51
|
Novel Insights into Molecular Mechanisms of Chronic Pain. Cells 2020; 9:cells9102220. [PMID: 33019536 PMCID: PMC7601569 DOI: 10.3390/cells9102220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/28/2022] Open
Abstract
Pain is the most frequent cause triggering patients to visit a physician. The worldwide incidence of chronic pain is in the range of 20% of adults, and chronic pain conditions are frequently associated with several comorbidities and a drastic decrease in patients’ quality of life. Although several approved analgesics are available, such therapy is often not satisfying due to insufficient efficacy and/or severe side effects. Therefore, novel strategies for the development of safe and highly efficacious pain killers are urgently needed. To reach this goal, it is necessary to clarify the causes and signal transduction cascades underlying the onset and progression of the different types of chronic pain. The papers in this Special Issue cover a wide variety of mechanisms involved in different pain types such as inflammatory, neuropathic or cancer pain. Therefore, the results summarized here might contribute to a better understanding of the mechanisms in chronic pain and thereby to the development of novel therapeutic strategies for pain patients.
Collapse
|
52
|
Fernández-Carvajal A, González-Muñiz R, Fernández-Ballester G, Ferrer-Montiel A. Investigational drugs in early phase clinical trials targeting thermotransient receptor potential (thermoTRP) channels. Expert Opin Investig Drugs 2020; 29:1209-1222. [PMID: 32941080 DOI: 10.1080/13543784.2020.1825680] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Thermo transient receptor potential (thermoTRP) channels are some of the most intensely pursued therapeutic targets of the past decade. They are considered promising targets of numerous diseases including chronic pain and cancer. Modulators of these proteins, in particular TRPV1-4, TRPM8 and TRPA1, have reached clinical development, but none has been approved for clinical practice yet. AREAS COVERED The therapeutic potential of targeting thermoTRP channels is discussed. The discussion is centered on our experience and on available data found in SciFinder, PubMed, and ClinicalTrials.gov database from the past decade. This review focuses on the therapeutic progress concerning this family of channels, including strategies to improve their therapeutic index for overcoming adverse effects. EXPERT OPINION Although thermoTRPs are pivotal drug targets, translation to the clinic has faced two key problems, (i) unforeseen side effects in Phase I trials and, (ii) poor clinical efficacy in Phase II trials. Thus, there is a need for (i) an enhanced understanding of the physiological role of these channels in tissues and organs and (ii) the development of human-based pre-clinical models with higher clinical translation. Furthermore, progress in nanotechnology-based delivery strategies will positively impact thermoTRP human pharmacology.
Collapse
Affiliation(s)
- Asia Fernández-Carvajal
- Instituto De Investigación, Desarrollo E Innovación En Biotecnología Sanitaria De Elche (Idibe), Universitas Miguel Hernández , Alicante, Spain
| | | | - Gregorio Fernández-Ballester
- Instituto De Investigación, Desarrollo E Innovación En Biotecnología Sanitaria De Elche (Idibe), Universitas Miguel Hernández , Alicante, Spain
| | - Antonio Ferrer-Montiel
- Instituto De Investigación, Desarrollo E Innovación En Biotecnología Sanitaria De Elche (Idibe), Universitas Miguel Hernández , Alicante, Spain
| |
Collapse
|
53
|
Bamps D, Vriens J, de Hoon J, Voets T. TRP Channel Cooperation for Nociception: Therapeutic Opportunities. Annu Rev Pharmacol Toxicol 2020; 61:655-677. [PMID: 32976736 DOI: 10.1146/annurev-pharmtox-010919-023238] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chronic pain treatment remains a sore challenge, and in our aging society, the number of patients reporting inadequate pain relief continues to grow. Current treatment options all have their drawbacks, including limited efficacy and the propensity of abuse and addiction; the latter is exemplified by the ongoing opioid crisis. Extensive research in the last few decades has focused on mechanisms underlying chronic pain states, thereby producing attractive opportunities for novel, effective and safe pharmaceutical interventions. Members of the transient receptor potential (TRP) ion channel family represent innovative targets to tackle pain sensation at the root. Three TRP channels, TRPV1, TRPM3, and TRPA1, are of particular interest, as they were identified as sensors of chemical- and heat-induced pain in nociceptor neurons. This review summarizes the knowledge regarding TRP channel-based pain therapies, including the bumpy road of the clinical development of TRPV1 antagonists, the current status of TRPA1 antagonists, and the future potential of targeting TRPM3.
Collapse
Affiliation(s)
- Dorien Bamps
- Center for Clinical Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Joris Vriens
- Laboratory of Endometrium, Endometriosis and Reproductive Medicine, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Jan de Hoon
- Center for Clinical Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research, VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium; .,Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
54
|
He H, Zhao R, Hu K, Qiu L, Ding W, Li Y. A novel negative thermotaxis behavior in rice planthoppers is regulated by TRPA1 channel. PEST MANAGEMENT SCIENCE 2020; 76:3003-3011. [PMID: 32248592 DOI: 10.1002/ps.5846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/15/2020] [Accepted: 04/05/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND In the field, we observed that many white-backed planthoppers (Sogatella furcifera, WBPHs) stayed in the top region of rice plants exposed to direct sunshine. It was known that WBPHs frequently took flight when the ground temperature was about 25 °C, then climbed to and flew in a dense layer corresponding to an air temperature of about 16 °C in the sky. Its migration height was higher than the top of the surface temperature inversion. It is still unclear whether WBPHs prefer warm or cold regions, and therefore we studied the thermal responses of WBPHs and other insects using a simulated system. RESULTS We found that WBPHs preferred a cold region to a warm one, unexpectedly below their comfort temperature zone. After comparative analysis with other insect species, such as small brown planthoppers, brown planthoppers, Trialeurodes vaporariorum (stinkbugs, a predator of planthoppers) and Bemisia tabaci (whitefly), only three planthoppers showed cold preference behavior. RNA interference experiments revealed that this behavior of WBPHs can be regulated by the transient receptor potential (TRP) channels TRPA1 channel. Furthermore, podocarpic acid, an agonist of TRPA1, weakened the cold preference, whereas A-967079, an antagonist of TRPA1, had the opposite effect. CONCLUSION We reported a novel cold preference (negative thermotaxis) in rice planthoppers that was regulated in WBPHs by the TRPA1 channel. Cold preference of rice planthoppers is probably related to its choice behavior of the special migratory temperature layer. Our results expanded a new perspective to develop novel strategies for behavioral manipulation and management of rice planthoppers. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hualiang He
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Rui Zhao
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Kui Hu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Lin Qiu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Wenbing Ding
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Youzhi Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| |
Collapse
|
55
|
Buijs TJ, McNaughton PA. The Role of Cold-Sensitive Ion Channels in Peripheral Thermosensation. Front Cell Neurosci 2020; 14:262. [PMID: 32973456 PMCID: PMC7468449 DOI: 10.3389/fncel.2020.00262] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/27/2020] [Indexed: 11/13/2022] Open
Abstract
The detection of ambient cold is critical for mammals, who use this information to avoid tissue damage by cold and to maintain stable body temperature. The transduction of information about the environmental cold is mediated by cold-sensitive ion channels expressed in peripheral sensory nerve endings in the skin. Most transduction mechanisms for detecting temperature changes identified to date depend on transient receptor potential (TRP) ion channels. Mild cooling is detected by the menthol-sensitive TRPM8 ion channel, but how painful cold is detected remains unclear. The TRPA1 ion channel, which is activated by cold in expression systems, seemed to provide an answer to this question, but whether TRPA1 is activated by cold in neurons and contributes to the sensation of cold pain continues to be a matter of debate. Recent advances have been made in this area of investigation with the identification of several potential cold-sensitive ion channels in thermosensory neurons, including two-pore domain potassium channels (K2P), GluK2 glutamate receptors, and CNGA3 cyclic nucleotide-gated ion channels. This mini-review gives a brief overview of the way by which ion channels contribute to cold sensation, discusses the controversy around the cold-sensitivity of TRPA1, and provides an assessment of some recently-proposed novel cold-transduction mechanisms. Evidence for another unidentified cold-transduction mechanism is also presented.
Collapse
Affiliation(s)
- Tamara Joëlle Buijs
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | | |
Collapse
|
56
|
Ding H, Kiguchi N, Perrey DA, Nguyen T, Czoty PW, Hsu FC, Zhang Y, Ko MC. Antinociceptive, reinforcing, and pruritic effects of the G-protein signalling-biased mu opioid receptor agonist PZM21 in non-human primates. Br J Anaesth 2020; 125:596-604. [PMID: 32819621 DOI: 10.1016/j.bja.2020.06.057] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 06/05/2020] [Accepted: 06/15/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND A novel G-protein signalling-biased mu opioid peptide (MOP) receptor agonist, PZM21, was recently developed with a distinct chemical structure. It is a potent Gi/o activator with minimal β-arrestin-2 recruitment. Despite intriguing activity in rodent models, PZM21 function in non-human primates is unknown. The aim of this study was to investigate PZM21 actions after systemic or intrathecal administration in primates. METHODS Antinociceptive, reinforcing, and pruritic effects of PZM21 were compared with those of the clinically used MOP receptor agonists oxycodone and morphine in assays of acute thermal nociception, capsaicin-induced thermal allodynia, itch scratching responses, and drug self-administration in gonadally intact, adult rhesus macaques (10 males, six females). RESULTS After subcutaneous administration, PZM21 (1.0-6.0 mg kg-1) and oxycodone (0.1-0.6 mg kg-1) induced dose-dependent thermal antinociceptive effects (P<0.05); PZM21 was 10 times less potent than oxycodone. PZM21 exerted oxycodone-like reinforcing effects and strength as determined by two operant schedules of reinforcement in the intravenous drug self-administration assay. After intrathecal administration, PZM21 (0.03-0.3 mg) dose-dependently attenuated capsaicin-induced thermal allodynia (P<0.05). Although intrathecal PZM21 and morphine induced MOP receptor-mediated antiallodynic effects, both compounds induced robust, long-lasting itch scratching. CONCLUSIONS PZM21 induced antinociceptive, reinforcing, and pruritic effects similar to clinically used MOP receptor agonists in primates. Although structure-based discovery of PZM21 identified a novel avenue for studying G-protein signalling-biased ligands, biasing an agonist towards G-protein signalling pathways did not determine or alter reinforcing (i.e. abuse potential) or pruritic effects of MOP receptor agonists in a translationally relevant non-human primate model.
