51
|
Lee H, Da Silva IP, Palendira U, Scolyer RA, Long GV, Wilmott JS. Targeting NK Cells to Enhance Melanoma Response to Immunotherapies. Cancers (Basel) 2021; 13:cancers13061363. [PMID: 33802954 PMCID: PMC8002669 DOI: 10.3390/cancers13061363] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/23/2022] Open
Abstract
Natural killer (NK) cells are a key component of an innate immune system. They are important not only in initiating, but also in augmenting adaptive immune responses. NK cell activation is mediated by a carefully orchestrated balance between the signals from inhibitory and activating NK cell receptors. NK cells are potent producers of proinflammatory cytokines and are also able to elicit strong antitumor responses through secretion of perforin and granzyme B. Tumors can develop many mechanisms to evade NK cell antitumor responses, such as upregulating ligands for inhibitory receptors, secreting anti-inflammatory cytokines and recruiting immunosuppressive cells. Enhancing NK cell responses will likely augment the effectiveness of immunotherapies, and strategies to accomplish this are currently being evaluated in clinical trials. A comprehensive understanding of NK cell biology will likely provide additional opportunities to further leverage the antitumor effects of NK cells. In this review, we therefore sought to highlight NK cell biology, tumor evasion of NK cells and clinical trials that target NK cells.
Collapse
Affiliation(s)
- Hansol Lee
- Melanoma Institute Australia, The University of Sydney, Sydney 2006, Australia; (H.L.); (I.P.D.S.); (U.P.); (R.A.S.); (J.S.W.)
- Faculty of Medicine and Health Sciences, The University of Sydney, Sydney 2006, Australia
| | - Inês Pires Da Silva
- Melanoma Institute Australia, The University of Sydney, Sydney 2006, Australia; (H.L.); (I.P.D.S.); (U.P.); (R.A.S.); (J.S.W.)
| | - Umaimainthan Palendira
- Melanoma Institute Australia, The University of Sydney, Sydney 2006, Australia; (H.L.); (I.P.D.S.); (U.P.); (R.A.S.); (J.S.W.)
- Department of Infectious Diseases and Immunology, The Charles Perkins Centre, School of Medical Sciences, The University of Sydney, Sydney 2006, Australia
| | - Richard A. Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney 2006, Australia; (H.L.); (I.P.D.S.); (U.P.); (R.A.S.); (J.S.W.)
- Faculty of Medicine and Health Sciences, The University of Sydney, Sydney 2006, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney 2006, Australia
| | - Georgina V. Long
- Melanoma Institute Australia, The University of Sydney, Sydney 2006, Australia; (H.L.); (I.P.D.S.); (U.P.); (R.A.S.); (J.S.W.)
- Department of Medical Oncology, Royal North Shore Hospital and Mater Hospital, Sydney 2065, Australia
- Sydney Medical School, The University of Sydney, Sydney 2006, Australia
- Correspondence: ; Tel.: +61-2-9911-7336
| | - James S. Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney 2006, Australia; (H.L.); (I.P.D.S.); (U.P.); (R.A.S.); (J.S.W.)
- Faculty of Medicine and Health Sciences, The University of Sydney, Sydney 2006, Australia
| |
Collapse
|
52
|
Peterson EE, Barry KC. The Natural Killer-Dendritic Cell Immune Axis in Anti-Cancer Immunity and Immunotherapy. Front Immunol 2021; 11:621254. [PMID: 33613552 PMCID: PMC7886798 DOI: 10.3389/fimmu.2020.621254] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022] Open
Abstract
Natural killer (NK) cells and dendritic cells (DCs) are crucial mediators of productive immune responses to infection and disease. NK cells and a subtype of DCs, the type 1 conventional DCs (cDC1s), are individually important for regulating immune responses to cancer in mice and humans. Recent work has found that NK cells and cDC1s engage in intercellular cross-talk integral to initiating and coordinating adaptive immunity to cancer. This NK cell-cDC1 axis has been linked to increased overall survival and responses to anti-PD-1 immunotherapy in metastatic melanoma patients. Here, we review recent findings on the role of NK cells and cDC1s in protective immune responses to cancer and immunotherapy, as well as current therapies targeting this NK cell-cDC1 axis. Further, we explore the concept that intercellular cross-talk between NK cells and cDC1s may be key for many of the positive prognostic associations seen with NK cells and DCs individually. It is clear that increasing our understanding of the NK cell-cDC1 innate immune cell axis will be critical for the generation of novel therapies that can modulate anti-cancer immunity and increase patient responses to common immunotherapies.
Collapse
Affiliation(s)
- Erin E Peterson
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Kevin C Barry
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| |
Collapse
|
53
|
Yao X, Matosevic S. Chemokine networks modulating natural killer cell trafficking to solid tumors. Cytokine Growth Factor Rev 2021; 59:36-45. [PMID: 33495094 DOI: 10.1016/j.cytogfr.2020.12.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/17/2020] [Accepted: 12/24/2020] [Indexed: 01/02/2023]
Abstract
Natural killer (NK) cell-based cell therapy has been emerging as a powerful weapon in the treatment of multiple malignancies. However, the inadequate infiltration of the therapeutic NK cells into solid tumors remains a big challenge to their clinical utility. Chemokine networks, which play essential roles in the migration of lymphocytes, have been recognized as critical in driving the intratumoral infiltration of NK cells via interactions between soluble chemokines and their receptors. Often, such interactions are complex and disease-specific. In the context of NK cells, chemokine receptors of note have included CCR2, CCR5, CCR7, CXCR3, and CX3CR1. The immunobiology of chemokine-receptor interactions has fueled the development of approaches that hope to improve the infiltration of NK cells into the microenvironment of solid tumors. Stimulation of NK cells ex vivo in the presence of various cytokines (such as IL-2, IL-15, and IL-21) and genetic engineering of NK cells have been utilized to alter the chemokine receptor profile and generate NK cells with higher infiltrating capacity. Additionally, the immune-suppressive tumor microenvironment has also been targeted, by introducing, either directly or indirectly, chemokine ligands which NK cells are able to respond to, ultimately creating a more hospitable niche for NK cell trafficking. Such strategies have promoted the infiltration and activity of infused NK cells into multiple solid tumors. In this review, we discuss how chemokine receptors and their ligands coordinate and how they can be manipulated to regulate the trafficking, distribution, and residence of NK cells in solid tumors.
Collapse
Affiliation(s)
- Xue Yao
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
| | - Sandro Matosevic
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, 47907, USA; Center for Cancer Research, Purdue University, West Lafayette, IN, 47907 USA.
| |
Collapse
|
54
|
Abstract
Natural killer cells are powerful effectors of innate immunity that constitute a first line of defense against cancer. NK cells express an array of germline-encoded receptors which allow them to eliminate transformed cells and spare normal, healthy cells. Owing to their ability to kill circulating tumor cells, NK cells play a major role in the protection against cancer metastases. There is also convincing evidence that NK cells protect against some hematological cancers such as acute myeloid leukemia. However, the importance of NK cells for the control of established solid tumors is rather uncertain. Several mechanisms impede NK cell-mediated elimination of solid tumors, starting with the incapacity of NK cells to infiltrate the core of the tumor. In addition, immune escape mechanisms are at play in both solid and hematological cancers. These include the immunoediting of tumor cells and aberrant chronic inflammation that renders NK cells ineffective. In this chapter, I review the phenotypic characteristics of NK cells within the tumor microenvironment. Furthermore, I describe the mechanisms by which NK cells contribute to antitumor immunity. Finally, I review the different immune-evasion factors that impair NK cell activity against cancer.
Collapse
|
55
|
Lipid Metabolism in Tumor-Associated Natural Killer Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1316:71-85. [PMID: 33740244 DOI: 10.1007/978-981-33-6785-2_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Accumulative data demonstrate that during the initiation and progression of tumors, several types of cellular components in tumor microenvironment, including tumor cells and immune cells, exhibit malfunctions in cellular energy metabolism. For instance, lipid metabolism impairments in immune cells are crucial in coordinating immunosuppression and tumor immune escape. In particular, excessive lipids have been shown to exhibit negative effects on innate immunity. Previous studies on lipid metabolism in immune cells are mainly focused on macrophages and T lymphocytes. Although natural killer (NK) cells are major players in the innate elimination of virus, bacteria, and tumor cells, available literature reports related with lipid metabolism in NK cells and tumor-associated NK (TANK) cells are very sparse. Despite these, the importance and clinical relevance of the crosstalk among lipid metabolism, NK/TANK cells, and tumors have been clearly indicated. In this chapter, following a general description of NK and TANK cells, our knowledge on the regulation of lipid metabolism in NK cells is reviewed, with an emphasis on the roles of mTOR and SREBP signaling. Then the interactions between lipid metabolism and NK/TANK cells under pathological conditions, e.g., obesity and cancer, were carefully introduced. As there is an urgent need to reveal more regulators and to clarify detailed molecular mechanisms by which lipid metabolism interacts with NK/TANK cells, several categories of potential regulators/pathways, as well as the challenges and perspectives in this emerging field, are discussed.
Collapse
|
56
|
Domagala J, Lachota M, Klopotowska M, Graczyk-Jarzynka A, Domagala A, Zhylko A, Soroczynska K, Winiarska M. The Tumor Microenvironment-A Metabolic Obstacle to NK Cells' Activity. Cancers (Basel) 2020; 12:cancers12123542. [PMID: 33260925 PMCID: PMC7761432 DOI: 10.3390/cancers12123542] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
NK cells have unique capabilities of recognition and destruction of tumor cells, without the requirement for prior immunization of the host. Maintaining tolerance to healthy cells makes them an attractive therapeutic tool for almost all types of cancer. Unfortunately, metabolic changes associated with malignant transformation and tumor progression lead to immunosuppression within the tumor microenvironment, which in turn limits the efficacy of various immunotherapies. In this review, we provide a brief description of the metabolic changes characteristic for the tumor microenvironment. Both tumor and tumor-associated cells produce and secrete factors that directly or indirectly prevent NK cell cytotoxicity. Here, we depict the molecular mechanisms responsible for the inhibition of immune effector cells by metabolic factors. Finally, we summarize the strategies to enhance NK cell function for the treatment of tumors.
Collapse
Affiliation(s)
- Joanna Domagala
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.D.); (A.G.-J.); (A.Z.); (K.S.)
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Mieszko Lachota
- Department of Clinical Immunology, Medical University of Warsaw, 02-006 Warsaw, Poland; (M.L.); (M.K.)
| | - Marta Klopotowska
- Department of Clinical Immunology, Medical University of Warsaw, 02-006 Warsaw, Poland; (M.L.); (M.K.)
| | - Agnieszka Graczyk-Jarzynka
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.D.); (A.G.-J.); (A.Z.); (K.S.)
| | - Antoni Domagala
- Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University of Kielce, 25-317 Kielce, Poland;
- Department of Urology, Holy Cross Cancer Center, 25-734 Kielce, Poland
| | - Andriy Zhylko
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.D.); (A.G.-J.); (A.Z.); (K.S.)
| | - Karolina Soroczynska
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.D.); (A.G.-J.); (A.Z.); (K.S.)
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Magdalena Winiarska
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.D.); (A.G.-J.); (A.Z.); (K.S.)
- Correspondence: ; Tel.: +48-225-992-199
| |
Collapse
|
57
|
Tenascin-C Function in Glioma: Immunomodulation and Beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1272:149-172. [PMID: 32845507 DOI: 10.1007/978-3-030-48457-6_9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
First identified in the 1980s, tenascin-C (TNC) is a multi-domain extracellular matrix glycoprotein abundantly expressed during the development of multicellular organisms. TNC level is undetectable in most adult tissues but rapidly and transiently induced by a handful of pro-inflammatory cytokines in a variety of pathological conditions including infection, inflammation, fibrosis, and wound healing. Persistent TNC expression is associated with chronic inflammation and many malignancies, including glioma. By interacting with its receptor integrin and a myriad of other binding partners, TNC elicits context- and cell type-dependent function to regulate cell adhesion, migration, proliferation, and angiogenesis. TNC operates as an endogenous activator of toll-like receptor 4 and promotes inflammatory response by inducing the expression of multiple pro-inflammatory factors in innate immune cells such as microglia and macrophages. In addition, TNC drives macrophage differentiation and polarization predominantly towards an M1-like phenotype. In contrast, TNC shows immunosuppressive function in T cells. In glioma, TNC is expressed by tumor cells and stromal cells; high expression of TNC is correlated with tumor progression and poor prognosis. Besides promoting glioma invasion and angiogenesis, TNC has been found to affect the morphology and function of tumor-associated microglia/macrophages in glioma. Clinically, TNC can serve as a biomarker for tumor progression; and TNC antibodies have been utilized as an adjuvant agent to deliver anti-tumor drugs to target glioma. A better mechanistic understanding of how TNC impacts innate and adaptive immunity during tumorigenesis and tumor progression will open new therapeutic avenues to treat brain tumors and other malignancies.
