51
|
Campos-León K, Ferguson J, Günther T, Wood CD, Wingett SW, Pekel S, Varghese CS, Jones LS, Stockton JD, Várnai C, West MJ, Beggs A, Grundhoff A, Noyvert B, Roberts S, Parish JL. Repression of CADM1 transcription by HPV type 18 is mediated by three-dimensional rearrangement of promoter-enhancer interactions. PLoS Pathog 2025; 21:e1012506. [PMID: 39869645 PMCID: PMC11801731 DOI: 10.1371/journal.ppat.1012506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 02/06/2025] [Accepted: 12/02/2024] [Indexed: 01/29/2025] Open
Abstract
Upon infection, human papillomavirus (HPV) manipulates host cell gene expression to create an environment that is supportive of a productive and persistent infection. The virus-induced changes to the host cell's transcriptome are thought to contribute to carcinogenesis. Here, we show by RNA-sequencing that oncogenic HPV18 episome replication in primary human foreskin keratinocytes (HFKs) drives host transcriptional changes that are consistent between multiple HFK donors. We have previously shown that HPV18 recruits the host protein CTCF to viral episomes to control the differentiation-dependent viral transcriptional programme. Since CTCF is an important regulator of host cell transcription via coordination of epigenetic boundaries and long-range chromosomal interactions, we hypothesised that HPV18 may also manipulate CTCF to contribute to host transcription reprogramming. Analysis of CTCF binding in the host cell genome by ChIP-Seq revealed that while the total number of CTCF binding sites is not altered by the virus, there are a sub-set of CTCF binding sites that are either enriched or depleted of CTCF. Many of these altered sites are clustered within regulatory elements of differentially expressed genes, including the tumour suppressor gene cell adhesion molecule 1 (CADM1), which supresses epithelial cell growth and invasion. We show that HPV18 establishment results in reduced CTCF binding at the CADM1 promoter and upstream enhancer. Loss of CTCF binding is coincident with epigenetic repression of CADM1, in the absence of CpG hypermethylation, while adjacent genes including the transcriptional regulator ZBTB16 are activated. These data indicate that the CADM1 locus is subject to topological rearrangement following HPV18 establishment. We tested this hypothesis using 4C-Seq (circular chromosome confirmation capture-sequencing) and show that HPV18 establishment causes a loss of long-range chromosomal interactions between the CADM1 transcriptional start site and the upstream transcriptional enhancer. These data show that HPV18 manipulates host cell promoter-enhancer interactions to drive transcriptional reprogramming that may contribute to HPV-induced disease progression.
Collapse
Affiliation(s)
- Karen Campos-León
- Department of Cancer and Genomic Sciences, College of Medicine and Health, University of Birmingham, Birmingham, United Kingdom
| | - Jack Ferguson
- Department of Cancer and Genomic Sciences, College of Medicine and Health, University of Birmingham, Birmingham, United Kingdom
| | | | - C. David Wood
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Steven W. Wingett
- The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Selin Pekel
- Department of Cancer and Genomic Sciences, College of Medicine and Health, University of Birmingham, Birmingham, United Kingdom
| | - Christy S. Varghese
- Department of Cancer and Genomic Sciences, College of Medicine and Health, University of Birmingham, Birmingham, United Kingdom
| | - Leanne S. Jones
- Department of Cancer and Genomic Sciences, College of Medicine and Health, University of Birmingham, Birmingham, United Kingdom
| | - Joanne D. Stockton
- Department of Cancer and Genomic Sciences, College of Medicine and Health, University of Birmingham, Birmingham, United Kingdom
| | - Csilla Várnai
- Department of Cancer and Genomic Sciences, College of Medicine and Health, University of Birmingham, Birmingham, United Kingdom
| | - Michelle J. West
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Andrew Beggs
- Department of Cancer and Genomic Sciences, College of Medicine and Health, University of Birmingham, Birmingham, United Kingdom
| | | | - Boris Noyvert
- Department of Cancer and Genomic Sciences, College of Medicine and Health, University of Birmingham, Birmingham, United Kingdom
- Birmingham CRUK Centre, University of Birmingham, Birmingham, United Kingdom
| | - Sally Roberts
- Department of Cancer and Genomic Sciences, College of Medicine and Health, University of Birmingham, Birmingham, United Kingdom
| | - Joanna L. Parish
- Department of Cancer and Genomic Sciences, College of Medicine and Health, University of Birmingham, Birmingham, United Kingdom
- National Institute of Health Research, Biomedical Research Centre, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
52
|
Casalini R, Romei C, Ciampi R, Ramone T, Prete A, Gambale C, Matrone A, Torregrossa L, Ugolini C, Elisei R. Minor role of TP53 and TERT promoter mutations in medullary thyroid carcinoma: report of new cases and revision of the literature. Endocrine 2025; 87:243-251. [PMID: 39179735 DOI: 10.1007/s12020-024-03990-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/02/2024] [Indexed: 08/26/2024]
Abstract
PURPOSE Aims of this study were to investigate the prevalence of TP53 and TERT mutations in Medullary Thyroid carcinoma (MTC) and their role in inducing aggressiveness in positive cases. METHODS We performed a literature search in PubMed to identify studies investigating the prevalence of TERT and TP53 mutations in MTC. We also included data on MTC cases (n = 193) obtained at our center and unpublished. The in-silico pathogenicity of the TP53 mutations has been evaluated by predictor tools. RESULTS We identified a total of 25 and 11 published papers: all together 1280 cases have been investigated for the presence of TP53 mutations and 974 for TERT promoter mutation. Twenty-five out of 1280 (2%) cases had a TP53 mutation while only 3/974 MTC cases (0.3%) have been found to be positive for TERT promoter mutations. Among all, we identified 19 different TP53 mutations that in 12 cases were demonstrated to have an in silico predicted high pathogenic role and a high impact on protein function. Three non-sense and 4 probably not damaging mutations were also reported. The pathogenic role of the TERT promoter mutations has been previously in vitro determined. No correlation between TP53 and/or TERT mutations and aggressiveness of MTC has been demonstrated. CONCLUSION The prevalence of TP53 and TERT promoter mutations is very low in MTC. The reported mutations are pathogenic in the majority of cases. Because of their rarity it is not possible to clarify if they play or not a role in the pathogenesis and/or aggressiveness of this specific thyroid tumor.
Collapse
Affiliation(s)
- Roberta Casalini
- Department of Clinical and Experimental Medicine, Unit of Endocrinology, University Hospital of Pisa, Pisa, Italy
| | - Cristina Romei
- Department of Clinical and Experimental Medicine, Unit of Endocrinology, University Hospital of Pisa, Pisa, Italy
| | - Raffaele Ciampi
- Department of Clinical and Experimental Medicine, Unit of Endocrinology, University Hospital of Pisa, Pisa, Italy
| | - Teresa Ramone
- Department of Clinical and Experimental Medicine, Unit of Endocrinology, University Hospital of Pisa, Pisa, Italy
| | - Alessandro Prete
- Department of Clinical and Experimental Medicine, Unit of Endocrinology, University Hospital of Pisa, Pisa, Italy
| | - Carla Gambale
- Department of Clinical and Experimental Medicine, Unit of Endocrinology, University Hospital of Pisa, Pisa, Italy
| | - Antonio Matrone
- Department of Clinical and Experimental Medicine, Unit of Endocrinology, University Hospital of Pisa, Pisa, Italy
| | - Liborio Torregrossa
- Department of Surgical, Medical, Molecular Pathology and Critical Area, Unit of Pathology, University Hospital of Pisa, Pisa, Italy
| | - Clara Ugolini
- Department of Surgical, Medical, Molecular Pathology and Critical Area, Unit of Pathology, University Hospital of Pisa, Pisa, Italy
| | - Rossella Elisei
- Department of Clinical and Experimental Medicine, Unit of Endocrinology, University Hospital of Pisa, Pisa, Italy.
| |
Collapse
|
53
|
Nakayama M, Saito H, Murakami K, Oshima H, Oshima M. Missense Mutant p53 Transactivates Wnt/β-Catenin Signaling in Neighboring p53-Destabilized Cells through the COX-2/PGE2 Pathway. CANCER RESEARCH COMMUNICATIONS 2025; 5:13-23. [PMID: 39641656 PMCID: PMC11695814 DOI: 10.1158/2767-9764.crc-24-0471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/08/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
SIGNIFICANCE There is intratumor heterogeneity in the stabilization of missense mutant p53, and it has been thought that only cells with nuclear accumulation of mutant p53 have oncogenic function. However, using mouse intestinal tumor-derived organoids, we show that mutant p53-stabilized cells transactivate Wnt/β-catenin signaling in neighboring p53-destabilized cells through activating the COX-2/PGE2 pathway. These results suggest that both p53-stabilized cells and p53-destabilized cells contribute to malignant progression through interaction within the intratumor microenvironment.
Collapse
Affiliation(s)
- Mizuho Nakayama
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
- WPI Nano-Life Science Institute (NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Hiroshi Saito
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
- Department of Gastrointestinal Surgery, Kanazawa University, Kanazawa, Japan
| | - Kazuhiro Murakami
- Division of Epithelial Stem Cell Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Hiroko Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
- WPI Nano-Life Science Institute (NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Masanobu Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
- WPI Nano-Life Science Institute (NanoLSI), Kanazawa University, Kanazawa, Japan
| |
Collapse
|
54
|
Pevzner K, Simchi N, Arad G, Seger E. Identification of Protein Kinase Drug Targets Using Activity Estimation in Clinical Phosphoproteomics. Methods Mol Biol 2025; 2905:163-169. [PMID: 40163304 DOI: 10.1007/978-1-0716-4418-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
This chapter describes protein kinase (will be termed here kinase) activity estimation methods and their application to clinical cancer phosphoproteomics datasets, proposing a novel approach for identification of protein kinases as therapeutic targets. Despite significant advances in genomics-based target identification, clinical proteomics and phosphoproteomics remain underutilized. We highlight the growing availability of proteomics data from projects like Clinical Proteomic Tumor Analysis Consortium (CPTAC) and Proteomics Identifications Database (PRIDE), and review key kinase activity estimation algorithms, including PTM-SEA, KSEA, Rokai, KStar, and Kinome Atlas. Applying these methods on clinical phosphoproteomic data, we demonstrate the identification of hyperactivated kinases in specific cancer indications and highlight HER2 and EGFR as benchmarks. Our description underscores the potential of integrating kinase activity estimation with clinical phosphoproteomics to uncover new therapeutic targets and develop precision oncology therapies.
Collapse
|
55
|
Kounatidou NE, Vitkos E, Palioura S. Ocular surface squamous neoplasia: Update on genetics, epigenetics and opportunities for targeted therapy. Ocul Surf 2025; 35:1-14. [PMID: 39608452 DOI: 10.1016/j.jtos.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/09/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
PURPOSE The purpose of this review is to explore the molecular foundations of ocular surface squamous neoplasia (OSSN), focusing on the genetic and epigenetic aspects. While current management strategies include surgical excision and medical therapies, the understanding of OSSN's molecular basis remains limited, hindering the development of targeted treatments. METHODS A comprehensive MEDLINE search was conducted for literature published between January 1993 and October 2023. Only studies with original data on molecular, genetic, or epigenetic mechanisms, such as mutations, gene expression, and genetic predispositions were included. Articles were excluded if they focused solely on clinical management without addressing these factors, or if they were reviews, editorials, or opinion pieces. RESULTS The search yielded a total of 108 articles, out of which 39 articles met the criteria for further analysis. Investigations into OSSN have identified key DNA mutations in the TP53, HGF, EGFR, TERT, and CDKN2A genes, indicating common oncogenic pathways shared with other squamous cell carcinomas (SCCs). Significant epigenetic changes were identified, including DNA methylation, histone modifications, and altered miRNA expression patterns. Epigenetic dysregulation of critical tumor suppressors and oncoproteins, further highlight the complex genetic landscape of OSSN. CONCLUSION The molecular alterations identified in OSSN not only enhance our understanding of its biology but also have potential as novel biomarkers for early detection, prognostic evaluation, and as therapeutic targets. The identification of genetic and epigenetic markers in OSSN signifies progress towards personalized medicine approaches. Further studies and collaborative efforts are essential to validate these molecular markers and translate them into clinical practice, potentially revolutionizing OSSN management and improving patient outcomes.
Collapse
Affiliation(s)
| | - Evangelos Vitkos
- Department of Oral and Maxillofacial Surgery, Klinikum Dortmund, Dortmund, Germany
| | - Sotiria Palioura
- Department of Ophthalmology, University of Cyprus Medical School, Nicosia, Cyprus.
| |
Collapse
|
56
|
Lebedeva A, Belova E, Kavun A, Taraskina A, Bartoletti M, Bièche I, Curigliano G, Dupain C, Rios-Hoyo A, Kamal M, Luchini C, Poyarkov S, Le Tourneau C, Veselovsky E, Mileyko V, Ivanov M. Multi-Institutional Evaluation of Interrater Agreement of Biomarker-Drug Pair Rankings Based on the ESMO Scale for Clinical Actionability of molecular Targets (ESCAT) and Sources of Discordance. Mol Diagn Ther 2025; 29:91-101. [PMID: 39368036 DOI: 10.1007/s40291-024-00748-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND The widespread use of next-generation sequencing in clinical practice has contributed to the accumulation of a large number of genomic findings associated with targeted therapy; therefore, the problem of ranking the detected findings has become acute. The European Society for Medical Oncology Scale of Clinical Actionability of molecular Targets (ESCAT) system was designed by the European Society for Medical Oncology to rank biomarkers into levels of evidence that reflect their potency and clinical significance based on published clinical data. However, the ESCAT system remains imperfect, as it is based on a subjective assessment of the levels of evidence. OBJECTIVE The objective of this study was to determine whether the ranking of LOE for biomarker-drug pairs based on the ESCAT system is dependent on the human factor, and to uncover potential issues associated with the use of the framework. METHODS To evaluate the inter-rater agreement, we created a dataset of a total of 154 biomarker-drug pairs for 18 unique tumor types. We aimed to include biomarker-drug pairs that could be considered standard of care as well as less common and under investigated pairs. Fourteen precision oncology experts were invited to assign an ESCAT level of evidence for biomarker-drug pairs. Statistical analysis was carried out using Cohen's kappa and the Kolmogorov-Smirnov test. RESULTS The inter-rater agreement was low with some exceptions, and significant deviations from the consensus level of evidence were observed. For biomarker-drug associations, the deviations from the consensus were observed for more than 50% of the contributors' rankings. The most agreement between the contributors was observed for lung adenocarcinoma (p < 0.005), while the most disagreement was observed for esophageal cancer (p < 0.01) biomarker-drug pairs in our dataset. CONCLUSIONS This study demonstrates noteworthy discordances between the precision oncology experts and may provide the directions for future developments in modifying the ESCAT framework and the overall applicability of the results of genomic profiling into clinical practice.