Collapse
Affiliation(s)
- Huiping Ding
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Norikazu Kiguchi
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
| | - David A Perrey
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, NC, USA
| | - Thuy Nguyen
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, NC, USA
| | - Paul W Czoty
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Fang-Chi Hsu
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Yanan Zhang
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, NC, USA.
| | - Mei-Chuan Ko
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA; W.G. Hefner Veterans Affairs Medical Center, Salisbury, NC, USA.
| |
Collapse
|
57
|
Schecterson LC, Pazevic AA, Yang R, Matulef K, Gordon SE. TRPV1, TRPA1, and TRPM8 are expressed in axon terminals in the cornea: TRPV1 axons contain CGRP and secretogranin II; TRPA1 axons contain secretogranin 3. Mol Vis 2020; 26:576-587. [PMID: 32863706 PMCID: PMC7438417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 08/11/2020] [Indexed: 11/08/2022] Open
Abstract
Purpose The cornea is highly enriched in sensory neurons expressing the thermal TRP channels TRPV1, TRPA1, and TRPM8, and is an accessible tissue for study and experimental manipulation. The aim of this work was to provide a concise characterization of the expression patterns of various TRP channels and vesicular proteins in the mammalian cornea. Methods Immunohistochemistry (IHC) was performed using wholemount and cryostat tissue preparations of mouse and monkey corneas. The expression patterns of TRPV1 and TRPA1 were determined using specific antisera, and further colocalization was performed with antibodies directed against calcitonin-related gene protein (CGRP), neurofilament protein NF200, and the secretogranins ScgII and SCG3. The expression of TRPM8 was determined using corneas from mice expressing EGFP under the direction of a TRPM8 promoter (TRPM8EGFP mice). Laser scanning confocal microscopy and image analysis were performed. Results In the mouse cornea, TRPV1 and TRPM8 were expressed in distinct populations of small diameter C fibers extending to the corneal surface and ending either as simple or ramifying terminals, or in the case of TRPM8, as complex terminals. TRPA1 was expressed in large-diameter NF200-positive Aδ axons. TRPV1 and TRPA1 appeared to localize to separate intracellular vesicular structures and were primarily found in axons containing components of large dense vesicles with TRPV1 colocalizing with CGRP and ScgII, and TRPA1 colocalizing with SCG3. Monkey corneas showed similar colocalization of CGRP and TRPV1 on small-diameter axons extending to the epithelial surface. Conclusions The mouse cornea is abundant in sensory neurons expressing TRPV1, TRPM8, and TRPA1, and provides an accessible tissue source for implementing a live tissue preparation useful for further exploration of the molecular mechanisms of hyperalgesia. This study showed that surprisingly, these TRP channels localize to separate neurons in the mouse cornea and likely have unique physiological functions. The similar TRPV1 expression pattern we observed in the mouse and monkey corneas suggests that mice provide a reasonable initial model for understanding the role of these ion channels in higher mammalian corneal physiology.
Collapse
|
58
|
Schecterson LC, Pazevic AA, Yang R, Matulef K, Gordon SE. TRPV1, TRPA1, and TRPM8 are expressed in axon terminals in the cornea: TRPV1 axons contain CGRP and secretogranin II; TRPA1 axons contain secretogranin 3. Mol Vis 2020; 26:392-404. [PMID: 38860239 PMCID: PMC11163611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 08/11/2020] [Indexed: 06/12/2024] Open
Abstract
Purpose The cornea is highly enriched in sensory neurons expressing the thermal TRP channels TRPV1, TRPA1, and TRPM8, and is an accessible tissue for study and experimental manipulation. The aim of this work was to provide a concise characterization of the expression patterns of various TRP channels and vesicular proteins in the mammalian cornea. Methods Immunohistochemistry (IHC) was performed using wholemount and cryostat tissue preparations of mouse and monkey corneas. The expression patterns of TRPV1 and TRPA1 were determined using specific antisera, and further colocalization was performed with antibodies directed against calcitonin-related gene protein (CGRP), neurofilament protein NF200, and the secretogranins ScgII and SCG3. The expression of TRPM8 was determined using corneas from mice expressing EGFP under the direction of a TRPM8 promoter (TRPM8EGFP mice). Laser scanning confocal microscopy and image analysis were performed. Results In the mouse cornea, TRPV1 and TRPM8 were expressed in distinct populations of small diameter C fibers extending to the corneal surface and ending either as simple or ramifying terminals, or in the case of TRPM8, as complex terminals. TRPA1 was expressed in large-diameter NF200-positive Aδ axons. TRPV1 and TRPA1 appeared to localize to separate intracellular vesicular structures and were primarily found in axons containing components of large dense vesicles with TRPV1 colocalizing with CGRP and ScgII, and TRPA1 colocalizing with SCG3. Monkey corneas showed similar colocalization of CGRP and TRPV1 on small-diameter axons extending to the epithelial surface. Conclusions The mouse cornea is abundant in sensory neurons expressing TRPV1, TRPM8, and TRPA1, and provides an accessible tissue source for implementing a live tissue preparation useful for further exploration of the molecular mechanisms of hyperalgesia. This study showed that surprisingly, these TRP channels localize to separate neurons in the mouse cornea and likely have unique physiological functions. The similar TRPV1 expression pattern we observed in the mouse and monkey corneas suggests that mice provide a reasonable initial model for understanding the role of these ion channels in higher mammalian corneal physiology.
Collapse
Affiliation(s)
- Leslayann C Schecterson
- Department of Physiology & Biophysics, University of Washington School of Medicine, Seattle, WA
| | - Alexander A Pazevic
- Department of Physiology & Biophysics, University of Washington School of Medicine, Seattle, WA
| | - Ruian Yang
- Department of Physiology & Biophysics, University of Washington School of Medicine, Seattle, WA
| | - Kimberly Matulef
- Department of Physiology & Biophysics, University of Washington School of Medicine, Seattle, WA
| | - Sharona E Gordon
- Department of Physiology & Biophysics, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
59
|
Pre-extinction Demographic Stability and Genomic Signatures of Adaptation in the Woolly Rhinoceros. Curr Biol 2020; 30:3871-3879.e7. [PMID: 32795436 DOI: 10.1016/j.cub.2020.07.046] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/18/2020] [Accepted: 07/14/2020] [Indexed: 02/01/2023]
Abstract
Ancient DNA has significantly improved our understanding of the evolution and population history of extinct megafauna. However, few studies have used complete ancient genomes to examine species responses to climate change prior to extinction. The woolly rhinoceros (Coelodonta antiquitatis) was a cold-adapted megaherbivore widely distributed across northern Eurasia during the Late Pleistocene and became extinct approximately 14 thousand years before present (ka BP). While humans and climate change have been proposed as potential causes of extinction [1-3], knowledge is limited on how the woolly rhinoceros was impacted by human arrival and climatic fluctuations [2]. Here, we use one complete nuclear genome and 14 mitogenomes to investigate the demographic history of woolly rhinoceros leading up to its extinction. Unlike other northern megafauna, the effective population size of woolly rhinoceros likely increased at 29.7 ka BP and subsequently remained stable until close to the species' extinction. Analysis of the nuclear genome from a ∼18.5-ka-old specimen did not indicate any increased inbreeding or reduced genetic diversity, suggesting that the population size remained steady for more than 13 ka following the arrival of humans [4]. The population contraction leading to extinction of the woolly rhinoceros may have thus been sudden and mostly driven by rapid warming in the Bølling-Allerød interstadial. Furthermore, we identify woolly rhinoceros-specific adaptations to arctic climate, similar to those of the woolly mammoth. This study highlights how species respond differently to climatic fluctuations and further illustrates the potential of palaeogenomics to study the evolutionary history of extinct species.
Collapse
|
60
|
Baldwin MW, Ko MC. Functional evolution of vertebrate sensory receptors. Horm Behav 2020; 124:104771. [PMID: 32437717 DOI: 10.1016/j.yhbeh.2020.104771] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 04/20/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022]
Abstract
Sensory receptors enable animals to perceive their external world, and functional properties of receptors evolve to detect the specific cues relevant for an organism's survival. Changes in sensory receptor function or tuning can directly impact an organism's behavior. Functional tests of receptors from multiple species and the generation of chimeric receptors between orthologs with different properties allow for the dissection of the molecular basis of receptor function and identification of the key residues that impart functional changes in different species. Knowledge of these functionally important sites facilitates investigation into questions regarding the role of epistasis and the extent of convergence, as well as the timing of sensory shifts relative to other phenotypic changes. However, as receptors can also play roles in non-sensory tissues, and receptor responses can be modulated by numerous other factors including varying expression levels, alternative splicing, and morphological features of the sensory cell, behavioral validation can be instrumental in confirming that responses observed in heterologous systems play a sensory role. Expression profiling of sensory cells and comparative genomics approaches can shed light on cell-type specific modifications and identify other proteins that may affect receptor function and can provide insight into the correlated evolution of complex suites of traits. Here we review the evolutionary history and diversity of functional responses of the major classes of sensory receptors in vertebrates, including opsins, chemosensory receptors, and ion channels involved in temperature-sensing, mechanosensation and electroreception.
Collapse
Affiliation(s)
| | - Meng-Ching Ko
- Max Planck Institute for Ornithology, Seewiesen, Germany
| |
Collapse
|
61
|
Gao S, Kaudimba KK, Guo S, Zhang S, Liu T, Chen P, Wang R. Transient Receptor Potential Ankyrin Type-1 Channels as a Potential Target for the Treatment of Cardiovascular Diseases. Front Physiol 2020; 11:836. [PMID: 32903613 PMCID: PMC7438729 DOI: 10.3389/fphys.2020.00836] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular disease is one of the chronic conditions with the highest mortality rate in the world. Underlying conditions such as hypertension, metabolic disorders, and habits like smoking are contributors to the manifestation of cardiovascular diseases. The treatment of cardiovascular diseases is inseparable from the development of drugs. Consequently, this has led to many researchers to focus on the search for effective drug targets. The transient receptor potential channel Ankyrin 1 (TRPA1) subtype is a non-selective cation channel, which belongs to the transient receptor potential (TRP) ion channel. Previous studies have shown that members of the TRP family contribute significantly to cardiovascular disease. However, many researchers have not explored the role of TRPA1 as a potential target for the treatment of cardiovascular diseases. Furthermore, recent studies revealed that TRPA1 is commonly expressed in the vascular endothelium. The endothelium is linked to the causes of some cardiovascular diseases, such as atherosclerosis, myocardial fibrosis, heart failure, and arrhythmia. The activation of TRPA1 has a positive effect on atherosclerosis, but it has a negative effect on other cardiovascular diseases such as myocardial fibrosis and heart failure. This review introduces the structural and functional characteristics of TRPA1 and its importance on vascular physiology and common cardiovascular diseases. Moreover, this review summarizes some evidence that TRPA1 is correlated to cardiovascular disease risk factors.
Collapse
Affiliation(s)
- Song Gao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | | | - Shanshan Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Shuang Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.,Institute of Sport Science, Harbin Sport University, Harbin, China
| | - Tiemin Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.,State Key Laboratory of Genetic Engineering, Institute of Metabolism and Integrative Biology, Human Phenome Institute, Department of Endocrinology and Metabolism, and School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peijie Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Ru Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
62
|
Voltage-dependent modulation of TRPA1 currents by diphenhydramine. Cell Calcium 2020; 90:102245. [PMID: 32634675 DOI: 10.1016/j.ceca.2020.102245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/08/2020] [Accepted: 06/15/2020] [Indexed: 11/23/2022]
Abstract
Diphenhydramine (DPH) has been broadly used to treat allergy. When used as a topical medicine, DPH temporarily relieves itching and pain. Although transient receptor potential type A1 (TRPA1) channel is known to play roles in both acute and chronic itch and pain, whether DPH affects the activities of TRPA1 remains unclear. Using whole-cell patch clamp recordings, we demonstrated that DPH modulates the voltage-dependence of TRPA1. When co-applied with a TRPA1 agonist, DPH significantly enhanced the inward currents while suppressing the outward currents of TRPA1, converting the channel from outwardly rectifying to inwardly rectifying. This effect of DPH occurred no matter TRPA1 was activated by an electrophilic or non-electrophilic agonist and for both mouse and human TRPA1. The modulation of TRPA1 by DPH was maintained in the L906C mutant, which by itself also causes inward rectification of TRPA1, indicating that additional acting sites are present for the modulation of TRPA1 currents by DPH. Our recordings also revealed that DPH partially blocked capsaicin evoked TRPV1 currents. These data suggest that DPH may exert its therapeutic effects on itch and pain, through modulation of TRPA1 in a voltage-dependent fashion.
