
Affiliation(s)
- Matheus Macedo-Lima
- Neuroscience and Behavior Program, Center for Neuroendocrine Studies, University of Massachusetts Amherst, Amherst, MA 01003, USA
- CAPES Foundation, Ministry of Education of Brazil, 70040-031 Brasília, Brazil
| | - Luke Remage-Healey
- Neuroscience and Behavior Program, Center for Neuroendocrine Studies, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
56
|
Attention expedites target selection by prioritizing the neural processing of distractor features. Commun Biol 2021; 4:814. [PMID: 34188169 PMCID: PMC8242025 DOI: 10.1038/s42003-021-02305-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/04/2021] [Indexed: 11/21/2022] Open
Abstract
Whether doing the shopping, or driving the car – to navigate daily life, our brain has to rapidly identify relevant color signals among distracting ones. Despite a wealth of research, how color attention is dynamically adjusted is little understood. Previous studies suggest that the speed of feature attention depends on the time it takes to enhance the neural gain of cortical units tuned to the attended feature. To test this idea, we had human participants switch their attention on the fly between unpredicted target color alternatives, while recording the electromagnetic brain response to probes matching the target, a non-target, or a distracting alternative target color. Paradoxically, we observed a temporally prioritized processing of distractor colors. A larger neural modulation for the distractor followed by its stronger attenuation expedited target identification. Our results suggest that dynamic adjustments of feature attention involve the temporally prioritized processing and elimination of distracting feature representations. In order to investigate underlying mechanisms of color attention, Bartsch et al measured electromagnetic brain responses in participants who were challenged to switch their attention in accordance with unpredicted target colors changes in the absence or presence of ‘distractor colors’. They demonstrated that dynamic adjustments of feature attention involve the temporally prioritized processing and elimination of distracting feature representations.
Collapse
|
57
|
Abstract
Many studies have revealed that reward-associated features capture attention. Neurophysiological evidence further suggests that this reward-driven attention effect modulates visual processes by enhancing low-level visual salience. However, no behavioral study to date has directly examined whether reward-driven attention changes how people see. Combining the two-phase paradigm with a psychophysical method, the current study found that compared with nonsalient cues associated with lower reward, the nonsalient cues associated with higher reward captured more attention, and increased the perceived contrast of the subsequent stimuli. This is the first direct behavioral evidence of the effect of reward-driven attention on low-level visual perception.
Collapse
Affiliation(s)
- Nan Qin
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, P. R. China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, P. R. China.,Department of Experimental-Clinical and Health Psychology, Ghent University, Ghent, Belgium.,
| | - Ruolei Gu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, P. R. China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, P. R. China.,
| | - Jingming Xue
- Faculty of Psychology, Beijing Normal University, Beijing, P. R. China.,
| | - Chuansheng Chen
- Department of Psychological Science, University of California, Irvine, CA, USA.,
| | - Mingxia Zhang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, P. R. China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, P. R. China.,State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, P. R. China.,
| |
Collapse
|
58
|
Dasilva M, Brandt C, Alwin Gieselmann M, Distler C, Thiele A. Contribution of Ionotropic Glutamatergic Receptors to Excitability and Attentional Signals in Macaque Frontal Eye Field. Cereb Cortex 2021; 31:3266-3284. [PMID: 33626129 PMCID: PMC8196243 DOI: 10.1093/cercor/bhab007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 11/27/2022] Open
Abstract
Top-down attention, controlled by frontal cortical areas, is a key component of cognitive operations. How different neurotransmitters and neuromodulators flexibly change the cellular and network interactions with attention demands remains poorly understood. While acetylcholine and dopamine are critically involved, glutamatergic receptors have been proposed to play important roles. To understand their contribution to attentional signals, we investigated how ionotropic glutamatergic receptors in the frontal eye field (FEF) of male macaques contribute to neuronal excitability and attentional control signals in different cell types. Broad-spiking and narrow-spiking cells both required N-methyl-D-aspartic acid and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor activation for normal excitability, thereby affecting ongoing or stimulus-driven activity. However, attentional control signals were not dependent on either glutamatergic receptor type in broad- or narrow-spiking cells. A further subdivision of cell types into different functional types using cluster-analysis based on spike waveforms and spiking characteristics did not change the conclusions. This can be explained by a model where local blockade of specific ionotropic receptors is compensated by cell embedding in large-scale networks. It sets the glutamatergic system apart from the cholinergic system in FEF and demonstrates that a reduction in excitability is not sufficient to induce a reduction in attentional control signals.
Collapse
Affiliation(s)
- Miguel Dasilva
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.,College of Medicine and Health, University of Exeter, EX1 2LU, UK
| | - Christian Brandt
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.,Institute of Clinical Research, University of Southern Denmark, DK-5230 Odense, Denmark
| | | | - Claudia Distler
- Allgemeine Zoologie und Neurobiologie, Ruhr-Universität Bochum, Bochum 44801 Germany
| | - Alexander Thiele
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
59
|
Abstract
Remapping is a property of some cortical and subcortical neurons that update their responses around the time of an eye movement to account for the shift of stimuli on the retina due to the saccade. Physiologically, remapping is traditionally tested by briefly presenting a single stimulus around the time of the saccade and looking at the onset of the response and the locations in space to which the neuron is responsive. Here we suggest that a better way to understand the functional role of remapping is to look at the time at which the neural signal emerges when saccades are made across a stable scene. Based on data obtained using this approach, we suggest that remapping in the lateral intraparietal area is sufficient to play a role in maintaining visual stability across saccades, whereas in the frontal eye field, remapped activity carries information that affects future saccadic choices and, in a separate subset of neurons, is used to maintain a map of locations in the scene that have been previously fixated.
Collapse
Affiliation(s)
- James W Bisley
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Jules Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Department of Psychology and the Brain Research Institute, UCLA, Los Angeles, CA, USA
| | - Koorosh Mirpour
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Yelda Alkan
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
60
|
A link between synaptic plasticity and reorganization of brain activity in Parkinson's disease. Proc Natl Acad Sci U S A 2021; 118:2013962118. [PMID: 33431672 PMCID: PMC7826364 DOI: 10.1073/pnas.2013962118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The link between synaptic plasticity and reorganization of brain activity in health and disease remains a scientific challenge. We examined this question in Parkinson's disease (PD) where functional up-regulation of postsynaptic D2 receptors has been documented while its significance at the neural activity level has never been identified. We investigated cortico-subcortical plasticity in PD using the oculomotor system as a model to study reorganization of dopaminergic networks. This model is ideal because this system reorganizes due to frontal-to-parietal shifts in blood oxygen level-dependent (BOLD) activity. We tested the prediction that functional activation plasticity is associated with postsynaptic dopaminergic modifications by combining positron emission tomography/functional magnetic resonance imaging to investigate striatal postsynaptic reorganization of dopamine D2 receptors (using 11C-raclopride) and neural activation in PD. We used covariance (connectivity) statistics at molecular and functional levels to probe striato-cortical reorganization in PD in on/off medication states to show that functional and molecular forms of reorganization are related. D2 binding across regions defined by prosaccades showed increased molecular connectivity between both caudate/putamen and hyperactive parietal eye fields in PD in contrast with frontal eye fields in controls, in line with the shift model. Concerning antisaccades, parietal-striatal connectivity dominated in again in PD, unlike frontal regions. Concerning molecular-BOLD covariance, a striking sign reversal was observed: PD patients showed negative frontal-putamen functional-molecular associations, consistent with the reorganization shift, in contrast with the positive correlations observed in controls. Follow-up analysis in off-medication PD patients confirmed the negative BOLD-molecular correlation. These results provide a link among BOLD responses, striato-cortical synaptic reorganization, and neural plasticity in PD.
Collapse
|
61
|
Zubair M, Murris SR, Isa K, Onoe H, Koshimizu Y, Kobayashi K, Vanduffel W, Isa T. Divergent Whole Brain Projections from the Ventral Midbrain in Macaques. Cereb Cortex 2021; 31:2913-2931. [PMID: 33558867 PMCID: PMC8107798 DOI: 10.1093/cercor/bhaa399] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/09/2020] [Accepted: 12/10/2020] [Indexed: 12/18/2022] Open
Abstract
To understand the connectome of the axonal arborizations of dopaminergic midbrain neurons, we investigated the anterograde spread of highly sensitive viral tracers injected into the ventral tegmental area (VTA) and adjacent areas in 3 macaques. In 2 monkeys, injections were centered on the lateral VTA with some spread into the substantia nigra, while in one animal the injection targeted the medial VTA with partial spread into the ventro-medial thalamus. Double-labeling with antibodies against transduced fluorescent proteins (FPs) and tyrosine hydroxylase indicated that substantial portions of transduced midbrain neurons were dopaminergic. Interestingly, cortical terminals were found either homogeneously in molecular layer I, or more heterogeneously, sometimes forming patches, in the deeper laminae II-VI. In the animals with injections in lateral VTA, terminals were most dense in somatomotor cortex and the striatum. In contrast, when the medial VTA was transduced, dense terminals were found in dorsal prefrontal and temporal cortices, while projections to striatum were sparse. In all monkeys, orbitofrontal and occipito-parietal cortex received strong and weak innervation, respectively. Thus, the dopaminergic ventral midbrain sends heterogeneous projections throughout the brain. Furthermore, our results suggest the existence of subgroups in meso-dopaminergic neurons depending on their location in the primate ventral midbrain.