Collapse
Affiliation(s)
- Alexandra Lebedeva
- OncoAtlas LLC, Leninsky Ave, 1/4A, Moscow, 119049, Russia.
- Laboratory of Applied Genomic Technologies, Institute of Personalized Oncology, Sechenov First Moscow State Medical University, Moscow, Russia.
| | - Ekaterina Belova
- OncoAtlas LLC, Leninsky Ave, 1/4A, Moscow, 119049, Russia
- Laboratory of Applied Genomic Technologies, Institute of Personalized Oncology, Sechenov First Moscow State Medical University, Moscow, Russia
- Lomonosov Moscow State University, Moscow, Russia
| | | | | | - Michele Bartoletti
- Unit of Medical Oncology and Cancer Prevention, Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Ivan Bièche
- Department of Genetics, Institut Curie, Paris, France
- INSERM U1016, Faculty of Pharmaceutical and Biological Sciences, Université Paris Cité, Paris, France
| | - Giuseppe Curigliano
- European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milano, Milan, Italy
| | - Célia Dupain
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France
| | | | - Maud Kamal
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France
- Institut Hospitalo Universitaire PRISM, National PRecISion Medicine Center in Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | | | - Christophe Le Tourneau
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France
- INSERM U900 Research unit, Institut Curie, Saint-Cloud, France
- Faculty of Medicine, Paris-Saclay University, Paris, France
| | | | - Vladislav Mileyko
- OncoAtlas LLC, Leninsky Ave, 1/4A, Moscow, 119049, Russia
- Laboratory of Applied Genomic Technologies, Institute of Personalized Oncology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Maxim Ivanov
- OncoAtlas LLC, Leninsky Ave, 1/4A, Moscow, 119049, Russia
- Laboratory of Applied Genomic Technologies, Institute of Personalized Oncology, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
57
|
Wu HH, Chou HT, Lin SY, Lai CR, Chen YJ. FIGO 2023 staging system predicts not only survival outcome but also recurrence pattern in corpus-confined endometrial cancer patients. Taiwan J Obstet Gynecol 2025; 64:76-81. [PMID: 39794055 DOI: 10.1016/j.tjog.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2024] [Indexed: 01/13/2025] Open
Abstract
OBJECTIVE Approximately 10-15 % of endometrial cancer patients with tumors confined to the uterus (FIGO 2009 stage I) demonstrate recurrence and the oncologic outcomes are highly related to recurrence patterns. This study aimed to verify whether the FIGO 2023 staging system could discriminate outcomes. MATERIALS AND METHODS Between January 2010 and March 2019, 536 FIGO 2009 stage I patients were eligible for this retrospective cohort study. Patient characteristics and clinicopathological data were retrieved from electronic medical records. The patients were reclassified according to the FIGO 2023 staging criteria. Oncological outcomes included the recurrence rate, recurrence pattern, and overall survival. RESULTS Among the 536 eligible patients, the (sub)stage migration rate was 23.5 % from the FIGO 2009 to the FIGO 2023 stage system. FIGO 2023 staging system resulted in (sub)stage up-migration, mostly owing to aggressive histological types. A higher recurrence rate was detected in the FIGO 2023 stage II patients (12.3 %) compared to the stage I patients (6.9 %). In comparison to the FIGO 2023 stage I patients, the stage II patients had a higher distant recurrence rate (8.8 % vs. 2.6 %) and poorer overall survival (38.0 vs 69.0 months, p = 0.02). CONCLUSION Patients who are upstaged are prone to worse oncological outcomes, including distant recurrence and mortality. Therefore, comprehensive adjuvant treatment strategies based on each FIGO 2023 substage are imperative.
Collapse
Affiliation(s)
- Hua-Hsi Wu
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hung-Tse Chou
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Yao Lin
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chiung-Ru Lai
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Jen Chen
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
58
|
Rosenberg-Mogilevsky A, Siegfried Z, Karni R. Generation of tumor neoantigens by RNA splicing perturbation. Trends Cancer 2025; 11:12-24. [PMID: 39578174 DOI: 10.1016/j.trecan.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/24/2024]
Abstract
Immunotherapy has revolutionized cancer treatment, but the limited availability of tumor-specific neoantigens still remains a challenge. The potential of alternative mRNA splicing-derived neoantigens as a source of new immunotherapy targets has gained significant attention. Tumors exhibit unique splicing changes and splicing factor mutations which are prevalent in various cancers and play a crucial role in neoantigen production. We present advances in splicing modulation approaches, including small-molecule drugs, decoy and splice-switching antisense oligonucleotides (SSOs), CRISPR, small interfering RNAs (siRNAs), and nonsense-mediated RNA decay (NMD) inhibition, that can be adapted to enhance antitumor immune responses. Finally, we explore the clinical implications of these approaches, highlighting their potential to transform cancer immunotherapy and broaden its efficacy.
Collapse
Affiliation(s)
- Adi Rosenberg-Mogilevsky
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University and Hadassah Medical School, Jerusalem, Israel
| | - Zahava Siegfried
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University and Hadassah Medical School, Jerusalem, Israel
| | - Rotem Karni
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University and Hadassah Medical School, Jerusalem, Israel.
| |
Collapse
|
59
|
Xing P, Chen Z, Zhu W, Lin B, Quan M. NRF3 suppresses the malignant progression of TNBC by promoting M1 polarization of macrophages via ROS/HMGB1 axis. Cancer Biol Ther 2024; 25:2416221. [PMID: 39443820 PMCID: PMC11509002 DOI: 10.1080/15384047.2024.2416221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a highly aggressive form of breast cancer. Due to its lack of targeted therapy options, TNBC remains a significant clinical challenge. In this study, we investigated the role of nuclear respiratory factor 3 (NRF3) and high-mobility group box 1 (HMGB1) in the progression of TNBC. METHODS The study analyzed NRF3's clinical expression, differentially expressed genes (DEGs), and immune infiltration in TNBC using the TCGA database and bioinformatics tools. Cellular functions of MDA-MB-468 and Hs578t cells were evaluated through MTT, colony formation, transwell, flow cytometry, and western blotting. The regulatory function of NRF3 in TNBC cell lines was assessed using Immunofluorescence, Immunohistochemistry, qRT-PCR, CHIP, luciferase assay, and ELISA. Moreover, a xenograft model was established to investigate the role of NRF3 in TNBC in vivo. RESULTS Low expression of NRF3 in TNBC tumors was associated with unfavorable prognosis and transcripts from tumors with higher NRF3 levels were enriched in oxidative stress and immune-related pathways. The subsequent gain- and loss-functional experiments indicated that NRF3 overexpression significantly suppressed malignant phenotypes, MAPK/ERK signaling pathways, and epithelial-mesenchymal transition (EMT), whereas it promoted reactive oxygen species (ROS) levels in TNBC. Further mechanistic exploration showed that NRF3 inhibited TNBC cell function by regulating oxidative stress-related genes to inhibit the MAPK/ERK signaling pathway by promoting the release of HMGB1 via ROS, thereby promoting M1 macrophage polarization. CONCLUSION NRF3 promotes M1 macrophage polarization through the ROS/HMGB1 axis, thereby inhibiting the malignant progression of TNBC. It is expected to become a therapeutic biomarker for TNBC.
Collapse
Affiliation(s)
- Ping Xing
- Department of Surgical Oncology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
- Department of Surgical Oncology, Enze Hospital, Taizhou Enze Medical Center, Taizhou, Zhejiang, China
| | - Zhenzhen Chen
- Department of Ultrasound, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Wenbo Zhu
- Department of Surgical Oncology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
- Department of Surgical Oncology, Enze Hospital, Taizhou Enze Medical Center, Taizhou, Zhejiang, China
| | - Bangyi Lin
- Department of Surgical Oncology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Mingming Quan
- Department of Surgical Oncology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| |
Collapse
|
60
|
Sheng Z, Beck P, Gabby M, Habte-Mariam S, Mitkos K. Molecular Basis of Oncogenic PI3K Proteins. Cancers (Basel) 2024; 17:77. [PMID: 39796708 PMCID: PMC11720314 DOI: 10.3390/cancers17010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
The dysregulation of phosphatidylinositol 3-kinase (PI3K) signaling plays a pivotal role in driving neoplastic transformation by promoting uncontrolled cell survival and proliferation. This oncogenic activity is primarily caused by mutations that are frequently found in PI3K genes and constitutively activate the PI3K signaling pathway. However, tumorigenesis can also arise from nonmutated PI3K proteins adopting unique active conformations, further complicating the understanding of PI3K-driven cancers. Recent structural studies have illuminated the functional divergence among highly homologous PI3K proteins, revealing how subtle structural alterations significantly impact their activity and contribute to tumorigenesis. In this review, we summarize current knowledge of Class I PI3K proteins and aim to unravel the complex mechanism underlying their oncogenic traits. These insights will not only enhance our understanding of PI3K-mediated oncogenesis but also pave the way for the design of novel PI3K-based therapies to combat cancers driven by this signaling pathway.
Collapse
Affiliation(s)
- Zhi Sheng
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
- Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
- Department of Neurosurgery, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Faculty of Health Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Patrick Beck
- Division of General Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Maegan Gabby
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
| | | | - Katherine Mitkos
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
| |
Collapse
|
61
|
Zapi-Colín LA, Dotor-Hernández JE, Contreras I, Estrada JA. Arachidonoylethanolamide promotes cellular senescence in a human glioblastoma cell line. Biochem Biophys Res Commun 2024; 745:151235. [PMID: 39724688 DOI: 10.1016/j.bbrc.2024.151235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Glioblastomas are the most common and deadly primary brain tumors, with high mortality rates despite aggressive therapies. Cellular senescence is important for cancer development, as it limits tumor progression; however, it may also stimulate inflammation at the tumor microenvironment, promoting tumor development. Hence, modulation of senescence is an important target for cancer therapy. Endocannabinoids modulate energy metabolism and the functions of the immune and nervous systems and have shown significant anti-tumor effects in experimental conditions, inhibiting cell growth and proliferation, while promoting apoptosis. Altered endocannabinoid concentrations are related to development of different types of cancer, and recent studies have shown that endocannabinoids and their synthetic analogs are capable of modulating senescence in multiple tissues, affecting cell proliferation and survival. Nonetheless, their effects on cellular senescence in cancer have not been defined. This study explored the effect of the endocannabinoid arachidonoylethanolamide on the induction of cellular senescence in human glioblastoma cell line U-87MG. Our results show that direct supplementation of AEA decreases cell cycle progression, while increasing beta-galactosidase activity and expression of p21, in U-87MG cells, in a dose- and time-dependent manner. Our data suggest that arachidonoylethanolamide may be useful for the modulation of glioblastoma senescence and should be explored further as an adjuvant for cancer therapy.
Collapse
Affiliation(s)
- Luis A Zapi-Colín
- Laboratorio de Neuroquímica, Facultad de Medicina, Universidad Autónoma Del Estado de México, Paseo Tollocan esq, Jesús Carranza s/n, Col. Moderna de la Cruz, Toluca, Mexico, CP 50180.
| | - Jorge E Dotor-Hernández
- Laboratorio de Neuroquímica, Facultad de Medicina, Universidad Autónoma Del Estado de México, Paseo Tollocan esq, Jesús Carranza s/n, Col. Moderna de la Cruz, Toluca, Mexico, CP 50180.
| | - Irazú Contreras
- Laboratorio de Neuroquímica, Facultad de Medicina, Universidad Autónoma Del Estado de México, Paseo Tollocan esq, Jesús Carranza s/n, Col. Moderna de la Cruz, Toluca, Mexico, CP 50180.
| | - José A Estrada
- Laboratorio de Neuroquímica, Facultad de Medicina, Universidad Autónoma Del Estado de México, Paseo Tollocan esq, Jesús Carranza s/n, Col. Moderna de la Cruz, Toluca, Mexico, CP 50180.
| |
Collapse
|
62
|
Kotagiri S, Blazanin N, Xi Y, Han Y, Qudratullah M, Liang X, Wang Y, Pandey P, Mazhar H, Lam TN, Singh AK, Wang J, Lissanu Y. Enhancer reprogramming underlies therapeutic utility of a SMARCA2 degrader in SMARCA4 mutant cancer. Cell Chem Biol 2024; 31:2069-2084.e9. [PMID: 39378885 DOI: 10.1016/j.chembiol.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 07/02/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024]
Abstract
Genomic studies have identified frequent mutations in subunits of the SWI/SNF (switch/sucrose non-fermenting) chromatin remodeling complex including SMARCA4 and ARID1A in non-small cell lung cancer (NSCLC). Genetic evidence indicates that the paralog SMARCA2 is synthetic lethal to SMARCA4 suggesting SMARCA2 is a valuable therapeutic target. However, the discovery of selective inhibitors of SMARCA2 has been challenging. Here, we utilized structure-activity relationship (SAR) studies to develop YD23, a potent and selective proteolysis targeting chimera (PROTAC) targeting SMARCA2. Mechanistically, we show that SMARCA2 degradation induces reprogramming of the enhancer landscape in SMARCA4-mutant cells with loss of chromatin accessibility at enhancers of genes involved in cell proliferation. Furthermore, we identified YAP/TEADas key partners to SMARCA2 in driving growth of SMARCA4-mutant cells. Finally, we show that YD23 has potent tumor growth inhibitory activity in SMARCA4-mutant xenografts. These findings provide the mechanistic basis for development of SMARCA2 degraders as synthetic lethal therapeutics against SMARCA4-mutant lung cancers.
