51
|
Hassani Nia F, Woike D, Kloth K, Kortüm F, Kreienkamp HJ. Truncating mutations in SHANK3 associated with global developmental delay interfere with nuclear β-catenin signaling. J Neurochem 2020; 155:250-263. [PMID: 32202324 DOI: 10.1111/jnc.15014] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/28/2020] [Accepted: 03/16/2020] [Indexed: 01/18/2023]
Abstract
Mutations in SHANK3, coding for a large scaffold protein of excitatory synapses in the CNS, are associated with neurodevelopmental disorders including autism spectrum disorders and intellectual disability (ID). Several cases have been identified in which the mutation leads to truncation of the protein, eliminating C-terminal sequences required for post-synaptic targeting of the protein. We identify here a patient with a truncating mutation in SHANK3, affected by severe global developmental delay and intellectual disability. By analyzing the subcellular distribution of this truncated form of Shank3, we identified a nuclear localization signal (NLS) in the N-terminal part of the protein which is responsible for targeting Shank3 fragments to the nucleus. To determine the relevance of Shank3 for nuclear signaling, we analyze how it affects signaling by β-catenin, a component of the Wnt pathway. We show that full length as well as truncated variants of Shank3 interact with β-catenin via the PDZ domain of Shank3, and the armadillo repeats of β-catenin. As a result of this interaction, truncated forms of Shank3 and β-catenin strictly co-localize in small intra-nuclear bodies both in 293T cells and in rat hippocampal neurons. On a functional level, the sequestration of both proteins in these nuclear bodies is associated with a strongly repressed transcriptional activation by β-catenin owing to interaction with the truncated Shank3 fragment found in patients. Our data suggest that truncating mutations in SHANK3 may not only lead to a reduction in Shank3 protein available at postsynaptic sites but also negatively affect the Wnt signaling pathway.
Collapse
Affiliation(s)
- Fatemeh Hassani Nia
- Institute for Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel Woike
- Institute for Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katja Kloth
- Institute for Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fanny Kortüm
- Institute for Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Jürgen Kreienkamp
- Institute for Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
52
|
Conformationally active integrin endocytosis and traffic: why, where, when and how? Biochem Soc Trans 2020; 48:83-93. [PMID: 32065228 PMCID: PMC7054750 DOI: 10.1042/bst20190309] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/16/2020] [Accepted: 01/28/2020] [Indexed: 12/30/2022]
Abstract
Spatiotemporal control of integrin-mediated cell adhesion to the extracellular matrix (ECM) is critical for physiological and pathological events in multicellular organisms, such as embryonic development, angiogenesis, platelet aggregation, leukocytes extravasation, and cancer cell metastatic dissemination. Regulation of integrin adhesive function and signaling relies on the modulation of both conformation and traffic. Indeed, integrins exist in a dynamic equilibrium between a bent/closed (inactive) and an extended/open (active) conformation, respectively endowed with low and high affinity for ECM ligands. Increasing evidence proves that, differently to what hypothesized in the past, detachment from the ECM and conformational inactivation are not mandatory for integrin to get endocytosed and trafficked. Specific transmembrane and cytosolic proteins involved in the control of ECM proteolytic fragment-bound active integrin internalization and recycling exist. In the complex masterplan that governs cell behavior, active integrin traffic is key to the turnover of ECM polymers and adhesion sites, the polarized secretion of endogenous ECM proteins and modifying enzymes, the propagation of motility and survival endosomal signals, and the control of cell metabolism.
Collapse
|
53
|
Shank2 Binds to aPKC and Controls Tight Junction Formation with Rap1 Signaling during Establishment of Epithelial Cell Polarity. Cell Rep 2020; 31:107407. [DOI: 10.1016/j.celrep.2020.02.088] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/22/2020] [Accepted: 02/25/2020] [Indexed: 11/19/2022] Open
|
54
|
Michael M, Parsons M. New perspectives on integrin-dependent adhesions. Curr Opin Cell Biol 2020; 63:31-37. [PMID: 31945690 PMCID: PMC7262580 DOI: 10.1016/j.ceb.2019.12.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/04/2019] [Accepted: 12/14/2019] [Indexed: 01/12/2023]
Abstract
Integrins are heterodimeric transmembrane receptors that connect the extracellular matrix environment to the actin cytoskeleton via adaptor molecules through assembly of a range of adhesion structures. Recent advances in biochemical, imaging and biophysical methods have enabled a deeper understanding of integrin signalling and their associated regulatory processes. The identification of the consensus integrin-based 'adhesomes' within the last 5 years has defined common core components of adhesion complexes and associated partners. These approaches have also uncovered unexpected adhesion protein behaviour and molecules recruited to adhesion sites that have expanded our understanding of the molecular and physical control of integrin signalling.
Collapse
Affiliation(s)
- Magdalene Michael
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunts House, Guys Cam, London, SE1 1UL, UK
| | - Maddy Parsons
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunts House, Guys Cam, London, SE1 1UL, UK.
| |
Collapse
|
55
|
Franke FC, Slusarenko BO, Engleitner T, Johannes W, Laschinger M, Rad R, Nitsche U, Janssen KP. Novel role for CRK adaptor proteins as essential components of SRC/FAK signaling for epithelial-mesenchymal transition and colorectal cancer aggressiveness. Int J Cancer 2020; 147:1715-1731. [PMID: 32147820 DOI: 10.1002/ijc.32955] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/08/2019] [Accepted: 01/08/2020] [Indexed: 12/21/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a cell plasticity process required for metastasis and chemoresistance of carcinoma cells. We report a crucial role of the signal adaptor proteins CRK and CRKL in promoting EMT and tumor aggressiveness, as well as resistance against chemotherapy in colorectal and pancreatic carcinoma. Genetic loss of either CRKL or CRK partially counteracted EMT in three independent cancer cell lines. Strikingly, complete loss of the CRK family shifted cells strongly toward the epithelial phenotype. Cells exhibited greatly increased E-cadherin and grew as large, densely packed clusters, completely lacked invasiveness and the ability to undergo EMT induced by cytokines or genetic activation of SRC. Furthermore, CRK family-deficiency significantly reduced cell survival, proliferation and chemoresistance, as well as ERK1/2 phosphorylation and c-MYC protein levels. In accordance, MYC-target gene expression was identified as novel hallmark process positively regulated by CRK family proteins. Mechanistically, CRK proteins were identified as pivotal amplifiers of SRC/FAK signaling at focal adhesions, mediated through a novel positive feedback loop depending on RAP1. Expression of the CRK family and the EMT regulator ZEB1 was significantly correlated in samples from colorectal cancer patients, especially in invasive regions. Further, high expression of CRK family genes was significantly associated with reduced survival in locally advanced colorectal cancer, as well as in pan-cancer datasets from the TCGA project. Thus, CRK family adaptor proteins are promising therapeutic targets to counteract EMT, chemoresistance, metastasis formation and minimal residual disease. As proof of concept, CRK family-mediated oncogenic signaling was successfully inhibited by a peptide-based inhibitor.
Collapse
Affiliation(s)
- Fabian C Franke
- Department of Surgery, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Benjamin O Slusarenko
- Department of Surgery, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Thomas Engleitner
- Department of Medicine II, School of Medicine, Institute of Molecular Oncology and Functional Genomics, Technical University of Munich, TranslaTUM Cancer Center, Munich, Germany
| | - Widya Johannes
- Department of Surgery, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Melanie Laschinger
- Department of Surgery, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Roland Rad
- Department of Medicine II, School of Medicine, Institute of Molecular Oncology and Functional Genomics, Technical University of Munich, TranslaTUM Cancer Center, Munich, Germany
| | - Ulrich Nitsche
- Department of Surgery, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Klaus-Peter Janssen
- Department of Surgery, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
56
|
Abstract
Integrins, and integrin-mediated adhesions, have long been recognized to provide the main molecular link attaching cells to the extracellular matrix (ECM) and to serve as bidirectional hubs transmitting signals between cells and their environment. Recent evidence has shown that their combined biochemical and mechanical properties also allow integrins to sense, respond to and interact with ECM of differing properties with exquisite specificity. Here, we review this work first by providing an overview of how integrin function is regulated from both a biochemical and a mechanical perspective, affecting integrin cell-surface availability, binding properties, activation or clustering. Then, we address how this biomechanical regulation allows integrins to respond to different ECM physicochemical properties and signals, such as rigidity, composition and spatial distribution. Finally, we discuss the importance of this sensing for major cell functions by taking cell migration and cancer as examples.
Collapse
|
57
|
Activation and suppression of hematopoietic integrins in hemostasis and immunity. Blood 2020; 135:7-16. [DOI: 10.1182/blood.2019003336] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022] Open
Abstract
Nolte and Margadant review the current understanding of the activation and inactivation of integrin receptors expressed by hematopoietic cells and the role of these conformational changes in modulating platelet and leukocyte function.
Collapse
|
58
|
Cai Q, Hosokawa T, Zeng M, Hayashi Y, Zhang M. Shank3 Binds to and Stabilizes the Active Form of Rap1 and HRas GTPases via Its NTD-ANK Tandem with Distinct Mechanisms. Structure 2019; 28:290-300.e4. [PMID: 31879129 DOI: 10.1016/j.str.2019.11.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/31/2019] [Accepted: 11/27/2019] [Indexed: 12/21/2022]
Abstract
Shank1/2/3, major scaffold proteins in excitatory synapses, are frequently mutated in patients with psychiatric disorders. Although the Shank N-terminal domain and ankyrin repeats domain tandem (NTD-ANK) is known to bind to Ras and Rap1, the molecular mechanism underlying and functional significance of the bindings in synapses are unknown. Here, we demonstrate that Shank3 NTD-ANK specifically binds to the guanosine triphosphate (GTP)-bound form of HRas and Rap1. In addition to the canonical site mediated by the Ras-association domain and common to both GTPases, Shank3 contains an unconventional Rap1 binding site formed by NTD and ANK together. Binding of Shank3 to the GTP-loaded Rap1 slows down its GTP hydrolysis by SynGAP. We further show that the interactions between Shank3 and HRas/Rap1 at excitatory synapses are promoted by synaptic activation. Thus, Shank3 may be able to modulate signaling of the Ras family proteins via directly binding to and stabilizing the GTP-bound form of the enzymes.