Collapse
Affiliation(s)
- Muhammad Zubair
- Laboratory of Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven Medical School, Leuven 3000, Belgium
- Leuven Brain Institute, Leuven 3000, Belgium
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Sjoerd R Murris
- Laboratory of Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven Medical School, Leuven 3000, Belgium
- Leuven Brain Institute, Leuven 3000, Belgium
| | - Kaoru Isa
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Hirotaka Onoe
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Yoshinori Koshimizu
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan
| | - Wim Vanduffel
- Laboratory of Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven Medical School, Leuven 3000, Belgium
- Leuven Brain Institute, Leuven 3000, Belgium
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02144, USA
| | - Tadashi Isa
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
62
|
Lockhofen DEL, Mulert C. Neurochemistry of Visual Attention. Front Neurosci 2021; 15:643597. [PMID: 34025339 PMCID: PMC8133366 DOI: 10.3389/fnins.2021.643597] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/12/2021] [Indexed: 11/25/2022] Open
Abstract
Visual attention is the cognitive process that mediates the selection of important information from the environment. This selection is usually controlled by bottom-up and top-down attentional biasing. Since for most humans vision is the dominant sense, visual attention is critically important for higher-order cognitive functions and related deficits are a core symptom of many neuropsychiatric and neurological disorders. Here, we summarize the importance and relative contributions of different neuromodulators and neurotransmitters to the neural mechanisms of top-down and bottom-up attentional control. We will not only review the roles of widely accepted neuromodulators, such as acetylcholine, dopamine and noradrenaline, but also the contributions of other modulatory substances. In doing so, we hope to shed some light on the current understanding of the role of neurochemistry in shaping neuron properties contributing to the allocation of attention in the visual field.
Collapse
Affiliation(s)
| | - Christoph Mulert
- Center for Psychiatry and Psychotherapy, Justus-Liebig University, Hessen, Germany
| |
Collapse
|
63
|
Wagatsuma N, Hu B, von der Heydt R, Niebur E. Analysis of spiking synchrony in visual cortex reveals distinct types of top-down modulation signals for spatial and object-based attention. PLoS Comput Biol 2021; 17:e1008829. [PMID: 33765007 PMCID: PMC8023487 DOI: 10.1371/journal.pcbi.1008829] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 04/06/2021] [Accepted: 02/22/2021] [Indexed: 11/19/2022] Open
Abstract
The activity of a border ownership selective (BOS) neuron indicates where a foreground object is located relative to its (classical) receptive field (RF). A population of BOS neurons thus provides an important component of perceptual grouping, the organization of the visual scene into objects. In previous theoretical work, it has been suggested that this grouping mechanism is implemented by a population of dedicated grouping (“G”) cells that integrate the activity of the distributed feature cells representing an object and, by feedback, modulate the same cells, thus making them border ownership selective. The feedback modulation by G cells is thought to also provide the mechanism for object-based attention. A recent modeling study showed that modulatory common feedback, implemented by synapses with N-methyl-D-aspartate (NMDA)-type glutamate receptors, accounts for the experimentally observed synchrony in spike trains of BOS neurons and the shape of cross-correlations between them, including its dependence on the attentional state. However, that study was limited to pairs of BOS neurons with consistent border ownership preferences, defined as two neurons tuned to respond to the same visual object, in which attention decreases synchrony. But attention has also been shown to increase synchrony in neurons with inconsistent border ownership selectivity. Here we extend the computational model from the previous study to fully understand these effects of attention. We postulate the existence of a second type of G-cell that represents spatial attention by modulating the activity of all BOS cells in a spatially defined area. Simulations of this model show that a combination of spatial and object-based mechanisms fully accounts for the observed pattern of synchrony between BOS neurons. Our results suggest that modulatory feedback from G-cells may underlie both spatial and object-based attention. Vision allows us to make sense out of a very complex signal, the patterns of light rays reaching our eyes. Two mechanisms are essential for this: perceptual organization which structures the input into meaningful visual objects, and attention which selects only the most important parts in the input. Prior work suggests that both of these mechanisms are implemented by neurons called grouping cells. These organize the object features into coherent entities (perceptual grouping) and access them as needed (selective attention). For technical reasons it is difficult to observe grouping cells but their effect can be seen in the influence they have on responses of other classes of cells. These responses have been measured experimentally and it was found that they depend in unexpected ways on where the subject was attending. Using a computational model, we here demonstrate that the responses can be understood in terms of the interaction between two kinds of selective attention, both of which are known to occur in primate perception. One is attention to a specific area in the environment, the other is to specific objects. A model including both of these attentional mechanisms generates neuronal responses in agreement with the observed patterns of neural activity.
Collapse
Affiliation(s)
| | - Brian Hu
- Allen Institute for Brain Science, Seattle, Washington, United States of America
| | - Rüdiger von der Heydt
- Zanvyl Krieger Mind/Brain Institute, and Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Ernst Niebur
- Zanvyl Krieger Mind/Brain Institute, and Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
64
|
van Kempen J, Gieselmann MA, Boyd M, Steinmetz NA, Moore T, Engel TA, Thiele A. Top-down coordination of local cortical state during selective attention. Neuron 2021; 109:894-904.e8. [PMID: 33406410 PMCID: PMC7927916 DOI: 10.1016/j.neuron.2020.12.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 11/20/2020] [Accepted: 12/16/2020] [Indexed: 11/30/2022]
Abstract
Spontaneous fluctuations in cortical excitability influence sensory processing and behavior. These fluctuations, long thought to reflect global changes in cortical state, were recently found to be modulated locally within a retinotopic map during spatially selective attention. We report that periods of vigorous (On) and faint (Off) spiking activity, the signature of cortical state fluctuations, are coordinated across brain areas with retinotopic precision. Top-down attention enhanced interareal local state coordination, traversing along the reverse cortical hierarchy. The extent of local state coordination between areas was predictive of behavioral performance. Our results show that cortical state dynamics are shared across brain regions, modulated by cognitive demands and relevant for behavior.
Collapse
Affiliation(s)
- Jochem van Kempen
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
| | - Marc A Gieselmann
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Michael Boyd
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Nicholas A Steinmetz
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Tirin Moore
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Tatiana A Engel
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Alexander Thiele
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
65
|
Mikhael JG, Lai L, Gershman SJ. Rational inattention and tonic dopamine. PLoS Comput Biol 2021; 17:e1008659. [PMID: 33760806 PMCID: PMC7990190 DOI: 10.1371/journal.pcbi.1008659] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/28/2020] [Indexed: 11/27/2022] Open
Abstract
Slow-timescale (tonic) changes in dopamine (DA) contribute to a wide variety of processes in reinforcement learning, interval timing, and other domains. Furthermore, changes in tonic DA exert distinct effects depending on when they occur (e.g., during learning vs. performance) and what task the subject is performing (e.g., operant vs. classical conditioning). Two influential theories of tonic DA-the average reward theory and the Bayesian theory in which DA controls precision-have each been successful at explaining a subset of empirical findings. But how the same DA signal performs two seemingly distinct functions without creating crosstalk is not well understood. Here we reconcile the two theories under the unifying framework of 'rational inattention,' which (1) conceptually links average reward and precision, (2) outlines how DA manipulations affect this relationship, and in so doing, (3) captures new empirical phenomena. In brief, rational inattention asserts that agents can increase their precision in a task (and thus improve their performance) by paying a cognitive cost. Crucially, whether this cost is worth paying depends on average reward availability, reported by DA. The monotonic relationship between average reward and precision means that the DA signal contains the information necessary to retrieve the precision. When this information is needed after the task is performed, as presumed by Bayesian inference, acute manipulations of DA will bias behavior in predictable ways. We show how this framework reconciles a remarkably large collection of experimental findings. In reinforcement learning, the rational inattention framework predicts that learning from positive and negative feedback should be enhanced in high and low DA states, respectively, and that DA should tip the exploration-exploitation balance toward exploitation. In interval timing, this framework predicts that DA should increase the speed of the internal clock and decrease the extent of interference by other temporal stimuli during temporal reproduction (the central tendency effect). Finally, rational inattention makes the new predictions that these effects should be critically dependent on the controllability of rewards, that post-reward delays in intertemporal choice tasks should be underestimated, and that average reward manipulations should affect the speed of the clock-thus capturing empirical findings that are unexplained by either theory alone. Our results suggest that a common computational repertoire may underlie the seemingly heterogeneous roles of DA.
Collapse
Affiliation(s)
- John G. Mikhael
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, United States of America
- MD-PhD Program, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lucy Lai
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Samuel J. Gershman
- Department of Psychology and Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
66
|
Wulaer B, Kunisawa K, Tanabe M, Yanagawa A, Saito K, Mouri A, Nabeshima T. Pharmacological blockade of dopamine D1- or D2-receptor in the prefrontal cortex induces attentional impairment in the object-based attention test through different neuronal circuits in mice. Mol Brain 2021; 14:43. [PMID: 33640003 PMCID: PMC7916264 DOI: 10.1186/s13041-021-00760-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 02/19/2021] [Indexed: 11/12/2022] Open
Abstract
Dopamine is a key neurotransmitter that regulates attention through dopamine D1 and D2-receptors in the prefrontal cortex (PFC). We previously developed an object-based attention test (OBAT) to evaluate attention in mice. Disruption of the dopaminergic neuronal system in the PFC induced attentional impairment in the OBAT. However, previous studies have not systematically examined which specific brain regions are associated with the blockade of PFC dopamine D1 and D2-receptors in the OBAT. In this study, we investigated the association of dopamine D1 and D2-receptors in the PFC with attention and neuronal activity in diverse brain regions. We found that both dopamine D1 and D2-receptor antagonists induced attentional impairment in the OBAT by bilateral microinjection into the PFC of mice, suggesting that both dopamine D1 and D2-receptors were associated with attention in the OBAT. Our analysis of the neuronal activity as indicated by c-Fos expression in 11 different brain regions showed that based on the antagonist types, there was selective activation of several brain regions. Overall, this study suggests that both dopamine D1 and D2-receptors play a role in attention through different neuronal circuits in the PFC of mice.
