51
|
Wang D, Sallam T. Where in the (lncRNA) World Is CARMN?: Safeguarding Against Vascular Dysfunction. Circ Res 2021; 128:1276-1278. [PMID: 33914599 DOI: 10.1161/circresaha.121.319150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Dan Wang
- Division of Cardiology, Department of Medicine (D.W., T.S.), University of California, Los Angeles.,Molecular Biology Institute (D.W., T.S.), University of California, Los Angeles
| | - Tamer Sallam
- Division of Cardiology, Department of Medicine (D.W., T.S.), University of California, Los Angeles.,Molecular Biology Institute (D.W., T.S.), University of California, Los Angeles
| |
Collapse
|
52
|
Exploring the dermotoxicity of the mycotoxin deoxynivalenol: combined morphologic and proteomic profiling of human epidermal cells reveals alteration of lipid biosynthesis machinery and membrane structural integrity relevant for skin barrier function. Arch Toxicol 2021; 95:2201-2221. [PMID: 33890134 PMCID: PMC8166681 DOI: 10.1007/s00204-021-03042-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/01/2021] [Indexed: 12/26/2022]
Abstract
Deoxynivalenol (vomitoxin, DON) is a secondary metabolite produced by Fusarium spp. fungi and it is one of the most prevalent mycotoxins worldwide. Crop infestation results not only in food and feed contamination, but also in direct dermal exposure, especially during harvest and food processing. To investigate the potential dermotoxicity of DON, epidermoid squamous cell carcinoma cells A431 were compared to primary human neonatal keratinocytes (HEKn) cells via proteome/phosphoproteome profiling. In A431 cells, 10 µM DON significantly down-regulated ribosomal proteins, as well as mitochondrial respiratory chain elements (OXPHOS regulation) and transport proteins (TOMM22; TOMM40; TOMM70A). Mitochondrial impairment was reflected in altered metabolic competence, apparently combined with interference of the lipid biosynthesis machinery. Functional effects on the cell membrane were confirmed by live cell imaging and membrane fluidity assays (0.1–10 µM DON). Moreover, a common denominator for both A431 and HEKn cells was a significant downregulation of the squalene synthase (FDFT1). In sum, proteome alterations could be traced back to the transcription factor Klf4, a crucial regulator of skin barrier function. Overall, these results describe decisive molecular events sustaining the capability of DON to impair skin barrier function. Proteome data generated in the study are fully accessible via ProteomeXchange with the accession numbers PXD011474 and PXD013613.
Collapse
|
53
|
Tsilimigras DI, Bibli SI, Siasos G, Oikonomou E, Perrea DN, Filis K, Tousoulis D, Sigala F. Regulation of Long Non-Coding RNAs by Statins in Atherosclerosis. Biomolecules 2021; 11:biom11050623. [PMID: 33922114 PMCID: PMC8143454 DOI: 10.3390/biom11050623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 01/04/2023] Open
Abstract
Despite increased public health awareness, atherosclerosis remains a leading cause of mortality worldwide. Significant variations in response to statin treatment have been noted among different populations suggesting that the efficacy of statins may be altered by both genetic and environmental factors. The existing literature suggests that certain long noncoding RNAs (lncRNAs) might be up- or downregulated among patients with atherosclerosis. LncRNA may act on multiple levels (cholesterol homeostasis, vascular inflammation, and plaque destabilization) and exert atheroprotective or atherogenic effects. To date, only a few studies have investigated the interplay between statins and lncRNAs known to be implicated in atherosclerosis. The current review characterizes the role of lncRNAs in atherosclerosis and summarizes the available evidence related to the effect of statins in regulating lncRNAs.
Collapse
Affiliation(s)
- Diamantis I. Tsilimigras
- First Propaedeutic Department of Surgery, Division of Vascular Surgery, Hippokration Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.F.); (F.S.)
- Correspondence: ; Tel.: +30-697-5683-212
| | - Sofia-Iris Bibli
- Centre for Molecular Medicine, Institute for Vascular Signalling, Goethe University, 60323 Frankfurt am Main, Germany;
| | - Gerasimos Siasos
- First Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (G.S.); (E.O.); (D.T.)
| | - Evangelos Oikonomou
- First Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (G.S.); (E.O.); (D.T.)
| | - Despina N. Perrea
- Laboratory for Experimental Surgery and Surgical Research “N.S. Christeas”, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Konstantinos Filis
- First Propaedeutic Department of Surgery, Division of Vascular Surgery, Hippokration Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.F.); (F.S.)
| | - Dimitrios Tousoulis
- First Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (G.S.); (E.O.); (D.T.)
| | - Fragiska Sigala
- First Propaedeutic Department of Surgery, Division of Vascular Surgery, Hippokration Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.F.); (F.S.)
| |
Collapse
|
54
|
Ma Y, Jiang CF, Li P, Cao H. In Vivo Functional Analysis of Nonconserved Human lncRNAs Using a Humanized Mouse Model. Methods Mol Biol 2021; 2254:339-347. [PMID: 33326086 DOI: 10.1007/978-1-0716-1158-6_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
LncRNAs (long noncoding RNAs) are transcripts that are at least 200 nucleotides long and lack any predicted coding potential. Whereas significant progress has been made in deciphering the function of mouse lncRNAs, critical gaps remain in understanding how human lncRNAs exercise their function in a physiological context. As most human lncRNAs are currently considered nonconserved and often do not have homologs in mouse, the technical bottleneck is the lack of a suitable model to study the physiological function. Chimeric mice with repopulated human hepatocytes have emerged as promising tools to study human-specific, liver enriched lncRNAs. Among all liver-specific humanized mouse models, TK-NOG is relatively easy to prepare and holds a higher repopulation rate for a prolonged period of time. In this chapter, we will illustrate how to establish humanized TK-NOG mice for in vivo analysis of human lncRNAs in detail.
Collapse
Affiliation(s)
- Yonghe Ma
- Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cheng-Fei Jiang
- Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ping Li
- Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Haiming Cao
- Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
55
|
The Therapeutic Potential of Epigenome-Modifying Drugs in Cardiometabolic Disease. CURRENT GENETIC MEDICINE REPORTS 2021. [DOI: 10.1007/s40142-021-00198-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
56
|
Goel D, Vohora D. Liver X receptors and skeleton: Current state-of-knowledge. Bone 2021; 144:115807. [PMID: 33333244 DOI: 10.1016/j.bone.2020.115807] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/26/2020] [Accepted: 12/11/2020] [Indexed: 12/25/2022]
Abstract
The liver X receptors (LXR) is a nuclear receptor that acts as a prominent regulator of lipid homeostasis and inflammatory response. Its therapeutic effectiveness against various diseases like Alzheimer's disease and atherosclerosis has been investigated in detail. Emerging pieces of evidence now reveal that LXR is also a crucial modulator of bone remodeling. However, the molecular mechanisms underlying the pharmacological actions of LXR on the skeleton and its role in osteoporosis are poorly understood. Therefore, in the current review, we highlight LXR and its actions through different molecular pathways modulating skeletal homeostasis. The studies described in this review propound that LXR in association with estrogen, PTH, PPARγ, RXR hedgehog, and canonical Wnt signaling regulates osteoclastogenesis and bone resorption. It regulates RANKL-induced expression of c-Fos, NFATc1, and NF-κB involved in osteoclast differentiation. Additionally, several studies suggest suppression of RANKL-induced osteoclast differentiation by synthetic LXR ligands. Given the significance of modulation of LXR in various physiological and pathological settings, our findings indicate that therapeutic targeting of LXR might potentially prevent or treat osteoporosis and improve bone quality.
Collapse
Affiliation(s)
- Divya Goel
- Department of Pharmacology, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi 110062, India
| | - Divya Vohora
- Department of Pharmacology, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
57
|
Zhang S, Li L, Wang J, Zhang T, Ye T, Wang S, Xing D, Chen W. Recent advances in the regulation of ABCA1 and ABCG1 by lncRNAs. Clin Chim Acta 2021; 516:100-110. [PMID: 33545111 DOI: 10.1016/j.cca.2021.01.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023]
Abstract
Coronary heart disease (CHD) with atherosclerosis is the leading cause of death worldwide. ABCA1 and ABCG1 promote cholesterol efflux to suppress foam cell generation and reduce atherosclerosis development. Long noncoding RNAs (lncRNAs) are emerging as a unique group of RNA transcripts that longer than 200 nucleotides and have no protein-coding potential. Many studies have found that lncRNAs regulate cholesterol efflux to influence atherosclerosis development. ABCA1 is regulated by different lncRNAs, including MeXis, GAS5, TUG1, MEG3, MALAT1, Lnc-HC, RP5-833A20.1, LOXL1-AS1, CHROME, DAPK1-IT1, SIRT1 AS lncRNA, DYNLRB2-2, DANCR, LeXis, LOC286367, and LncOR13C9. ABCG1 is also regulated by different lncRNAs, including TUG1, GAS5, RP5-833A20.1, DYNLRB2-2, ENST00000602558.1, and AC096664.3. Thus, various lncRNAs are associated with the roles of ABCA1 and ABCG1 on cholesterol efflux in atherosclerosis regulation. However, some lncRNAs play dual roles in ABCA1 expression and atherosclerosis, and the functions of some lncRNAs in atherosclerosis have not been investigated in vivo. In this article, we review the roles of lncRNAs in atherosclerosis and focus on new insights into lncRNAs associated with the roles of ABCA1 and ABCG1 on cholesterol efflux and the potential of these lncRNAs as novel therapeutic targets in atherosclerosis.
Collapse
Affiliation(s)
- Shun Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Lu Li
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Jie Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Tingting Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Ting Ye
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Shuai Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China; School of Medical Imaging, Radiotherapy Department of Affiliated Hospital, Weifang Medical University, Weifang, Shandong 261053, China
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Wujun Chen
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China.
| |
Collapse
|
58
|
Ono K, Horie T, Baba O, Kimura M, Tsuji S, Rodriguez RR, Miyagawa S, Kimura T. Functional non-coding RNAs in vascular diseases. FEBS J 2020; 288:6315-6330. [PMID: 33340430 PMCID: PMC9292203 DOI: 10.1111/febs.15678] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/01/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022]
Abstract
Recently, advances in genomic technology such as RNA sequencing and genome‐wide profiling have enabled the identification of considerable numbers of non‐coding RNAs (ncRNAs). MicroRNAs have been studied for decades, leading to the identification of those with disease‐causing and/or protective effects in vascular disease. Although other ncRNAs such as long ncRNAs have not been fully described yet, recent studies have indicated their important functions in the development of vascular diseases. Here, we summarize the current understanding of the mechanisms and functions of ncRNAs, focusing on microRNAs, circular RNAs and long ncRNAs in vascular diseases.
Collapse
Affiliation(s)
- Koh Ono
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Japan
| | - Takahiro Horie
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Japan
| | - Osamu Baba
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Japan
| | - Masahiro Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Japan
| | - Shuhei Tsuji
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Japan
| | | | - Sawa Miyagawa
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Japan
| |
Collapse
|
59
|
Ghafouri-Fard S, Taheri M. The expression profile and role of non-coding RNAs in obesity. Eur J Pharmacol 2020; 892:173809. [PMID: 33345852 DOI: 10.1016/j.ejphar.2020.173809] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
Latest years have experienced a dramatic upsurge in the knowledge about the function of non-coding transcripts in the determination of diverse human phenotypes including obesity. Several miRNAs and lncRNAs participate in the regulation of metabolic pathways leading to obesity. Several lncRNAs such as Mist, lincIRS2, lncRNA-p5549, H19, GAS5 and SNHG9 have been shown to be down-regulated in adipose tissues or other biological samples in the obese human or animal subjects. On the other hand, Meg3, Plnc1, Blnc1, AC092834.1, TINCR and PVT1 are among up-regulated lncRNAs in the obese subjects. Tens of miRNAs have differential expression between obese and non-obese subjects or between mature adipocytes and pre-adipocytes. Understanding the molecular mechanism of involvement of non-coding RNAs in the pathobiology of obesity would simplify design of therapeutic choices for protecting against obesity and its related comorbidities. We explain the available literature on the function of these transcripts in the pathobiology of obesity.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
60
|
Wu Q, Yuan X, Zhang H, Xiu R. Differential expression of lncRNAs in hypertension-induced pericytes. SCAND CARDIOVASC J 2020; 55:102-105. [PMID: 33289417 DOI: 10.1080/14017431.2020.1852306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Pericytes facilitate vessel maturation and endothelial barrier functions closely related with the pathogenesis of organ damage from cardiovascular and cerebrovascular diseases such as hypertension. We used a computational-based strategy to first screen for differentially expressed genes and lncRNAs and characterized associations between lncRNAs of microvascular pericytes and hypertension. In total, 22 lncRNAs were upregulated and 46 were downregulated in the rats afflicted with spontaneous hypertension. Expression profiles for lncRNAs were significantly altered in the hypertension afflicted tissue samples and the transcripts have good potential for use as molecular targets to inhibit the progression of hypertension.