Collapse
|
58
|
Attrill GH, Ferguson PM, Palendira U, Long GV, Wilmott JS, Scolyer RA. The tumour immune landscape and its implications in cutaneous melanoma. Pigment Cell Melanoma Res 2020; 34:529-549. [PMID: 32939993 DOI: 10.1111/pcmr.12926] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/01/2020] [Accepted: 08/23/2020] [Indexed: 12/21/2022]
Abstract
The field of tumour immunology has rapidly advanced in the last decade, leading to the advent of effective immunotherapies for patients with advanced cancers. This highlights the critical role of the immune system in determining tumour development and outcome. The tumour immune microenvironment (TIME) is highly heterogeneous, and the interactions between tumours and the immune system are vastly complex. Studying immune cell function in the TIME will provide an improved understanding of the mechanisms underpinning these interactions. This review examines the role of immune cell populations in the TIME based on their phenotype, function and localisation, as well as contextualising their position in the dynamic relationship between tumours and the immune system. We discuss the function of immune cell populations, examine their impact on patient outcome and highlight gaps in current understanding of their roles in the TIME, both in cancers in general and specifically in melanoma. Studying the TIME by evaluating both pro-tumour and anti-tumour effects may elucidate the conditions which lead to tumour growth and metastasis or immune-mediated tumour regression. Moreover, an in-depth understanding of these conditions could contribute to improved prognostication, more effective use of current immunotherapies and guide the development of novel treatment strategies and therapies.
Collapse
Affiliation(s)
- Grace H Attrill
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Peter M Ferguson
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia.,Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and New South Wales Health Pathology, Sydney, Australia
| | - Umaimainthan Palendira
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Discipline of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia.,Mater and North Shore Hospitals, Sydney, Australia
| | - James S Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia.,Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and New South Wales Health Pathology, Sydney, Australia
| |
Collapse
|
59
|
Bald T, Krummel MF, Smyth MJ, Barry KC. The NK cell-cancer cycle: advances and new challenges in NK cell-based immunotherapies. Nat Immunol 2020; 21:835-847. [PMID: 32690952 DOI: 10.1038/s41590-020-0728-z] [Citation(s) in RCA: 288] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022]
Abstract
Natural killer (NK) cells belong to the innate immune system and contribute to protecting the host through killing of infected, foreign, stressed or transformed cells. Additionally, via cellular cross-talk, NK cells orchestrate antitumor immune responses. Hence, significant efforts have been undertaken to exploit the therapeutic properties of NK cells in cancer. Current strategies in preclinical and clinical development include adoptive transfer therapies, direct stimulation, recruitment of NK cells into the tumor microenvironment (TME), blockade of inhibitory receptors that limit NK cell functions, and therapeutic modulation of the TME to enhance antitumor NK cell function. In this Review, we introduce the NK cell-cancer cycle to highlight recent advances in NK cell biology and to discuss the progress and problems of NK cell-based cancer immunotherapies.
Collapse
Affiliation(s)
- Tobias Bald
- Oncology and Cellular Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Matthew F Krummel
- Department of Pathology, ImmunoX Initiative, and Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, USA
| | - Mark J Smyth
- Immunology of Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.
| | - Kevin C Barry
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
60
|
Steppert C, Krugmann J, Sterlacci W. Simultaneous endocrine expression and loss of melanoma markers in malignant melanoma metastases, a retrospective analysis. Pathol Oncol Res 2020; 26:1777-1779. [PMID: 31654227 DOI: 10.1007/s12253-019-00761-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/10/2019] [Indexed: 10/25/2022]
Abstract
Malignant melanoma metastases are chameleons of histopathology. In 4 primary malignant melanomas and 20 melanoma metastases expression of S-100, HMB-45 and melan-A as melanoma markers and CD56, synaptophysin and chromogranin-A as neuroendocrine markers was retrospectively analyzed. While all primary tumors expressed all 3 melanoma markers 7/20 of melanoma metastases had lost at least one melanoma marker, one had lost all three markers. Conversely about half of the samples stained for CD56, only 6/20 metastases were negative for all 3 neuroendocrine markers. None expressed chromogranin-A. Partial loss of melanoma markers and expression of neuroendocrine markers seems not to be infrequent. In patients with a history of malignant melanoma and suspected metastases, losing melanoma markers while expressing neuroendocrine markers is a potential diagnostic pitfall. Therefore all 3 melanoma markers should be performed as well as chromogranin-A staining. In doubt, metastases of the melanoma should be assumed.
Collapse
Affiliation(s)
- Claus Steppert
- Department of Pulmonology and Thoracic Oncology, Klinikum Bayreuth, Preuschwitzer Str. 101, D-95445, Bayreuth, Germany.
| | - Jens Krugmann
- Department of Pathology, Klinikum Bayreuth, Preuschwitzer Str. 101, D-95445, Bayreuth, Germany
| | - William Sterlacci
- Department of Pathology, Klinikum Bayreuth, Preuschwitzer Str. 101, D-95445, Bayreuth, Germany
| |
Collapse
|
61
|
Chulpanova DS, Kitaeva KV, Green AR, Rizvanov AA, Solovyeva VV. Molecular Aspects and Future Perspectives of Cytokine-Based Anti-cancer Immunotherapy. Front Cell Dev Biol 2020; 8:402. [PMID: 32582698 PMCID: PMC7283917 DOI: 10.3389/fcell.2020.00402] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 05/01/2020] [Indexed: 12/11/2022] Open
Abstract
Cytokine-based immunotherapy is a promising field in the cancer treatment, since cytokines, as proteins of the immune system, are able to modulate the host immune response toward cancer cell, as well as directly induce tumor cell death. Since a low dose monotherapy with some cytokines has no significant therapeutic results and a high dose treatment leads to a number of side effects caused by the pleiotropic effect of cytokines, the problem of understanding the influence of cytokines on the immune cells involved in the pro- and anti-tumor immune response remains a pressing one. Immune system cells carry CD makers on their surface which can be used to identify various populations of cells of the immune system that play different roles in pro- and anti-tumor immune responses. This review discusses the functions and specific CD markers of various immune cell populations which are reported to participate in the regulation of the immune response against the tumor. The results of research studies and clinical trials investigating the effect of cytokine therapy on the regulation of immune cell populations and their surface markers are also discussed. Current trends in the development of cancer immunotherapy, as well as the role of cytokines in combination with other therapeutic agents, are also discussed.
Collapse
Affiliation(s)
- Daria S Chulpanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Kristina V Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Andrew R Green
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| | - Valeriya V Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
62
|
Systematic Multiomic Analysis of Ly75 Gene Expression and Its Prognostic Value Through the Infiltration of Natural Killer (NK) Cells in Skin Cutaneous Melanoma. J Clin Med 2020; 9:jcm9051383. [PMID: 32397120 PMCID: PMC7291273 DOI: 10.3390/jcm9051383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/23/2020] [Accepted: 05/05/2020] [Indexed: 12/24/2022] Open
Abstract
Ly75 (also known as DEC-205 or CD205) is expressed in immune cells and cancers and involved in tumor immunity. However, clinical relevance of Ly75 expression in skin cutaneous melanoma (SKCM) have not been comprehensively studied. This study analyzed the correlation between Ly75 mRNA expression and patient survival using systematic multiomic analysis tools. Ly75 mRNA expression level was significantly lower in SKCM tissues than in normal tissues. Survival analysis showed that Ly75 expression significantly correlated with good patient survival. To determine possible mechanisms, the association between Ly75 expression and immune cell infiltration was analyzed. Ly75 expression was positively correlated with various infiltrated immune cells, particularly with natural killer (NK) cell infiltration and activation in SKCM. Moreover, analysis of Ly75-co-altered gene expression revealed that Ptprc (CD45) was most significantly correlated with Ly75. Gene ontology analysis of Ly75-co-altered genes indicated the relation to lymphocyte activation, including NK cell activation. Overall, our study provides the first clinical evidence that Ly75 expression is significantly associated with melanoma patient survival and NK cell infiltration, suggesting that Ly75 could be a useful prognostic factor.
Collapse
|
63
|
Cristiani CM, Garofalo C, Passacatini LC, Carbone E. New avenues for melanoma immunotherapy: Natural Killer cells? Scand J Immunol 2020; 91:e12861. [PMID: 31879979 DOI: 10.1111/sji.12861] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/17/2023]
Abstract
Human solid malignant tumours may be particularly resistant to conventional therapies. Among solid tumours, immunological features of cutaneous melanoma have been well characterized in the past and today melanoma patients are routinely treated with the anti-immune checkpoints immunotherapy that has completely changed metastatic melanoma treatment and prognosis. Two cytotoxic cell populations may lead to the physical elimination of tumour cell targets: cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells. Tumour recognition by CTLs depends on major histocompatibility complex (MHC) class I molecules, while NK cells recognize tumours expressing low or null levels of MHC class I molecules. Despite this well-established complementarity, NK cells are still left behind in the optimization of innovative immunotherapy approaches. NK cells are members of innate lymphoid cells (ILCs) that play a critical role in early host defence against invading pathogens and transformed cells. Recent findings suggest that NK cell frequencies directly correlate with the overall survival of ipilimumab-treated melanoma patients. Furthermore, in vitro and in vivo evidences indicate that NK cells can selectively kill cancer stem cells, reducing tumour size and delaying metastatic progression. The aim of this review is to provide a survey of the evidences indicating NK cells as an excellent candidate to complement the newest solid tumour immunotherapy approaches.
Collapse
Affiliation(s)
- Costanza Maria Cristiani
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Cinzia Garofalo
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Lucia Carmela Passacatini
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Ennio Carbone
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
- Department of Microbiology Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, Stockholm, Sweden
| |
Collapse
|
64
|
Carbone E, De Felice M, Di Rosa F, D'Oro U, Fontana S, La Cava A, Maio M, Matarese G, Racioppi L, Ruggiero G, Terrazzano G. Serafino Zappacosta: An Enlightened Mentor and Educator. Front Immunol 2020; 11:217. [PMID: 32117323 PMCID: PMC7031500 DOI: 10.3389/fimmu.2020.00217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 01/27/2020] [Indexed: 11/22/2022] Open
Abstract
With this article, the authors aim to honor the memory of Serafino Zappacosta, who had been their mentor during the early years of their career in science. The authors discuss how the combination of Serafino Zappacosta's extraordinary commitment to teaching and passion for science created a fostering educational environment that led to the creation of the “Ruggero Ceppellini Advanced School of Immunology.” The review also illustrates how the research on the MHC and the inspirational scientific context in the Zappacosta's laboratory influenced the authors' early scientific interests, and subsequent professional work as immunologists.