Collapse
Affiliation(s)
- Bolati Wulaer
- Advanced Diagnostic System Research Laboratory, Aichi, Japan.,Department of Disease Control and Prevention, Aichi, Japan
| | - Kazuo Kunisawa
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-192, Japan
| | - Moeka Tanabe
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-192, Japan
| | - Aika Yanagawa
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-192, Japan
| | - Kuniaki Saito
- Department of Disease Control and Prevention, Aichi, Japan.,Japanese Drug Organization of Appropriate Use and Research, Nagoya, Aichi, Japan
| | - Akihiro Mouri
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-192, Japan. .,Japanese Drug Organization of Appropriate Use and Research, Nagoya, Aichi, Japan.
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Aichi, Japan.,Japanese Drug Organization of Appropriate Use and Research, Nagoya, Aichi, Japan
| |
Collapse
|
67
|
Frontotemporal coordination predicts working memory performance and its local neural signatures. Nat Commun 2021; 12:1103. [PMID: 33597516 PMCID: PMC7889930 DOI: 10.1038/s41467-021-21151-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 12/11/2020] [Indexed: 01/31/2023] Open
Abstract
Neurons in some sensory areas reflect the content of working memory (WM) in their spiking activity. However, this spiking activity is seldom related to behavioral performance. We studied the responses of inferotemporal (IT) neurons, which exhibit object-selective activity, along with Frontal Eye Field (FEF) neurons, which exhibit spatially selective activity, during the delay period of an object WM task. Unlike the spiking activity and local field potentials (LFPs) within these areas, which were poor predictors of behavioral performance, the phase-locking of IT spikes and LFPs with the beta band of FEF LFPs robustly predicted successful WM maintenance. In addition, IT neurons exhibited greater object-selective persistent activity when their spikes were locked to the phase of FEF LFPs. These results reveal that the coordination between prefrontal and temporal cortex predicts the successful maintenance of visual information during WM.
Collapse
|
68
|
Parto Dezfouli M, Zarei M, Constantinidis C, Daliri MR. Task-specific modulation of PFC activity for matching-rule governed decision-making. Brain Struct Funct 2021; 226:443-455. [PMID: 33398431 DOI: 10.1007/s00429-020-02191-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 11/27/2020] [Indexed: 01/08/2023]
Abstract
Storing information from incoming stimuli in working memory (WM) is essential for decision-making. The prefrontal cortex (PFC) plays a key role to support this process. Previous studies have characterized different neuronal populations in the PFC for working memory judgements based on whether an originally presented stimulus matches a subsequently presented one (matching-rule decision-making). However, much remains to be understood about this mechanism at the population level of PFC neurons. Here, we hypothesized differences in processing of feature vs. spatial WM within the PFC during a matching-rule decision-making task. To test this hypothesis, the modulation of neural activity within the PFC during two types of decision-making tasks (spatial WM and feature WM) in comparison to a passive fixation task was determined. We discovered that neural population-level activity within the PFC is different for the match vs. non-match condition exclusively in the case of the feature-specific decision-making task. For this task, the non-match condition exhibited a greater firing rate and lower trial-to-trial variability in spike count compared to the feature-match condition. Furthermore, the feature-match condition exhibited lower variability compared to the spatial-match condition. This was accompanied by a faster behavioral response time for the feature-match compared to the spatial-match WM task. We attribute this lower across-trial spiking variability and behavioral response time to a higher task-relevant attentional level in the feature WM compared to the spatial WM task. The findings support our hypothesis for task-specific differences in the processing of feature vs. spatial WM within the PFC. This also confirms the general conclusion that PFC neurons play an important role during the process of matching-rule governed decision-making.
Collapse
Affiliation(s)
- Mohsen Parto Dezfouli
- School of Cognitive Sciences (SCS), Institute for Research in Fundamental Sciences (IPM), Tehran, Iran. .,Neuroscience and Neuroengineering Research Laboratory, Department of Biomedical Engineering, School of Electrical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran.
| | - Mohammad Zarei
- School of Cognitive Sciences (SCS), Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.,School of Electrical Engineering, Sharif University of Technology, Tehran, Iran
| | - Christos Constantinidis
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Mohammad Reza Daliri
- School of Cognitive Sciences (SCS), Institute for Research in Fundamental Sciences (IPM), Tehran, Iran. .,Neuroscience and Neuroengineering Research Laboratory, Department of Biomedical Engineering, School of Electrical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran.
| |
Collapse
|
69
|
Li S, May C, Hannan AJ, Johnson KA, Burrows EL. Assessing attention orienting in mice: a novel touchscreen adaptation of the Posner-style cueing task. Neuropsychopharmacology 2021; 46:432-441. [PMID: 33007776 PMCID: PMC7853131 DOI: 10.1038/s41386-020-00873-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 09/21/2020] [Indexed: 01/10/2023]
Abstract
Atypical attention orienting has been found to be impaired in many neuropsychological disorders, but the underlying neural mechanism remains unclear. Attention can be oriented exogenously (i.e., driven by salient stimuli) or endogenously (i.e., driven by one's goals or intentions). Genetic mouse models are useful tools to investigate the neurobiology of cognition, but a well-established assessment of attention orienting in mice is missing. This study aimed to adapt the Posner task, a widely used attention orienting task in humans, for use in mice using touchscreen technology and to test the effects of two attention-modulating drugs, methylphenidate (MPH) and atomoxetine (ATX), on the performance of mice during this task. In accordance with human performance, mice responded more quickly and more accurately to validly cued targets compared to invalidly cued targets, thus supporting mice as a valid animal model to study the neural mechanisms of attention orienting. This is the first evidence that mice can be trained to voluntarily maintain their nose-poke on a touchscreen and to complete attention orienting tasks using exogenous peripheral cues and endogenous symbolic cues. The results also showed no significant effects of MPH and ATX on attention orienting, although MPH improved overall response times in mice during the exogenous orienting task. In summary, the current study provides a critical translational task for assessing attention orienting in mice and to investigate the effects of attention-modulating drugs on attention orienting.
Collapse
Affiliation(s)
- S. Li
- grid.1008.90000 0001 2179 088XMelbourne School of Psychological Sciences, University of Melbourne, Parkville, VIC 3010 Australia
| | - C. May
- grid.1008.90000 0001 2179 088XFlorey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC 3010 Australia
| | - A. J. Hannan
- grid.1008.90000 0001 2179 088XFlorey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC 3010 Australia ,grid.1008.90000 0001 2179 088XDepartment of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC 3010 Australia
| | - K. A. Johnson
- grid.1008.90000 0001 2179 088XMelbourne School of Psychological Sciences, University of Melbourne, Parkville, VIC 3010 Australia
| | - E. L. Burrows
- grid.1008.90000 0001 2179 088XFlorey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC 3010 Australia
| |
Collapse
|
70
|
Manoliu A, Sladky R, Scherpiet S, Jäncke L, Kirschner M, Haugg A, Bolsinger J, Kraehenmann R, Stämpfli P, Scharnowski F, Herwig U, Seifritz E, Brühl AB. Dopaminergic neuromodulation has no detectable effect on visual-cue induced haemodynamic response function in the visual cortex: A double-blind, placebo-controlled functional magnetic resonance imaging study. J Psychopharmacol 2021; 35:100-102. [PMID: 33307959 DOI: 10.1177/0269881120972341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of this study was to investigate the effect of acute dopamine agonistic and antagonistic manipulation on the visual-cue induced blood oxygen level-dependent signal response in healthy volunteers. Seventeen healthy volunteers in a double-blind placebo-controlled cross-over design received either a dopamine antagonist, agonist or placebo and underwent functional magnetic resonance imaging. Using classical inference and Bayesian statistics, we found no effect of dopaminergic modulation on properties of visual-cue induced blood oxygen level-dependent signals in the visual cortex, particularly on distinct properties of the haemodynamic response function (amplitude, time-to-peak and width). Dopamine-related effects modulating the neurovascular coupling in the visual cortex might be negligible when measured via functional magnetic resonance imaging.
Collapse
Affiliation(s)
- Andrei Manoliu
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland.,Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Ronald Sladky
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland.,Social, Cognitive and Affective Neuroscience (SCAN) Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Sigrid Scherpiet
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland
| | - Lutz Jäncke
- Psychological Institute, University of Zurich, Zurich, Switzerland
| | - Matthias Kirschner
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland.,Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Amelie Haugg
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland
| | - Julia Bolsinger
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland
| | - Rainer Kraehenmann
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland
| | - Philipp Stämpfli
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland
| | - Frank Scharnowski
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zürich, University of Zürich, Zurich, Switzerland.,Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Uwe Herwig
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland.,Psychiatrisches Zentrum Appenzell Ausserrhoden, Herisau, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland
| | - Annette B Brühl
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland.,Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
71
|
Lee M, Mueller A, Moore T. Differences in Noradrenaline Receptor Expression Across Different Neuronal Subtypes in Macaque Frontal Eye Field. Front Neuroanat 2020; 14:574130. [PMID: 33328901 PMCID: PMC7732642 DOI: 10.3389/fnana.2020.574130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/16/2020] [Indexed: 11/14/2022] Open
Abstract
Cognitive functions such as attention and working memory are modulated by noradrenaline receptors in the prefrontal cortex (PFC). The frontal eye field (FEF) has been shown to play an important role in visual spatial attention. However, little is known about the underlying circuitry. The aim of this study was to characterize the expression of noradrenaline receptors on different pyramidal neuron and inhibitory interneuron subtypes in macaque FEF. Using immunofluorescence, we found broad expression of noradrenaline receptors across all layers of the FEF. Differences in the expression of different noradrenaline receptors were observed across different inhibitory interneuron subtypes. No significant differences were observed in the expression of noradrenaline receptors across different pyramidal neuron subtypes. However, we found that putative long-range projecting pyramidal neurons expressed all noradrenaline receptor subtypes at a much higher proportion than any of the other neuronal subtypes. Nearly all long-range projecting pyramidal neurons expressed all types of noradrenaline receptor, suggesting that there is no receptor-specific machinery acting on these long-range projecting pyramidal neurons. This pattern of expression among long-range projecting pyramidal neurons suggests a mechanism by which noradrenergic modulation of FEF activity influences attention and working memory.