Collapse
Affiliation(s)
- Sasikumar Kotagiri
- Department of Cardiovascular and Thoracic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nicholas Blazanin
- Department of Cardiovascular and Thoracic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yuanxin Xi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yanyan Han
- Department of Cardiovascular and Thoracic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Md Qudratullah
- Department of Cardiovascular and Thoracic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaobing Liang
- Department of Cardiovascular and Thoracic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yawen Wang
- Department of Cardiovascular and Thoracic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Poonam Pandey
- Department of Cardiovascular and Thoracic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hira Mazhar
- Department of Cardiovascular and Thoracic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Truong Nguyen Lam
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anand Kamal Singh
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yonathan Lissanu
- Department of Cardiovascular and Thoracic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
63
|
Sun R, Li S, Ye W, Lu Y. Development of a prognostic model based on lysosome-related genes for ovarian cancer: insights into tumor microenvironment, mutation patterns, and personalized treatment strategies. Cancer Cell Int 2024; 24:419. [PMID: 39702158 DOI: 10.1186/s12935-024-03586-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Ovarian cancer (OC) is often associated with an unfavorable prognosis. Given the crucial involvement of lysosomes in tumor advancement, lysosome-related genes (LRGs) hold promise as potential therapeutic targets. METHODS To identify differentially expressed lysosome-related genes (DE-LRGs), we performed a matching analysis between differentially expressed genes (DEGs) in OC and the pool of LRGs. Genes with prognostic significance were analyzed using multiple regression analyses to construct a prognostic risk signature. The model's efficacy was validated through survival analysis in various cohorts. We further explored the model's correlation with clinical attributes, tumor microenvironment (TME), mutational patterns, and drug sensitivity. The quantitative real-time polymerase chain reaction (qRT-PCR) validated gene expression in OC cells. RESULTS A 10-gene prognostic risk signature was established. Survival analysis confirmed its predictive accuracy across cohorts. The signature served as an independent prognostic element for OC. The high-risk and low-risk groups demonstrated notable disparities in terms of immune infiltration patterns, mutational characteristics, and sensitivity to therapeutic agents. The qRT-PCR results corroborated and validated the findings obtained from the bioinformatic analyses. CONCLUSIONS We devised a 10-LRG prognostic model linked to TME, offering insights for tailored OC treatments.
Collapse
Affiliation(s)
- Ran Sun
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Siyi Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Wanlu Ye
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Yanming Lu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110022, China.
| |
Collapse
|
64
|
Junco M, Ventura C, Santiago Valtierra FX, Maldonado EN. Facts, Dogmas, and Unknowns About Mitochondrial Reactive Oxygen Species in Cancer. Antioxidants (Basel) 2024; 13:1563. [PMID: 39765891 PMCID: PMC11673973 DOI: 10.3390/antiox13121563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Cancer metabolism is sustained both by enhanced aerobic glycolysis, characteristic of the Warburg phenotype, and oxidative metabolism. Cell survival and proliferation depends on a dynamic equilibrium between mitochondrial function and glycolysis, which is heterogeneous between tumors and even within the same tumor. During oxidative phosphorylation, electrons from NADH and FADH2 originated in the tricarboxylic acid cycle flow through complexes of the electron transport chain. Single electron leaks at specific complexes of the electron transport chain generate reactive oxygen species (ROS). ROS are a concentration-dependent double-edged sword that plays multifaceted roles in cancer metabolism. ROS serve either as signaling molecules favoring cellular homeostasis and proliferation or damage DNA, protein and lipids, causing cell death. Several aspects of ROS biology still remain unsolved. Among the unknowns are the actual levels at which ROS become cytotoxic and if toxicity depends on specific ROS species or if it is caused by a cumulative effect of all of them. In this review, we describe mechanisms of mitochondrial ROS production, detoxification, ROS-induced cytotoxicity, and the use of antioxidants in cancer treatment. We also provide updated information about critical questions on the biology of ROS on cancer metabolism and discuss dogmas that lack adequate experimental demonstration. Overall, this review brings a comprehensive perspective of ROS as drivers of cancer progression, inducers of cell death, and the potential use of antioxidants as anticancer therapy.
Collapse
Affiliation(s)
- Milagros Junco
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA;
- Virology Laboratory, Tandil Veterinary Research Center (CIVETAN), UNCPBA-CICPBA-CONICET, Tandil B7000, Argentina
| | - Clara Ventura
- Institute for Immunological and Physiopathological Studies (IIFP), National Scientific and Technical Research Council (CONICET), Buenos Aires, La Plata 1900, Argentina;
| | | | - Eduardo Nestor Maldonado
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA;
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
65
|
Mou K, Wang H, Zhu S, Luo J, Wang J, Peng L, Lei Y, Zhang Y, Huang S, Zhao H, Li G, Xiang L, Luo Y. Comprehensive analysis of the prognostic and immunological role of cavins in non-small cell lung cancer. BMC Cancer 2024; 24:1525. [PMID: 39695458 DOI: 10.1186/s12885-024-13280-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
Caveolae, specialized and dynamic subdomains of the plasma membrane, have a crucial role in diverse cellular functions encompassing endocytosis, signal transduction, mechanosensation, lipid storage, and metabolism. Cavin family proteins are indispensable for caveolar formation and function. An increasing number of studies have found that cavins are involved in tumor growth, invasion, metastasis, and angiogenesis and may have dual roles in the regulation of cancer. However, the expression and prognostic value of cavins in non-small cell lung cancer (NSCLC) remain unexplored. In this study, the expression, survival data, immune infiltration, and functional enrichment of cavins in patients with NSCLC were investigated using multiple databases. Furthermore, different subtypes of cavin-binding proteins were identified through protein-protein interaction networks and k-means clustering. The results showed that the expression of Cavin-1-3 in NSCLC tissues was significantly lower than that in normal tissues, and that Cavin-2 is the major subtype of cavin that inhibits NSCLC progression. It regulates downstream signaling pathways, modulates the infiltration of immune cells and influences the prognosis of NSCLC. Related experiments also confirmed that Cavin-2 promotes the proliferation and metastasis of NSCLC cells. These findings suggest that cavins and their binding proteins may be novel biomarkers for NSCLC prognosis and immunotherapy, providing new treatment options for NSCLC.
Collapse
Affiliation(s)
- Kelin Mou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Huan Wang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Siqi Zhu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jing Luo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianmei Wang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lin Peng
- Department of Bone and Joint, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yulin Lei
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yunke Zhang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shike Huang
- Department of Oncology, Hejiang County People's Hospital, Luzhou, China
| | - Huarong Zhao
- Department of Oncology, Hejiang County People's Hospital, Luzhou, China
| | - Gang Li
- Department of Oncology, Luzhou People's Hospital, Luzhou, China
| | - Li Xiang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Yuhao Luo
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
66
|
Qiu L, Ma Z, Wu X. Mutant p53-Mediated Tumor Secretome: Bridging Tumor Cells and Stromal Cells. Genes (Basel) 2024; 15:1615. [PMID: 39766882 PMCID: PMC11675497 DOI: 10.3390/genes15121615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/06/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
The tumor secretome comprises the totality of protein factors secreted by various cell components within the tumor microenvironment, serving as the primary medium for signal transduction between tumor cells and between tumor cells and stromal cells. The deletion or mutation of the p53 gene leads to alterations in cellular secretion characteristics, contributing to the construction of the tumor microenvironment in a cell non-autonomous manner. This review discusses the critical roles of mutant p53 in regulating the tumor secretome to remodel the tumor microenvironment, drive tumor progression, and influence the plasticity of cancer-associated fibroblasts (CAFs) as well as the dynamics of tumor immunity by focusing on both secreted protein expression and secretion pathways. The aim is to provide new insights for targeted cancer therapies.
Collapse
Affiliation(s)
| | | | - Xiaoming Wu
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming 650500, China; (L.Q.); (Z.M.)
| |
Collapse
|
67
|
Zhang L, Deng T, Liufu Z, Chen X, Wu S, Liu X, Shi C, Chen B, Hu Z, Cai Q, Liu C, Li M, Tracy ME, Lu X, Wu CI, Wen HJ. Characterization of cancer-driving nucleotides (CDNs) across genes, cancer types, and patients. eLife 2024; 13:RP99341. [PMID: 39688957 DOI: 10.7554/elife.99341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024] Open
Abstract
A central goal of cancer genomics is to identify, in each patient, all the cancer-driving mutations. Among them, point mutations are referred to as cancer-driving nucleotides (CDNs), which recur in cancers. The companion study shows that the probability of i recurrent hits in n patients would decrease exponentially with i; hence, any mutation with i ≥ 3 hits in The Cancer Genome Atlas (TCGA) database is a high-probability CDN. This study characterizes the 50-150 CDNs identifiable for each cancer type of TCGA (while anticipating 10 times more undiscovered ones) as follows: (i) CDNs tend to code for amino acids of divergent chemical properties. (ii) At the genic level, far more CDNs (more than fivefold) fall on noncanonical than canonical cancer-driving genes (CDGs). Most undiscovered CDNs are expected to be on unknown CDGs. (iii) CDNs tend to be more widely shared among cancer types than canonical CDGs, mainly because of the higher resolution at the nucleotide than the whole-gene level. (iv) Most important, among the 50-100 coding region mutations carried by a cancer patient, 5-8 CDNs are expected but only 0-2 CDNs have been identified at present. This low level of identification has hampered functional test and gene-targeted therapy. We show that, by expanding the sample size to 105, most CDNs can be identified. Full CDN identification will then facilitate the design of patient-specific targeting against multiple CDN-harboring genes.
Collapse
Affiliation(s)
- Lingjie Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tong Deng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhongqi Liufu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Center for Excellence in Animal Evolution and Genetics, The Chinese Academy of Sciences, Kunming, China
| | - Xiangnyu Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shijie Wu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xueyu Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Changhao Shi
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bingjie Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zheng Hu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qichun Cai
- Cancer Center, Clifford Hospital, Jinan University, Guangzhou, China
| | - Chenli Liu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Mengfeng Li
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Miles E Tracy
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xuemei Lu
- Center for Excellence in Animal Evolution and Genetics, The Chinese Academy of Sciences, Kunming, China
| | - Chung-I Wu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Department of Ecology and Evolution, University of Chicago, Chicago, United States
| | - Hai-Jun Wen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
68
|
Ou J, Liu H, Park S, Green MR, Zhu LJ. InPAS: An R/Bioconductor Package for Identifying Novel Polyadenylation Sites and Alternative Polyadenylation from Bulk RNA-seq Data. Front Biosci (Schol Ed) 2024; 16:21. [PMID: 39736014 DOI: 10.31083/j.fbs1604021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/20/2024] [Accepted: 10/10/2024] [Indexed: 12/31/2024]
Abstract
BACKGROUND Alternative cleavage and polyadenylation (APA) is a crucial post-transcriptional gene regulation mechanism that regulates gene expression in eukaryotes by increasing the diversity and complexity of both the transcriptome and proteome. Despite the development of more than a dozen experimental methods over the last decade to identify and quantify APA events, widespread adoption of these methods has been limited by technical, financial, and time constraints. Consequently, APA remains poorly understood in most eukaryotes. However, RNA sequencing (RNA-seq) technology has revolutionized transcriptome profiling and recent studies have shown that RNA-seq data can be leveraged to identify and quantify APA events. RESULTS To fully capitalize on the exponentially growing RNA-seq data, we developed InPAS (Identification of Novel alternative PolyAdenylation Sites), an R/Bioconductor package for accurate identification of novel and known cleavage and polyadenylation sites (CPSs), as well as quantification of APA from RNA-seq data of various experimental designs. Compared to other APA analysis tools, InPAS offers several important advantages, including the ability to detect both novel proximal and distal CPSs, to fine tune positions of CPSs using a naïve Bayes classifier based on flanking sequence features, and to identify APA events from RNA-seq data of complex experimental designs using linear models. We benchmarked the performance of InPAS and other leading tools using simulated and experimental RNA-seq data with matched 3'-end RNA-seq data. Our results reveal that InPAS frequently outperforms existing tools in terms of precision, sensitivity, and specificity. Furthermore, we demonstrate its scalability and versatility by applying it to large, diverse RNA-seq datasets. CONCLUSIONS InPAS is an efficient and robust tool for identifying and quantifying APA events using readily accessible conventional RNA-seq data. Its versatility opens doors to explore APA regulation across diverse eukaryotic systems with various experimental designs. We believe that InPAS will drive APA research forward, deepening our understanding of its role in regulating gene expression, and potentially leading to the discovery of biomarkers or therapeutics for diseases.
Collapse
Affiliation(s)
- Jianhong Ou
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Regeneration Center, Duke University School of Medicine, Duke University, Durham, NC 27701, USA
| | - Haibo Liu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Sungmi Park
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Michael R Green
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
69
|
Nu er lan STE, Yu B, Yang Y, Shen Y, Xu B, Zhan Y, Liu C. Discover Mutational Differences Between Lung Adenocarcinoma and Lung Squamous Cell Carcinoma and Search for More Effective Biomarkers for Immunotherapy. Cancer Manag Res 2024; 16:1759-1773. [PMID: 39678041 PMCID: PMC11645897 DOI: 10.2147/cmar.s491661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/01/2024] [Indexed: 12/17/2024] Open
Abstract
Purpose Lung cancer is a severe malignant tumor. This study aims to more comprehensively characterize lung cancer patients and identify combination markers for immunotherapy. Patients and Methods We gathered data from 166 lung cancer patients at the Cancer Hospital Affiliated with Xinjiang Medical University. The collected samples underwent NGS sequencing using a panel of 616 genes associated with cancer. Subsequently, data analysis was conducted to identify markers that are more suitable for lung cancer immunotherapy. Results In this study, the most common variant genes in LUAD were TP53, EGFR, MST1, KMT2C, RBM10, LRP1B. Meanwhile, the highest mutation frequency genes in LUSC samples were TP53, KMT2D, LRP1B, FAT1, MST1, KMT2C. Mutation frequencies, tumor mutation burden (TMB), PD-L1 expression, and mutant-allele tumor heterogeneity (MATH) values differed between LUAD and LUSC, with LUSC exhibiting higher values than LUAD. Irrespective of LUAD or LUSC, patients with TMB≥10 demonstrated better immunotherapy efficacy compared to patients with TMB<10. Similarly, when PD-L1≥50%, whether in LUAD or LUSC, the immunotherapy effect was superior to that of patients with PD-L1<50%. Combining TMB≥10 and PD-L1≥50% as immunotherapy markers, in both LUAD and LUSC, resulted in a very favorable immunotherapy effect, with the overall response rate (ORR) reaching 100%. Conclusion We observed distinct mutation patterns and clinical factors between LUAD and LUSC, and noted that patients with TMB≥10 and PD-L1≥50% exhibited enhanced immunotherapy effects. Combining TMB≥10 and PD-L1≥50% proved to be a more effective predictor of immunotherapy efficacy.
