51
|
Steinmetz EL, Noh S, Klöppel C, Fuhr MF, Bach N, Raffael ME, Hildebrandt K, Wittling F, Jann D, Walldorf U. Generation of Mutants from the 57B Region of Drosophila melanogaster. Genes (Basel) 2023; 14:2047. [PMID: 38002990 PMCID: PMC10671637 DOI: 10.3390/genes14112047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
The 57B region of Drosophila melanogaster includes a cluster of the three homeobox genes orthopedia (otp), Drosophila Retinal homeobox (DRx), and homeobrain (hbn). In an attempt to isolate mutants for these genes, we performed an EMS mutagenesis and isolated lethal mutants from the 57B region, among them mutants for otp, DRx, and hbn. With the help of two newly generated deletions from the 57B region, we mapped additional mutants to specific chromosomal intervals and identified several of these mutants from the 57B region molecularly. In addition, we generated mutants for CG15651 and RIC-3 by gene targeting and mutants for the genes CG9344, CG15649, CG15650, and ND-B14.7 using the CRISPR/Cas9 system. We determined the lethality period during development for most isolated mutants. In total, we analysed alleles from nine different genes from the 57B region of Drosophila, which could now be used to further explore the functions of the corresponding genes in the future.
Collapse
Affiliation(s)
- Eva Louise Steinmetz
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
- Zoology & Physiology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building B2.1, D-66123 Saarbrücken, Germany
| | - Sandra Noh
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
| | - Christine Klöppel
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
| | - Martin F. Fuhr
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
| | - Nicole Bach
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
| | - Mona Evelyn Raffael
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
| | - Kirsten Hildebrandt
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
| | - Fabienne Wittling
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Building E8.1, D-66123 Saarbrücken, Germany
| | - Doris Jann
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
- Medical Biochemistry & Molecular Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 45.2, D-66421 Homburg, Germany
| | - Uwe Walldorf
- Developmental Biology, ZHMB (Center of Human and Molecular Biology), Saarland University, Building 61, D-66421 Homburg, Germany
| |
Collapse
|
52
|
Farleigh K, Ascanio A, Farleigh ME, Schield DR, Card DC, Leal M, Castoe TA, Jezkova T, Rodríguez-Robles JA. Signals of differential introgression in the genome of natural hybrids of Caribbean anoles. Mol Ecol 2023; 32:6000-6017. [PMID: 37861454 DOI: 10.1111/mec.17170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 08/30/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023]
Abstract
Hybridization facilitates recombination between divergent genetic lineages and can be shaped by both neutral and selective processes. Upon hybridization, loci with no net fitness effects introgress randomly from parental species into the genomes of hybrid individuals. Conversely, alleles from one parental species at some loci may provide a selective advantage to hybrids, resulting in patterns of introgression that do not conform to random expectations. We investigated genomic patterns of differential introgression in natural hybrids of two species of Caribbean anoles, Anolis pulchellus and A. krugi in Puerto Rico. Hybrids exhibit A. pulchellus phenotypes but possess A. krugi mitochondrial DNA, originated from multiple, independent hybridization events, and appear to have replaced pure A. pulchellus across a large area in western Puerto Rico. Combining genome-wide SNP datasets with bioinformatic methods to identify signals of differential introgression in hybrids, we demonstrate that the genomes of hybrids are dominated by pulchellus-derived alleles and show only 10%-20% A. krugi ancestry. The majority of A. krugi loci in hybrids exhibit a signal of non-random differential introgression and include loci linked to genes involved in development and immune function. Three of these genes (delta like canonical notch ligand 1, jagged1 and notch receptor 1) affect cell differentiation and growth and interact with mitochondrial function. Our results suggest that differential non-random introgression for a subset of loci may be driven by selection favouring the inheritance of compatible mitochondrial and nuclear-encoded genes in hybrids.
Collapse
Affiliation(s)
- Keaka Farleigh
- Department of Biology, Miami University, Oxford, Ohio, USA
| | | | | | - Drew R Schield
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
| | - Daren C Card
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Manuel Leal
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | - Todd A Castoe
- Department of Biology, University of Texas, Arlington, Arlington, Texas, USA
| | - Tereza Jezkova
- Department of Biology, Miami University, Oxford, Ohio, USA
| | | |
Collapse
|
53
|
Okoye CN, Koren SA, Wojtovich AP. Mitochondrial complex I ROS production and redox signaling in hypoxia. Redox Biol 2023; 67:102926. [PMID: 37871533 PMCID: PMC10598411 DOI: 10.1016/j.redox.2023.102926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/25/2023] Open
Abstract
Mitochondria are a main source of cellular energy. Oxidative phosphorylation (OXPHOS) is the major process of aerobic respiration. Enzyme complexes of the electron transport chain (ETC) pump protons to generate a protonmotive force (Δp) that drives OXPHOS. Complex I is an electron entry point into the ETC. Complex I oxidizes nicotinamide adenine dinucleotide (NADH) and transfers electrons to ubiquinone in a reaction coupled with proton pumping. Complex I also produces reactive oxygen species (ROS) under various conditions. The enzymatic activities of complex I can be regulated by metabolic conditions and serves as a regulatory node of the ETC. Complex I ROS plays diverse roles in cell metabolism ranging from physiologic to pathologic conditions. Progress in our understanding indicates that ROS release from complex I serves important signaling functions. Increasing evidence suggests that complex I ROS is important in signaling a mismatch in energy production and demand. In this article, we review the role of ROS from complex I in sensing acute hypoxia.
Collapse
Affiliation(s)
- Chidozie N Okoye
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Shon A Koren
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Andrew P Wojtovich
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA; Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
54
|
Olkhova EA, Bradshaw C, Blain A, Alvim D, Turnbull DM, LeBeau FEN, Ng YS, Gorman GS, Lax NZ. A novel mouse model of mitochondrial disease exhibits juvenile-onset severe neurological impairment due to parvalbumin cell mitochondrial dysfunction. Commun Biol 2023; 6:1078. [PMID: 37872380 PMCID: PMC10593770 DOI: 10.1038/s42003-023-05238-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 08/10/2023] [Indexed: 10/25/2023] Open
Abstract
Mitochondrial diseases comprise a common group of neurometabolic disorders resulting from OXPHOS defects, that may manifest with neurological impairments, for which there are currently no disease-modifying therapies. Previous studies suggest inhibitory interneuron susceptibility to mitochondrial impairment, especially of parvalbumin-expressing interneurons (PV+). We have developed a mouse model of mitochondrial dysfunction specifically in PV+ cells via conditional Tfam knockout, that exhibited a juvenile-onset progressive phenotype characterised by cognitive deficits, anxiety-like behaviour, head-nodding, stargazing, ataxia, and reduced lifespan. A brain region-dependent decrease of OXPHOS complexes I and IV in PV+ neurons was detected, with Purkinje neurons being most affected. We validated these findings in a neuropathological study of patients with pathogenic mtDNA and POLG variants showing PV+ interneuron loss and deficiencies in complexes I and IV. This mouse model offers a drug screening platform to propel the discovery of therapeutics to treat severe neurological impairment due to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Elizaveta A Olkhova
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Carla Bradshaw
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Alasdair Blain
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Debora Alvim
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Doug M Turnbull
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE2 4HH, UK
- NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Fiona E N LeBeau
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE2 4HH, UK
- NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Gráinne S Gorman
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE2 4HH, UK.
- NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK.
| | - Nichola Z Lax
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
55
|
Bennett NK, Lee M, Orr AL, Nakamura K. Systems-level analyses dissociate genetic regulators of reactive oxygen species and energy production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.14.562276. [PMID: 37904938 PMCID: PMC10614765 DOI: 10.1101/2023.10.14.562276] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Respiratory chain dysfunction can decrease ATP and increase reactive oxygen species (ROS) levels. Despite the importance of these metabolic parameters to a wide range of cellular functions and disease, we lack an integrated understanding of how they are differentially regulated. To address this question, we adapted a CRISPRi- and FACS- based platform to compare the effects of respiratory gene knockdown on ROS to their effects on ATP. Focusing on genes whose knockdown is known to decrease mitochondria-derived ATP, we showed that knockdown of genes in specific respiratory chain complexes (I, III and CoQ10 biosynthesis) increased ROS, whereas knockdown of other low ATP hits either had no impact (mitochondrial ribosomal proteins) or actually decreased ROS (complex IV). Moreover, although shifting metabolic conditions profoundly altered mitochondria-derived ATP levels, it had little impact on mitochondrial or cytosolic ROS. In addition, knockdown of a subset of complex I subunits-including NDUFA8, NDUFB4, and NDUFS8-decreased complex I activity, mitochondria-derived ATP and supercomplex level, but knockdown of these genes had differential effects on ROS. Conversely, we found an essential role for ether lipids in the dynamic regulation of mitochondrial ROS levels independent of ATP. Thus, our results identify specific metabolic regulators of cellular ATP and ROS balance that may help dissect the roles of these processes in disease and identify therapeutic strategies to independently target energy failure and oxidative stress.
Collapse
Affiliation(s)
- Neal K. Bennett
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Megan Lee
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, 94158, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - Adam L. Orr
- Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Ken Nakamura
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, 94158, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
- Graduate Programs in Neuroscience and Biomedical Sciences, University of California San Francisco, San Francisco, California, USA
- Department of Neurology, University of California, San Francisco, San Francisco, California, 94158, USA
| |
Collapse
|
56
|
Tanaka M, Yasui M, Hara-Chikuma M. Aquaporin 3 inhibition suppresses the mitochondrial respiration rate and viability of multiple myeloma cells. Biochem Biophys Res Commun 2023; 676:158-164. [PMID: 37517218 DOI: 10.1016/j.bbrc.2023.07.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
Aquaporin 3 (AQP3) is a member of the aquaporin water channel family expressed by numerous cell types, including some cancer cells. Accumulating evidence suggests that AQP3 inhibition may impede cancer progression, but drugs targeting AQP3 are still in the early pre-clinical stage of development. Here, we examined the effect of AQP3 inhibition on multiple myeloma (MM), an incurable plasma cell malignancy. Four MM cell lines were cultured in the presence of an anti-AQP3 monoclonal antibody (mAb), the AQP3 inhibitor DFP00173, or corresponding controls, and the effects on cell viability, proliferation, apoptosis, and mitochondrial respiration capacity were compared. Both anti-AQP3 mAb and DFP00173 reduced cell growth, mitochondrial respiration rate, and electron transport chain complex I activity. Both agents also potentiated the antiproliferative efficacy of the anticancer drug venetoclax. Administration of the anti-AQP3 mAb to immunodeficient mice inoculated with RPMI8226 or KMS-11 MM cells significantly suppressed tumor growth. These data provide evidence that AQP3 blockade can suppress MM cell growth in vitro and tumor growth in mice. Thus, AQP3 inhibition may be an effective therapeutic strategy for MM.
Collapse
Affiliation(s)
- Manami Tanaka
- Department of Pharmacology, School of Medicine, Keio University, 160-8582, Japan
| | - Masato Yasui
- Department of Pharmacology, School of Medicine, Keio University, 160-8582, Japan; Keio Advanced Institute for Water Biology and Medicine, Japan
| | - Mariko Hara-Chikuma
- Department of Pharmacology, School of Medicine, Keio University, 160-8582, Japan.
| |
Collapse
|
57
|
Liang J, Vitale T, Zhang X, Jackson TD, Yu D, Jedrychowski M, Gygi SP, Widlund HR, Wucherpfennig KW, Puigserver P. Selective Mitochondrial Respiratory Complex I Subunit Deficiency Causes Tumor Immunogenicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560316. [PMID: 37873273 PMCID: PMC10592908 DOI: 10.1101/2023.10.02.560316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Targeting of specific metabolic pathways in tumor cells has the potential to sensitize them to immune-mediated attack. Here we provide evidence for a specific means of mitochondrial respiratory Complex I (CI) inhibition that improves tumor immunogenicity and sensitivity to immune checkpoint blockade (ICB). Targeted genetic deletion of the CI subunits Ndufs4 and Ndufs6 , but not other subunits, induces an immune-dependent tumor growth attenuation in mouse melanoma models. We show that deletion of Ndufs4 induces expression of the transcription factor Nlrc5 and genes in the MHC class I antigen presentation and processing pathway. This induction of MHC-related genes is driven by an accumulation of pyruvate dehydrogenase-dependent mitochondrial acetyl-CoA downstream of CI subunit deletion. This work provides a novel functional modality by which selective CI inhibition restricts tumor growth, suggesting that specific targeting of Ndufs4 , or related CI subunits, increases T-cell mediated immunity and sensitivity to ICB.
Collapse
|
58
|
Liu G, Chen ZG, Yang LR, Rong YX, Wang Q, Li L, Lu QW, Jiang MD, Qi HY. Z-ligustilide preferentially caused mitochondrial dysfunction in AML HL-60 cells by activating nuclear receptors NUR77 and NOR1. Chin Med 2023; 18:123. [PMID: 37735686 PMCID: PMC10512564 DOI: 10.1186/s13020-023-00808-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/18/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Nuclear receptors NUR77 and NOR1 were identified as critical targets in acute myeloid leukemia (AML) therapy. Previously, we showed that Z-ligustilide (Z-LIG) selectively targeted AML by restoring NUR77 and NOR1. However, its downstream mechanisms are yet to be elucidated. METHODS SRB staining assay was used to measure cell viability. Cell apoptosis, mitochondrial membrane potential and mitochondrial reactive oxygen species were analyzed using flow cytometry. The potential targets of Z-LIG in AML HL-60 cells were evaluated by RNA sequencing. Changes in RNA levels were measured using quantitative RT-qPCR and western blot analysis was used to detect the expression of proteins. RESULTS Z-LIG preferentially induced mitochondrial dysfunction in HL-60 cells compared with 293T cells. Furthermore, RNA sequencing revealed that mitochondrial transcription and translation might be potential Z-LIG targets inhibiting HL-60 cells. NUR77/NOR1 overexpression significantly reduced the mitochondrial ATP and mitochondrial membrane potential and increased mitochondrial reactive oxygen species in HL-60 cells but not in 293T cells. Moreover, Z-LIG induced mitochondrial dysfunction by restoring NUR77 and NOR1 in HL-60 cells. Compared with HL-60 cells, the apoptosis-inducing activities of NUR77/NOR1 and Z-LIG were significantly reduced in HL-60 ρ0 cells depleted in mitochondrial DNA (mt-DNA). Moreover, NUR77/NOR1 and Z-LIG downregulated mitochondrial transcription and translation related proteins in HL-60 cells. Notably, Z-LIG remarkably reduced mitochondrial ATP in primary AML cells and showed anti-AML activity in mouse models of human AML. CONCLUSIONS Collectively, our findings suggested that Z-LIG selectively induces mitochondrial dysfunction in AML HL-60 cells by restoring NUR77 and NOR1, a process associated with interference in mtDNA transcription.