Collapse
Affiliation(s)
- Max Lee
- Department of Neurobiology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - Adrienne Mueller
- Department of Neurobiology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - Tirin Moore
- Department of Neurobiology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, United States
- Department of Neurobiology, Stanford University, Stanford, CA, United States
| |
Collapse
|
72
|
Soltani A, Rakhshan M, Schafer RJ, Burrows BE, Moore T. Separable Influences of Reward on Visual Processing and Choice. J Cogn Neurosci 2020; 33:248-262. [PMID: 33166195 DOI: 10.1162/jocn_a_01647] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Primate vision is characterized by constant, sequential processing and selection of visual targets to fixate. Although expected reward is known to influence both processing and selection of visual targets, similarities and differences between these effects remain unclear mainly because they have been measured in separate tasks. Using a novel paradigm, we simultaneously measured the effects of reward outcomes and expected reward on target selection and sensitivity to visual motion in monkeys. Monkeys freely chose between two visual targets and received a juice reward with varying probability for eye movements made to either of them. Targets were stationary apertures of drifting gratings, causing the end points of eye movements to these targets to be systematically biased in the direction of motion. We used this motion-induced bias as a measure of sensitivity to visual motion on each trial. We then performed different analyses to explore effects of objective and subjective reward values on choice and sensitivity to visual motion to find similarities and differences between reward effects on these two processes. Specifically, we used different reinforcement learning models to fit choice behavior and estimate subjective reward values based on the integration of reward outcomes over multiple trials. Moreover, to compare the effects of subjective reward value on choice and sensitivity to motion directly, we considered correlations between each of these variables and integrated reward outcomes on a wide range of timescales. We found that, in addition to choice, sensitivity to visual motion was also influenced by subjective reward value, although the motion was irrelevant for receiving reward. Unlike choice, however, sensitivity to visual motion was not affected by objective measures of reward value. Moreover, choice was determined by the difference in subjective reward values of the two options, whereas sensitivity to motion was influenced by the sum of values. Finally, models that best predicted visual processing and choice used sets of estimated reward values based on different types of reward integration and timescales. Together, our results demonstrate separable influences of reward on visual processing and choice, and point to the presence of multiple brain circuits for the integration of reward outcomes.
Collapse
|
73
|
Abstract
We blink more often than required for maintaining the corneal tear film. Whether there are perceptual or cognitive consequences of blinks that may justify their high frequency is unclear. Previous findings showed that blinks may indicate switches between large-scale cortical networks, such as dorsal attention and default-mode networks. Thus, blinks may trigger a refresh of visual attention. Yet, this has so far not been confirmed behaviorally. Here, we tested the effect of blinks on visual performance in a series of rapid serial visual presentation tasks. In Experiment 1, participants had to identify a target digit embedded in a random stream of letter distractors, presented foveally for 60 ms each. Participants blinked once during the presentation stream. In a separate condition, blinks were simulated by shutter glasses. Detection performance was enhanced (up to 13% point increase in accuracy) for targets appearing up to 300 ms after eye blinks. Performance boosts were stronger for voluntary blinks than artificial blinks. This performance boost was also replicated with more naturalistic stimuli (Experiment 2). We conclude that eye blinks lead to attentional benefits for object recognition in the period after reopening of the eyelids and may be used strategically for temporarily boosting visual performance.
Collapse
Affiliation(s)
- Jit Wei A Ang
- Psychology Programme, School of Social Sciences, Nanyang Technological University, Singapore., https://orcid.org/0000-0001-8271-5031
| | - Gerrit W Maus
- Psychology Programme, School of Social Sciences, Nanyang Technological University, Singapore., https://orcid.org/0000-0003-4843-3748
| |
Collapse
|
74
|
Flashman LA, McDonald BC, Ford JC, Kenny RM, Andrews KD, Saykin AJ, McAllister TW. Differential Effects of Pergolide and Bromocriptine on Working Memory Performance and Brain Activation after Mild Traumatic Brain Injury. J Neurotrauma 2020; 38:225-234. [PMID: 32635808 DOI: 10.1089/neu.2020.7087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Dopamine D1 and D2 receptors differ with respect to patterns of regional brain distribution and behavioral effects. Pre-clinical work suggests that D1 agonists enhance working memory, but the absence of selective D1 agonists has constrained using this approach in humans. This study examines working memory performance in mild traumatic brain injury (mTBI) patients when given pergolide, a mixed D1/D2 agonist, compared with bromocriptine, a selective D2 agonist. Fifteen individuals were studied 1 month after mTBI and compared with 17 healthy controls. At separate visits, participants were administered 1.25 mg bromocriptine or 0.05 mg pergolide prior to functional magnetic resonance imaging (MRI) using a working memory task (visual-verbal n-back). Results indicated a significant group-by-drug interaction for mean performance across n-back task conditions, where the mTBI group showed better performance on pergolide relative to bromocriptine, whereas controls showed the opposite pattern. There was also a significant effect of diagnosis, where mTBI patients performed worse than controls, particularly while on bromocriptine, as shown in our prior work. Functional MRI activation during the most challenging task condition (3-back > 0-back contrast) showed a significant group-by-drug interaction, with the mTBI group showing increased activation relative to controls in working memory circuitry while on pergolide, including in the left inferior frontal gyrus. Across participants there was a positive correlation between change in activation in this region and change in performance between drug conditions. Results suggest that activation of the D1 receptor may improve working memory performance after mTBI. This has implications for the development of pharmacological strategies to treat cognitive deficits after mTBI.
Collapse
Affiliation(s)
- Laura A Flashman
- Department of Neurology, Wake Forest Medical School and Wake Forest Baptist Medical Center, Winston-Salem, North Carolina, USA
| | - Brenna C McDonald
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - James C Ford
- Department of Psychiatry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Rachel M Kenny
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Katharine D Andrews
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Thomas W McAllister
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
75
|
Takagaki K, Krug K. The effects of reward and social context on visual processing for perceptual decision-making. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2020.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
76
|
Arif Y, Spooner RK, Wiesman AI, Proskovec AL, Rezich MT, Heinrichs-Graham E, Wilson TW. Prefrontal Multielectrode Transcranial Direct Current Stimulation Modulates Performance and Neural Activity Serving Visuospatial Processing. Cereb Cortex 2020; 30:4847-4857. [PMID: 32390042 PMCID: PMC7391278 DOI: 10.1093/cercor/bhaa077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/18/2020] [Accepted: 03/05/2020] [Indexed: 12/15/2022] Open
Abstract
The dorsolateral prefrontal cortex (DLPFC) is known to play a critical role in visuospatial attention and processing, but the relative contribution of the left versus right DLPFC remains poorly understood. We applied multielectrode transcranial direct-current stimulation (ME-tDCS) to the left and right DLPFC to investigate its net impact on behavioral performance and population-level neural activity. The primary hypothesis was that significant laterality effects would be observed in regard to behavior and neural oscillations. Twenty-five healthy adults underwent three visits (left, right, and sham ME-tDCS). Following stimulation, participants completed a visuospatial processing task during magnetoencephalography (MEG). Statistically significant oscillatory events were imaged, and time series were then extracted from the peak voxels of each response. Behavioral findings indicated differences in reaction time and accuracy, with left DLPFC stimulation being associated with slower responses and decreased accuracy compared to right stimulation. Left DLPFC stimulation was also associated with increases in spontaneous theta and decreases in gamma within occipital cortices relative to both right and sham stimulation, while connectivity among DLPFC and visual cortices was generally increased contralateral to stimulation. These data suggest spectrally specific modulation of spontaneous cortical activity at the network-level by ME-tDCS, with distinct outcomes based on the laterality of stimulation.
Collapse
Affiliation(s)
- Yasra Arif
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Rachel K Spooner
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Alex I Wiesman
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Amy L Proskovec
- Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Psychology, University of Nebraska, Omaha, NE 68198, USA
| | - Michael T Rezich
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Elizabeth Heinrichs-Graham
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Tony W Wilson
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
77
|
Yoo HB, Moya BE, Filbey FM. Dynamic functional connectivity between nucleus accumbens and the central executive network relates to chronic cannabis use. Hum Brain Mapp 2020; 41:3637-3654. [PMID: 32432821 PMCID: PMC7416060 DOI: 10.1002/hbm.25036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/13/2020] [Accepted: 05/05/2020] [Indexed: 01/05/2023] Open
Abstract
The neural mechanisms of drug cue‐reactivity regarding the temporal fluctuations of functional connectivity, namely the dynamic connectivity, are sparsely studied. Quantifying the task‐modulated variability in dynamic functional connectivity at cue exposure can aid the understanding. We analyzed changes in dynamic connectivity in 54 adult cannabis users and 90 controls during a cannabis cue exposure task. The variability was measured as standard deviation in the (a) connectivity weights of the default mode, the central executive, and the salience networks and two reward loci (amygdalae and nuclei accumbens); and (b) topological indexes of the whole brain (global efficiency, modularity and network resilience). These were compared for the main effects of task conditions and the group (users vs. controls), and correlated with pre‐ and during‐scan subjective craving. The variability of connectivity weights between the central executive network and nuclei accumbens was increased in users throughout the cue exposure task, and, was positively correlated with during‐scan craving for cannabis. The variability of modularity was not different by groups, but positively correlated with prescan craving. The variability of dynamic connectivity during cannabis cue exposure task between the central executive network and the nuclei accumbens, and, the level of modularity, seem to relate to the neural underpinning of cannabis use and the subjective craving.