Collapse
Affiliation(s)
- Ennio Carbone
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.,Department of Microbiology, Cell and Tumor Biology, Karolinska Intitutet, Stockholm, Sweden
| | - Mario De Felice
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Naples, Italy
| | - Francesca Di Rosa
- Institute of Molecular Biology and Pathology, Consiglio Nazionale delle Ricerche (IBPM-CNR), Rome, Italy
| | | | - Silvia Fontana
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Naples, Italy
| | - Antonio La Cava
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Michele Maio
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, Siena, Italy
| | - Giuseppe Matarese
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Naples, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Luigi Racioppi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy.,Division of Hematological Malignancies and Cellular Therapy, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Giuseppina Ruggiero
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli "Federico II", Naples, Italy
| | - Giuseppe Terrazzano
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli "Federico II", Naples, Italy.,Dipartimento di Scienze, Università della Basilicata, Potenza, Italy
| |
Collapse
|
65
|
KIR2DS4, KIR2DL2, and KIR2DS4del are linked with basaloid tumors, lymph node metastasis, advanced stage and metastatic risk in head and neck squamous cell carcinoma. Exp Mol Pathol 2020; 112:104345. [DOI: 10.1016/j.yexmp.2019.104345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/18/2019] [Indexed: 12/28/2022]
|
66
|
Melaiu O, Lucarini V, Cifaldi L, Fruci D. Influence of the Tumor Microenvironment on NK Cell Function in Solid Tumors. Front Immunol 2020; 10:3038. [PMID: 32038612 PMCID: PMC6985149 DOI: 10.3389/fimmu.2019.03038] [Citation(s) in RCA: 261] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/11/2019] [Indexed: 12/18/2022] Open
Abstract
Natural killer (NK) cells are a population of innate lymphoid cells playing a pivotal role in host immune responses against infection and tumor growth. These cells have a powerful cytotoxic activity orchestrated by an intricate network of inhibitory and activating signals. The importance of NK cells in controlling tumor growth and in mediating a robust anti-metastatic effect has been demonstrated in different experimental mouse cancer models. Consistently, high density of tumor-infiltrating NK cells has been linked with a good prognosis in multiple human solid tumors. However, there are also tumors that appear to be refractory to NK cell-mediated killing for the presence of an immunosuppressive microenvironment affecting NK cell function. Immunotherapeutic strategies aimed at restoring and increasing the cytotoxic activity of NK cells in solid tumors, including the adoptive transfer of NK and CAR-NK cells, are currently employed in preclinical and clinical studies. In this review, we outline recent advances supporting the direct role of NK cells in controlling expansion of solid tumors and their prognostic value in human cancers. We summarize the mechanisms adopted by cancer cells and the tumor microenvironment to affect NK cell function, and finally we evaluate current strategies to augment the antitumor function of NK cells for the treatment of solid tumors.
Collapse
Affiliation(s)
- Ombretta Melaiu
- Paediatric Haematology/Oncology Department, Ospedale Pediatrico Bambino Gesù, Rome, Italy.,Department of Biology, University of Pisa, Pisa, Italy
| | - Valeria Lucarini
- Paediatric Haematology/Oncology Department, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Loredana Cifaldi
- Academic Department of Pediatrics (DPUO), Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Doriana Fruci
- Paediatric Haematology/Oncology Department, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| |
Collapse
|
67
|
Bikfalvi A, Billottet C. The CC and CXC chemokines: major regulators of tumor progression and the tumor microenvironment. Am J Physiol Cell Physiol 2020; 318:C542-C554. [PMID: 31913695 DOI: 10.1152/ajpcell.00378.2019] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chemokines are a family of soluble cytokines that act as chemoattractants to guide the migration of cells, in particular of immune cells. However, chemokines are also involved in cell proliferation, differentiation, and survival. Chemokines are associated with a variety of human diseases including chronic inflammation, immune dysfunction, cancer, and metastasis. This review discusses the expression of CC and CXC chemokines in the tumor microenvironment and their supportive and inhibitory roles in tumor progression, angiogenesis, metastasis, and tumor immunity. We also specially focus on the diverse roles of CXC chemokines (CXCL9-11, CXCL4 and its variant CXCL4L1) and their two chemokine receptor CXCR3 isoforms, CXCR3-A and CXCR3-B. These two distinct isoforms have divergent roles in tumors, either promoting (CXCR3-A) or inhibiting (CXCR3-B) tumor progression. Their effects are mediated not only directly in tumor cells but also indirectly via the regulation of angiogenesis and tumor immunity. A full comprehension of their mechanisms of action is critical to further validate these chemokines and their receptors as biomarkers or therapeutic targets in cancer.
Collapse
Affiliation(s)
- Andreas Bikfalvi
- INSERM U1029, Pessac, France.,University of Bordeaux, Pessac, France
| | | |
Collapse
|
68
|
Vuletić A, Jovanić I, Jurišić V, Milovanović Z, Nikolić S, Spurnić I, Konjević G. IL-2 And IL-15 Induced NKG2D, CD158a and CD158b Expression on T, NKT- like and NK Cell Lymphocyte Subsets from Regional Lymph Nodes of Melanoma Patients. Pathol Oncol Res 2020; 26:223-231. [PMID: 29948616 DOI: 10.1007/s12253-018-0444-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 06/01/2018] [Indexed: 01/03/2023]
Abstract
Regional lymph nodes (LN)s represent important immunological barriers in spreading of malignant tumors. However, they are the most frequent early metastatic site in melanoma. Immunomodulatory agents including cytokines have been included in therapy of melanoma and have shown severe side effects and toxicity. In this sense, there is a growing need for bringing these agents to further in vitro testing that may enlighten aspects of their regional application. Therefore, the aim of this study was to investigate the effect of interleukin (IL)-2 and IL-15, the two cytokines with similar immune-enhancing effects, on the expression of activating NKG2D, inhibitory CD158a and CD158b receptors on CD8+ T, NKT-like and NK cell lymphocyte subsets from regional LNs of melanoma patients. In this study, we showed significant effects of IL-2 and IL-15 cytokine treatments on the expression of activating NKG2D and on inhibitory CD158a and CD158b receptors on lymphocytes, CD8+ T, NKT-like and NK cell lymphocyte subsets originating from regional LNs of melanoma patients. Furthermore, IL-2 and IL-15 by inducing the expression of NKG2D activating receptor on innate and on adaptive lymphocyte subsets and by augmenting NK cell antitumor cytotoxicity that correlated with the cytokine-induced NKG2D expression, increased antitumor potential of immune cells in regional LNs of melanoma patients irrespective of LN involvement. These findings indicate the importance of immune cell population from regional LNs of melanoma patients in the development of immune intervention strategies that may if applied locally increase antitumor potential to the level that controls tumor progressions.
Collapse
Affiliation(s)
- Ana Vuletić
- Institute of Oncology and Radiology of Serbia, Pasterova 14, Belgrade, 11000, Serbia.
| | - Irena Jovanić
- Institute of Oncology and Radiology of Serbia, Pasterova 14, Belgrade, 11000, Serbia
| | - Vladimir Jurišić
- Faculty of Medicine, University of Kragujevac, Kragujevac, Serbia
| | - Zorka Milovanović
- Institute of Oncology and Radiology of Serbia, Pasterova 14, Belgrade, 11000, Serbia
| | - Srđan Nikolić
- Institute of Oncology and Radiology of Serbia, Pasterova 14, Belgrade, 11000, Serbia
| | - Igor Spurnić
- Institute of Oncology and Radiology of Serbia, Pasterova 14, Belgrade, 11000, Serbia
| | - Gordana Konjević
- Institute of Oncology and Radiology of Serbia, Pasterova 14, Belgrade, 11000, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
69
|
CXCR1 Expression to Improve Anti-Cancer Efficacy of Intravenously Injected CAR-NK Cells in Mice with Peritoneal Xenografts. MOLECULAR THERAPY-ONCOLYTICS 2019; 16:75-85. [PMID: 31970285 PMCID: PMC6965500 DOI: 10.1016/j.omto.2019.12.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 01/14/2023]
Abstract
One reason underlying the failure of current chimeric antigen receptor (CAR) immune therapy to treat solid tumors adequately is insufficient tumor infiltration of CAR immune cells. To address the issue, we electroporated natural killer (NK) cells with two mRNA constructs encoding the chemokine receptor CXCR1 and a CAR targeting tumor-associated NKG2D ligands. The CXCR1-modified NK cells displayed increased migration toward tumor supernatants in vitro and augmented infiltration into human tumors in vivo in subcutaneous and intraperitoneal xenograft models. Most importantly, the cytotoxicity of the CAR-NK cells was not affected by CXCR1 transgene expression, and the enhanced tumor trafficking following intravenous injection resulted in significantly increased antitumor responses in mice carrying established peritoneal ovarian cancer xenografts. Collectively, our findings suggest that the coexpression of CXCR1 and a CAR may provide a novel strategy to enhance therapeutic efficacy of NK cells against solid cancers.
Collapse
|
70
|
Ducimetière L, Vermeer M, Tugues S. The Interplay Between Innate Lymphoid Cells and the Tumor Microenvironment. Front Immunol 2019; 10:2895. [PMID: 31921156 PMCID: PMC6923277 DOI: 10.3389/fimmu.2019.02895] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022] Open
Abstract
The multifaceted roles of Innate Lymphoid Cells (ILC) have been widely interrogated in tumor immunity. Whereas, Natural Killer (NK) cells possess undisputable tumor-suppressive properties across multiple types of cancer, the other ILC family members can either promote or inhibit tumor growth depending on the environmental conditions. The differential effects of ILCs on tumor outcome have been attributed to the high degree of heterogeneity and plasticity within the ILC family members. However, it is now becoming clear that ILCs responses are shaped by their dynamic crosstalk with the different components of the tumor microenvironment (TME). In this review, we will give insights into the molecular and cellular players of the ILCs-TME interactions and we will discuss how we can use this knowledge to successfully harness the activity of ILCs for anticancer therapies.
Collapse
Affiliation(s)
- Laura Ducimetière
- Innate Lymphoid Cells and Cancer, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Marijne Vermeer
- Innate Lymphoid Cells and Cancer, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Sonia Tugues
- Innate Lymphoid Cells and Cancer, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
71
|
Di Vito C, Mikulak J, Mavilio D. On the Way to Become a Natural Killer Cell. Front Immunol 2019; 10:1812. [PMID: 31428098 PMCID: PMC6688484 DOI: 10.3389/fimmu.2019.01812] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022] Open
Abstract
Natural Killer (NK) cells are innate lymphocytes playing pivotal roles in host defense and immune-surveillance. The homeostatic modulation of germ-line encoded/non-rearranged activating and inhibitory NK cell receptors (NKRs) determines the capability of these innate lymphocytes to either spare "self" cells or to kill viral-infected, tumor-transformed and heterologous cell targets. However, despite being discovered more than 40 years ago, several aspects of NK cell biology remain unknown or are still being debated. In particular, our knowledge of human NK cell ontogenesis and differentiation is still in its infancy as the majority of our experimental evidence on this topic mainly comes from findings obtained in vitro or with animal models in vivo. Although both the generation and the maintenance of human NK cells are sustained by hematopoietic stem cells (HSCs), the precise site(s) of NK cell development are still poorly defined. Indeed, HSCs and hematopoietic precursors are localized in different anatomical compartments that also change their ontogenic commitments before and after birth as well as in aging. Currently, the main site of NK cell generation and maturation in adulthood is considered the bone marrow, where their interactions with stromal cells, cytokines, growth factors, and other soluble molecules support and drive maturation. Different sequential stages of NK cell development have been identified on the basis of the differential expression of specific markers and NKRs as well as on the acquisition of specific effector-functions. All these phenotypic and functional features are key in inducing and regulating homing, activation and tissue-residency of NK cells in different human anatomic sites, where different homeostatic mechanisms ensure a perfect balance between immune tolerance and immune-surveillance. The present review summarizes our current knowledge on human NK cell ontogenesis and on the related pathways orchestrating a proper maturation, functions, and distributions.
Collapse
Affiliation(s)
- Clara Di Vito
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy
| | - Joanna Mikulak
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| |
Collapse
|
72
|
Khan AM, Devarakonda S, Bumma N, Chaudhry M, Benson DM. Potential of NK cells in multiple Myeloma therapy. Expert Rev Hematol 2019; 12:425-435. [PMID: 31070067 DOI: 10.1080/17474086.2019.1617128] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Despite rapid advances in myeloma treatment with the development of new drugs, curative therapies remain elusive. Relapsed/refractory disease related to progressive dysregulation of immune system and acquired genetic abnormalities continues to be a major obstacle in achieving cure. Immune-based therapy harnessing the host defense mechanism of natural killer (NK) cells is a promising avenue in the treatment of myeloma. Areas covered: Here, we discuss the biology and cytotoxic activity of NK cells and the potential role of these innate immune cells in defense against cancer and specifically multiple myeloma. We also discuss the role of NK cells in the anti-myeloma effects of autologous and allogeneic stem cell transplantation, various novel drugs, and treatment modalities such as chimeric antigen receptor therapy. Immune evasion, either directly or indirectly involving NK cell dysfunction, may be a key and under-recognized mechanism in myeloma progression. We reviewed extensive literature identified using the keywords immunotherapy, natural killer cells, and multiple myeloma. Expert opinion: Novel treatment approaches in myeloma utilizing the immunomodulatory and cytotoxic properties of NK cells to eradicate resistant and quiescent clones could pave the way for potentially curative interventions.