Collapse
Affiliation(s)
- Gen Liu
- College of Pharmaceutical Sciences, College of Chinese Medicine, Southwest University, 2 Tiansheng Road, Beibei District, Chongqing, 400715, China
| | - Zhi-Gang Chen
- College of Pharmaceutical Sciences, College of Chinese Medicine, Southwest University, 2 Tiansheng Road, Beibei District, Chongqing, 400715, China
| | - Li-Rong Yang
- College of Pharmaceutical Sciences, College of Chinese Medicine, Southwest University, 2 Tiansheng Road, Beibei District, Chongqing, 400715, China
| | - Yu-Xia Rong
- College of Pharmaceutical Sciences, College of Chinese Medicine, Southwest University, 2 Tiansheng Road, Beibei District, Chongqing, 400715, China
| | - Qin Wang
- College of Pharmaceutical Sciences, College of Chinese Medicine, Southwest University, 2 Tiansheng Road, Beibei District, Chongqing, 400715, China
| | - Li Li
- College of Pharmaceutical Sciences, College of Chinese Medicine, Southwest University, 2 Tiansheng Road, Beibei District, Chongqing, 400715, China
| | - Qian-Wei Lu
- Radiotherapy Department, Chongqing Ninth People's Hospital, Chongqing, China
| | - Ming-Dong Jiang
- Radiotherapy Department, Chongqing Ninth People's Hospital, Chongqing, China
| | - Hong-Yi Qi
- College of Pharmaceutical Sciences, College of Chinese Medicine, Southwest University, 2 Tiansheng Road, Beibei District, Chongqing, 400715, China.
| |
Collapse
|
59
|
Wang C, Du M, Jiang Z, Cong R, Wang W, Zhang G, Li L. Comparative proteomic and phosphoproteomic analysis reveals differential heat response mechanism in two congeneric oyster species. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115197. [PMID: 37451098 DOI: 10.1016/j.ecoenv.2023.115197] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/17/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023]
Abstract
High-temperature stress caused by global climate change poses a significant threat to marine ectotherms. This study investigated the role of protein phosphorylation modifications in the molecular regulation network under heat stress in oysters, which are representative intertidal organisms that experience considerable temperature changes. Firstly, the study compared the extent of thermal damage between two congeneric oyster species, the relative heat-tolerant Crassostrea angulata (C. angulata) and heat-sensitive Crassostrea gigas (C. gigas), under sublethal temperature (37 °C) for 12 h, using various physiological and biochemical methods. Subsequently, the comparative proteomic and phosphoproteomic analyses revealed that high-temperature considerably regulated signal transduction, energy metabolism, protein synthesis, cell survival and apoptosis, and cytoskeleton remodeling through phosphorylation modifications of related receptors and kinases. Furthermore, the protein kinase A, mitogen-activated protein kinase 1, tyrosine-protein kinase Src, and serine/threonine kinase AKT, exhibiting differential phosphorylation modification patterns, were identified as hub regulators that may enhance glycolysis and TCA cycle to increase the energy supply, distribute protein synthesis, inhibit Caspase-dependent apoptosis activated by endogenous mitochondrial cytochrome release and maintain cytoskeletal stability, ultimately shaping the higher thermal resistance of C. angulata. This study represents the first investigation of protein phosphorylation dynamics in marine invertebrates under heat stress, reveals the molecular mechanisms underlying the differential thermal responses between two Crassostrea oysters at the phosphorylation level, and provides new insights into understanding phosphorylation-mediated molecular responses in marine organisms during environmental changes and predicting the adaptive potential in the context of global warming.
Collapse
Affiliation(s)
- Chaogang Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Mingyang Du
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhuxiang Jiang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Rihao Cong
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao, China
| | - Wei Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao, China
| | - Guofan Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao, China
| | - Li Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao, China.
| |
Collapse
|
60
|
Smirnov D, Konstantinovskiy N, Prokisch H. Integrative omics approaches to advance rare disease diagnostics. J Inherit Metab Dis 2023; 46:824-838. [PMID: 37553850 DOI: 10.1002/jimd.12663] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/10/2023]
Abstract
Over the past decade high-throughput DNA sequencing approaches, namely whole exome and whole genome sequencing became a standard procedure in Mendelian disease diagnostics. Implementation of these technologies greatly facilitated diagnostics and shifted the analysis paradigm from variant identification to prioritisation and evaluation. The diagnostic rates vary widely depending on the cohort size, heterogeneity and disease and range from around 30% to 50% leaving the majority of patients undiagnosed. Advances in omics technologies and computational analysis provide an opportunity to increase these unfavourable rates by providing evidence for disease-causing variant validation and prioritisation. This review aims to provide an overview of the current application of several omics technologies including RNA-sequencing, proteomics, metabolomics and DNA-methylation profiling for diagnostics of rare genetic diseases in general and inborn errors of metabolism in particular.
Collapse
Affiliation(s)
- Dmitrii Smirnov
- School of Medicine, Institute of Human Genetics, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Computational Health Center, Helmholtz Munich, Neuherberg, Germany
| | - Nikita Konstantinovskiy
- School of Medicine, Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Holger Prokisch
- School of Medicine, Institute of Human Genetics, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Computational Health Center, Helmholtz Munich, Neuherberg, Germany
| |
Collapse
|
61
|
Lee BM, Park YJ, Pang WK, Ryu DY, Rahman MS, Lee DY, Pang MG. Boar fertility is controlled through systematic changes of mitochondrial protein expression during sperm capacitation. Int J Biol Macromol 2023; 248:125955. [PMID: 37494999 DOI: 10.1016/j.ijbiomac.2023.125955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/10/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
Vigorous activation of mitochondria in spermatozoa during capacitation induces the biological and morphological changes of spermatozoa to acquire fertilizing ability. To in-depth understand the dynamic roles of mitochondrial and male fertility, this study was to identify how the mitochondrial proteins are changed during sperm capacitation and regulate male fertility using boar spermatozoa. The mitochondrial proteins were differentially changed during sperm capacitation according to fertility status, i.e., superior litter size (SL) and normal litter size (NL). Following sperm capacitation, ubiquitin-cytochrome c reductase core protein (UQCRC1) and ATP synthase F1 (ATP5F1) increased in NL, while cytochrome c oxidase subunit 5B (COX5B), and cytochrome c1 (CYC1) proteins decreased. In contrast, only and ubiquinone oxidoreductase core subunit 8 (NDUFS8) protein was increased in SL following capacitation. The protein expression difference value of CYC1, COX5B, and NDUFS8 following sperm capacitation was lower in NL than SL boars. Based on these complicated changes during sperm capacitation, the accuracy for predicting male fertility of NDUFS8 was increased to 87 %. Overall, considering the systematic orchestration of mitochondrial protein expression according to sperm capacitation status, it will be possible to better understand male fertility.
Collapse
Affiliation(s)
- Byeong-Mu Lee
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Yoo-Jin Park
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Won-Ki Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Do-Yeal Ryu
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Md Saidur Rahman
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Dae-Young Lee
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
62
|
Murari A, Rhooms SK, Vimal D, Hossain KFB, Saini S, Villanueva M, Schlame M, Owusu-Ansah E. Phospholipids can regulate complex I assembly independent of their role in maintaining mitochondrial membrane integrity. Cell Rep 2023; 42:112846. [PMID: 37516961 DOI: 10.1016/j.celrep.2023.112846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 05/22/2023] [Accepted: 07/06/2023] [Indexed: 08/01/2023] Open
Abstract
Several phospholipid (PL) molecules are intertwined with some mitochondrial complex I (CI) subunits in the membrane domain of CI, but their function is unclear. We report that when the Drosophila melanogaster ortholog of the intramitochondrial PL transporter, STARD7, is severely disrupted, assembly of the oxidative phosphorylation (OXPHOS) system is impaired, and the biogenesis of several CI subcomplexes is hampered. However, intriguingly, a restrained knockdown of STARD7 impairs the incorporation of NDUFS5 and NDUFA1 into the proximal part of the CI membrane domain without directly affecting the incorporation of subunits in the distal part of the membrane domain, OXPHOS complexes already assembled, or mitochondrial cristae integrity. Importantly, the restrained knockdown of STARD7 appears to induce a modest amount of cardiolipin remodeling, indicating that there could be some alteration in the composition of the mitochondrial phospholipidome. We conclude that PLs can regulate CI biogenesis independent of their role in maintaining mitochondrial membrane integrity.
Collapse
Affiliation(s)
- Anjaneyulu Murari
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Shauna-Kay Rhooms
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Divya Vimal
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kaniz Fatima Binte Hossain
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sanjay Saini
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Maximino Villanueva
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Michael Schlame
- Departments of Anesthesiology and Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Edward Owusu-Ansah
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
63
|
Zhao T, Zhang J, Lei H, Meng Y, Cheng H, Zhao Y, Geng G, Mu C, Chen L, Liu Q, Luo Q, Zhang C, Long Y, Su J, Wang Y, Li Z, Sun J, Chen G, Li Y, Liao X, Shang Y, Hu G, Chen Q, Zhu Y. NRF1-mediated mitochondrial biogenesis antagonizes innate antiviral immunity. EMBO J 2023; 42:e113258. [PMID: 37409632 PMCID: PMC10425878 DOI: 10.15252/embj.2022113258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 07/07/2023] Open
Abstract
Mitochondrial biogenesis is the process of generating new mitochondria to maintain cellular homeostasis. Here, we report that viruses exploit mitochondrial biogenesis to antagonize innate antiviral immunity. We found that nuclear respiratory factor-1 (NRF1), a vital transcriptional factor involved in nuclear-mitochondrial interactions, is essential for RNA (VSV) or DNA (HSV-1) virus-induced mitochondrial biogenesis. NRF1 deficiency resulted in enhanced innate immunity, a diminished viral load, and morbidity in mice. Mechanistically, the inhibition of NRF1-mediated mitochondrial biogenesis aggravated virus-induced mitochondrial damage, promoted the release of mitochondrial DNA (mtDNA), increased the production of mitochondrial reactive oxygen species (mtROS), and activated the innate immune response. Notably, virus-activated kinase TBK1 phosphorylated NRF1 at Ser318 and thereby triggered the inactivation of the NRF1-TFAM axis during HSV-1 infection. A knock-in (KI) strategy that mimicked TBK1-NRF1 signaling revealed that interrupting the TBK1-NRF1 connection ablated mtDNA release and thereby attenuated the HSV-1-induced innate antiviral response. Our study reveals a previously unidentified antiviral mechanism that utilizes a NRF1-mediated negative feedback loop to modulate mitochondrial biogenesis and antagonize innate immune response.
Collapse
Affiliation(s)
- Tian Zhao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Jiaojiao Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Hong Lei
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Yuanyuan Meng
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Hongcheng Cheng
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Yanping Zhao
- School of Statistics and Data Science, LPMC and KLMDASRNankai UniversityTianjinChina
| | - Guangfeng Geng
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Chenglong Mu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Linbo Chen
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Qiangqiang Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Qian Luo
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Chuanmei Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Yijia Long
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Jingyi Su
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Yinhao Wang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Zhuoya Li
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Jiaxing Sun
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Guo Chen
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Yanjun Li
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Xudong Liao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Yingli Shang
- Department of Preventive Veterinary Medicine, College of Veterinary MedicineShandong Agricultural UniversityTaianChina
| | - Gang Hu
- School of Statistics and Data Science, LPMC and KLMDASRNankai UniversityTianjinChina
| | - Quan Chen
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Yushan Zhu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| |
Collapse
|
64
|
Anderson AJ, Crameri JJ, Ang C, Malcolm TR, Kang Y, Baker MJ, Palmer CS, Sharpe AJ, Formosa LE, Ganio K, Baker MJ, McDevitt CA, Ryan MT, Maher MJ, Stojanovski D. Human Tim8a, Tim8b and Tim13 are auxiliary assembly factors of mature Complex IV. EMBO Rep 2023; 24:e56430. [PMID: 37272231 PMCID: PMC10398661 DOI: 10.15252/embr.202256430] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 06/06/2023] Open
Abstract
Human Tim8a and Tim8b are paralogous intermembrane space proteins of the small TIM chaperone family. Yeast small TIMs function in the trafficking of proteins to the outer and inner mitochondrial membranes. This putative import function for hTim8a and hTim8b has been challenged in human models, but their precise molecular function(s) remains undefined. Likewise, the necessity for human cells to encode two Tim8 proteins and whether any potential redundancy exists is unclear. We demonstrate that hTim8a and hTim8b function in the assembly of cytochrome c oxidase (Complex IV). Using affinity enrichment mass spectrometry, we define the interaction network of hTim8a, hTim8b and hTim13, identifying subunits and assembly factors of the Complex IV COX2 module. hTim8-deficient cells have a COX2 and COX3 module defect and exhibit an accumulation of the Complex IV S2 subcomplex. These data suggest that hTim8a and hTim8b function in assembly of Complex IV via interactions with intermediate-assembly subcomplexes. We propose that hTim8-hTim13 complexes are auxiliary assembly factors involved in the formation of the Complex IV S3 subcomplex during assembly of mature Complex IV.