Collapse
Affiliation(s)
- Hye Bin Yoo
- Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas at Dallas, TX, USA.,Department of Neurological Surgery, University of Texas Southwestern, Dallas, TX, USA
| | - Blake Edward Moya
- Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas at Dallas, TX, USA
| | - Francesca M Filbey
- Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas at Dallas, TX, USA
| |
Collapse
|
78
|
Evaluating the causal contribution of fronto-parietal cortices to the control of the bottom-up and top-down visual attention using fMRI-guided TMS. Cortex 2020; 126:200-212. [DOI: 10.1016/j.cortex.2020.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/28/2019] [Accepted: 01/14/2020] [Indexed: 01/22/2023]
|
79
|
Kubanek J, Brown J, Ye P, Pauly KB, Moore T, Newsome W. Remote, brain region-specific control of choice behavior with ultrasonic waves. SCIENCE ADVANCES 2020; 6:eaaz4193. [PMID: 32671207 PMCID: PMC7314556 DOI: 10.1126/sciadv.aaz4193] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 03/09/2020] [Indexed: 05/05/2023]
Abstract
The ability to modulate neural activity in specific brain circuits remotely and systematically could revolutionize studies of brain function and treatments of brain disorders. Sound waves of high frequencies (ultrasound) have shown promise in this respect, combining the ability to modulate neuronal activity with sharp spatial focus. Here, we show that the approach can have potent effects on choice behavior. Brief, low-intensity ultrasound pulses delivered noninvasively into specific brain regions of macaque monkeys influenced their decisions regarding which target to choose. The effects were substantial, leading to around a 2:1 bias in choices compared to the default balanced proportion. The effect presence and polarity was controlled by the specific target region. These results represent a critical step towards the ability to influence choice behavior noninvasively, enabling systematic investigations and treatments of brain circuits underlying disorders of choice.
Collapse
Affiliation(s)
- Jan Kubanek
- Department of Biomedical Engineering, University of Utah, 36 S Wasatch Dr, Salt Lake City, UT 84112, USA
| | - Julian Brown
- Department of Neurobiology, Stanford University, 318 Campus Dr, Stanford, CA 94305, USA
| | - Patrick Ye
- Department of Radiology, Stanford University, 1201 Welch Rd, Stanford, CA 94034, USA
| | - Kim Butts Pauly
- Department of Radiology, Stanford University, 1201 Welch Rd, Stanford, CA 94034, USA
| | - Tirin Moore
- Department of Neurobiology, Stanford University, 318 Campus Dr, Stanford, CA 94305, USA
| | - William Newsome
- Department of Neurobiology, Stanford University, 318 Campus Dr, Stanford, CA 94305, USA
| |
Collapse
|
80
|
Shapcott KA, Schmiedt JT, Kouroupaki K, Kienitz R, Lazar A, Singer W, Schmid MC. Reward-Related Suppression of Neural Activity in Macaque Visual Area V4. Cereb Cortex 2020; 30:4871-4881. [PMID: 32350517 PMCID: PMC7391271 DOI: 10.1093/cercor/bhaa079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In order for organisms to survive, they need to detect rewarding stimuli, for example, food or a mate, in a complex environment with many competing stimuli. These rewarding stimuli should be detected even if they are nonsalient or irrelevant to the current goal. The value-driven theory of attentional selection proposes that this detection takes place through reward-associated stimuli automatically engaging attentional mechanisms. But how this is achieved in the brain is not very well understood. Here, we investigate the effect of differential reward on the multiunit activity in visual area V4 of monkeys performing a perceptual judgment task. Surprisingly, instead of finding reward-related increases in neural responses to the perceptual target, we observed a large suppression at the onset of the reward indicating cues. Therefore, while previous research showed that reward increases neural activity, here we report a decrease. More suppression was caused by cues associated with higher reward than with lower reward, although neither cue was informative about the perceptually correct choice. This finding of reward-associated neural suppression further highlights normalization as a general cortical mechanism and is consistent with predictions of the value-driven attention theory.
Collapse
Affiliation(s)
- Katharine A Shapcott
- Schmid Lab, Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt a. M. 60528, Germany.,Singer Lab, Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt a. M. 60528, Germany.,Singer Group, Frankfurt Institute for Advanced Studies, Frankfurt a. M. 60438, Germany
| | - Joscha T Schmiedt
- Schmid Lab, Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt a. M. 60528, Germany
| | - Kleopatra Kouroupaki
- Schmid Lab, Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt a. M. 60528, Germany
| | - Ricardo Kienitz
- Schmid Lab, Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt a. M. 60528, Germany.,Biosciences Institute, Faculty of Medical Sciences, Newcastle upon Tyne NE2 4HH, UK.,Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe University, Frankfurt a. M. 60528, Germany
| | - Andreea Lazar
- Singer Lab, Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt a. M. 60528, Germany.,Singer Group, Frankfurt Institute for Advanced Studies, Frankfurt a. M. 60438, Germany
| | - Wolf Singer
- Singer Lab, Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt a. M. 60528, Germany.,Singer Group, Frankfurt Institute for Advanced Studies, Frankfurt a. M. 60438, Germany
| | - Michael C Schmid
- Biosciences Institute, Faculty of Medical Sciences, Newcastle upon Tyne NE2 4HH, UK.,Faculty of Science and Medicine, University of Fribourg, Fribourg 1700, Switzerland
| |
Collapse
|
81
|
Qin N, Xue J, Chen C, Zhang M. The Bright and Dark Sides of Performance-Dependent Monetary Rewards: Evidence From Visual Perception Tasks. Cogn Sci 2020; 44:e12825. [PMID: 32180260 DOI: 10.1111/cogs.12825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 12/17/2019] [Accepted: 02/10/2020] [Indexed: 11/30/2022]
Abstract
Studies have shown that performance-dependent monetary rewards facilitate visual perception. However, no study has examined whether such a positive effect is limited to the rewarded task or may be generalized to other tasks. In the current study, two groups of people were asked to perform two visual perception tasks, one being a reward-relevant task and the other being a reward-irrelevant task. For the reward-relevant task, the experimental group received performance-dependent monetary rewards, whereas the control group did not. For the reward-irrelevant task, both groups were not rewarded. The two tasks were randomly intermixed trial by trial (Experiment 1) or presented block by block (Experiment 2) or session by session (Experiments 3a, 3b, and 3c). Results showed that performance-dependent monetary rewards improved participants' performance on the relevant task in all experiments and impaired their performance on the irrelevant task in Experiments 2, 3a, 3b, and 3c. These results suggested that monetary rewards might incur a cost on reward-irrelevant tasks. Finally, the benefit of monetary rewards disappeared when they were no longer provided during the final session. This is the first study that reveals both the bright and dark sides of the performance-dependent monetary rewards in visual perception.
Collapse
Affiliation(s)
- Nan Qin
- CAS Key Laboratory of Behavioral Science, Institute of Psychology.,Department of Psychology, University of Chinese Academy of Sciences
| | - Jingming Xue
- Faculty of Psychology, Beijing Normal University
| | - Chuansheng Chen
- Department of Psychological Science, University of California
| | - Mingxia Zhang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology
| |
Collapse
|
82
|
Chen X, Zirnsak M, Vega GM, Govil E, Lomber SG, Moore T. Parietal Cortex Regulates Visual Salience and Salience-Driven Behavior. Neuron 2020; 106:177-187.e4. [PMID: 32048996 DOI: 10.1016/j.neuron.2020.01.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/11/2019] [Accepted: 01/14/2020] [Indexed: 11/27/2022]
Abstract
Unique stimuli stand out. Despite an abundance of competing sensory stimuli, the detection of the most salient ones occurs without effort, and that detection contributes to the guidance of adaptive behavior. Neurons sensitive to the salience of visual stimuli are widespread throughout the primate visual system and are thought to shape the selection of visual targets. However, a neural source of salience remains elusive. In an attempt to identify a source of visual salience, we reversibly inactivated parietal cortex and simultaneously recorded salience signals in prefrontal cortex. Inactivation of parietal cortex not only caused pronounced and selective reductions of salience signals in prefrontal cortex but also diminished the influence of salience on visually guided behavior. These observations demonstrate a causal role of parietal cortex in regulating salience signals within the brain and in controlling salience-driven behavior.
Collapse
Affiliation(s)
- Xiaomo Chen
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marc Zirnsak
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gabriel M Vega
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Eshan Govil
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stephen G Lomber
- Department of Physiology and Pharmacology, Department of Psychology, and Brain and Mind Institute, The University of Western Ontario, London, ON N6A 5K8, Canada; Department of Physiology, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Tirin Moore
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
83
|
Cue-Evoked Dopamine Promotes Conditioned Responding during Learning. Neuron 2020; 106:142-153.e7. [PMID: 32027824 DOI: 10.1016/j.neuron.2020.01.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 10/28/2019] [Accepted: 01/13/2020] [Indexed: 11/20/2022]
Abstract
Dopamine neurons mediate the association of conditioned stimuli (CS) with reward (unconditioned stimuli, US) by signaling the discrepancy between predicted and actual reward during the US. Some theoretical models suggest that learning is also influenced by the salience or associability of the CS. A hallmark of CS associability models is that they can explain latent inhibition, i.e., the observation that novel CS are more effectively learned than familiar CS. Novel CS are known to activate dopamine neurons, but whether those responses affect associative learning has not been investigated. Here, we used fiber photometry to characterize dopamine responses to inconsequential familiar and novel stimuli. Using bidirectional optogenetic modulation during conditioning, we then show that CS-evoked dopamine promotes conditioned responses. This suggests that Pavlovian conditioning is influenced by CS dopamine, in addition to US reward prediction errors. Accordingly, the absence of dopamine responses to familiar CS might explain their slower learning in latent inhibition.