Collapse
Affiliation(s)
- Abdullah M Khan
- a Division of Hematology, Department of Medicine , The Ohio State University Comprehensive Cancer Center , Columbus , OH , USA
| | - Srinivas Devarakonda
- a Division of Hematology, Department of Medicine , The Ohio State University Comprehensive Cancer Center , Columbus , OH , USA
| | - Naresh Bumma
- a Division of Hematology, Department of Medicine , The Ohio State University Comprehensive Cancer Center , Columbus , OH , USA
| | - Maria Chaudhry
- a Division of Hematology, Department of Medicine , The Ohio State University Comprehensive Cancer Center , Columbus , OH , USA
| | - Don M Benson
- a Division of Hematology, Department of Medicine , The Ohio State University Comprehensive Cancer Center , Columbus , OH , USA
| |
Collapse
|
73
|
Neagu M, Constantin C, Caruntu C, Dumitru C, Surcel M, Zurac S. Inflammation: A key process in skin tumorigenesis. Oncol Lett 2019; 17:4068-4084. [PMID: 30944600 PMCID: PMC6444305 DOI: 10.3892/ol.2018.9735] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/02/2018] [Indexed: 01/01/2023] Open
Abstract
The extremely delicate shift from an inflammatory process to tumorigenesis is a field of major scientific interest. While the inflammation induced by environmental agents has well known underlying mechanisms, less is known concerning the oncogenic changes that follow an inflammatory chronic status in the tissue microenvironment that can lead to pro-tumorigenic processes. Regardless of the origin of the environmental factors, the maintenance of an inflammatory microenvironment is a clear condition that favors tumorigenesis. Inflammation sustains the proliferation and survival of malignant transformed cells, can promote angiogenesis and metastatic processes, can negatively regulate the antitumoral adaptive and innate immune responses and may alter the efficacy of therapeutic agents. There is an abundance of studies focusing on molecular pathways that trigger inflammation-mediated tumorigenesis, and these data have revealed a series of biomarkers that can improve the diagnosis and prognosis in oncology. In skin there is a clear connection between tissue destruction, inflammation and tumor onset. Inflammation is a self-limiting process in normal physiological conditions, while tumor is a constitutive process activating new pro-tumor mechanisms. Among skin cancers, the most commonly diagnosed skin cancers, squamous cell carcinoma and basal cell carcinoma (BCC) have important inflammatory components. The most aggressive skin cancer, melanoma, is extensively research in regards to the new context of novel developed immune-therapies. In skin cancers, inflammatory markers can find their place in the biomarker set for improvement of diagnosis and prognosis.
Collapse
Affiliation(s)
- Monica Neagu
- Immunobiology Laboratory, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
- Faculty of Biology, University of Bucharest, 050107 Bucharest, Romania
- Department of Pathology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Carolina Constantin
- Immunobiology Laboratory, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
- Department of Pathology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Carmen Dumitru
- Department of Pathology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Mihaela Surcel
- Immunobiology Laboratory, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
- Faculty of Biology, University of Bucharest, 050107 Bucharest, Romania
| | - Sabina Zurac
- Department of Pathology, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Department of Pathology, Faculty of Dental Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
74
|
Cristiani CM, Turdo A, Ventura V, Apuzzo T, Capone M, Madonna G, Mallardo D, Garofalo C, Giovannone ED, Grimaldi AM, Tallerico R, Marcenaro E, Pesce S, Del Zotto G, Agosti V, Costanzo FS, Gulletta E, Rizzo A, Moretta A, Karre K, Ascierto PA, Todaro M, Carbone E. Accumulation of Circulating CCR7 + Natural Killer Cells Marks Melanoma Evolution and Reveals a CCL19-Dependent Metastatic Pathway. Cancer Immunol Res 2019; 7:841-852. [PMID: 30940644 DOI: 10.1158/2326-6066.cir-18-0651] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/29/2018] [Accepted: 03/29/2019] [Indexed: 11/16/2022]
Abstract
Immune checkpoint blockade therapy has changed prognoses for many melanoma patients. However, immune responses that correlate with clinical progression of the disease are still poorly understood. To identify immune responses correlating with melanoma clinical evolution, we analyzed serum cytokines as well as circulating NK and T-cell subpopulations from melanoma patients. The patients' immune profiles suggested that melanoma progression leads to changes in peripheral blood NK and T-cell subsets. Stage IV melanoma was characterized by an increased frequency of CCR7+CD56bright NK cells as well as high serum concentrations of the CCR7 ligand CCL19. CCR7 expression and CCL19 secretion were also observed in melanoma cell lines. The CCR7+ melanoma cell subpopulation coexpressed PD-L1 and Galectin-9 and had stemness properties. Analysis of melanoma-derived cancer stem cells (CSC) showed high CCR7 expression; these CSCs were efficiently recognized and killed by NK cells. An accumulation of CCR7+, PD-L1+, and Galectin-9+ melanoma cells in melanoma metastases was demonstrated ex vivo Altogether, our data identify biomarkers that may mark a CCR7-driven metastatic melanoma pathway.
Collapse
Affiliation(s)
- Costanza Maria Cristiani
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Alice Turdo
- Department of Surgical, Oncological and Stomatological Sciences (Di.Chir.On.S), University of Palermo, Palermo, Italy
| | - Valeria Ventura
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Tiziana Apuzzo
- Department of Surgical, Oncological and Stomatological Sciences (Di.Chir.On.S), University of Palermo, Palermo, Italy
| | - Mariaelena Capone
- Istituto Nazionale Tumori - IRCCS - Fondazione "G. Pascale," Dipartimento di Melanoma, Immunoterapia Oncologica e Terapie Innovative, Naples, Italy
| | - Gabriele Madonna
- Istituto Nazionale Tumori - IRCCS - Fondazione "G. Pascale," Dipartimento di Melanoma, Immunoterapia Oncologica e Terapie Innovative, Naples, Italy
| | - Domenico Mallardo
- Istituto Nazionale Tumori - IRCCS - Fondazione "G. Pascale," Dipartimento di Melanoma, Immunoterapia Oncologica e Terapie Innovative, Naples, Italy
| | - Cinzia Garofalo
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Emilia Dora Giovannone
- Services and Research Interdepartmental Center, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Antonio M Grimaldi
- Istituto Nazionale Tumori - IRCCS - Fondazione "G. Pascale," Dipartimento di Melanoma, Immunoterapia Oncologica e Terapie Innovative, Naples, Italy
| | - Rossana Tallerico
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Emanuela Marcenaro
- Department of Experimental Medicine and Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Silvia Pesce
- Department of Experimental Medicine and Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Genny Del Zotto
- Core Facilities Laboratory, Department of Translational Research, Laboratory Medicine, Diagnosis and Services, Istituto Giannina Gaslini, Genoa, Italy
| | - Valter Agosti
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
- Services and Research Interdepartmental Center, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Francesco Saverio Costanzo
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
- Services and Research Interdepartmental Center, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Elio Gulletta
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Aroldo Rizzo
- Unit of Pathology, Ospedali Riuniti Villa Sofia-Cervello, Palermo, Italy
| | - Alessandro Moretta
- Department of Experimental Medicine and Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Klas Karre
- Department of Microbiology, Cell and Tumor biology, Karolinska Intitutet, Stockholm, Sweden
| | - Paolo A Ascierto
- Istituto Nazionale Tumori - IRCCS - Fondazione "G. Pascale," Dipartimento di Melanoma, Immunoterapia Oncologica e Terapie Innovative, Naples, Italy
| | - Matilde Todaro
- Department of PROMISE, University of Palermo, Palermo, Italy.
| | - Ennio Carbone
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
- Department of Microbiology, Cell and Tumor biology, Karolinska Intitutet, Stockholm, Sweden
| |
Collapse
|
75
|
Targeting natural killer cells in solid tumors. Cell Mol Immunol 2019; 16:415-422. [PMID: 30911118 DOI: 10.1038/s41423-019-0224-2] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 02/27/2019] [Indexed: 02/07/2023] Open
Abstract
Natural killer (NK) cells are innate lymphoid cells endowed with cytolytic activity and a capacity to secrete cytokines and chemokines. Several lines of evidence suggest that NK cells play an important role in anti-tumor immunity. Some therapies against hematological malignacies make use of the immune properties of NK cells, such as their ability to kill residual leukemic blasts efficiently after conditioning during haploidentical hematopoietic stem cell transplantation. However, knowledge on NK cell infiltration and the status of NK cell responsiveness in solid tumors is limited so far. The pro-angiogenic role of the recently described NK cell-like type 1 innate lymphoid cells (ILC1s) and their phenotypic resemblance to NK cells are confounding factors that add a level of complexity, at least in mice. Here, we review the current knowledge on the presence and function of NK cells in solid tumors as well as the immunotherapeutic approaches designed to harness NK cell functions in these conditions, including those that aim to reinforce conventional anti-tumor therapies to increase the chances of successful treatment.
Collapse
|
76
|
de Jonge K, Ebering A, Nassiri S, Maby-El Hajjami H, Ouertatani-Sakouhi H, Baumgaertner P, Speiser DE. Circulating CD56 bright NK cells inversely correlate with survival of melanoma patients. Sci Rep 2019; 9:4487. [PMID: 30872676 PMCID: PMC6418246 DOI: 10.1038/s41598-019-40933-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 02/19/2019] [Indexed: 12/22/2022] Open
Abstract
The roles of NK cells in human melanoma remain only partially understood. We characterized NK cells from peripheral blood ex vivo by flow cytometry obtained from late stage (III/IV) melanoma patients. Interestingly, we found that the abundance of CD56bright NK cells negatively correlate with overall patient survival, together with distant metastases, in a multivariate cox regression analysis. The patients' CD56bright NK cells showed upregulation of CD11a, CD38 and CD95 as compared to healthy controls, pointing to an activated phenotype as well as a possible immune regulatory role in melanoma patients. After stimulation in vitro, CD56bright NK cells produced less TNFα and GMCSF in patients than controls. Furthermore, IFNγ production by the CD56bright NK cells correlated inversely with overall survival. Our results highlight that abundance and function of CD56bright NK cells are associated with melanoma patient survival, emphasizing the potential of NK cell subsets for biomarker discovery and future therapeutic targeting.
Collapse
Affiliation(s)
- Kaat de Jonge
- Department of Fundamental Oncology, University of Lausanne, Epalinges, Switzerland
| | - Anna Ebering
- Department of Fundamental Oncology, University of Lausanne, Epalinges, Switzerland
| | - Sina Nassiri
- Department of Fundamental Oncology, University of Lausanne, Epalinges, Switzerland
- Swiss Institute of Bioinformatics (SIB), Bâtiment Génopode, Lausanne, Switzerland
| | | | | | - Petra Baumgaertner
- Department of Fundamental Oncology, University of Lausanne, Epalinges, Switzerland
| | - Daniel E Speiser
- Department of Fundamental Oncology, University of Lausanne, Epalinges, Switzerland.