Collapse
Affiliation(s)
- Alexander J Anderson
- Department of Biochemistry and PharmacologyThe University of MelbourneParkvilleVicAustralia
- The Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVicAustralia
| | - Jordan J Crameri
- Department of Biochemistry and PharmacologyThe University of MelbourneParkvilleVicAustralia
- The Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVicAustralia
| | - Ching‐Seng Ang
- The Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVicAustralia
| | - Tess R Malcolm
- The Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVicAustralia
- School of ChemistryThe University of MelbourneParkvilleVicAustralia
| | - Yilin Kang
- Department of Biochemistry and PharmacologyThe University of MelbourneParkvilleVicAustralia
- The Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVicAustralia
| | - Megan J Baker
- Department of Biochemistry and PharmacologyThe University of MelbourneParkvilleVicAustralia
- The Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVicAustralia
| | - Catherine S Palmer
- Department of Biochemistry and PharmacologyThe University of MelbourneParkvilleVicAustralia
- The Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVicAustralia
| | - Alice J Sharpe
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery InstituteMonash UniversityClaytonVicAustralia
| | - Luke E Formosa
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery InstituteMonash UniversityClaytonVicAustralia
| | - Katherine Ganio
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and ImmunityThe University of MelbourneParkvilleVicAustralia
| | - Michael J Baker
- Department of Biochemistry and PharmacologyThe University of MelbourneParkvilleVicAustralia
- The Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVicAustralia
| | - Christopher A McDevitt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and ImmunityThe University of MelbourneParkvilleVicAustralia
| | - Michael T Ryan
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery InstituteMonash UniversityClaytonVicAustralia
| | - Megan J Maher
- The Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVicAustralia
- School of ChemistryThe University of MelbourneParkvilleVicAustralia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVicAustralia
| | - Diana Stojanovski
- Department of Biochemistry and PharmacologyThe University of MelbourneParkvilleVicAustralia
- The Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVicAustralia
| |
Collapse
|
65
|
Mahé M, Rios-Fuller TJ, Karolin A, Schneider RJ. Genetics of enzymatic dysfunctions in metabolic disorders and cancer. Front Oncol 2023; 13:1230934. [PMID: 37601653 PMCID: PMC10433910 DOI: 10.3389/fonc.2023.1230934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
Inherited metabolic disorders arise from mutations in genes involved in the biogenesis, assembly, or activity of metabolic enzymes, leading to enzymatic deficiency and severe metabolic impairments. Metabolic enzymes are essential for the normal functioning of cells and are involved in the production of amino acids, fatty acids and nucleotides, which are essential for cell growth, division and survival. When the activity of metabolic enzymes is disrupted due to mutations or changes in expression levels, it can result in various metabolic disorders that have also been linked to cancer development. However, there remains much to learn regarding the relationship between the dysregulation of metabolic enzymes and metabolic adaptations in cancer cells. In this review, we explore how dysregulated metabolism due to the alteration or change of metabolic enzymes in cancer cells plays a crucial role in tumor development, progression, metastasis and drug resistance. In addition, these changes in metabolism provide cancer cells with a number of advantages, including increased proliferation, resistance to apoptosis and the ability to evade the immune system. The tumor microenvironment, genetic context, and different signaling pathways further influence this interplay between cancer and metabolism. This review aims to explore how the dysregulation of metabolic enzymes in specific pathways, including the urea cycle, glycogen storage, lysosome storage, fatty acid oxidation, and mitochondrial respiration, contributes to the development of metabolic disorders and cancer. Additionally, the review seeks to shed light on why these enzymes represent crucial potential therapeutic targets and biomarkers in various cancer types.
Collapse
Affiliation(s)
| | | | | | - Robert J. Schneider
- Department of Microbiology, Grossman NYU School of Medicine, New York, NY, United States
| |
Collapse
|
66
|
Grba DN, Chung I, Bridges HR, Agip ANA, Hirst J. Investigation of hydrated channels and proton pathways in a high-resolution cryo-EM structure of mammalian complex I. SCIENCE ADVANCES 2023; 9:eadi1359. [PMID: 37531432 PMCID: PMC10396290 DOI: 10.1126/sciadv.adi1359] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023]
Abstract
Respiratory complex I, a key enzyme in mammalian metabolism, captures the energy released by reduction of ubiquinone by NADH to drive protons across the inner mitochondrial membrane, generating the proton-motive force for ATP synthesis. Despite remarkable advances in structural knowledge of this complicated membrane-bound enzyme, its mechanism of catalysis remains controversial. In particular, how ubiquinone reduction is coupled to proton pumping and the pathways and mechanisms of proton translocation are contested. We present a 2.4-Å resolution cryo-EM structure of complex I from mouse heart mitochondria in the closed, active (ready-to-go) resting state, with 2945 water molecules modeled. By analyzing the networks of charged and polar residues and water molecules present, we evaluate candidate pathways for proton transfer through the enzyme, for the chemical protons for ubiquinone reduction, and for the protons transported across the membrane. Last, we compare our data to the predictions of extant mechanistic models, and identify key questions to answer in future work to test them.
Collapse
|
67
|
Amarasekera SSC, Hock DH, Lake NJ, Calvo SE, Grønborg SW, Krzesinski EI, Amor DJ, Fahey MC, Simons C, Wibrand F, Mootha VK, Lek M, Lunke S, Stark Z, Østergaard E, Christodoulou J, Thorburn DR, Stroud DA, Compton AG. Multi-omics identifies large mitoribosomal subunit instability caused by pathogenic MRPL39 variants as a cause of pediatric onset mitochondrial disease. Hum Mol Genet 2023; 32:2441-2454. [PMID: 37133451 PMCID: PMC10360397 DOI: 10.1093/hmg/ddad069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 03/20/2023] [Accepted: 04/24/2023] [Indexed: 05/04/2023] Open
Abstract
MRPL39 encodes one of 52 proteins comprising the large subunit of the mitochondrial ribosome (mitoribosome). In conjunction with 30 proteins in the small subunit, the mitoribosome synthesizes the 13 subunits of the mitochondrial oxidative phosphorylation (OXPHOS) system encoded by mitochondrial Deoxyribonucleic acid (DNA). We used multi-omics and gene matching to identify three unrelated individuals with biallelic variants in MRPL39 presenting with multisystem diseases with severity ranging from lethal, infantile-onset (Leigh syndrome spectrum) to milder with survival into adulthood. Clinical exome sequencing of known disease genes failed to diagnose these patients; however quantitative proteomics identified a specific decrease in the abundance of large but not small mitoribosomal subunits in fibroblasts from the two patients with severe phenotype. Re-analysis of exome sequencing led to the identification of candidate single heterozygous variants in mitoribosomal genes MRPL39 (both patients) and MRPL15. Genome sequencing identified a shared deep intronic MRPL39 variant predicted to generate a cryptic exon, with transcriptomics and targeted studies providing further functional evidence for causation. The patient with the milder disease was homozygous for a missense variant identified through trio exome sequencing. Our study highlights the utility of quantitative proteomics in detecting protein signatures and in characterizing gene-disease associations in exome-unsolved patients. We describe Relative Complex Abundance analysis of proteomics data, a sensitive method that can identify defects in OXPHOS disorders to a similar or greater sensitivity to the traditional enzymology. Relative Complex Abundance has potential utility for functional validation or prioritization in many hundreds of inherited rare diseases where protein complex assembly is disrupted.
Collapse
Affiliation(s)
- Sumudu S C Amarasekera
- Murdoch Children’s Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Daniella H Hock
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Nicole J Lake
- Murdoch Children’s Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510 USA
| | - Sarah E Calvo
- Broad Institute, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02446, USA
| | - Sabine W Grønborg
- Department of Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark
- Center for Inherited Metabolic Disease, Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark
| | - Emma I Krzesinski
- Monash Genetics, Monash Health, Melbourne, VIC 3168 Australia
- Department of Paediatrics, Monash University, Melbourne, VIC 3168 Australia
| | - David J Amor
- Murdoch Children’s Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Michael C Fahey
- Monash Genetics, Monash Health, Melbourne, VIC 3168 Australia
- Department of Paediatrics, Monash University, Melbourne, VIC 3168 Australia
| | - Cas Simons
- Murdoch Children’s Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Flemming Wibrand
- Department of Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark
| | - Vamsi K Mootha
- Broad Institute, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02446, USA
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510 USA
| | - Sebastian Lunke
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
- Australian Genomics Health Alliance, Melbourne, VIC 3052, Australia
- Department of Pathology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Zornitza Stark
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
- Australian Genomics Health Alliance, Melbourne, VIC 3052, Australia
| | - Elsebet Østergaard
- Department of Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - John Christodoulou
- Murdoch Children’s Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
- Australian Genomics Health Alliance, Melbourne, VIC 3052, Australia
- Discipline of Child & Adolescent Health, Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - David R Thorburn
- Murdoch Children’s Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
- Australian Genomics Health Alliance, Melbourne, VIC 3052, Australia
| | - David A Stroud
- Murdoch Children’s Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
| | - Alison G Compton
- Murdoch Children’s Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
| |
Collapse
|
68
|
Yu Z, Li M, Peng W. Exploring biomarkers of premature ovarian insufficiency based on oxford nanopore transcriptional profile and machine learning. Sci Rep 2023; 13:11498. [PMID: 37460774 PMCID: PMC10352282 DOI: 10.1038/s41598-023-38754-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/14/2023] [Indexed: 07/20/2023] Open
Abstract
Premature ovarian insufficiency (POI) is a reproductive endocrine disorder characterized by infertility and perimenopausal syndrome, with a highly heterogeneous genetic etiology and its mechanism is not fully understood. Therefore, we utilized Oxford Nanopore Technology (ONT) for the first time to characterize the full-length transcript profile, and revealed biomarkers, pathway and molecular mechanisms for POI by bioinformatics analysis and machine learning. Ultimately, we identified 272 differentially expressed genes, 858 core genes, and 25 hub genes by analysis of differential expression, gene set enrichment, and protein-protein interactions. Seven candidate genes were identified based on the intersection features of the random forest and Boruta algorithm. qRT-PCR results indicated that COX5A, UQCRFS1, LCK, RPS2 and EIF5A exhibited consistent expression trends with sequencing data and have potential as biomarkers. Additionally, GSEA analysis revealed that the pathophysiology of POI is closely associated with inhibition of the PI3K-AKT pathway, oxidative phosphorylation and DNA damage repair, as well as activation of inflammatory and apoptotic pathways. Furthermore, we emphasize that downregulation of respiratory chain enzyme complex subunits and inhibition of oxidative phosphorylation pathways play crucial roles in the pathophysiology of POI. In conclusion, our utilization of long-read sequencing has refined the annotation information within the POI transcriptional profile. This valuable data provides novel insights for further exploration into molecular regulatory networks and potential biomarkers associated with POI.
Collapse
Affiliation(s)
- Zhaoyang Yu
- The First Affiliated Clinical College of Guangxi Medical University, Nanning, China
| | - Mujun Li
- Reproductive Medicine Research Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| | - Weilong Peng
- School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou, China.
| |
Collapse
|
69
|
Kim M, Serwa RA, Samluk L, Suppanz I, Kodroń A, Stępkowski TM, Elancheliyan P, Tsegaye B, Oeljeklaus S, Wasilewski M, Warscheid B, Chacinska A. Immunoproteasome-specific subunit PSMB9 induction is required to regulate cellular proteostasis upon mitochondrial dysfunction. Nat Commun 2023; 14:4092. [PMID: 37433777 DOI: 10.1038/s41467-023-39642-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/21/2023] [Indexed: 07/13/2023] Open
Abstract
Perturbed cellular protein homeostasis (proteostasis) and mitochondrial dysfunction play an important role in neurodegenerative diseases, however, the interplay between these two phenomena remains unclear. Mitochondrial dysfunction leads to a delay in mitochondrial protein import, causing accumulation of non-imported mitochondrial proteins in the cytosol and challenging proteostasis. Cells respond by increasing proteasome activity and molecular chaperones in yeast and C. elegans. Here, we demonstrate that in human cells mitochondrial dysfunction leads to the upregulation of a chaperone HSPB1 and, interestingly, an immunoproteasome-specific subunit PSMB9. Moreover, PSMB9 expression is dependent on the translation elongation factor EEF1A2. These mechanisms constitute a defense response to preserve cellular proteostasis under mitochondrial stress. Our findings define a mode of proteasomal activation through the change in proteasome composition driven by EEF1A2 and its spatial regulation, and are useful to formulate therapies to prevent neurodegenerative diseases.
Collapse
Affiliation(s)
- Minji Kim
- IMol Polish Academy of Sciences, Warsaw, Poland
| | - Remigiusz A Serwa
- IMol Polish Academy of Sciences, Warsaw, Poland
- ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland
| | - Lukasz Samluk
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Ida Suppanz
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Agata Kodroń
- IMol Polish Academy of Sciences, Warsaw, Poland
- ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz M Stępkowski
- IMol Polish Academy of Sciences, Warsaw, Poland
- ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland
| | | | | | - Silke Oeljeklaus
- Department of Biochemistry, Theodor Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | | | - Bettina Warscheid
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Department of Biochemistry, Theodor Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Agnieszka Chacinska
- IMol Polish Academy of Sciences, Warsaw, Poland.
- ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
70
|
Peker E, Weiss K, Song J, Zarges C, Gerlich S, Boehm V, Trifunovic A, Langer T, Gehring NH, Becker T, Riemer J. A two-step mitochondrial import pathway couples the disulfide relay with matrix complex I biogenesis. J Cell Biol 2023; 222:e202210019. [PMID: 37159021 PMCID: PMC10174193 DOI: 10.1083/jcb.202210019] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/03/2023] [Accepted: 04/06/2023] [Indexed: 05/10/2023] Open
Abstract
Mitochondria critically rely on protein import and its tight regulation. Here, we found that the complex I assembly factor NDUFAF8 follows a two-step import pathway linking IMS and matrix import systems. A weak targeting sequence drives TIM23-dependent NDUFAF8 matrix import, and en route, allows exposure to the IMS disulfide relay, which oxidizes NDUFAF8. Import is closely surveyed by proteases: YME1L prevents accumulation of excess NDUFAF8 in the IMS, while CLPP degrades reduced NDUFAF8 in the matrix. Therefore, NDUFAF8 can only fulfil its function in complex I biogenesis if both oxidation in the IMS and subsequent matrix import work efficiently. We propose that the two-step import pathway for NDUFAF8 allows integration of the activity of matrix complex I biogenesis pathways with the activity of the mitochondrial disulfide relay system in the IMS. Such coordination might not be limited to NDUFAF8 as we identified further proteins that can follow such a two-step import pathway.
Collapse
Affiliation(s)
- Esra Peker
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Konstantin Weiss
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Jiyao Song
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Christine Zarges
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Sarah Gerlich
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Volker Boehm
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Aleksandra Trifunovic
- Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Thomas Langer
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
- Department of Mitochondrial Proteostasis, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Niels H. Gehring
- Institute for Genetics, University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Jan Riemer
- Institute for Biochemistry, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
71
|
Yogadasan N, Doxey AC, Chuong SDX. A Machine Learning Framework Identifies Plastid-Encoded Proteins Harboring C3 and C4 Distinguishing Sequence Information. Genome Biol Evol 2023; 15:evad129. [PMID: 37462292 PMCID: PMC10368328 DOI: 10.1093/gbe/evad129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 07/27/2023] Open
Abstract
C4 photosynthesis is known to have at least 61 independent origins across plant lineages making it one of the most notable examples of convergent evolution. Of the >60 independent origins, a predicted 22-24 origins, encompassing greater than 50% of all known C4 species, exist within the Panicoideae, Arundinoideae, Chloridoideae, Micrairoideae, Aristidoideae, and Danthonioideae (PACMAD) clade of the Poaceae family. This clade is therefore primed with species ideal for the study of genomic changes associated with the acquisition of the C4 photosynthetic trait. In this study, we take advantage of the growing availability of sequenced plastid genomes and employ a machine learning (ML) approach to screen for plastid genes harboring C3 and C4 distinguishing information in PACMAD species. We demonstrate that certain plastid-encoded protein sequences possess distinguishing and informative sequence information that allows them to train accurate ML C3/C4 classification models. Our RbcL-trained model, for example, informs a C3/C4 classifier with greater than 99% accuracy. Accurate prediction of photosynthetic type from individual sequences suggests biologically relevant, and potentially differing roles of these sequence products in C3 versus C4 metabolism. With this ML framework, we have identified several key sequences and sites that are most predictive of C3/C4 status, including RbcL, subunits of the NAD(P)H dehydrogenase complex, and specific residues within, further highlighting their potential significance in the evolution and/or maintenance of C4 photosynthetic machinery. This general approach can be applied to uncover intricate associations between other similar genotype-phenotype relationships.