Collapse
Affiliation(s)
- Sai te er Nu er lan
- Department of Pulmonary Medicine, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830001, People’s Republic of China
| | - Bo Yu
- Beijing USCI Medical Laboratory, Beijing, 100195, People’s Republic of China
| | - Yan Yang
- Department of Pulmonary Medicine, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830001, People’s Republic of China
| | - Yanli Shen
- Department of Pulmonary Medicine, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830001, People’s Republic of China
| | - Bing Xu
- Beijing USCI Medical Laboratory, Beijing, 100195, People’s Republic of China
| | - Yiyi Zhan
- Department of Pulmonary Medicine, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830001, People’s Republic of China
| | - Chunling Liu
- Department of Pulmonary Medicine, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830001, People’s Republic of China
| |
Collapse
|
70
|
Di Nardo M, Krantz ID, Musio A. Genome Instability and Senescence Are Markers of Cornelia de Lange Syndrome Cells. Cells 2024; 13:2025. [PMID: 39682772 PMCID: PMC11640591 DOI: 10.3390/cells13232025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Cornelia de Lange syndrome (CdLS) is a rare, dominantly inherited multisystem developmental disorder. Pathogenic variants in genes encoding the structural subunits and regulatory proteins of the cohesin complex (NIPBL, SMC1A, SMC3, HDAC8, and RAD21) are the primary contributors to the pathogenesis of CdLS. Pathogenic variations in these genes disrupt normal cohesin function, leading to the syndrome's diverse and complex clinical presentation. In this study, we discovered that cells harboring variants in the NIPBL, SMC1A and HDAC8 genes exhibit spontaneous genome instability, elevated oxidative stress and premature cellular aging. These findings suggest that cohesin plays a critical role in maintaining proper cellular function and highlight its contribution to the pathophysiology seen in the related diagnoses.
Collapse
Affiliation(s)
- Maddalena Di Nardo
- Institute for Biomedical Technologies, National Research Council, 56124 Pisa, Italy;
| | - Ian D. Krantz
- Roberts Individualized Medical Genetics Center, Division of Human Genetics, The Department of Pediatrics, The Children’s Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104-4318, USA;
| | - Antonio Musio
- Institute for Biomedical Technologies, National Research Council, 56124 Pisa, Italy;
| |
Collapse
|
71
|
Waitman KB, Martin HJ, Carlos JAEG, Braga RC, Souza VAM, Melo-Filho CC, Hilscher S, Toledo MFZJ, Tavares MT, Costa-Lotufo LV, Machado-Neto JA, Schutkowski M, Sippl W, Kronenberger T, Alves VM, Parise-Filho R, Muratov EN. Dona Flor and her two husbands: Discovery of novel HDAC6/AKT2 inhibitors for myeloid cancer treatment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.30.626092. [PMID: 39677737 PMCID: PMC11642781 DOI: 10.1101/2024.11.30.626092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Hematological cancer treatment with hybrid kinase/HDAC inhibitors is a novel strategy to overcome the challenge of acquired resistance to drugs. We collected IC 50 datasets from the ChEMBL database for 13 cancer cell lines (72 h cytotoxicity, measured by MTT), known inhibitors for 38 kinases, and 10 HDACs isoforms, that we identified by target fishing and literature review. The data was subjected to rigorous biological and chemical curation leaving the final datasets ranging from 76 to 8173 compounds depending on the target. We generated Random Forest classification models, whereby 14 showed greater than 80% predictability after 5-fold external cross-validation. We screened 30 hybrid kinase/HDAC inhibitor analogs through each of these models. Fragment-contribution maps were constructed to aid the understanding of SARs and the optimization of these compounds as selective kinase/HDAC inhibitors for cancer treatment. Among the predicted compounds, 9 representative hybrids were synthesized and subjected to biological evaluation to validate the models. We observed high hit rates after biological testing for the following models: K562 (62.5%), MV4-11 (75.0%), MM1S (100%), NB-4 (62.5%), U937 (75.0), and HDAC6 (86.0%). This aided the identification of 6b and 6k as potent anticancer inhibitors with IC 50 of 0.2-0.8 µM in three cancer cell lines, linked to HDAC6 inhibition below 2 nM, and blockade of AKT2 phosphorylation at 2 μM, validating the ability of our models to predict novel drug candidates. Highlights Novel kinase/HDAC inhibitors for cancer treatment were found using machine learning61 QSAR models for hematological cancers and its targets were built and validatedK562, MV4-11, MM1S, NB-4, U937, and HDAC6 models had hit rates above 62.5% in tests 6b and 6k presented potent IC 50 of 0.2-0.8 µM in three cancer cell lines 6b and 6k inhibited HDAC6 below 2 nM, and blockade of AKT2 phosphorylation at 2 μM.
Collapse
|
72
|
Malhotra L, Singh A, Kaur P, Ethayathulla AS. Phenotypical mapping of TP53 unique missense mutations spectrum in human cancers. J Biomol Struct Dyn 2024:1-14. [PMID: 39639563 DOI: 10.1080/07391102.2024.2435060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/04/2024] [Indexed: 12/07/2024]
Abstract
The p53 tumor suppressor is one of the most mutated genes responsible for tumorigenesis in most human cancers. Out of 29,891 genomic mutations reported in the TP53 Database (https://tp53.isb-cgc.org/), 1,297 are identified as unique missense somatic mutations excluding frameshift, intronic, deletion, nonsense, silent, splice, and other unknown mutations. We have comprehensively analyzed all these 1,297 unique missense mutations and created a phenotypical map based on the distribution of mutations in each domain, the functional state of the protein, and their occurrence in different types of tissues and organs. Our mutation map shows that almost 118 unique missense mutations are reported in the transactivation and proline-rich domains, 1,065 in the central DNA-binding domains, and 113 in the oligomerization and regulatory domains. Based on the phenotype, these mutations are subdivided into 46 super trans, 491 functional, 315 partially functional, and 415 non-functional mutations. The prevalence of these mutations was checked in 71 different types of tissues and found that the mutant R248Q is reported in 51 types of tissues followed by R175H and R273H in 46 types. We correlated the potential impact of mutation in target gene transcription and regulation with nucleosomal DNA and RNA-Pol II complexes. We have discussed the impact of mutation at post-translational modification sites in the structure and function of p53 highlighting the potential therapeutic drug targets with tremendous clinical applications.
Collapse
Affiliation(s)
- Lakshay Malhotra
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
- Department of Biochemistry, Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Alankrita Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Abdul S Ethayathulla
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
73
|
Sharma B, Agriantonis G, Shafaee Z, Twelker K, Bhatia ND, Kuschner Z, Arnold M, Agcon A, Dave J, Mestre J, Arora S, Ghanta H, Whittington J. Role of Podoplanin (PDPN) in Advancing the Progression and Metastasis of Glioblastoma Multiforme (GBM). Cancers (Basel) 2024; 16:4051. [PMID: 39682237 DOI: 10.3390/cancers16234051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Glioblastoma multiforme (GBM) is a malignant primary brain tumor categorized as a Grade 4 astrocytic glioma by the World Health Organization (WHO). Some of the established risk factors of GBM include inherited genetic syndromes, body mass index, alcohol consumption, use of non-steroidal anti-inflammatory drugs (NSAIDs), and therapeutic ionizing radiation. Vascular anomalies, including local and peripheral thrombosis, are common features of GBM. Podoplanin (PDPN), a ligand of the C-type lectin receptor (CLEC-2), promotes platelet activation, aggregation, venous thromboembolism (VTE), lymphatic vessel formation, and tumor metastasis in GBM patients. It is regulated by Prox1 and is expressed in developing and adult mammalian brains. It was initially identified on lymphatic endothelial cells (LECs) as the E11 antigen and on fibroblastic reticular cells (FRCs) of lymphoid organs and thymic epithelial cells as gp38. In recent research studies, its expression has been linked with prognosis in GBM. PDPN-expressing cancer cells are highly pernicious, with a mutant aptitude to form stem cells. Such cells, on colocalization to the surrounding tissues, transition from epithelial to mesenchymal cells, contributing to the malignant carcinogenesis of GBM. PDPN can be used as an independent prognostic factor in GBM, and this review provides strong preclinical and clinical evidence supporting these claims.
Collapse
Affiliation(s)
- Bharti Sharma
- Department of Surgery, NYC Health and Hospitals, Elmhurst Hospital Center, New York, NY 11373, USA
- Department of Surgery, Icahn School of Medicine at the Mount Sinai Hospital, New York, NY 10029, USA
| | - George Agriantonis
- Department of Surgery, NYC Health and Hospitals, Elmhurst Hospital Center, New York, NY 11373, USA
- Department of Surgery, Icahn School of Medicine at the Mount Sinai Hospital, New York, NY 10029, USA
| | - Zahra Shafaee
- Department of Surgery, NYC Health and Hospitals, Elmhurst Hospital Center, New York, NY 11373, USA
- Department of Surgery, Icahn School of Medicine at the Mount Sinai Hospital, New York, NY 10029, USA
| | - Kate Twelker
- Department of Surgery, NYC Health and Hospitals, Elmhurst Hospital Center, New York, NY 11373, USA
- Department of Surgery, Icahn School of Medicine at the Mount Sinai Hospital, New York, NY 10029, USA
| | - Navin D Bhatia
- Department of Surgery, NYC Health and Hospitals, Elmhurst Hospital Center, New York, NY 11373, USA
- Department of Surgery, Icahn School of Medicine at the Mount Sinai Hospital, New York, NY 10029, USA
| | - Zachary Kuschner
- Department of Surgery, NYC Health and Hospitals, Elmhurst Hospital Center, New York, NY 11373, USA
- Department of Surgery, Icahn School of Medicine at the Mount Sinai Hospital, New York, NY 10029, USA
| | - Monique Arnold
- Department of Emergency Medicine, Icahn School of Medicine at the Mount Sinai Hospital, New York, NY 10029, USA
| | - Aubrey Agcon
- Department of Surgery, NYC Health and Hospitals, Elmhurst Hospital Center, New York, NY 11373, USA
| | - Jasmine Dave
- Department of Surgery, NYC Health and Hospitals, Elmhurst Hospital Center, New York, NY 11373, USA
- Department of Surgery, Icahn School of Medicine at the Mount Sinai Hospital, New York, NY 10029, USA
| | - Juan Mestre
- Department of Surgery, NYC Health and Hospitals, Elmhurst Hospital Center, New York, NY 11373, USA
- Department of Surgery, Icahn School of Medicine at the Mount Sinai Hospital, New York, NY 10029, USA
| | - Shalini Arora
- Department of Surgery, NYC Health and Hospitals, Elmhurst Hospital Center, New York, NY 11373, USA
- Department of Surgery, Icahn School of Medicine at the Mount Sinai Hospital, New York, NY 10029, USA
| | - Hima Ghanta
- Department of Surgery, NYC Health and Hospitals, Elmhurst Hospital Center, New York, NY 11373, USA
- Department of Surgery, Icahn School of Medicine at the Mount Sinai Hospital, New York, NY 10029, USA
| | - Jennifer Whittington
- Department of Surgery, NYC Health and Hospitals, Elmhurst Hospital Center, New York, NY 11373, USA
- Department of Surgery, Icahn School of Medicine at the Mount Sinai Hospital, New York, NY 10029, USA
| |
Collapse
|
74
|
Matye D, Leak J, Woolbright BL, Taylor JA. Preclinical models of bladder cancer: BBN and beyond. Nat Rev Urol 2024; 21:723-734. [PMID: 38769130 DOI: 10.1038/s41585-024-00885-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2024] [Indexed: 05/22/2024]
Abstract
Preclinical modelling is a crucial component of advancing the understanding of cancer biology and therapeutic development. Several models exist for understanding the pathobiology of bladder cancer and evaluating therapeutics. N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN)-induced bladder cancer is a commonly used model that recapitulates many of the features of human disease. Particularly in mice, BBN is a preferred laboratory model owing to a high level of reproducibility, high genetic fidelity to the human condition, and its relative ease of use. However, important aspects of the model are often overlooked in laboratory studies. Moreover, the advent of new models has yielded a variety of methodologies that complement the use of BBN. Toxicokinetics, histopathology, molecular genetics and sex can differ between available models and are important factors to consider in bladder cancer modelling.
Collapse
Affiliation(s)
- David Matye
- School of Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Juliann Leak
- School of Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Benjamin L Woolbright
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - John A Taylor
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA.
- Department of Urology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
75
|
Zhang H, Xu J, Long Y, Maimaitijiang A, Su Z, Li W, Li J. Unraveling the Guardian: p53's Multifaceted Role in the DNA Damage Response and Tumor Treatment Strategies. Int J Mol Sci 2024; 25:12928. [PMID: 39684639 DOI: 10.3390/ijms252312928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
DNA damage can lead to mutations that can alter the function of oncogenes or tumor suppressor genes, thus promoting the development of cancer. p53 plays a multifaceted and complex role in the DNA damage response and cancer progression and is known as the 'guardian of the gene'. When DNA damage occurs, p53 is activated through a series of post-translational modifications, which stabilize the protein and enhance its function as a transcription factor. It regulates processes including cell cycle checkpoints, DNA repair and apoptosis, thereby preventing the spread of damaged DNA and maintaining genome integrity. On the one hand, p53 can initiate cell cycle arrest and induce cells to enter the G1/S and G2/M checkpoints, preventing cells with damaged DNA from continuing to proliferate and gaining time for DNA repair. At the same time, p53 can promote the activation of DNA repair pathways, including base excision repair, nucleotide excision repair and other repair pathways, to ensure the integrity of genetic material. If the damage is too severe to repair, p53 will trigger the apoptosis process to eliminate potential cancer risks in time. p53 also plays a pivotal role in cancer progression. Mutations in the p53 gene are frequently found in many cancers, and the mutated p53 not only loses its normal tumor suppressor function but may even acquire pro-cancer activity. Therefore, we also discuss therapeutic strategies targeting the p53 pathway, such as the use of small-molecule drugs to restore the function of wild-type p53, the inhibition of negative regulatory factors and synthetic lethality approaches for p53-deficient tumors. This review therefore highlights the important role of p53 in maintaining genomic stability and its potential in therapeutic strategies for cancer.