Collapse
Affiliation(s)
- Qixu Cai
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Tomohisa Hosokawa
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Menglong Zeng
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yasunori Hayashi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
59
|
Translating preclinical findings in clinically relevant new antipsychotic targets: focus on the glutamatergic postsynaptic density. Implications for treatment resistant schizophrenia. Neurosci Biobehav Rev 2019; 107:795-827. [DOI: 10.1016/j.neubiorev.2019.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 07/20/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023]
|
60
|
Grasselli C, Carbone A, Panelli P, Giambra V, Bossi M, Mazzoccoli G, De Filippis L. Neural Stem Cells from Shank3-ko Mouse Model Autism Spectrum Disorders. Mol Neurobiol 2019; 57:1502-1515. [PMID: 31773410 DOI: 10.1007/s12035-019-01811-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/30/2019] [Indexed: 02/07/2023]
Abstract
Autism spectrum disorders (ASD) comprise a complex of neurodevelopmental disorders caused by a variety of genetic defects and characterized by alterations in social communication and repetitive behavior. Since the mechanisms leading to early neuronal degeneration remain elusive, we chose to examine the properties of NSCs isolated from an animal model of ASD in order to evaluate whether their neurogenic potential may recapitulate the early phases of neurogenesis in the brain of ASD patients. Mutations of the gene coding for the Shank3 protein play a key role in the impairment of brain development and synaptogenesis in ASD patients. Experiments here reported show that NSCs derived from the subventricular zone (SVZ) of adult Shank3Δ11-/- (Shank3-ko) mice retain self-renewal capacity in vitro, but differentiate earlier than wild-type (wt) cells, displaying an evident endosomal/lysosomal and ubiquitin aggregation in astroglial cells together with mitochondrial impairment and inflammasome activation, suggesting that glial degeneration likely contributes to neuronal damage in ASD. These in vitro observations obtained in our disease model are consistent with data in vivo obtained in ASD patients and suggest that Shank3 deficit could affect the late phases of neurogenesis and/or the survival of mature cells rather than NSC self-renewal. This evidence supports Shank3-ko NSCs as a reliable in vitro disease model and suggests the rescue of glial cells as a therapeutic strategy to prevent neuronal degeneration in ASD.
Collapse
Affiliation(s)
- C Grasselli
- Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - A Carbone
- Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - P Panelli
- Department of Regenerative Medicine, Fondazione IRCCS Casa Sollievo della Sofferenza, Via dei Cappuccini 1, 71013, San Giovanni Rotondo, FG, Italy
| | - V Giambra
- Department of Regenerative Medicine, Fondazione IRCCS Casa Sollievo della Sofferenza, Via dei Cappuccini 1, 71013, San Giovanni Rotondo, FG, Italy
| | - M Bossi
- Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - G Mazzoccoli
- Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - L De Filippis
- Department of Regenerative Medicine, Fondazione IRCCS Casa Sollievo della Sofferenza, Via dei Cappuccini 1, 71013, San Giovanni Rotondo, FG, Italy.
| |
Collapse
|
61
|
Regulation of cell adhesion: a collaborative effort of integrins, their ligands, cytoplasmic actors, and phosphorylation. Q Rev Biophys 2019; 52:e10. [PMID: 31709962 DOI: 10.1017/s0033583519000088] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Integrins are large heterodimeric type 1 membrane proteins expressed in all nucleated mammalian cells. Eighteen α-chains and eight β-chains can combine to form 24 different integrins. They are cell adhesion proteins, which bind to a large variety of cellular and extracellular ligands. Integrins are required for cell migration, hemostasis, translocation of cells out from the blood stream and further movement into tissues, but also for the immune response and tissue morphogenesis. Importantly, integrins are not usually active as such, but need activation to become adhesive. Integrins are activated by outside-in activation through integrin ligand binding, or by inside-out activation through intracellular signaling. An important question is how integrin activity is regulated, and this topic has recently drawn much attention. Changes in integrin affinity for ligand binding are due to allosteric structural alterations, but equally important are avidity changes due to integrin clustering in the plane of the plasma membrane. Recent studies have partially solved how integrin cell surface structures change during activation. The integrin cytoplasmic domains are relatively short, but by interacting with a variety of cytoplasmic proteins in a regulated manner, the integrins acquire a number of properties important not only for cell adhesion and movement, but also for cellular signaling. Recent work has shown that specific integrin phosphorylations play pivotal roles in the regulation of integrin activity. Our purpose in this review is to integrate the present knowledge to enable an understanding of how cell adhesion is dynamically regulated.
Collapse
|
62
|
Valgardson J, Cosbey R, Houser P, Rupp M, Van Bronkhorst R, Lee M, Jagodzinski F, Amacher JF. MotifAnalyzer-PDZ: A computational program to investigate the evolution of PDZ-binding target specificity. Protein Sci 2019; 28:2127-2143. [PMID: 31599029 DOI: 10.1002/pro.3741] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 12/15/2022]
Abstract
Recognition of short linear motifs (SLiMs) or peptides by proteins is an important component of many cellular processes. However, due to limited and degenerate binding motifs, prediction of cellular targets is challenging. In addition, many of these interactions are transient and of relatively low affinity. Here, we focus on one of the largest families of SLiM-binding domains in the human proteome, the PDZ domain. These domains bind the extreme C-terminus of target proteins, and are involved in many signaling and trafficking pathways. To predict endogenous targets of PDZ domains, we developed MotifAnalyzer-PDZ, a program that filters and compares all motif-satisfying sequences in any publicly available proteome. This approach enables us to determine possible PDZ binding targets in humans and other organisms. Using this program, we predicted and biochemically tested novel human PDZ targets by looking for strong sequence conservation in evolution. We also identified three C-terminal sequences in choanoflagellates that bind a choanoflagellate PDZ domain, the Monsiga brevicollis SHANK1 PDZ domain (mbSHANK1), with endogenously-relevant affinities, despite a lack of conservation with the targets of a homologous human PDZ domain, SHANK1. All three are predicted to be signaling proteins, with strong sequence homology to cytosolic and receptor tyrosine kinases. Finally, we analyzed and compared the positional amino acid enrichments in PDZ motif-satisfying sequences from over a dozen organisms. Overall, MotifAnalyzer-PDZ is a versatile program to investigate potential PDZ interactions. This proof-of-concept work is poised to enable similar types of analyses for other SLiM-binding domains (e.g., MotifAnalyzer-Kinase). MotifAnalyzer-PDZ is available at http://motifAnalyzerPDZ.cs.wwu.edu.
Collapse
Affiliation(s)
- Jordan Valgardson
- Department of Computer Science, Western Washington University, Bellingham, Washington.,Department of Chemistry, Western Washington University, Bellingham, Washington
| | - Robin Cosbey
- Department of Computer Science, Western Washington University, Bellingham, Washington
| | - Paul Houser
- Department of Computer Science, Western Washington University, Bellingham, Washington
| | - Milo Rupp
- Department of Computer Science, Western Washington University, Bellingham, Washington
| | - Raiden Van Bronkhorst
- Department of Computer Science, Western Washington University, Bellingham, Washington
| | - Michael Lee
- Department of Computer Science, Western Washington University, Bellingham, Washington
| | - Filip Jagodzinski
- Department of Computer Science, Western Washington University, Bellingham, Washington
| | - Jeanine F Amacher
- Department of Chemistry, Western Washington University, Bellingham, Washington
| |
Collapse
|
63
|
Hoock SC, Ritter A, Steinhäuser K, Roth S, Behrends C, Oswald F, Solbach C, Louwen F, Kreis N, Yuan J. RITA modulates cell migration and invasion by affecting focal adhesion dynamics. Mol Oncol 2019; 13:2121-2141. [PMID: 31353815 PMCID: PMC6763788 DOI: 10.1002/1878-0261.12551] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 07/12/2019] [Accepted: 07/21/2019] [Indexed: 12/15/2022] Open
Abstract
RITA, the RBP-J interacting and tubulin-associated protein, has been reported to be related to tumor development, but the underlying mechanisms are not understood. Since RITA interacts with tubulin and coats microtubules of the cytoskeleton, we hypothesized that it is involved in cell motility. We show here that depletion of RITA reduces cell migration and invasion of diverse cancer cell lines and mouse embryonic fibroblasts. Cells depleted of RITA display stable focal adhesions (FA) with elevated active integrin, phosphorylated focal adhesion kinase, and paxillin. This is accompanied by enlarged size and disturbed turnover of FA. These cells also demonstrate increased polymerized tubulin. Interestingly, RITA is precipitated with the lipoma-preferred partner (LPP), which is critical in actin cytoskeleton remodeling and cell migration. Suppression of RITA results in reduced LPP and α-actinin at FA leading to compromised focal adhesion turnover and actin dynamics. This study identifies RITA as a novel crucial player in cell migration and invasion by affecting the turnover of FA through its interference with the dynamics of actin filaments and microtubules. Its deregulation may contribute to malignant progression.