Collapse
|
63
|
Startek JB, Talavera K. Lipid Raft Destabilization Impairs Mouse TRPA1 Responses to Cold and Bacterial Lipopolysaccharides. Int J Mol Sci 2020; 21:E3826. [PMID: 32481567 PMCID: PMC7312353 DOI: 10.3390/ijms21113826] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 05/21/2020] [Accepted: 05/27/2020] [Indexed: 12/15/2022] Open
Abstract
The Transient Receptor Potential ankyrin 1 cation channel (TRPA1) is expressed in nociceptive sensory neurons and epithelial cells, where it plays key roles in the detection of noxious stimuli. Recent reports showed that mouse TRPA1 (mTRPA1) localizes in lipid rafts and that its sensitivity to electrophilic and non-electrophilic agonists is reduced by cholesterol depletion from the plasma membrane. Since effects of manipulating membrane cholesterol levels on other TRP channels are known to vary across different stimuli we here tested whether the disruption of lipid rafts also affects mTRPA1 activation by cold or bacterial lipopolysaccharides (LPS). Cooling to 12 °C, E. coli LPS and allyl isothiocyanate (AITC) induced robust Ca2+ responses in CHO-K1 cells stably transfected with mTRPA1. The amplitudes of the responses to these stimuli were significantly lower in cells treated with the cholesterol scavenger methyl β-cyclodextrin (MCD) or with the sphingolipids hydrolyzer sphingomyelinase (SMase). This effect was more prominent with higher concentrations of the raft destabilizers. Our data also indicate that reduction of cholesterol does not alter the expression of mTRPA1 in the plasma membrane in the CHO-K1 stable expression system, and that the most salient effect is that on the channel gating. Our findings further indicate that the function of mTRPA1 is regulated by the local lipid environment and suggest that targeting lipid-TRPA1 interactions may be a strategy for the treatment of pain and neurogenic inflammation.
Collapse
Affiliation(s)
| | - Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain & Disease Research, Herestraat 49, Campus Gasthuisberg O&N1 bus 802, 3000 Leuven, Belgium;
| |
Collapse
|
64
|
Steroids and TRP Channels: A Close Relationship. Int J Mol Sci 2020; 21:ijms21113819. [PMID: 32471309 PMCID: PMC7325571 DOI: 10.3390/ijms21113819] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023] Open
Abstract
Transient receptor potential (TRP) channels are remarkable transmembrane protein complexes that are essential for the physiology of the tissues in which they are expressed. They function as non-selective cation channels allowing for the signal transduction of several chemical, physical and thermal stimuli and modifying cell function. These channels play pivotal roles in the nervous and reproductive systems, kidney, pancreas, lung, bone, intestine, among others. TRP channels are finely modulated by different mechanisms: regulation of their function and/or by control of their expression or cellular/subcellular localization. These mechanisms are subject to being affected by several endogenously-produced compounds, some of which are of a lipidic nature such as steroids. Fascinatingly, steroids and TRP channels closely interplay to modulate several physiological events. Certain TRP channels are affected by the typical genomic long-term effects of steroids but others are also targets for non-genomic actions of some steroids that act as direct ligands of these receptors, as will be reviewed here.
Collapse
|
65
|
Wang Q, Chen K, Zhang F, Peng K, Wang Z, Yang D, Yang Y. TRPA1 regulates macrophages phenotype plasticity and atherosclerosis progression. Atherosclerosis 2020; 301:44-53. [PMID: 32325260 DOI: 10.1016/j.atherosclerosis.2020.04.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 03/23/2020] [Accepted: 04/02/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS TRPA1 is a calcium permeable non-selective cation channel, its expression is up-regulated in atherosclerosis plaque, yet its function in macrophages activation is unknown. We sought to establish the role of TRPA1 in inflammatory macrophages activation. METHODS TRPA1-/-ApoE-/- mice and C57BL/6 J control were treated with a high-fat diet (HFD) and the TRPA1 agonist cinnamaldehyde (CIN). Third-order branches of superior aorta of patients and mice were collected. Oil Red O staining and hematoxylin and eosin staining were performed to measure atherosclerotic lesions. The RNA-seq was performed to identify TRPA1 function in atherosclerosis. The expression of bone marrow-derived macrophages (BMDMs) markers was tested by Western blot. In addition, the levels of inflammatory factors were checked by ELISA. Chromatin immunoprecipitation (ChIP)-PCR and luciferase reporter gene assays were used to explore if TRPA1 could regulate histone modifications. RESULTS TRPA1-/-ApoE-/- mice showed a significant increase in atherosclerosis plaques compared to ApoE-/- mice after HFD treatment. Conversely, activation of TRPA1 by CIN sharply reduced atherosclerosis progression. Atherosclerosis was associated with a significant change in macrophage polarization toward the M1 proinflammatory phenotype. We found that inhibition of TRPA1 remarkably stimulated M1 marker genes expression, while repressed M2 marker genes expression. The interaction between TRPA1 and Ezh2, a subunit of polycomb repressive complex 2, suppressed the proteasome-dependent degradation of Ezh2. Thus, TRPA1 epigenetically regulated H3K27 trimethylation level in macrophages. CONCLUSIONS Our results demonstrate that TRPA1, up-regulated in atherosclerosis plaque, could regulate the macrophages toward an inflammatory phenotype, thereby modulating atherosclerosis progression. Activation of TRPA1 might serve as an atherosclerosis therapeutic target.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Cardiology, The General Hospital of Western Theater Command, PR China
| | - Ken Chen
- Department of Cardiology, The General Hospital of Western Theater Command, PR China
| | - Fan Zhang
- Department of Nephrology, The General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, PR China
| | - Ke Peng
- Department of Cardiology, The General Hospital of Western Theater Command, PR China
| | - Zhen Wang
- Department of Cardiology, The General Hospital of Western Theater Command, PR China
| | - Dachun Yang
- Department of Cardiology, The General Hospital of Western Theater Command, PR China.
| | - Yongjian Yang
- Department of Cardiology, The General Hospital of Western Theater Command, PR China.
| |
Collapse
|
66
|
A paradigm of thermal adaptation in penguins and elephants by tuning cold activation in TRPM8. Proc Natl Acad Sci U S A 2020; 117:8633-8638. [PMID: 32220960 PMCID: PMC7165450 DOI: 10.1073/pnas.1922714117] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Sensing temperature is critical for the survival of all living beings. Here, we show that during cold-induced activation of the archetypical temperature-sensitive TRPM8 ion channel, there are hydrophobic residues in the pore domain stabilized in the exposed state. Tuning hydrophobicity of these residues specifically alters cold response in TRPM8. Furthermore, TRPM8 orthologs in vertebrates evolved to employ such a mechanism, which physiologically tunes cold tolerance for better thermal adaptation. Our findings not only advance the understanding of the cold-induced activation mechanism of TRPM8 but also bring insights to the molecular evolution strategy for ambient-temperature adaptation in vertebrates. To adapt to habitat temperature, vertebrates have developed sophisticated physiological and ecological mechanisms through evolution. Transient receptor potential melastatin 8 (TRPM8) serves as the primary sensor for cold. However, how cold activates TRPM8 and how this sensor is tuned for thermal adaptation remain largely unknown. Here we established a molecular framework of how cold is sensed in TRPM8 with a combination of patch-clamp recording, unnatural amino acid imaging, and structural modeling. We first observed that the maximum cold activation of TRPM8 in eight different vertebrates (i.e., African elephant and emperor penguin) with distinct side-chain hydrophobicity (SCH) in the pore domain (PD) is tuned to match their habitat temperature. We further showed that altering SCH for residues in the PD with solvent-accessibility changes leads to specific tuning of the cold response in TRPM8. We also observed that knockin mice expressing the penguin’s TRPM8 exhibited remarkable tolerance to cold. Together, our findings suggest a paradigm of thermal adaptation in vertebrates, where the evolutionary tuning of the cold activation in the TRPM8 ion channel through altering SCH and solvent accessibility in its PD largely contributes to the setting of the cold-sensitive/tolerant phenotype.
Collapse
|
67
|
Zimova L, Barvikova K, Macikova L, Vyklicka L, Sinica V, Barvik I, Vlachova V. Proximal C-Terminus Serves as a Signaling Hub for TRPA1 Channel Regulation via Its Interacting Molecules and Supramolecular Complexes. Front Physiol 2020; 11:189. [PMID: 32226391 PMCID: PMC7081373 DOI: 10.3389/fphys.2020.00189] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/18/2020] [Indexed: 12/15/2022] Open
Abstract
Our understanding of the general principles of the polymodal regulation of transient receptor potential (TRP) ion channels has grown impressively in recent years as a result of intense efforts in protein structure determination by cryo-electron microscopy. In particular, the high-resolution structures of various TRP channels captured in different conformations, a number of them determined in a membrane mimetic environment, have yielded valuable insights into their architecture, gating properties and the sites of their interactions with annular and regulatory lipids. The correct repertoire of these channels is, however, organized by supramolecular complexes that involve the localization of signaling proteins to sites of action, ensuring the specificity and speed of signal transduction events. As such, TRP ankyrin 1 (TRPA1), a major player involved in various pain conditions, localizes into cholesterol-rich sensory membrane microdomains, physically interacts with calmodulin, associates with the scaffolding A-kinase anchoring protein (AKAP) and forms functional complexes with the related TRPV1 channel. This perspective will contextualize the recent biochemical and functional studies with emerging structural data with the aim of enabling a more thorough interpretation of the results, which may ultimately help to understand the roles of TRPA1 under various physiological and pathophysiological pain conditions. We demonstrate that an alteration to the putative lipid-binding site containing a residue polymorphism associated with human asthma affects the cold sensitivity of TRPA1. Moreover, we present evidence that TRPA1 can interact with AKAP to prime the channel for opening. The structural bases underlying these interactions remain unclear and are definitely worth the attention of future studies.
Collapse
Affiliation(s)
- Lucie Zimova
- Department of Cellular Neurophysiology, Institute of Physiology, The Czech Academy of Sciences, Prague, Czechia
| | - Kristyna Barvikova
- Department of Cellular Neurophysiology, Institute of Physiology, The Czech Academy of Sciences, Prague, Czechia
| | - Lucie Macikova
- Department of Cellular Neurophysiology, Institute of Physiology, The Czech Academy of Sciences, Prague, Czechia
- Department of Physiology, Faculty of Science, Charles University, Prague, Czechia
| | - Lenka Vyklicka
- Department of Cellular Neurophysiology, Institute of Physiology, The Czech Academy of Sciences, Prague, Czechia
| | - Viktor Sinica
- Department of Cellular Neurophysiology, Institute of Physiology, The Czech Academy of Sciences, Prague, Czechia
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czechia
| | - Ivan Barvik
- Division of Biomolecular Physics, Faculty of Mathematics and Physics, Institute of Physics, Charles University, Prague, Czechia
| | - Viktorie Vlachova
- Department of Cellular Neurophysiology, Institute of Physiology, The Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
68
|
Reese RM, Dourado M, Anderson K, Warming S, Stark KL, Balestrini A, Suto E, Lee W, Riol-Blanco L, Shields SD, Hackos DH. Behavioral characterization of a CRISPR-generated TRPA1 knockout rat in models of pain, itch, and asthma. Sci Rep 2020; 10:979. [PMID: 31969645 PMCID: PMC6976688 DOI: 10.1038/s41598-020-57936-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/03/2020] [Indexed: 01/16/2023] Open
Abstract
The transient receptor potential (TRP) superfamily of ion channels has garnered significant attention by the pharmaceutical industry. In particular, TRP channels showing high levels of expression in sensory neurons such as TRPV1, TRPA1, and TRPM8, have been considered as targets for indications where sensory neurons play a fundamental role, such as pain, itch, and asthma. Modeling these indications in rodents is challenging, especially in mice. The rat is the preferred species for pharmacological studies in pain, itch, and asthma, but until recently, genetic manipulation of the rat has been technically challenging. Here, using CRISPR technology, we have generated a TRPA1 KO rat to enable more sophisticated modeling of pain, itch, and asthma. We present a detailed phenotyping of the TRPA1 KO rat in models of pain, itch, and asthma that have previously only been investigated in the mouse. With the exception of nociception induced by direct TRPA1 activation, we have found that the TRPA1 KO rat shows apparently normal behavioral responses in multiple models of pain and itch. Immune cell infiltration into the lung in the rat OVA model of asthma, on the other hand, appears to be dependent on TRPA1, similar to was has been observed in TRPA1 KO mice. Our hope is that the TRPA1 KO rat will become a useful tool in further studies of TRPA1 as a drug target.