Collapse
Affiliation(s)
| | - Andrew C Doxey
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Simon D X Chuong
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
72
|
Chen Y, Zhou W, Xia Y, Zhang W, Zhao Q, Li X, Gao H, Liang Z, Ma G, Yang K, Zhang L, Zhang Y. Targeted cross-linker delivery for the in situ mapping of protein conformations and interactions in mitochondria. Nat Commun 2023; 14:3882. [PMID: 37391416 PMCID: PMC10313818 DOI: 10.1038/s41467-023-39485-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 06/15/2023] [Indexed: 07/02/2023] Open
Abstract
Current methods for intracellular protein analysis mostly require the separation of specific organelles or changes to the intracellular environment. However, the functions of proteins are determined by their native microenvironment as they usually form complexes with ions, nucleic acids, and other proteins. Here, we show a method for in situ cross-linking and analysis of mitochondrial proteins in living cells. By using the poly(lactic-co-glycolic acid) (PLGA) nanoparticles functionalized with dimethyldioctadecylammonium bromide (DDAB) to deliver protein cross-linkers into mitochondria, we subsequently analyze the cross-linked proteins using mass spectrometry. With this method, we identify a total of 74 pairs of protein-protein interactions that do not exist in the STRING database. Interestingly, our data on mitochondrial respiratory chain proteins ( ~ 94%) are also consistent with the experimental or predicted structural analysis of these proteins. Thus, we provide a promising technology platform for in situ defining protein analysis in cellular organelles under their native microenvironment.
Collapse
Affiliation(s)
- Yuwan Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yufei Xia
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Weijie Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qun Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xinwei Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Hang Gao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Kaiguang Yang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Yukui Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
73
|
Lunke S, Bouffler SE, Patel CV, Sandaradura SA, Wilson M, Pinner J, Hunter MF, Barnett CP, Wallis M, Kamien B, Tan TY, Freckmann ML, Chong B, Phelan D, Francis D, Kassahn KS, Ha T, Gao S, Arts P, Jackson MR, Scott HS, Eggers S, Rowley S, Boggs K, Rakonjac A, Brett GR, de Silva MG, Springer A, Ward M, Stallard K, Simons C, Conway T, Halman A, Van Bergen NJ, Sikora T, Semcesen LN, Stroud DA, Compton AG, Thorburn DR, Bell KM, Sadedin S, North KN, Christodoulou J, Stark Z. Integrated multi-omics for rapid rare disease diagnosis on a national scale. Nat Med 2023:10.1038/s41591-023-02401-9. [PMID: 37291213 PMCID: PMC10353936 DOI: 10.1038/s41591-023-02401-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/12/2023] [Indexed: 06/10/2023]
Abstract
Critically ill infants and children with rare diseases need equitable access to rapid and accurate diagnosis to direct clinical management. Over 2 years, the Acute Care Genomics program provided whole-genome sequencing to 290 families whose critically ill infants and children were admitted to hospitals throughout Australia with suspected genetic conditions. The average time to result was 2.9 d and diagnostic yield was 47%. We performed additional bioinformatic analyses and transcriptome sequencing in all patients who remained undiagnosed. Long-read sequencing and functional assays, ranging from clinically accredited enzyme analysis to bespoke quantitative proteomics, were deployed in selected cases. This resulted in an additional 19 diagnoses and an overall diagnostic yield of 54%. Diagnostic variants ranged from structural chromosomal abnormalities through to an intronic retrotransposon, disrupting splicing. Critical care management changed in 120 diagnosed patients (77%). This included major impacts, such as informing precision treatments, surgical and transplant decisions and palliation, in 94 patients (60%). Our results provide preliminary evidence of the clinical utility of integrating multi-omic approaches into mainstream diagnostic practice to fully realize the potential of rare disease genomic testing in a timely manner.
Collapse
Affiliation(s)
- Sebastian Lunke
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
- Australian Genomics, Melbourne, Victoria, Australia
| | | | - Chirag V Patel
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Sarah A Sandaradura
- Sydney Children's Hospitals Network - Westmead, Sydney, New South Wales, Australia
- Children's Hospital Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Meredith Wilson
- Sydney Children's Hospitals Network - Westmead, Sydney, New South Wales, Australia
- Children's Hospital Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Jason Pinner
- Sydney Children's Hospitals Network - Randwick, Sydney, New South Wales, Australia
- Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Matthew F Hunter
- Monash Genetics, Monash Health, Melbourne, Victoria, Australia
- Department of Paediatrics, Monash University, Melbourne, Victoria, Australia
| | - Christopher P Barnett
- Paediatric and Reproductive Genetics Unit, Women's and Children's Hospital, North Adelaide, South Australia, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Mathew Wallis
- Tasmanian Clinical Genetics Service, Tasmanian Health Service, Hobart, Tasmania, Australia
- School of Medicine and Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Benjamin Kamien
- Genetic Services of Western Australia, Perth, Western Australia, Australia
| | - Tiong Y Tan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Mary-Louise Freckmann
- Department of Clinical Genetics, The Canberra Hospital, Canberra, Australian Capital Territory, Australia
| | - Belinda Chong
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Dean Phelan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - David Francis
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Karin S Kassahn
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Thuong Ha
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia
- Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, South Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Song Gao
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia
| | - Peer Arts
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, South Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Matilda R Jackson
- Australian Genomics, Melbourne, Victoria, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia
| | - Hamish S Scott
- Australian Genomics, Melbourne, Victoria, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, South Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Stefanie Eggers
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Simone Rowley
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Kirsten Boggs
- Australian Genomics, Melbourne, Victoria, Australia
- Sydney Children's Hospitals Network - Westmead, Sydney, New South Wales, Australia
- Sydney Children's Hospitals Network - Randwick, Sydney, New South Wales, Australia
| | - Ana Rakonjac
- Australian Genomics, Melbourne, Victoria, Australia
- Sydney Children's Hospitals Network - Westmead, Sydney, New South Wales, Australia
- Sydney Children's Hospitals Network - Randwick, Sydney, New South Wales, Australia
| | - Gemma R Brett
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Michelle G de Silva
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Amanda Springer
- Monash Genetics, Monash Health, Melbourne, Victoria, Australia
- Department of Paediatrics, Monash University, Melbourne, Victoria, Australia
| | - Michelle Ward
- Genetic Services of Western Australia, Perth, Western Australia, Australia
| | - Kirsty Stallard
- Paediatric and Reproductive Genetics Unit, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - Cas Simons
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Thomas Conway
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Andreas Halman
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Nicole J Van Bergen
- Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Tim Sikora
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Liana N Semcesen
- Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - David A Stroud
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Alison G Compton
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - David R Thorburn
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Katrina M Bell
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Simon Sadedin
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Kathryn N North
- Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
- Australian Genomics, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - John Christodoulou
- Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
- Australian Genomics, Melbourne, Victoria, Australia
- Children's Hospital Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
- Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia.
- Australian Genomics, Melbourne, Victoria, Australia.
| |
Collapse
|
74
|
Chella Krishnan K, El Hachem EJ, Keller MP, Patel SG, Carroll L, Vegas AD, Gerdes Gyuricza I, Light C, Cao Y, Pan C, Kaczor-Urbanowicz KE, Shravah V, Anum D, Pellegrini M, Lee CF, Seldin MM, Rosenthal NA, Churchill GA, Attie AD, Parker B, James DE, Lusis AJ. Genetic architecture of heart mitochondrial proteome influencing cardiac hypertrophy. eLife 2023; 12:e82619. [PMID: 37276142 PMCID: PMC10241513 DOI: 10.7554/elife.82619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 05/18/2023] [Indexed: 06/07/2023] Open
Abstract
Mitochondria play an important role in both normal heart function and disease etiology. We report analysis of common genetic variations contributing to mitochondrial and heart functions using an integrative proteomics approach in a panel of inbred mouse strains called the Hybrid Mouse Diversity Panel (HMDP). We performed a whole heart proteome study in the HMDP (72 strains, n=2-3 mice) and retrieved 848 mitochondrial proteins (quantified in ≥50 strains). High-resolution association mapping on their relative abundance levels revealed three trans-acting genetic loci on chromosomes (chr) 7, 13 and 17 that regulate distinct classes of mitochondrial proteins as well as cardiac hypertrophy. DAVID enrichment analyses of genes regulated by each of the loci revealed that the chr13 locus was highly enriched for complex-I proteins (24 proteins, P=2.2E-61), the chr17 locus for mitochondrial ribonucleoprotein complex (17 proteins, P=3.1E-25) and the chr7 locus for ubiquinone biosynthesis (3 proteins, P=6.9E-05). Follow-up high resolution regional mapping identified NDUFS4, LRPPRC and COQ7 as the candidate genes for chr13, chr17 and chr7 loci, respectively, and both experimental and statistical analyses supported their causal roles. Furthermore, a large cohort of Diversity Outbred mice was used to corroborate Lrpprc gene as a driver of mitochondrial DNA (mtDNA)-encoded gene regulation, and to show that the chr17 locus is specific to heart. Variations in all three loci were associated with heart mass in at least one of two independent heart stress models, namely, isoproterenol-induced heart failure and diet-induced obesity. These findings suggest that common variations in certain mitochondrial proteins can act in trans to influence tissue-specific mitochondrial functions and contribute to heart hypertrophy, elucidating mechanisms that may underlie genetic susceptibility to heart failure in human populations.
Collapse
Affiliation(s)
- Karthickeyan Chella Krishnan
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Elie-Julien El Hachem
- Department of Integrative Biology and Physiology, Field Systems Biology, Sciences Sorbonne UniversitéParisFrance
| | - Mark P Keller
- Biochemistry Department, University of Wisconsin-MadisonMadisonUnited States
| | - Sanjeet G Patel
- Department of Surgery/Division of Cardiac Surgery, University of Southern California Keck School of MedicineLos AngelesUnited States
| | - Luke Carroll
- Metabolic Systems Biology Laboratory, Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - Alexis Diaz Vegas
- Metabolic Systems Biology Laboratory, Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | | | - Christine Light
- Cardiovascular Biology Research Program, Oklahoma Medical Research FoundationOklahoma CityUnited States
| | - Yang Cao
- Department of Medicine/Division of Cardiology, University of California, Los AngelesLos AngelesUnited States
| | - Calvin Pan
- Department of Medicine/Division of Cardiology, University of California, Los AngelesLos AngelesUnited States
| | - Karolina Elżbieta Kaczor-Urbanowicz
- Division of Oral Biology and Medicine, UCLA School of DentistryLos AngelesUnited States
- UCLA Institute for Quantitative and Computational BiosciencesLos AngelesUnited States
| | - Varun Shravah
- Department of Chemistry, University of CaliforniaLos AngelesUnited States
| | - Diana Anum
- Department of Integrative Biology and Physiology, University of CaliforniaLos AngelesUnited States
| | - Matteo Pellegrini
- UCLA Institute for Quantitative and Computational BiosciencesLos AngelesUnited States
| | - Chi Fung Lee
- Cardiovascular Biology Research Program, Oklahoma Medical Research FoundationOklahoma CityUnited States
- Department of Physiology, University of Oklahoma Health Sciences CenterOklahoma CityUnited States
| | - Marcus M Seldin
- Center for Epigenetics and MetabolismIrvineUnited States
- Department of Biological Chemistry, University of CaliforniaIrvineUnited States
| | | | | | - Alan D Attie
- Biochemistry Department, University of Wisconsin-MadisonMadisonUnited States
| | - Benjamin Parker
- Department of Anatomy and Physiology, University of MelbourneMelbourneAustralia
| | - David E James
- Metabolic Systems Biology Laboratory, Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - Aldons J Lusis
- Department of Medicine/Division of Cardiology, University of California, Los AngelesLos AngelesUnited States
- Department of Human Genetics, University of CaliforniaLos AngelesUnited States
- Department of Microbiology, Immunology and Molecular Genetics, University of CaliforniaLos AngelesUnited States
| |
Collapse
|
75
|
Liu Z, Jiang M, Chen X, Liu Q, Guo X, Lin C, Guo Y. Female BMI has an effect on oocyte gene expression pattern. Heliyon 2023; 9:e17493. [PMID: 37408896 PMCID: PMC10318509 DOI: 10.1016/j.heliyon.2023.e17493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/08/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
Purpose To explore the mechanisms by which abnormal female BMI affects oocyte quality, particularly whether it involves the alteration of gene expression patterns and how these patterns may impact clinical outcomes. Methods In Part 1, we performed a retrospective study to compare the clinical outcomes between the female BMI ≥25 kg/m2 and female BMI ≤20 kg/m2 groups. In Part 2, we performed the transcriptome analyses based on the GSE87201 dataset. Results In Part 1, among the clinical outcomes, only the grade 1-2 embryo rate at day 3 of ICSI cycles was significantly different between the two BMI groups; the other outcomes were not. In Part 2, compared with the BMI ≤20 kg/m2 group, the oocyte gene expression pattern of the BMI ≥25 kg/m2 group seemed to result in better oocyte tolerance to exogenous stress, such as intracytoplasmic sperm injection (ICSI). It seemed to explain the result of Part 1 that the BMI ≥25 kg/m2 group had better day-3 embryo quality after ICSI than the BMI ≤20 kg/m2 group. Conclusions Abnormal female BMI affects oocyte quality by altering the gene expression patterns of oocytes. While a female BMI ≥25 kg/m2 is known to have certain detrimental effects on ART, our findings suggest that it can also confer some benefits to oocytes.