Collapse
Affiliation(s)
- Han Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Jianxiong Xu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Yuxuan Long
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Ayitila Maimaitijiang
- School of Pharmaceutical Science, Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
| | - Zhengding Su
- School of Pharmaceutical Science, Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
| | - Wenfang Li
- School of Pharmaceutical Science, Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| |
Collapse
|
76
|
Nakano Y, Masuda T, Sakamoto T, Tanaka N, Tobo T, Hashimoto M, Tatsumi T, Saito H, Takahashi J, Koike K, Abe T, Ando Y, Ozato Y, Hosoda K, Hirose K, Higuchi S, Ikehara T, Hisamatsu Y, Toshima T, Yonemura Y, Ogino T, Uemura M, Eguchi H, Doki Y, Mimori K. SHARPIN is a novel gene of colorectal cancer that promotes tumor growth potentially via inhibition of p53 expression. Int J Oncol 2024; 65:113. [PMID: 39450547 PMCID: PMC11542962 DOI: 10.3892/ijo.2024.5701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Colorectal cancer (CRC) is widely prevalent and represents a significant contributor to global cancer‑related mortality. There remains a pressing demand for advancements in CRC treatment modalities. The E3 ubiquitin ligase is a critical enzyme involved in modulating protein expression levels via posttranslational ubiquitin‑mediated proteolysis, and it is reportedly involved in the progression of various cancers, making it a target of recent interest in anticancer therapy. In the present study, using comprehensive expression analysis involving spatial transcriptomic analysis with single‑cell RNA sequencing in clinical CRC datasets, the ubiquitin‑associated protein Shank‑associated RH domain interactor (SHARPIN) was identified, located on amplified chromosome 8q, which could promote CRC progression. SHARPIN was found to be upregulated in tumor cells, with elevated expression observed in tumor tissues. This heightened expression of SHARPIN was positively associated with lymphatic invasion and served as an independent predictor of a poor prognosis in patients with CRC. In vitro and in vivo analyses using SHARPIN‑overexpressing or ‑knockout CRC cells revealed that SHARPIN overexpression upregulated MDM2, resulting in the downregulation of p53, while SHARPIN silencing or knockout downregulated MDM2, leading to p53 upregulation, which affects cell cycle progression, tumor cell apoptosis and tumor growth in CRC. Furthermore, SHARPIN was found to be overexpressed in several cancer types, exerting significant effects on survival outcomes. In conclusion, SHARPIN represents a newly identified novel gene with the potential to promote tumor growth following apoptosis inhibition and cell cycle progression in part by inhibiting p53 expression via MDM2 upregulation; therefore, SHARPIN represents a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Yusuke Nakano
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Takaaki Masuda
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
- Department of Breast and Endocrine Surgery, Kochi Medical School, Kochi University, Nankoku 783-8505, Japan
| | - Takeharu Sakamoto
- Department of Cancer Biology, Institute of Biomedical Science, Kansai Medical University, Osaka 573-1010, Japan
| | - Noritaka Tanaka
- Department of Cancer Biology, Institute of Biomedical Science, Kansai Medical University, Osaka 573-1010, Japan
| | - Taro Tobo
- Department of Clinical Laboratory Medicine, Kyushu University Beppu Hospital, Oita 874-0838, Japan
| | - Masahiro Hashimoto
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Takanari Tatsumi
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
| | - Hideyuki Saito
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
| | - Junichi Takahashi
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
| | - Kensuke Koike
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
| | - Tadashi Abe
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
| | - Yuki Ando
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
| | - Yuki Ozato
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Kiyotaka Hosoda
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
| | - Kosuke Hirose
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
| | - Satoshi Higuchi
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Tomohiko Ikehara
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
| | - Yuichi Hisamatsu
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
| | - Takeo Toshima
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
| | - Yusuke Yonemura
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
| | - Takayuki Ogino
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Mamoru Uemura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
| |
Collapse
|
77
|
Bai B, An X, Qu Q, Liu X, Liu Y, Wei L. The clinical features and prognostic implications of the co-mutated TP53 gene in advanced non-small cell lung cancer. Clin Transl Oncol 2024; 26:3236-3245. [PMID: 38872053 DOI: 10.1007/s12094-024-03533-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/18/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND TP53 is a frequently mutated oncogene within non-small cell lung cancer (NSCLC). However, the clinical and prognostic significance of co-mutations in TP53 in patients with advanced NSCLC has not been fully elucidated. METHODS A total of 174 patients with advanced NSCLC were enrolled in this study. All patients were subjected to sequencing analysis of tumor-related genes and information such as PD-L1 expression, TMB, and co-mutation changes were collected. Patients were categorized into TP53 mutant and TP53 wild-type groups according to their TP53 mutation status and then statistically analyzed. RESULTS TP53 mutations were the most common among all patients, accounting for 56.32%, followed by epidermal growth factor receptor mutations at 48.27%. The most common mutation sites in the TP53 mutation group were exons 5-8.TP53 mutations were significantly associated with PD-L1 and TMB levels. Univariate Cox analysis showed that gender and EGFR mutation affected the prognosis of TP53-mutated NSCLC patients, and multivariate Cox regression analysis identified EGFR mutation as an independent risk factor. The OS of NSCLC patients in the TP53 mutation group was significantly shorter than that of the TP53wt group. Survival curves in the TP53/EGFR combined mutation group showed that patients with combined EGFR mutation had a lower survival rate. DISCUSSION TP53 mutations are associated with different clinical indicators and have important implications in clinical treatment. TP53 is a poor prognostic factor for NSCLC patients, and TP53/EGFR co-mutation will affect the survival time of patients. TP53/EGFR co-mutation may be a new prognostic marker for NSCLC.
Collapse
Affiliation(s)
- Bing Bai
- Tai'an City Central Hospital (Tai'an Central Hospital Affiliated to Qingdao University, Mount Taishan Medical Center), Tai'an, 271000, Shandong, China
| | - Xia An
- Department of Respiratory Medicine, The Second Affiliated Hospital of Shandong First Medical University, No. 336 Taishan Street, Taishan District, Tai'an, 271000, Shandong, China
| | - Qinghui Qu
- Yutai County People's Hospital, Jining, 272300, Shandong, China
| | - Xin Liu
- Department of Respiratory Medicine, The Second Affiliated Hospital of Shandong First Medical University, No. 336 Taishan Street, Taishan District, Tai'an, 271000, Shandong, China.
| | - Yuanyuan Liu
- Department of Respiratory Medicine, The Second Affiliated Hospital of Shandong First Medical University, No. 336 Taishan Street, Taishan District, Tai'an, 271000, Shandong, China
| | - Li Wei
- Department of Respiratory Medicine, The Second Affiliated Hospital of Shandong First Medical University, No. 336 Taishan Street, Taishan District, Tai'an, 271000, Shandong, China
| |
Collapse
|
78
|
Singh V, Katiyar A, Malik P, Kumar S, Mohan A, Singh H, Jain D. Identification of molecular biomarkers associated with non-small-cell lung carcinoma (NSCLC) using whole-exome sequencing. Cancer Biomark 2024; 41:CBM220211. [PMID: 37694353 DOI: 10.3233/cbm-220211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
ObjectivesSignificant progress has been made in the treatment of patients with pulmonary adenocarcinoma (ADCA) based on molecular profiling. However, no such molecular target exists for squamous cell carcinoma (SQCC). An exome sequence may provide new markers for personalized medicine for lung cancer patients of all subtypes. The current study aims to discover new genetic markers that can be used as universal biomarkers for non-small cell lung cancer (NSCLC).MethodsWES of 19 advanced NSCLC patients (10 ADCA and 9 SQCC) was performed using Illumina HiSeq 2000. Variant calling was performed using GATK HaplotypeCaller and then the impacts of variants on protein structure or function were predicted using SnpEff and ANNOVAR. The clinical impact of somatic variants in cancer was assessed using cancer archives. Somatic variants were further prioritized using a knowledge-driven variant interpretation approach. Sanger sequencing was used to validate functionally important variants.ResultsWe identified 24 rare single-nucleotide variants (SNVs) including 17 non-synonymous SNVs, and 7 INDELs in 18 genes possibly linked to lung carcinoma. Variants were classified as known somatic (n = 10), deleterious (n = 8), and variant of uncertain significance (n = 6). We found TBP and MPRIP genes exclusively associated with ADCA subtypes, FBOX6 with SQCC subtypes and GPRIN2, KCNJ18 and TEKT4 genes mutated in all the patients. The Sanger sequencing of 10 high-confidence somatic SNVs showed 100% concordance in 7 genes, and 80% concordance in the remaining 3 genes.ConclusionsOur bioinformatics analysis identified KCNJ18, GPRIN2, TEKT4, HRNR, FOLR3, ESSRA, CTBP2, MPRIP, TBP, and FBXO6 may contribute to progression in NSCLC and could be used as new biomarkers for the treatment. The mechanism by which GPRIN2, KCNJ12, and TEKT4 contribute to tumorigenesis is unclear, but our results suggest they may play an important role in NSCLC and it is worth investigating in future.
Collapse
Affiliation(s)
- Varsha Singh
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Amit Katiyar
- Bioinformatics Facility, Centralized Core Research Facility, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Prabhat Malik
- Department of Medical Oncology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Sunil Kumar
- Department of Surgical Oncology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Anant Mohan
- Department of Pulmonary Critical Care & Sleep Medicine, All India Institute of Medical Sciences, New Delhi, Ansari Nagar, India
| | - Harpreet Singh
- ICMR-AIIMS Computational Genomics Center, Division of Biomedical Informatics, Indian Council of Medical Research, Ansari Nagar, New Delhi, India
| | - Deepali Jain
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| |
Collapse
|
79
|
Ehrmann AS, Zadro A, Tausch E, Schneider C, Stilgenbauer S, Mertens D. The NOTCH1 and miR-34a signaling network is affected by TP53 alterations in CLL. Leuk Lymphoma 2024; 65:1941-1953. [PMID: 39161195 DOI: 10.1080/10428194.2024.2392839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/25/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024]
Abstract
In chronic lymphocytic leukemia (CLL), TP53 mutations or deletions on chromosome 17p lead to adverse prognosis and reduced levels of miR-34a, which targets NOTCH1. Also, hyperactivated NOTCH1 signaling is crucial for CLL progression. Here we explored the interaction between p53, miR-34a, and NOTCH1 in CLL. We investigated the effect of p53 and miR-34a on NOTCH1 signaling and expression in CLL cells with altered TP53. Our results indicate that miR-34a reduces NOTCH1 3' UTR activity but might not be a mediator between p53 signaling and NOTCH1. p53 activation increases miR-34a expression and NOTCH1 protein levels, correlating with decreased NOTCH1 and miR-34a levels in primary CLL cells with TP53 alterations. Some samples with high NOTCH1 levels presented increased BCL-2, suggesting an anti-apoptotic mechanism of a potentially direct p53-NOTCH1 relation in CLL. This study deepens the understanding of the p53-miR-34a-NOTCH1 signaling network, providing insights that could guide future therapeutic strategies for CLL.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- MicroRNAs/genetics
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Signal Transduction
- Mutation
- Gene Expression Regulation, Leukemic
- 3' Untranslated Regions
- Cell Line, Tumor
- Apoptosis/genetics
- RNA Interference
Collapse
Affiliation(s)
- Alena Sophie Ehrmann
- Division of CLL, Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
- Mechanisms of Leukemogenesis (B061), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alex Zadro
- Division of CLL, Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Eugen Tausch
- Division of CLL, Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
- Comprehensive Cancer Center Ulm (CCCU), University Hospital of Ulm, Ulm, Germany
| | - Christof Schneider
- Division of CLL, Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
- Comprehensive Cancer Center Ulm (CCCU), University Hospital of Ulm, Ulm, Germany
| | - Stephan Stilgenbauer
- Division of CLL, Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
- Comprehensive Cancer Center Ulm (CCCU), University Hospital of Ulm, Ulm, Germany
| | - Daniel Mertens
- Division of CLL, Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
- Mechanisms of Leukemogenesis (B061), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
80
|
Mallick S, Duttaroy AK, Dutta S. The PIK3CA gene and its pivotal role in tumor tropism of triple-negative breast cancer. Transl Oncol 2024; 50:102140. [PMID: 39369580 PMCID: PMC11491976 DOI: 10.1016/j.tranon.2024.102140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/04/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024] Open
Abstract
The PIK3CA gene is a linchpin in the intricate molecular network governing triple-negative breast cancer (TNBC) tumor tropism, serving as a focal point for understanding this aggressive disease. Anchored within the PI3K/AKT/mTOR signaling axis, PIK3CA mutations exert substantial influence, driving cellular processes that highlight the unique biology of TNBC. This review meticulously highlights the association between PIK3CA mutations and distinct TNBC subtypes, elucidating the gene's multifaceted contributions to tumor tropism. Molecular dissection reveals how PIK3CA mutations dynamically modulate chemokine responses, growth factor signaling, and extracellular matrix interactions, orchestrating the complex migratory behaviour characteristic of TNBC cells. A detailed exploration of PIK3CA-targeted strategies in the therapeutic arena is presented, outlining the current landscape of clinical trials and precision medicine approaches. As the scientific narrative converges, this review underscores the critical role of PIK3CA in shaping the molecular intricacies of TNBC tumor tropism and illuminates pathways toward tailored interventions, promising a paradigm shift in the clinical management of TNBC.