Collapse
Affiliation(s)
- Qingbin Wu
- Key Laboratory for Microcirculation, Ministry of Health, Chinese Academy Medical Sciences and Pecking Union Medical College, Beijing, China.,Institute of Microcirculation, Chinese Academy Medical Sciences and Pecking Union Medical College, Beijing, China
| | - Xiaochen Yuan
- Key Laboratory for Microcirculation, Ministry of Health, Chinese Academy Medical Sciences and Pecking Union Medical College, Beijing, China.,Institute of Microcirculation, Chinese Academy Medical Sciences and Pecking Union Medical College, Beijing, China
| | - Honggang Zhang
- Key Laboratory for Microcirculation, Ministry of Health, Chinese Academy Medical Sciences and Pecking Union Medical College, Beijing, China.,Institute of Microcirculation, Chinese Academy Medical Sciences and Pecking Union Medical College, Beijing, China
| | - Ruijuan Xiu
- Key Laboratory for Microcirculation, Ministry of Health, Chinese Academy Medical Sciences and Pecking Union Medical College, Beijing, China.,Institute of Microcirculation, Chinese Academy Medical Sciences and Pecking Union Medical College, Beijing, China
| |
Collapse
|
61
|
Epithelial processed Mycobacterium avium subsp. paratuberculosis induced prolonged Th17 response and suppression of phagocytic maturation in bovine peripheral blood mononuclear cells. Sci Rep 2020; 10:21048. [PMID: 33273606 PMCID: PMC7713309 DOI: 10.1038/s41598-020-78113-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023] Open
Abstract
Johne’s disease (JD) caused by Mycobacterium avium subsp. paratuberculosis (MAP) is a chronic, wasting infectious disease in ruminants that causes enormous economic losses to the dairy and beef cattle industries. Understanding the mechanism of persistency of MAP is key to produce novel ideas for the development of new diagnostic methods or prevention techniques. We sought interactions between the host and MAP using epithelial passage model, which mimic initial stage of infection. From the transcriptomic analysis of bovine immune cells (PBMCs), it was suggested that infection through the epithelial cells elicited prolonged Th17-derived immune response, as indicated by upregulation of IL-17A, IL-17F and RORC until 120 h p.i., compared to directly infected PBMCs. Global downregulation of gene expression was observed after 72 h p.i., especially for genes encoding cell surface receptors of phagocytic cells, such as Toll-like receptors and MHC class II molecules. In addition, the cholesterol efflux transporters ABCA1, ABCG1, and APOE, which are regulated by the LXR/RXR pathway, were downregulated. In summary, it would be suggested that the host initiate immune response to activate Th17-derived cytokines, and MAP survives persistently by altering the host adaptive immune response by suppressing surface receptors and manipulating lipid metabolism in phagocytic cells.
Collapse
|
62
|
Wang S, Rohwer S, de Zwaan DR, Toews DPL, Lovette IJ, Mackenzie J, Irwin D. Selection on a small genomic region underpins differentiation in multiple color traits between two warbler species. Evol Lett 2020; 4:502-515. [PMID: 33312686 PMCID: PMC7719548 DOI: 10.1002/evl3.198] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 09/20/2020] [Accepted: 09/30/2020] [Indexed: 11/18/2022] Open
Abstract
Speciation is one of the most important processes in biology, yet the study of the genomic changes underlying this process is in its infancy. North American warbler species Setophaga townsendi and Setophaga occidentalis hybridize in a stable hybrid zone, following a period of geographic separation. Genomic differentiation accumulated during geographic isolation can be homogenized by introgression at secondary contact, whereas genetic regions that cause low hybrid fitness can be shielded from such introgression. Here, we examined the genomic underpinning of speciation by investigating (1) the genetic basis of divergent pigmentation traits between species, (2) variation in differentiation across the genome, and (3) the evidence for selection maintaining differentiation in the pigmentation genes. Using tens of thousands of single nucleotide polymorphisms (SNPs) genotyped in hundreds of individuals within and near the hybrid zone, genome-wide association mapping revealed a single SNP associated with cheek, crown, breast coloration, and flank streaking, reflecting pleiotropy (one gene affecting multiple traits) or close physical linkage of different genes affecting different traits. This SNP is within an intron of the RALY gene, hence we refer to it as the RALY SNP. We then examined between-species genomic differentiation, using both genotyping-by-sequencing and whole genome sequencing. We found that the RALY SNP is within one of the highest peaks of differentiation, which contains three genes known to influence pigmentation: ASIP, EIF2S2, and RALY (the ASIP-RALY gene block). Heterozygotes at this gene block are likely of reduced fitness, as the geographic cline of the RALY SNP has been narrow over two decades. Together, these results reflect at least one barrier to gene flow within this narrow (∼200 kb) genomic region that modulates plumage difference between species. Despite extensive gene flow between species across the genome, this study provides evidence that selection on a phenotype-associated genomic region maintains a stable species boundary.
Collapse
Affiliation(s)
- Silu Wang
- Department of Zoology and Biodiversity Research CentreUniversity of British ColumbiaVancouverBCV6T1Z4Canada
| | - Sievert Rohwer
- Department of Biology and Burke MuseumUniversity of WashingtonSeattleWashington98195
| | - Devin R. de Zwaan
- Department of Forest and Conservation SciencesUniversity of British ColumbiaVancouverBCV6T1Z4Canada
| | - David P. L. Toews
- Department of Biology619 Mueller LaboratoryPennsylvania State UniversityUniversity ParkPennsylvania16802
| | - Irby J. Lovette
- Fuller Evolutionary Biology ProgramCornell Lab of OrnithologyIthacaNew York14850
| | - Jacqueline Mackenzie
- Department of Zoology and Biodiversity Research CentreUniversity of British ColumbiaVancouverBCV6T1Z4Canada
| | - Darren Irwin
- Department of Zoology and Biodiversity Research CentreUniversity of British ColumbiaVancouverBCV6T1Z4Canada
| |
Collapse
|
63
|
Lee KH, Hwang HJ, Cho JY. Long Non-Coding RNA Associated with Cholesterol Homeostasis and Its Involvement in Metabolic Diseases. Int J Mol Sci 2020; 21:E8337. [PMID: 33172104 PMCID: PMC7664438 DOI: 10.3390/ijms21218337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
Cholesterol is an essential cell component that functions to create and maintain all kinds of cell membranes and lipoprotein particles. It is crucial to maintain the proper amount of cholesterol at both the cellular and systemic level. Recently, the importance of cholesterol has been reported not only in various cell development processes but also in the development of diseases. Furthermore, the involvement of long non-coding RNAs (lncRNAs), which are regarded as important epigenetic regulators in gene expression, has also been reported in cholesterol homeostasis. It is thus necessary to summarize the research on lncRNAs related to cholesterol with increased interest. This review organized the role of lncRNAs according to the major issues in cholesterol homeostasis: efflux, metabolism and synthesis, and disease process.
Collapse
Affiliation(s)
| | | | - Je-Yoel Cho
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (K.-H.L.); (H.-J.H.)
| |
Collapse
|
64
|
Simion V, Zhou H, Pierce JB, Yang D, Haemmig S, Tesmenitsky Y, Sukhova G, Stone PH, Libby P, Feinberg MW. LncRNA VINAS regulates atherosclerosis by modulating NF-κB and MAPK signaling. JCI Insight 2020; 5:140627. [PMID: 33021969 PMCID: PMC7710319 DOI: 10.1172/jci.insight.140627] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/24/2020] [Indexed: 12/19/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) play important roles in regulating diverse cellular processes in the vessel wall, including atherosclerosis. RNA-Seq profiling of intimal lesions revealed a lncRNA, VINAS (Vascular INflammation and Atherosclerosis lncRNA Sequence), that is enriched in the aortic intima and regulates vascular inflammation. Aortic intimal expression of VINAS fell with atherosclerotic progression and rose with regression. VINAS knockdown reduced atherosclerotic lesion formation by 55% in LDL receptor-deficient (LDLR-/-) mice, independent of effects on circulating lipids, by decreasing inflammation in the vessel wall. Loss- and gain-of-function studies in vitro demonstrated that VINAS serves as a critical regulator of inflammation by modulating NF-κB and MAPK signaling pathways. VINAS knockdown decreased the expression of key inflammatory markers, such as MCP-1, TNF-α, IL-1β, and COX-2, in endothelial cells (ECs), vascular smooth muscle cells, and bone marrow-derived macrophages. Moreover, VINAS silencing decreased expression of leukocyte adhesion molecules VCAM-1, E-selectin, and ICAM-1 and reduced monocyte adhesion to ECs. DEP domain containing 4 (DEPDC4), an evolutionary conserved human ortholog of VINAS with approximately 74% homology, showed similar regulation in human and pig atherosclerotic specimens. DEPDC4 knockdown replicated antiinflammatory effects of VINAS in human ECs. These findings reveal a potentially novel lncRNA that regulates vascular inflammation, with broad implications for vascular diseases.
Collapse
Affiliation(s)
- Viorel Simion
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Haoyang Zhou
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jacob B. Pierce
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Dafeng Yang
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Stefan Haemmig
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yevgenia Tesmenitsky
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Galina Sukhova
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Peter H. Stone
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Peter Libby
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mark W. Feinberg
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
65
|
Guo R, Chen Y, Borgard H, Jijiwa M, Nasu M, He M, Deng Y. The Function and Mechanism of Lipid Molecules and Their Roles in The Diagnosis and Prognosis of Breast Cancer. Molecules 2020; 25:E4864. [PMID: 33096860 PMCID: PMC7588012 DOI: 10.3390/molecules25204864] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Lipids are essential components of cell structure and play important roles in signal transduction between cells and body metabolism. With the continuous development and innovation of lipidomics technology, many studies have shown that the relationship between lipids and cancer is steadily increasing, involving cancer occurrence, proliferation, migration, and apoptosis. Breast cancer has seriously affected the safety and quality of life of human beings worldwide and has become a significant public health problem in modern society, with an especially high incidence among women. Therefore, the issue has inspired scientific researchers to study the link between lipids and breast cancer. This article reviews the research progress of lipidomics, the biological characteristics of lipid molecules, and the relationship between some lipids and cancer drug resistance. Furthermore, this work summarizes the lipid molecules related to breast cancer diagnosis and prognosis, and then it clarifies their impact on the occurrence and development of breast cancer The discussion revolves around the current research hotspot long-chain non-coding RNAs (lncRNAs), summarizes and explains their impact on tumor lipid metabolism, and provides more scientific basis for future cancer research studies.
Collapse
Affiliation(s)
- Rui Guo
- School of Public Health, Guangxi Medical University, 22 Shuangyong Rd, Qingxiu District, Nanning 530021, China;
- Department of Quantitative Health Sciences, University of Hawaii John A. Burns School of Medicine, 651 Ilalo Street, Honolulu, HI 96813, USA; (Y.C.); (H.B.); (M.J.); (M.N.)
| | - Yu Chen
- Department of Quantitative Health Sciences, University of Hawaii John A. Burns School of Medicine, 651 Ilalo Street, Honolulu, HI 96813, USA; (Y.C.); (H.B.); (M.J.); (M.N.)
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa,1955 East West Road, Agricultural Sciences, Honolulu, HI 96822, USA
| | - Heather Borgard
- Department of Quantitative Health Sciences, University of Hawaii John A. Burns School of Medicine, 651 Ilalo Street, Honolulu, HI 96813, USA; (Y.C.); (H.B.); (M.J.); (M.N.)
| | - Mayumi Jijiwa
- Department of Quantitative Health Sciences, University of Hawaii John A. Burns School of Medicine, 651 Ilalo Street, Honolulu, HI 96813, USA; (Y.C.); (H.B.); (M.J.); (M.N.)
| | - Masaki Nasu
- Department of Quantitative Health Sciences, University of Hawaii John A. Burns School of Medicine, 651 Ilalo Street, Honolulu, HI 96813, USA; (Y.C.); (H.B.); (M.J.); (M.N.)
| | - Min He
- School of Public Health, Guangxi Medical University, 22 Shuangyong Rd, Qingxiu District, Nanning 530021, China;
| | - Youping Deng
- Department of Quantitative Health Sciences, University of Hawaii John A. Burns School of Medicine, 651 Ilalo Street, Honolulu, HI 96813, USA; (Y.C.); (H.B.); (M.J.); (M.N.)
| |
Collapse
|
66
|
Wang Y, Xiao S, Zhou S, Zhang R, Liu H, Lin Y, Yu P. High Glucose Aggravates Cholesterol Accumulation in Glomerular Endothelial Cells Through the LXRs/LncRNAOR13C9/ABCA1 Regulatory Network. Front Physiol 2020; 11:552483. [PMID: 33192550 PMCID: PMC7604427 DOI: 10.3389/fphys.2020.552483] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/17/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The underlying mechanisms by which diabetes and dyslipidemia contribute to diabetic nephropathy (DN) are not fully understood. In this study, we aimed to investigate the role of high glucose (HG) on intracellular cholesterol accumulation in glomerular endothelial cells (GEnCs) and its potential mechanism. METHODS Oil red O staining, RT-qPCR, Western blotting, and immunocytofluorescence analyses were used to determine cholesterol accumulation and the expressions of LXRs and ABCA1 in GEnCs under high cholesterol (HC) and/or HG conditions, and the effect of these treatments was compared to that of low glucose without adding cholesterol. LncRNA microarrays were used to identify a long non-coding RNA (LncRNA OR13C9), of which levels increased in cells treated with the LXR agonist, GW3965. Fluorescence in situ hybridization (FISH) was conducted to confirm subcellular localization of LncOR13C9 and a bioinformatics analysis was used to identify competing endogenous RNA (ceRNA) regulatory networks between LncOR13C9 and microRNA-23a-5p (miR-23a-5p). Gain and loss of function, rescue assay approaches, and dual-luciferase reporter assay were conducted to study interactions between LncOR13C9, miR-23a-5p, and ABCA1. RESULTS We showed that HG could decrease the response ability of GEnCs to cholesterol load, specifically that HG could downregulate LXRs expression in GEnCs under cholesterol load and that the decrease in LXRs expression suppressed ABCA1 expression and increased cholesterol accumulation. We focused on the targets of LXRs and identified a long non-coding RNA (LncOR13C9) that was downregulated in GEnCs grown in HG and HC conditions, compared with that grown in HC conditions. We speculated that LncRNAOR13C9 was important for LXRs to increase cholesterol efflux via ABCA1 under HC. Furthermore, using gain of function, loss of function, and rescue assay approaches, we showed that LncOR13C9 could regulate ABCA1 by inhibiting the action of miR-23a-5p in the LXR pathway. Furthermore, dual-luciferase reporter assay was conducted to study the interaction of LncOR13C9 with miR-23a-5p. CONCLUSION Overall, our study identified the LXRs/LncOR13C9/miR23A-5p/ABCA1 regulatory network in GEnCs, which may be helpful to better understand the effect of HG on cholesterol accumulation in GEnCs under cholesterol load and to explore new therapeutic tools for the management of DN patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Pei Yu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
67
|
Park JG, Kim G, Jang SY, Lee YR, Lee E, Lee HW, Han MH, Chun JM, Han YS, Yoon JS, Kang MK, Kweon YO, Tak WY, Park SY, Hur K. Plasma Long Noncoding RNA LeXis is a Potential Diagnostic Marker for Non-Alcoholic Steatohepatitis. Life (Basel) 2020; 10:life10100230. [PMID: 33022942 PMCID: PMC7601228 DOI: 10.3390/life10100230] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 12/23/2022] Open
Abstract
Non-invasive diagnostic markers are needed to ease the diagnosis of non-alcoholic steatohepatitis (NASH) among patients with non-alcoholic fatty liver disease (NAFLD). The long noncoding RNA (lncRNA) LeXis is related to cholesterol metabolism and hepatic steatosis in mice, and its batch genome conversion in humans is TCONS_00016452. Here, we aimed to evaluate the potential of lncRNA LeXis as a non-invasive diagnostic marker for NASH. We analyzed a total of 44 NAFLD patients whose diagnosis was confirmed by a pathologist through analysis of a percutaneous liver biopsy. The expression of LeXis in the plasma of NAFLD patients with and without NASH was compared using quantitative real-time polymerase chain reaction. The expression of plasma LeXis was significantly higher in patients with NASH than in those with NAFL (8.2 (5.0-14.9); 4.6 (4.0-6.6), p = 0.025). The area under the receiver operating characteristic curve was 0.743 (95% CI 0.590-0.895, p < 0.001), and a sensitivity of 54.3% and specificity of 100% could be achieved for NASH diagnosis. Low LeXis was independently associated with NASH diagnosis in patients with NAFLD (p = 0.0349, odds ratio = 22.19 (5% CI, 1.25-395.22)). Therefore, circulating lncRNA LeXis could be a potential non-invasive diagnostic biomarker for NASH.