Collapse
Affiliation(s)
- Rebecca M Reese
- Department of Neuroscience, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Michelle Dourado
- Department of Neuroscience, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Keith Anderson
- Department of Molecular Biology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Søren Warming
- Department of Molecular Biology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Kimberly L Stark
- Department of Neuroscience, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Alessia Balestrini
- Department of Immunology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Eric Suto
- Department of Immunology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Wyne Lee
- Department of Immunology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Lorena Riol-Blanco
- Department of Immunology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Shannon D Shields
- Department of Neuroscience, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - David H Hackos
- Department of Neuroscience, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|
69
|
Qiao Z, Qi H, Zhang H, Zhou Q, Wei N, Zhang Y, Wang K. Visualizing TRPA1 in the Plasma Membrane for Rapidly Screening Optical Control Agonists via a Photochromic Ligand Based Fluorescent Probe. Anal Chem 2020; 92:1934-1939. [PMID: 31855414 DOI: 10.1021/acs.analchem.9b04193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fluorescent probes have been used as effective methods for profiling proteins in biological systems because of their high selectivity, sensitivity, and temporal-spatial resolution. A specific fluorescent probe for understanding the function of the transient receptor potential ankyrin 1 (TRPA1) channel that is closely related with various diseases like persistent pain, respiratory, and chronic itch syndromes, however, is still lacking. Here, we report a "turn-on" fluorescent probe (A1CA) for visualizing TRPA1 channels in the plasma membrane of live cells based on a photochromic ligand derived from 4-(phenylazo)benzenamine. Evaluating the specificity and sensitivity of A1CA by electrophysiology and confocal imaging showed that the A1CA probe displays higher affinity and selectivity to TRPA1 channel versus all other ion channels including TRPV1, TRPV3, Nav1.4, Nav1.5, and hERG. Based on the supporting evidence, A1CA has great potential as a molecular imaging probe for high-throughput screening of novel TRPA1 agonists.
Collapse
Affiliation(s)
- Zhen Qiao
- Departments of Pharmacology and Medicinal Chemistry , Qingdao University School of Pharmacy , Qingdao 266021 , China
| | - Hang Qi
- Departments of Pharmacology and Medicinal Chemistry , Qingdao University School of Pharmacy , Qingdao 266021 , China
| | - Hongyi Zhang
- Departments of Pharmacology and Medicinal Chemistry , Qingdao University School of Pharmacy , Qingdao 266021 , China
| | - Qiqi Zhou
- Departments of Pharmacology and Medicinal Chemistry , Qingdao University School of Pharmacy , Qingdao 266021 , China
| | - Ningning Wei
- Departments of Pharmacology and Medicinal Chemistry , Qingdao University School of Pharmacy , Qingdao 266021 , China
| | - Yanru Zhang
- Departments of Pharmacology and Medicinal Chemistry , Qingdao University School of Pharmacy , Qingdao 266021 , China
| | - KeWei Wang
- Departments of Pharmacology and Medicinal Chemistry , Qingdao University School of Pharmacy , Qingdao 266021 , China
| |
Collapse
|
70
|
Transient receptor potential ankyrin 1 promoter methylation and peripheral pain sensitivity in Crohn's disease. Clin Epigenetics 2019; 12:1. [PMID: 31892361 PMCID: PMC6938615 DOI: 10.1186/s13148-019-0796-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
Background Crohn’s disease is a chronic inflammatory disorder of the gastrointestinal tract associated with abdominal pain and diarrhea. Pain caused by Crohn’s disease likely involves neurogenic inflammation which seems to involve the ion channel transient receptor potential ankyrin 1 (TRPA1). Since the promoter methylation of TRPA1 was shown to influence pain sensitivity, we asked if the expression of TRPA1 is dysregulated in patients suffering from Crohn’s disease. The methylation rates of CpG dinucleotides in the TRPA1 promoter region were determined from DNA derived from whole blood samples of Crohn patients and healthy participants. Quantitative sensory testing was used to examine pain sensitivities. Results Pressure pain thresholds were lower in Crohn patients as compared to healthy participants, and they were also lower in females than in males. They correlated inversely with the methylation rate at the CpG − 628 site of the TRPA1 promoter. This effect was more pronounced in female compared to male Crohn patients. Similar results were found for mechanical pain thresholds. Furthermore, age-dependent effects were detected. Whereas the CpG − 628 methylation rate declined with age in healthy participants, the methylation rate in Crohn patients increased. Pressure pain thresholds increased with age in both cohorts. Conclusions The TRPA1 promoter methylation appears to be dysregulated in patients suffering from Crohn’s disease, and this effect is most obvious when taking gender and age into account. As TRPA1 is regarded to be involved in pain caused by neurogenic inflammation, its aberrant expression may contribute to typical symptoms of Crohn’s disease.
Collapse
|
71
|
Sinica V, Zimova L, Barvikova K, Macikova L, Barvik I, Vlachova V. Human and Mouse TRPA1 Are Heat and Cold Sensors Differentially Tuned by Voltage. Cells 2019; 9:cells9010057. [PMID: 31878344 PMCID: PMC7016720 DOI: 10.3390/cells9010057] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/11/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022] Open
Abstract
Transient receptor potential ankyrin 1 channel (TRPA1) serves as a key sensor for reactive electrophilic compounds across all species. Its sensitivity to temperature, however, differs among species, a variability that has been attributed to an evolutionary divergence. Mouse TRPA1 was implicated in noxious cold detection but was later also identified as one of the prime noxious heat sensors. Moreover, human TRPA1, originally considered to be temperature-insensitive, turned out to act as an intrinsic bidirectional thermosensor that is capable of sensing both cold and heat. Using electrophysiology and modeling, we compare the properties of human and mouse TRPA1, and we demonstrate that both orthologues are activated by heat, and their kinetically distinct components of voltage-dependent gating are differentially modulated by heat and cold. Furthermore, we show that both orthologues can be strongly activated by cold after the concurrent application of voltage and heat. We propose an allosteric mechanism that could account for the variability in TRPA1 temperature responsiveness.
Collapse
Affiliation(s)
- Viktor Sinica
- Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; (V.S.); (K.B.); (L.M.)
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Lucie Zimova
- Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; (V.S.); (K.B.); (L.M.)
- Correspondence: (L.Z.); (V.V.); Tel.: +420-296-442-759 (L.Z.); +420-296-442-711 (V.V.)
| | - Kristyna Barvikova
- Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; (V.S.); (K.B.); (L.M.)
| | - Lucie Macikova
- Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; (V.S.); (K.B.); (L.M.)
| | - Ivan Barvik
- Division of Biomolecular Physics, Institute of Physics, Faculty of Mathematics and Physics, Charles University, 121 16 Prague, Czech Republic;
| | - Viktorie Vlachova
- Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; (V.S.); (K.B.); (L.M.)
- Correspondence: (L.Z.); (V.V.); Tel.: +420-296-442-759 (L.Z.); +420-296-442-711 (V.V.)
| |
Collapse
|
72
|
Chernov-Rogan T, Gianti E, Liu C, Villemure E, Cridland AP, Hu X, Ballini E, Lange W, Deisemann H, Li T, Ward SI, Hackos DH, Magnuson S, Safina B, Klein ML, Volgraf M, Carnevale V, Chen J. TRPA1 modulation by piperidine carboxamides suggests an evolutionarily conserved binding site and gating mechanism. Proc Natl Acad Sci U S A 2019; 116:26008-26019. [PMID: 31796582 PMCID: PMC6926016 DOI: 10.1073/pnas.1913929116] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The transient receptor potential ankyrin 1 (TRPA1) channel functions as an irritant sensor and is a therapeutic target for treating pain, itch, and respiratory diseases. As a ligand-gated channel, TRPA1 can be activated by electrophilic compounds such as allyl isothiocyanate (AITC) through covalent modification or activated by noncovalent agonists through ligand binding. However, how covalent modification leads to channel opening and, importantly, how noncovalent binding activates TRPA1 are not well-understood. Here we report a class of piperidine carboxamides (PIPCs) as potent, noncovalent agonists of human TRPA1. Based on their species-specific effects on human and rat channels, we identified residues critical for channel activation; we then generated binding modes for TRPA1-PIPC interactions using structural modeling, molecular docking, and mutational analysis. We show that PIPCs bind to a hydrophobic site located at the interface of the pore helix 1 (PH1) and S5 and S6 transmembrane segments. Interestingly, this binding site overlaps with that of known allosteric modulators, such as A-967079 and propofol. Similar binding sites, involving π-helix rearrangements on S6, have been recently reported for other TRP channels, suggesting an evolutionarily conserved mechanism. Finally, we show that for PIPC analogs, predictions from computational modeling are consistent with experimental structure-activity studies, thereby suggesting strategies for rational drug design.
Collapse
Affiliation(s)
- Tania Chernov-Rogan
- Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, CA 94080
| | - Eleonora Gianti
- Institute for Computational Molecular Science, Department of Chemistry, Temple University, Philadelphia, PA 19122;
| | - Chang Liu
- Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, CA 94080
| | - Elisia Villemure
- Discovery Chemistry, Genentech, Inc., South San Francisco, CA 94080
| | | | - Xiaoyu Hu
- Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, CA 94080
| | - Elisa Ballini
- Ion Channel Group, Evotec AG, 22419 Hamburg, Germany
| | - Wienke Lange
- Ion Channel Group, Evotec AG, 22419 Hamburg, Germany
| | | | - Tianbo Li
- Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, CA 94080
| | - Stuart I Ward
- Charles River, CM19 5TR Harlow, Essex, United Kingdom
| | - David H Hackos
- Neuroscience, Genentech, Inc., South San Francisco, CA 94080
| | - Steven Magnuson
- Discovery Chemistry, Genentech, Inc., South San Francisco, CA 94080
| | - Brian Safina
- Discovery Chemistry, Genentech, Inc., South San Francisco, CA 94080
| | - Michael L Klein
- Institute for Computational Molecular Science, Department of Chemistry, Temple University, Philadelphia, PA 19122
| | - Matthew Volgraf
- Discovery Chemistry, Genentech, Inc., South San Francisco, CA 94080
| | - Vincenzo Carnevale
- Institute for Computational Molecular Science, Department of Chemistry, Temple University, Philadelphia, PA 19122;
| | - Jun Chen
- Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, CA 94080;
| |
Collapse
|
73
|
Hori S, Saitoh O. Unique high sensitivity to heat of axolotl TRPV1 revealed by the heterologous expression system. Biochem Biophys Res Commun 2019; 521:914-920. [PMID: 31711646 DOI: 10.1016/j.bbrc.2019.10.203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 10/31/2019] [Indexed: 01/14/2023]
Abstract
The thermosensation mechanism plays critical roles in various animals living in different thermal environment. We focused on an axolotl, which is a tailed amphibian originally from Lake Xochimilco area in the Vally of Mexico, and examined its behavior response to heat stimulation. Mild heat at 33 °C induced noxious locomotive activity to axolotls, but the noxious response of another tailed amphibian, Iberian ribbed newt, was not observed at 33 °C. To explore the mechanism for the temperature sensitivity of axolotls, we isolated a cDNA of TRPV1. Using the degenerate primer PCR method, we identified the DNA fragment encoding axolotl TRPV1 (axTRPV1), and then cloned a full-length cDNA. We studied the chemical and thermal sensitivities of axTRPV1 by two-electrode voltage clamp method using Xenopus oocyte expression system. Capsaicin, acid, and 2-aminoethoxydiphenylborane apparently activated axTRPV1 channels in a dose-dependent manner. The analysis of thermal sensitivity showed that axTRPV1 was significantly activated by heat but not by cold. The average temperature threshold for heat-activation was 30.95 ± 0.12 °C. This thermal activation threshold of axTRPV1 is unique and significantly low, when compared with the known thresholds of TRPV1s from various animals. Further, this threshold of axTRPV1 is well consistent with the observation of heat-induced behavior of axolotls at 33 °C, demonstrating that axolotl shows noxious response to mild heat mediated through axTRPV1.