Collapse
Affiliation(s)
- Zhiren Liu
- Center for Reproductive Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No.81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, China
| | - Mingting Jiang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Xingting Chen
- Center for Reproductive Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Qicai Liu
- Center for Reproductive Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Xinxin Guo
- Center for Reproductive Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Chen Lin
- Center for Reproductive Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Yujia Guo
- Center for Reproductive Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
76
|
Smith LA, Chen C, Lax NZ, Taylor RW, Erskine D, McFarland R. Astrocytic pathology in Alpers' syndrome. Acta Neuropathol Commun 2023; 11:86. [PMID: 37259148 DOI: 10.1186/s40478-023-01579-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/11/2023] [Indexed: 06/02/2023] Open
Abstract
Refractory epilepsy is the main neurological manifestation of Alpers' syndrome, a severe childhood-onset mitochondrial disease caused by bi-allelic pathogenic variants in the mitochondrial DNA (mtDNA) polymerase gamma gene (POLG). The pathophysiological mechanisms underpinning neuronal hyperexcitabilty leading to seizures in Alpers' syndrome remain unknown. However, pathological changes to reactive astrocytes are hypothesised to exacerbate neural dysfunction and seizure-associated cortical activity in POLG-related disease. Therefore, we sought to phenotypically characterise astrocytic pathology in Alpers' syndrome. We performed a detailed quantitative investigation of reactive astrocytes in post-mortem neocortical tissues from thirteen patients with Alpers' syndrome, eight neurologically normal controls and five sudden unexpected death in epilepsy (SUDEP) patients, to control for generalised epilepsy-associated astrocytic pathology. Immunohistochemistry to identify glial fibrillary acidic protein (GFAP)-reactive astrocytes revealed striking reactive astrogliosis localised to the primary visual cortex of Alpers' syndrome tissues, characterised by abnormal-appearing hypertrophic astrocytes. Phenotypic characterisation of individual GFAP-reactive astrocytes demonstrated decreased abundance of mitochondrial oxidative phosphorylation (OXPHOS) proteins and altered expression of key astrocytic proteins including Kir4.1 (subunit of the inwardly rectifying K+ ion channel), AQP4 (astrocytic water channel) and glutamine synthetase (enzyme that metabolises glutamate). These phenotypic astrocytic changes were typically different from the pathology observed in SUDEP tissues, suggesting alternative mechanisms of astrocytic dysfunction between these epilepsies. Crucially, our findings provide further evidence of occipital lobe involvement in Alpers' syndrome and support the involvement of reactive astrocytes in the pathogenesis of POLG-related disease.
Collapse
Affiliation(s)
- Laura A Smith
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| | - Chun Chen
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Nichola Z Lax
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders of Adults and Children, Newcastle University, Newcastle Upon Tyne, Newcastle, NE2 4HH, UK
| | - Daniel Erskine
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
- NHS Highly Specialised Service for Rare Mitochondrial Disorders of Adults and Children, Newcastle University, Newcastle Upon Tyne, Newcastle, NE2 4HH, UK.
| |
Collapse
|
77
|
Zou L, Che Z, Ding K, Zhang C, Liu X, Wang L, Li A, Zhou J. JAC4 Alleviates Rotenone-Induced Parkinson's Disease through the Inactivation of the NLRP3 Signal Pathway. Antioxidants (Basel) 2023; 12:antiox12051134. [PMID: 37238000 DOI: 10.3390/antiox12051134] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/01/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Parkinson's disease (PD) is the fastest-growing neurodegeneration disease, characterized typically by a progressive loss of dopaminergic neurons in the substantia nigra, and there are no effective therapeutic agents to cure PD. Rotenone (Rot) is a common and widely used pesticide which can directly inhibit mitochondrial complex I, leading to a loss of dopaminergic neurons. Our previous studies proved that the JWA gene (arl6ip5) may play a prominent role in resisting aging, oxidative stress and inflammation, and JWA knockout in astrocytes increases the susceptibility of mice to 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD. JWA-activating compound 4 (JAC4) is a small-molecule activator of the JWA gene, but its role in and mechanism against PD have not yet been clarified. In the present study, we showed that the JWA expression level is strongly related to tyrosine hydroxylase (TH) in different growth periods of mice. Additionally, we constructed models with Rot in vivo and in vitro to observe the neuroprotective effects of JAC4. Our results demonstrated that JAC4 prophylactic intervention improved motor dysfunction and dopaminergic neuron loss in mice. Mechanistically, JAC4 reduced oxidative stress damage by reversing mitochondrial complex I damage, reducing nuclear factor kappa-B (NF-κB) translocation and repressing nucleotide-binding domain, leucine-rich-containing family and pyrin domain-containing-3 (NLRP3) inflammasome activation. Overall, our results provide proof that JAC4 could serve as a novel effective agent for PD prevention.
Collapse
Affiliation(s)
- Lu Zou
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhen Che
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Kun Ding
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chao Zhang
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xia Liu
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Luman Wang
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Aiping Li
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jianwei Zhou
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
78
|
Healy MD, McNally KE, Butkovič R, Chilton M, Kato K, Sacharz J, McConville C, Moody ERR, Shaw S, Planelles-Herrero VJ, Yadav SKN, Ross J, Borucu U, Palmer CS, Chen KE, Croll TI, Hall RJ, Caruana NJ, Ghai R, Nguyen THD, Heesom KJ, Saitoh S, Berger I, Schaffitzel C, Williams TA, Stroud DA, Derivery E, Collins BM, Cullen PJ. Structure of the endosomal Commander complex linked to Ritscher-Schinzel syndrome. Cell 2023; 186:2219-2237.e29. [PMID: 37172566 PMCID: PMC10187114 DOI: 10.1016/j.cell.2023.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/23/2023] [Accepted: 04/04/2023] [Indexed: 05/15/2023]
Abstract
The Commander complex is required for endosomal recycling of diverse transmembrane cargos and is mutated in Ritscher-Schinzel syndrome. It comprises two sub-assemblies: Retriever composed of VPS35L, VPS26C, and VPS29; and the CCC complex which contains twelve subunits: COMMD1-COMMD10 and the coiled-coil domain-containing (CCDC) proteins CCDC22 and CCDC93. Combining X-ray crystallography, electron cryomicroscopy, and in silico predictions, we have assembled a complete structural model of Commander. Retriever is distantly related to the endosomal Retromer complex but has unique features preventing the shared VPS29 subunit from interacting with Retromer-associated factors. The COMMD proteins form a distinctive hetero-decameric ring stabilized by extensive interactions with CCDC22 and CCDC93. These adopt a coiled-coil structure that connects the CCC and Retriever assemblies and recruits a 16th subunit, DENND10, to form the complete Commander complex. The structure allows mapping of disease-causing mutations and reveals the molecular features required for the function of this evolutionarily conserved trafficking machinery.
Collapse
Affiliation(s)
- Michael D Healy
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Kerrie E McNally
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD Bristol, UK; MRC Laboratory of Molecular Biology, CB2 0QH Cambridge, UK.
| | - Rebeka Butkovič
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD Bristol, UK
| | - Molly Chilton
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD Bristol, UK
| | - Kohji Kato
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD Bristol, UK
| | - Joanna Sacharz
- Department of Biochemistry and Pharmacology, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Calum McConville
- Department of Biochemistry and Pharmacology, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Edmund R R Moody
- School of Biological Sciences, University of Bristol, BS8 1TD Bristol, UK
| | - Shrestha Shaw
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD Bristol, UK
| | | | - Sathish K N Yadav
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD Bristol, UK
| | - Jennifer Ross
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD Bristol, UK
| | - Ufuk Borucu
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD Bristol, UK
| | - Catherine S Palmer
- Department of Biochemistry and Pharmacology, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Kai-En Chen
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Tristan I Croll
- Cambridge Institute for Medical Research, University of Cambridge, CB2 0XY Cambridge, UK
| | - Ryan J Hall
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Nikeisha J Caruana
- Department of Biochemistry and Pharmacology, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia; Institute of Health and Sport (iHeS), Victoria University, Melbourne, VIC Australia
| | - Rajesh Ghai
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Thi H D Nguyen
- MRC Laboratory of Molecular Biology, CB2 0QH Cambridge, UK
| | - Kate J Heesom
- Proteomics Facility, School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD Bristol, UK
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Imre Berger
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD Bristol, UK; Max Planck Bristol Centre for Minimal Biology, Department of Chemistry, University of Bristol, BS8 1TS Bristol, UK
| | - Christiane Schaffitzel
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD Bristol, UK
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, BS8 1TD Bristol, UK
| | - David A Stroud
- Department of Biochemistry and Pharmacology, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC Australia
| | | | - Brett M Collins
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Peter J Cullen
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD Bristol, UK.
| |
Collapse
|
79
|
Bakhshalizadeh S, Hock DH, Siddall NA, Kline BL, Sreenivasan R, Bell KM, Casagranda F, Kamalanathan S, Sahoo J, Narayanan N, Naik D, Suryadevara V, Compton AG, Amarasekera SSC, Kapoor R, Jaillard S, Simpson A, Robevska G, van den Bergen J, Pachernegg S, Ayers KL, Thorburn DR, Stroud DA, Hime GR, Sinclair AH, Tucker EJ. Deficiency of the mitochondrial ribosomal subunit, MRPL50, causes autosomal recessive syndromic premature ovarian insufficiency. Hum Genet 2023:10.1007/s00439-023-02563-z. [PMID: 37148394 DOI: 10.1007/s00439-023-02563-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/19/2023] [Indexed: 05/08/2023]
Abstract
Premature ovarian insufficiency (POI) is a common cause of infertility in women, characterised by amenorrhea and elevated FSH under the age of 40 years. In some cases, POI is syndromic in association with other features such as sensorineural hearing loss in Perrault syndrome. POI is a heterogeneous disease with over 80 causative genes known so far; however, these explain only a minority of cases. Using whole-exome sequencing (WES), we identified a MRPL50 homozygous missense variant (c.335T > A; p.Val112Asp) shared by twin sisters presenting with POI, bilateral high-frequency sensorineural hearing loss, kidney and heart dysfunction. MRPL50 encodes a component of the large subunit of the mitochondrial ribosome. Using quantitative proteomics and western blot analysis on patient fibroblasts, we demonstrated a loss of MRPL50 protein and an associated destabilisation of the large subunit of the mitochondrial ribosome whilst the small subunit was preserved. The mitochondrial ribosome is responsible for the translation of subunits of the mitochondrial oxidative phosphorylation machinery, and we found patient fibroblasts have a mild but significant decrease in the abundance of mitochondrial complex I. These data support a biochemical phenotype associated with MRPL50 variants. We validated the association of MRPL50 with the clinical phenotype by knockdown/knockout of mRpL50 in Drosophila, which resulted abnormal ovarian development. In conclusion, we have shown that a MRPL50 missense variant destabilises the mitochondrial ribosome, leading to oxidative phosphorylation deficiency and syndromic POI, highlighting the importance of mitochondrial support in ovarian development and function.
Collapse
Affiliation(s)
- Shabnam Bakhshalizadeh
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Daniella H Hock
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Australia
| | - Nicole A Siddall
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Australia
| | | | - Rajini Sreenivasan
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Katrina M Bell
- Department of Bioinformatics, Murdoch Children's Research Institute, Melbourne, Australia
| | - Franca Casagranda
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Australia
| | - Sadishkumar Kamalanathan
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, 605006, India
| | - Jayaprakash Sahoo
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, 605006, India
| | - Niya Narayanan
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, 605006, India
| | - Dukhabandhu Naik
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, 605006, India
| | - Varun Suryadevara
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, 605006, India
| | - Alison G Compton
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, Australia
| | - Sumudu S C Amarasekera
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Ridam Kapoor
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Australia
| | - Sylvie Jaillard
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, 35033, Rennes, France
| | - Andrea Simpson
- School of Allied Health, College of Science, Health and Engineering, La Trobe University, Bundoora, VIC, Australia
- College of Health and Human Services, Charles Darwin University, Darwin, NT, Australia
| | | | | | - Svenja Pachernegg
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Katie L Ayers
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - David R Thorburn
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, Australia
| | - David A Stroud
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Australia
- Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, Australia
| | - Gary R Hime
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Australia.
| | - Andrew H Sinclair
- Murdoch Children's Research Institute, Melbourne, Australia.
- Department of Paediatrics, University of Melbourne, Melbourne, Australia.
| | - Elena J Tucker
- Murdoch Children's Research Institute, Melbourne, Australia.
- Department of Paediatrics, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
80
|
Wall SW, Sanchez L, Tuttle KS, Pearson SJ, Soma S, Wyatt GL, Carter HN, Jenschke RM, Tan L, Martinez SA, Lorenzi PL, Gohil VM, Rijnkels M, Porter WW. Noncanonical role of singleminded-2s in mitochondrial respiratory chain formation in breast cancer. Exp Mol Med 2023; 55:1046-1063. [PMID: 37121978 PMCID: PMC10238511 DOI: 10.1038/s12276-023-00996-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 05/02/2023] Open
Abstract
Dysregulation of cellular metabolism is a hallmark of breast cancer progression and is associated with metastasis and therapeutic resistance. Here, we show that the breast tumor suppressor gene SIM2 promotes mitochondrial oxidative phosphorylation (OXPHOS) using breast cancer cell line models. Mechanistically, we found that SIM2s functions not as a transcription factor but localizes to mitochondria and directly interacts with the mitochondrial respiratory chain (MRC) to facilitate functional supercomplex (SC) formation. Loss of SIM2s expression disrupts SC formation through destabilization of MRC Complex III, leading to inhibition of electron transport, although Complex I (CI) activity is retained. A metabolomic analysis showed that knockout of SIM2s leads to a compensatory increase in ATP production through glycolysis and accelerated glutamine-driven TCA cycle production of NADH, creating a favorable environment for high cell proliferation. Our findings indicate that SIM2s is a novel stabilizing factor required for SC assembly, providing insight into the impact of the MRC on metabolic adaptation and breast cancer progression.