Collapse
Affiliation(s)
- Jung Gil Park
- Department of Internal Medicine, College of Medicine, Yeungnam University, Daegu 42415, Korea; (J.G.P.); (M.K.K.)
| | - Gyeonghwa Kim
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu 41944, Korea or (G.K.); (E.L.)
| | - Se Young Jang
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea; (S.Y.J.); (Y.R.L.); (Y.O.K.); (W.Y.T.)
| | - Yu Rim Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea; (S.Y.J.); (Y.R.L.); (Y.O.K.); (W.Y.T.)
| | - Eunhye Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu 41944, Korea or (G.K.); (E.L.)
| | - Hye Won Lee
- Department of Pathology, Dongsan Medical Center, School of Medicine, Keimyung University, Daegu 42601, Korea;
| | - Man-Hoon Han
- Department of Pathology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea;
| | - Jae Min Chun
- Department of Surgery, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea; (J.M.C.); (Y.S.H.)
| | - Young Seok Han
- Department of Surgery, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea; (J.M.C.); (Y.S.H.)
| | - Jun Sik Yoon
- Department of Internal Medicine, Busan Paik Hospital, Inje University College of Medicine, Busan 74392, Korea;
| | - Min Kyu Kang
- Department of Internal Medicine, College of Medicine, Yeungnam University, Daegu 42415, Korea; (J.G.P.); (M.K.K.)
| | - Young Oh Kweon
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea; (S.Y.J.); (Y.R.L.); (Y.O.K.); (W.Y.T.)
| | - Won Young Tak
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea; (S.Y.J.); (Y.R.L.); (Y.O.K.); (W.Y.T.)
| | - Soo Young Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea; (S.Y.J.); (Y.R.L.); (Y.O.K.); (W.Y.T.)
- Correspondence: (S.Y.P.); (K.H.); Tel.: +82-53-200-5516 (S.Y.P.); +82-53-420-4821 (K.H.); Fax: +82-53-426-8773 (S.Y.P.); +82-53-422-1466 (K.H.)
| | - Keun Hur
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu 41944, Korea or (G.K.); (E.L.)
- Correspondence: (S.Y.P.); (K.H.); Tel.: +82-53-200-5516 (S.Y.P.); +82-53-420-4821 (K.H.); Fax: +82-53-426-8773 (S.Y.P.); +82-53-422-1466 (K.H.)
| |
Collapse
|
68
|
Wu X, Niculite CM, Preda MB, Rossi A, Tebaldi T, Butoi E, White MK, Tudoran OM, Petrusca DN, Jannasch AS, Bone WP, Zong X, Fang F, Burlacu A, Paulsen MT, Hancock BA, Sandusky GE, Mitra S, Fishel ML, Buechlein A, Ivan C, Oikonomopoulos S, Gorospe M, Mosley A, Radovich M, Davé UP, Ragoussis J, Nephew KP, Mari B, McIntyre A, Konig H, Ljungman M, Cousminer DL, Macchi P, Ivan M. Regulation of cellular sterol homeostasis by the oxygen responsive noncoding RNA lincNORS. Nat Commun 2020; 11:4755. [PMID: 32958772 PMCID: PMC7505984 DOI: 10.1038/s41467-020-18411-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 08/16/2020] [Indexed: 01/09/2023] Open
Abstract
We hereby provide the initial portrait of lincNORS, a spliced lincRNA generated by the MIR193BHG locus, entirely distinct from the previously described miR-193b-365a tandem. While inducible by low O2 in a variety of cells and associated with hypoxia in vivo, our studies show that lincNORS is subject to multiple regulatory inputs, including estrogen signals. Biochemically, this lincRNA fine-tunes cellular sterol/steroid biosynthesis by repressing the expression of multiple pathway components. Mechanistically, the function of lincNORS requires the presence of RALY, an RNA-binding protein recently found to be implicated in cholesterol homeostasis. We also noticed the proximity between this locus and naturally occurring genetic variations highly significant for sterol/steroid-related phenotypes, in particular the age of sexual maturation. An integrative analysis of these variants provided a more formal link between these phenotypes and lincNORS, further strengthening the case for its biological relevance.
Collapse
Affiliation(s)
- Xue Wu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Cristina M Niculite
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,"Victor Babes" National Institute of Pathology, Bucharest, Romania
| | - Mihai Bogdan Preda
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Annalisa Rossi
- Laboratory of Molecular and Cellular Neurobiology, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, Italy
| | - Toma Tebaldi
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, Italy.,Yale Cancer Center, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Elena Butoi
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Mattie K White
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Oana M Tudoran
- The Oncology Institute "Prof Dr. Ion Chiricuta", Cluj-Napoca, Romania
| | - Daniela N Petrusca
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Amber S Jannasch
- Metabolite Profiling Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47907, USA
| | - William P Bone
- Department of Genetics, Department of Systems Pharmacology and Translational Therapeutics, Institute of Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Xingyue Zong
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Fang Fang
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alexandrina Burlacu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Michelle T Paulsen
- Departments of Radiation Oncology and Environmental Health Sciences, Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Brad A Hancock
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - George E Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sumegha Mitra
- Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA.,Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Melissa L Fishel
- Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA.,Department of Pharmacology and Toxicology, Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Aaron Buechlein
- Indiana University Center for Genomics and Bioinformatics, Bloomington, IN, 47405, USA
| | - Cristina Ivan
- Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Spyros Oikonomopoulos
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, McGill University, Montréal, QC, Canada
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Amber Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Milan Radovich
- Departments of Radiation Oncology and Environmental Health Sciences, Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, 48109, USA.,Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA
| | - Utpal P Davé
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA
| | - Jiannis Ragoussis
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, McGill University, Montréal, QC, Canada
| | - Kenneth P Nephew
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.,Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA.,Medical Sciences, Indiana University School of Medicine, Bloomington, IN, USA
| | - Bernard Mari
- CNRS, IPMC, FHU-OncoAge, Université Côte d'Azur, Valbonne, France
| | - Alan McIntyre
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Heiko Konig
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA
| | - Mats Ljungman
- Departments of Radiation Oncology and Environmental Health Sciences, Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, 48109, USA.,Centre for Cancer Sciences, Biodiscovery Institute, Nottingham University, Nottingham, UK
| | - Diana L Cousminer
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Paolo Macchi
- Laboratory of Molecular and Cellular Neurobiology, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, Italy
| | - Mircea Ivan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA.
| |
Collapse
|
69
|
Our emerging understanding of the roles of long non-coding RNAs in normal liver function, disease, and malignancy. JHEP Rep 2020; 3:100177. [PMID: 33294829 PMCID: PMC7689550 DOI: 10.1016/j.jhepr.2020.100177] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/06/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are important biological mediators that regulate numerous cellular processes. New experimental evidence suggests that lncRNAs play essential roles in liver development, normal liver physiology, fibrosis, and malignancy, including hepatocellular carcinoma and cholangiocarcinoma. In this review, we summarise our current understanding of the function of lncRNAs in the liver in both health and disease, as well as discuss approaches that could be used to target these non-coding transcripts for therapeutic purposes.
Collapse
Key Words
- ABCA1, ATP-binding cassette transporter A1
- ACTA2/ɑ-SMA, α-smooth muscle actin
- APO, apolipoprotein
- ASO, antisense oligonucleotides
- BDL, bile duct ligation
- CCA, cholangiocarcinoma
- CCl4, carbon tetrachloride
- COL1A1, collagen type I α 1
- CYP, cytochrome P450
- Cholangiocarcinoma
- DANCR, differentiation antagonising non-protein coding RNA
- DE, definitive endoderm
- DEANR1, definitive endoderm-associated lncRNA1
- DIGIT, divergent to goosecoid, induced by TGF-β family signalling
- DILC, downregulated in liver cancer stem cells
- EST, expression sequence tag
- EpCAM, epithelial cell adhesion molecule
- FBP1, fructose-bisphosphatase 1
- FENDRR, foetal-lethal non-coding developmental regulatory RNA
- FXR, farnesoid X receptor
- GAS5, growth arrest-specific transcript 5
- H3K18ac, histone 3 lysine 18 acetylation
- H3K36me3, histone 3 lysine 36 trimethylation
- H3K4me3, histone 3 lysine 4 trimethylation
- HCC, hepatocellular carcinoma
- HEIH, high expression In HCC
- HNRNPA1, heterogenous nuclear protein ribonucleoprotein A1
- HOTAIR, HOX transcript antisense RNA
- HOTTIP, HOXA transcript at the distal tip
- HSC, hepatic stellate cells
- HULC, highly upregulated in liver cancer
- Hepatocellular carcinoma
- HuR, human antigen R
- LCSC, liver cancer stem cell
- LSD1, lysine-specific demethylase 1
- LXR, liver X receptors
- LeXis, liver-expressed LXR-induced sequence
- Liver cancer
- Liver fibrosis
- Liver metabolism
- Liver-specific lncRNAs
- LncLSTR, lncRNA liver-specific triglyceride regulator
- MALAT1, metastasis-associated lung adenocarcinoma transcript 1
- MEG3, maternally expressed gene 3
- NAT, natural antisense transcript
- NEAT1, nuclear enriched abundant transcript 1
- ORF, open reading frame
- PKM2, pyruvate kinase muscle isozyme M2
- PPAR-α, peroxisome proliferator-activated receptor-α
- PRC, polycomb repressive complex
- RACE, rapid amplification of cDNA ends
- RNA Pol, RNA polymerase
- S6K1, S6 kinase 1
- SHP, small heterodimer partner
- SREBPs, steroid response binding proteins
- SREs, sterol response elements
- TGF-β, transforming growth factor-β
- TTR, transthyretin
- XIST, X-inactive specific transcript
- ZEB1, zinc finger E-box-binding homeobox 1
- ceRNA, competing endogenous RNA
- eRNA, enhancer RNAs
- lincRNA, long intervening non-coding RNA
- lncRNA
- lncRNA, long non-coding RNA
- mTOR, mammalian target of rapamycin
- siRNA, small interfering RNA
Collapse
|
70
|
Pontini L, Marinozzi M. Shedding light on the roles of liver X receptors in cancer by using chemical probes. Br J Pharmacol 2020; 178:3261-3276. [PMID: 32673401 DOI: 10.1111/bph.15200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022] Open
Abstract
Nuclear receptors, liver X receptor-α (LXRα; NR1H3) and liver X receptor-β (LXRβ; NR1H2), are considered master regulators of lipid homeostasis. During the last couple of decades, their pivotal roles in several physiological and pathological processes ranging from energy supply, immunity, cardiovascular, neurodegenerative disorders and cancer have been highlighted. In this review, the main results achieved during more recent years about our understanding of the LXR involvement in cancer has been mainly obtained using small-molecule chemical probes. Remarkably, all these probes, albeit having different structure and biological properties, have a well demonstrated anti-tumoral activity arising from LXR modulation, indicating a high potential of LXR targeting for the treatment of cancer. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.
Collapse
Affiliation(s)
- Lorenzo Pontini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Maura Marinozzi
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
71
|
Abstract
Purpose of Review To summarize recent insights into long non-coding RNAs (lncRNAs) involved in atherosclerosis. Because atherosclerosis is the main underlying pathology of cardiovascular diseases (CVD), the world’s deadliest disease, finding novel therapeutic strategies is of high interest. Recent Findings LncRNAs can bind to proteins, DNA, and RNA regulating disease initiation and plaque growth as well as plaque stability in different cell types such as endothelial cells (ECs), vascular smooth muscle cells (VSMCs), and macrophages. A number of lncRNAs have been implicated in cholesterol homeostasis and foam cell formation such as LASER, LeXis, and CHROME. Among others, MANTIS, lncRNA-CCL2, and MALAT1 were shown to be involved in vascular inflammation. Further regulations include, but are not limited to, DNA damage response in ECs, phenotypic switch of VSMCs, and various cell death mechanisms. Interestingly, some lncRNAs are closely correlated with response to statin treatment, such as NEXN-AS1 or LASER. Additionally, some lncRNAs may serve as CVD biomarkers. Summary LncRNAs are a potential novel therapeutic target to treat CVD, but research of lncRNA in atherosclerosis is still in its infancy. With increasing knowledge of the complex and diverse regulations of lncRNAs in the heterogeneous environment of atherosclerotic plaques, lncRNAs hold promise for their clinical translation in the near future.