Collapse
|
84
|
Mueller A, Krock RM, Shepard S, Moore T. Dopamine Receptor Expression Among Local and Visual Cortex-Projecting Frontal Eye Field Neurons. Cereb Cortex 2020; 30:148-164. [PMID: 31038690 PMCID: PMC7029694 DOI: 10.1093/cercor/bhz078] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/14/2019] [Accepted: 03/14/2019] [Indexed: 12/21/2022] Open
Abstract
Dopaminergic modulation of prefrontal cortex plays an important role in numerous cognitive processes, including attention. The frontal eye field (FEF) is modulated by dopamine and has an established role in visual attention, yet the underlying circuitry upon which dopamine acts is not known. We compared the expression of D1 and D2 dopamine receptors (D1Rs and D2Rs) across different classes of FEF neurons, including those projecting to dorsal or ventral extrastriate cortex. First, we found that both D1Rs and D2Rs are more prevalent on pyramidal neurons than on several classes of interneurons and are particularly prevalent on putatively long-range projecting pyramidals. Second, higher proportions of pyramidal neurons express D1Rs than D2Rs. Third, overall a higher proportion of inhibitory neurons expresses D2Rs than D1Rs. Fourth, among inhibitory interneurons, a significantly higher proportion of parvalbumin+ neurons expresses D2Rs than D1Rs, and a significantly higher proportion of calbindin+ neurons expresses D1Rs than D2Rs. Finally, compared with D2Rs, virtually all of the neurons with identified projections to both dorsal and ventral extrastriate visual cortex expressed D1Rs. Our results demonstrate that dopamine tends to act directly on the output of the FEF and that dopaminergic modulation of top-down projections to visual cortex is achieved predominately via D1Rs.
Collapse
Affiliation(s)
- Adrienne Mueller
- Howard Hughes Medical Institute and Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rebecca M Krock
- Howard Hughes Medical Institute and Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Steven Shepard
- Howard Hughes Medical Institute and Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tirin Moore
- Howard Hughes Medical Institute and Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
85
|
Mechanisms underlying gain modulation in the cortex. Nat Rev Neurosci 2020; 21:80-92. [PMID: 31911627 DOI: 10.1038/s41583-019-0253-y] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2019] [Indexed: 01/19/2023]
Abstract
Cortical gain regulation allows neurons to respond adaptively to changing inputs. Neural gain is modulated by internal and external influences, including attentional and arousal states, motor activity and neuromodulatory input. These influences converge to a common set of mechanisms for gain modulation, including GABAergic inhibition, synaptically driven fluctuations in membrane potential, changes in cellular conductance and changes in other biophysical neural properties. Recent work has identified GABAergic interneurons as targets of neuromodulatory input and mediators of state-dependent gain modulation. Here, we review the engagement and effects of gain modulation in the cortex. We highlight key recent findings that link phenomenological observations of gain modulation to underlying cellular and circuit-level mechanisms. Finally, we place these cellular and circuit interactions in the larger context of their impact on perception and cognition.
Collapse
|
86
|
Balog J, Hintz F, Isstas M, Teichert M, Winter C, Lehmann K. Social hierarchy regulates ocular dominance plasticity in adult male mice. Brain Struct Funct 2019; 224:3183-3199. [DOI: 10.1007/s00429-019-01959-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 09/14/2019] [Indexed: 11/25/2022]
|
87
|
Dan R, Růžička F, Bezdicek O, Roth J, Růžička E, Vymazal J, Goelman G, Jech R. Impact of dopamine and cognitive impairment on neural reactivity to facial emotion in Parkinson's disease. Eur Neuropsychopharmacol 2019; 29:1258-1272. [PMID: 31607424 DOI: 10.1016/j.euroneuro.2019.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 09/04/2019] [Accepted: 09/11/2019] [Indexed: 12/18/2022]
Abstract
Emotional and cognitive impairments in Parkinson's disease (PD) are prevalent, hamper interpersonal relations and reduce quality of life. It is however unclear to what extent these domains interplay in PD-related deficits and how they are influenced by dopaminergic availability. This study examined the effect of cognitive impairment and dopaminergic medication on neural and behavioral mechanisms of facial emotion recognition in PD patients. PD patients on and off dopaminergic medication and matched healthy controls underwent an emotional face matching task during functional MRI. In addition, a comprehensive neuropsychological evaluation of cognitive function was conducted. Increased BOLD response to emotional faces was found in the visual cortex of PD patients relative to controls irrespective of cognitive function and medication status. Administration of dopaminergic medication in PD patients resulted in restored behavioral accuracy for emotional faces relative to controls and decreased retrosplenial cortex BOLD response to emotion relative to off-medication state. Furthermore, cognitive impairment in PD patients was associated with reduced behavioral accuracy for non-emotional stimuli and predicted BOLD response to emotion in the anterior and posterior cingulate cortices, depending on medication status. Findings of aberrant visual and retrosplenial BOLD response to emotion are suggested to stem from altered attentional and/or emotion-driven modulation from subcortical and higher cortical regions. Our results indicate neural disruptions and behavioral deficits in emotion processing in PD patients that are dependent on dopaminergic availability and independent of cognitive function. Our findings highlight the importance of dopaminergic treatment not only for the motor symptoms but also the emotional disturbances in PD.
Collapse
Affiliation(s)
- Rotem Dan
- Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel; Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Medical Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Filip Růžička
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine and General University Hospital, Charles University in Prague, Prague, Czechia; Department of Radiology, Na Homolce Hospital, Prague, Czechia
| | - Ondrej Bezdicek
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine and General University Hospital, Charles University in Prague, Prague, Czechia
| | - Jan Roth
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine and General University Hospital, Charles University in Prague, Prague, Czechia
| | - Evžen Růžička
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine and General University Hospital, Charles University in Prague, Prague, Czechia
| | - Josef Vymazal
- Department of Radiology, Na Homolce Hospital, Prague, Czechia
| | - Gadi Goelman
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Medical Center, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Robert Jech
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine and General University Hospital, Charles University in Prague, Prague, Czechia; Department of Radiology, Na Homolce Hospital, Prague, Czechia
| |
Collapse
|
88
|
Hu F, Kamigaki T, Zhang Z, Zhang S, Dan U, Dan Y. Prefrontal Corticotectal Neurons Enhance Visual Processing through the Superior Colliculus and Pulvinar Thalamus. Neuron 2019; 104:1141-1152.e4. [PMID: 31668485 DOI: 10.1016/j.neuron.2019.09.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 08/26/2019] [Accepted: 09/12/2019] [Indexed: 11/30/2022]
Abstract
Top-down modulation of visual processing is mediated in part by direct prefrontal to visual cortical projections. Here, we show that the mouse cingulate cortex (Cg) regulates visual processing not only through corticocortical neurons projecting to the visual cortex but also through corticotectal neurons projecting subcortically. Bidirectional optogenetic manipulation demonstrated a prominent contribution of Cg corticotectal neurons to visually guided behavior, which is mediated by their collateral projections to both the motor-related layers of the superior colliculus (SC) and the lateral posterior nucleus of the thalamus (LP, analogous to the primate pulvinar). Whereas the Cg innervates the anterior LP (LPa), the SC innervates the posterior LP (LPp). Activating each stage of the Cg→SC→LPp or the Cg→LPa pathway strongly enhanced visual performance of the mouse and the sensory responses of visual cortical neurons. These results delineate two subcortical pathways by which a subtype of prefrontal pyramidal neurons exerts a powerful top-down influence on visual processing. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Fei Hu
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Tsukasa Kamigaki
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Zhe Zhang
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Siyu Zhang
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Usan Dan
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yang Dan
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
89
|
Cell class-specific modulation of attentional signals by acetylcholine in macaque frontal eye field. Proc Natl Acad Sci U S A 2019; 116:20180-20189. [PMID: 31527242 PMCID: PMC6778228 DOI: 10.1073/pnas.1905413116] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Attention is critical to high-level cognition, and attentional deficits are a hallmark of cognitive dysfunction. A key transmitter for attentional control is acetylcholine, but its cellular actions in attention-controlling areas remain poorly understood. Here we delineate how muscarinic and nicotinic receptors affect basic neuronal excitability and attentional control signals in different cell types in macaque frontal eye field. We found that broad spiking and narrow spiking cells both require muscarinic and nicotinic receptors for normal excitability, thereby affecting ongoing or stimulus-driven activity. Attentional control signals depended on muscarinic, not nicotinic receptors in broad spiking cells, while they depended on both muscarinic and nicotinic receptors in narrow spiking cells. Cluster analysis revealed that muscarinic and nicotinic effects on attentional control signals were highly selective even for different subclasses of narrow spiking cells and of broad spiking cells. These results demonstrate that cholinergic receptors are critical to establish attentional control signals in the frontal eye field in a cell type-specific manner.
Collapse
|
90
|
Jonikaitis D, Moore T. The interdependence of attention, working memory and gaze control: behavior and neural circuitry. Curr Opin Psychol 2019; 29:126-134. [PMID: 30825836 DOI: 10.1016/j.copsyc.2019.01.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 01/31/2023]
Abstract
Visual attention, visual working memory, and gaze control are basic functions that all select a subset of visual input to guide immediate or subsequent behavior. In this review, we focus on the relationship between these three functions and describe evidence, both at the behavioral and neural circuit levels that they are heavily interdependent. We start with the demonstration that gaze control - or saccade preparation in particular - leads to spatial attention. Next, we show that spatial attention and working memory interact at the behavioral level and rely on a common set of neural mechanisms. Next, we discuss the evidence that gaze control mechanisms are involved in spatial working memory. Lastly, we highlight the links between gaze control and non-spatial memory.