Collapse
Affiliation(s)
- Shogo Hori
- Department of Animal Bio-Science, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama-shi, Shiga, 526-0829, Japan
| | - Osamu Saitoh
- Department of Animal Bio-Science, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama-shi, Shiga, 526-0829, Japan.
| |
Collapse
|
74
|
Talavera K, Startek JB, Alvarez-Collazo J, Boonen B, Alpizar YA, Sanchez A, Naert R, Nilius B. Mammalian Transient Receptor Potential TRPA1 Channels: From Structure to Disease. Physiol Rev 2019; 100:725-803. [PMID: 31670612 DOI: 10.1152/physrev.00005.2019] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The transient receptor potential ankyrin (TRPA) channels are Ca2+-permeable nonselective cation channels remarkably conserved through the animal kingdom. Mammals have only one member, TRPA1, which is widely expressed in sensory neurons and in non-neuronal cells (such as epithelial cells and hair cells). TRPA1 owes its name to the presence of 14 ankyrin repeats located in the NH2 terminus of the channel, an unusual structural feature that may be relevant to its interactions with intracellular components. TRPA1 is primarily involved in the detection of an extremely wide variety of exogenous stimuli that may produce cellular damage. This includes a plethora of electrophilic compounds that interact with nucleophilic amino acid residues in the channel and many other chemically unrelated compounds whose only common feature seems to be their ability to partition in the plasma membrane. TRPA1 has been reported to be activated by cold, heat, and mechanical stimuli, and its function is modulated by multiple factors, including Ca2+, trace metals, pH, and reactive oxygen, nitrogen, and carbonyl species. TRPA1 is involved in acute and chronic pain as well as inflammation, plays key roles in the pathophysiology of nearly all organ systems, and is an attractive target for the treatment of related diseases. Here we review the current knowledge about the mammalian TRPA1 channel, linking its unique structure, widely tuned sensory properties, and complex regulation to its roles in multiple pathophysiological conditions.
Collapse
Affiliation(s)
- Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Justyna B Startek
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Julio Alvarez-Collazo
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Brett Boonen
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Yeranddy A Alpizar
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Alicia Sanchez
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Robbe Naert
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Bernd Nilius
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| |
Collapse
|
75
|
Lindsay CD, Timperley CM. TRPA1 and issues relating to animal model selection for extrapolating toxicity data to humans. Hum Exp Toxicol 2019; 39:14-36. [PMID: 31578097 DOI: 10.1177/0960327119877460] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The transient receptor potential ankyrin 1 (TRPA1) ion channel is a sensor for irritant chemicals, has ancient lineage, and is distributed across animal species including humans, where it features in many organs. Its activation by a diverse panel of electrophilic molecules (TRPA1 agonists) through electrostatic binding and/or covalent attachment to the protein causes the sensation of pain. This article reviews the species differences between TRPA1 channels and their responses, to assess the suitability of different animals to model the effects of TRPA1-activating electrophiles in humans, referring to common TRPA1 activators (exogenous and endogenous) and possible mechanisms of action relating to their toxicology. It concludes that close matching of in vitro and in vivo models will help optimise the identification of relevant biochemical and physiological responses to benchmark the efficacy of potential therapeutic drugs, including TRPA1 antagonists, to counter the toxic effects of those electrophiles capable of harming humans. The analysis of the species issue provided should aid the development of medical treatments to counter poisoning by such chemicals.
Collapse
Affiliation(s)
- C D Lindsay
- Chemical, Biological and Radiological (CBR) Division, Defence Science and Technology Laboratory (Dstl), Salisbury, UK
| | - C M Timperley
- Chemical, Biological and Radiological (CBR) Division, Defence Science and Technology Laboratory (Dstl), Salisbury, UK
| |
Collapse
|
76
|
Himmel NJ, Letcher JM, Sakurai A, Gray TR, Benson MN, Cox DN. Drosophila menthol sensitivity and the Precambrian origins of transient receptor potential-dependent chemosensation. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190369. [PMID: 31544603 DOI: 10.1098/rstb.2019.0369] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Transient receptor potential (TRP) cation channels are highly conserved, polymodal sensors which respond to a wide variety of stimuli. Perhaps most notably, TRP channels serve critical functions in nociception and pain. A growing body of evidence suggests that transient receptor potential melastatin (TRPM) and transient receptor potential ankyrin (TRPA) thermal and electrophile sensitivities predate the protostome-deuterostome split (greater than 550 Ma). However, TRPM and TRPA channels are also thought to detect modified terpenes (e.g. menthol). Although terpenoids like menthol are thought to be aversive and/or harmful to insects, mechanistic sensitivity studies have been largely restricted to chordates. Furthermore, it is unknown if TRP-menthol sensing is as ancient as thermal and/or electrophile sensitivity. Combining genetic, optical, electrophysiological, behavioural and phylogenetic approaches, we tested the hypothesis that insect TRP channels play a conserved role in menthol sensing. We found that topical application of menthol to Drosophila melanogaster larvae elicits a Trpm- and TrpA1-dependent nocifensive rolling behaviour, which requires activation of Class IV nociceptor neurons. Further, in characterizing the evolution of TRP channels, we put forth the hypotheses that three previously undescribed TRPM channel clades (basal, αTRPM and βTRPM), as well as TRPs with residues critical for menthol sensing, were present in ancestral bilaterians. This article is part of the Theo Murphy meeting issue 'Evolution of mechanisms and behaviour important for pain'.
Collapse
Affiliation(s)
- Nathaniel J Himmel
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA
| | - Jamin M Letcher
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA
| | - Akira Sakurai
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA
| | - Thomas R Gray
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA
| | - Maggie N Benson
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA
| | - Daniel N Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA
| |
Collapse
|
77
|
Non-Analgesic Symptomatic or Disease-Modifying Potential of TRPA1. Med Sci (Basel) 2019; 7:medsci7100099. [PMID: 31547502 PMCID: PMC6836032 DOI: 10.3390/medsci7100099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 02/07/2023] Open
Abstract
TRPA1, a versatile ion channel of the Transient Receptor Potential (TRP) channel family, detects a large variety of chemicals and can contribute to signal processing of other stimuli, e.g., due to its sensitivity to cytosolic calcium elevation or phosphoinositolphosphate modulation. At first, TRPA1 was found on sensory neurons, where it can act as a sensor for potential or actual tissue damage that ultimately may elicit pain or itch as warning symptoms. This review provides an update regarding the analgesic and antipruritic potential of TRPA1 modulation and the respective clinical trials. Furthermore, TRPA1 has been found in an increasing amount of other cell types. Therefore, the main focus of the review is to discuss the non-analgesic and particularly the disease-modifying potential of TRPA1. This includes diseases of the respiratory system, cancer, ischemia, allergy, diabetes, and the gastrointestinal system. The involvement of TRPA1 in the respective pathophysiological cascades is so far mainly based on pre-clinical data.
Collapse
|
78
|
Uchida Y, Atsumi K. Cinnamaldehyde application decreases tail temperature in ovariectomized rats with and without estradiol administration. J Therm Biol 2019; 83:54-59. [PMID: 31331525 DOI: 10.1016/j.jtherbio.2019.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 11/24/2022]
Abstract
The aim of this study was to examine the effect of estradiol (E2) on the thermoregulatory responses induced by cinnamaldehyde, a component extracted from cinnamon at 16 °C or 27 °C. The thermoneutral and subneutral experiments were performed to evaluate the augmented effect of cinnamaldehyde by cold exposure and the effect of cinnamaldehyde itself. Ovariectomized rats were implanted with a silastic tube with or without E2 (E2(+) and E2(-) groups), and data loggers into the peritoneal cavity. After the application of 30% cinnamaldehyde or vehicle into the skin of the whole trunk of rats, the rats were exposed to 16 °C or 27 °C for 2 h. Body temperature (Tb) and tail temperature (Ttail) were measured using a data logger and thermography. After exposure, blood samples were obtained, and plasma catecholamine concentration were measured by high-performance liquid chromatography. In the E2(-) group exposed to 27 °C, the change in Tb in rats applied cinnamaldehyde was significantly lower than that of rats applied vehicle. The change in Ttail in rats applied cinnamaldehyde was significantly lower than that of rats applied vehicle in both E2(-) and E2(+) groups at 27 °C and 16 °C. Plasma catecholamine concentration at 27 °C was not different among the groups. E2 might not affect thermoregulatory responses induced by cinnamaldehyde application; however, it decreased Ttail in female rats.
Collapse
Affiliation(s)
- Yuki Uchida
- Department of Health Sciences, Faculty of Human Life and Environment, Nara Women's University, Nara, Japan.
| | - Koyuki Atsumi
- Department of Health Sciences, Faculty of Human Life and Environment, Nara Women's University, Nara, Japan
| |
Collapse
|
79
|
Logashina YA, Korolkova YV, Kozlov SA, Andreev YA. TRPA1 Channel as a Regulator of Neurogenic Inflammation and Pain: Structure, Function, Role in Pathophysiology, and Therapeutic Potential of Ligands. BIOCHEMISTRY (MOSCOW) 2019; 84:101-118. [PMID: 31216970 DOI: 10.1134/s0006297919020020] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
TRPA1 is a cation channel located on the plasma membrane of many types of human and animal cells, including skin sensory neurons and epithelial cells of the intestine, lungs, urinary bladder, etc. TRPA1 is the major chemosensor that also responds to thermal and mechanical stimuli. Substances that activate TRPA1, e.g., allyl isothiocyanates (pungent components of mustard, horseradish, and wasabi), cinnamaldehyde from cinnamon, organosulfur compounds from garlic and onion, tear gas, acrolein and crotonaldehyde from cigarette smoke, etc., cause burning, mechanical and thermal hypersensitivity, cough, eye irritation, sneezing, mucus secretion, and neurogenic inflammation. An increased activity of TRPA1 leads to the emergence of chronic pruritus and allergic dermatitis and is associated with episodic pain syndrome, a hereditary disease characterized by episodes of debilitating pain triggered by stress. TRPA1 is now considered as one of the targets for developing new anti-inflammatory and analgesic drugs. This review summarizes information on the structure, function, and physiological role of this channel, as well as describes known TRPA1 ligands and their significance as therapeutic agents in the treatment of inflammation-associated pain.
Collapse
Affiliation(s)
- Yu A Logashina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.,Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia
| | - Yu V Korolkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - S A Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Ya A Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia. .,Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia
| |
Collapse
|
80
|
Takayama Y, Derouiche S, Maruyama K, Tominaga M. Emerging Perspectives on Pain Management by Modulation of TRP Channels and ANO1. Int J Mol Sci 2019; 20:E3411. [PMID: 31336748 PMCID: PMC6678529 DOI: 10.3390/ijms20143411] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/01/2019] [Accepted: 07/09/2019] [Indexed: 12/27/2022] Open
Abstract
Receptor-type ion channels are critical for detection of noxious stimuli in primary sensory neurons. Transient receptor potential (TRP) channels mediate pain sensations and promote a variety of neuronal signals that elicit secondary neural functions (such as calcitonin gene-related peptide [CGRP] secretion), which are important for physiological functions throughout the body. In this review, we focus on the involvement of TRP channels in sensing acute pain, inflammatory pain, headache, migraine, pain due to fungal infections, and osteo-inflammation. Furthermore, action potentials mediated via interactions between TRP channels and the chloride channel, anoctamin 1 (ANO1), can also generate strong pain sensations in primary sensory neurons. Thus, we also discuss mechanisms that enhance neuronal excitation and are dependent on ANO1, and consider modulation of pain sensation from the perspective of both cation and anion dynamics.