- Department of Oncology, University Hospital Center (CHUV), Lausanne, Switzerland.
| |
Collapse
|
77
|
Vujanovic L, Chuckran C, Lin Y, Ding F, Sander CA, Santos PM, Lohr J, Mashadi-Hossein A, Warren S, White A, Huang A, Kirkwood JM, Butterfield LH. CD56 dim CD16 - Natural Killer Cell Profiling in Melanoma Patients Receiving a Cancer Vaccine and Interferon-α. Front Immunol 2019; 10:14. [PMID: 30761123 PMCID: PMC6361792 DOI: 10.3389/fimmu.2019.00014] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/04/2019] [Indexed: 12/31/2022] Open
Abstract
Natural killer (NK) cells are innate cytotoxic and immunoregulatory lymphocytes that have a central role in anti-tumor immunity and play a critical role in mediating cellular immunity in advanced cancer immunotherapies, such as dendritic cell (DC) vaccines. Our group recently tested a novel recombinant adenovirus-transduced autologous DC-based vaccine that simultaneously induces T cell responses against three melanoma-associated antigens for advanced melanoma patients. Here, we examine the impact of this vaccine as well as the subsequent systemic delivery of high-dose interferon-α2b (HDI) on the circulatory NK cell profile in melanoma patients. At baseline, patient NK cells, particularly those isolated from high-risk patients with no measurable disease, showed altered distribution of CD56dim CD16+ and CD56dim CD16− NK cell subsets, as well as elevated serum levels of immune suppressive MICA, TN5E/CD73 and tactile/CD96, and perforin. Surprisingly, patient NK cells displayed a higher level of activation than those from healthy donors as measured by elevated CD69, NKp44 and CCR7 levels, and enhanced K562 killing. Elevated cytolytic ability strongly correlated with increased representation of CD56dim CD16+ NK cells and amplified CD69 expression on CD56dim CD16+ NK cells. While intradermal DC immunizations did not significantly impact circulatory NK cell activation and distribution profiles, subsequent HDI injections enhanced CD56bright CD16− NK cell numbers when compared to patients that did not receive HDI. Phenotypic analysis of tumor-infiltrating NK cells showed that CD56dim CD16− NK cells are the dominant subset in melanoma tumors. NanoString transcriptomic analysis of melanomas resected at baseline indicated that there was a trend of increased CD56dim NK cell gene signature expression in patients with better clinical response. These data indicate that melanoma patient blood NK cells display elevated activation levels, that intra-dermal DC immunizations did not effectively promote systemic NK cell responses, that systemic HDI administration can modulate NK cell subset distributions and suggest that CD56dim CD16− NK cells are a unique non-cytolytic subset in melanoma patients that may associate with better patient outcome.
Collapse
Affiliation(s)
- Lazar Vujanovic
- University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, United States.,Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Christopher Chuckran
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Yan Lin
- University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, United States.,Department of Biostatistics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Fei Ding
- University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, United States.,Department of Biostatistics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Cindy A Sander
- University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, United States.,Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Patricia M Santos
- University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, United States.,Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Joel Lohr
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | | | - Sarah Warren
- NanoString Technologies, Seattle, WA, United States
| | - Andy White
- NanoString Technologies, Seattle, WA, United States
| | - Alan Huang
- NanoString Technologies, Seattle, WA, United States
| | - John M Kirkwood
- University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, United States.,Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Lisa H Butterfield
- University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, United States.,Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
78
|
NK Cell-Based Immunotherapy in Cancer Metastasis. Cancers (Basel) 2018; 11:cancers11010029. [PMID: 30597841 PMCID: PMC6357056 DOI: 10.3390/cancers11010029] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/11/2018] [Accepted: 12/20/2018] [Indexed: 01/01/2023] Open
Abstract
Metastasis represents the leading cause of cancer-related death mainly owing to the limited efficacy of current anticancer therapies on advanced malignancies. Although immunotherapy is rendering promising results in the treatment of cancer, many adverse events and factors hampering therapeutic efficacy, especially in solid tumors and metastases, still need to be solved. Moreover, immunotherapeutic strategies have mainly focused on modulating the activity of T cells, while Natural Killer (NK) cells have only recently been taken into consideration. NK cells represent an attractive target for cancer immunotherapy owing to their innate capacity to eliminate malignant tumors in a non-Major Histocompatibility Complex (MHC) and non-tumor antigen-restricted manner. In this review, we analyze the mechanisms and efficacy of NK cells in the control of metastasis and we detail the immunosubversive strategies developed by metastatic cells to evade NK cell-mediated immunosurveillance. We also share current and cutting-edge clinical approaches aimed at unleashing the full anti-metastatic potential of NK cells, including the adoptive transfer of NK cells, boosting of NK cell activity, redirecting NK cell activity against metastatic cells and the release of evasion mechanisms dampening NK cell immunosurveillance.
Collapse
|
79
|
Vacca P, Munari E, Tumino N, Moretta F, Pietra G, Vitale M, Del Zotto G, Mariotti FR, Mingari MC, Moretta L. Human natural killer cells and other innate lymphoid cells in cancer: Friends or foes? Immunol Lett 2018; 201:14-19. [PMID: 30439479 DOI: 10.1016/j.imlet.2018.11.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 12/26/2022]
Abstract
Innate lymphoid cells (ILC) including NK cells (cytotoxic) and the recently identified "helper" ILC1, ILC2 and ILC3, play an important role in innate defenses against pathogens. Notably, they mirror analogous T cell subsets, regarding the pattern of cytokine produced, while the timing of their intervention is few hours vs days required for T cell-mediated adaptive responses. On the other hand, the effectiveness of ILC in anti-tumor defenses is controversial. The relevance of NK cells in the control of tumor growth and metastasis has been well documented and they have been exploited in the therapy of high risk leukemia in the haploidentical hematopoietic stem cell transplantation setting. In contrast, the actual involvement of helper ILCs remains contradictory. Thus, while certain functional capabilities of ILC1 and ILC3 may favor anti-tumor responses, other functions could rather favor tumor growth, neo-angiogenesis, epithelial-mesenchymal transition and metastasis. In addition, ILC2, by secreting type-2 cytokines, are thought to induce a prevalent pro-tumorigenic effect. Finally, the function of both NK cells and helper ILCs may be inhibited by the tumor microenvironment, thus adding further complexity to the interplay between ILC and tumors.
Collapse
Affiliation(s)
- Paola Vacca
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Enrico Munari
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy; Department of Pathology, Sacro Cuore Don Calabria, Negrar, VR, Italy
| | - Nicola Tumino
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Francesca Moretta
- Department of Laboratory Medicine, Sacro Cuore Don Calabria Hospital, 37024, Negrar, VR, Italy
| | - Gabriella Pietra
- UOC Immunologia, Ospedale Policlinico San Martino Genova, Genoa, Italy; Department of Experimental Medicine (DIMES) and Centre of Exellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Massimo Vitale
- UOC Immunologia, Ospedale Policlinico San Martino Genova, Genoa, Italy
| | - Genny Del Zotto
- Department of Research and Diagnostics, Istituto G. Gaslini, Genoa, Italy
| | | | - Maria Cristina Mingari
- UOC Immunologia, Ospedale Policlinico San Martino Genova, Genoa, Italy; Department of Experimental Medicine (DIMES) and Centre of Exellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy.
| |
Collapse
|
80
|
Castriconi R, Carrega P, Dondero A, Bellora F, Casu B, Regis S, Ferlazzo G, Bottino C. Molecular Mechanisms Directing Migration and Retention of Natural Killer Cells in Human Tissues. Front Immunol 2018; 9:2324. [PMID: 30364222 PMCID: PMC6193061 DOI: 10.3389/fimmu.2018.02324] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/18/2018] [Indexed: 12/29/2022] Open
Abstract
A large body of data shows that Natural Killer (NK) cells are immune effectors exerting a potent cytolytic activity against tumors and virus infected cells. The discovery and characterization of several inhibitory and activating receptors unveiled most of the mechanisms allowing NK cells to spare healthy cells while selectively attacking abnormal tissues. Nevertheless, the mechanisms ruling NK cell subset recirculation among the different compartments of human body have only lately started to be investigated. This is particularly true for pathological settings such as tumors or infected tissues but also for para-physiological condition like pregnant human uterine mucosa. It is becoming evident that the microenvironment associated to a particular clinical condition can deeply influence the migratory capabilities of NK cells. In this review we describe the main mechanisms and stimuli known to regulate the expression of chemokine receptors and other molecules involved in NK cell homing to either normal or pathological/inflamed tissues, including tumors or organs such as lung and liver. We will also discuss the role played by the chemokine/chemokine receptor axes in the orchestration of physiological events such as NK cell differentiation, lymphoid organ retention/egress and recruitment to decidua during pregnancy.
Collapse
Affiliation(s)
- Roberta Castriconi
- Dipartimento di Medicina Sperimentale, University of Genova, Genova, Italy.,Centro di Eccellenza per la Ricerca Biomedica, University of Genova, Genova, Italy
| | - Paolo Carrega
- Dipartimento di Patologia Umana, University of Messina, Messina, Italy
| | - Alessandra Dondero
- Dipartimento di Medicina Sperimentale, University of Genova, Genova, Italy
| | - Francesca Bellora
- Dipartimento di Medicina Sperimentale, University of Genova, Genova, Italy
| | - Beatrice Casu
- Dipartimento di Medicina Sperimentale, University of Genova, Genova, Italy
| | - Stefano Regis
- Istituto di ricovero e cura a carattere scientifico (IRCCS) Giannina Gaslini, Genova, Italy
| | - Guido Ferlazzo
- Dipartimento di Patologia Umana, University of Messina, Messina, Italy
| | - Cristina Bottino
- Dipartimento di Medicina Sperimentale, University of Genova, Genova, Italy.,Istituto di ricovero e cura a carattere scientifico (IRCCS) Giannina Gaslini, Genova, Italy
| |
Collapse
|
81
|
Susek KH, Karvouni M, Alici E, Lundqvist A. The Role of CXC Chemokine Receptors 1-4 on Immune Cells in the Tumor Microenvironment. Front Immunol 2018; 9:2159. [PMID: 30319622 PMCID: PMC6167945 DOI: 10.3389/fimmu.2018.02159] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/31/2018] [Indexed: 12/14/2022] Open
Abstract
Chemokines govern leukocyte migration by attracting cells that express their cognate ligands. Many cancer types show altered chemokine secretion profiles, favoring the recruitment of pro-tumorigenic immune cells and preventing the accumulation of anti-tumorigenic effector cells. This can ultimately result in cancer immune evasion. The manipulation of chemokine and chemokine-receptor signaling can reshape the immunological phenotypes within the tumor microenvironment in order to increase the therapeutic efficacy of cancer immunotherapy. Here we discuss the three chemokine-chemokine receptor axes, CXCR1/2–CXCL1-3/5-8, CXCR3–CXCL9/10/11, and CXCR4-CXCL12 and their role on pro-tumorigenic immune cells and anti-tumorigenic effector cells in solid tumors. In particular, we summarize current strategies to target these axes and discuss their potential use in treatment approaches.
Collapse
Affiliation(s)
| | - Maria Karvouni
- Department of Medicine, Karolinska Institutet (KI), Solna, Sweden
| | - Evren Alici
- Department of Medicine, Karolinska Institutet (KI), Solna, Sweden.,Cell Therapy Institute, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Andreas Lundqvist
- Cell Therapy Institute, Nova Southeastern University, Fort Lauderdale, FL, United States.,Department of Oncology-Pathology, Karolinska Institutet (KI), Solna, Sweden
| |
Collapse
|
82
|
Sadozai H, Gruber T, Hunger RE, Schenk M. Recent Successes and Future Directions in Immunotherapy of Cutaneous Melanoma. Front Immunol 2017; 8:1617. [PMID: 29276510 PMCID: PMC5727014 DOI: 10.3389/fimmu.2017.01617] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 11/08/2017] [Indexed: 12/14/2022] Open
Abstract
The global health burden associated with melanoma continues to increase while treatment options for metastatic melanoma are limited. Nevertheless, in the past decade, the field of cancer immunotherapy has witnessed remarkable advances for the treatment of a number of malignancies including metastatic melanoma. Although the earliest observations of an immunological antitumor response were made nearly a century ago, it was only in the past 30 years, that immunotherapy emerged as a viable therapeutic option, in particular for cutaneous melanoma. As such, melanoma remains the focus of various preclinical and clinical studies to understand the immunobiology of cancer and to test various tumor immunotherapies. Here, we review key recent developments in the field of immune-mediated therapy of melanoma. Our primary focus is on therapies that have received regulatory approval. Thus, a brief overview of the pathophysiology of melanoma is provided. The purported functions of various tumor-infiltrating immune cell subsets are described, in particular the recently described roles of intratumoral dendritic cells. The section on immunotherapies focuses on strategies that have proved to be the most clinically successful such as immune checkpoint blockade. Prospects for novel therapeutics and the potential for combinatorial approaches are delineated. Finally, we briefly discuss nanotechnology-based platforms which can in theory, activate multiple arms of immune system to fight cancer. The promising advances in the field of immunotherapy signal the dawn of a new era in cancer treatment and warrant further investigation to understand the opportunities and barriers for future progress.