Collapse
Affiliation(s)
- Donatas Jonikaitis
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, United States.
| | - Tirin Moore
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, United States.
| |
Collapse
|
91
|
Stuart S, Lawson RA, Yarnall AJ, Nell J, Alcock L, Duncan GW, Khoo TK, Barker RA, Rochester L, Burn DJ. Pro-Saccades Predict Cognitive Decline in Parkinson's Disease: ICICLE-PD. Mov Disord 2019; 34:1690-1698. [PMID: 31442355 DOI: 10.1002/mds.27813] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Cumulative dementia incidence in Parkinson's disease (PD) is significant, with major personal and socioeconomic impacts on individuals with PD and their carers. Early identification of dementia risk is vital to ensuring optimal intervention. Saccadic deficits often distinguish neurodegenerative disorders and cognitive impairment, but their ability to predict cognitive decline in PD has yet to be determined. The aims of this study were to (1) evaluate baseline (6.4 ± 6.1 months since PD diagnosis) differences in pro-saccadic metrics between those with early PD and healthy age-matched adults; and (2) assess the ability of baseline pro-saccades to predict subsequent cognitive decline over 4.5 years. METHODS One hundred and forty-one PD and 90 age-matched participants recruited at diagnosis underwent saccadometric assessment of pro-saccades at baseline and had cognition assessed at baseline, 18, 36, and 54 months. Pro-saccadic characteristics included latency, duration, amplitude, peak, and average velocity. Cognitive assessment included executive function, attention, fluctuating attention, and memory. Linear mixed-effects models examined pro-saccadic metrics as predictors of cognitive decline over 54 months. RESULTS Pro-saccades were significantly impaired at baseline in PD compared with controls. Pro-saccadic characteristics of latency, duration, peak, and average velocity predicted decline in global cognition, executive function, attention, and memory over 54 months in PD. In addition, only reduction in global cognition and attention were predicted by pro-saccadic metrics in age-matched adults, indicating that PD findings were not purely age related. CONCLUSIONS Saccadic characteristics are impaired in early PD and are predictive of cognitive decline in several domains. Assessment of saccades may provide a useful non-invasive biomarker for long-term PD cognitive decline in early disease. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Samuel Stuart
- Institute of Neuroscience/Newcastle University Institute for Ageing, Clinical Ageing Research Unit, Newcastle University, Newcastle Upon Tyne, UK.,Department of Neurology, Balance Disorders Laboratory, Oregon Health & Science University, Portland, Oregon, USA
| | - Rachael A Lawson
- Institute of Neuroscience/Newcastle University Institute for Ageing, Clinical Ageing Research Unit, Newcastle University, Newcastle Upon Tyne, UK
| | - Alison J Yarnall
- Institute of Neuroscience/Newcastle University Institute for Ageing, Clinical Ageing Research Unit, Newcastle University, Newcastle Upon Tyne, UK
| | - Jeremy Nell
- Institute of Neuroscience/Newcastle University Institute for Ageing, Clinical Ageing Research Unit, Newcastle University, Newcastle Upon Tyne, UK.,Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Lisa Alcock
- Institute of Neuroscience/Newcastle University Institute for Ageing, Clinical Ageing Research Unit, Newcastle University, Newcastle Upon Tyne, UK
| | - Gordon W Duncan
- Institute of Neuroscience/Newcastle University Institute for Ageing, Clinical Ageing Research Unit, Newcastle University, Newcastle Upon Tyne, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Tien K Khoo
- School of Medicine & Menzies Health Institute Queensland, Griffith University, Australia.,School of Medicine, University of Wollongong, Wallongong, New South Wales, Australia
| | - Roger A Barker
- Cambridge University, John van Geest Centre for Brain Repair and Department of Neurology, E.D. Adrian Building, Cambridge, UK
| | - Lynn Rochester
- Institute of Neuroscience/Newcastle University Institute for Ageing, Clinical Ageing Research Unit, Newcastle University, Newcastle Upon Tyne, UK.,Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - David J Burn
- Faculty of Medical Science, Newcastle University, Newcastle Upon Tyne, UK
| | | |
Collapse
|
92
|
Ruiz T, Baldwin AS, Spiegel DP, Hess R, Farivar R. Increased Noise in Cortico-Cortical Integration After Mild TBI Measured With the Equivalent Noise Technique. Front Neurol 2019; 10:767. [PMID: 31428031 PMCID: PMC6689961 DOI: 10.3389/fneur.2019.00767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/02/2019] [Indexed: 11/13/2022] Open
Abstract
The bulk of deficits accompanying mild traumatic brain injury (mTBI) is understood in terms of cortical integration—mnemonic, attentional, and cognitive disturbances are believed to involve integrative action across brain regions. Independent of integrative disturbances, mTBI may increase cortical noise, and this has not been previously considered. High-level integrative deficits are exceedingly difficult to measure and model, motivating us to utilize a tightly-controlled task within an established quantitative model to separately estimate internal noise and integration efficiency. First, we utilized a contour integration task modeled as a cortical-integration process involving multiple adjacent cortical columns in early visual areas. Second, we estimated internal noise and integration efficiency using the linear amplifier model (LAM). Fifty-seven mTBI patients and 24 normal controls performed a 4AFC task where they had to identify a valid contour amongst three invalid contours. Thresholds for contour amplitude were measured adaptively across three levels of added external orientation noise. Using the LAM, we found that mTBI increased internal noise without affecting integration efficiency. mTBI also caused hemifield bias differences, and efficiency was related to a change of visual habits. Using a controlled task reflecting cortical integration within the equivalent noise framework empowered us to detect increased computational noise that may be at the heart of mTBI deficits. Our approach is highly sensitive and translatable to rehabilitative efforts for the mTBI population, while also implicating a novel hypothesis of mTBI effects on basic visual processing—namely that cortical integration is maintained at the cost of increased internal noise.
Collapse
Affiliation(s)
- Tatiana Ruiz
- Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Alex S Baldwin
- Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Daniel P Spiegel
- Vision Sciences, Essilor R&D, Center for Innovation and Technology, Singapore, Singapore
| | - Robert Hess
- Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Reza Farivar
- Research Institute of the McGill University Health Center, Montreal, QC, Canada
| |
Collapse
|
93
|
Ventral midbrain stimulation induces perceptual learning and cortical plasticity in primates. Nat Commun 2019; 10:3591. [PMID: 31399570 PMCID: PMC6689065 DOI: 10.1038/s41467-019-11527-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 07/15/2019] [Indexed: 01/07/2023] Open
Abstract
Practice improves perception and enhances neural representations of trained visual stimuli, a phenomenon known as visual perceptual learning (VPL). While attention to task-relevant stimuli plays an important role in such learning, Pavlovian stimulus-reinforcer associations are sufficient to drive VPL, even subconsciously. It has been proposed that reinforcement facilitates perceptual learning through the activation of neuromodulatory centers, but this has not been directly confirmed in primates. Here, we paired task-irrelevant visual stimuli with microstimulation of a dopaminergic center, the ventral tegmental area (VTA), in macaques. Pairing VTA microstimulation with a task-irrelevant visual stimulus increased fMRI activity and improved classification of fMRI activity patterns selectively for the microstimulation-paired stimulus. Moreover, pairing VTA microstimulation with a task-irrelevant visual stimulus improved the subject’s capacity to discriminate that stimulus. This is the first causal demonstration of the role of neuromodulatory centers in VPL in primates. Practice can improve the perception of stimuli used to achieve a task (perceptual learning). Here, the authors show in monkeys that perceptual learning can be produced even for irrelevant stimuli if the stimuli are paired with stimulation of a dopaminergic centre, the ventral tegmental area (VTA).
Collapse
|
94
|
Thiele A, Bellgrove MA. Neuromodulation of Attention. Neuron 2019; 97:769-785. [PMID: 29470969 PMCID: PMC6204752 DOI: 10.1016/j.neuron.2018.01.008] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/26/2017] [Accepted: 01/02/2018] [Indexed: 02/07/2023]
Abstract
Attention is critical to high-level cognition and attention deficits are a hallmark of neurologic and neuropsychiatric disorders. Although years of research indicates that distinct neuromodulators influence attentional control, a mechanistic account that traverses levels of analysis (cells, circuits, behavior) is missing. However, such an account is critical to guide the development of next-generation pharmacotherapies aimed at forestalling or remediating the global burden associated with disorders of attention. Here, we summarize current neuroscientific understanding of how attention affects single neurons and networks of neurons. We then review key results that have informed our understanding of how neuromodulation shapes these neuron and network properties and thereby enables the appropriate allocation of attention to relevant external or internal events. Finally, we highlight areas where we believe hypotheses can be formulated and tackled experimentally in the near future, thereby critically increasing our mechanistic understanding of how attention is implemented at the cellular and network levels.
Collapse
Affiliation(s)
- Alexander Thiele
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK.
| | - Mark A Bellgrove
- Monash Institute of Cognitive and Clinical Neurosciences (MICCN) and School of Psychological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
95
|
Császár N, Kapócs G, Bókkon I. A possible key role of vision in the development of schizophrenia. Rev Neurosci 2019; 30:359-379. [PMID: 30244235 DOI: 10.1515/revneuro-2018-0022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 08/01/2018] [Indexed: 12/12/2022]
Abstract
Based on a brief overview of the various aspects of schizophrenia reported by numerous studies, here we hypothesize that schizophrenia may originate (and in part be performed) from visual areas. In other words, it seems that a normal visual system or at least an evanescent visual perception may be an essential prerequisite for the development of schizophrenia as well as of various types of hallucinations. Our study focuses on auditory and visual hallucinations, as they are the most prominent features of schizophrenic hallucinations (and also the most studied types of hallucinations). Here, we evaluate the possible key role of the visual system in the development of schizophrenia.