Collapse
Affiliation(s)
- Tatjana Josefs
- Department of Physiology, Amsterdam Cardiovascular Science, VU University, Amsterdam UMC, Postbus 7057, 1007 MB, Amsterdam, The Netherlands
| | - Reinier A Boon
- Department of Physiology, Amsterdam Cardiovascular Science, VU University, Amsterdam UMC, Postbus 7057, 1007 MB, Amsterdam, The Netherlands. .,Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany. .,German Center for Cardiovascular Research (DZHK), Frankfurt am Main, Germany.
| |
Collapse
|
72
|
Das S, Shah R, Dimmeler S, Freedman JE, Holley C, Lee JM, Moore K, Musunuru K, Wang DZ, Xiao J, Yin KJ. Noncoding RNAs in Cardiovascular Disease: Current Knowledge, Tools and Technologies for Investigation, and Future Directions: A Scientific Statement From the American Heart Association. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2020; 13:e000062. [PMID: 32812806 DOI: 10.1161/hcg.0000000000000062] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND The discovery that much of the non-protein-coding genome is transcribed and plays a diverse functional role in fundamental cellular processes has led to an explosion in the development of tools and technologies to investigate the role of these noncoding RNAs in cardiovascular health. Furthermore, identifying noncoding RNAs for targeted therapeutics to treat cardiovascular disease is an emerging area of research. The purpose of this statement is to review existing literature, offer guidance on tools and technologies currently available to study noncoding RNAs, and identify areas of unmet need. METHODS The writing group used systematic literature reviews (including MEDLINE, Web of Science through 2018), expert opinion/statements, analyses of databases and computational tools/algorithms, and review of current clinical trials to provide a broad consensus on the current state of the art in noncoding RNA in cardiovascular disease. RESULTS Significant progress has been made since the initial studies focusing on the role of miRNAs (microRNAs) in cardiovascular development and disease. Notably, recent progress on understanding the role of novel types of noncoding small RNAs such as snoRNAs (small nucleolar RNAs), tRNA (transfer RNA) fragments, and Y-RNAs in cellular processes has revealed a noncanonical function for many of these molecules. Similarly, the identification of long noncoding RNAs that appear to play an important role in cardiovascular disease processes, coupled with the development of tools to characterize their interacting partners, has led to significant mechanistic insight. Finally, recent work has characterized the unique role of extracellular RNAs in mediating intercellular communication and their potential role as biomarkers. CONCLUSIONS The rapid expansion of tools and pipelines for isolating, measuring, and annotating these entities suggests that caution in interpreting results is warranted until these methodologies are rigorously validated. Most investigators have focused on investigating the functional role of single RNA entities, but studies suggest complex interaction between different RNA molecules. The use of network approaches and advanced computational tools to understand the interaction of different noncoding RNA species to mediate a particular phenotype may be required to fully comprehend the function of noncoding RNAs in mediating disease phenotypes.
Collapse
MESH Headings
- American Heart Association
- Biomarkers/metabolism
- Cardiovascular Diseases/genetics
- Cardiovascular Diseases/pathology
- Humans
- MicroRNAs/chemistry
- MicroRNAs/genetics
- MicroRNAs/metabolism
- RNA, Long Noncoding/chemistry
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Untranslated/chemistry
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- United States
Collapse
|
73
|
Pierce JB, Feinberg MW. Long Noncoding RNAs in Atherosclerosis and Vascular Injury: Pathobiology, Biomarkers, and Targets for Therapy. Arterioscler Thromb Vasc Biol 2020; 40:2002-2017. [PMID: 32698685 DOI: 10.1161/atvbaha.120.314222] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite major advances in the primary and secondary prevention of atherosclerosis and its risk factors, atherosclerotic cardiovascular disease remains a major clinical and financial burden on individuals and health systems worldwide. In addition, neointima formation and proliferation due to mechanical trauma to the vessel wall during percutaneous coronary interventions can lead to vascular restenosis and limit the longevity and effectiveness of coronary revascularization. Long noncoding RNAs (lncRNAs) have emerged as a novel class of epigenetic regulators with critical roles in the pathogenesis of atherosclerosis and restenosis following vascular injury. Here, we provide an in-depth review of lncRNAs that regulate the development of atherosclerosis or contribute to the pathogenesis of restenosis following mechanical vascular injury. We describe the diverse array of intracellular mechanisms by which lncRNAs exert their regulatory effects. We highlight the utility and challenges of lncRNAs as biomarkers. Finally, we discuss the immense translational potential of lncRNAs and strategies for targeting them therapeutically using oligonucleotide-based therapeutics and novel gene therapy platforms.
Collapse
Affiliation(s)
- Jacob B Pierce
- From the Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (J.B.P., M.W.F.).,Feinberg School of Medicine, Northwestern University, Chicago, IL (J.B.P.)
| | - Mark W Feinberg
- From the Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (J.B.P., M.W.F.)
| |
Collapse
|
74
|
Michell DL, Zhao S, Allen RM, Sheng Q, Vickers KC. Pervasive Small RNAs in Cardiometabolic Research: Great Potential Accompanied by Biological and Technical Barriers. Diabetes 2020; 69:813-822. [PMID: 32312897 PMCID: PMC7171967 DOI: 10.2337/dbi19-0015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/21/2020] [Indexed: 12/19/2022]
Abstract
Advances in small RNA sequencing have revealed the enormous diversity of small noncoding RNA (sRNA) classes in mammalian cells. At this point, most investigators in diabetes are aware of the success of microRNA (miRNA) research and appreciate the importance of posttranscriptional gene regulation in glycemic control. Nevertheless, miRNAs are just one of multiple classes of sRNAs and likely represent only a minor fraction of sRNA sequences in a given cell. Despite the widespread appreciation of sRNAs, very little research into non-miRNA sRNA function has been completed, likely due to some major barriers that present unique challenges for study. To emphasize the importance of sRNA research in cardiometabolic diseases, we highlight the success of miRNAs and competitive endogenous RNAs in cholesterol and glucose metabolism. Moreover, we argue that sequencing studies have demonstrated that miRNAs are just the tip of the iceberg for sRNAs. We are likely standing at the precipice of immense discovery for novel sRNA-mediated gene regulation in cardiometabolic diseases. To realize this potential, we must first address critical barriers with an open mind and refrain from viewing non-miRNA sRNA function through the lens of miRNAs, as they likely have their own set of distinct regulatory factors and functional mechanisms.
Collapse
Affiliation(s)
- Danielle L Michell
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Shilin Zhao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
| | - Ryan M Allen
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Quanhu Sheng
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
| | - Kasey C Vickers
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
75
|
Zhang X, Xu Y, Chen B, Kang L. Long noncoding RNA PAHAL modulates locust behavioural plasticity through the feedback regulation of dopamine biosynthesis. PLoS Genet 2020; 16:e1008771. [PMID: 32348314 PMCID: PMC7241820 DOI: 10.1371/journal.pgen.1008771] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/21/2020] [Accepted: 04/09/2020] [Indexed: 11/24/2022] Open
Abstract
Some long noncoding RNAs (lncRNAs) are specifically expressed in brain cells, implying their neural and behavioural functions. However, how lncRNAs contribute to neural regulatory networks governing the precise behaviour of animals is less explored. Here, we report the regulatory mechanism of the nuclear-enriched lncRNA PAHAL for dopamine biosynthesis and behavioural adjustment in migratory locusts (Locusta migratoria), a species with extreme behavioral plasticity. PAHAL is transcribed from the sense (coding) strand of the gene encoding phenylalanine hydroxylase (PAH), which is responsible for the synthesis of dopamine from phenylalanine. PAHAL positively regulates PAH expression resulting in dopamine production in the brain. In addition, PAHAL modulates locust behavioral aggregation in a population density-dependent manner. Mechanistically, PAHAL mediates PAH transcriptional activation by recruiting serine/arginine-rich splicing factor 2 (SRSF2), a transcription/splicing factor, to the PAH proximal promoter. The co-activation effect of PAHAL requires the interaction of the PAHAL/SRSF2 complex with the promoter-associated nascent RNA of PAH. Thus, the data support a model of feedback modulation of animal behavioural plasticity by an lncRNA. In this model, the lncRNA mediates neurotransmitter metabolism through orchestrating a local transcriptional loop. The neurotransmitter dopamine is crucial for the neuronal and behavioral response in animals. Phenylalanine hydroxylase (PAH) is involved in dopamine biosynthesis and behavioral regulation in the migratory locust. However, the molecular mechanism for the fine tuning of PAH expression in behavioral response remains ambiguous. Here we discovered a nuclear-enriched lncRNA PAHAL that is transcribed from the coding strand of the PAH gene in the locust (i.e., sense lncRNA). PAHAL positively regulated PAH expression and dopamine production in the brain. In addition, PAHAL modulated behavioral aggregation of the locust. Mechanistically, PAHAL mediated the transcriptional activation of PAH by recruiting SRSF2, a transcription/splicing factor, to the promoter-associated nascent RNA of PAH. These data support a model of feedback modulation of dopamine biosynthesis and behavioral plasticity via a sense lncRNA in the catecholamine metabolic pathway.
Collapse
Affiliation(s)
- Xia Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute of Life Sciences, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Ya'nan Xu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bing Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, Hebei University, Baoding, China
- * E-mail: (BC); (KL)
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute of Life Sciences, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, Hebei University, Baoding, China
- * E-mail: (BC); (KL)
| |
Collapse
|
76
|
Abstract
The advent of deep sequencing technologies led to the identification of a considerable amount of noncoding RNA transcripts, which are increasingly recognized for their functions in controlling cardiovascular diseases. MicroRNAs have already been studied for a decade, leading to the identification of several vasculoprotective and detrimental species, which might be considered for therapeutic targeting. Other noncoding RNAs such as circular RNAs, YRNAs, or long noncoding RNAs are currently gaining increasing attention, and first studies provide insights into their functions as mediators or antagonists of vascular diseases in vivo. The present review article will provide an overview of the different types of noncoding RNAs controlling the vasculature and focus on the developing field of long noncoding RNAs.
Collapse
Affiliation(s)
- Nicolas Jaé
- From the Institute for Cardiovascular Regeneration (N.J., S.D.), Goethe University Frankfurt, Germany
| | - Stefanie Dimmeler
- From the Institute for Cardiovascular Regeneration (N.J., S.D.), Goethe University Frankfurt, Germany.,Cardiopulmonary Institute (S.D.), Goethe University Frankfurt, Germany.,German Center for Cardiovascular Research (DZHK) and Cardiopulmonary Institute (CPI), Partner Site Rhine-Main, Frankfurt (S.D.)
| |
Collapse
|
77
|
The novel long noncoding RNA Lnc19959.2 modulates triglyceride metabolism-associated genes through the interaction with Purb and hnRNPA2B1. Mol Metab 2020; 37:100996. [PMID: 32302712 PMCID: PMC7262451 DOI: 10.1016/j.molmet.2020.100996] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/19/2020] [Accepted: 04/08/2020] [Indexed: 01/18/2023] Open
Abstract
Objective Long noncoding RNAs (lncRNAs) are currently considered to have a vital and wide range of biological functions, but the molecular mechanism underlying triglycerides metabolism remains poorly understood. This study aims to identify novel lncRNAs differentially expressed in rat livers with hypertriglyceridemia and elucidated the function role in TG metabolism. Methods Differentially expressions of lncRNAs in rat livers with hypertriglyceridemia were identified by transcriptome sequencing and validated by real-time PCR. The role of lnc19959.2 in triglyceride metabolism was assessed both in vitro and in vivo. RNA pulldown and RIP assays were conducted to evaluate the interactions between lnc19959.2 and its target proteins. ChIP and Dual report assays were performed to detect the interactions between transcription factors and promoters of its target genes. Results We identified a novel lncRNA, and lnc19959.2 was upregulated in rat livers with hypertriglyceridemia. The knockdown of lnc19959.2 has profound TG lowering effects in vitro and in vivo. Subsequently, the genome-wide analysis identified that the knockdown of lnc19959.2 caused the deregulation of many genes during TG homeostasis. Further mechanism studies revealed that lnc19959.2 upregulated ApoA4 expression via ubiquitinated transcription inhibitor factor Purb, while it specifically interacted with hnRNPA2B1 to downregulate the expression of Cpt1a, Tm7sf2, and Gpam, respectively. In the upstream pathway, palmitate acid upregulated CCAAT/Enhancer-Binding Protein Beta (Cebpb) and facilitated its binding to the promoter of lnc19959.2, which resulted in significant promotion of lnc19959.2 transcriptional activity. Conclusions Our findings provide novel insights into a new layer regulatory complexity of an lncRNA modulating triglyceride homeostasis by a novel lncRNA lnc19959.2. lnc19959.2 was identified as a novel LncRNA in hypertriglyceridemic rat liver. lnc19959.2 was involved in triglyceride metabolism in vivo and in vitro. lnc19959.2 upregulated ApoA4 expression via ubiquitinated transcription inhibitor factor Purb. lnc19959.2 interacted with hnRNPA2B1 and cooperated with RNP II that controls expression of Cpt1a, Tm7sf2 and Gpam.
Collapse
|
78
|
Yeh CF, Chang YCE, Lu CY, Hsuan CF, Chang WT, Yang KC. Expedition to the missing link: Long noncoding RNAs in cardiovascular diseases. J Biomed Sci 2020; 27:48. [PMID: 32241300 PMCID: PMC7114803 DOI: 10.1186/s12929-020-00647-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/27/2020] [Indexed: 12/31/2022] Open
Abstract
With the advances in deep sequencing-based transcriptome profiling technology, it is now known that human genome is transcribed more pervasively than previously thought. Up to 90% of the human DNA is transcribed, and a large proportion of the human genome is transcribed as long noncoding RNAs (lncRNAs), a heterogenous group of non-coding transcripts longer than 200 nucleotides. Emerging evidence suggests that lncRNAs are functional and contribute to the complex regulatory networks involved in cardiovascular development and diseases. In this article, we will review recent evidence on the roles of lncRNAs in the biological processes of cardiovascular development and disorders. The potential applications of lncRNAs as biomarkers and targets for therapeutics are also discussed.