Collapse
Affiliation(s)
- Sumit Mallick
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Mangalore, Karnataka, India
| | - Asim K Duttaroy
- Department of Nutrition, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway.
| | - Suman Dutta
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK; Dorothy Crowfoot Hodgkin Building, Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK.
| |
Collapse
|
81
|
Roskoski R. Targeted and cytotoxic inhibitors used in the treatment of breast cancer. Pharmacol Res 2024; 210:107534. [PMID: 39631485 DOI: 10.1016/j.phrs.2024.107534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Breast cancer is the most commonly diagnosed malignancy and the fifth leading cause of cancer deaths worldwide. Surgery and radiation therapy are localized therapies for early-stage and metastatic breast cancer. The management of breast cancer is determined in large part by the HER2 (human epidermal growth factor receptor 2), HR (hormone receptor), ER (estrogen receptor), and PR (progesterone receptor) status. Our views of breast cancer are evolving as its molecular hallmarks are examined, which now include immunohistochemical markers (ER, PR, HER2, and proliferation marker protein Ki-67), genomic markers (BRCA1/2 and PIK3CA), and immunomarkers (tumor-infiltrating lymphocytes and PDL1). About two-thirds of malignancies of the breast are HR-positive/HER2-negative; accordingly, endocrine-based therapy is a major treatment option for these patients. Hormonal or endocrine therapy includes selective estrogen receptor modulators (SERMs) such as raloxifene, tamoxifen and toremifene, selective estrogen-receptor degraders (SERDs) including elacestrant and fulvestrant, and aromatase inhibitors such as anastrozole, letrozole, and exemestane. A variety of cytotoxic chemotherapeutic agents are used to treat HR-negative breast cancer patients. These agents include taxanes (docetaxel, nab-paclitaxel, and paclitaxel), anthracyclines (doxorubicin, epirubicin), anti-metabolites (capecitabine, gemcitabine, fluorouracil, methotrexate), alkylating agents (carboplatin, cisplatin, and cyclophosphamide), and drugs that target microtubules (eribulin, ixabepilone, ado-trastuzumab emtansine). Patients with ER-positive tumors are treated with 5-10 years of endocrine therapy and chemotherapy. For patients with metastatic breast cancer, standard first-line and follow-up therapy options include targeted approaches such as CDK4/6 inhibitors, PI3K inhibitors, PARP inhibitors, and anti-PDL1 immunotherapy, depending on the tumor type and molecular profile.
Collapse
Affiliation(s)
- Robert Roskoski
- Blue Ridge Institute for Medical Research, 221 Haywood Knolls Drive, Hendersonville, NC 28791, United States.
| |
Collapse
|
82
|
Peng Y, Ai X, Peng B. Trans-cleaving hammerhead ribozyme in specific regions can improve knockdown efficiency in vivo. J Cell Biochem 2024; 125:e30249. [PMID: 35411616 DOI: 10.1002/jcb.30249] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 03/06/2022] [Accepted: 03/28/2022] [Indexed: 11/08/2022]
Abstract
Trans-cleaving techniques have been most enthusiastically embraced in the development of therapy for genetic diseases, particularly in the correction of monogenic recessive mutations at the messenger RNA level. However, easy degradation and poor catalytic activity in vivo remain significant obstacles to trans-cleaving of the hammerhead ribozyme. Herein, we found a novel scaffold RNA that stabilizes the ribozyme structure in trans-cleaving and promotes the knockdown efficiency of the hammerhead ribozyme in specific regions of living cells. We can give the trans-cleaving hammerhead ribozyme the ability to knock down specific genes in specific cell regions by changing different scaffolds. Therefore, our study proves the potential usefulness of the RNA knockdown strategy with high-specific trans-cleaving hammerhead ribozyme as a therapeutic approach in gene therapy.
Collapse
Affiliation(s)
- Yan Peng
- Medical School, Fuyang Normal University, Fuyang, Anhui, China
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xilei Ai
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bo Peng
- College of Life Science and Resources and Environment, Yichun University, Yichun, Jiangxi, China
| |
Collapse
|
83
|
Bai M, Wang R, Huang C, Zhong R, Jiang N, Fu W, Mi N, Gao L, Jin Y, Ma H, Cao J, Yu H, Jing Q, Zhang C, Yue P, Zhang Y, Lin Y, Zhang H, Meng W. Biological and genetic characterization of a newly established human primary multidrug-resistant distal cholangiocarcinoma cell line, CBC3T-6. Sci Rep 2024; 14:29661. [PMID: 39613883 DOI: 10.1038/s41598-024-81392-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024] Open
Abstract
Distal cholangiocarcinoma is a rare and highly aggressive malignant tumor. The inherent tumor characteristics and growth pattern of cancer cells pose a challenge for diagnosis and treatment. Chemotherapy resistance leads to limited treatment options for patients with advanced cholangiocarcinoma. However, drug resistance studies in cholangiocarcinoma are often limited by the use of preclinical models that do not accurately replicate the essential features of the disease. In this study, we established and characterized a primary multidrug-resistant distal cholangiocarcinoma cell line, CBC3T-6. STR profiling indicated no evidence of cross-contamination. This cell line remains stable during long-term in vitro culture and is characterized by short doubling times and rapid subcutaneous tumor formation in mice. In addition, among the first-line anticancer drugs for cholangiocarcinoma, CBC3T-6 cells showed varying degrees of resistance to gemcitabine, oxaliplatin, cisplatin, and 5-FU. Whole exome sequencing analysis revealed that CBC3T-6 cells contained a variety of potentially pathogenic somatic cell mutations, such as TP53 and KRAS mutations. ABCB1 mutation as a possible therapeutic target for multidrug resistance. In conclusion, CBC3T-6 cells can be used as a useful tool to study the mechanism of cholangiocarcinoma and develop new therapeutic strategies for multidrug resistance.
Collapse
Affiliation(s)
- Mingzhen Bai
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ruoshui Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Chongfei Huang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ruyang Zhong
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ningzu Jiang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Wenkang Fu
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ningning Mi
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Long Gao
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Yuyao Jin
- The Sixth Clinical Medical School of Guangzhou Medical University, Guangzhou, China
| | - Haidong Ma
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Jie Cao
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Haiying Yu
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730030, China
- Gansu Province Key Laboratory of Biological Therapy and Regenerative Medicine Transformation, Lanzhou, China
| | - Qiang Jing
- Department of Pathology, First Hospital of Lanzhou University, Donggang District, Lanzhou, China
| | - Chao Zhang
- Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou, China
| | - Ping Yue
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Yong Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Yanyan Lin
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Hengwei Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730030, China.
| | - Wenbo Meng
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730030, China.
- Gansu Province Key Laboratory of Biological Therapy and Regenerative Medicine Transformation, Lanzhou, China.
| |
Collapse
|
84
|
Zhu Z, Liu H, Fu H, Luo Y, Chen B, Wu X, Sun A, Zhang F, Wang T. CMTM7 shapes the chronic inflammatory and immunosuppressive tumor microenvironment in hepatocellular carcinoma as an M2 macrophage biomarker. Sci Rep 2024; 14:29659. [PMID: 39609464 PMCID: PMC11604762 DOI: 10.1038/s41598-024-75538-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 10/07/2024] [Indexed: 11/30/2024] Open
Abstract
Transmembrane domain-containing 7 (CMTM7) is a protein located at the plasma membrane. It plays a role in regulating the development and immune microenvironment of tumor cells. However, the impact of CMTM7 on hepatocellular carcinoma (HCC) is not well understood. To better understand the role of CMTM7 in HCC, the correlations of CMTM7 with clinical characteristics, patient prognosis, chronic inflammation, and immune cell infiltration were analyzed using tissue microarray slides, sequencing datasets and various analysis tools (Web). The bulk sequencing analysis indicated that elevated expression of CMTM7 appears to promote chronic inflammation, immunosuppression, M2 macrophage infiltration, a diminished response to cancer immunotherapy, and an unfavorable clinical prognosis in patients with hepatocellular carcinoma (HCC). Further investigation through single-cell RNA sequencing and multiple fluorescence staining demonstrated that CMTM7 serves as a molecular marker for M2 macrophages and is associated with T cell exhaustion as well as highly plastic stem-like characteristics. We propose that CMTM7 may represent a novel immune checkpoint for HCC patients experiencing suboptimal therapeutic outcomes. Utilizing the Connectivity Map and AutoDock Vina, we predicted two potential compounds targeting CMTM7-fasudil and arachidonyltrifluoromethane-as promising therapeutic candidates. Collectively, these findings suggest that CMTM7-positive macrophages play significant roles in establishing an immunosuppressive tumor microenvironment while promoting highly plastic and stem-like traits in HCC cells, ultimately contributing to poor prognostic outcomes.
Collapse
Affiliation(s)
- Zhipeng Zhu
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China
- Department of General Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361103, Fujian, China
| | - Hanzhi Liu
- The Third Clinical Medical College, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Huafeng Fu
- Center for Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510030, Guangdong, China
| | - Yu Luo
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, China
| | - Baisheng Chen
- Endoscopy Center, Zhongshan Hospital of Fudan University (Xiamen Branch), Xiamen, 361001, Fujian, China
| | - Xiaofang Wu
- Department of General Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361103, Fujian, China
| | - Anran Sun
- Oncology Research Center, Foresea Life Insurance Guangzhou General Hospital, Guangzhou, 511300, Guangdong, China.
- Research Center for Translational Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, China.
| | - Fuxing Zhang
- Department of General Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361103, Fujian, China.
| | - Tao Wang
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, China.
| |
Collapse
|
85
|
Deng D, Xiao J, Liu J, Li H, Hu M, Zhou B, Liang H, Fan B, Chen J, Kuang X, Nie Z, Hu J, Zu X. Evasion of immunosurveillance by the upregulation of Siglec15 in bladder cancer. J Hematol Oncol 2024; 17:117. [PMID: 39609852 PMCID: PMC11606300 DOI: 10.1186/s13045-024-01638-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/14/2024] [Indexed: 11/30/2024] Open
Abstract
Immunotherapy resistance in bladder cancer (BLCA) is associated with elevated levels of sialic acid-binding immunoglobulin-like lectin (Siglec15). This protein plays a crucial role in fostering a noninflammatory tumor microenvironment (TME), which is conducive to cancer progression. Our study confirmed that the overexpression of Siglec15 led to a reduction in CD8+ T cell infiltration. This effect was mediated by the downregulation of pro-inflammatory cytokines and chemokines, which in turn exacerbated BLCA malignancy. Furthermore, Siglec15 inhibited the cytotoxicity of effector T cell, contributing to immune evasion. An in vivo study demonstrated that Siglec15 overexpression induced a non-inflammatory TME and promoted resistance to immunotherapy. These findings highlight Siglec15 as a potential therapeutic target for BLCA. By modulating inflammation in the TME and CD8+ T cell function, targeting Siglec15 may offer a novel strategy for overcoming immunotherapy resistance and improving patient outcomes.
Collapse
Affiliation(s)
- Dingshan Deng
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jiatong Xiao
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jinhui Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Huihuang Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Minghui Hu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Bohan Zhou
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Haisu Liang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Benyi Fan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jinbo Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Xiaogen Kuang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, University of South China, Hengyang, China.
| | - Zhenyu Nie
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Jiao Hu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.
- Department of Urology, Hunan Provincial People's Hospital, Changsha, China.
- Department of Urology, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, China.
| |
Collapse
|
86
|
Plaugher DR, Childress AR, Gosser CM, Esoe DP, Naughton KJ, Hao Z, Brainson CF. Therapeutic potential of tumor-infiltrating lymphocytes in non-small cell lung cancer. Cancer Lett 2024; 605:217281. [PMID: 39369769 PMCID: PMC11560632 DOI: 10.1016/j.canlet.2024.217281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
Lung cancer is the leading cause of cancer-related death worldwide, with poor outcomes even for those diagnosed at early stages. Current standard-of-care for most non-small cell lung cancer (NSCLC) patients involves an array of chemotherapy, radiotherapy, immunotherapy, targeted therapy, and surgical resection depending on the stage and location of the cancer. While patient outcomes have certainly improved, advances in highly personalized care remain limited. However, there is growing excitement around harnessing the power of tumor-infiltrating lymphocytes (TILs) through the use of adoptive cell transfer (ACT) therapy. These TILs are naturally occurring, may already recognize tumor-specific antigens, and can have direct anti-cancer effect. In this review, we highlight comparisons of various ACTs, including a brief TIL history, show current advances and successes of TIL therapy in NSCLC, discuss the potential roles for epigenetics in T cell expansion, and highlight challenges and future directions of the field to combat NSCLC in a personalized manner.
Collapse
Affiliation(s)
- Daniel R Plaugher
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA.
| | - Avery R Childress
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Christian M Gosser
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Dave-Preston Esoe
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Kassandra J Naughton
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Zhonglin Hao
- Department of Internal Medicine - Medical Oncology, University of Kentucky, Lexington, KY, 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Christine F Brainson
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
87
|
Garrido MA, Navarro-Ocón A, Ronco-Díaz V, Olea N, Aptsiauri N. Loss of Heterozygosity (LOH) Affecting HLA Genes in Breast Cancer: Clinical Relevance and Therapeutic Opportunities. Genes (Basel) 2024; 15:1542. [PMID: 39766811 PMCID: PMC11675875 DOI: 10.3390/genes15121542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Major histocompatibility complex (MHC) class-I molecules (or Human Leucocyte Antigen class-I) play a key role in adaptive immunity against cancer. They present specific tumor neoantigens to cytotoxic T cells and provoke an antitumor cytotoxic response. The total or partial loss of HLA molecules can inhibit the immune system's ability to detect and destroy cancer cells. Loss of heterozygosity (LOH) is a common irreversible genetic alteration that occurs in the great majority of human tumors, including breast cancer. LOH at chromosome 6, which involves HLA genes (LOH-HLA), leads to the loss of an HLA haplotype and is linked to cancer progression and a weak response to cancer immunotherapy. Therefore, the loss of genes or an entire chromosomal region which are critical for antigen presentation is of particular importance in the search for novel prognostic and clinical biomarkers in breast cancer. Here, we review the role of LOH-HLA in breast cancer, its contribution to an understanding of cancer immune escape and tumor progression, and discuss how it can be targeted in cancer therapy.
Collapse
Affiliation(s)
- María Antonia Garrido
- Radiology Service, Virgen de la Nieves University Hospital, 18014 Granada, Spain; (M.A.G.); (N.O.)
| | - Alba Navarro-Ocón
- Department of Biochemistry, Molecular Biology III and Immunology, School of Medicine, University of Granada, 18016 Granada, Spain; (A.N.-O.); (V.R.-D.)
- Biosanitary Research Institute of Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Víctor Ronco-Díaz
- Department of Biochemistry, Molecular Biology III and Immunology, School of Medicine, University of Granada, 18016 Granada, Spain; (A.N.-O.); (V.R.-D.)
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), 18016 Granada, Spain
| | - Nicolás Olea
- Radiology Service, Virgen de la Nieves University Hospital, 18014 Granada, Spain; (M.A.G.); (N.O.)
- Biosanitary Research Institute of Granada (ibs.GRANADA), 18012 Granada, Spain
- Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016 Granada, Spain
- CIBER of Epidemiology and Public Health (CIBERSP), 28034 Madrid, Spain
| | - Natalia Aptsiauri
- Department of Biochemistry, Molecular Biology III and Immunology, School of Medicine, University of Granada, 18016 Granada, Spain; (A.N.-O.); (V.R.-D.)