Collapse
Affiliation(s)
- Steven W Wall
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Lilia Sanchez
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | | | - Scott J Pearson
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Shivatheja Soma
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Garhett L Wyatt
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Hannah N Carter
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Ramsey M Jenschke
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Lin Tan
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Sara A Martinez
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Philip L Lorenzi
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Vishal M Gohil
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Monique Rijnkels
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Weston W Porter
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
81
|
Belyaeva EA. Modulators of mitochondrial ATP-sensitive potassium channel affect cytotoxicity of heavy metals: Action on isolated rat liver mitochondria and AS-30D ascites hepatoma cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114829. [PMID: 36989557 DOI: 10.1016/j.ecoenv.2023.114829] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 03/06/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Heavy metals are ubiquitous environmental pollutants that are extremely dangerous for public health, but the molecular mechanisms of their cytotoxic action are still not fully understood. In the present work, the possible contribution of the mitochondrial ATP-sensitive potassium channel (mK(ATP)), which is usually considered protective for the cell, to hepatotoxicity caused by heavy metals was investigated using polarography and swelling techniques as well as flow cytometry. Using isolated liver mitochondria from adult male Wistar rats and various potassium media containing or not containing penetrating anions (KNO3, KSCN, KAcet, KCl), we studied the effect of mK(ATP) modulators, namely its blockers (5-hydroxydecanoate, glibenclamide, ATP, ADP) and activators (diazoxide, malonate), on respiration and/or membrane permeability in the presence of hepatotoxins such as Cd2+, Hg2+, and Cu2+. It has been shown for the first time that, contrary to Hg2+ and depending on media used, the mK(ATP) modulators affect Cd2+- and/or Cu2+-induced alterations in mitochondrial swelling and respiration rates, although differently, nevertheless, in the ways compatible with mK(ATP) participation in both these cases. On rat AS-30D ascites hepatoma cells, it was found that, unlike Cd2+, an increase in the production of reactive oxygen species was observed with the simultaneous use of Cu2+ and diazoxide; in addition, there was no protective effect of diazoxide against cell death, which also occurred in the presence of Cu2+. In conclusion, the relationships (functional, structural and/or regulatory) between mK(ATP), components of the mitochondrial electron transport chain (CI, CII-CIII and/or ATP synthase, CV) and mitochondrial permeability transition pores were discussed, as well as the role of these molecular structures in the mechanisms of the cytotoxic action of heavy metals.
Collapse
Affiliation(s)
- Elena A Belyaeva
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, Thorez av. 44, 194223, St.-Petersburg, Russia.
| |
Collapse
|
82
|
Averina OA, Permyakov OA, Emelianova MA, Grigoryeva OO, Lovat ML, Egorova AE, Grinchenko AV, Kumeiko VV, Marey MV, Manskikh VN, Dontsova OA, Vysokikh MY, Sergiev PV. Mitoregulin Contributes to Creatine Shuttling and Cardiolipin Protection in Mice Muscle. Int J Mol Sci 2023; 24:ijms24087589. [PMID: 37108753 PMCID: PMC10143810 DOI: 10.3390/ijms24087589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/06/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Small peptides compose a large share of the mitochondrial proteome. Mitoregulin (Mtln) is a mitochondrial peptide known to contribute to the respiratory complex I functioning and other processes in mitochondria. In our previous studies, we demonstrated that Mtln knockout mice develop obesity and accumulate triglycerides and other oxidation substrates in serum, concomitant with an exhaustion of tricarboxylic acids cycle intermediates. Here we examined the functional role of Mtln in skeletal muscles, one of the major energy consuming tissues. We observed reduced muscle strength for Mtln knockout mice. Decrease of the mitochondrial cardiolipin and concomitant increase in monolysocardiolipin concentration upon Mtln inactivation is likely to be a consequence of imbalance between oxidative damage and remodeling of cardiolipin. It is accompanied by the mitochondrial creatine kinase octamer dissociation and suboptimal respiratory chain performance in Mtln knockout mice.
Collapse
Affiliation(s)
- Olga A Averina
- Institute of Functional Genomics, Lomonosov Moscow State University, 119992 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Oleg A Permyakov
- Institute of Functional Genomics, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Mariia A Emelianova
- Center for Life Sciences, Skolkovo Institute of Science and Technology, 143025 Moscow, Russia
| | - Olga O Grigoryeva
- Institute of Functional Genomics, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Maxim L Lovat
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Institute of Mitoengineering MSU, 119992 Moscow, Russia
| | - Anna E Egorova
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Andrei V Grinchenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, 690041 Vladivostok, Russia
| | - Vadim V Kumeiko
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
- A.V. Zhirmunsky National Scientific Center of Marine Biology, 690041 Vladivostok, Russia
| | - Maria V Marey
- Research Center for Obstetrics, Gynecology and Perinatology, 117198 Moscow, Russia
| | - Vasily N Manskikh
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Institute of Mitoengineering MSU, 119992 Moscow, Russia
| | - Olga A Dontsova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Center for Life Sciences, Skolkovo Institute of Science and Technology, 143025 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119992 Moscow, Russia
| | - Mikhail Yu Vysokikh
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Research Center for Obstetrics, Gynecology and Perinatology, 117198 Moscow, Russia
| | - Petr V Sergiev
- Institute of Functional Genomics, Lomonosov Moscow State University, 119992 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Center for Life Sciences, Skolkovo Institute of Science and Technology, 143025 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
83
|
Tan L, Qi X, Kong W, Jin J, Lu D, Zhang X, Wang Y, Wang S, Dong W, Shi X, Chen W, Wang J, Li K, Xie Y, Gao L, Guan F, Gao K, Li C, Wang C, Hu Z, Zhang L, Guo X, Shen B, Ma Y. A conditional knockout rat resource of mitochondrial protein-coding genes via a DdCBE-induced premature stop codon. SCIENCE ADVANCES 2023; 9:eadf2695. [PMID: 37058569 PMCID: PMC10104465 DOI: 10.1126/sciadv.adf2695] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Hundreds of pathogenic variants of mitochondrial DNA (mtDNA) have been reported to cause mitochondrial diseases, which still lack effective treatments. It is a huge challenge to install these mutations one by one. We repurposed the DddA-derived cytosine base editor to incorporate a premature stop codon in the mtProtein-coding genes to ablate mitochondrial proteins encoded in the mtDNA (mtProteins) instead of installing pathogenic variants and generated a library of both cell and rat resources with mtProtein depletion. In vitro, we depleted 12 of 13 mtProtein-coding genes with high efficiency and specificity, resulting in decreased mtProtein levels and impaired oxidative phosphorylation. Moreover, we generated six conditional knockout rat strains to ablate mtProteins using Cre/loxP system. Mitochondrially encoded ATP synthase membrane subunit 8 and NADH:ubiquinone oxidoreductase core subunit 1 were specifically depleted in heart cells or neurons, resulting in heart failure or abnormal brain development. Our work provides cell and rat resources for studying the function of mtProtein-coding genes and therapeutic strategies.
Collapse
Affiliation(s)
- Lei Tan
- State Key Laboratory of Reproductive Medicine, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaolong Qi
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China
| | - Weining Kong
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China
| | - Jiachuan Jin
- Center for Reproductive Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dan Lu
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China
| | - Xu Zhang
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China
| | - Yue Wang
- State Key Laboratory of Reproductive Medicine, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Siting Wang
- State Key Laboratory of Reproductive Medicine, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Dong
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China
| | - Xudong Shi
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China
| | - Wei Chen
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China
| | - Jianying Wang
- State Key Laboratory of Reproductive Medicine, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Keru Li
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China
| | - Yuan Xie
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lijuan Gao
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China
| | - Feifei Guan
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China
| | - Kai Gao
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China
| | - Chaojun Li
- State Key Laboratory of Reproductive Medicine, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Cheng Wang
- State Key Laboratory of Reproductive Medicine, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Gusu School, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lianfeng Zhang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China
- Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Gusu School, Nanjing Medical University, Nanjing, Jiangsu, China
- Zhejiang Laboratory, Hangzhou, Zhejiang, China
| | - Yuanwu Ma
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China
- Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
- National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China
| |
Collapse
|
84
|
Guo S, Dong Y, Cheng X, Chen Z, Ni Y, Zhao R, Ma W. Chronic Psychological Stress Disrupts Iron Metabolism and Enhances Hepatic Mitochondrial Function in Mice. Biol Trace Elem Res 2023; 201:1761-1771. [PMID: 35590120 DOI: 10.1007/s12011-022-03269-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022]
Abstract
To explore the changes in iron metabolism and mitochondrial function exposed to chronic psychological stress, seventy-five male mice aged 5 ~ 6 weeks were randomly sorted into 2 groups: control group and chronic psychological stress group. Mice were conducted by communication box to induce psychological stress for 21 consecutive days. The results showed that chronic psychological stress led to a significant reduction in average daily gain (P < 0.01) and the final weight (P < 0.05). Chronic psychological stress greatly increased plasma and duodenal iron level (P < 0.05), whereas markedly decreased hepatic iron content in mice (P < 0.05). Increasing expression of duodenal DCYTB and FPN (P < 0.05) was observed in mice exposed to chronic psychological stress. Moreover, chronic psychological stress greatly enhanced hepatic TFR1, FTL, and FPN protein expression (P < 0.05) in mice. Additionally, chronic psychological stress enhanced the levels of hepatic NADH, NAD + , ATP, mtDNA content, mtDNA-encoded genes, and the activity of mitochondrial complex I and II (P < 0.05). Taken together, chronic psychological stress impairs growth, disrupts iron metabolism, and enhances hepatic mitochondrial function in mice. These results will provide new insights for understanding the mechanisms of iron metabolism and mitochondrial function during chronic psychological stress.
Collapse
Affiliation(s)
- Shihui Guo
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, NO.1 Weigang Road, Nanjing, Jiangsu, 210095, People's Republic of China
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Yingying Dong
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, NO.1 Weigang Road, Nanjing, Jiangsu, 210095, People's Republic of China
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Xiaoxian Cheng
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, NO.1 Weigang Road, Nanjing, Jiangsu, 210095, People's Republic of China
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Zijin Chen
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, NO.1 Weigang Road, Nanjing, Jiangsu, 210095, People's Republic of China
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Yingdong Ni
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, NO.1 Weigang Road, Nanjing, Jiangsu, 210095, People's Republic of China
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, NO.1 Weigang Road, Nanjing, Jiangsu, 210095, People's Republic of China
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Wenqiang Ma
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, NO.1 Weigang Road, Nanjing, Jiangsu, 210095, People's Republic of China.
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China.
| |
Collapse
|
85
|
Mahley RW. Apolipoprotein E4 targets mitochondria and the mitochondria-associated membrane complex in neuropathology, including Alzheimer's disease. Curr Opin Neurobiol 2023; 79:102684. [PMID: 36753858 DOI: 10.1016/j.conb.2023.102684] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 02/08/2023]
Abstract
Apolipoprotein (apo) E4 sets the stage for neuropathology in Alzheimer's disease (AD) by causing mitochondrial dysfunction and altering mitochondria-associated membranes. Contact and apposition of mitochondrial-endoplasmic reticulum membranes are enhanced in brain cells in AD and associated with increases in tethering and spacing proteins that modulate many cellular processes. Contact site protein levels are higher in apoE4 cells. In apoE4 neurons, the NAD+/NADH ratio is lowered, reactive oxygen species are increased, and NAD/NADH pathway components and redox proteins are decreased. Oxidative phosphorylation is impaired and reserve ATP generation capacity is lacking. ApoE4 neurons have ∼50% fewer respiratory complex subunits (e.g., ATP synthase) and may increase translocase levels of the outer and inner mitochondrial membranes to facilitate delivery of nucleus-encoded complex subunits. Respiratory complex assembly relies on mitochondrial cristae organizing system subunits that are altered in apoE4 cells, and apoE4 increases mitochondrial proteases that control respiratory subunit composition for complex assembly.
Collapse
Affiliation(s)
- Robert W Mahley
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158, USA; Departments of Pathology and Medicine, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
86
|
Su Y, Hou C, Wang M, Ren K, Zhou D, Liu X, Zhao S, Liu X. Metformin induces mitochondrial fission and reduces energy metabolism by targeting respiratory chain complex I in hepatic stellate cells to reverse liver fibrosis. Int J Biochem Cell Biol 2023; 157:106375. [PMID: 36716817 DOI: 10.1016/j.biocel.2023.106375] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/27/2022] [Accepted: 01/26/2023] [Indexed: 01/30/2023]
Abstract
The activation and proliferation of hepatic stellate cells (HSCs) are critical processes for the treatment of liver fibrosis. It is necessary to identify effective drugs for the treatment of liver fibrosis and elucidate their mechanisms of action. Metformin can inhibit HSCs; however, no systematic studies demonstrating the effects of metformin on mitochondria in HSCs have been reported. This study demonstrated that metformin induces mitochondrial fission by phosphorylating AMPK/DRP1 (S616) in HSCs to decrease the expression of α-SMA and collagen. Additionally, metformin repressed the total ATP production rate, especially the production rate of ATP produced through mitochondrial oxidative phosphorylation, by inhibiting the enzymatic activity of complex I. Further analysis revealed that metformin strongly constrained the transcription of mitochondrial genes (ND1-ND6 and ND4L) that encode the core subunits of respiratory chain I. Upregulation of the mRNA expression of HK2 and GLUT1 slightly enhanced glycolysis. Additionally, metformin increased mitochondrial DNA (mtDNA) copy number to suppress the proliferation and activation of HSCs, indicating that mtDNA copy number can alter the fate of HSCs. In conclusion, metformin can induce mitochondrial fragmentation and low-level energy metabolism in HSCs, thereby suppressing HSCs activation and proliferation to reverse liver fibrosis.
Collapse
Affiliation(s)
- Ying Su
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Chenjian Hou
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Meili Wang
- Department of Pathology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Kehan Ren
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Danmei Zhou
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xiaoli Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Shanyu Zhao
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xiuping Liu
- Department of Pathology, Shanghai Fifth People's Hospital, School of Basic Medical Sciences, Fudan University, Shanghai 200240, China.
| |
Collapse
|
87
|
Arroum T, Borowski MT, Marx N, Schmelter F, Scholz M, Psathaki OE, Hippler M, Enriquez JA, Busch KB. Loss of respiratory complex I subunit NDUFB10 affects complex I assembly and supercomplex formation. Biol Chem 2023; 404:399-415. [PMID: 36952351 DOI: 10.1515/hsz-2022-0309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/06/2023] [Indexed: 03/24/2023]
Abstract
The orchestrated activity of the mitochondrial respiratory or electron transport chain (ETC) and ATP synthase convert reduction power (NADH, FADH2) into ATP, the cell's energy currency in a process named oxidative phosphorylation (OXPHOS). Three out of the four ETC complexes are found in supramolecular assemblies: complex I, III, and IV form the respiratory supercomplexes (SC). The plasticity model suggests that SC formation is a form of adaptation to changing conditions such as energy supply, redox state, and stress. Complex I, the NADH-dehydrogenase, is part of the largest supercomplex (CI + CIII2 + CIVn). Here, we demonstrate the role of NDUFB10, a subunit of the membrane arm of complex I, in complex I and supercomplex assembly on the one hand and bioenergetics function on the other. NDUFB10 knockout was correlated with a decrease of SCAF1, a supercomplex assembly factor, and a reduction of respiration and mitochondrial membrane potential. This likely is due to loss of proton pumping since the CI P P -module is downregulated and the P D -module is completely abolished in NDUFB10 knock outs.