Collapse
Affiliation(s)
- Chih-Fan Yeh
- Graduate Institute and Department of Pharmacology, National Taiwan University School of Medicine, No.1, Sec. 1, Ren-Ai Rd, 1150R, Taipei, Taiwan.,Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, No.1, Sec. 1, Ren-Ai Rd, 1150R, Taipei, Taiwan
| | - Yu-Chen Eugene Chang
- Graduate Institute and Department of Pharmacology, National Taiwan University School of Medicine, No.1, Sec. 1, Ren-Ai Rd, 1150R, Taipei, Taiwan
| | - Cheng-Yuan Lu
- Graduate Institute and Department of Pharmacology, National Taiwan University School of Medicine, No.1, Sec. 1, Ren-Ai Rd, 1150R, Taipei, Taiwan
| | - Chin-Feng Hsuan
- Division of Cardiology, Department of Internal Medicine, E-Da Dachang Hospital, Kaohsiung, Taiwan.,Department of Medicine, I-Shou University School of Medicine, Kaohsiung, Taiwan
| | - Wei-Tien Chang
- Department of Emergency Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Kai-Chien Yang
- Graduate Institute and Department of Pharmacology, National Taiwan University School of Medicine, No.1, Sec. 1, Ren-Ai Rd, 1150R, Taipei, Taiwan. .,Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, No.1, Sec. 1, Ren-Ai Rd, 1150R, Taipei, Taiwan.
| |
Collapse
|
79
|
Collaborative interactions of heterogenous ribonucleoproteins contribute to transcriptional regulation of sterol metabolism in mice. Nat Commun 2020; 11:984. [PMID: 32080181 PMCID: PMC7033216 DOI: 10.1038/s41467-020-14711-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) are a group of functionally versatile proteins that play critical roles in the biogenesis, cellular localization and transport of RNA. Here, we outline a role for hnRNPs in gene regulatory circuits controlling sterol homeostasis. Specifically, we find that tissue-selective loss of the conserved hnRNP RALY enriches for metabolic pathways. Liver-specific deletion of RALY alters hepatic lipid content and serum cholesterol level. In vivo interrogation of chromatin architecture and genome-wide RALY-binding pattern reveal insights into its cooperative interactions and mode of action in regulating cholesterogenesis. Interestingly, we find that RALY binds the promoter region of the master metabolic regulator Srebp2 and show that it directly interacts with coactivator Nuclear Transcription Factor Y (NFY) to influence cholesterogenic gene expression. Our work offers insights into mechanisms orchestrating selective promoter activation in metabolic control and a model by which hnRNPs can impact health and disease states. Heterogeneous nuclear ribonucleoproteins (hnRNPs) play critical roles in the biogenesis, localization and transport of RNA. Here authors investigate a role for hnRNPs in sterol metabolism in mice and provide insights into their role in selective promoter activation.
Collapse
|
80
|
Stapleton K, Das S, Reddy MA, Leung A, Amaram V, Lanting L, Chen Z, Zhang L, Palanivel R, Deiuliis JA, Natarajan R. Novel Long Noncoding RNA, Macrophage Inflammation-Suppressing Transcript ( MIST), Regulates Macrophage Activation During Obesity. Arterioscler Thromb Vasc Biol 2020; 40:914-928. [PMID: 32078363 PMCID: PMC7098442 DOI: 10.1161/atvbaha.119.313359] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Supplemental Digital Content is available in the text. Objective: Systemic low-grade inflammation associated with obesity and metabolic syndrome is a strong risk factor for the development of diabetes mellitus and associated cardiovascular complications. This inflammatory state is caused by release of proinflammatory cytokines by macrophages, especially in adipose tissue. Long noncoding RNAs regulate macrophage activation and inflammatory gene networks, but their role in macrophage dysfunction during diet-induced obesity has been largely unexplored. Approach and Results: We sequenced total RNA from peritoneal macrophages isolated from mice fed either high-fat diet or standard diet and performed de novo transcriptome assembly to identify novel differentially expressed mRNAs and long noncoding RNAs. A top candidate long noncoding RNA, macrophage inflammation-suppressing transcript (Mist), was downregulated in both peritoneal macrophages and adipose tissue macrophages from high-fat diet–fed mice. GapmeR-mediated Mist knockdown in vitro and in vivo upregulated expression of genes associated with immune response and inflammation and increased modified LDL (low-density lipoprotein) uptake in macrophages. Conversely, Mist overexpression decreased basal and LPS (lipopolysaccharide)-induced expression of inflammatory response genes and decreased modified LDL uptake. RNA-pull down coupled with mass spectrometry showed that Mist interacts with PARP1 (poly [ADP]-ribose polymerase-1). Disruption of this RNA-protein interaction increased PARP1 recruitment and chromatin PARylation at promoters of inflammatory genes, resulting in increased gene expression. Furthermore, human orthologous MIST was also downregulated by proinflammatory stimuli, and its expression in human adipose tissue macrophages inversely correlated with obesity and insulin resistance. Conclusions: Mist is a novel protective long noncoding RNA, and its loss during obesity contributes to metabolic dysfunction and proinflammatory phenotype of macrophages via epigenetic mechanisms.
Collapse
Affiliation(s)
- Kenneth Stapleton
- From the Department of Diabetes Complications and Metabolism, Diabetes and Metabolic Research Institute (K.S, S.D., M.A.R., A.L., V.A., L.L., Z.C., L.Z., R.N.), Beckman Research Institute of City of Hope, Duarte, CA.,Irell and Manella Graduate School of Biological Sciences (K.S., V.A., R.N.), Beckman Research Institute of City of Hope, Duarte, CA
| | - Sadhan Das
- From the Department of Diabetes Complications and Metabolism, Diabetes and Metabolic Research Institute (K.S, S.D., M.A.R., A.L., V.A., L.L., Z.C., L.Z., R.N.), Beckman Research Institute of City of Hope, Duarte, CA
| | - Marpadga A Reddy
- From the Department of Diabetes Complications and Metabolism, Diabetes and Metabolic Research Institute (K.S, S.D., M.A.R., A.L., V.A., L.L., Z.C., L.Z., R.N.), Beckman Research Institute of City of Hope, Duarte, CA
| | - Amy Leung
- From the Department of Diabetes Complications and Metabolism, Diabetes and Metabolic Research Institute (K.S, S.D., M.A.R., A.L., V.A., L.L., Z.C., L.Z., R.N.), Beckman Research Institute of City of Hope, Duarte, CA
| | - Vishnu Amaram
- From the Department of Diabetes Complications and Metabolism, Diabetes and Metabolic Research Institute (K.S, S.D., M.A.R., A.L., V.A., L.L., Z.C., L.Z., R.N.), Beckman Research Institute of City of Hope, Duarte, CA.,Irell and Manella Graduate School of Biological Sciences (K.S., V.A., R.N.), Beckman Research Institute of City of Hope, Duarte, CA
| | - Linda Lanting
- From the Department of Diabetes Complications and Metabolism, Diabetes and Metabolic Research Institute (K.S, S.D., M.A.R., A.L., V.A., L.L., Z.C., L.Z., R.N.), Beckman Research Institute of City of Hope, Duarte, CA
| | - Zhuo Chen
- From the Department of Diabetes Complications and Metabolism, Diabetes and Metabolic Research Institute (K.S, S.D., M.A.R., A.L., V.A., L.L., Z.C., L.Z., R.N.), Beckman Research Institute of City of Hope, Duarte, CA
| | - Lingxiao Zhang
- From the Department of Diabetes Complications and Metabolism, Diabetes and Metabolic Research Institute (K.S, S.D., M.A.R., A.L., V.A., L.L., Z.C., L.Z., R.N.), Beckman Research Institute of City of Hope, Duarte, CA
| | - Rengasamy Palanivel
- Cardiovascular Research Institute of the Case Western Reserve University, Cleveland, OH (R.P., J.A.D.)
| | - Jeffrey A Deiuliis
- Cardiovascular Research Institute of the Case Western Reserve University, Cleveland, OH (R.P., J.A.D.)
| | - Rama Natarajan
- From the Department of Diabetes Complications and Metabolism, Diabetes and Metabolic Research Institute (K.S, S.D., M.A.R., A.L., V.A., L.L., Z.C., L.Z., R.N.), Beckman Research Institute of City of Hope, Duarte, CA.,Irell and Manella Graduate School of Biological Sciences (K.S., V.A., R.N.), Beckman Research Institute of City of Hope, Duarte, CA
| |
Collapse
|
81
|
Abstract
PURPOSE OF REVIEW Atherosclerosis is characterized by accumulation of lipids and chronic inflammation in medium size to large arteries. Recently, RNA-based antisense oligonucleotides (ASOs) and small interfering RNAs (siRNAs) are being developed, along with small molecule-based drugs and monoclonal antibodies, for the treatment of risk factors associated with atherosclerosis.. The purpose of this review is to describe nucleic acid-based therapeutics and introduce novel RNAs that might become future tools for treatment of atherosclerosis. RECENT FINDINGS RNA-based inhibitors for PCSK9, Lp(a), ApoCIII, and ANGPTL3 have been successfully tested in phase II-III clinical trials. Moreover, multiple microRNA and long non-coding RNAs have been found to reduce atherogenesis in preclinical animal models. Clinical trials especially with ASOs and siRNAs directed to liver, targeting cholesterol and lipoprotein metabolism, have shown promising results. Additional research in larger patient cohorts is needed to fully evaluate the therapeutic potential of these new drugs.
Collapse
Affiliation(s)
- Petri Mäkinen
- A.I. Virtanen Institute, University of Eastern Finland, Neulaniementie 2, P.O. Box 1627, 70211, Kuopio, Finland
| | - Anna-Kaisa Ruotsalainen
- A.I. Virtanen Institute, University of Eastern Finland, Neulaniementie 2, P.O. Box 1627, 70211, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute, University of Eastern Finland, Neulaniementie 2, P.O. Box 1627, 70211, Kuopio, Finland.
- Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland.
| |
Collapse
|
82
|
Pradas-Juni M, Hansmeier NR, Link JC, Schmidt E, Larsen BD, Klemm P, Meola N, Topel H, Loureiro R, Dhaouadi I, Kiefer CA, Schwarzer R, Khani S, Oliverio M, Awazawa M, Frommolt P, Heeren J, Scheja L, Heine M, Dieterich C, Büning H, Yang L, Cao H, Jesus DFD, Kulkarni RN, Zevnik B, Tröder SE, Knippschild U, Edwards PA, Lee RG, Yamamoto M, Ulitsky I, Fernandez-Rebollo E, Vallim TQDA, Kornfeld JW. A MAFG-lncRNA axis links systemic nutrient abundance to hepatic glucose metabolism. Nat Commun 2020; 11:644. [PMID: 32005828 PMCID: PMC6994702 DOI: 10.1038/s41467-020-14323-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/27/2019] [Indexed: 02/07/2023] Open
Abstract
Obesity and type 2 diabetes mellitus are global emergencies and long noncoding RNAs (lncRNAs) are regulatory transcripts with elusive functions in metabolism. Here we show that a high fraction of lncRNAs, but not protein-coding mRNAs, are repressed during diet-induced obesity (DIO) and refeeding, whilst nutrient deprivation induced lncRNAs in mouse liver. Similarly, lncRNAs are lost in diabetic humans. LncRNA promoter analyses, global cistrome and gain-of-function analyses confirm that increased MAFG signaling during DIO curbs lncRNA expression. Silencing Mafg in mouse hepatocytes and obese mice elicits a fasting-like gene expression profile, improves glucose metabolism, de-represses lncRNAs and impairs mammalian target of rapamycin (mTOR) activation. We find that obesity-repressed LincIRS2 is controlled by MAFG and observe that genetic and RNAi-mediated LincIRS2 loss causes elevated blood glucose, insulin resistance and aberrant glucose output in lean mice. Taken together, we identify a MAFG-lncRNA axis controlling hepatic glucose metabolism in health and metabolic disease. Despite widespread transcription of LncRNA in mammalian systems, their contribution to metabolic homeostasis at the cellular and tissue level remains elusive. Here Pradas-Juni et al. describe a transcription factor–LncRNA pathway that couples hepatocyte nutrient sensing to regulation of glucose metabolism in mice.