- Biosanitary Research Institute of Granada (ibs.GRANADA), 18012 Granada, Spain
| |
Collapse
|
88
|
Zhu Y, Jiang S, Tang R, Chen H, Jia G, Zhou X, Miao J. KMT2A facilitates the epithelial-to-mesenchymal transition and the progression of ovarian cancer. Mol Cell Biochem 2024:10.1007/s11010-024-05167-x. [PMID: 39589456 DOI: 10.1007/s11010-024-05167-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024]
Abstract
Epithelial-mesenchymal transition (EMT) plays critical roles in cancer progression and metastasis. Thus, the exploration of the molecular mechanism regulating EMT would provide potential opportunities for the therapy of metastatic ovarian cancer (OC). Herein, we investigated the putative role of KMT2A in modulating EMT and metastasis in OC. The expression of KMT2A in OC was detected by Western blot and immunohistochemistry and its relationship with clinicopathological factors was analyzed. The effect of KMT2A on the biological behavior of OC cells was examined. Moreover, the expressions of EMT-associated proteins were detected in vivo and vitro by Western blot, immunofluorescence, and immunohistochemistry. KMT2A was highly expressed in OC cell lines and tissues and was positively correlated with advanced International Federation of Gynecology and Obstetrics (FIGO) stage, pathological grade, and metastasis. KMT2A overexpression was correlated with poor prognosis. Suppression of KMT2A inhibited OC cells proliferation, migration, and invasion and induced their apoptosis in vitro and vivo. In contrast, the ectopic expression of KMT2A had the opposite effects. Furthermore, KMT2A knockdown inhibited TGF-β-induced EMT in OC and reduced the phosphorylation levels of Smad2. Taken together, these observations demonstrate that KMT2A could promote the malignant behavior of OC by activating TGF-β/Smad signaling pathway and may be a potential prognostic biomarker and therapeutic target for OC.
Collapse
Affiliation(s)
- Yuan Zhu
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, China
| | - Shenyuan Jiang
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, China
| | - Ranran Tang
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, China
| | - Haiyan Chen
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, China
| | - Genmei Jia
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, China.
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, China.
| | - Xue Zhou
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, China.
| | - Juan Miao
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
89
|
Chillón-Pino D, Badonyi M, Semple CA, Marsh JA. Protein structural context of cancer mutations reveals molecular mechanisms and candidate driver genes. Cell Rep 2024; 43:114905. [PMID: 39441719 PMCID: PMC7617530 DOI: 10.1016/j.celrep.2024.114905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/23/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
Advances in protein structure determination and modeling allow us to study the structural context of human genetic variants on an unprecedented scale. Here, we analyze millions of cancer-associated missense mutations based on their structural locations and predicted perturbative effects. By considering the collective properties of mutations at the level of individual proteins, we identify distinct patterns associated with tumor suppressors and oncogenes. Tumor suppressors are enriched in structurally damaging mutations, consistent with loss-of-function mechanisms, while oncogene mutations tend to be structurally mild, reflecting selection for gain-of-function driver mutations and against loss-of-function mutations. Although oncogenes are difficult to distinguish from genes with no role in cancer using only structural damage, we find that the three-dimensional clustering of mutations is highly predictive. These observations allow us to identify candidate driver genes and speculate about their molecular roles, which we expect will have general utility in the analysis of cancer sequencing data.
Collapse
Affiliation(s)
- Diego Chillón-Pino
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Mihaly Badonyi
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Colin A Semple
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
90
|
Oliveira RCD, Cavalcante GC, Soares-Souza GB. Exploring Aerobic Energy Metabolism in Breast Cancer: A Mutational Profile of Glycolysis and Oxidative Phosphorylation. Int J Mol Sci 2024; 25:12585. [PMID: 39684297 DOI: 10.3390/ijms252312585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/12/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Energy metabolism is a fundamental aspect of the aggressiveness and invasiveness of breast cancer (BC), the neoplasm that most affects women worldwide. Nonetheless, the impact of genetic somatic mutations on glycolysis and oxidative phosphorylation (OXPHOS) genes in BC remains unclear. To fill these gaps, the mutational profiles of 205 screened genes related to glycolysis and OXPHOS in 968 individuals with BC from The Cancer Genome Atlas (TCGA) project were performed. We carried out analyses to characterize the mutational profile of BC, assess the clonality of tumors, identify somatic mutation co-occurrence, and predict the pathogenicity of these alterations. In total, 408 mutations in 132 genes related to the glycolysis and OXPHOS pathways were detected. The PGK1, PC, PCK1, HK1, DONSON, GPD1, NDUFS1, and FOXRED1 genes are also associated with the tumorigenesis process in other types of cancer, as are the genes BRCA1, BRCA2, and HMCN1, which had been previously described as oncogenes in BC, with whom the target genes of this work were associated. Seven mutations were identified and highlighted due to the high pathogenicity, which are present in more than one of our results and are documented in the literature as being correlated with other diseases. These mutations are rs267606829 (FOXRED1), COSV53860306 (HK1), rs201634181 (NDUFS1), rs774052186 (DONSON), rs119103242 (PC), rs1436643226 (PC), and rs104894677 (ETFB). They could be further investigated as potential biomarkers for diagnosis, prognosis, and treatment of BC patients.
Collapse
Affiliation(s)
- Ricardo Cunha de Oliveira
- Laboratório de Genética Humana e Médica, Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, Belém 66075-110, Pará, Brazil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, São Paulo, Brazil
| | - Giovanna C Cavalcante
- Laboratório de Genética Humana e Médica, Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, Belém 66075-110, Pará, Brazil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, São Paulo, Brazil
| | - Giordano B Soares-Souza
- Laboratório de Genética Humana e Médica, Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, Belém 66075-110, Pará, Brazil
- Instituto Tecnológico Vale (ITV-DS), Belém 66055-090, Pará, Brazil
| |
Collapse
|
91
|
Ferrari I, De Grossi F, Lai G, Oliveto S, Deroma G, Biffo S, Manfrini N. CancerHubs: a systematic data mining and elaboration approach for identifying novel cancer-related protein interaction hubs. Brief Bioinform 2024; 26:bbae635. [PMID: 39657701 PMCID: PMC11631132 DOI: 10.1093/bib/bbae635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/31/2024] [Accepted: 11/22/2024] [Indexed: 12/12/2024] Open
Abstract
Conventional approaches to predict protein involvement in cancer often rely on defining either aberrant mutations at the single-gene level or correlating/anti-correlating transcript levels with patient survival. These approaches are typically conducted independently and focus on one protein at a time, overlooking nucleotide substitutions outside of coding regions or mutational co-occurrences in genes within the same interaction network. Here, we present CancerHubs, a method that integrates unbiased mutational data, clinical outcome predictions and interactomics to define novel cancer-related protein hubs. Through this approach, we identified TGOLN2 as a putative novel broad cancer tumour suppressor and EFTUD2 as a putative novel multiple myeloma oncogene.
Collapse
Affiliation(s)
- Ivan Ferrari
- INGM, Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| | - Federica De Grossi
- INGM, Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| | - Giancarlo Lai
- INGM, Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| | - Stefania Oliveto
- INGM, Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| | - Giorgia Deroma
- INGM, Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| | - Stefano Biffo
- INGM, Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| | - Nicola Manfrini
- INGM, Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| |
Collapse
|
92
|
Takemon Y, Pleasance ED, Gagliardi A, Hughes CS, Csizmok V, Wee K, Trinh DL, Huff RD, Mungall AJ, Moore RA, Chuah E, Mungall KL, Lewis E, Nelson J, Lim HJ, Renouf DJ, Jones SJ, Laskin J, Marra MA. Mapping in silico genetic networks of the KMT2D tumour suppressor gene to uncover novel functional associations and cancer cell vulnerabilities. Genome Med 2024; 16:136. [PMID: 39578878 PMCID: PMC11583415 DOI: 10.1186/s13073-024-01401-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/29/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Loss-of-function (LOF) alterations in tumour suppressor genes cannot be directly targeted. Approaches characterising gene function and vulnerabilities conferred by such mutations are required. METHODS Here, we computationally map genetic networks of KMT2D, a tumour suppressor gene frequently mutated in several cancer types. Using KMT2D loss-of-function (KMT2DLOF) mutations as a model, we illustrate the utility of in silico genetic networks in uncovering novel functional associations and vulnerabilities in cancer cells with LOF alterations affecting tumour suppressor genes. RESULTS We revealed genetic interactors with functions in histone modification, metabolism, and immune response and synthetic lethal (SL) candidates, including some encoding existing therapeutic targets. Notably, we predicted WRN as a novel SL interactor and, using recently available WRN inhibitor (HRO761 and VVD-133214) treatment response data, we observed that KMT2D mutational status significantly distinguishes treatment-sensitive MSI cell lines from treatment-insensitive MSI cell lines. CONCLUSIONS Our study thus illustrates how tumour suppressor gene LOF alterations can be exploited to reveal potentially targetable cancer cell vulnerabilities.
Collapse
Affiliation(s)
- Yuka Takemon
- Genome Science and Technology Graduate Program, University of British Columbia, Vancouver, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | - Erin D Pleasance
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | - Alessia Gagliardi
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | | | - Veronika Csizmok
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | - Kathleen Wee
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | - Diane L Trinh
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | - Ryan D Huff
- Division of Respiratory Medicine, Department of Medicine, Air Pollution Exposure Laboratory, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | - Richard A Moore
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | - Eric Chuah
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | - Karen L Mungall
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | - Eleanor Lewis
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | - Jessica Nelson
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | - Howard J Lim
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Daniel J Renouf
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
- Pancreas Centre BC, Vancouver, BC, Canada
| | - Steven Jm Jones
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Janessa Laskin
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Marco A Marra
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada.
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
93
|
Jain K, Kougnassoukou Tchara PE, Mengistalem AB, Holland AP, Bowman CN, Marunde MR, Popova IK, Cooke SW, Krajewski K, Keogh MC, Lambert JP, Strahl BD. Histone H3 N-terminal recognition by the PHD finger of PHRF1 is required for proper DNA damage response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.20.623956. [PMID: 39605374 PMCID: PMC11601626 DOI: 10.1101/2024.11.20.623956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Plant homeodomain (PHD) fingers are critical effectors of histone post-translational modifications (PTMs), acting as regulators of gene expression and genome integrity, and frequently presenting in human disease. While most PHD fingers recognize unmodified and methylated states of histone H3 lysine 4 (H3K4), the specific functions of many of the over 100 PHD finger-containing proteins in humans remain poorly understood, despite their significant implications in disease processes. In this study, we undertook a comprehensive analysis of one such poorly characterized PHD finger-containing protein, PHRF1. Using biochemical, molecular, and cellular approaches, we show that PHRF1 robustly binds to histone H3, specifically at its N-terminal region. Through RNA-seq and proteomic analyses, we also find that PHRF1 is intricately involved in transcriptional and RNA splicing regulation and plays a significant role in DNA damage response (DDR). Crucially, mutagenesis of proline 221 to leucine (P221L) in the PHD finger of PHRF1 abolishes histone interaction and fails to rescue defective DDR. These findings underscore the importance of PHRF1-H3 interaction in maintaining genome integrity and provide insight into how PHD fingers contribute to chromatin biology.
Collapse
Affiliation(s)
- Kanishk Jain
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| | - Pata-Eting Kougnassoukou Tchara
- Department of Molecular Medicine and Cancer Research Center, Université Laval, Quebec City, QC, Canada; CHU de Québec Research Center, Quebec City, QC, Canada
| | - Amanuel B. Mengistalem
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Aidan P. Holland
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christopher N. Bowman
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | - Spencer W. Cooke
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Krzysztof Krajewski
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Jean-Philippe Lambert
- Department of Molecular Medicine and Cancer Research Center, Université Laval, Quebec City, QC, Canada; CHU de Québec Research Center, Quebec City, QC, Canada
| | - Brian D. Strahl
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
94
|
Shahzad M, Amin MK, Daver NG, Shah MV, Hiwase D, Arber DA, Kharfan-Dabaja MA, Badar T. What have we learned about TP53-mutated acute myeloid leukemia? Blood Cancer J 2024; 14:202. [PMID: 39562552 PMCID: PMC11576745 DOI: 10.1038/s41408-024-01186-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/21/2024] Open
Abstract
TP53 is a tumor suppressor gene frequently mutated in human cancers and is generally associated with poor outcomes. TP53 mutations are found in approximately 5% to 10% of patients with de novo acute myeloid leukemia (AML), more frequently observed in elderly patients and those with therapy-related AML. Despite recent advances in molecular profiling and the emergence of targeted therapies, TP53-mutated AML remains a challenge to treat. Current treatment strategies, including conventional chemotherapy, hypomethylating agents, and venetoclax-based therapies, have shown limited efficacy in TP53-mutated AML, with low response rates and poor overall survival. Allogeneic hematopoietic stem cell transplantation is a potentially curative option; however, its efficacy in TP53-mutated AML depends on comorbid conditions and disease status at transplantation. Novel therapeutic modalities, including immune-based therapies, did show promise in early-phase studies but did not translate into effective therapies in randomized controlled trials. This review provides a comprehensive overview of TP53 mutations in AML, outcomes based on allelic burden, clinical implications, and therapeutic challenges.
Collapse
Affiliation(s)
- Moazzam Shahzad
- Division of Hematology and Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Muhammad Kashif Amin
- Division of Hematologic Malignancies & Cellular Therapeutics, The University of Kansas Medical Center, Kansas City, KS, USA
| | - Naval G Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Devendra Hiwase
- Department of Hematology, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - Daniel A Arber
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | | | - Talha Badar
- Division of Hematology and Medical Oncology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
95
|
Manzanero-Ortiz S, Franco M, Laxmeesha M, Carmena A. Drosophila p53 tumor suppressor directly activates conserved asymmetric stem cell division regulators. iScience 2024; 27:111118. [PMID: 39524346 PMCID: PMC11546965 DOI: 10.1016/j.isci.2024.111118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/08/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
p53 is the most mutated tumor suppressor gene in human cancers. Besides p53 classical functions inducing cell-cycle arrest and apoptosis in stressed cells, additional p53 non-canonical roles in unstressed cells have emerged over the past years, including the mode of stem cell division regulation. However, the mechanisms by which p53 impacts on this process remain elusive. Here, we show that Drosophila p53 controls asymmetric stem cell division (ASCD), a key process in development, cancer and adult tissue homeostasis, by transcriptionally activating Numb, Brat, and Traf4 ASCD regulators. p53 knockout caused failures in their localization in dividing neural stem cells, as well as a significant decrease in their expression levels. Moreover, p53 directly bound numb, brat, and Traf4 regulatory regions. Remarkably, human and mice genes related to Drosophila brat (TRIM32) and Traf4 (TRAF4) were recently identified in a meta-analysis of transcriptomic and ChIP-seq datasets as predicted conserved p53 targets.