Collapse
Affiliation(s)
- Yasunori Takayama
- Department of Physiology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan.
| | - Sandra Derouiche
- Thermal Biology group, Exploratory Research Center on Life and Living Systems, National Institutes for Natural Sciences, 5-1 Aza-higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.
| | - Kenta Maruyama
- National Institute for Physiological Sciences, National Institutes for Natural Sciences, 5-1 Aza-higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.
| | - Makoto Tominaga
- Thermal Biology group, Exploratory Research Center on Life and Living Systems, National Institutes for Natural Sciences, 5-1 Aza-higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.
| |
Collapse
|
81
|
Startek JB, Boonen B, López-Requena A, Talavera A, Alpizar YA, Ghosh D, Van Ranst N, Nilius B, Voets T, Talavera K. Mouse TRPA1 function and membrane localization are modulated by direct interactions with cholesterol. eLife 2019; 8:e46084. [PMID: 31184584 PMCID: PMC6590989 DOI: 10.7554/elife.46084] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/10/2019] [Indexed: 01/04/2023] Open
Abstract
The cation channel TRPA1 transduces a myriad of noxious chemical stimuli into nociceptor electrical excitation and neuropeptide release, leading to pain and neurogenic inflammation. Despite emergent evidence that TRPA1 is regulated by the membrane environment, it remains unknown whether this channel localizes in membrane microdomains or whether it interacts with cholesterol. Using total internal reflection fluorescence microscopy and density gradient centrifugation we found that mouse TRPA1 localizes preferably into cholesterol-rich domains and functional experiments revealed that cholesterol depletion decreases channel sensitivity to chemical agonists. Moreover, we identified two structural motifs in transmembrane segments 2 and 4 involved in mTRPA1-cholesterol interactions that are necessary for normal agonist sensitivity and plasma membrane localization. We discuss the impact of such interactions on TRPA1 gating mechanisms, regulation by the lipid environment, and role of this channel in sensory membrane microdomains, all of which helps to understand the puzzling pharmacology and pathophysiology of this channel.
Collapse
Affiliation(s)
- Justyna B Startek
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
- VIB Center for Brain & Disease ResearchLeuvenBelgium
| | - Brett Boonen
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
- VIB Center for Brain & Disease ResearchLeuvenBelgium
| | - Alejandro López-Requena
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
- VIB Center for Brain & Disease ResearchLeuvenBelgium
| | - Ariel Talavera
- Center for Microscopy and Molecular Imaging (CMMI), Laboratory of MicroscopyUniversité Libre de BruxellesGosseliesBelgium
| | - Yeranddy A Alpizar
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
- VIB Center for Brain & Disease ResearchLeuvenBelgium
| | - Debapriya Ghosh
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
- VIB Center for Brain & Disease ResearchLeuvenBelgium
| | - Nele Van Ranst
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
- VIB Center for Brain & Disease ResearchLeuvenBelgium
| | - Bernd Nilius
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
- VIB Center for Brain & Disease ResearchLeuvenBelgium
| | - Thomas Voets
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
- VIB Center for Brain & Disease ResearchLeuvenBelgium
| | - Karel Talavera
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
- VIB Center for Brain & Disease ResearchLeuvenBelgium
| |
Collapse
|
82
|
Nociceptor Signalling through ion Channel Regulation via GPCRs. Int J Mol Sci 2019; 20:ijms20102488. [PMID: 31137507 PMCID: PMC6566991 DOI: 10.3390/ijms20102488] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 12/23/2022] Open
Abstract
The prime task of nociceptors is the transformation of noxious stimuli into action potentials that are propagated along the neurites of nociceptive neurons from the periphery to the spinal cord. This function of nociceptors relies on the coordinated operation of a variety of ion channels. In this review, we summarize how members of nine different families of ion channels expressed in sensory neurons contribute to nociception. Furthermore, data on 35 different types of G protein coupled receptors are presented, activation of which controls the gating of the aforementioned ion channels. These receptors are not only targeted by more than 20 separate endogenous modulators, but can also be affected by pharmacotherapeutic agents. Thereby, this review provides information on how ion channel modulation via G protein coupled receptors in nociceptors can be exploited to provide improved analgesic therapy.
Collapse
|
83
|
N-Cinnamoylanthranilates as human TRPA1 modulators: Structure-activity relationships and channel binding sites. Eur J Med Chem 2019; 170:141-156. [DOI: 10.1016/j.ejmech.2019.02.074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 01/14/2023]
|
84
|
García-Ávila M, Islas LD. What is new about mild temperature sensing? A review of recent findings. Temperature (Austin) 2019; 6:132-141. [PMID: 31286024 PMCID: PMC6601417 DOI: 10.1080/23328940.2019.1607490] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/02/2019] [Accepted: 04/05/2019] [Indexed: 12/15/2022] Open
Abstract
The superfamily of Transient Receptor Potential (TRP) channels is composed by a group of calcium-permeable ionic channels with a generally shared topology. The thermoTRP channels are a subgroup of 11 members, found in the TRPA, TRPV, TRPC, and TRPM subfamilies. Historically, members of this subgroup have been classified as cold, warm or hot-specific temperature sensors. Recently, new experimental results have shown that the role that has been given to the thermoTRPs in thermosensation is not necessarily strict. In addition, it has been shown that these channels activate over temperature ranges, which can have variations depending on the species and the interaction with a specific biological context. Investigation of these interactions could help to elucidate the mechanisms of activation by temperature, which remains uncertain. Abbreviations: Cryo-EM: Cryogenic electron microscopy; DRG: Dorsal root ganglia; H: Human; ROS: Reactive Oxygen Species; TG: Trigeminal ganglia; TRP: Transient Receptor Potential; TRPA: TRP ankyrin; TRPV: TRP vanilloid; TRPC: TRP canonical; TRPM: TRP melastatin.
Collapse
Affiliation(s)
| | - León D. Islas
- Departamento de Fisiología, Facultad de Medicina, UNAM, México City, México
| |
Collapse
|
85
|
Flatters SJL, Dougherty PM, Colvin LA. Clinical and preclinical perspectives on Chemotherapy-Induced Peripheral Neuropathy (CIPN): a narrative review. Br J Anaesth 2019; 119:737-749. [PMID: 29121279 DOI: 10.1093/bja/aex229] [Citation(s) in RCA: 225] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2017] [Indexed: 12/20/2022] Open
Abstract
This review provides an update on the current clinical and preclinical understanding of chemotherapy induced peripheral neuropathy (CIPN). The overview of the clinical syndrome includes a review of its assessment, diagnosis and treatment. CIPN is caused by several widely-used chemotherapeutics including paclitaxel, oxaliplatin, bortezomib. Severe CIPN may require dose reduction, or cessation, of chemotherapy, impacting on patient survival. While CIPN often resolves after chemotherapy, around 30% of patients will have persistent problems, impacting on function and quality of life. Early assessment and diagnosis is important, and we discuss tools developed for this purpose. There are no effective strategies to prevent CIPN, with limited evidence of effective drugs for treating established CIPN. Duloxetine has moderate evidence, with extrapolation from other neuropathic pain states generally being used to direct treatment options for CIPN. The preclinical perspective includes a discussion on the development of clinically-relevant rodent models of CIPN and some of the potentially modifiable mechanisms that have been identified using these models. We focus on the role of mitochondrial dysfunction, oxidative stress, immune cells and changes in ion channels from summary of the latest literature in these areas. Many causal mechanisms of CIPN occur simultaneously and/or can reinforce each other. Thus, combination therapies may well be required for most effective management. More effective treatment of CIPN will require closer links between oncology and pain management clinical teams to ensure CIPN patients are effectively monitored. Furthermore, continued close collaboration between clinical and preclinical research will facilitate the development of novel treatments for CIPN.
Collapse
Affiliation(s)
- S J L Flatters
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - P M Dougherty
- Division of Anaesthesia, Critical Care and Pain Medicine, Department of Pain Medicine Research, The University of Texas M.D. Anderson Cancer Centre, Houston, TX, USA
| | - L A Colvin
- Department of Anaesthesia, Critical Care & Pain Medicine, University of Edinburgh, Western General Hospital, Crewe Rd, Edinburgh EH4 2XU, UK
| |
Collapse
|
86
|
TRPA1 Sensitization Produces Hyperalgesia to Heat but not to Cold Stimuli in Human Volunteers. Clin J Pain 2019; 35:321-327. [DOI: 10.1097/ajp.0000000000000677] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
87
|
Functional properties of axolotl transient receptor potential ankyrin 1 revealed by the heterologous expression system. Neuroreport 2019; 30:323-330. [PMID: 30702505 DOI: 10.1097/wnr.0000000000001197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Transient receptor potential ankyrin 1 (TRPA1) from tetrapod vertebrates except rodents are activated by high temperature with a relatively clear threshold. Our recent investigation suggested that a gradual heat activation without clear threshold might be a common feature for TRPA1 of fish. To approach which animal first acquires TRPA1 as a threshold detector instead of a gradual heat sensor, here, we focused on TRPA1 from axolotls (Ambystoma mexicanum). We isolated a full-length cDNA of axolotl transient receptor potential ankyrin 1 (axTRPA1) and studied the functional properties by two-electrode voltage clamp method using Xenopus oocytes. Allyl isothiocyanate, caffeine, methyl anthranilate and carvacrol activated axTRPA1 channels. The results indicated that axTRPA1 is heat activated with the average threshold of 39.7°C, suggesting that axTRPA1 already has acquired the functional property of land animals.
Collapse
|
88
|
BU10038 as a safe opioid analgesic with fewer side-effects after systemic and intrathecal administration in primates. Br J Anaesth 2019; 122:e146-e156. [PMID: 30916003 DOI: 10.1016/j.bja.2018.10.065] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 08/29/2018] [Accepted: 10/23/2018] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The marked increase in mis-use of prescription opioids has greatly affected our society. One potential solution is to develop improved analgesics which have agonist action at both mu opioid peptide (MOP) and nociceptin/orphanin FQ peptide (NOP) receptors. BU10038 is a recently identified bifunctional MOP/NOP partial agonist. The aim of this study was to determine the functional profile of systemic or spinal delivery of BU10038 in primates after acute and chronic administration. METHODS A series of behavioural and physiological assays have been established specifically to reflect the therapeutic (analgesia) and side-effects (abuse potential, respiratory depression, itch, physical dependence, and tolerance) of opioid analgesics in rhesus monkeys. RESULTS After systemic administration, BU10038 (0.001-0.01 mg kg-1) dose-dependently produced long-lasting antinociceptive and antihypersensitive effects. Unlike the MOP agonist oxycodone, BU10038 lacked reinforcing effects (i.e. little or no abuse liability), and BU10038 did not compromise the physiological functions of primates including respiration, cardiovascular activities, and body temperature at antinociceptive doses and a 10-30-fold higher dose (0.01-0.1 mg kg-1). After intrathecal administration, BU10038 (3 μg) exerted morphine-comparable antinociception and antihypersensitivity without itch scratching responses. Unlike morphine, BU10038 did not cause the development of physical dependence and tolerance after repeated and chronic administration. CONCLUSIONS These in vivo findings demonstrate the translational potential of bifunctional MOP/NOP receptor agonists such as BU10038 as a safe, non-addictive analgesic with fewer side-effects in primates. This study strongly supports that bifunctional MOP/NOP agonists may provide improved analgesics and an alternative solution for the ongoing prescription opioid crisis.