Collapse
Affiliation(s)
- Samira Catharina Hoock
- Department of Gynecology and Obstetrics, School of MedicineJ. W. Goethe‐UniversityFrankfurtGermany
| | - Andreas Ritter
- Department of Gynecology and Obstetrics, School of MedicineJ. W. Goethe‐UniversityFrankfurtGermany
| | - Kerstin Steinhäuser
- Department of Gynecology and Obstetrics, School of MedicineJ. W. Goethe‐UniversityFrankfurtGermany
- Present address:
Solvadis Distribution GmbHGernsheimGermany
| | - Susanne Roth
- Department of Gynecology and Obstetrics, School of MedicineJ. W. Goethe‐UniversityFrankfurtGermany
| | - Christian Behrends
- Institute of Biochemistry II, Medical SchoolJ. W.‐Goethe UniversityFrankfurtGermany
- Present address:
Munich Cluster of Systems NeurologyLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Franz Oswald
- Department of Internal Medicine I, Center for Internal MedicineMedical Center UlmGermany
| | - Christine Solbach
- Department of Gynecology and Obstetrics, School of MedicineJ. W. Goethe‐UniversityFrankfurtGermany
| | - Frank Louwen
- Department of Gynecology and Obstetrics, School of MedicineJ. W. Goethe‐UniversityFrankfurtGermany
| | - Nina‐Naomi Kreis
- Department of Gynecology and Obstetrics, School of MedicineJ. W. Goethe‐UniversityFrankfurtGermany
| | - Juping Yuan
- Department of Gynecology and Obstetrics, School of MedicineJ. W. Goethe‐UniversityFrankfurtGermany
| |
Collapse
|
64
|
Jin C, Kang HR, Kang H, Zhang Y, Lee Y, Kim Y, Han K. Unexpected Compensatory Increase in Shank3 Transcripts in Shank3 Knock-Out Mice Having Partial Deletions of Exons. Front Mol Neurosci 2019; 12:228. [PMID: 31607862 PMCID: PMC6761322 DOI: 10.3389/fnmol.2019.00228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/04/2019] [Indexed: 12/18/2022] Open
Abstract
Genetic variants of the SH3 and multiple ankyrin repeat domains 3 (SHANK3) gene, which encodes excitatory postsynaptic core scaffolds cause numerous brain disorders. Several lines of Shank3 knock-out (KO) mice with deletions of different Shank3 exons have previously been generated and characterized. The different Shank3 KO mouse lines have both common and line-specific phenotypes. Shank3 isoform diversity is considered a mechanism underlying phenotypic heterogeneity, and compensatory changes through regulation of Shank3 expression may contribute to this heterogeneity. However, whether such compensatory changes occur in Shank3 KO mouse lines has not been investigated in detail. Using previously reported RNA-sequencing analyses, we identified an unexpected increase in Shank3 transcripts in two different Shank3 mutant mouse lines (Shank3B and Shank3ΔC) having partial deletions of Shank3 exons. We validated an increase in Shank3 transcripts in the hippocampus, cortex, and striatum, but not in the cerebellum, of Shank3B heterozygous (HET) and KO mice, using qRT-PCR analyses. In particular, expression of the N-terminal exons 1–12, but not the more C-terminal exons 19–22, was observed to increase in Shank3B mice with deletion of exons 13–16. This suggests a selective compensatory activation of upstream Shank3 promoters. Furthermore, using domain-specific Shank3 antibodies, we confirmed that the increased Shank3 transcripts in Shank3B KO mice produced a small Shank3 isoform that was not detected in wild-type mice. Taken together, our results illustrate another layer of complexity in the regulation of Shank3 expression in the brain, which may also contribute to the phenotypic heterogeneity of different Shank3 KO mouse lines.
Collapse
Affiliation(s)
- Chunmei Jin
- Department of Neuroscience, College of Medicine, Korea University, Seoul, South Korea.,Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, South Korea
| | - Hyae Rim Kang
- Department of Neuroscience, College of Medicine, Korea University, Seoul, South Korea.,Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, South Korea
| | - Hyojin Kang
- Division of National Supercomputing, Korea Institute of Science & Technology Information (KISTI), Daejeon, South Korea
| | - Yinhua Zhang
- Department of Neuroscience, College of Medicine, Korea University, Seoul, South Korea.,Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, South Korea
| | - Yeunkum Lee
- Department of Neuroscience, College of Medicine, Korea University, Seoul, South Korea.,Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, South Korea
| | - Yoonhee Kim
- Department of Neuroscience, College of Medicine, Korea University, Seoul, South Korea.,Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, South Korea
| | - Kihoon Han
- Department of Neuroscience, College of Medicine, Korea University, Seoul, South Korea.,Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, South Korea
| |
Collapse
|
65
|
McCormick B, Craig HE, Chu JY, Carlin LM, Canel M, Wollweber F, Toivakka M, Michael M, Astier AL, Norton L, Lilja J, Felton JM, Sasaki T, Ivaska J, Hers I, Dransfield I, Rossi AG, Vermeren S. A Negative Feedback Loop Regulates Integrin Inactivation and Promotes Neutrophil Recruitment to Inflammatory Sites. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:1579-1588. [PMID: 31427445 PMCID: PMC6731454 DOI: 10.4049/jimmunol.1900443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/16/2019] [Indexed: 01/08/2023]
Abstract
Neutrophils are abundant circulating leukocytes that are rapidly recruited to sites of inflammation in an integrin-dependent fashion. Contrasting with the well-characterized regulation of integrin activation, mechanisms regulating integrin inactivation remain largely obscure. Using mouse neutrophils, we demonstrate in this study that the GTPase activating protein ARAP3 is a critical regulator of integrin inactivation; experiments with Chinese hamster ovary cells indicate that this is not restricted to neutrophils. Specifically, ARAP3 acts in a negative feedback loop downstream of PI3K to regulate integrin inactivation. Integrin ligand binding drives the activation of PI3K and of its effectors, including ARAP3, by outside-in signaling. ARAP3, in turn, promotes localized integrin inactivation by negative inside-out signaling. This negative feedback loop reduces integrin-mediated PI3K activity, with ARAP3 effectively switching off its own activator, while promoting turnover of substrate adhesions. In vitro, ARAP3-deficient neutrophils display defective PIP3 polarization, adhesion turnover, and transendothelial migration. In vivo, ARAP3-deficient neutrophils are characterized by a neutrophil-autonomous recruitment defect to sites of inflammation.
Collapse
Affiliation(s)
- Barry McCormick
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Helen E Craig
- Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - Julia Y Chu
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Leo M Carlin
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, United Kingdom
| | - Marta Canel
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Florian Wollweber
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Matilda Toivakka
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Melina Michael
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Anne L Astier
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
- Centre de Physiopathologie Toulouse-Purpan, INSERM U1043, CNRS U5282, Université Toulouse, 31024 Toulouse Cedex 3, France
| | - Laura Norton
- Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - Johanna Lilja
- Turku Centre for Biotechnology, University of Turku, FI-20520 Turku, Finland
| | - Jennifer M Felton
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Takehiko Sasaki
- Department of Biochemical Pathophysiology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; and
| | - Johanna Ivaska
- Centre de Physiopathologie Toulouse-Purpan, INSERM U1043, CNRS U5282, Université Toulouse, 31024 Toulouse Cedex 3, France
| | - Ingeborg Hers
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Ian Dransfield
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Adriano G Rossi
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Sonja Vermeren
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom;
| |
Collapse
|
66
|
Jayadev R, Chi Q, Keeley DP, Hastie EL, Kelley LC, Sherwood DR. α-Integrins dictate distinct modes of type IV collagen recruitment to basement membranes. J Cell Biol 2019; 218:3098-3116. [PMID: 31387941 PMCID: PMC6719451 DOI: 10.1083/jcb.201903124] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/16/2019] [Accepted: 07/10/2019] [Indexed: 01/04/2023] Open
Abstract
Basement membranes (BMs) are cell-associated extracellular matrices that support tissue integrity, signaling, and barrier properties. Type IV collagen is critical for BM function, yet how it is directed into BMs in vivo is unclear. Through live-cell imaging of endogenous localization, conditional knockdown, and misexpression experiments, we uncovered distinct mechanisms of integrin-mediated collagen recruitment to Caenorhabditis elegans postembryonic gonadal and pharyngeal BMs. The putative laminin-binding αINA-1/βPAT-3 integrin was selectively activated in the gonad and recruited laminin, which directed moderate collagen incorporation. In contrast, the putative Arg-Gly-Asp (RGD)-binding αPAT-2/βPAT-3 integrin was activated in the pharynx and recruited high levels of collagen in an apparently laminin-independent manner. Through an RNAi screen, we further identified the small GTPase RAP-3 (Rap1) as a pharyngeal-specific PAT-2/PAT-3 activator that modulates collagen levels. Together, these studies demonstrate that tissues can use distinct mechanisms to direct collagen incorporation into BMs to precisely control collagen levels and construct diverse BMs.
Collapse
Affiliation(s)
- Ranjay Jayadev
- Department of Biology, Regeneration Next, Duke University, Durham, NC
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - Qiuyi Chi
- Department of Biology, Regeneration Next, Duke University, Durham, NC
| | - Daniel P Keeley
- Department of Biology, Regeneration Next, Duke University, Durham, NC
| | - Eric L Hastie
- Department of Biology, Regeneration Next, Duke University, Durham, NC
| | - Laura C Kelley
- Department of Biology, Regeneration Next, Duke University, Durham, NC
| | - David R Sherwood
- Department of Biology, Regeneration Next, Duke University, Durham, NC
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| |
Collapse
|
67
|
Zhou S, Liang Y, Zhang X, Liao L, Yang Y, Ouyang W, Xu H. SHARPIN Promotes Melanoma Progression via Rap1 Signaling Pathway. J Invest Dermatol 2019; 140:395-403.e6. [PMID: 31401046 DOI: 10.1016/j.jid.2019.07.696] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/13/2019] [Accepted: 07/16/2019] [Indexed: 01/06/2023]
Abstract
SHARPIN, as a tumor-associated gene, is involved in the metastatic process of many kinds of tumors. Herein, we studied the function of Shank-associated RH domain interacting protein (SHARPIN) in melanoma metastasis and the relevant molecular mechanisms. We found that SHARPIN expression was increased in melanoma tissues and activated the process of proliferation, migration, and invasion in vitro and in vivo, resulting in a poor prognosis of the disease. Functional analysis demonstrated that SHARPIN promoted melanoma migration and invasion by regulating Ras-associated protein-1(Rap1) and its downstream pathways, including p38 and JNK/c-Jun. Rap1 activator (8-pCPT-2'-O-Me-cAMP) and inhibitor (ESI-09 and farnesylthiosalicylic acid-amide) treatments could partially rescue invasion and migration of tumor cells. Additionally, SHARPIN expression in cell lines and public datasets also indicated that molecules other than BRAF and N-RAS may contribute to SHARPIN activation. In conclusion, our broad-in-depth work suggests that SHARPIN promotes melanoma development via p38 and JNK/c-Jun pathways through upregulation of Rap1 expression.