Collapse
Affiliation(s)
- Hassan Sadozai
- Institute of Pathology, Experimental Pathology, University of Bern, Bern, Switzerland
| | - Thomas Gruber
- Institute of Pathology, Experimental Pathology, University of Bern, Bern, Switzerland
| | | | - Mirjam Schenk
- Institute of Pathology, Experimental Pathology, University of Bern, Bern, Switzerland
| |
Collapse
|
83
|
López-Cobo S, Pieper N, Campos-Silva C, García-Cuesta EM, Reyburn HT, Paschen A, Valés-Gómez M. Impaired NK cell recognition of vemurafenib-treated melanoma cells is overcome by simultaneous application of histone deacetylase inhibitors. Oncoimmunology 2017; 7:e1392426. [PMID: 29308322 DOI: 10.1080/2162402x.2017.1392426] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/09/2017] [Accepted: 10/11/2017] [Indexed: 10/18/2022] Open
Abstract
Therapy of metastatic melanoma advanced recently with the clinical implementation of signalling pathway inhibitors, such as vemurafenib, specifically targeting mutant BRAFV600E. In general, patients experience remarkable clinical responses under BRAF inhibitor (BRAFi) treatment but eventually progress within 6-8 months due to resistance development. Responding metastases show an increased immune cell infiltrate, including also NK cells, that, however, is no longer detectable in BRAFi-resistant lesions, suggesting NK cell activity should be exploited to prevent disease progression. Here, we examined the effects of BRAFi on the expression of ligands targeting activating NK cells receptors immediately after treatment onset, prior to resistance development. We demonstrate that BRAFV600E mutant melanoma cells cultured in the presence of vemurafenib, strongly decreased surface expression of ligands for NK activating receptors including the NKG2D-ligand, MICA, and the DNAM-1 ligand, CD155, and became significantly less susceptible to NK cell attack. NKG2D-ligand protein downregulation was due to a significant decrease in mRNA levels, already detectable 24 h after drug treatment. Interestingly, vemurafenib-induced MICA downregulation could be counteracted by treatment of melanoma cells with the histone deacetylase (HDAC) inhibitor (HDACi) sodium butyrate, that also upregulated the DNAM1-ligand, Nectin-2. HDACi treatment enhanced surface expression of NKG2D-ligands in the presence of BRAFi, accompanied by recovery of NK cell recognition, but only upon simultaneous drug application. These results suggest that co-administration of BRAFi and HDAC inhibitors as well as having direct effects on melanoma cell survival, could also synergise to improve NK cell recognition and avoid tumour immune evasion.
Collapse
Affiliation(s)
- Sheila López-Cobo
- Department of Immunology and Oncology, National Centre for Biotechnology, CNB-CSIC, Madrid, Spain
| | - Natalia Pieper
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, and German Cancer Consortium (DKTK) partner site Essen/Düsseldorf, Essen; Germany
| | - Carmen Campos-Silva
- Department of Immunology and Oncology, National Centre for Biotechnology, CNB-CSIC, Madrid, Spain
| | - Eva M García-Cuesta
- Department of Immunology and Oncology, National Centre for Biotechnology, CNB-CSIC, Madrid, Spain
| | - Hugh T Reyburn
- Department of Immunology and Oncology, National Centre for Biotechnology, CNB-CSIC, Madrid, Spain
| | - Annette Paschen
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, and German Cancer Consortium (DKTK) partner site Essen/Düsseldorf, Essen; Germany
| | - Mar Valés-Gómez
- Department of Immunology and Oncology, National Centre for Biotechnology, CNB-CSIC, Madrid, Spain
| |
Collapse
|
84
|
Ciaglia E, Laezza C, Abate M, Pisanti S, Ranieri R, D'alessandro A, Picardi P, Gazzerro P, Bifulco M. Recognition by natural killer cells of N6-isopentenyladenosine-treated human glioma cell lines. Int J Cancer 2017; 142:176-190. [PMID: 28884474 DOI: 10.1002/ijc.31036] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 08/09/2017] [Accepted: 08/28/2017] [Indexed: 12/28/2022]
Abstract
Cancer cell stress induced by cytotoxic agents promotes antitumor immune response. Here, we observed that N6-isopentenyladenosine (iPA), an isoprenoid modified adenosine with a well established anticancer activity, was able to induce a significant upregulation of cell surface expression of natural killer (NK) cell activating receptor NK Group 2 member D (NKG2D) ligands on glioma cells in vitro and xenografted in vivo. Specifically suboptimal doses of iPA (0.1 and 1 µM) control the selective upregulation of UL16-binding protein 2 on p53wt-expressing U343MG and that of MICA/B on p53mut-expressing U251MG cells. This event made the glioblastoma cells a potent target for NK cell-mediated recognition through a NKG2D restricted mechanism. p53 siRNA-mediated knock-down and pharmacological inhibition (pifithrin-α), profoundly prevented the iPA action in restoring the immunogenicity of U343MG cells through a mechanism that is dependent upon p53 status of malignancy. Furthermore, accordingly to the preferential recognition of senescent cells by NK cells, we found that iPA treatment was critical for glioma cells entry in premature senescence through the induction of S and G2/M phase arrest. Collectively, our results indicate that behind the well established cytotoxic and antiangiogenic effects, iPA can also display an immune-mediated antitumor activity. The indirect engagement of the innate immune system and its additional activity in primary derived patient's glioma cell model (GBM17 and GBM37), fully increase its translational relevance and led to the exploitation of the isoprenoid pathway for a valid therapeutic intervention in antiglioma research.
Collapse
Affiliation(s)
- Elena Ciaglia
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via Salvatore Allende, Baronissi Salerno, Italy
| | - Chiara Laezza
- Institute of Endocrinology and Experimental Oncology, IEOS CNR, Via Pansini 5, Naples, Italy.,Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Via Pansini, Naples, Italy
| | - Mario Abate
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via Salvatore Allende, Baronissi Salerno, Italy
| | - Simona Pisanti
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via Salvatore Allende, Baronissi Salerno, Italy
| | - Roberta Ranieri
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via Salvatore Allende, Baronissi Salerno, Italy
| | - Alba D'alessandro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano Salerno, Italy
| | - Paola Picardi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano Salerno, Italy.,Axxam Spa OpenZone - via A. Meucci, Bresso, Milano, Italy
| | - Patrizia Gazzerro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano Salerno, Italy
| | - Maurizio Bifulco
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via Salvatore Allende, Baronissi Salerno, Italy.,Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Via Pansini, Naples, Italy
| |
Collapse
|
85
|
Malmberg KJ, Carlsten M, Björklund A, Sohlberg E, Bryceson YT, Ljunggren HG. Natural killer cell-mediated immunosurveillance of human cancer. Semin Immunol 2017; 31:20-29. [PMID: 28888619 DOI: 10.1016/j.smim.2017.08.002] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/03/2017] [Indexed: 12/19/2022]
Abstract
The contribution of natural killer (NK) cells to immunosurveillance of human cancer remains debatable. Here, we discuss advances in several areas of human NK cell research, many of which support the ability of NK cells to prevent cancer development and avoid relapse following adoptive immunotherapy. We describe the molecular basis for NK cell recognition of human tumor cells and provide evidence for NK cell-mediated killing of human primary tumor cells ex vivo. Subsequently, we highlight studies demonstrating the ability of NK cells to migrate to, and reside in, the human tumor microenvironment where selection of tumor escape variants from NK cells can occur. Indirect evidence for NK cell immunosurveillance against human malignancies is provided by the reduced incidence of cancer in individuals with high levels of NK cell cytotoxicity, and the significant clinical responses observed following infusion of human NK cells into cancer patients. Finally, we describe studies showing enhanced tumor progression, or increased cancer incidence, in patients with inherited and acquired defects in cellular cytotoxicity. All these observations have in common that they, either indirectly or directly, suggest a role for NK cells in mediating immunosurveillance against human cancer. This opens up for exciting possibilities with respect to further exploring NK cells in settings of adoptive immunotherapy in human cancer.
Collapse
Affiliation(s)
- Karl-Johan Malmberg
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; The KG Jebsen Centre for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Mattias Carlsten
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Andreas Björklund
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ebba Sohlberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Yenan T Bryceson
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Cell Therapy Institute, Nova Southeastern University, Ft Lauderdale, FL, USA.
| |
Collapse
|
86
|
López-Soto A, Gonzalez S, Smyth MJ, Galluzzi L. Control of Metastasis by NK Cells. Cancer Cell 2017; 32:135-154. [PMID: 28810142 DOI: 10.1016/j.ccell.2017.06.009] [Citation(s) in RCA: 516] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/21/2017] [Accepted: 06/22/2017] [Indexed: 12/24/2022]
Abstract
The metastatic spread of malignant cells to distant anatomical locations is a prominent cause of cancer-related death. Metastasis is governed by cancer-cell-intrinsic mechanisms that enable neoplastic cells to invade the local microenvironment, reach the circulation, and colonize distant sites, including the so-called epithelial-to-mesenchymal transition. Moreover, metastasis is regulated by microenvironmental and systemic processes, such as immunosurveillance. Here, we outline the cancer-cell-intrinsic and -extrinsic factors that regulate metastasis, discuss the key role of natural killer (NK) cells in the control of metastatic dissemination, and present potential therapeutic approaches to prevent or target metastatic disease by harnessing NK cells.
Collapse
Affiliation(s)
- Alejandro López-Soto
- Departamento de Biología Funcional, Área de Inmunología, Universidad de Oviedo, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Asturias, Spain.
| | - Segundo Gonzalez
- Departamento de Biología Funcional, Área de Inmunología, Universidad de Oviedo, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Asturias, Spain
| | - Mark J Smyth
- Immunology of Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY 10065, USA; Sandra and Edward Meyer Cancer Center, New York, NY 10065, USA; Université Paris Descartes/Paris V, 75006 Paris, France.
| |
Collapse
|
87
|
Björkström NK, Ljunggren HG, Michaëlsson J. Emerging insights into natural killer cells in human peripheral tissues. Nat Rev Immunol 2017; 16:310-20. [PMID: 27121652 DOI: 10.1038/nri.2016.34] [Citation(s) in RCA: 311] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Natural killer (NK) cells have long been considered to be a homogenous population of innate lymphocytes with limited phenotypic and functional diversity. However, recent findings have revealed that these cells comprise a large number of distinct populations with diverse characteristics. Some of these characteristics may relate to their developmental origin, and others represent differences in differentiation that are influenced by factors such as tissue localization and imprints by viral infections. In this Review, we provide a comprehensive overview of the emerging knowledge about the development, differentiation and function of human NK cell populations, with a particular focus on NK cells in peripheral tissues.
Collapse
Affiliation(s)
- Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 141 86 Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 141 86 Stockholm, Sweden
| | - Jakob Michaëlsson
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 141 86 Stockholm, Sweden
| |
Collapse
|
88
|
Del Prete A, Schioppa T, Tiberio L, Stabile H, Sozzani S. Leukocyte trafficking in tumor microenvironment. Curr Opin Pharmacol 2017; 35:40-47. [PMID: 28577499 DOI: 10.1016/j.coph.2017.05.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/05/2017] [Accepted: 05/15/2017] [Indexed: 12/14/2022]
Abstract
The tumor microenvironment consists of both malignant and non-malignant cells and a plethora of soluble mediators. Different types of tumors have specific tumor microenvironments characterized by distinct chemokines and chemotactic factors that influence leukocyte recruitment. The immune cell infiltrate continuously interacts with stroma cells and influence tumor growth. Emerging evidence suggests that the regulation of the composition and the metabolic state of tumor-associated leukocytes may represent a new promising intervention strategy. Here we summarize the current knowledge on the role of tumor-associated immune cells in tumor growth and dissemination, with a specific focus on the nature of the chemotactic factors responsible for their accumulation and activation in tumors.