Collapse
|
89
|
Abstract
The nociceptin/orphanin FQ peptide (NOP) receptor-related ligands have been demonstrated in preclinical studies for several therapeutic applications. This article highlights (1) how nonhuman primates (NHP) were used to facilitate the development and application of positron emission tomography tracers in humans; (2) effects of an endogenous NOP ligand, nociceptin/orphanin FQ, and its interaction with mu opioid peptide (MOP) receptor agonists; and (3) promising functional profiles of NOP-related agonists in NHP as analgesics and treatment for substance use disorders. NHP models offer the most phylogenetically appropriate evaluation of opioid and non-opioid receptor functions and drug effects. Based on preclinical and clinical data of ligands with mixed NOP/MOP receptor agonist activity, several factors including their intrinsic efficacies for activating NOP versus MOP receptors and different study endpoints in NHP could contribute to different pharmacological profiles. Ample evidence from NHP studies indicates that bifunctional NOP/MOP receptor agonists have opened an exciting avenue for developing safe, effective medications with fewer side effects for treating pain and drug addiction. In particular, bifunctional NOP/MOP partial agonists hold a great potential as (1) effective spinal analgesics without itch side effects; (2) safe, nonaddictive analgesics without opioid side effects such as respiratory depression; and (3) effective medications for substance use disorders.
Collapse
Affiliation(s)
- Norikazu Kiguchi
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
| | - Mei-Chuan Ko
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
90
|
Sadler KE, Stucky CL. Neuronal transient receptor potential (TRP) channels and noxious sensory detection in sickle cell disease. Neurosci Lett 2018; 694:184-191. [PMID: 30508569 DOI: 10.1016/j.neulet.2018.11.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 12/21/2022]
Abstract
Pain is the leading cause for hospitalization in patients with sickle cell disease (SCD). While the characteristics of SCD pain can vary widely between patients and between phases of the disease (e.g. vasoocclusive crisis pain vs. chronic pain), similar neuronal mechanisms likely underlie the various aspects of nociceptive processing. In the peripheral nervous system, small unmyelinated C fibers and lightly-myelinated Aδ fibers detect and transmit noxious stimuli. Both classes of neurons express members of the transient receptor potential (TRP) family, a group of ligand gated ion-channels that are activated by thermal, chemical, and mechanical stimuli. Promiscuous TRP channel family members are activated by a wide range of stimuli, many of which are dysregulated in patients with SCD and transgenic SCD mouse models. In 2011, our lab published the first report of TRP channel contributions to rodent SCD pain. Since that time, additional basic and clinical research efforts have investigated the genetic and biochemical status of TRP channels in SCD, placing particular focus on TRPV1. This review will discuss these advances and highlight the clinical SCD presentations that have not yet been studied, but which may be mediated by TRP channel activity.
Collapse
Affiliation(s)
- Katelyn E Sadler
- Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States.
| | - Cheryl L Stucky
- Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| |
Collapse
|
91
|
Congeneric variability in lifespan extension and onset of senescence suggest active regulation of aging in response to low temperature. Exp Gerontol 2018; 114:99-106. [PMID: 30399408 PMCID: PMC6336457 DOI: 10.1016/j.exger.2018.10.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/28/2018] [Accepted: 10/30/2018] [Indexed: 01/26/2023]
Abstract
Lifespan extension under low temperature is well conserved across both endothermic and exothermic taxa, but the mechanism underlying this change in aging is poorly understood. Low temperature is thought to decrease metabolic rate, thus slowing the accumulation of cellular damage from reactive oxygen species, although recent evidence suggests involvement of specific cold-sensing biochemical pathways. We tested the effect of low temperature on aging in 11 strains of Brachionus rotifers, with the hypothesis that if the mechanism of lifespan extension is purely thermodynamic, all strains should have a similar increase in lifespan. We found differences in change in median lifespan ranging from a 6% decrease to a 100% increase, as well as differences in maximum and relative lifespan extension and in mortality rate. Low temperature delays reproductive senescence in most strains, suggesting an extension of healthspan, even in strains with little to no change in lifespan. The combination of low temperature and caloric restriction in one strain resulted in an additive lifespan increase, indicating these interventions may work via non- or partially-overlapping pathways. The known low temperature sensor TRPA1 is present in the rotifer genome, but chemical TRPA1 agonists did not affect lifespan, suggesting that this gene may be involved in low temperature sensation but not in chemoreception in rotifers. The congeneric variability in response to low temperature suggests that the mechanism of low temperature lifespan extension is an active genetic process rather than a passive thermodynamic one and is dependent upon genotype.
Collapse
|
92
|
Ding H, Kiguchi N, Yasuda D, Daga PR, Polgar WE, Lu JJ, Czoty PW, Kishioka S, Zaveri NT, Ko MC. A bifunctional nociceptin and mu opioid receptor agonist is analgesic without opioid side effects in nonhuman primates. Sci Transl Med 2018; 10:eaar3483. [PMID: 30158150 PMCID: PMC6295194 DOI: 10.1126/scitranslmed.aar3483] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/07/2018] [Accepted: 08/09/2018] [Indexed: 11/02/2022]
Abstract
Misuse of prescription opioids, opioid addiction, and overdose underscore the urgent need for developing addiction-free effective medications for treating severe pain. Mu opioid peptide (MOP) receptor agonists provide very effective pain relief. However, severe side effects limit their use in the clinical setting. Agonists of the nociceptin/orphanin FQ peptide (NOP) receptor have been shown to modulate the antinociceptive and reinforcing effects of MOP agonists. We report the discovery and development of a bifunctional NOP/MOP receptor agonist, AT-121, which has partial agonist activity at both NOP and MOP receptors. AT-121 suppressed oxycodone's reinforcing effects and exerted morphine-like analgesic effects in nonhuman primates. AT-121 treatment did not induce side effects commonly associated with opioids, such as respiratory depression, abuse potential, opioid-induced hyperalgesia, and physical dependence. Our results in nonhuman primates suggest that bifunctional NOP/MOP agonists with the appropriate balance of NOP and MOP agonist activity may provide a dual therapeutic action for safe and effective pain relief and treating prescription opioid abuse.
Collapse
Affiliation(s)
- Huiping Ding
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Norikazu Kiguchi
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
| | | | | | | | - James J Lu
- Astraea Therapeutics, Mountain View, CA 94043, USA
| | - Paul W Czoty
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Shiroh Kishioka
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
| | | | - Mei-Chuan Ko
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
- W.G. Hefner Veterans Affairs Medical Center, Salisbury, NC 28144, USA
| |
Collapse
|
93
|
Abstract
Fever is a common symptom of infectious and inflammatory disease. It is well-established that prostaglandin E2 is the final mediator of fever, which by binding to its EP3 receptor subtype in the preoptic hypothalamus initiates thermogenesis. Here, we review the different hypotheses on how the presence of peripherally released pyrogenic substances can be signaled to the brain to elicit fever. We conclude that there is unequivocal evidence for a humoral signaling pathway by which proinflammatory cytokines, through their binding to receptors on brain endothelial cells, evoke fever by eliciting prostaglandin E2 synthesis in these cells. The evidence for a role for other signaling routes for fever, such as signaling via circumventricular organs and peripheral nerves, as well as transfer into the brain of peripherally synthesized prostaglandin E2 are yet far from conclusive. We also review the efferent limb of the pyrogenic pathways. We conclude that it is well established that prostaglandin E2 binding in the preoptic hypothalamus produces fever by disinhibition of presympathetic neurons in the brain stem, but there is yet little understanding of the mechanisms by which factors such as nutritional status and ambient temperature shape the response to the peripheral immune challenge.
Collapse
Affiliation(s)
- Anders Blomqvist
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health, Linköping University, Linköping, Sweden
| | - David Engblom
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health, Linköping University, Linköping, Sweden
| |
Collapse
|
94
|
TRP Channel Involvement in Salivary Glands-Some Good, Some Bad. Cells 2018; 7:cells7070074. [PMID: 29997338 PMCID: PMC6070825 DOI: 10.3390/cells7070074] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/06/2018] [Accepted: 07/08/2018] [Indexed: 12/26/2022] Open
Abstract
Salivary glands secrete saliva, a mixture of proteins and fluids, which plays an extremely important role in the maintenance of oral health. Loss of salivary secretion causes a dry mouth condition, xerostomia, which has numerous deleterious consequences including opportunistic infections within the oral cavity, difficulties in eating and swallowing food, and problems with speech. Secretion of fluid by salivary glands is stimulated by activation of specific receptors on acinar cell plasma membrane and is mediated by an increase in cytosolic [Ca2+] ([Ca2+]i). The increase in [Ca2+]i regulates a number of ion channels and transporters that are required for establishing an osmotic gradient that drives water flow via aquaporin water channels in the apical membrane. The Store-Operated Ca2+ Entry (SOCE) mechanism, which is regulated in response to depletion of ER-Ca2+, determines the sustained [Ca2+]i increase required for prolonged fluid secretion. Core components of SOCE in salivary gland acinar cells are Orai1 and STIM1. In addition, TRPC1 is a major and non-redundant contributor to SOCE and fluid secretion in salivary gland acinar and ductal cells. Other TRP channels that contribute to salivary flow are TRPC3 and TRPV4, while presence of others, including TRPM8, TRPA1, TRPV1, and TRPV3, have been identified in the gland. Loss of salivary gland function leads to dry mouth conditions, or xerostomia, which is clinically seen in patients who have undergone radiation treatment for head-and-neck cancers, and those with the autoimmune exocrinopathy, Sjögren’s syndrome (pSS). TRPM2 is a unique TRP channel that acts as a sensor for intracellular ROS. We will discuss recent studies reported by us that demonstrate a key role for TRPM2 in radiation-induced salivary gland dysfunction. Further, there is increasing evidence that TRPM2 might be involved in inflammatory processes. These interesting findings point to the possible involvement of TRPM2 in Sjögren’s Syndrome, although further studies will be required to identify the exact role of TRPM2 in this disease.
Collapse
|
95
|
Hiyama H, Yano Y, So K, Imai S, Nagayasu K, Shirakawa H, Nakagawa T, Kaneko S. TRPA1 sensitization during diabetic vascular impairment contributes to cold hypersensitivity in a mouse model of painful diabetic peripheral neuropathy. Mol Pain 2018; 14:1744806918789812. [PMID: 29968518 PMCID: PMC6055098 DOI: 10.1177/1744806918789812] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Background Diabetic peripheral neuropathy is a common long-term complication of diabetes. Accumulating evidence suggests that vascular impairment plays important roles in the pathogenesis of diabetic peripheral neuropathy, while the mechanism remains unclear. We recently reported that transient receptor potential ankyrin 1 (TRPA1) is sensitized by hypoxia, which can contribute to cold hypersensitivity. In this study, we investigated the involvement of TRPA1 and vascular impairment in painful diabetic peripheral neuropathy using streptozotocin-induced diabetic model mice. Results Streptozotocin-induced diabetic model mice showed mechanical and cold hypersensitivity with a peak at two weeks after the streptozotocin administration, which were likely to be paralleled with the decrease in the skin blood flow of the hindpaw. Streptozotocin-induced cold hypersensitivity was significantly inhibited by an antagonist HC-030031 (100 mg/kg) or deficiency for TRPA1, whereas mechanical hypersensitivity was unaltered. Consistent with these results, the nocifensive behaviors evoked by an intraplantar injection of the TRPA1 agonist allyl isothiocyanate (AITC) were enhanced two weeks after the streptozotocin administration. Both streptozotocin-induced cold hypersensitivity and the enhanced AITC-evoked nocifensive behaviors were significantly inhibited by a vasodilator, tadalafil (10 mg/kg), with recovery of the decreased skin blood flow. Similarly, in a mouse model of hindlimb ischemia induced by the ligation of the external iliac artery, AITC-evoked nocifensive behaviors were significantly enhanced three and seven days after the ischemic operation, whereas mechanical hypersensitivity was unaltered in TRPA1-knockout mice. However, no difference was observed between wild-type and TRPA1-knockout mice in the hyposensitivity for current or mechanical stimulation or the deceased density of intraepidermal nerve fibers eight weeks after the streptozotocin administration. Conclusion These results suggest that TRPA1 sensitization during diabetic vascular impairment causes cold, but not mechanical, hypersensitivity in the early painful phase of diabetic peripheral neuropathy. However, TRPA1 may play little or no role in the progression of diabetic peripheral neuropathy.