Collapse
Affiliation(s)
- Sitong Zhou
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Yanhua Liang
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China.
| | - Xi Zhang
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Lexi Liao
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Yao Yang
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Wen Ouyang
- The Second Clinical Medical College, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Huaiyuan Xu
- Department of Bone and Soft Tissue Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| |
Collapse
|
68
|
Kwiatkowski BA, Burwick NR, Richard RE. DLGAP1 directs megakaryocytic growth and differentiation in an MPL dependent manner in hematopoietic cells. Biomark Res 2019; 7:13. [PMID: 31321035 PMCID: PMC6615210 DOI: 10.1186/s40364-019-0165-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/26/2019] [Indexed: 12/16/2022] Open
Abstract
Background The MPL protein is a major regulator of megakaryopoiesis and platelet formation as well as stem cell regulation. Aberrant MPL and downstream Jak/STAT signaling results in the development of the Myeloproliferative Neoplasms (MPN). The pathogenetic and phenotypic features of the classical MPNs cannot be explained by the known mutations and genetic variants associated with the disease. Methods In order to identify potential pathways involved in MPN development, we have performed a functional screen using retroviral insertional mutagenesis in cells dependent on MPL activation. We have used viral transduction and plasmid transfections to test the effects of candidate gene overexpression on growth and differentiation of megakaryocytic cells. The shRNA approach was used to test for the effects of candidate gene downregulation in cells. All effects were tested with candidate gene alone or in presence of hematopoietic relevant kinases in the growth medium. We assayed the candidate gene cellular localization in varying growth conditions by immunofluorescence. Flow Cytometry was used for testing of transduction efficiency and for sorting of positive cells. Results We have identified the DLGAP1 gene, a member of the Scribble cell polarity complex, as one of the most prominent positive candidates. Analyses in hematopoietic cell lines revealed DLGAP1 centrosomal and cytoplasmic localization. The centrosomal localization of DLGAP1 was cell cycle dependent and hematopoietic relevant tyrosine kinases: Jak2, SRC and MAPK as well as the CDK1 kinase promoted DLGAP1 dissociation from centrosomes. DLGAP1 negatively affected the growth rate of MPL dependent hematopoietic cells and supported megakaryocytic cells polyploidization, which was correlated with its dissociation from centrosomes. Conclusions Our data support the conclusion that DLGAP1 is a novel, potent factor in MPL signaling, affecting megakaryocytic growth and differentiation, relevant to be investigated further as a prominent candidate in MPN development. Electronic supplementary material The online version of this article (10.1186/s40364-019-0165-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Boguslaw A Kwiatkowski
- Seattle Institute for Biomedical and Clinical Research, VA Puget Sound Healthcare System, 1660 South Columbian Way, S-111-ONC, Seattle, WA 98108 USA
| | - Nicolas R Burwick
- Seattle Institute for Biomedical and Clinical Research, VA Puget Sound Healthcare System, 1660 South Columbian Way, S-111-ONC, Seattle, WA 98108 USA
| | - Robert E Richard
- Seattle Institute for Biomedical and Clinical Research, VA Puget Sound Healthcare System, 1660 South Columbian Way, S-111-ONC, Seattle, WA 98108 USA
| |
Collapse
|
69
|
Zhao XF, Kohen R, Parent R, Duan Y, Fisher GL, Korn MJ, Ji L, Wan G, Jin J, Püschel AW, Dolan DF, Parent JM, Corfas G, Murphy GG, Giger RJ. PlexinA2 Forward Signaling through Rap1 GTPases Regulates Dentate Gyrus Development and Schizophrenia-like Behaviors. Cell Rep 2019; 22:456-470. [PMID: 29320740 PMCID: PMC5788190 DOI: 10.1016/j.celrep.2017.12.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/30/2017] [Accepted: 12/12/2017] [Indexed: 01/20/2023] Open
Abstract
Dentate gyrus (DG) development requires specification of granule cell (GC) progenitors in the hippocampal neuroepithelium, as well as their proliferation and migration into the primordial DG. We identify the Plexin family members Plxna2 and Plxna4 as important regulators of DG development. Distribution of immature GCs is regulated by Sema5A signaling through PlxnA2 and requires a functional PlxnA2 GTPase-activating protein (GAP) domain and Rap1 small GTPases. In adult Plxna2−/− but not Plxna2-GAP-deficient mice, the dentate GC layer is severely malformed, neurogenesis is compromised, and mossy fibers form aberrant synaptic boutons within CA3. Behavioral studies with Plxna2−/− mice revealed deficits in associative learning, sociability, and sensorimotor gating—traits commonly observed in neuropsychiatric disorder. Remarkably, while morphological defects are minimal in Plxna2-GAP-deficient brains, defects in fear memory and sensorimotor gating persist. Since allelic variants of human PLXNA2 and RAP1 associate with schizophrenia, our studies identify a biochemical pathway important for brain development and mental health.
Collapse
Affiliation(s)
- Xiao-Feng Zhao
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rafi Kohen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rachel Parent
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yuntao Duan
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Grace L Fisher
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Matthew J Korn
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lingchao Ji
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Guoqiang Wan
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jing Jin
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität, 48149 Münster, Germany; Cells-in-Motion Cluster of Excellence, University of Münster, 48149 Münster, Germany
| | - Andreas W Püschel
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität, 48149 Münster, Germany; Cells-in-Motion Cluster of Excellence, University of Münster, 48149 Münster, Germany
| | - David F Dolan
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jack M Parent
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gabriel Corfas
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Geoffrey G Murphy
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Roman J Giger
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
70
|
Yoo YE, Yoo T, Lee S, Lee J, Kim D, Han HM, Bae YC, Kim E. Shank3 Mice Carrying the Human Q321R Mutation Display Enhanced Self-Grooming, Abnormal Electroencephalogram Patterns, and Suppressed Neuronal Excitability and Seizure Susceptibility. Front Mol Neurosci 2019; 12:155. [PMID: 31275112 PMCID: PMC6591539 DOI: 10.3389/fnmol.2019.00155] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 06/03/2019] [Indexed: 11/13/2022] Open
Abstract
Shank3, a postsynaptic scaffolding protein involved in regulating excitatory synapse assembly and function, has been implicated in several brain disorders, including autism spectrum disorders (ASD), Phelan-McDermid syndrome, schizophrenia, intellectual disability, and mania. Here we generated and characterized a Shank3 knock-in mouse line carrying the Q321R mutation (Shank3 Q321R mice) identified in a human individual with ASD that affects the ankyrin repeat region (ARR) domain of the Shank3 protein. Homozygous Shank3 Q321R/Q321R mice show a selective decrease in the level of Shank3a, an ARR-containing protein variant, but not other variants. CA1 pyramidal neurons in the Shank3 Q321R/Q321R hippocampus show decreased neuronal excitability but normal excitatory and inhibitory synaptic transmission. Behaviorally, Shank3 Q321R/Q321R mice show moderately enhanced self-grooming and anxiolytic-like behavior, but normal locomotion, social interaction, and object recognition and contextual fear memory. In addition, these mice show abnormal electroencephalogram (EEG) patterns and decreased susceptibility to induced seizures. These results indicate that the Q321R mutation alters Shank3 protein stability, neuronal excitability, repetitive and anxiety-like behavior, EEG patterns, and seizure susceptibility in mice.
Collapse
Affiliation(s)
- Ye-Eun Yoo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Taesun Yoo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Seungjoon Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Jiseok Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
| | - Doyoun Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
| | - Hye-Min Han
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Yong-Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
| |
Collapse
|
71
|
Bacchelli E, Loi E, Cameli C, Moi L, Vega-Benedetti AF, Blois S, Fadda A, Bonora E, Mattu S, Fadda R, Chessa R, Maestrini E, Doneddu G, Zavattari P. Analysis of a Sardinian Multiplex Family with Autism Spectrum Disorder Points to Post-Synaptic Density Gene Variants and Identifies CAPG as a Functionally Relevant Candidate Gene. J Clin Med 2019; 8:E212. [PMID: 30736458 PMCID: PMC6406497 DOI: 10.3390/jcm8020212] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 02/07/2023] Open
Abstract
Autism spectrum disorders (ASDs) are a group of neurodevelopmental disorders with high heritability, although their underlying genetic factors are still largely unknown. Here we present a comprehensive genetic characterization of two ASD siblings from Sardinia by genome-wide copy number variation analysis and whole exome sequencing (WES), to identify novel genetic alterations associated with this disorder. Single nucleotide polymorphism (SNP) array data revealed a rare microdeletion involving CAPG, ELMOD3, and SH2D6 genes, in both siblings. CAPG encodes for a postsynaptic density (PSD) protein known to regulate spine morphogenesis and synaptic formation. The reduced CAPG mRNA and protein expression levels in ASD patients, in the presence of hemizygosity or a particular genetic and/or epigenetic background, highlighted the functional relevance of CAPG as a candidate gene for ASD. WES analysis led to the identification in both affected siblings of a rare frameshift mutation in VDAC3, a gene intolerant to loss of function mutation, encoding for a voltage-dependent anion channel localized on PSD. Moreover, four missense damaging variants were identified in genes intolerant to loss of function variation encoding for PSD proteins: PLXNA2, KCTD16, ARHGAP21, and SLC4A1. This study identifies CAPG and VDAC3 as candidate genes and provides additional support for genes encoding PSD proteins in ASD susceptibility.