Collapse
Affiliation(s)
- Sandra Manzanero-Ortiz
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas/Universidad Miguel Hernández de Elche, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Maribel Franco
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas/Universidad Miguel Hernández de Elche, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Mahima Laxmeesha
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas/Universidad Miguel Hernández de Elche, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Ana Carmena
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas/Universidad Miguel Hernández de Elche, Sant Joan d'Alacant, 03550 Alicante, Spain
| |
Collapse
|
96
|
Lyu SI, Plum PS, Fretter C, Simon AG, Bedau T, Knipper K, Thomas MN, Stippel D, Wagner BJ, Bruns C, Waldschmidt D, Büttner R, Drebber U, Quaas A. Therapy-relevant MDM2 amplification in cholangiocarcinomas in Caucasian patients. Ther Adv Med Oncol 2024; 16:17588359241288123. [PMID: 39525665 PMCID: PMC11550496 DOI: 10.1177/17588359241288123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/13/2024] [Indexed: 11/16/2024] Open
Abstract
Background Cholangiocarcinomas (CCA) are a group of aggressive malignancies with poor prognosis. The distinct subtypes are related to different etiologies and genetic aberrations that are subject to targeted therapies. Mouse double minute 2 homolog (MDM2) is a potent inhibitor of tumor suppressor p53 and is proven to be altered in certain carcinomas. Novel targeted drugs, such as the MDM2-p53 antagonist Brigimadlin, have shown promising results for therapeutic efficacy in patients with MDM2 amplification and wild-type TP53. Objectives This study therefore aimed to characterize CCAs regarding their MDM2 status, compare the concordance between fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) methods, and elucidate the role of MDM2 amplification in prognosis and other clinicopathological characteristics. Design Retrospective cohort study. Methods All patients (n = 52) were diagnosed with CCA and received surgical resection with curative intention at the University Hospital of Cologne. Samples were analyzed retrospectively for MDM2 amplification with FISH and IHC. We correlated results with pre-existing molecular as well as clinical data. Results We included 52 patients with primary CCA, three of which showed positive MDM2 amplification (5.8%). MDM2 amplification was present only in the intrahepatic CCA type and all patients with positive MDM2 amplification exhibited normal p53 status. Among the large-duct subtypes of intrahepatic CCAs, patients with positive MDM2 amplification demonstrated better survival than patients with negative MDM2 amplification (p = 0.041). Of the patients with MDM2 amplification, two underwent adjuvant therapy post-surgery (66.7%). There was a strong correlation between MDM2 amplification and positive protein expression in IHC. There were no identifiable molecular co-alterations of MDM2 with FGFR2 or SWI/SNF complex alterations. Conclusion Real-world evidence in our Caucasian patient population confirmed that a significant number of intrahepatic CCAs showcase MDM2 amplification, qualifying for a personalized therapy option with Brigimadlin. MDM2 amplification must therefore be considered in the context of personalized molecular testing in CCA.
Collapse
Affiliation(s)
- Su Ir Lyu
- Faculty of Medicine and University Hospital of Cologne, Institute of Pathology, University of Cologne, Kerpener Str. 62, Cologne 50937, Germany
| | - Patrick Sven Plum
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, Leipzig, Germany
| | - Caroline Fretter
- Faculty of Medicine and University Hospital of Cologne, Institute of Pathology, University of Cologne, Cologne, Germany
| | - Adrian Georg Simon
- Faculty of Medicine and University Hospital of Cologne, Institute of Pathology, University of Cologne, Cologne, Germany
| | - Tillmann Bedau
- Faculty of Medicine and University Hospital of Cologne, Institute of Pathology, University of Cologne, Cologne, Germany
| | - Karl Knipper
- Faculty of Medicine and University Hospital of Cologne, Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Michael N. Thomas
- Faculty of Medicine and University Hospital of Cologne, Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Dirk Stippel
- Faculty of Medicine and University Hospital of Cologne, Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Britta Janina Wagner
- Faculty of Medicine and University Hospital of Cologne, Institute of Pathology, University of Cologne, Cologne, Germany
| | - Christiane Bruns
- Faculty of Medicine and University Hospital of Cologne, Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Dirk Waldschmidt
- Faculty of Medicine and University Hospital of Cologne, Department of Gastroenterology and Hepatology, University of Cologne, Cologne, Germany
| | - Reinhard Büttner
- Faculty of Medicine and University Hospital of Cologne, Institute of Pathology, University of Cologne, Cologne, Germany
| | - Uta Drebber
- Faculty of Medicine and University Hospital of Cologne, Institute of Pathology, University of Cologne, Cologne, Germany
| | - Alexander Quaas
- Faculty of Medicine and University Hospital of Cologne, Institute of Pathology, University of Cologne, Cologne, Germany
| |
Collapse
|
97
|
Stieg DC, Casey K, Karisetty BC, Leu JIJ, Larkin F, Vogel P, Madzo J, Murphy ME. The Ashkenazi-Centric G334R Variant of TP53 is Severely Impaired for Transactivation but Retains Tumor Suppressor Function in a Mouse Model. Mol Cell Biol 2024; 44:607-621. [PMID: 39520074 PMCID: PMC11583612 DOI: 10.1080/10985549.2024.2421885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Mutations in the TP53 tumor suppressor gene are the most abundant genetic occurrences in cancer. Some of these mutations lead to loss of function of p53 protein, some are gain of function, and some variants are hypomorphic (partially functional). Currently, there is no clinical distinction between different p53 mutations and cancer therapy or prognosis. Mutations in the oligomerization domain of p53 appear to be quite distinct in function, compared to mutations in the DNA binding domain. Here we show that, like other p53 oligomerization domain mutants, the Ashkenazi-specific G334R mutant accumulates to very high levels in cells and is significantly impaired for the transactivation of canonical p53 target genes. Surprisingly, we find that this mutant retains the ability to bind to consensus p53 target sites. A mouse model reveals that mice containing the G334R variant show increased predisposition to cancer, but only a fraction of these mice develop late-onset cancer. We show that the G334R variant retains the ability to interact with the SP1 transcription factor and contributes to the transactivation of joint SP1-p53 target genes. The combined evidence indicates that G334R is a unique oligomerization domain mutant that retains some tumor suppressor function.
Collapse
Affiliation(s)
- David C. Stieg
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Kaitlyn Casey
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania, USA
- Cancer Biology Program, St Joseph’s University, Philadelphia, Pennsylvania, USA
| | | | - Julia I-Ju Leu
- Perelman School of Medicine, Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Fiona Larkin
- Hunterdon County Academies, Annandale, New Jersey, USA
| | - Peter Vogel
- Comparative Pathology Core, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Jozef Madzo
- Bioinformatics Facility, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Maureen E. Murphy
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania, USA
| |
Collapse
|
98
|
Veselá K, Kejík Z, Masařík M, Babula P, Dytrych P, Martásek P, Jakubek M. Curcumin: A Potential Weapon in the Prevention and Treatment of Head and Neck Cancer. ACS Pharmacol Transl Sci 2024; 7:3394-3418. [PMID: 39539276 PMCID: PMC11555516 DOI: 10.1021/acsptsci.4c00518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024]
Abstract
Head and neck cancers (HNC) are aggressive, difficult-to-treat tumors that can be caused by genetic factors but mainly by lifestyle or infection caused by the human papillomavirus. As the sixth most common malignancy, it presents a formidable therapeutic challenge with limited therapeutic modalities. Curcumin, a natural polyphenol, is appearing as a promising multitarget anticancer and antimetastatic agent. Numerous studies have shown that curcumin and its derivatives have the potential to affect signaling pathways (NF-κB, JAK/STAT, and EGFR) and molecular mechanisms that are crucial for the growth and migration of head and neck tumors. Furthermore, its ability to interact with the tumor microenvironment and trigger the immune system may significantly influence the organism's immune response to the tumor. Combining curcumin with conventional therapies such as chemotherapy or radiotherapy may improve the efficacy of treatment and reduce the side effects of treatment, thereby increasing its therapeutic potential. This review is a comprehensive overview that discusses both the benefits and limitations of curcumin and its therapeutic effects in the context of tumor biology, with an emphasis on molecular mechanisms in the context of HNC. This review also includes possibilities to improve the limiting properties of curcumin both in terms of the development of new derivatives, formulations, or combinations with conventional therapies that have potential as a new type of therapy for the treatment of HNC and subsequent use in clinical practice.
Collapse
Affiliation(s)
- Kateřina Veselá
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
| | - Zdeněk Kejík
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
| | - Michal Masařík
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
- Department
of Physiology, Faculty of Medicine, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
- Department
of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Babula
- Department
of Physiology, Faculty of Medicine, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Dytrych
- First
Department of Surgery-Department of Abdominal, Thoracic Surgery and
Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, 121
08 Prague, Czech
Republic
| | - Pavel Martásek
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
| | - Milan Jakubek
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
| |
Collapse
|
99
|
Herrmannová A, Jelínek J, Pospíšilová K, Kerényi F, Vomastek T, Watt K, Brábek J, Mohammad MP, Wagner S, Topisirovic I, Valášek LS. Perturbations in eIF3 subunit stoichiometry alter expression of ribosomal proteins and key components of the MAPK signaling pathways. eLife 2024; 13:RP95846. [PMID: 39495207 PMCID: PMC11534336 DOI: 10.7554/elife.95846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
Protein synthesis plays a major role in homeostasis and when dysregulated leads to various pathologies including cancer. To this end, imbalanced expression of eukaryotic translation initiation factors (eIFs) is not only a consequence but also a driver of neoplastic growth. eIF3 is the largest, multi-subunit translation initiation complex with a modular assembly, where aberrant expression of one subunit generates only partially functional subcomplexes. To comprehensively study the effects of eIF3 remodeling, we contrasted the impact of eIF3d, eIF3e or eIF3h depletion on the translatome of HeLa cells using Ribo-seq. Depletion of eIF3d or eIF3e, but not eIF3h reduced the levels of multiple components of the MAPK signaling pathways. Surprisingly, however, depletion of all three eIF3 subunits increased MAPK/ERK pathway activity. Depletion of eIF3e and partially eIF3d also increased translation of TOP mRNAs that encode mainly ribosomal proteins and other components of the translational machinery. Moreover, alterations in eIF3 subunit stoichiometry were often associated with changes in translation of mRNAs containing short uORFs, as in the case of the proto-oncogene MDM2 and the transcription factor ATF4. Collectively, perturbations in eIF3 subunit stoichiometry exert specific effect on the translatome comprising signaling and stress-related transcripts with complex 5' UTRs that are implicated in homeostatic adaptation to stress and cancer.
Collapse
Affiliation(s)
- Anna Herrmannová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Jan Jelínek
- Laboratory of Bioinformatics, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Klára Pospíšilová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Farkas Kerényi
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Tomáš Vomastek
- Laboratory of Cell Signaling, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Kathleen Watt
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska InstitutetSolnaSweden
| | - Jan Brábek
- Lady Davis Institute, Laboratory of Cancer Cell Invasion, Faculty of Science, Charles UniversityPragueCzech Republic
| | - Mahabub Pasha Mohammad
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Susan Wagner
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Ivan Topisirovic
- Lady Davis Institute, Gerald Bronfman Department of Oncology, Department of Biochemistry, Division of Experimental Medicine, McGill UniversityMontréalCanada
| | - Leoš Shivaya Valášek
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| |
Collapse
|
100
|
Lahnine G, Saddouki F, Bouanani Z, Akammar A, Bouardi NE, Haloua M, Alami B, Lamrani YA, Maaroufi M, Boubbou M. Congenital infiltrating lipomatosis of the face: Case report. Radiol Case Rep 2024; 19:5196-5200. [PMID: 39263506 PMCID: PMC11387536 DOI: 10.1016/j.radcr.2024.07.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/13/2024] Open
Abstract
A rare disorder called congenital infiltrating lipomatosis of the face is characterized by a diffuse fatty infiltration of the soft tissues of the face. Muscle involvement and related bony hyperplasia may coexist. This particular form of lipomatous tumor is rare and typically appears in childhood. It is congenital in nature. Collections of mature, nonencapsulated lipocytes that infiltrate local tissues and frequently recur following surgery define congenital infiltrating lipomatosis, a unique clinicopathologic condition. The best modalities are, CT scan and MRI since they can determine the extent of the lesions and reveal their fat content. The treatment of this disease is surgical as soon as possible to restrict their infiltrative growth and improve the appearance of the face. We describe a case of massive facial invading lipoma that was investigated using MRI.
Collapse
Affiliation(s)
- Ghita Lahnine
- Mother and Child Radiology Department, University of Sidi Mohammed Benabdellah, CHU Hassan II, Fes, Morocco
| | - Fatima Saddouki
- Mother and Child Radiology Department, University of Sidi Mohammed Benabdellah, CHU Hassan II, Fes, Morocco
| | - Zineb Bouanani
- Mother and Child Radiology Department, University of Sidi Mohammed Benabdellah, CHU Hassan II, Fes, Morocco
| | - Amal Akammar
- Mother and Child Radiology Department, University of Sidi Mohammed Benabdellah, CHU Hassan II, Fes, Morocco
| | - Nizar El Bouardi
- Central Radiology Department, University of Sidi Mohammed Benabdellah, CHU Hassan II, Fes, Morocco
| | - Meriem Haloua
- Mother and Child Radiology Department, University of Sidi Mohammed Benabdellah, CHU Hassan II, Fes, Morocco
| | - Badr Alami
- Central Radiology Department, University of Sidi Mohammed Benabdellah, CHU Hassan II, Fes, Morocco
| | - Youssef A Lamrani
- Central Radiology Department, University of Sidi Mohammed Benabdellah, CHU Hassan II, Fes, Morocco
| | - Mustapha Maaroufi
- Central Radiology Department, University of Sidi Mohammed Benabdellah, CHU Hassan II, Fes, Morocco
| | - Meriem Boubbou
- Mother and Child Radiology Department, University of Sidi Mohammed Benabdellah, CHU Hassan II, Fes, Morocco
| |
Collapse
|