Collapse
Affiliation(s)
- Annalisa Del Prete
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; IRCCS-Humanitas Clinical and Research Center, Rozzano-Milan, Italy
| | - Tiziana Schioppa
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Laura Tiberio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Helena Stabile
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" University of Rome, Italy
| | - Silvano Sozzani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; IRCCS-Humanitas Clinical and Research Center, Rozzano-Milan, Italy.
| |
Collapse
|
89
|
Pesce S, Thoren FB, Cantoni C, Prato C, Moretta L, Moretta A, Marcenaro E. The Innate Immune Cross Talk between NK Cells and Eosinophils Is Regulated by the Interaction of Natural Cytotoxicity Receptors with Eosinophil Surface Ligands. Front Immunol 2017; 8:510. [PMID: 28503177 PMCID: PMC5408020 DOI: 10.3389/fimmu.2017.00510] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/13/2017] [Indexed: 01/21/2023] Open
Abstract
Previous studies suggested that the cross talk between NK cells and other cell types is crucial for the regulation of both innate and adaptive immune responses. In the present study, we analyzed the phenotypic and functional outcome of the interaction between resting or cytokine-activated NK cells and eosinophils derived from non-atopic donors. Our results provide the first evidence that a natural cytotoxicity receptor (NCR)/NCR ligand-dependent cross talk between NK cells and eosinophils may be important to upregulate the activation state and the effector function of cytokine-primed NK cells. This interaction also promotes the NK-mediated editing process of dendritic cells that influence the process of Th1 polarization. In turn, this cross talk also resulted in eosinophil activation and acquisition of the characteristic features of antigen-presenting cells. At higher NK/eosinophil ratios, cytokine-primed NK cells were found to kill eosinophils via NKp46 and NKp30, thus suggesting a potential immunoregulatory role for NK cells in dampening inflammatory responses involving eosinophils.
Collapse
Affiliation(s)
- Silvia Pesce
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italy
| | - Fredrik B Thoren
- Sahlgrenska Cancer Center, University of Gothenburg, Göteborg, Sweden
| | - Claudia Cantoni
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italy.,Istituto Giannina Gaslini, Genova, Italy.,Centro di Eccellenza per le Ricerche Biomediche, Università degli Studi di Genova, Genova, Italy
| | - Carola Prato
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italy
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Alessandro Moretta
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italy.,Centro di Eccellenza per le Ricerche Biomediche, Università degli Studi di Genova, Genova, Italy.,Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Emanuela Marcenaro
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italy.,Centro di Eccellenza per le Ricerche Biomediche, Università degli Studi di Genova, Genova, Italy
| |
Collapse
|
90
|
Stabile H, Fionda C, Gismondi A, Santoni A. Role of Distinct Natural Killer Cell Subsets in Anticancer Response. Front Immunol 2017; 8:293. [PMID: 28360915 PMCID: PMC5352654 DOI: 10.3389/fimmu.2017.00293] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/28/2017] [Indexed: 12/13/2022] Open
Abstract
Natural killer (NK) cells, the prototypic member of innate lymphoid cells, are important effectors of anticancer immune response. These cells can survey and control tumor initiation due to their capability to recognize and kill malignant cells and to regulate the adaptive immune response via cytokines and chemokines release. However, several studies have shown that tumor-infiltrating NK cells associated with advanced disease can have profound functional defects and display protumor activity. This evidence indicates that NK cell behavior undergoes crucial alterations during cancer progression. Moreover, a further level of complexity is due to the extensive heterogeneity and plasticity of these lymphocytes, implying that different NK cell subsets, endowed with specific phenotypic and functional features, may be involved and play distinct roles in the tumor context. Accordingly, many studies reported the enrichment of selective NK cell subsets within tumor tissue, whereas the underlying mechanisms are not fully elucidated. A malignant microenvironment can significantly impact NK cell activity, by recruiting specific subpopulations and/or influencing their developmental programming or the acquisition of a mature phenotype; in particular, neoplastic, stroma and immune cells, or tumor-derived factors take part in these processes. In this review, we will summarize and discuss the recently acquired knowledge on the possible contribution of distinct NK cell subsets in the control and/or progression of solid and hematological malignancies. Moreover, we will address emerging evidence regarding the role of different components of tumor microenvironment on shaping NK cell response.
Collapse
Affiliation(s)
- Helena Stabile
- Department of Molecular Medicine, Sapienza University of Rome , Rome , Italy
| | - Cinzia Fionda
- Department of Molecular Medicine, Sapienza University of Rome , Rome , Italy
| | - Angela Gismondi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy; Italian Institute of Technology, Sapienza University of Rome, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy; Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
91
|
Jacquelot N, Pitt JM, Enot DP, Roberti MP, Duong CPM, Rusakiewicz S, Eggermont AM, Zitvogel L. Immune biomarkers for prognosis and prediction of responses to immune checkpoint blockade in cutaneous melanoma. Oncoimmunology 2017; 6:e1299303. [PMID: 28919986 DOI: 10.1080/2162402x.2017.1299303] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 02/19/2017] [Indexed: 01/05/2023] Open
Abstract
Existing clinical, anatomopathological and molecular biomarkers fail to reliably predict the prognosis of cutaneous melanoma. Biomarkers for determining which patients receive adjuvant therapies are needed. The emergence of new technologies and the discovery of new immune populations with different prognostic values allow the immune network in the tumor to be better understood. Importantly, new molecules identified and expressed by immune cells have been shown to reduce the antitumor immune efficacy of therapies, prompting researchers to develop antibodies targeting these so-called "immune checkpoints", which have now entered the oncotherapeutic armamentarium.
Collapse
Affiliation(s)
- Nicolas Jacquelot
- Gustave Roussy, Université Paris-Saclay, INSERM U1015, Villejuif, F-94805, France
| | - Jonathan M Pitt
- Gustave Roussy, Université Paris-Saclay, INSERM U1015, Villejuif, F-94805, France
| | - David P Enot
- Gustave Roussy, Université Paris-saclay, Metabolomics and Cell Biology Platforms, Villejuif, F-94805, France
| | - Maria Paula Roberti
- Gustave Roussy, Université Paris-Saclay, INSERM U1015, Villejuif, F-94805, France
| | - Connie P M Duong
- Gustave Roussy, Université Paris-Saclay, INSERM U1015, Villejuif, F-94805, France
| | - Sylvie Rusakiewicz
- Gustave Roussy, Université Paris-Saclay, INSERM U1015, Villejuif, F-94805, France.,Gustave Roussy, Université Paris-saclay, CIC Biothérapie IGR Curie CIC 1428, Villejuif, F-94805, France
| | | | - Laurence Zitvogel
- Gustave Roussy, Université Paris-Saclay, INSERM U1015, Villejuif, F-94805, France.,Gustave Roussy, Université Paris-saclay, CIC Biothérapie IGR Curie CIC 1428, Villejuif, F-94805, France
| |
Collapse
|
92
|
Pisanti S, Malfitano AM, Ciaglia E, Lamberti A, Ranieri R, Cuomo G, Abate M, Faggiana G, Proto MC, Fiore D, Laezza C, Bifulco M. Cannabidiol: State of the art and new challenges for therapeutic applications. Pharmacol Ther 2017; 175:133-150. [PMID: 28232276 DOI: 10.1016/j.pharmthera.2017.02.041] [Citation(s) in RCA: 359] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Over the past years, several lines of evidence support a therapeutic potential of Cannabis derivatives and in particular phytocannabinoids. Δ9-THC and cannabidiol (CBD) are the most abundant phytocannabinoids in Cannabis plants and therapeutic application for both compounds have been suggested. However, CBD is recently emerging as a therapeutic agent in numerous pathological conditions since devoid of the psychoactive side effects exhibited instead by Δ9-THC. In this review, we highlight the pharmacological activities of CBD, its cannabinoid receptor-dependent and -independent action, its biological effects focusing on immunomodulation, angiogenetic properties, and modulation of neuronal and cardiovascular function. Furthermore, the therapeutic potential of cannabidiol is also highlighted, in particular in nuerological diseases and cancer.
Collapse
Affiliation(s)
- Simona Pisanti
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy.
| | - Anna Maria Malfitano
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy
| | - Elena Ciaglia
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy
| | - Anna Lamberti
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy
| | - Roberta Ranieri
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy
| | - Gaia Cuomo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy
| | - Mario Abate
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy
| | - Giorgio Faggiana
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy
| | | | | | | | - Maurizio Bifulco
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy; Corporea, Fondazione Idis-Città della Scienza, Naples, Italy.
| |
Collapse
|
93
|
Tietze JK, Angelova D, Heppt MV, Ruzicka T, Berking C. Low baseline levels of NK cells may predict a positive response to ipilimumab in melanoma therapy. Exp Dermatol 2017; 26:622-629. [DOI: 10.1111/exd.13263] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Julia K. Tietze
- Department of Dermatology and Allergy; Munich University Hospital (LMU); Munich Germany
| | - Daniela Angelova
- Department of Dermatology and Allergy; Munich University Hospital (LMU); Munich Germany
| | - Markus V. Heppt
- Department of Dermatology and Allergy; Munich University Hospital (LMU); Munich Germany
| | - Thomas Ruzicka
- Department of Dermatology and Allergy; Munich University Hospital (LMU); Munich Germany
| | - Carola Berking
- Department of Dermatology and Allergy; Munich University Hospital (LMU); Munich Germany
| |
Collapse
|
94
|
Melief SM, Visconti VV, Visser M, van Diepen M, Kapiteijn EHW, van den Berg JH, Haanen JBAG, Smit VTHBM, Oosting J, van der Burg SH, Verdegaal EME. Long-term Survival and Clinical Benefit from Adoptive T-cell Transfer in Stage IV Melanoma Patients Is Determined by a Four-Parameter Tumor Immune Signature. Cancer Immunol Res 2017; 5:170-179. [PMID: 28073773 DOI: 10.1158/2326-6066.cir-16-0288] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/09/2016] [Accepted: 12/11/2016] [Indexed: 11/16/2022]
Abstract
The presence of tumor-infiltrating immune cells is associated with longer survival and a better response to immunotherapy in early-stage melanoma, but a comprehensive study of the in situ immune microenvironment in stage IV melanoma has not been performed. We investigated the combined influence of a series of immune factors on survival and response to adoptive cell transfer (ACT) in stage IV melanoma patients. Metastases of 73 stage IV melanoma patients, 17 of which were treated with ACT, were studied with respect to the number and functional phenotype of lymphocytes and myeloid cells as well as for expression of galectins-1, -3, and -9. Single factors associated with better survival were identified using Kaplan-Meier curves and multivariate Cox regression analyses, and those factors were used for interaction analyses. The results were validated using The Cancer Genome Atlas database. We identified four parameters that were associated with a better survival: CD8+ T cells, galectin-9+ dendritic cells (DC)/DC-like macrophages, a high M1/M2 macrophage ratio, and the expression of galectin-3 by tumor cells. The presence of at least three of these parameters formed an independent positive prognostic factor for long-term survival. Patients displaying this four-parameter signature were found exclusively among patients responding to ACT and were the ones with sustained clinical benefit. Cancer Immunol Res; 5(2); 170-9. ©2017 AACR.
Collapse
Affiliation(s)
- Sara M Melief
- Department of Clinical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Valeria V Visconti
- Department of Clinical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Marten Visser
- Department of Clinical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Merel van Diepen
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ellen H W Kapiteijn
- Department of Clinical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Joost H van den Berg
- Division of Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - John B A G Haanen
- Division of Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Vincent T H B M Smit
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jan Oosting
- Bioinformatics Center of Expertise, Leiden University Medical Center, Leiden, the Netherlands
| | - Sjoerd H van der Burg
- Department of Clinical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Els M E Verdegaal
- Department of Clinical Oncology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
95
|
Cristiani CM, Palella E, Sottile R, Tallerico R, Garofalo C, Carbone E. Human NK Cell Subsets in Pregnancy and Disease: Toward a New Biological Complexity. Front Immunol 2016; 7:656. [PMID: 28082990 PMCID: PMC5187385 DOI: 10.3389/fimmu.2016.00656] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 12/15/2016] [Indexed: 01/09/2023] Open
Abstract
In humans, NK cells are mainly identified by the surface expression levels of CD56 and CD16, which differentiate between five functionally different NK cell subsets. However, nowadays NK cells are considered as a more heterogeneous population formed by various subsets differing in function, surface phenotype, and anatomic localization. In human CMV- and hantaviruses-infected subjects, an increased frequency of a NKG2A-CD57+NKG2C+ NK cell subset has been observed, while the phenotype of the NK cell subpopulation associated with cancer may vary according to the specific kind of tumor and its anatomical location. The healthy human lymph nodes contain mainly the CD56bright NK cell subset while in melanoma metastatic lymph nodes the CD56dimCD57+KIR+CCR7+ NK cell subpopulation prevails. The five NK cell subpopulations are found in breast cancer patients, where they differ for expression pattern of chemokine receptors, maturation stage, functional capabilities. In pregnancy, uterine NK cells show a prevalence of the CD56brightCD16- NK cell compartment, whose activity is influenced by KIRs repertoire. This NK cell subset's super specialization could be explained by (i) the expansion of single mature CD56dim clones, (ii) the recruitment and maturation of CD56bright NK cells through specific stimuli, and (iii) the in situ development of tumor-resident NK cells from tissue-resident CD56bright NK cells independently of the circulating NK cell compartment. This new and unexpected biological feature of the NK cell compartment could be an important source of new biomarkers to improve patients' diagnosis.