Collapse
Affiliation(s)
- Elena Bacchelli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.
| | - Eleonora Loi
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, 09042 Cagliari, Italy.
| | - Cinzia Cameli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.
| | - Loredana Moi
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, 09042 Cagliari, Italy.
| | | | - Sylvain Blois
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, 09042 Cagliari, Italy.
| | - Antonio Fadda
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, 09042 Cagliari, Italy.
| | - Elena Bonora
- Department of Medical and Surgical Sciences, DIMEC, St. Orsola-Malpighi Hospital, University of Bologna, 40138 Bologna, Italy.
| | - Sandra Mattu
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, 09124 Cagliari, Italy.
| | - Roberta Fadda
- Department of Pedagogy, Psychology, Philosophy, University of Cagliari, 09123 Cagliari, Italy.
| | - Rita Chessa
- Center for Pervasive Developmental Disorders, AO Brotzu, 09134 Cagliari, Italy.
| | - Elena Maestrini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.
| | - Giuseppe Doneddu
- Center for Pervasive Developmental Disorders, AO Brotzu, 09134 Cagliari, Italy.
| | - Patrizia Zavattari
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, 09042 Cagliari, Italy.
| |
Collapse
|
72
|
Kursula P. Shanks — multidomain molecular scaffolds of the postsynaptic density. Curr Opin Struct Biol 2019; 54:122-128. [DOI: 10.1016/j.sbi.2019.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/24/2018] [Accepted: 01/22/2019] [Indexed: 10/27/2022]
|
73
|
Integrin activation by talin, kindlin and mechanical forces. Nat Cell Biol 2019; 21:25-31. [PMID: 30602766 DOI: 10.1038/s41556-018-0234-9] [Citation(s) in RCA: 319] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 10/16/2018] [Indexed: 01/15/2023]
Abstract
Integrins are the major family of adhesion molecules that mediate cell adhesion to the extracellular matrix. They are essential for embryonic development and influence numerous diseases, including inflammation, cancer cell invasion and metastasis. In this Perspective, we discuss the current understanding of how talin, kindlin and mechanical forces regulate integrin affinity and avidity, and how integrin inactivators function in this framework.
Collapse
|
74
|
Abstract
Cell adhesion to the extracellular matrix is fundamental to tissue integrity and human health. Integrins are the main cellular adhesion receptors that through multifaceted roles as signalling molecules, mechanotransducers and key components of the cell migration machinery are implicated in nearly every step of cancer progression from primary tumour development to metastasis. Altered integrin expression is frequently detected in tumours, where integrins have roles in supporting oncogenic growth factor receptor (GFR) signalling and GFR-dependent cancer cell migration and invasion. In addition, integrins determine colonization of metastatic sites and facilitate anchorage-independent survival of circulating tumour cells. Investigations describing integrin engagement with a growing number of versatile cell surface molecules, including channels, receptors and secreted proteins, continue to lead to the identification of novel tumour-promoting pathways. Integrin-mediated sensing, stiffening and remodelling of the tumour stroma are key steps in cancer progression supporting invasion, acquisition of cancer stem cell characteristics and drug resistance. Given the complexity of integrins and their adaptable and sometimes antagonistic roles in cancer cells and the tumour microenvironment, therapeutic targeting of these receptors has been a challenge. However, novel approaches to target integrins and antagonism of specific integrin subunits in stringently stratified patient cohorts are emerging as potential ways forward.
Collapse
Affiliation(s)
- Hellyeh Hamidi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Johanna Ivaska
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.
- Department of Biochemistry, University of Turku, Turku, Finland.
| |
Collapse
|
75
|
Barnes J, Salas F, Mokhtari R, Dolstra H, Pedrosa E, Lachman HM. Modeling the neuropsychiatric manifestations of Lowe syndrome using induced pluripotent stem cells: defective F-actin polymerization and WAVE-1 expression in neuronal cells. Mol Autism 2018; 9:44. [PMID: 30147856 PMCID: PMC6094927 DOI: 10.1186/s13229-018-0227-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 07/29/2018] [Indexed: 12/12/2022] Open
Abstract
Background Lowe syndrome (LS) is a rare genetic disorder caused by loss of function mutations in the X-linked gene, OCRL, which codes for inositol polyphosphate 5-phosphatase. LS is characterized by the triad of congenital cataracts, neurodevelopmental impairment (primarily intellectual and developmental disabilities [IDD]), and renal proximal tubular dysfunction. Studies carried out over the years have shown that hypomorphic mutations in OCRL adversely affect endosome recycling and actin polymerization in kidney cells and patient-derived fibroblasts. The renal problem has been traced to an impaired recycling of megalin, a multi-ligand receptor that plays a key role in the reuptake of lipoproteins, amino acids, vitamin-binding proteins, and hormones. However, the neurodevelopmental aspects of the disorder have been difficult to study because the mouse knockout (KO) model does not display LS-related phenotypes. Fortunately, the discovery of induced pluripotent stem (iPS) cells has provided an opportunity to grow patient-specific neurons, which can be used to model neurodevelopmental disorders in vitro, as demonstrated in the many studies that have been published in the past few years in autism spectrum disorders (ASD), schizophrenia (SZ), bipolar disorder (BD), and IDD. Methods We now report the first findings in neurons and neural progenitor cells (NPCs) generated from iPS cells derived from patients with LS and their typically developing male siblings, as well as an isogenic line in which the OCRL gene has been incapacitated by a null mutation generated using CRISPR-Cas9 gene editing. Results We show that neuronal cells derived from patient-specific iPS cells containing hypomorphic variants are deficient in their capacity to produce F-filamentous actin (F-actin) fibers. Abnormalities were also found in the expression of WAVE-1, a component of the WAVE regulatory complex (WRC) that regulates actin polymerization. Curiously, neuronal cells carrying the engineered OCRL null mutation, in which OCRL protein is not expressed, did not show similar defects in F-actin and WAVE-1 expression. This is similar to the apparent lack of a phenotype in the mouse Ocrl KO model, and suggests that in the complete absence of OCRL protein, as opposed to producing a dysfunctional protein, as seen with the hypomorphic variants, there is partial compensation for the F-actin/WAVE-1 regulating function of OCRL. Conclusions Alterations in F-actin polymerization and WRC have been found in a number of genetic subgroups of IDD and ASD. Thus, LS, a very rare genetic condition, is linked to a more expansive family of genes responsible for neurodevelopmental disorders that have shared pathogenic features. Electronic supplementary material The online version of this article (10.1186/s13229-018-0227-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jesse Barnes
- 1Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Franklin Salas
- 2Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Ryan Mokhtari
- 3Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Hedwig Dolstra
- 4Swammerdam Institute of Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Erika Pedrosa
- 2Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Herbert M Lachman
- 1Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA.,2Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, USA.,5Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA.,6Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
76
|
Hassani Nia F, Kreienkamp HJ. Functional Relevance of Missense Mutations Affecting the N-Terminal Part of Shank3 Found in Autistic Patients. Front Mol Neurosci 2018; 11:268. [PMID: 30131675 PMCID: PMC6090658 DOI: 10.3389/fnmol.2018.00268] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/16/2018] [Indexed: 12/22/2022] Open
Abstract
Genetic defects in SHANK genes are associated with autism. Deletions and truncating mutations suggest haploinsufficiency for Shank3 as a major cause of disease which may be analyzed in appropriate Shank deficient mouse models. Here we will focus on the functional analysis of missense mutations found in SHANK genes. The relevance of most of these mutations for Shank function, and their role in autism pathogenesis is unclear. This is partly due to the fact that mutations spare the most well studied functional domains of Shank3, such as the PDZ and SAM domains, or the short proline-rich motifs which are required for interactions with postsynaptic partners Homer, Cortactin, dynamin, IRSp53 and Abi-1. One set of mutations affects the N-terminal part, including the highly conserved SPN domain and ankyrin repeats. Functional analysis from several groups has indicated that these mutations (e.g., R12C; L68P; R300C, and Q321R) interfere with the critical role of Shank3 for synapse formation. More recently the structural analysis of the SPN-ARR module has begun to shed light on the molecular consequences of mutations in the SPN of Shank3. The SPN was identified as a Ras association domain, with high affinities for GTP-bound, active forms of Ras and Rap. The two autism related mutations in this part of the protein, R12C and L68P, both abolish Ras binding. Further work is directed at identifying the consequences of Ras binding to Shank proteins at postsynaptic sites.
Collapse
Affiliation(s)
- Fatemeh Hassani Nia
- Institute for Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Jürgen Kreienkamp
- Institute for Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
77
|
Single-cell trajectory analysis of human homogenous neurons carrying a rare RELN variant. Transl Psychiatry 2018; 8:129. [PMID: 30022058 PMCID: PMC6052151 DOI: 10.1038/s41398-018-0177-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/08/2018] [Indexed: 11/08/2022] Open
Abstract
Reelin is a protein encoded by the RELN gene that controls neuronal migration in the developing brain. Human genetic studies suggest that rare RELN variants confer susceptibility to mental disorders such as schizophrenia. However, it remains unknown what effects rare RELN variants have on human neuronal cells. To this end, the analysis of human neuronal dynamics at the single-cell level is necessary. In this study, we generated human-induced pluripotent stem cells carrying a rare RELN variant (RELN-del) using targeted genome editing; cells were further differentiated into highly homogeneous dopaminergic neurons. Our results indicated that RELN-del triggered an impaired reelin signal and decreased the expression levels of genes relevant for cell movement in human neurons. Single-cell trajectory analysis revealed that control neurons possessed directional migration even in vitro, while RELN-del neurons demonstrated a wandering type of migration. We further confirmed these phenotypes in neurons derived from a patient carrying the congenital RELN-del. To our knowledge, this is the first report of the biological significance of a rare RELN variant in human neurons based on individual neuron dynamics. Collectively, our approach should be useful for studying reelin function and evaluating mental disorder susceptibility, focusing on individual human neuronal migration.