Collapse
Affiliation(s)
- Marta Pradas-Juni
- Functional Genomics and Metabolism Unit, Department for Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.,Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany.,Cologne Cluster of Excellence-Cellular Stress Responses in Ageing-associated Diseases (CECAD), Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Nils R Hansmeier
- Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany.,Cologne Cluster of Excellence-Cellular Stress Responses in Ageing-associated Diseases (CECAD), Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Jenny C Link
- Department of Biological Chemistry, University of California, Los Angeles (UCLA), 650 Charles E. Young Drive South, Los Angeles, CA, 90095, USA.,Department of Medicine, Division of Cardiology, UCLA, 650 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
| | - Elena Schmidt
- Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany.,Cologne Cluster of Excellence-Cellular Stress Responses in Ageing-associated Diseases (CECAD), Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Bjørk Ditlev Larsen
- Functional Genomics and Metabolism Unit, Department for Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Paul Klemm
- Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany.,Cologne Cluster of Excellence-Cellular Stress Responses in Ageing-associated Diseases (CECAD), Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Nicola Meola
- Functional Genomics and Metabolism Unit, Department for Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Hande Topel
- Functional Genomics and Metabolism Unit, Department for Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.,Izmir Biomedicine and Genome Center (IBG), Mithatpasa Ave. 58/5, 35340, Izmir, Turkey.,Department of Medical Biology and Genetics, Graduate School of Health Sciences, Dokuz Eylul University, Mithatpasa Ave. 1606, 35330, Izmir, Turkey
| | - Rute Loureiro
- Functional Genomics and Metabolism Unit, Department for Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.,Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany.,Cologne Cluster of Excellence-Cellular Stress Responses in Ageing-associated Diseases (CECAD), Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Ines Dhaouadi
- Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany.,Cologne Cluster of Excellence-Cellular Stress Responses in Ageing-associated Diseases (CECAD), Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Christoph A Kiefer
- Functional Genomics and Metabolism Unit, Department for Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Robin Schwarzer
- Cologne Cluster of Excellence-Cellular Stress Responses in Ageing-associated Diseases (CECAD), Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Sajjad Khani
- Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany.,Cologne Cluster of Excellence-Cellular Stress Responses in Ageing-associated Diseases (CECAD), Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Matteo Oliverio
- Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany.,Cologne Cluster of Excellence-Cellular Stress Responses in Ageing-associated Diseases (CECAD), Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Motoharu Awazawa
- Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany.,Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Peter Frommolt
- Cologne Cluster of Excellence-Cellular Stress Responses in Ageing-associated Diseases (CECAD), Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, Martinistraße 52, 20246, Hamburg, Germany
| | - Ludger Scheja
- Department of Biochemistry and Molecular Cell Biology, Martinistraße 52, 20246, Hamburg, Germany
| | - Markus Heine
- Department of Biochemistry and Molecular Cell Biology, Martinistraße 52, 20246, Hamburg, Germany
| | - Christoph Dieterich
- Section of Bioinformatics and Systems Cardiology, Klaus Tschira Institute for Integrative Computational Cardiology, University Hospital Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
| | - Hildegard Büning
- Institute of Experimental Hematology, Hanover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Ling Yang
- Cardiovascular Branch, National Heart Lung and Blood Institute, Bethesda, MD, 20892, USA.,Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Haiming Cao
- Cardiovascular Branch, National Heart Lung and Blood Institute, Bethesda, MD, 20892, USA
| | - Dario F De Jesus
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, 02215, MA, USA
| | - Rohit N Kulkarni
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, 02215, MA, USA
| | - Branko Zevnik
- CECAD in vivo Research Facility, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Simon E Tröder
- CECAD in vivo Research Facility, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Uwe Knippschild
- Department of General and Visceral Surgery, University Hospital Ulm, Albert-Einstein Allee 93, 89081, Ulm, Germany
| | - Peter A Edwards
- Department of Biological Chemistry, University of California, Los Angeles (UCLA), 650 Charles E. Young Drive South, Los Angeles, CA, 90095, USA.,Department of Medicine, Division of Cardiology, UCLA, 650 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
| | | | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku Medical Megabank Organization, Sendai, 980-8573, Japan
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Eduardo Fernandez-Rebollo
- Functional Genomics and Metabolism Unit, Department for Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Thomas Q de Aguiar Vallim
- Department of Biological Chemistry, University of California, Los Angeles (UCLA), 650 Charles E. Young Drive South, Los Angeles, CA, 90095, USA. .,Department of Medicine, Division of Cardiology, UCLA, 650 Charles E. Young Drive South, Los Angeles, CA, 90095, USA.
| | - Jan-Wilhelm Kornfeld
- Functional Genomics and Metabolism Unit, Department for Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark. .,Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany. .,Cologne Cluster of Excellence-Cellular Stress Responses in Ageing-associated Diseases (CECAD), Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany.
| |
Collapse
|
83
|
Wang W, Hu W, Wang Y, An Y, Song L, Shang P, Yue Z. Long non-coding RNA UCA1 promotes malignant phenotypes of renal cancer cells by modulating the miR-182-5p/DLL4 axis as a ceRNA. Mol Cancer 2020; 19:18. [PMID: 31996265 PMCID: PMC6988374 DOI: 10.1186/s12943-020-1132-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/05/2020] [Indexed: 01/13/2023] Open
Abstract
Background Accumulating literatures have indicated that long non-coding RNAs (lncRNAs) are potential biomarkers that play key roles in tumor development and progression. Urothelial cancer associated 1 (UCA1) is a novel lncRNA that acts as a potential biomarker and is involved in the development of cancers. However, the molecular mechanism of UCA1 in renal cancer is still needed to further explore. Methods The relative expression level of UCA1 was determined by Real-Time qPCR in a total of 88 patients with urothelial renal cancer and in different renal cancer cell lines. Loss-of-function experiments were performed to investigate the biological roles of UCA1 and miR-182-5p on renal cancer cell proliferation, migration, apoptosis and tumorigenicity. Comprehensive transcriptional analysis, dual-luciferase reporter assay and western blot etc. were performed to explore the molecular mechanisms underlying the functions of UCA1. Results In this study, we found that UCA1 was significantly up-regulated in renal cancer. Moreover, increased UCA1 expression was positively correlated with differentiation and advanced TNM stage. Further experiments demonstrated that knockdown of UCA1 inhibited malignant phenotypes and Notch signal path of renal cancer cells, and miR-182-5p was reverse function as UCA1. UCA1 functioned as a miRNA sponge to positively regulate the expression of Delta-like ligand 4(DLL4) through sponging miR-182-5p and subsequently promoted malignant phenotypes of renal cancer cells, thus UCA1 playing an oncogenic role and miR-182-5p as an antioncogenic one in renal cancer pathogenesis. Conclusion UCA1-miR-182-5p-DLL4 axis is involved in proliferation and progression of renal cancer. Thus, this study demonstrated that UCA1 plays a critical regulatory role in renal cancer cell and UCA1 may serve as a potential diagnostic biomarker and therapeutic target of renal cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-020-1132-x.
Collapse
Affiliation(s)
- Wei Wang
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Wentao Hu
- School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Ya Wang
- Department of Nephrology, Second Hospital Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
| | - Yong An
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Lei Song
- Medical School, Northwest Min Zu University, Lanzhou, 730030, Gansu, China
| | - Panfeng Shang
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
| | - Zhongjin Yue
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
84
|
Enchill Z, Lantz C, Thorp EB. Select Macrophage Noncoding RNAs of Interest in Cardiovascular Disease. J Lipid Atheroscler 2020; 9:153-161. [PMID: 32821728 PMCID: PMC7379065 DOI: 10.12997/jla.2020.9.1.153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/02/2020] [Accepted: 01/08/2020] [Indexed: 12/24/2022] Open
Abstract
Cardiovascular disease remains a leading cause of morbidity and mortality worldwide. Aspects of disease severity that are associated with heightened inflammation, such as during atherosclerosis or after myocardial infarction, are correlated with macrophage activation and macrophage polarization of the transcriptome and secretome. In this setting, non-coding RNAs (ncRNAs) may be as abundant as protein-coding genes and are increasingly recognized as significant modulators of macrophage gene expression and cytokine secretion, although the functions of most ncRNAs—and in particular, long non-coding RNAs—remain unknown. Herein, we discuss a subset of specific ncRNAs of interest in macrophages in atherosclerosis and during myocardial inflammation.
Collapse
Affiliation(s)
- Zenaida Enchill
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Connor Lantz
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Edward B Thorp
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
85
|
Li Y, Chen H, Li S, Li Y, Liu G, Bai J, Luo H, Lan X, He Z. LncSSBP1 Functions as a Negative Regulator of IL-6 Through Interaction With hnRNPK in Bronchial Epithelial Cells Infected With Talaromyces marneffei. Front Immunol 2020; 10:2977. [PMID: 31998294 PMCID: PMC6966331 DOI: 10.3389/fimmu.2019.02977] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 12/04/2019] [Indexed: 12/12/2022] Open
Abstract
Talaromyces marneffei (TM) is an important opportunistic pathogenic fungus capable of causing disseminated lethal infection. In our previous study, we identified host lncRNAs and mRNAs that are dysregulated in TM-infected bronchial epithelial cells. In this report, we verified that IL-6, a key factor in acute inflammatory response, is down-regulated in TM pathogenesis. To elucidate the mechanism of IL-6 regulation, we analyzed the coding/non-coding network, and identified lncSSBP1, a novel lncRNA that is up-regulated by TM. Our results demonstrate that overexpression of lncSSBP1 decreases IL-6 mRNA expression, whereas knockdown of lncSSBP1 enhances IL-6 mRNA expression. Though lncSSBP1 is primarily localized to the nucleus, bioinformatics analysis suggests that it is unlikely to function as competing endogenous RNA or to interact with IL-6 transcription factors. Instead, RNA pull down and RNA immunoprecipitation assays showed that lncSSBP1 binds specifically to heterogenous nuclear ribonucleoprotein K (hnRNPK), which is involved in IL-6 mRNA processing. Our findings suggest that lncSSBP1 may affect IL-6 mRNA expression during TM infection through interaction with hnRNPk in bronchial epithelial cells. Our results suggest a novel pathway by which TM may suppress the immune response to its advantage.
Collapse
Affiliation(s)
- Yinghua Li
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Huan Chen
- Department of Pulmonary and Critical Care Medicine, Sixth Affiliated Hospital of Guangxi Medical University, Yulin, China
| | - Shuyi Li
- Guangxi Colleges and Universities Key Laboratory of Preclinical Medicine Research, Guangxi Medical University, Nanning, China
| | - Yu Li
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guangnan Liu
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jing Bai
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Honglin Luo
- School of Basic Medicine, Guangxi Medical University, Nanning, China
| | - Xiuwan Lan
- Guangxi Colleges and Universities Key Laboratory of Preclinical Medicine Research, Guangxi Medical University, Nanning, China
| | - Zhiyi He
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
86
|
Ruan X, Li P, Chen Y, Shi Y, Pirooznia M, Seifuddin F, Suemizu H, Ohnishi Y, Yoneda N, Nishiwaki M, Shepherdson J, Suresh A, Singh K, Ma Y, Jiang CF, Cao H. In vivo functional analysis of non-conserved human lncRNAs associated with cardiometabolic traits. Nat Commun 2020; 11:45. [PMID: 31896749 PMCID: PMC6940387 DOI: 10.1038/s41467-019-13688-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 11/14/2019] [Indexed: 02/07/2023] Open
Abstract
Unlike protein-coding genes, the majority of human long non-coding RNAs (lncRNAs) are considered non-conserved. Although lncRNAs have been shown to function in diverse pathophysiological processes in mice, it remains largely unknown whether human lncRNAs have such in vivo functions. Here, we describe an integrated pipeline to define the in vivo function of non-conserved human lncRNAs. We first identify lncRNAs with high function potential using multiple indicators derived from human genetic data related to cardiometabolic traits, then define lncRNA's function and specific target genes by integrating its correlated biological pathways in humans and co-regulated genes in a humanized mouse model. Finally, we demonstrate that the in vivo function of human-specific lncRNAs can be successfully examined in the humanized mouse model, and experimentally validate the predicted function of an obesity-associated lncRNA, LINC01018, in regulating the expression of genes in fatty acid oxidation in humanized livers through its interaction with RNA-binding protein HuR.
Collapse
Affiliation(s)
- Xiangbo Ruan
- Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ping Li
- Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yi Chen
- Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yu Shi
- Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mehdi Pirooznia
- Bioinformatics and Computational Biology Core, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Fayaz Seifuddin
- Bioinformatics and Computational Biology Core, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Hiroshi Suemizu
- Laboratory Animal Research Department, Biomedical Research Laboratory, Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan
| | - Yasuyuki Ohnishi
- Laboratory Animal Research Department, Biomedical Research Laboratory, Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan
| | - Nao Yoneda
- Laboratory Animal Research Department, Biomedical Research Laboratory, Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan
| | - Megumi Nishiwaki
- Laboratory Animal Research Department, Biomedical Research Laboratory, Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan.,Technical Service Department, CLEA Japan, Inc, 4839-23 Kitayama, Fujinomiya, Shizuoka, 418-0122, Japan
| | - James Shepherdson
- Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.,Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Abhilash Suresh
- Bioinformatics and Computational Biology Core, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Komudi Singh
- Bioinformatics and Computational Biology Core, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yonghe Ma
- Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Cheng-Fei Jiang
- Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Haiming Cao
- Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
87
|
Zhang TN, Wang W, Yang N, Huang XM, Liu CF. Regulation of Glucose and Lipid Metabolism by Long Non-coding RNAs: Facts and Research Progress. Front Endocrinol (Lausanne) 2020; 11:457. [PMID: 32765426 PMCID: PMC7381111 DOI: 10.3389/fendo.2020.00457] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/10/2020] [Indexed: 12/17/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a type of non-coding RNA with a length that exceeds 200 nucleotides. Previous studies have shown that lncRNAs play an important role in the pathogenesis of various diseases. Research in both animal models and humans has begun to unravel the profound complexity of lncRNAs and demonstrated that lncRNAs exert direct effects on glucose and lipid metabolism both in vivo and in vitro. Such research has elucidated the regulatory role of lncRNAs in glucose and lipid metabolism in human disease. lncRNAs mediate glucose and lipid metabolism under physiological and pathological conditions and contribute to various metabolism disorders. This review provides an update on our understanding of the regulatory role of lncRNAs in glucose and lipid metabolism in various diseases. As our understanding of the function of lncRNAs improves, the future is promising for the development of new diagnostic biomarkers that utilize lncRNAs and treatments that target lncRNAs to improve clinical outcomes.