Collapse
Affiliation(s)
- Haruka Hiyama
- 1 Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Japan
| | - Yuichi Yano
- 1 Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Japan
| | - Kanako So
- 1 Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Japan.,2 Department of Applied Pharmaceutics and Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyoto University, Japan
| | - Satoshi Imai
- 3 Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Japan
| | - Kazuki Nagayasu
- 1 Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Japan
| | - Hisashi Shirakawa
- 1 Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Japan
| | - Takayuki Nakagawa
- 3 Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Japan
| | - Shuji Kaneko
- 1 Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Japan
| |
Collapse
|
96
|
Pertusa M, Rivera B, González A, Ugarte G, Madrid R. Critical role of the pore domain in the cold response of TRPM8 channels identified by ortholog functional comparison. J Biol Chem 2018; 293:12454-12471. [PMID: 29880642 DOI: 10.1074/jbc.ra118.002256] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/30/2018] [Indexed: 11/06/2022] Open
Abstract
In mammals, the main molecular entity involved in innocuous cold transduction is TRPM8. This polymodal ion channel is activated by cold, cooling compounds such as menthol and voltage. Despite its relevance, the molecular determinants involved in its activation by cold remain elusive. In this study we explored the use of TRPM8 orthologs with different cold responses as a strategy to identify new molecular determinants related with their thermosensitivity. We focused on mouse TRPM8 (mTRPM8) and chicken TRPM8 (cTRPM8), which present complementary thermosensitive and chemosensitive phenotypes. Although mTRPM8 displays larger responses to cold than cTRPM8 does, the avian ortholog shows a higher sensitivity to menthol compared with the mouse channel, in both HEK293 cells and primary somatosensory neurons. We took advantage of these differences to build multiple functional chimeras between these orthologs, to identify the regions that account for these discrepancies. Using a combination of calcium imaging and patch clamping, we identified a region encompassing positions 526-556 in the N terminus, whose replacement by the cTRPM8 homolog sequence potentiated its response to agonists. More importantly, we found that the characteristic cold response of these orthologs is due to nonconserved residues located within the pore loop, suggesting that TRPM8 has evolved by increasing the magnitude of its cold response through changes in this region. Our results reveal that these structural domains are critically involved in cold sensitivity and functional modulation of TRPM8, and support the idea that the pore domain is a key molecular determinant in temperature responses of this thermo-transient receptor potential (TRP) channel.
Collapse
Affiliation(s)
- María Pertusa
- From the Departamento de Biología, Facultad de Química y Biología, and Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Santiago de Chile, 9160000 Santiago, Chile
| | - Bastián Rivera
- From the Departamento de Biología, Facultad de Química y Biología, and Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Santiago de Chile, 9160000 Santiago, Chile
| | - Alejandro González
- From the Departamento de Biología, Facultad de Química y Biología, and Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Santiago de Chile, 9160000 Santiago, Chile
| | - Gonzalo Ugarte
- From the Departamento de Biología, Facultad de Química y Biología, and Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Santiago de Chile, 9160000 Santiago, Chile
| | - Rodolfo Madrid
- From the Departamento de Biología, Facultad de Química y Biología, and Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Santiago de Chile, 9160000 Santiago, Chile
| |
Collapse
|
97
|
Hilton JK, Salehpour T, Sisco NJ, Rath P, Van Horn WD. Phosphoinositide-interacting regulator of TRP (PIRT) has opposing effects on human and mouse TRPM8 ion channels. J Biol Chem 2018; 293:9423-9434. [PMID: 29724821 DOI: 10.1074/jbc.ra118.003563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 04/25/2018] [Indexed: 12/24/2022] Open
Abstract
Transient receptor potential melastatin 8 (TRPM8) is a cold-sensitive ion channel with diverse physiological roles. TRPM8 activity is modulated by many mechanisms, including an interaction with the small membrane protein phosphoinositide-interacting regulator of TRP (PIRT). Here, using comparative electrophysiology experiments, we identified species-dependent differences between the human and mouse TRPM8-PIRT complexes. We found that human PIRT attenuated human TPRM8 conductance, unlike mouse PIRT, which enhanced mouse TRPM8 conductance. Quantitative Western blot analysis demonstrates that this effect does not arise from decreased trafficking of TRPM8 to the plasma membrane. Chimeric human/mouse TRPM8 channels were generated to probe the molecular basis of the PIRT modulation, and the effect was recapitulated in a pore domain chimera, demonstrating the importance of this region for PIRT-mediated regulation of TRPM8. Moreover, recombinantly expressed and purified human TRPM8 S1-S4 domain (comprising transmembrane helices S1-S4, also known as the sensing domain, ligand-sensing domain, or voltage sensing-like domain) and full-length human PIRT were used to investigate binding between the proteins. NMR experiments, supported by a pulldown assay, indicated that PIRT binds directly and specifically to the TRPM8 S1-S4 domain. Binding became saturated as the S1-S4:PIRT mole ratio approached 1. Our results have uncovered species-specific TRPM8 modulation by PIRT. They provide evidence for a direct interaction between PIRT and the TRPM8 S1-S4 domain with a 1:1 binding stoichiometry, suggesting that a functional tetrameric TRPM8 channel has four PIRT-binding sites.
Collapse
Affiliation(s)
- Jacob K Hilton
- From the School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287.,the Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85281, and.,The Magnetic Resonance Research Center, Arizona State University, Tempe, Arizona 85287
| | - Taraneh Salehpour
- From the School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287.,the Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85281, and.,The Magnetic Resonance Research Center, Arizona State University, Tempe, Arizona 85287
| | - Nicholas J Sisco
- From the School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287.,the Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85281, and.,The Magnetic Resonance Research Center, Arizona State University, Tempe, Arizona 85287
| | - Parthasarathi Rath
- From the School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287.,the Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85281, and.,The Magnetic Resonance Research Center, Arizona State University, Tempe, Arizona 85287
| | - Wade D Van Horn
- From the School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, .,the Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85281, and.,The Magnetic Resonance Research Center, Arizona State University, Tempe, Arizona 85287
| |
Collapse
|
98
|
Gaps in Understanding Mechanism and Lack of Treatments: Potential Use of a Nonhuman Primate Model of Oxaliplatin-Induced Neuropathic Pain. Pain Res Manag 2018; 2018:1630709. [PMID: 29854035 PMCID: PMC5954874 DOI: 10.1155/2018/1630709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/03/2018] [Indexed: 12/11/2022]
Abstract
The antineoplastic agent oxaliplatin induces an acute hypersensitivity evoked by cold that has been suggested to be due to sensitized central and peripheral neurons. Rodent-based preclinical studies have suggested numerous treatments for the alleviation of oxaliplatin-induced neuropathic pain, but few have demonstrated robust clinical efficacy. One issue is that current understanding of the pathophysiology of oxaliplatin-induced neuropathic pain is primarily based on rodent models, which might not entirely recapitulate the clinical pathophysiology. In addition, there is currently no objective physiological marker for pain that could be utilized to objectively indicate treatment efficacy. Nonhuman primates are phylogenetically and neuroanatomically similar to humans; thus, disease mechanism in nonhuman primates could reflect that of clinical oxaliplatin-induced neuropathy. Cold-activated pain-related brain areas in oxaliplatin-treated macaques were attenuated with duloxetine, the only drug that has demonstrated clinical efficacy for chemotherapy-induced neuropathic pain. By contrast, drugs that have not demonstrated clinical efficacy in oxaliplatin-induced neuropathic pain did not reduce brain activation. Thus, a nonhuman primate model could greatly enhance understanding of clinical pathophysiology beyond what has been obtained with rodent models and, furthermore, brain activation could serve as an objective marker of pain and therapeutic efficacy.
Collapse
|
99
|
Nakagawa T, Kaneko S. Roles of Transient Receptor Potential Ankyrin 1 in Oxaliplatin-Induced Peripheral Neuropathy. Biol Pharm Bull 2018; 40:947-953. [PMID: 28674258 DOI: 10.1248/bpb.b17-00243] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN), characterized by symptoms of paresthesia, dysesthesia, numbness, and pain, is a common adverse effect of several chemotherapeutic agents, including platinum-based agents, taxanes, and vinca alkaloids. However, no effective prevention or treatment strategies exist for CIPN because the mechanisms underpinning this neuropathy are poorly understood. Recent accumulating evidence suggests that some transient receptor potential (TRP) channels functioning as nociceptors in primary sensory neurons are responsible for CIPN. In this review, we focus on the specific roles of redox-sensitive TRP ankyrin 1 (TRPA1), which was first reported to be a cold nociceptor, in acute cold hypersensitivity induced by oxaliplatin, a platinum-based agent, because it induces a peculiar cold-triggered CIPN during or within hours after its infusion. Oxaliplatin-induced rapid-onset cold hypersensitivity is ameliorated by TRPA1 blockade or deficiency in mice. Consistent with this, oxaliplatin enhances the responsiveness of TRPA1 stimulation, but not of TRP melastatin 8 (TRPM8) and TRP vanilloid 1 (TRPV1), in mice and cultured mouse dorsal root ganglion neurons. These responses are mimicked by an oxaliplatin metabolite, oxalate. In human TRPA1 (hTRPA1)-expressing cells, oxaliplatin or oxalate causes TRPA1 sensitization to reactive oxygen species (ROS) by inhibiting prolyl hydroxylases (PHDs). Inhibition of PHD-mediated hydroxylation of a proline residue within the N-terminal ankyrin repeat of hTRPA1 endows TRPA1 with cold sensitivity by its sensing of cold-evoked ROS. This review discusses these findings and summarizes the evidence demonstrating that oxaliplatin-induced acute cold hypersensitivity is caused by TRPA1 sensitization to ROS via PHD inhibition, which enables TRPA1 to convert ROS signaling into cold sensitivity.
Collapse
Affiliation(s)
- Takayuki Nakagawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital
| | - Shuji Kaneko
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University
| |
Collapse
|
100
|
Hoffstaetter LJ, Bagriantsev SN, Gracheva EO. TRPs et al.: a molecular toolkit for thermosensory adaptations. Pflugers Arch 2018; 470:745-759. [PMID: 29484488 PMCID: PMC5945325 DOI: 10.1007/s00424-018-2120-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/03/2018] [Accepted: 02/05/2018] [Indexed: 12/19/2022]
Abstract
The ability to sense temperature is crucial for the survival of an organism. Temperature influences all biological operations, from rates of metabolic reactions to protein folding, and broad behavioral functions, from feeding to breeding, and other seasonal activities. The evolution of specialized thermosensory adaptations has enabled animals to inhabit extreme temperature niches and to perform specific temperature-dependent behaviors. The function of sensory neurons depends on the participation of various types of ion channels. Each of the channels involved in neuronal excitability, whether through the generation of receptor potential, action potential, or the maintenance of the resting potential have temperature-dependent properties that can tune the neuron's response to temperature stimuli. Since the function of all proteins is affected by temperature, animals need adaptations not only for detecting different temperatures, but also for maintaining sensory ability at different temperatures. A full understanding of the molecular mechanism of thermosensation requires an investigation of all channel types at each step of thermosensory transduction. A fruitful avenue of investigation into how different molecules can contribute to the fine-tuning of temperature sensitivity is to study the specialized adaptations of various species. Given the diversity of molecular participants at each stage of sensory transduction, animals have a toolkit of channels at their disposal to adapt their thermosensitivity to their particular habitats or behavioral circumstances.
Collapse
Affiliation(s)
- Lydia J Hoffstaetter
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8026, USA
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8026, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8026, USA
| | - Sviatoslav N Bagriantsev
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8026, USA
| | - Elena O Gracheva
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8026, USA.
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8026, USA.
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8026, USA.
| |
Collapse
|