Collapse
Affiliation(s)
- Noemi Császár
- Gaspar Karoly University Psychological Institute, H-1091 Budapest, Hungary.,Psychoszomatic Outpatient Department, H-1037 Budapest, Hungary
| | - Gabor Kapócs
- Buda Family Centred Mental Health Centre, Department of Psychiatry and Psychiatric Rehabilitation, St. John Hospital, Budapest, Hungary
| | - István Bókkon
- Psychoszomatic Outpatient Department, H-1037 Budapest, Hungary.,Vision Research Institute, Neuroscience and Consciousness Research Department, 25 Rita Street, Lowell, MA 01854, USA
| |
Collapse
|
96
|
Altered dynamics of visual contextual interactions in Parkinson's disease. NPJ PARKINSONS DISEASE 2019; 5:13. [PMID: 31286057 PMCID: PMC6609710 DOI: 10.1038/s41531-019-0085-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/29/2019] [Indexed: 01/09/2023]
Abstract
Over the last decades, psychophysical and electrophysiological studies in patients and animal models of Parkinson's disease (PD), have consistently revealed a number of visual abnormalities. In particular, specific alterations of contrast sensitivity curves, electroretinogram (ERG), and visual-evoked potentials (VEP), have been attributed to dopaminergic retinal depletion. However, fundamental mechanisms of cortical visual processing, such as normalization or "gain control" computations, have not yet been examined in PD patients. Here, we measured electrophysiological indices of gain control in both space (surround suppression) and time (sensory adaptation) in PD patients based on steady-state VEP (ssVEP). Compared with controls, patients exhibited a significantly higher initial ssVEP amplitude that quickly decayed over time, and greater relative suppression of ssVEP amplitude as a function of surrounding stimulus contrast. Meanwhile, EEG frequency spectra were broadly elevated in patients relative to controls. Thus, contrary to what might be expected given the reduced contrast sensitivity often reported in PD, visual neural responses are not weaker; rather, they are initially larger but undergo an exaggerated degree of spatial and temporal gain control and are embedded within a greater background noise level. These differences may reflect cortical mechanisms that compensate for dysfunctional center-surround interactions at the retinal level.
Collapse
|
97
|
Koen JD, Rugg MD. Neural Dedifferentiation in the Aging Brain. Trends Cogn Sci 2019; 23:547-559. [PMID: 31174975 PMCID: PMC6635135 DOI: 10.1016/j.tics.2019.04.012] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 11/17/2022]
Abstract
Many cognitive abilities decline with age even in the absence of detectable pathology. Recent evidence indicates that age-related neural dedifferentiation, operationalized in terms of neural selectivity, may contribute to this decline. We review here work exploring the relationship between neural dedifferentiation, cognition, and age. Compelling evidence for age effects on neural selectivity comes from both non-human animal and human research. However, current data suggest that age does not moderate the observed relationships between neural dedifferentiation and cognitive performance. We propose that functionally significant variance in measures of neural dedifferentiation reflects both age-dependent and age-independent factors. We further propose that the effects of age on neural dedifferentiation do not exclusively reflect detrimental consequences of aging.
Collapse
Affiliation(s)
- Joshua D Koen
- Department of Psychology, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Michael D Rugg
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75235, USA
| |
Collapse
|
98
|
Wang M, Datta D, Enwright J, Galvin V, Yang ST, Paspalas C, Kozak R, Gray DL, Lewis DA, Arnsten AFT. A novel dopamine D1 receptor agonist excites delay-dependent working memory-related neuronal firing in primate dorsolateral prefrontal cortex. Neuropharmacology 2019; 150:46-58. [PMID: 30858103 PMCID: PMC6475613 DOI: 10.1016/j.neuropharm.2019.03.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 01/10/2023]
Abstract
Decades of research have emphasized the importance of dopamine (DA) D1 receptor (D1R) mechanisms to dorsolateral prefrontal cortex (dlPFC) working memory function, and the hope that D1R agonists could be used to treat cognitive disorders. However, existing D1R agonists all have had high affinity for D1R, and engage β-arrestin signaling, and these agonists have suppressed task-related neuronal firing. The current study provides the first physiological characterization of a novel D1R agonist, PF-3628, with low affinity for D1R -more similar to endogenous DA actions- as well as little engagement of β-arrestin signaling. PF-3628 was applied by iontophoresis directly onto dlPFC neurons in aged rhesus monkeys performing a delay-dependent working memory task. Aged monkeys have naturally-occurring loss of DA, and naturally-occurring reductions in dlPFC neuronal firing and working memory performance. We found the first evidence of excitatory actions of a D1R agonist on dlPFC task-related firing, and this PF-3628 beneficial response was blocked by co-application of a D1R antagonist. These D1R actions likely occur on pyramidal cells, based on previous immunoelectron microscopic studies showing expression of D1R on layer III spines, and current microarray experiments showing that D1R are four times more prevalent in pyramidal cells than in parvalbumin-containing interneurons laser-captured from layer III of the human dlPFC. These results encourage the translation of D1R mechanisms from monkey to human, with the hope PF-3628 and related, novel D1R agonists will be more appropriate for enhancing dlPFC cognitive functions in patients with mental disorders.
Collapse
Affiliation(s)
- Min Wang
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA.
| | - Dibyadeep Datta
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA; Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - John Enwright
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Veronica Galvin
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Sheng-Tao Yang
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Constantinos Paspalas
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Rouba Kozak
- Pfizer Inc, Internal Medicine Unit, Pfizer Inc., 1 Portland St., Cambridge, MA, 02139, USA
| | - David L Gray
- Pfizer Inc, Internal Medicine Unit, Pfizer Inc., 1 Portland St., Cambridge, MA, 02139, USA
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
99
|
Voss P, Thomas ME, Guercio GD, de Villers-Sidani E. Dysregulation of auditory neuroplasticity in schizophrenia. Schizophr Res 2019; 207:3-11. [PMID: 29703662 DOI: 10.1016/j.schres.2018.04.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/10/2018] [Accepted: 04/13/2018] [Indexed: 12/16/2022]
Abstract
Schizophrenia is a complex brain syndrome characterized by an array of positive symptoms (delusions, hallucinations, disorganized speech), negative symptoms (alogia, apathy, avolition) and cognitive impairments (memory, executive functions). Although investigations of the cognitive deficits in schizophrenia have primarily concentrated on disturbances affecting higher-order cognitive processes, there is an increasing realization that schizophrenia also affects early sensory processing, which might, in fact, play a significant role in the development of higher-order cognitive impairments. Recent evidence suggests that many of these early sensory processing impairments possibly arise from a dysregulation of plasticity regulators in schizophrenia, resulting in either reduced plasticity or excessive unregulated plasticity. The purpose of the present manuscript is to provide a concise overview of how the dysregulation of cortical plasticity mechanisms contributes to schizophrenia symptoms with an emphasis on auditory dysplasticity and to discuss its relevance for treatment outcomes. The idea that plasticity mechanisms are not constrained only within sensitive periods suggests that many functional properties of sensory neurons can be altered throughout the lifetime.
Collapse
Affiliation(s)
- Patrice Voss
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada.
| | - Maryse E Thomas
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Gerson D Guercio
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Etienne de Villers-Sidani
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
100
|
Servant M, Tillman G, Schall JD, Logan GD, Palmeri TJ. Neurally constrained modeling of speed-accuracy tradeoff during visual search: gated accumulation of modulated evidence. J Neurophysiol 2019; 121:1300-1314. [PMID: 30726163 PMCID: PMC6485731 DOI: 10.1152/jn.00507.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 02/01/2019] [Accepted: 02/02/2019] [Indexed: 11/22/2022] Open
Abstract
Stochastic accumulator models account for response times and errors in perceptual decision making by assuming a noisy accumulation of perceptual evidence to a threshold. Previously, we explained saccade visual search decision making by macaque monkeys with a stochastic multiaccumulator model in which accumulation was driven by a gated feed-forward integration to threshold of spike trains from visually responsive neurons in frontal eye field that signal stimulus salience. This neurally constrained model quantitatively accounted for response times and errors in visual search for a target among varying numbers of distractors and replicated the dynamics of presaccadic movement neurons hypothesized to instantiate evidence accumulation. This modeling framework suggested strategic control over gate or over threshold as two potential mechanisms to accomplish speed-accuracy tradeoff (SAT). Here, we show that our gated accumulator model framework can account for visual search performance under SAT instructions observed in a milestone neurophysiological study of frontal eye field. This framework captured key elements of saccade search performance, through observed modulations of neural input, as well as flexible combinations of gate and threshold parameters necessary to explain differences in SAT strategy across monkeys. However, the trajectories of the model accumulators deviated from the dynamics of most presaccadic movement neurons. These findings demonstrate that traditional theoretical accounts of SAT are incomplete descriptions of the underlying neural adjustments that accomplish SAT, offer a novel mechanistic account of decision-making mechanisms during speed-accuracy tradeoff, and highlight questions regarding the identity of model and neural accumulators. NEW & NOTEWORTHY A gated accumulator model is used to elucidate neurocomputational mechanisms of speed-accuracy tradeoff. Whereas canonical stochastic accumulators adjust strategy only through variation of an accumulation threshold, we demonstrate that strategic adjustments are accomplished by flexible combinations of both modulation of the evidence representation and adaptation of accumulator gate and threshold. The results indicate how model-based cognitive neuroscience can translate between abstract cognitive models of performance and neural mechanisms of speed-accuracy tradeoff.
Collapse
Affiliation(s)
- Mathieu Servant
- Center for Integrative and Cognitive Neuroscience, Vanderbilt Vision Research Center, Department of Psychology, Vanderbilt University , Nashville, Tennessee
| | - Gabriel Tillman
- Center for Integrative and Cognitive Neuroscience, Vanderbilt Vision Research Center, Department of Psychology, Vanderbilt University , Nashville, Tennessee
| | - Jeffrey D Schall
- Center for Integrative and Cognitive Neuroscience, Vanderbilt Vision Research Center, Department of Psychology, Vanderbilt University , Nashville, Tennessee
| | - Gordon D Logan
- Center for Integrative and Cognitive Neuroscience, Vanderbilt Vision Research Center, Department of Psychology, Vanderbilt University , Nashville, Tennessee
| | - Thomas J Palmeri
- Center for Integrative and Cognitive Neuroscience, Vanderbilt Vision Research Center, Department of Psychology, Vanderbilt University , Nashville, Tennessee
| |
Collapse
|