Collapse
Affiliation(s)
- Tasnim Arroum
- Institute of Integrative Cell Biology and Physiology, Bioenergetics and Mitochondrial Dynamics Section, University of Münster, Schloßplatz 5, D-49078 Münster, Germany
| | - Marie-Theres Borowski
- Institute of Integrative Cell Biology and Physiology, Bioenergetics and Mitochondrial Dynamics Section, University of Münster, Schloßplatz 5, D-49078 Münster, Germany
| | - Nico Marx
- Institute of Integrative Cell Biology and Physiology, Bioenergetics and Mitochondrial Dynamics Section, University of Münster, Schloßplatz 5, D-49078 Münster, Germany
| | - Frank Schmelter
- Institute of Integrative Cell Biology and Physiology, Bioenergetics and Mitochondrial Dynamics Section, University of Münster, Schloßplatz 5, D-49078 Münster, Germany
| | - Martin Scholz
- Institute of Plant Biotechnology, University of Münster, Schloßplatz 5, D-49078 Münster, Germany
| | - Olympia Ekaterini Psathaki
- Center of Cellular Nanoanalytics, Integrated Bioimaging Facility, University of Osnabrück, Barbarastr. 11, D-49076 Osnabrück, Germany
| | - Michael Hippler
- Institute of Plant Biotechnology, University of Münster, Schloßplatz 5, D-49078 Münster, Germany
| | - José Antonio Enriquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, E-28029 Madrid, Spain
- Centro de Investigaciones Biomédicas en Red en Fraglidad y Envejecimiento Saludable (CIBERFES), Av. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, E-28029 Madrid, Spain
| | - Karin B Busch
- Institute of Integrative Cell Biology and Physiology, Bioenergetics and Mitochondrial Dynamics Section, University of Münster, Schloßplatz 5, D-49078 Münster, Germany
| |
Collapse
|
88
|
Kisty EA, Falco JA, Weerapana E. Redox proteomics combined with proximity labeling enables monitoring of localized cysteine oxidation in cells. Cell Chem Biol 2023; 30:321-336.e6. [PMID: 36889310 PMCID: PMC10069010 DOI: 10.1016/j.chembiol.2023.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 12/06/2022] [Accepted: 02/10/2023] [Indexed: 03/09/2023]
Abstract
Reactive oxygen species (ROS) can modulate protein function through cysteine oxidation. Identifying protein targets of ROS can provide insight into uncharacterized ROS-regulated pathways. Several redox-proteomic workflows, such as oxidative isotope-coded affinity tags (OxICAT), exist to identify sites of cysteine oxidation. However, determining ROS targets localized within subcellular compartments and ROS hotspots remains challenging with existing workflows. Here, we present a chemoproteomic platform, PL-OxICAT, which combines proximity labeling (PL) with OxICAT to monitor localized cysteine oxidation events. We show that TurboID-based PL-OxICAT can monitor cysteine oxidation events within subcellular compartments such as the mitochondrial matrix and intermembrane space. Furthermore, we use ascorbate peroxidase (APEX)-based PL-OxICAT to monitor oxidation events within ROS hotspots by using endogenous ROS as the source of peroxide for APEX activation. Together, these platforms further hone our ability to monitor cysteine oxidation events within specific subcellular locations and ROS hotspots and provide a deeper understanding of the protein targets of endogenous and exogenous ROS.
Collapse
Affiliation(s)
- Eleni A Kisty
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
| | - Julia A Falco
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
| | | |
Collapse
|
89
|
Sazanov LA. From the 'black box' to 'domino effect' mechanism: what have we learned from the structures of respiratory complex I. Biochem J 2023; 480:319-333. [PMID: 36920092 PMCID: PMC10212512 DOI: 10.1042/bcj20210285] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 03/16/2023]
Abstract
My group and myself have studied respiratory complex I for almost 30 years, starting in 1994 when it was known as a L-shaped giant 'black box' of bioenergetics. First breakthrough was the X-ray structure of the peripheral arm, followed by structures of the membrane arm and finally the entire complex from Thermus thermophilus. The developments in cryo-EM technology allowed us to solve the first complete structure of the twice larger, ∼1 MDa mammalian enzyme in 2016. However, the mechanism coupling, over large distances, the transfer of two electrons to pumping of four protons across the membrane remained an enigma. Recently we have solved high-resolution structures of mammalian and bacterial complex I under a range of redox conditions, including catalytic turnover. This allowed us to propose a robust and universal mechanism for complex I and related protein families. Redox reactions initially drive conformational changes around the quinone cavity and a long-distance transfer of substrate protons. These set up a stage for a series of electrostatically driven proton transfers along the membrane arm ('domino effect'), eventually resulting in proton expulsion from the distal antiporter-like subunit. The mechanism radically differs from previous suggestions, however, it naturally explains all the unusual structural features of complex I. In this review I discuss the state of knowledge on complex I, including the current most controversial issues.
Collapse
Affiliation(s)
- Leonid A. Sazanov
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg 3400, Austria
| |
Collapse
|
90
|
Wu Y, Lim YW, Stroud DA, Martel N, Hall TE, Lo HP, Ferguson C, Ryan MT, McMahon KA, Parton RG. Caveolae sense oxidative stress through membrane lipid peroxidation and cytosolic release of CAVIN1 to regulate NRF2. Dev Cell 2023; 58:376-397.e4. [PMID: 36858041 DOI: 10.1016/j.devcel.2023.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 11/20/2022] [Accepted: 02/06/2023] [Indexed: 03/03/2023]
Abstract
Caveolae have been linked to many biological functions, but their precise roles are unclear. Using quantitative whole-cell proteomics of genome-edited cells, we show that the oxidative stress response is the major pathway dysregulated in cells lacking the key caveola structural protein, CAVIN1. CAVIN1 deletion compromised sensitivity to oxidative stress in cultured cells and in animals. Wound-induced accumulation of reactive oxygen species and apoptosis were suppressed in Cavin1-null zebrafish, negatively affecting regeneration. Oxidative stress triggered lipid peroxidation and induced caveolar disassembly. The resulting release of CAVIN1 from caveolae allowed direct interaction between CAVIN1 and NRF2, a key regulator of the antioxidant response, facilitating NRF2 degradation. CAVIN1-null cells with impaired negative regulation of NRF2 showed resistance to lipid-peroxidation-induced ferroptosis. Thus, caveolae, via lipid peroxidation and CAVIN1 release, maintain cellular susceptibility to oxidative-stress-induced cell death, demonstrating a crucial role for this organelle in cellular homeostasis and wound response.
Collapse
Affiliation(s)
- Yeping Wu
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, QLD 4072, Australia
| | - Ye-Wheen Lim
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, QLD 4072, Australia
| | - David A Stroud
- Department of Biochemistry and Pharmacology and The Bio21 Molecular Science and Biotechnology Institute, 3052, University of Melbourne, Parkville, VIC 3052, Australia; Murdoch Children's Research Institute, the Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Nick Martel
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, QLD 4072, Australia
| | - Thomas E Hall
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, QLD 4072, Australia
| | - Harriet P Lo
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, QLD 4072, Australia
| | - Charles Ferguson
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, QLD 4072, Australia
| | - Michael T Ryan
- Monash University, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800, Australia
| | - Kerrie-Ann McMahon
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, QLD 4072, Australia.
| | - Robert G Parton
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, QLD 4072, Australia; The University of Queensland, Centre for Microscopy and Microanalysis, Brisbane, QLD 4072, Australia.
| |
Collapse
|
91
|
Webb BD, Nowinski SM, Solmonson A, Ganesh J, Rodenburg RJ, Leandro J, Evans A, Vu HS, Naidich TP, Gelb BD, DeBerardinis RJ, Rutter J, Houten SM. Recessive pathogenic variants in MCAT cause combined oxidative phosphorylation deficiency. eLife 2023; 12:e68047. [PMID: 36881526 PMCID: PMC9991045 DOI: 10.7554/elife.68047] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 02/01/2023] [Indexed: 03/06/2023] Open
Abstract
Malonyl-CoA-acyl carrier protein transacylase (MCAT) is an enzyme involved in mitochondrial fatty acid synthesis (mtFAS) and catalyzes the transfer of the malonyl moiety of malonyl-CoA to the mitochondrial acyl carrier protein (ACP). Previously, we showed that loss-of-function of mtFAS genes, including Mcat, is associated with severe loss of electron transport chain (ETC) complexes in mouse immortalized skeletal myoblasts (Nowinski et al., 2020). Here, we report a proband presenting with hypotonia, failure to thrive, nystagmus, and abnormal brain MRI findings. Using whole exome sequencing, we identified biallelic variants in MCAT. Protein levels for NDUFB8 and COXII, subunits of complex I and IV respectively, were markedly reduced in lymphoblasts and fibroblasts, as well as SDHB for complex II in fibroblasts. ETC enzyme activities were decreased in parallel. Re-expression of wild-type MCAT rescued the phenotype in patient fibroblasts. This is the first report of a patient with MCAT pathogenic variants and combined oxidative phosphorylation deficiency.
Collapse
Affiliation(s)
- Bryn D Webb
- Department of Pediatrics and Center for Human Genomics and Precision Medicine, University of Wisconsin School of Medicine and Public HealthMadison, WIUnited States
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew York, NYUnited States
- Department of Pediatrics, Icahn School of Medicine at Mount SinaiNew York, NYUnited States
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount SinaiNew York, NYUnited States
| | - Sara M Nowinski
- Department of Metabolism and Nutritional Programming, Van Andel InstituteGrand Rapids, MIUnited States
| | - Ashley Solmonson
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical CenterDallas, TXUnited States
| | - Jaya Ganesh
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew York, NYUnited States
| | - Richard J Rodenburg
- Department of Pediatrics, Nijmegen Center for Mitochondrial Disorders, Radboud University Medical CenterNijmegenNetherlands
| | - Joao Leandro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew York, NYUnited States
| | - Anthony Evans
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew York, NYUnited States
| | - Hieu S Vu
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical CenterDallas, TXUnited States
| | - Thomas P Naidich
- Department of Radiology, Icahn School of Medicine at Mount SinaiNew York, NYUnited States
| | - Bruce D Gelb
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew York, NYUnited States
- Department of Pediatrics, Icahn School of Medicine at Mount SinaiNew York, NYUnited States
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount SinaiNew York, NYUnited States
| | - Ralph J DeBerardinis
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical CenterDallas, TXUnited States
- Howard Hughes Medical InstituteChevy Chase, MDUnited States
| | - Jared Rutter
- Howard Hughes Medical InstituteChevy Chase, MDUnited States
- Department of Biochemistry, University of UtahSalt Lake City, UTUnited States
| | - Sander M Houten
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew York, NYUnited States
| |
Collapse
|
92
|
Barpanda A, Tuckley C, Ray A, Banerjee A, Duttagupta SP, Kantharia C, Srivastava S. A protein microarray-based serum proteomic investigation reveals distinct autoantibody signature in colorectal cancer. Proteomics Clin Appl 2023; 17:e2200062. [PMID: 36408811 DOI: 10.1002/prca.202200062] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/18/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022]
Abstract
PURPOSE Colorectal cancer (CRC) has been reported as the second leading cause of cancer death worldwide. The 5-year annual survival is around 50%, mainly due to late diagnosis, striking necessity for early detection. This study aims to identify autoantibody in patients' sera for early screening of cancer. EXPERIMENTAL DESIGN The study used a high-density human proteome array with approximately 17,000 recombinant proteins. Screening of sera from healthy individuals, CRC from Indian origin, and CRC from middle-east Asia origin were performed. Bio-statistical analysis was performed to identify significant autoantibodies altered. Pathway analysis was performed to explore the underlying mechanism of the disease. RESULTS The comprehensive proteomic analysis revealed dysregulation of 15 panels of proteins including CORO7, KCNAB1, WRAP53, NDUFS6, KRT30, and COLGALT2. Further biological pathway analysis for the top dysregulated autoantigenic proteins revealed perturbation in important biological pathways such as ECM degradation and cytoskeletal remodeling etc. CONCLUSIONS AND CLINICAL RELEVANCE: The generation of an autoimmune response against cancer-linked pathways could be linked to the screening of the disease. The process of immune surveillance can be detected at an early stage of cancer. Moreover, AAbs can be easily extracted from blood serum through the least invasive test for disease screening.
Collapse
Affiliation(s)
- Abhilash Barpanda
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai, India.,Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Chaitanya Tuckley
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai, India
| | - Arka Ray
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai, India
| | - Arghya Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Siddhartha P Duttagupta
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai, India
| | - Chetan Kantharia
- Department of surgical gastroenterology at King Edward Memorial Hospital and Seth G. S. Medical College, Mumbai, India
| | - Sanjeeva Srivastava
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai, India.,Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
93
|
Transgenic NADH dehydrogenase restores oxygen regulation of breathing in mitochondrial complex I-deficient mice. Nat Commun 2023; 14:1172. [PMID: 36859533 PMCID: PMC9977773 DOI: 10.1038/s41467-023-36894-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
The hypoxic ventilatory response (HVR) is a life-saving reflex, triggered by the activation of chemoreceptor glomus cells in the carotid body (CB) connected with the brainstem respiratory center. The molecular mechanisms underlying glomus cell acute oxygen (O2) sensing are unclear. Genetic disruption of mitochondrial complex I (MCI) selectively abolishes the HVR and glomus cell responsiveness to hypoxia. However, it is unknown what functions of MCI (metabolic, proton transport, or signaling) are essential for O2 sensing. Here we show that transgenic mitochondrial expression of NDI1, a single-molecule yeast NADH/quinone oxidoreductase that does not directly contribute to proton pumping, fully recovers the HVR and glomus cell sensitivity to hypoxia in MCI-deficient mice. Therefore, maintenance of mitochondrial NADH dehydrogenase activity and the electron transport chain are absolutely necessary for O2-dependent regulation of breathing. NDI1 expression also rescues other systemic defects caused by MCI deficiency. These data explain the role of MCI in acute O2 sensing by arterial chemoreceptors and demonstrate the optimal recovery of complex organismal functions by gene therapy.
Collapse
|
94
|
Mitochondrial Alterations in Prostate Cancer: Roles in Pathobiology and Racial Disparities. Int J Mol Sci 2023; 24:ijms24054482. [PMID: 36901912 PMCID: PMC10003184 DOI: 10.3390/ijms24054482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 03/12/2023] Open
Abstract
Prostate cancer (PCa) affects millions of men worldwide and is a major cause of cancer-related mortality. Race-associated PCa health disparities are also common and are of both social and clinical concern. Most PCa is diagnosed early due to PSA-based screening, but it fails to discern between indolent and aggressive PCa. Androgen or androgen receptor-targeted therapies are standard care of treatment for locally advanced and metastatic disease, but therapy resistance is common. Mitochondria, the powerhouse of cells, are unique subcellular organelles that have their own genome. A large majority of mitochondrial proteins are, however, nuclear-encoded and imported after cytoplasmic translation. Mitochondrial alterations are common in cancer, including PCa, leading to their altered functions. Aberrant mitochondrial function affects nuclear gene expression in retrograde signaling and promotes tumor-supportive stromal remodeling. In this article, we discuss mitochondrial alterations that have been reported in PCa and review the literature related to their roles in PCa pathobiology, therapy resistance, and racial disparities. We also discuss the translational potential of mitochondrial alterations as prognostic biomarkers and as effective targets for PCa therapy.