Collapse
Affiliation(s)
- Tie-Ning Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Tie-Ning Zhang
| | - Wei Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ni Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin-Mei Huang
- Department of Endocrinology, the Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology, Yale University School of Medicine, New Haven, CT, United States
- Xin-Mei Huang
| | - Chun-Feng Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
- Chun-Feng Liu
| |
Collapse
|
88
|
Mechanisms and regulation of cholesterol homeostasis. Nat Rev Mol Cell Biol 2019; 21:225-245. [DOI: 10.1038/s41580-019-0190-7] [Citation(s) in RCA: 450] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2019] [Indexed: 12/14/2022]
|
89
|
Muret K, Désert C, Lagoutte L, Boutin M, Gondret F, Zerjal T, Lagarrigue S. Long noncoding RNAs in lipid metabolism: literature review and conservation analysis across species. BMC Genomics 2019; 20:882. [PMID: 31752679 PMCID: PMC6868825 DOI: 10.1186/s12864-019-6093-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 09/10/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Lipids are important for the cell and organism life since they are major components of membranes, energy reserves and are also signal molecules. The main organs for the energy synthesis and storage are the liver and adipose tissue, both in humans and in more distant species such as chicken. Long noncoding RNAs (lncRNAs) are known to be involved in many biological processes including lipid metabolism. RESULTS In this context, this paper provides the most exhaustive list of lncRNAs involved in lipid metabolism with 60 genes identified after an in-depth analysis of the bibliography, while all "review" type articles list a total of 27 genes. These 60 lncRNAs are mainly described in human or mice and only a few of them have a precise described mode-of-action. Because these genes are still named in a non-standard way making such a study tedious, we propose a standard name for this list according to the rules dictated by the HUGO consortium. Moreover, we identified about 10% of lncRNAs which are conserved between mammals and chicken and 2% between mammals and fishes. Finally, we demonstrated that two lncRNA were wrongly considered as lncRNAs in the literature since they are 3' extensions of the closest coding gene. CONCLUSIONS Such a lncRNAs catalogue can participate to the understanding of the lipid metabolism regulators; it can be useful to better understand the genetic regulation of some human diseases (obesity, hepatic steatosis) or traits of economic interest in livestock species (meat quality, carcass composition). We have no doubt that this first set will be rapidly enriched in coming years.
Collapse
Affiliation(s)
- Kevin Muret
- PEGASE, INRA, AGROCAMPUS OUEST, 35590, Saint-Gilles, France
| | - Colette Désert
- PEGASE, INRA, AGROCAMPUS OUEST, 35590, Saint-Gilles, France
| | | | - Morgane Boutin
- PEGASE, INRA, AGROCAMPUS OUEST, 35590, Saint-Gilles, France
| | | | - Tatiana Zerjal
- GABI INRA, AgroParisTech, Université Paris-Saclay, Domaine de Vilvert, 78352, Jouy-en-Josas, France
| | | |
Collapse
|
90
|
Lee SD, Priest C, Bjursell M, Gao J, Arneson DV, Ahn IS, Diamante G, van Veen JE, Massa MG, Calkin AC, Kim J, Andersén H, Rajbhandari P, Porritt M, Carreras A, Ahnmark A, Seeliger F, Maxvall I, Eliasson P, Althage M, Åkerblad P, Lindén D, Cole TA, Lee R, Boyd H, Bohlooly-Y M, Correa SM, Yang X, Tontonoz P, Hong C. IDOL regulates systemic energy balance through control of neuronal VLDLR expression. Nat Metab 2019; 1:1089-1100. [PMID: 32072135 PMCID: PMC7028310 DOI: 10.1038/s42255-019-0127-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Liver X receptors limit cellular lipid uptake by stimulating the transcription of Inducible Degrader of the LDL Receptor (IDOL), an E3 ubiquitin ligase that targets lipoprotein receptors for degradation. The function of IDOL in systemic metabolism is incompletely understood. Here we show that loss of IDOL in mice protects against the development of diet-induced obesity and metabolic dysfunction by altering food intake and thermogenesis. Unexpectedly, analysis of tissue-specific knockout mice revealed that IDOL affects energy balance, not through its actions in peripheral metabolic tissues (liver, adipose, endothelium, intestine, skeletal muscle), but by controlling lipoprotein receptor abundance in neurons. Single-cell RNA sequencing of the hypothalamus demonstrated that IDOL deletion altered gene expression linked to control of metabolism. Finally, we identify VLDLR rather than LDLR as the primary mediator of IDOL effects on energy balance. These studies identify a role for the neuronal IDOL-VLDLR pathway in metabolic homeostasis and diet-induced obesity.
Collapse
Affiliation(s)
- Stephen D Lee
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, and Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Christina Priest
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, and Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mikael Bjursell
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jie Gao
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, and Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Douglas V Arneson
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - In Sook Ahn
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Graciel Diamante
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - J Edward van Veen
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Megan G Massa
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anna C Calkin
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, and Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jason Kim
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, and Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Harriet Andersén
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Prashant Rajbhandari
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, and Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michelle Porritt
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Alba Carreras
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Andrea Ahnmark
- Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Frank Seeliger
- Pathology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Ingela Maxvall
- Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Pernilla Eliasson
- Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Magnus Althage
- Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Peter Åkerblad
- Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Daniel Lindén
- Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Division of Endocrinology, Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tracy A Cole
- Central Nervous System Group, Antisense Drug Discovery, Ionis Pharmaceuticals, Inc, Carlsbad, CA, USA
| | - Richard Lee
- Central Nervous System Group, Antisense Drug Discovery, Ionis Pharmaceuticals, Inc, Carlsbad, CA, USA
| | - Helen Boyd
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca; Cambridge Science Park, Cambridge, UK
| | | | - Stephanie M Correa
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, and Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Cynthia Hong
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, and Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
91
|
Abstract
Supplemental Digital Content is available in the text. If unifying principles could be revealed for how the same genome encodes different eukaryotic cells and for how genetic variability and environmental input are integrated to impact cardiovascular health, grand challenges in basic cell biology and translational medicine may succumb to experimental dissection. A rich body of work in model systems has implicated chromatin-modifying enzymes, DNA methylation, noncoding RNAs, and other transcriptome-shaping factors in adult health and in the development, progression, and mitigation of cardiovascular disease. Meanwhile, deployment of epigenomic tools, powered by next-generation sequencing technologies in cardiovascular models and human populations, has enabled description of epigenomic landscapes underpinning cellular function in the cardiovascular system. This essay aims to unpack the conceptual framework in which epigenomes are studied and to stimulate discussion on how principles of chromatin function may inform investigations of cardiovascular disease and the development of new therapies.
Collapse
Affiliation(s)
- Manuel Rosa-Garrido
- From the Departments of Anesthesiology, Medicine, and Physiology, David Geffen School of Medicine, University of California, Los Angeles
| | - Douglas J Chapski
- From the Departments of Anesthesiology, Medicine, and Physiology, David Geffen School of Medicine, University of California, Los Angeles
| | - Thomas M Vondriska
- From the Departments of Anesthesiology, Medicine, and Physiology, David Geffen School of Medicine, University of California, Los Angeles.
| |
Collapse
|
92
|
Poux C, Dondalska A, Bergenstråhle J, Pålsson S, Contreras V, Arasa C, Järver P, Albert J, Busse DC, LeGrand R, Lundeberg J, Tregoning JS, Spetz AL. A Single-Stranded Oligonucleotide Inhibits Toll-Like Receptor 3 Activation and Reduces Influenza A (H1N1) Infection. Front Immunol 2019; 10:2161. [PMID: 31572376 PMCID: PMC6751283 DOI: 10.3389/fimmu.2019.02161] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/28/2019] [Indexed: 12/18/2022] Open
Abstract
The initiation of an immune response is dependent on the activation and maturation of dendritic cells after sensing pathogen associated molecular patterns by pattern recognition receptors. However, the response needs to be balanced as excessive pro-inflammatory cytokine production in response to viral or stress-induced pattern recognition receptor signaling has been associated with severe influenza A virus (IAV) infection. Here, we use an inhibitor of Toll-like receptor (TLR)3, a single-stranded oligonucleotide (ssON) with the capacity to inhibit certain endocytic routes, or a TLR3 agonist (synthetic double-stranded RNA PolyI:C), to evaluate modulation of innate responses during H1N1 IAV infection. Since IAV utilizes cellular endocytic machinery for viral entry, we also assessed ssON's capacity to affect IAV infection. We first show that IAV infected human monocyte-derived dendritic cells (MoDC) were unable to up-regulate the co-stimulatory molecules CD80 and CD86 required for T cell activation. Exogenous TLR3 stimulation did not overcome the IAV-mediated inhibition of co-stimulatory molecule expression in MoDC. However, TLR3 stimulation using PolyI:C led to an augmented pro-inflammatory cytokine response. We reveal that ssON effectively inhibited PolyI:C-mediated pro-inflammatory cytokine production in MoDC, notably, ssON treatment maintained an interferon response induced by IAV infection. Accordingly, RNAseq analyses revealed robust up-regulation of interferon-stimulated genes in IAV cultures treated with ssON. We next measured reduced IAV production in MoDC treated with ssON and found a length requirement for its anti-viral activity, which overlapped with its capacity to inhibit uptake of PolyI:C. Hence, in cases wherein an overreacting TLR3 activation contributes to IAV pathogenesis, ssON can reduce this signaling pathway. Furthermore, concomitant treatment with ssON and IAV infection in mice resulted in maintained weight and reduced viral load in the lungs. Therefore, extracellular ssON provides a mechanism for immune regulation of TLR3-mediated responses and suppression of IAV infection in vitro and in vivo in mice.
Collapse
Affiliation(s)
- Candice Poux
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Aleksandra Dondalska
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Joseph Bergenstråhle
- Science for Life Laboratory, Department of Gene Technology, Royal Institute of Technology, Stockholm, Sweden
| | - Sandra Pålsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Vanessa Contreras
- CEA, UMR1184, IDMIT Department, Institut de Biologie François Jacob, DRF, Fontenay-aux-Roses, France
| | - Claudia Arasa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Peter Järver
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Jan Albert
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - David C Busse
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Roger LeGrand
- CEA, UMR1184, IDMIT Department, Institut de Biologie François Jacob, DRF, Fontenay-aux-Roses, France
| | - Joakim Lundeberg
- Science for Life Laboratory, Department of Gene Technology, Royal Institute of Technology, Stockholm, Sweden
| | - John S Tregoning
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Anna-Lena Spetz
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
93
|
Long Noncoding RNAs in Atherosclerosis: JACC Review Topic of the Week. J Am Coll Cardiol 2019; 72:2380-2390. [PMID: 30384894 DOI: 10.1016/j.jacc.2018.08.2161] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/10/2018] [Accepted: 08/07/2018] [Indexed: 01/14/2023]
Abstract
Atherosclerosis is a complex and chronic disease characterized by lipid deposition in the vessel wall that leads to an inflammatory and proliferative cascade involving smooth muscle, endothelial, and immune cells. Despite substantial improvements in our understanding of mechanisms contributing to atherosclerosis and overall reduction in cardiovascular mortality, the absolute disease burden remains substantially high. The recent discovery of a new group of mediators known as long noncoding ribonucleic acids (lncRNAs) offers a unique opportunity for the development of novel diagnostic and therapeutic tools in atherothrombotic disease. A number of studies suggest that lncRNAs are important mediators in health and disease, and rapidly accumulating evidence implicates lncRNAs in regulatory circuits controlling atherosclerosis. In this review, the authors outline important contributions of lncRNAs to atherosclerosis and its associated risk factors, including hypercholesterolemia, diabetes, hypertension, and obesity.
Collapse
|
94
|
Ray RM, Hansen AH, Slott S, Taskova M, Astakhova K, Morris KV. Control of LDL Uptake in Human Cells by Targeting the LDLR Regulatory Long Non-coding RNA BM450697. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 17:264-276. [PMID: 31279228 PMCID: PMC6611981 DOI: 10.1016/j.omtn.2019.05.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 10/31/2022]
Abstract
Hypercholesterolemia is a condition that is characterized by very high levels of cholesterol in the blood and is a major correlating factor with heart disease. Indeed, high levels of the low-density lipoprotein (LDL) have been causally linked to the development of atherosclerotic cardiovascular disease (ASCVD). A method to specifically reduce cholesterol in the blood in a long-term, stable manner could prove therapeutically relevant. Cholesterol is removed from the blood by the LDL receptor (LDLR) in the liver. Others and we have discovered that a long non-coding RNA (lncRNA; BM450697) functions as an endogenous epigenetic regulator of LDLR and that the repression of this lncRNA by the action of small interfering RNAs (siRNAs) results in the activation of LDLR. We found here, through the interrogation of two siRNAs that can target this lncRNA, both in a transcriptional and post-transcriptional manner, that BM450697 functions as a local scaffold for modulating LDLR transcription. Moreover, we found that conjugation of α-N-acetylgalactosamine (GalNAc) with two lncRNA-directed siRNAs allows for direct liver cell targeting of this lncRNA and functional enhanced uptake of cholesterol. Collectively, these data suggest that targeting the BM450697 lncRNA regulator of LDLR may result in a more specific, long-term, targeted approach to regulating cholesterol in the blood.