Collapse
|
78
|
Kamalieva R, Ishmukhametov I, Batasheva S, Rozhina E, Fakhrullin R. Uptake of halloysite clay nanotubes by human cells: Colourimetric viability tests and microscopy study. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.nanoso.2018.03.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
79
|
Abstract
The formation of correct synaptic structures and neuronal connections is paramount for normal brain development and a functioning adult brain. The integrin family of cell adhesion receptors and their ligands play essential roles in the control of several processes regulating neuronal connectivity - including neurite outgrowth, the formation and maintenance of synapses, and synaptic plasticity - that are affected in neurodevelopmental disorders, such as autism spectrum disorders (ASDs) and schizophrenia. Many ASD- and schizophrenia-associated genes are linked to alterations in the genetic code of integrins and associated signalling pathways. In non-neuronal cells, crosstalk between integrin-mediated adhesions and the actin cytoskeleton, and the regulation of integrin activity (affinity for extracellular ligands) are widely studied in healthy and pathological settings. In contrast, the roles of integrin-linked pathways in the central nervous system remains less well defined. In this Review, we will provide an overview of the known pathways that are regulated by integrin-ECM interaction in developing neurons and in adult brain. We will also describe recent advances in the identification of mechanisms that regulate integrin activity in neurons, and highlight the interesting emerging links between integrins and neurodevelopment.
Collapse
Affiliation(s)
- Johanna Lilja
- Turku Centre for Biotechnology, University of Turku, FIN-20520 Turku, Finland
| | - Johanna Ivaska
- Turku Centre for Biotechnology, University of Turku, FIN-20520 Turku, Finland .,Department of Biochemistry, University of Turku, FIN-20500 Turku, Finland
| |
Collapse
|
80
|
Ponna SK, Ruskamo S, Myllykoski M, Keller C, Boeckers TM, Kursula P. Structural basis for PDZ domain interactions in the post-synaptic density scaffolding protein Shank3. J Neurochem 2018; 145:449-463. [DOI: 10.1111/jnc.14322] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/07/2018] [Accepted: 02/14/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Srinivas Kumar Ponna
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu; University of Oulu; Oulu Finland
| | - Salla Ruskamo
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu; University of Oulu; Oulu Finland
| | - Matti Myllykoski
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu; University of Oulu; Oulu Finland
| | - Corinna Keller
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu; University of Oulu; Oulu Finland
| | | | - Petri Kursula
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu; University of Oulu; Oulu Finland
- Department of Biomedicine; University of Bergen; Bergen Norway
| |
Collapse
|
81
|
Joensuu M, Lanoue V, Hotulainen P. Dendritic spine actin cytoskeleton in autism spectrum disorder. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:362-381. [PMID: 28870634 DOI: 10.1016/j.pnpbp.2017.08.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/21/2017] [Accepted: 08/30/2017] [Indexed: 01/01/2023]
Abstract
Dendritic spines are small actin-rich protrusions from neuronal dendrites that form the postsynaptic part of most excitatory synapses. Changes in the shape and size of dendritic spines correlate with the functional changes in excitatory synapses and are heavily dependent on the remodeling of the underlying actin cytoskeleton. Recent evidence implicates synapses at dendritic spines as important substrates of pathogenesis in neuropsychiatric disorders, including autism spectrum disorder (ASD). Although synaptic perturbations are not the only alterations relevant for these diseases, understanding the molecular underpinnings of the spine and synapse pathology may provide insight into their etiologies and could reveal new drug targets. In this review, we will discuss recent findings of defective actin regulation in dendritic spines associated with ASD.
Collapse
Affiliation(s)
- Merja Joensuu
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland; Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Vanessa Lanoue
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Pirta Hotulainen
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland.
| |
Collapse
|
82
|
Mossa A, Giona F, Pagano J, Sala C, Verpelli C. SHANK genes in autism: Defining therapeutic targets. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:416-423. [PMID: 29175319 DOI: 10.1016/j.pnpbp.2017.11.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/14/2017] [Accepted: 11/18/2017] [Indexed: 01/16/2023]
Affiliation(s)
- Adele Mossa
- CNR Neuroscience Institute, Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Federica Giona
- CNR Neuroscience Institute, Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Jessica Pagano
- CNR Neuroscience Institute, Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Carlo Sala
- CNR Neuroscience Institute, Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Chiara Verpelli
- CNR Neuroscience Institute, Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy.
| |
Collapse
|
83
|
Small GTPase-dependent regulation of leukocyte-endothelial interactions in inflammation. Biochem Soc Trans 2018; 46:649-658. [PMID: 29743277 DOI: 10.1042/bst20170530] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/12/2018] [Accepted: 04/16/2018] [Indexed: 12/19/2022]
Abstract
Inflammation is a complex biological response that serves to protect the body's tissues following harmful stimuli such as infection, irritation or injury and initiates tissue repair. At the start of an inflammatory response, pro-inflammatory mediators induce changes in the endothelial lining of the blood vessels and in leukocytes. This results in increased vascular permeability and increased expression of adhesion proteins, and promotes adhesion of leukocytes, especially neutrophils to the endothelium. Adhesion is a prerequisite for neutrophil extravasation and chemoattractant-stimulated recruitment to inflammatory sites, where neutrophils phagocytose and kill microbes, release inflammatory mediators and cross-talk with other immune cells to co-ordinate the immune response in preparation for tissue repair. Many signalling proteins are critically involved in the complex signalling processes that underpin the inflammatory response and cross-talk between endothelium and leukocytes. As key regulators of cell-cell and cell-substratum adhesion, small GTPases (guanosine triphosphatases) act as important controls of neutrophil-endothelial cell interactions as well as neutrophil recruitment to sites of inflammation. Here, we summarise key processes that are dependent upon small GTPases in leukocytes during these early inflammatory events. We place a particular focus on the regulation of integrin-dependent events and their control by Rho and Rap family GTPases as well as their regulators during neutrophil adhesion, chemotaxis and recruitment.
Collapse
|
84
|
Elosegui-Artola A, Trepat X, Roca-Cusachs P. Control of Mechanotransduction by Molecular Clutch Dynamics. Trends Cell Biol 2018; 28:356-367. [PMID: 29496292 DOI: 10.1016/j.tcb.2018.01.008] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/24/2018] [Accepted: 01/30/2018] [Indexed: 02/09/2023]
Abstract
The linkage of cells to their microenvironment is mediated by a series of bonds that dynamically engage and disengage, in what has been conceptualized as the molecular clutch model. Whereas this model has long been employed to describe actin cytoskeleton and cell migration dynamics, it has recently been proposed to also explain mechanotransduction (i.e., the process by which cells convert mechanical signals from their environment into biochemical signals). Here we review the current understanding on how cell dynamics and mechanotransduction are driven by molecular clutch dynamics and its master regulator, the force loading rate. Throughout this Review, we place a specific emphasis on the quantitative prediction of cell response enabled by combined experimental and theoretical approaches.
Collapse
Affiliation(s)
- Alberto Elosegui-Artola
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain.
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; University of Barcelona, 08028 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, 28029 Madrid, Spain
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; University of Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|
85
|
Mechanosensitive adhesion complexes in epithelial architecture and cancer onset. Curr Opin Cell Biol 2018; 50:42-49. [PMID: 29454273 DOI: 10.1016/j.ceb.2018.01.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/10/2018] [Accepted: 01/30/2018] [Indexed: 01/09/2023]
Abstract
Mechanical signals from the extracellular space are paramount to coordinate tissue morphogenesis and homeostasis. Although there is a wide variety of cellular mechanisms involved in transducing extracellular forces, recent literature emphasizes the central role of two main adhesion complexes in epithelial mechanosensitive processes: focal adhesions and adherens junctions. These biomechanical sensors can decode physical signals such as matrix stiffness or intercellular tension into a wide range of coordinated cellular responses, which can impact cell differentiation, migration, and proliferation. Communication between cells and their microenvironment plays a pivotal role both in physiological and pathological conditions. Here we summarize the most recent findings on the biology of these mechanotransduction pathways in epithelial cells, highlighting the extensive amount of biological processes coordinated by cell-matrix and cell-cell adhesion complexes.
Collapse
|
86
|
Gauthier NC, Roca-Cusachs P. Mechanosensing at integrin-mediated cell–matrix adhesions: from molecular to integrated mechanisms. Curr Opin Cell Biol 2018; 50:20-26. [DOI: 10.1016/j.ceb.2017.12.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 12/22/2017] [Indexed: 12/21/2022]
|
87
|
Zhao XF, Kohen R, Parent R, Duan Y, Fisher GL, Korn MJ, Ji L, Wan G, Jin J, Püschel AW, Dolan DF, Parent JM, Corfas G, Murphy GG, Giger RJ. PlexinA2 Forward Signaling through Rap1 GTPases Regulates Dentate Gyrus Development and Schizophrenia-like Behaviors. Cell Rep 2018. [PMID: 29320740 DOI: 10.1016/j.celrep.2017.12.044.plexina2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
Abstract
Dentate gyrus (DG) development requires specification of granule cell (GC) progenitors in the hippocampal neuroepithelium, as well as their proliferation and migration into the primordial DG. We identify the Plexin family members Plxna2 and Plxna4 as important regulators of DG development. Distribution of immature GCs is regulated by Sema5A signaling through PlxnA2 and requires a functional PlxnA2 GTPase-activating protein (GAP) domain and Rap1 small GTPases. In adult Plxna2-/- but not Plxna2-GAP-deficient mice, the dentate GC layer is severely malformed, neurogenesis is compromised, and mossy fibers form aberrant synaptic boutons within CA3. Behavioral studies with Plxna2-/- mice revealed deficits in associative learning, sociability, and sensorimotor gating-traits commonly observed in neuropsychiatric disorder. Remarkably, while morphological defects are minimal in Plxna2-GAP-deficient brains, defects in fear memory and sensorimotor gating persist. Since allelic variants of human PLXNA2 and RAP1 associate with schizophrenia, our studies identify a biochemical pathway important for brain development and mental health.