Collapse
|
95
|
Thompson K, Stroud DA, Thorburn DR, Taylor RW. Investigation of oxidative phosphorylation activity and complex composition in mitochondrial disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 194:127-139. [PMID: 36813309 DOI: 10.1016/b978-0-12-821751-1.00008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
A multidisciplinary approach to the laboratory diagnosis of mitochondrial disease has long been applied, with crucial information provided by deep clinical phenotyping, blood investigations, and biomarker screening as well as histopathological and biochemical testing of biopsy material to support molecular genetic screening. In an era of second and third generation sequencing technologies, traditional diagnostic algorithms for mitochondrial disease have been replaced by gene agnostic, genomic strategies including whole-exome sequencing (WES) and whole-genome sequencing (WGS), increasingly supported by other 'omics technologies (Alston et al., 2021). Whether a primary testing strategy, or one used to validate and interpret candidate genetic variants, the availability of a range of tests aimed at determining mitochondrial function (i.e., the assessment of individual respiratory chain enzyme activities in a tissue biopsy or cellular respiration in a patient cell line) remains an important part of the diagnostic armory. In this chapter, we summarize several disciplines used in the laboratory investigation of suspected mitochondrial disease, including the histopathological and biochemical assessment of mitochondrial function, as well as protein-based techniques to assess the steady-state levels of oxidative phosphorylation (OXPHOS) subunits and assembly of OXPHOS complexes via traditional (immunoblotting) and cutting-edge (quantitative proteomic) approaches.
Collapse
Affiliation(s)
- Kyle Thompson
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - David A Stroud
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, Australia; Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - David R Thorburn
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia; Mitochondrial Laboratory, Victorian Clinical Genetic Services, Melbourne, VIC, Australia
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; NHS Highly Specialised Services for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
96
|
Brischigliaro M, Fernandez-Vizarra E, Viscomi C. Mitochondrial Neurodegeneration: Lessons from Drosophila melanogaster Models. Biomolecules 2023; 13:378. [PMID: 36830747 PMCID: PMC9953451 DOI: 10.3390/biom13020378] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
The fruit fly-i.e., Drosophila melanogaster-has proven to be a very useful model for the understanding of basic physiological processes, such as development or ageing. The availability of straightforward genetic tools that can be used to produce engineered individuals makes this model extremely interesting for the understanding of the mechanisms underlying genetic diseases in physiological models. Mitochondrial diseases are a group of yet-incurable genetic disorders characterized by the malfunction of the oxidative phosphorylation system (OXPHOS), which is the highly conserved energy transformation system present in mitochondria. The generation of D. melanogaster models of mitochondrial disease started relatively recently but has already provided relevant information about the molecular mechanisms and pathological consequences of mitochondrial dysfunction. Here, we provide an overview of such models and highlight the relevance of D. melanogaster as a model to study mitochondrial disorders.
Collapse
Affiliation(s)
- Michele Brischigliaro
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
| | - Erika Fernandez-Vizarra
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
| | - Carlo Viscomi
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
- Centre for the Study of Neurodegeneration (CESNE), University of Padova, 35131 Padova, Italy
| |
Collapse
|
97
|
Aye CC, Hammond DE, Rodriguez-Cuenca S, Doherty MK, Whitfield PD, Phelan MM, Yang C, Perez-Perez R, Li X, Diaz-Ramos A, Peddinti G, Oresic M, Vidal-Puig A, Zorzano A, Ugalde C, Mora S. CBL/CAP Is Essential for Mitochondria Respiration Complex I Assembly and Bioenergetics Efficiency in Muscle Cells. Int J Mol Sci 2023; 24:3399. [PMID: 36834818 PMCID: PMC9964740 DOI: 10.3390/ijms24043399] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
CBL is rapidly phosphorylated upon insulin receptor activation. Mice whole body CBL depletion improved insulin sensitivity and glucose clearance; however, the precise mechanisms remain unknown. We depleted either CBL or its associated protein SORBS1/CAP independently in myocytes and assessed mitochondrial function and metabolism compared to control cells. CBL- and CAP-depleted cells showed increased mitochondrial mass with greater proton leak. Mitochondrial respiratory complex I activity and assembly into respirasomes were reduced. Proteome profiling revealed alterations in proteins involved in glycolysis and fatty acid degradation. Our findings demonstrate CBL/CAP pathway couples insulin signaling to efficient mitochondrial respiratory function and metabolism in muscle.
Collapse
Affiliation(s)
- Cho-Cho Aye
- The Department of Cellular and Molecular Physiology, Institute of Translational Medicine, The University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Dean E. Hammond
- The Department of Cellular and Molecular Physiology, Institute of Translational Medicine, The University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Sergio Rodriguez-Cuenca
- Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Mary K. Doherty
- Division of Biomedical Sciences, Centre for Health Science, University of the Highlands and Islands, Old Perth Road, Inverness IV2 3JH, UK
| | - Phillip D. Whitfield
- Division of Biomedical Sciences, Centre for Health Science, University of the Highlands and Islands, Old Perth Road, Inverness IV2 3JH, UK
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, Garscube Campus, University of Glasgow, Glasgow G61 1BD, UK
| | - Marie M. Phelan
- Centre for Nuclear Magnetic Resonance, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Chenjing Yang
- The Department of Cellular and Molecular Physiology, Institute of Translational Medicine, The University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Rafael Perez-Perez
- Instituto de Investigación, Hospital Universitario 12 de Octubre, Avda. de Córdoba s/n, 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, 28029 Madrid, Spain
| | - Xiaoxin Li
- The Department of Cellular and Molecular Physiology, Institute of Translational Medicine, The University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Angels Diaz-Ramos
- Institute for Research in Biomedicine, C/Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Gopal Peddinti
- Technical Research Centre of Finland, 02044 Espoo, Finland
| | - Matej Oresic
- Technical Research Centre of Finland, 02044 Espoo, Finland
- Turku Centre for Biotechnology, University of Turku and Abo Akademi University, 20520 Turku, Finland
- School of Medical Sciences, Örebro University, 702 81 Örebro, Sweden
| | - Antonio Vidal-Puig
- Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Antonio Zorzano
- Institute for Research in Biomedicine, C/Baldiri Reixac 10, 08028 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department de Bioquimica i Biomedicina, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Cristina Ugalde
- Instituto de Investigación, Hospital Universitario 12 de Octubre, Avda. de Córdoba s/n, 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, 28029 Madrid, Spain
| | - Silvia Mora
- The Department of Cellular and Molecular Physiology, Institute of Translational Medicine, The University of Liverpool, Crown Street, Liverpool L69 3BX, UK
- Department de Bioquimica i Biomedicina, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
98
|
Imami K, Selbach M, Ishihama Y. Monitoring mitochondrial translation by pulse SILAC. J Biol Chem 2023; 299:102865. [PMID: 36603763 PMCID: PMC9922817 DOI: 10.1016/j.jbc.2022.102865] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Mitochondrial ribosomes are specialized to translate the 13 membrane proteins encoded in the mitochondrial genome, which shapes the oxidative phosphorylation complexes essential for cellular energy metabolism. Despite the importance of mitochondrial translation (MT) control, it is challenging to identify and quantify the mitochondrial-encoded proteins because of their hydrophobic nature and low abundance. Here, we introduce a mass spectrometry-based proteomic method that combines biochemical isolation of mitochondria with pulse stable isotope labeling by amino acids in cell culture. Our method provides the highest protein identification rate with the shortest measurement time among currently available methods, enabling us to quantify 12 of the 13 mitochondrial-encoded proteins. We applied this method to uncover the global picture of (post-)translational regulation of both mitochondrial- and nuclear-encoded subunits of oxidative phosphorylation complexes. We found that inhibition of MT led to degradation of orphan nuclear-encoded subunits that are considered to form subcomplexes with the mitochondrial-encoded subunits. This method should be readily applicable to study MT programs in many contexts, including oxidative stress and mitochondrial disease.
Collapse
Affiliation(s)
- Koshi Imami
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan; RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
| | - Matthias Selbach
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan; Laboratory of Clinical and Analytical Chemistry, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, Japan.
| |
Collapse
|
99
|
Upregulation of NDUFAF2 in Lung Adenocarcinoma Is a Novel Independent Prognostic Biomarker. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2023; 2023:2912968. [PMID: 36703939 PMCID: PMC9873462 DOI: 10.1155/2023/2912968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023]
Abstract
Background NADH dehydrogenase (ubiquinone) 1 alpha subcomplex assembly factor 2 (NDUFAF2) acts as a molecular chaperone for the assembly of complex I on the mitochondrial membrane, which is involved in the transfer of electrons in the respiratory chain. However, whether NDUFAF2 plays a role in lung adenocarcinoma (LUAD) is largely unexplored. Methods Expression profiles were obtained from the TCGA and GEO databases and integrated via R3.6.3 and several bioinformatics platforms. Western blotting analysis and immunohistochemistry staining were used to examine the expressions of NDUFAF2 in clinical samples. Moreover, the diagnostic and prognostic value of NDUFAF2 expression level was also assessed. GO, KEGG, and gene set enrichment analysis (GSEA) were adopted to investigate NDUFAF2-related molecular functions, signaling pathways, and life activity processes. Results NDUFAF2 was predominantly expressed in LUAD, and it is identified as a promising biomarker in the diagnosis of LUAD and its prognostic prediction. Overexpression of NDUFAF2 was correlated with N stage, T stage, and pathologic stage in LUAD, leading to worse overall survival (OS). Besides, the level of NDUFAF2 was independently associated with OS through a multivariate Cox analysis (HR = 1.538, 95% (1.086-2.177), P = 0.015). GO analysis revealed enrichment in innate immune response in mucosa and mucosal immune response, and GSEA indicated enrichment in G2_M_checkpoints, DNA replication, diseases of mitotic cell cycle, retinoblastoma gene in cancer, cell cycle pathway, and cell cycle. Furthermore, the expression level of NDUFAF2 was negatively correlated with infiltration levels of Tem, Tcm, NK CD56bright cells, and B cells. In contrast, the expression level of NDUFAF2 was positively correlated with the infiltration level of DCs and Th2 cells in LUAD patients. Conclusions Collectively, NDUFAF2 is a promising independent prognostic biomarker and target in LUAD. In addition, NDUFAF2 might affect the prognosis of LUAD via DNA replication, diseases of mitotic cell cycle, cell cycle pathway, and cell cycle.
Collapse
|
100
|
Amate-García G, Ballesta-Martínez MJ, Serrano-Lorenzo P, Garrido-Moraga R, González-Quintana A, Blázquez A, Rubio JC, García-Consuegra I, Arenas J, Ugalde C, Morán M, Guillén-Navarro E, Martín MA. A Novel Mutation Associated with Neonatal Lethal Cardiomyopathy Leads to an Alternative Transcript Expression in the X-Linked Complex I NDUFB11 Gene. Int J Mol Sci 2023; 24:ijms24021743. [PMID: 36675256 PMCID: PMC9865986 DOI: 10.3390/ijms24021743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
We report a neonatal patient with hypertrophic cardiomyopathy (HCM), lactic acidosis and isolated complex I deficiency. Using a customized next-generation sequencing panel, we identified a novel hemizygous variant c.338G>A in the X-linked NDUFB11 gene that encodes the NADH: ubiquinone oxidoreductase subunit B11 of the mitochondrial respiratory chain (MRC) complex I (CI). Molecular and functional assays performed in the proband’s target tissues—skeletal and heart muscle—showed biochemical disturbances of the MRC, suggesting a pathogenic role for this variant. In silico analyses initially predicted an amino acid missense change p.(Arg113Lys) in the NDUFB11 CI subunit. However, we showed that the molecular effect of the c.338G>A variant, which is located at the last nucleotide of exon 2 of the NDUFB11 gene in the canonical ‘short’ transcript (sized 462 bp), instead causes a splicing defect triggering the up-regulation of the expression of an alternative ‘long’ transcript (sized 492 bp) that can also be detected in the control individuals. Our results support the hypothesis that the canonical ‘short’ transcript is required for the proper NDUFB11 protein synthesis, which is essential for optimal CI assembly and activity, whereas the longer alternative transcript seems to represent a non-functional, unprocessed splicing intermediate. Our results highlight the importance of characterizing the molecular effect of new variants in the affected patient’s tissues to demonstrate their pathogenicity and association with the clinical phenotypes.
Collapse
Affiliation(s)
- Guillermo Amate-García
- Grupo de Enfermedades Mitocondriales y Neuromusculares, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - María Juliana Ballesta-Martínez
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
- Sección de Genética Médica, Servicio de Pediatría, Hospital Clínico Universitario Virgen de la Arrixaca, Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, 30120 Murcia, Spain
| | - Pablo Serrano-Lorenzo
- Grupo de Enfermedades Mitocondriales y Neuromusculares, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Rocío Garrido-Moraga
- Grupo de Enfermedades Mitocondriales y Neuromusculares, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Adrián González-Quintana
- Grupo de Enfermedades Mitocondriales y Neuromusculares, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Alberto Blázquez
- Grupo de Enfermedades Mitocondriales y Neuromusculares, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Juan C. Rubio
- Grupo de Enfermedades Mitocondriales y Neuromusculares, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Inés García-Consuegra
- Grupo de Enfermedades Mitocondriales y Neuromusculares, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Joaquín Arenas
- Grupo de Enfermedades Mitocondriales y Neuromusculares, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Cristina Ugalde
- Grupo de Enfermedades Mitocondriales y Neuromusculares, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - María Morán
- Grupo de Enfermedades Mitocondriales y Neuromusculares, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Encarnación Guillén-Navarro
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
- Sección de Genética Médica, Servicio de Pediatría, Hospital Clínico Universitario Virgen de la Arrixaca, Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, 30120 Murcia, Spain
- Facultad de Medicina, Universidad de Murcia, 30120 Murcia, Spain
| | - Miguel A. Martín
- Grupo de Enfermedades Mitocondriales y Neuromusculares, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
- Servicio de Genética, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Correspondence:
| |
Collapse
|