Collapse
Affiliation(s)
- Roslyn M Ray
- Center for Gene Therapy, City of Hope, Beckman Research Institute and Hematological Malignancy and Stem Cell Transplantation Institute, 1500 E. Duarte Rd., Duarte, CA, 91010, USA
| | - Anders Højgaard Hansen
- Department of Chemistry, Technical University of Denmark, 206 Kemitorvet, 2800 Kgs Lyngby, Denmark
| | - Sofie Slott
- Department of Chemistry, Technical University of Denmark, 206 Kemitorvet, 2800 Kgs Lyngby, Denmark
| | - Maria Taskova
- Department of Chemistry, Technical University of Denmark, 206 Kemitorvet, 2800 Kgs Lyngby, Denmark
| | - Kira Astakhova
- Department of Chemistry, Technical University of Denmark, 206 Kemitorvet, 2800 Kgs Lyngby, Denmark
| | - Kevin V Morris
- Center for Gene Therapy, City of Hope, Beckman Research Institute and Hematological Malignancy and Stem Cell Transplantation Institute, 1500 E. Duarte Rd., Duarte, CA, 91010, USA.
| |
Collapse
|
95
|
Benhammou JN, Ko A, Alvarez M, Kaikkonen MU, Rankin C, Garske KM, Padua D, Bhagat Y, Kaminska D, Kärjä V, Pihlajamäki J, Pisegna JR, Pajukanta P. Novel Lipid Long Intervening Noncoding RNA, Oligodendrocyte Maturation-Associated Long Intergenic Noncoding RNA, Regulates the Liver Steatosis Gene Stearoyl-Coenzyme A Desaturase As an Enhancer RNA. Hepatol Commun 2019; 3:1356-1372. [PMID: 31592021 PMCID: PMC6771395 DOI: 10.1002/hep4.1413] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/10/2019] [Indexed: 12/15/2022] Open
Abstract
The global obesity epidemic is driving the concomitant rise in nonalcoholic fatty liver disease (NAFLD). To identify new genes involved in central liver functions, we examined liver RNA‐sequence data from 259 patients who underwent morbidly obese bariatric surgery. Of these patients, 84 had normal liver histology, 40 simple steatosis, 43 nonalcoholic steatohepatitis, and the remaining 92 patients had varying degrees of NAFLD based on liver histology. We discovered oligodendrocyte maturation‐associated long intergenic noncoding RNA (OLMALINC), a long intervening noncoding RNA (lincRNA) in a human liver co‐expression network (n = 75 genes) that was strongly associated with statin use and serum triglycerides (TGs). OLMALINC liver expression was highly correlated with the expression of known cholesterol biosynthesis genes and stearoyl‐coenzyme A desaturase (SCD). SCD is the rate‐limiting enzyme in monounsaturated fatty acids and a key TG gene that is known to be up‐regulated in liver steatosis and NAFLD and resides adjacent to OLMALINC on the human chromosome 10q24.31. Next, we functionally demonstrated that OLMALINC regulates SCD as an enhancer‐RNA (eRNA), thus describing the first lincRNA that functions as an eRNA to regulate lipid metabolism. Specifically, we show that OLMALINC promotes liver expression of SCD in cis through regional chromosomal DNA–DNA looping interactions. Conclusion: The primate‐specific lincRNA OLMALINC is a novel epigenetic regulator of the key TG and NAFLD gene SCD.
Collapse
Affiliation(s)
- Jihane N Benhammou
- Vatche and Tamar Manoukian Division of Digestive Diseases University of California Los Angeles Los Angeles CA.,Department of Human Genetics David Geffen School of Medicine at University of California Los Angeles Los Angeles CA.,Division of Gastroenterology, Hepatology, and Parenteral Nutrition, Department of Medicine Veterans Administration Greater Los Angeles Healthcare System Los Angeles CA
| | - Arthur Ko
- Department of Medicine David Geffen School of Medicine at University of California Los Angeles Los Angeles CA
| | - Marcus Alvarez
- Department of Human Genetics David Geffen School of Medicine at University of California Los Angeles Los Angeles CA
| | - Minna U Kaikkonen
- Institute of Public Health and Clinical Nutrition University of Eastern Finland Kuopio Finland
| | - Carl Rankin
- Vatche and Tamar Manoukian Division of Digestive Diseases University of California Los Angeles Los Angeles CA
| | - Kristina M Garske
- Department of Human Genetics David Geffen School of Medicine at University of California Los Angeles Los Angeles CA
| | - David Padua
- Vatche and Tamar Manoukian Division of Digestive Diseases University of California Los Angeles Los Angeles CA.,Division of Gastroenterology, Hepatology, and Parenteral Nutrition, Department of Medicine Veterans Administration Greater Los Angeles Healthcare System Los Angeles CA
| | - Yash Bhagat
- Department of Human Genetics David Geffen School of Medicine at University of California Los Angeles Los Angeles CA
| | - Dorota Kaminska
- Department of Human Genetics David Geffen School of Medicine at University of California Los Angeles Los Angeles CA.,Institute of Public Health and Clinical Nutrition University of Eastern Finland Kuopio Finland
| | - Vesa Kärjä
- Department of Clinical Pathology Kuopio University Hospital Kuopio Finland
| | - Jussi Pihlajamäki
- Institute of Public Health and Clinical Nutrition University of Eastern Finland Kuopio Finland.,Clinical Nutrition and Obesity Center Kuopio University Hospital Kuopio Finland
| | - Joseph R Pisegna
- Department of Human Genetics David Geffen School of Medicine at University of California Los Angeles Los Angeles CA.,Division of Gastroenterology, Hepatology, and Parenteral Nutrition, Department of Medicine Veterans Administration Greater Los Angeles Healthcare System Los Angeles CA
| | - Päivi Pajukanta
- Department of Human Genetics David Geffen School of Medicine at University of California Los Angeles Los Angeles CA.,Bioinformatics Interdepartmental Program University of California Los Angeles Los Angeles CA.,Institute for Precision Health of University of California Los Angeles Los Angeles CA
| |
Collapse
|
96
|
Wang Y, Zhu P, Luo J, Wang J, Liu Z, Wu W, Du Y, Ye B, Wang D, He L, Ren W, Wang J, Sun X, Chen R, Tian Y, Fan Z. LncRNA HAND2-AS1 promotes liver cancer stem cell self-renewal via BMP signaling. EMBO J 2019; 38:e101110. [PMID: 31334575 DOI: 10.15252/embj.2018101110] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 12/30/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent liver cancer, characterized by a high rate of recurrence and heterogeneity. Liver cancer stem cells (CSCs) may well contribute to both of these pathological properties, but the mechanism underlying their self-renewal maintenance is poorly understood. Here, we identified a long noncoding RNA (lncRNA) termed HAND2-AS1 that is highly expressed in liver CSCs. Human HAND2-AS1 and its mouse ortholog lncHand2 display a high level of conservation. HAND2-AS1 is required for the self-renewal maintenance of liver CSCs to initiate HCC development. Mechanistically, HAND2-AS1 recruits the INO80 chromatin-remodeling complex to the promoter of BMPR1A, thereby inducing its expression and leading to the activation of BMP signaling. Importantly, interfering with expression of HAND2-AS1 by antisense oligonucleotides (ASOs) and BMPR1A by siRNAs has synergistic anti-tumorigenic effects on humanized HCC models. Moreover, knockout of lncHand2 or Bmpr1a in mouse hepatocytes impairs BMP signaling and suppresses the initiation of liver cancer. Our findings reveal that HAND2-AS1 promotes the self-renewal of liver CSCs and drives liver oncogenesis, offering a potential new target for HCC therapy.
Collapse
Affiliation(s)
- Yanying Wang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Pingping Zhu
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jianjun Luo
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhiwei Liu
- Department of Hepatobiliary Surgery, PLA General Hospital, Beijing, China
| | - Wei Wu
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ying Du
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Buqing Ye
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Dongpeng Wang
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lei He
- Department of Hepatobiliary Surgery, PLA General Hospital, Beijing, China
| | - Weizheng Ren
- Department of Hepatobiliary Surgery, PLA General Hospital, Beijing, China
| | - Jianyi Wang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xianhui Sun
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Runsheng Chen
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yong Tian
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zusen Fan
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
97
|
Wang XM, Li XM, Song N, Zhai H, Gao XM, Yang YN. Long non-coding RNAs H19, MALAT1 and MIAT as potential novel biomarkers for diagnosis of acute myocardial infarction. Biomed Pharmacother 2019; 118:109208. [PMID: 31302423 DOI: 10.1016/j.biopha.2019.109208] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/25/2019] [Accepted: 07/02/2019] [Indexed: 01/26/2023] Open
Abstract
In this study, we evaluated the potential of peripheral blood mononuclear cells (PBMC) derived long non-coding RNAs (lncRNAs) as biomarkers for acute myocardial infarction (AMI). To assess the value of PBMCs-derived lncRNAs levels in predicting clinical outcomes in AMI. We measured the PBMC-derived levels of 10 individual lncRNAs which are known to be relevant to cardiovascular disease in PBMCs from 132 AMI patients and 104 healthy participants using quantitative RT-PCR. For AMI group, blood sample were obtained from patients after the onset of AMI. Out of the 10 lncRNAs tested, the mRNA level of lncRNA H19, MIAT and MALAT1 were significantly higher in AMI patients than in healthy control (2.3 ± 0.2 vs. 1.0 ± 0.1, p < 0.001, 1.5±0.1 vs. 1.0±0.1, p = 0.002, 1.8±0.2 vs. 1.0±0.1, p < 0.001, respectively). Receiver operating characteristic curve analyses showed that PBMC-derived H19 had significant diagnostic value for AMI (AUC, 0.753; 95% CI, 0.689˜0.817). Multivariate logistic regression analysis showed that H19 as a dangerous risk for AMI (OR = 2.498, 95% CI, 1.321-4.726, p = 0.005). In addition, the lncRNA H19 alteration was inversely associated with a number of cardiovascular protective factors, and positively associated with cardiovascular risk factors, such as high-density lipoprotein (HDL) (r=-0.198, p = 0.010), lipoprotein A (r=-0.153, p = 0.049), white blood cell counting (r=0.301, p < 0.001) and cardiac ejection fraction (r=-0.157, p = 0.042). Moreover, lncRNA H19 was positively correlated with cardiac biomarkers, i.e. troponinT (r=0.344,p < 0.001), CK (r=0.261, p = 0.001) and CKMB (r=0.24, p = 0.002). Hence, elevated expression level of PBMC-derived H19, MIAT and MALAT1 may be considered as novel biomarkers of AMI.
Collapse
Affiliation(s)
- Xue-Mei Wang
- Xinjiang Key Laboratory of Medical Animal Model Research, Xinjiang Medical University, Urumqi, China; Department of public health, Xi'an Medical University, Xi'an, China
| | - Xiao-Mei Li
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, China
| | - Ning Song
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hui Zhai
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiao-Ming Gao
- Xinjiang Key Laboratory of Medical Animal Model Research, Xinjiang Medical University, Urumqi, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, China.
| | - Yi-Ning Yang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, China.
| |
Collapse
|
98
|
Long noncoding RNA EMS connects c-Myc to cell cycle control and tumorigenesis. Proc Natl Acad Sci U S A 2019; 116:14620-14629. [PMID: 31262817 DOI: 10.1073/pnas.1903432116] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Deregulated expression of c-Myc is an important molecular hallmark of cancer. The oncogenic function of c-Myc has been largely attributed to its intrinsic nature as a master transcription factor. Here, we report the long noncoding RNA (lncRNA) E2F1 messenger RNA (mRNA) stabilizing factor (EMS) as a direct c-Myc transcriptional target. EMS functions as an oncogenic molecule by promoting G1/S cell cycle progression. Mechanistically, EMS cooperates with the RNA binding protein RALY to stabilize E2F1 mRNA, and thereby increases E2F1 expression. Furthermore, EMS is able to connect c-Myc to cell cycle control and tumorigenesis via modulating E2F1 mRNA stability. Together, these findings reveal a previously unappreciated mechanism through which c-Myc induces E2F1 expression and also implicate EMS as an important player in the regulation of c-Myc function.
Collapse
|
99
|
Sallam T, Sandhu J, Tontonoz P. Long Noncoding RNA Discovery in Cardiovascular Disease: Decoding Form to Function. Circ Res 2019; 122:155-166. [PMID: 29301847 DOI: 10.1161/circresaha.117.311802] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Despite significant improvements during the past 3 decades, cardiovascular disease remains a leading worldwide health epidemic. The recent identification of a fascinating group of mediators known as long noncoding RNAs (lncRNAs) has provided a wealth of new biology to explore for cardiovascular risk mitigation. lncRNAs are expressed in a highly context-specific fashion, and multiple lines of evidence implicated them in diverse biological processes. Indeed, abnormalities of lncRNAs have been directly linked with human ailments, including cardiovascular biology and disease. Of particular interest to the cardiovascular research community, dysregulation in lncRNA regulatory circuits have been associated with cardiac pathological hypertrophy, vascular disease, cell fate programming and development, atherosclerosis, dyslipidemia, and metabolic syndrome. Although techniques in interrogating noncoding RNAs are rapidly evolving, a major challenge in studying lncRNAs remains navigating through multiple technical constraints. In this review, we provide a road map for lncRNA discovery and interrogation in biological systems relevant to cardiovascular disease and highlight approaches to decipher their modes of action.
Collapse
Affiliation(s)
- Tamer Sallam
- From the Division of Cardiology, Department of Medicine (T.S.) and Department of Pathology and Laboratory Medicine, Howard Hughes Medical Institute (J.S., P.T.), University of California, Los Angeles.
| | - Jaspreet Sandhu
- From the Division of Cardiology, Department of Medicine (T.S.) and Department of Pathology and Laboratory Medicine, Howard Hughes Medical Institute (J.S., P.T.), University of California, Los Angeles
| | - Peter Tontonoz
- From the Division of Cardiology, Department of Medicine (T.S.) and Department of Pathology and Laboratory Medicine, Howard Hughes Medical Institute (J.S., P.T.), University of California, Los Angeles
| |
Collapse
|
100
|
Ding P, Chen Z, Chen H, Zhang Z, Liu Z, Yan X, Zhou H, Gu Q, Li C, Xu J. Structurally Selective Mechanism of Liver X Receptor Ligand: In Silico and In Vitro Studies. J Chem Inf Model 2019; 59:3277-3290. [DOI: 10.1021/acs.jcim.9b00292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Peng Ding
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, 132 East Circle at University City, Guangzhou 510006, China
| | - Ziyang Chen
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, 132 East Circle at University City, Guangzhou 510006, China
| | - Hao Chen
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, 132 East Circle at University City, Guangzhou 510006, China
| | - Zizhen Zhang
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, 132 East Circle at University City, Guangzhou 510006, China
| | - Zhihong Liu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, 132 East Circle at University City, Guangzhou 510006, China
| | - Xin Yan
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, 132 East Circle at University City, Guangzhou 510006, China
| | - Huihao Zhou
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, 132 East Circle at University City, Guangzhou 510006, China
| | - Qiong Gu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, 132 East Circle at University City, Guangzhou 510006, China
| | - Chanjuan Li
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, 132 East Circle at University City, Guangzhou 510006, China
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, 132 East Circle at University City, Guangzhou 510006, China
| |
Collapse
|