Collapse
Affiliation(s)
- Xiao-Feng Zhao
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rafi Kohen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rachel Parent
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yuntao Duan
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Grace L Fisher
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Matthew J Korn
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lingchao Ji
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Guoqiang Wan
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jing Jin
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität, 48149 Münster, Germany; Cells-in-Motion Cluster of Excellence, University of Münster, 48149 Münster, Germany
| | - Andreas W Püschel
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität, 48149 Münster, Germany; Cells-in-Motion Cluster of Excellence, University of Münster, 48149 Münster, Germany
| | - David F Dolan
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jack M Parent
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gabriel Corfas
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Geoffrey G Murphy
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Roman J Giger
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
88
|
Alexandrov PN, Zhao Y, Jaber V, Cong L, Lukiw WJ. Deficits in the Proline-Rich Synapse-Associated Shank3 Protein in Multiple Neuropsychiatric Disorders. Front Neurol 2017; 8:670. [PMID: 29321759 PMCID: PMC5732231 DOI: 10.3389/fneur.2017.00670] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/27/2017] [Indexed: 12/18/2022] Open
Abstract
Signaling between neurons in the human central nervous system (CNS) is accomplished through a highly interconnected network of presynaptic and postsynaptic elements essential in the conveyance of electrical and neurochemical information. One recently characterized core postsynaptic element essential to the efficient operation of this complex network is a relatively abundant ~184.7 kDa proline-rich synapse-associated cytoskeletal protein known as Shank3 (SH3-ankyrin repeat domain; encoded at human chr 22q13.33). In this “Perspectives” article, we review and comment on current advances in Shank3 research and include some original data that show common Shank3 deficits in a number of seemingly unrelated human neurological disorders that include sporadic Alzheimer’s disease (AD), autism spectrum disorder (ASD), bipolar disorder (BD), Phelan–McDermid syndrome (PMS; 22q13.3 deletion syndrome), and schizophrenia (SZ). Shank3 was also found to be downregulated in the CNS of the transgenic AD (TgAD) 5x familial Alzheimer’s disease murine model engineered to overexpress the 42 amino acid amyloid-beta (Aβ42) peptide. Interestingly, the application of known pro-inflammatory stressors, such as the Aβ42 peptide and the metal-neurotoxin aluminum sulfate, to human neuronal–glial cells in primary culture resulted in a significant decrease in the expression of Shank3. These data indicate that deficits in Shank3-expression may be one common denominator linking a wide-range of human neurological disorders that exhibit a progressive or developmental synaptic disorganization that is temporally associated with cognitive decline.
Collapse
Affiliation(s)
| | - Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States.,Department of Anatomy and Cell Biology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Vivian Jaber
- LSU Neuroscience Center, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States
| | - Lin Cong
- LSU Neuroscience Center, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States.,Department of Neurology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Walter J Lukiw
- Russian Academy of Medical Sciences, Moscow, Russia.,LSU Neuroscience Center, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States.,Department of Neurology, Shengjing Hospital, China Medical University, Shenyang, China.,Department of Ophthalmology, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States.,Department of Neurology, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States
| |
Collapse
|
89
|
Reichova A, Zatkova M, Bacova Z, Bakos J. Abnormalities in interactions of Rho GTPases with scaffolding proteins contribute to neurodevelopmental disorders. J Neurosci Res 2017; 96:781-788. [DOI: 10.1002/jnr.24200] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/09/2017] [Accepted: 10/30/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Alexandra Reichova
- Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences; Bratislava Slovakia
| | - Martina Zatkova
- Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences; Bratislava Slovakia
- Institute of Physiology; Comenius University, Faculty of Medicine; Bratislava Slovakia
| | - Zuzana Bacova
- Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences; Bratislava Slovakia
- Department of Normal and Pathological Physiology, Faculty of Medicine; Slovak Medical University; Bratislava Slovakia
| | - Jan Bakos
- Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences; Bratislava Slovakia
- Institute of Physiology; Comenius University, Faculty of Medicine; Bratislava Slovakia
| |
Collapse
|
90
|
Zhu L, Yang J, Bromberger T, Holly A, Lu F, Liu H, Sun K, Klapproth S, Hirbawi J, Byzova TV, Plow EF, Moser M, Qin J. Structure of Rap1b bound to talin reveals a pathway for triggering integrin activation. Nat Commun 2017; 8:1744. [PMID: 29170462 PMCID: PMC5701058 DOI: 10.1038/s41467-017-01822-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 10/18/2017] [Indexed: 11/17/2022] Open
Abstract
Activation of transmembrane receptor integrin by talin is essential for inducing cell adhesion. However, the pathway that recruits talin to the membrane, which critically controls talin's action, remains elusive. Membrane-anchored mammalian small GTPase Rap1 is known to bind talin-F0 domain but the binding was shown to be weak and thus hardly studied. Here we show structurally that talin-F0 binds to human Rap1b like canonical Rap1 effectors despite little sequence homology, and disruption of the binding strongly impairs integrin activation, cell adhesion, and cell spreading. Furthermore, while being weak in conventional binary binding conditions, the Rap1b/talin interaction becomes strong upon attachment of activated Rap1b to vesicular membranes that mimic the agonist-induced microenvironment. These data identify a crucial Rap1-mediated membrane-targeting mechanism for talin to activate integrin. They further broadly caution the analyses of weak protein-protein interactions that may be pivotal for function but neglected in the absence of specific cellular microenvironments.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Jun Yang
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Thomas Bromberger
- Max-Planck-Institute of Biochemistry, Department of Molecular Medicine, 82152, Martinsried, Germany
| | - Ashley Holly
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Fan Lu
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Huan Liu
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Kevin Sun
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Sarah Klapproth
- Max-Planck-Institute of Biochemistry, Department of Molecular Medicine, 82152, Martinsried, Germany
| | - Jamila Hirbawi
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Tatiana V Byzova
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Edward F Plow
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Markus Moser
- Max-Planck-Institute of Biochemistry, Department of Molecular Medicine, 82152, Martinsried, Germany.
| | - Jun Qin
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
91
|
Atherton P, Ballestrem C. Talin gets SHANKed in the fight for integrin activation. Nat Cell Biol 2017; 19:265-267. [PMID: 28361943 DOI: 10.1038/ncb3501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Genetic mutations in the SHANK family of proteins are linked to multiple neuropsychiatric disorders including autism spectrum disorders. A study now elucidates critical roles for SHANK in regulating integrin-mediated cell-extracellular matrix adhesion, by sequestering integrin activators.
Collapse
Affiliation(s)
- Paul Atherton
- the Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, UK
| | - Christoph Ballestrem
- the Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
92
|
Minchin JEN, Rawls JF. Elucidating the role of plexin D1 in body fat distribution and susceptibility to metabolic disease using a zebrafish model system. Adipocyte 2017; 6:277-283. [PMID: 28792859 DOI: 10.1080/21623945.2017.1356504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Non-communicable diseases (NCDs) such as cardiovascular disease, diabetes and cancer were responsible for 68% of all deaths worldwide in 2012. The regional distribution of lipid deposited within adipose tissue (AT) - so called body fat distribution (BFD) - is a strong risk factor for NCDs. BFD is highly heritable; however, the genetic basis of BFD is almost entirely unknown. Genome-wide association studies have identified several loci associated with BFD, including at Plexin D1 (PLXND1) - a gene known to modulate angiogenesis. We recently demonstrated that zebrafish homozygous for a null mutation in plxnd1 had a reduced capacity to store lipid in visceral AT (VAT) leading to altered BFD. Moreover, we found that type V collagens were upregulated in plxnd1 mutants, and mediated the inhibitory effect of Plxnd1 on VAT growth. These results strengthen evidence that Plxnd1 influences BFD in human populations, and validate zebrafish as a model to study BFD. However, many pertinent questions remain unanswered. Here we outline potential Plxnd1 mechanisms of action in AT, and describe the genetic architecture at human PLXND1 that is associated with BFD and NCD susceptibility.
Collapse
Affiliation(s)
- James E. N. Minchin
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - John F. Rawls
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| |
Collapse
|
93
|
Abstract
Talin has emerged as the key cytoplasmic protein that mediates integrin adhesion to the extracellular matrix. In this Review, we draw on experiments performed in mammalian cells in culture and Drosophila to present evidence that talin is the most important component of integrin adhesion complexes. We describe how the properties of this adaptor protein enable it to orchestrate integrin adhesions. Talin forms the core of integrin adhesion complexes by linking integrins directly to actin, increasing the affinity of integrin for ligands (integrin activation) and recruiting numerous proteins. It regulates the strength of integrin adhesion, senses matrix rigidity, increases focal adhesion size in response to force and serves as a platform for the building of the adhesion structure. Finally, the mechano-sensitive structure of talin provides a paradigm for how proteins transduce mechanical signals to chemical signals.
Collapse
Affiliation(s)
- Benjamin Klapholz
- Dept of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Nicholas H Brown
- Dept of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
94
|
Bryant D, Johnson A. Meeting report - Intercellular interactions in context: towards a mechanistic understanding of cells in organs. J Cell Sci 2017; 130:2083-2085. [PMID: 28738319 DOI: 10.1242/jcs.205740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Company of Biologists held the workshop 'Intercellular interactions in context: towards a mechanistic understanding of cells in organs' at historic Wiston House in West Sussex, UK, 5-8 February 2017. The meeting brought together around 30 scientists from disparate backgrounds - yet with a common interest of how tissue morphogenesis occurs and its dysregulation leads to pathologies - to intensively discuss their latest research, the current state of the field, as well as any challenges for the future. This report summarises the concepts and challenges that arose as key questions for the fields of cell, cancer and developmental biology. By design of the organizers - Andrew Ewald (John Hopkins University, MA), John Wallingford (University of Texas at Austin, TX) and Peter Friedl (Radboud University, Nijmegen, The Netherlands) - the attendee makeup was cross-sectional: both in terms of career stage and scientific background. This intermingling was mirrored in the workshop format; all participants - irrespective of career stage - were given equal speaking and question time, and all early-career researchers also chaired a session, which promoted an atmosphere for discussions that were open, egalitarian and supportive. This was particularly evident in the scheduled 'out-of-the-box' sessions, which provided an avenue for participants to raise ideas and concepts or to discuss specific problems they wanted feedback or clarification on. In the following, rather than act as court reporters and convey chronological accounting of presentations, we present the questions that arose from the workshop and should be posed to the field at large, by discussing the presentations as they relate to these concepts.
Collapse
Affiliation(s)
- David Bryant
- Cancer Research UK Beatson Institute and Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, UK
| | - Aaron Johnson
- Department of Integrative Biology, University of Colorado Denver, Denver, CO 80217, USA
| |
Collapse
|
95
|
Genova T, Grolez GP, Camillo C, Bernardini M, Bokhobza A, Richard E, Scianna M, Lemonnier L, Valdembri D, Munaron L, Philips MR, Mattot V, Serini G, Prevarskaya N, Gkika D, Pla AF. TRPM8 inhibits endothelial cell migration via a non-channel function by trapping the small GTPase Rap1. J Cell Biol 2017; 216:2107-2130. [PMID: 28550110 PMCID: PMC5496606 DOI: 10.1083/jcb.201506024] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 06/26/2016] [Accepted: 04/12/2017] [Indexed: 01/30/2023] Open
Abstract
Endothelial cell adhesion and migration are critical steps of the angiogenic process, whose dysfunction is associated with tumor growth and metastasis. The TRPM8 channel has recently been proposed to play a protective role in prostate cancer by impairing cell motility. However, the mechanisms by which it could influence vascular behavior are unknown. Here, we reveal a novel non-channel function for TRPM8 that unexpectedly acts as a Rap1 GTPase inhibitor, thereby inhibiting endothelial cell motility, independently of pore function. TRPM8 retains Rap1 intracellularly through direct protein-protein interaction, thus preventing its cytoplasm-plasma membrane trafficking. In turn, this mechanism impairs the activation of a major inside-out signaling pathway that triggers the conformational activation of integrin and, consequently, cell adhesion, migration, in vitro endothelial tube formation, and spheroid sprouting. Our results bring to light a novel, pore-independent molecular mechanism by which endogenous TRPM8 expression inhibits Rap1 GTPase and thus plays a critical role in the behavior of vascular endothelial cells by inhibiting migration.
Collapse
Affiliation(s)
- Tullio Genova
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.,Department of Surgical Sciences, C.I.R. Dental School, University of Torino, Torino, Italy
| | - Guillaume P Grolez
- Laboratoire de Physiologie cellulaire, Institut National de la Santé et de la Recherche Médicale U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université de Lille, Villeneuve d'Ascq, France
| | - Chiara Camillo
- Laboratory of Cell Adhesion Dynamics, Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia, Istituto di Ricovero e Cura a Carattere Scientifico, Department of Oncology, University of Torino School of Medicine, Candiolo, Italy
| | - Michela Bernardini
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.,Laboratoire de Physiologie cellulaire, Institut National de la Santé et de la Recherche Médicale U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université de Lille, Villeneuve d'Ascq, France
| | - Alexandre Bokhobza
- Laboratoire de Physiologie cellulaire, Institut National de la Santé et de la Recherche Médicale U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université de Lille, Villeneuve d'Ascq, France
| | - Elodie Richard
- BICeL Campus Lille1, FR3688 FRABio, Université de Lille, Villeneuve d'Ascq, France
| | - Marco Scianna
- Department of Mathematical Sciences, Politecnico di Torino, Torino, Italy
| | - Loic Lemonnier
- Laboratoire de Physiologie cellulaire, Institut National de la Santé et de la Recherche Médicale U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université de Lille, Villeneuve d'Ascq, France
| | - Donatella Valdembri
- Laboratory of Cell Adhesion Dynamics, Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia, Istituto di Ricovero e Cura a Carattere Scientifico, Department of Oncology, University of Torino School of Medicine, Candiolo, Italy
| | - Luca Munaron
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.,Nanostructured Interfaces and Surfaces Centre of Excellence, University of Torino, Torino, Italy
| | - Mark R Philips
- Cancer Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY
| | - Virginie Mattot
- Centre National de la Recherche Scientifique, Institut Pasteur de Lille, UMR 8161 - Mechanisms of Tumorigenesis and Target Therapies, Universite de Lille, Lille, France
| | - Guido Serini
- Laboratory of Cell Adhesion Dynamics, Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia, Istituto di Ricovero e Cura a Carattere Scientifico, Department of Oncology, University of Torino School of Medicine, Candiolo, Italy
| | - Natalia Prevarskaya
- Laboratoire de Physiologie cellulaire, Institut National de la Santé et de la Recherche Médicale U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université de Lille, Villeneuve d'Ascq, France
| | - Dimitra Gkika
- Laboratoire de Physiologie cellulaire, Institut National de la Santé et de la Recherche Médicale U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université de Lille, Villeneuve d'Ascq, France
| | - Alessandra Fiorio Pla
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy .,Nanostructured Interfaces and Surfaces Centre of Excellence, University of Torino, Torino, Italy.,Laboratoire de Physiologie cellulaire, Institut National de la Santé et de la Recherche Médicale U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université de Lille, Villeneuve d'Ascq, France
| |
Collapse
|
96
|
Lee Y, Kang H, Lee B, Zhang Y, Kim Y, Kim S, Kim WK, Han K. Integrative Analysis of Brain Region-specific Shank3 Interactomes for Understanding the Heterogeneity of Neuronal Pathophysiology Related to SHANK3 Mutations. Front Mol Neurosci 2017; 10:110. [PMID: 28469556 PMCID: PMC5395616 DOI: 10.3389/fnmol.2017.00110] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/04/2017] [Indexed: 01/08/2023] Open
Abstract
Recent molecular genetic studies have identified 100s of risk genes for various neurodevelopmental and neuropsychiatric disorders. As the number of risk genes increases, it is becoming clear that different mutations of a single gene could cause different types of disorders. One of the best examples of such a gene is SHANK3, which encodes a core scaffold protein of the neuronal excitatory post-synapse. Deletions, duplications, and point mutations of SHANK3 are associated with autism spectrum disorders, intellectual disability, schizophrenia, bipolar disorder, and attention deficit hyperactivity disorder. Nevertheless, how the different mutations of SHANK3 can lead to such phenotypic diversity remains largely unknown. In this study, we investigated whether Shank3 could form protein complexes in a brain region-specific manner, which might contribute to the heterogeneity of neuronal pathophysiology caused by SHANK3 mutations. To test this, we generated a medial prefrontal cortex (mPFC) Shank3 in vivo interactome consisting of 211 proteins, and compared this protein list with a Shank3 interactome previously generated from mixed hippocampal and striatal (HP+STR) tissues. Unexpectedly, we found that only 47 proteins (about 20%) were common between the two interactomes, while 164 and 208 proteins were specifically identified in the mPFC and HP+STR interactomes, respectively. Each of the mPFC- and HP+STR-specific Shank3 interactomes represents a highly interconnected network. Upon comparing the brain region-enriched proteomes, we found that the large difference between the mPFC and HP+STR Shank3 interactomes could not be explained by differential protein expression profiles among the brain regions. Importantly, bioinformatic pathway analysis revealed that the representative biological functions of the mPFC- and HP+STR-specific Shank3 interactomes were different, suggesting that these interactors could mediate the brain region-specific functions of Shank3. Meanwhile, the same analysis on the common Shank3 interactors, including Homer and GKAP/SAPAP proteins, suggested that they could mainly function as scaffolding proteins at the post-synaptic density. Lastly, we found that the mPFC- and HP+STR-specific Shank3 interactomes contained a significant number of proteins associated with neurodevelopmental and neuropsychiatric disorders. These results suggest that Shank3 can form protein complexes in a brain region-specific manner, which might contribute to the pathophysiological and phenotypic diversity of disorders related to SHANK3 mutations.
Collapse
Affiliation(s)
- Yeunkum Lee
- Department of Neuroscience, College of Medicine, Korea UniversitySeoul, South Korea
- Department of Biomedical Sciences, College of Medicine, Korea UniversitySeoul, South Korea
| | - Hyojin Kang
- HPC-enabled Convergence Technology Research Division, Korea Institute of Science and Technology InformationDaejeon, South Korea
| | - Bokyoung Lee
- Department of Neuroscience, College of Medicine, Korea UniversitySeoul, South Korea
| | - Yinhua Zhang
- Department of Neuroscience, College of Medicine, Korea UniversitySeoul, South Korea
- Department of Biomedical Sciences, College of Medicine, Korea UniversitySeoul, South Korea
| | - Yoonhee Kim
- Department of Neuroscience, College of Medicine, Korea UniversitySeoul, South Korea
| | - Shinhyun Kim
- Department of Neuroscience, College of Medicine, Korea UniversitySeoul, South Korea
- Department of Biomedical Sciences, College of Medicine, Korea UniversitySeoul, South Korea
| | - Won-Ki Kim
- Department of Neuroscience, College of Medicine, Korea UniversitySeoul, South Korea
- Department of Biomedical Sciences, College of Medicine, Korea UniversitySeoul, South Korea
| | - Kihoon Han
- Department of Neuroscience, College of Medicine, Korea UniversitySeoul, South Korea
- Department of Biomedical Sciences, College of Medicine, Korea UniversitySeoul, South Korea
| |
Collapse
|
97
|
Abstract
Cell adhesion to neighbouring cells and to the underlying extracellular matrix (ECM) is a fundamental requirement for the existence of multicellular organisms. As such, the formation, stability and dissociation of cell adhesions are subject to tight control in space and time and perturbations within the sophisticated adhesion machinery are associated with a variety of human pathologies. Here, we outline a simple protocol to monitor alterations in cell adhesion to the ECM, for example, following genetic manipulations or overexpression of a protein of interest or in response to drug treatment, using the xCELLigence real-time cell analysis (RTCA) system.
Collapse
Affiliation(s)
- Hellyeh Hamidi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Johanna Lilja
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Johanna Ivaska
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.,Department of Biochemistry, University of Turku, Turku, Finland
| |
Collapse
|