Collapse
Affiliation(s)
- Costanza Maria Cristiani
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro , Catanzaro , Italy
| | - Eleonora Palella
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro , Catanzaro , Italy
| | - Rosa Sottile
- Department of Microbiology, Cell and Tumor Biology, Karolinska Institutet , Stockholm , Sweden
| | - Rossana Tallerico
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro , Catanzaro , Italy
| | - Cinzia Garofalo
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro , Catanzaro , Italy
| | - Ennio Carbone
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy; Department of Microbiology, Cell and Tumor Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
96
|
Tallerico R, Cristiani CM, Staaf E, Garofalo C, Sottile R, Capone M, Pico de Coaña Y, Madonna G, Palella E, Wolodarski M, Carannante V, Mallardo D, Simeone E, Grimaldi AM, Johansson S, Frumento P, Gulletta E, Anichini A, Colucci F, Ciliberto G, Kiessling R, Kärre K, Ascierto PA, Carbone E. IL-15, TIM-3 and NK cells subsets predict responsiveness to anti-CTLA-4 treatment in melanoma patients. Oncoimmunology 2016; 6:e1261242. [PMID: 28344869 DOI: 10.1080/2162402x.2016.1261242] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/09/2016] [Accepted: 11/09/2016] [Indexed: 12/31/2022] Open
Abstract
Despite the success of immune checkpoint blockade in melanoma, the majority of patients do not respond. We hypothesized that the T and NK cell subset frequencies and expression levels of their receptors may predict responses and clinical outcome of anti-CTLA-4 treatment. We thus characterized the NK and T cell phenotype, as well as serum levels of several cytokines in 67 melanoma patients recruited in Italy and Sweden, using samples drawn prior to and during treatment. Survival correlated with low expression of the inhibitory receptor TIM-3 on circulating T and NK cells prior to and during treatment and with the increased frequency of mature circulating NK cells (defined as CD3-CD56dim CD16+) during treatment. Survival also correlated with low levels of IL-15 in the serum. Functional experiments in vitro demonstrated that sustained exposure to IL-15 enhanced the expression of PD-1 and TIM-3 on both T and NK cells, indicating a causative link between high IL-15 levels and enhanced expression of TIM-3 on these cells. Receptor blockade of TIM-3 improved NK cell-mediated elimination of melanoma metastasis cell lines in vitro. These observations may lead to the development of novel biomarkers to predict patient response to checkpoint blockade treatment. They also suggest that induction of additional checkpoints is a possibility that needs to be considered when treating melanoma patients with IL-15.
Collapse
Affiliation(s)
- Rossana Tallerico
- Tumor Immunology and Immunopathology Laboratory, Department of Experimental and Clinical Medicine, University "Magna Græcia" of Catanzaro, Campus - Germaneto , Catanzaro, Italy
| | - Costanza M Cristiani
- Tumor Immunology and Immunopathology Laboratory, Department of Experimental and Clinical Medicine, University "Magna Græcia" of Catanzaro, Campus - Germaneto , Catanzaro, Italy
| | - Elina Staaf
- Department of Microbiology, Cell and Tumorbiology (MTC), Karolinska Institutet , Stockholm, Sweden
| | - Cinzia Garofalo
- Tumor Immunology and Immunopathology Laboratory, Department of Experimental and Clinical Medicine, University "Magna Græcia" of Catanzaro, Campus - Germaneto , Catanzaro, Italy
| | - Rosa Sottile
- Tumor Immunology and Immunopathology Laboratory, Department of Experimental and Clinical Medicine, University "Magna Græcia" of Catanzaro, Campus - Germaneto, Catanzaro, Italy; Department of Microbiology, Cell and Tumorbiology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Mariaelena Capone
- Melanoma Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori Fondazione "G. Pascale ," Napoli, Italy
| | - Yago Pico de Coaña
- Department of Oncology and Pathology, Karolinska Institutet , Stockholm, Sweden
| | - Gabriele Madonna
- Melanoma Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori Fondazione "G. Pascale ," Napoli, Italy
| | - Eleonora Palella
- Tumor Immunology and Immunopathology Laboratory, Department of Experimental and Clinical Medicine, University "Magna Græcia" of Catanzaro, Campus - Germaneto , Catanzaro, Italy
| | - Maria Wolodarski
- Department of Oncology and Pathology, Karolinska Institutet , Stockholm, Sweden
| | - Valentina Carannante
- Department of Microbiology, Cell and Tumorbiology (MTC), Karolinska Institutet , Stockholm, Sweden
| | - Domenico Mallardo
- Melanoma Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori Fondazione "G. Pascale ," Napoli, Italy
| | - Ester Simeone
- Melanoma Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori Fondazione "G. Pascale ," Napoli, Italy
| | - Antonio M Grimaldi
- Melanoma Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori Fondazione "G. Pascale ," Napoli, Italy
| | - Sofia Johansson
- Department of Microbiology, Cell and Tumorbiology (MTC), Karolinska Institutet , Stockholm, Sweden
| | - Paolo Frumento
- Karolinska Institutet Statistical Core Facility, Karolinska Institutet , Stockholm, Sweden
| | - Elio Gulletta
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus - Germaneto , Catanzaro, Italy
| | - Andrea Anichini
- Fondazione IRCCS Istituto Nazionale dei Tumori, Department of Experimental Oncology and Molecular Medicine , Milan, Italy
| | - Francesco Colucci
- Department of Obstetrics and Gynecology, University of Cambridge Clinical School , Cambridge, UK
| | - Gennaro Ciliberto
- Scientific Directorate, IRCCS Istituto Nazionale Tumori Fondazione "G. Pascale ," Napoli, Italy
| | - Rolf Kiessling
- Department of Oncology and Pathology, Karolinska Institutet , Stockholm, Sweden
| | - Klas Kärre
- Department of Microbiology, Cell and Tumorbiology (MTC), Karolinska Institutet , Stockholm, Sweden
| | - Paolo A Ascierto
- Melanoma Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori Fondazione "G. Pascale ," Napoli, Italy
| | - Ennio Carbone
- Tumor Immunology and Immunopathology Laboratory, Department of Experimental and Clinical Medicine, University "Magna Græcia" of Catanzaro, Campus - Germaneto, Catanzaro, Italy; Department of Microbiology, Cell and Tumorbiology (MTC), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
97
|
Kandilarova SM, Paschen A, Mihaylova A, Ivanova M, Schadendorf D, Naumova E. The Influence of HLA and KIR Genes on Malignant Melanoma Development and Progression. Arch Immunol Ther Exp (Warsz) 2016; 64:73-81. [PMID: 28083606 DOI: 10.1007/s00005-016-0437-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/25/2016] [Indexed: 11/25/2022]
Abstract
Many studies have described the role of killer immunoglobulin-like receptors (KIRs) and their cognate human leukocyte antigen (HLA) class I ligands in the immune protection against melanoma, but the effect of these markers on intra-individual variations in tumor development and progression has remained less clear. We performed KIR, HLA, and KIR/ligand analysis in 283 patients with malignant melanoma in order to evaluate their integrated influence on disease stage and progression. The patients were grouped according to AJCC staging, histological type of the primary tumor, progression, and survival rate. Analysis of HLA class I alleles revealed positive association of HLA-C*14 (Pc = 0.026, OR = 5.99) and negative association of HLA-C*02 (Pc = 0.026, OR = 0.43) with the disease. Decreased frequency of KIR2DS5 was observed in patients with rapid progression, as compared to those with slow progression. KIR BB genotype was prevalent in patients with metastasis (p = 0.004, OR = 0.025). KIR AA genotype was nearly twice as frequent in rapidly progressive cases, but without statistical relevance (p = 0.055, OR = 2.6). Significantly increased frequency of KIR2DL2 in the presence of C1 ligand (strong inhibition) was found in patients with AJCC III and IV, as compared to individuals with AJCC I stage (p = 0.045, OR = 1.93). In summary, our data imply that KIR/ligand gene content in patients could modulate the disease course towards unfavorable tumor behavior.
Collapse
Affiliation(s)
- Snezhina Mihailova Kandilarova
- Department of Clinical Immunology with Stem Cell Bank, Alexandrovska University Hospital, Medical University, 1431, Sofia, Bulgaria.
| | - Annette Paschen
- Department of Dermatology, University Hospital Essen, Essen, Germany
| | - Anastassia Mihaylova
- Department of Clinical Immunology with Stem Cell Bank, Alexandrovska University Hospital, Medical University, 1431, Sofia, Bulgaria
| | - Milena Ivanova
- Department of Clinical Immunology with Stem Cell Bank, Alexandrovska University Hospital, Medical University, 1431, Sofia, Bulgaria
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, Essen, Germany
| | - Elissaveta Naumova
- Department of Clinical Immunology with Stem Cell Bank, Alexandrovska University Hospital, Medical University, 1431, Sofia, Bulgaria
| |
Collapse
|
98
|
Pesce S, Moretta L, Moretta A, Marcenaro E. Human NK Cell Subsets Redistribution in Pathological Conditions: A Role for CCR7 Receptor. Front Immunol 2016; 7:414. [PMID: 27774094 PMCID: PMC5053980 DOI: 10.3389/fimmu.2016.00414] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/23/2016] [Indexed: 12/13/2022] Open
Abstract
Innate and adaptive immunity has evolved complex molecular mechanisms regulating immune cell migration to facilitate the dynamic cellular interactions required for its function involving the chemokines and their receptors. One important chemokine receptor in the immune system is represented by CCR7. Together with its ligands CCL19 and CCL21, this chemokine receptor controls different arrays of migratory events, both in innate and adaptive immunity, including homing of CD56bright NK cells, T cells, and DCs to lymphoid compartments, where T cell priming occurs. Only recently, a key role for CCR7 in promoting CD56dim NK cell migration toward lymphoid tissues has been described. Remarkably, this event can influence the shaping and polarization of adaptive T cell responses. In this review, we describe recent progress in understanding the mechanisms and the site where CD56dim KIR+ NK cells can acquire the capability to migrate toward lymph nodes. The emerging significance of this event in clinical transplantation is also discussed.
Collapse
Affiliation(s)
- Silvia Pesce
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova , Genova , Italy
| | - Lorenzo Moretta
- Dipartimento di Immunologia, IRCCS Bambino Gesù Ospedale Pediatrico , Rome , Italy
| | - Alessandro Moretta
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italy; CEBR, Università degli Studi di Genova, Genova, Italy
| | - Emanuela Marcenaro
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italy; CEBR, Università degli Studi di Genova, Genova, Italy
| |
Collapse
|
99
|
Michel T, Poli A, Cuapio A, Briquemont B, Iserentant G, Ollert M, Zimmer J. Human CD56bright NK Cells: An Update. THE JOURNAL OF IMMUNOLOGY 2016; 196:2923-31. [PMID: 26994304 DOI: 10.4049/jimmunol.1502570] [Citation(s) in RCA: 276] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Human NK cells can be subdivided into various subsets based on the relative expression of CD16 and CD56. In particular, CD56(bright)CD16(-/dim) NK cells are the focus of interest. They are considered efficient cytokine producers endowed with immunoregulatory properties, but they can also become cytotoxic upon appropriate activation. These cells were shown to play a role in different disease states, such as cancer, autoimmunity, neuroinflammation, and infection. Although their phenotype and functional properties are well known and have been extensively studied, their lineage relationship with other NK cell subsets is not fully defined, nor is their precise hematopoietic origin. In this article, we summarize recent studies about CD56(bright) NK cells in health and disease and briefly discuss the current controversies surrounding them.
Collapse
Affiliation(s)
- Tatiana Michel
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg
| | - Aurélie Poli
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg
| | - Angelica Cuapio
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, A-1090 Vienna, Austria; and
| | - Benjamin Briquemont
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg
| | - Gilles Iserentant
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg; Allergy Center, Department of Dermatology Odense Research Centre for Anaphylaxis, University of Southern Denmark, DK-5000 Odense, Denmark
| | - Jacques Zimmer
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg;
| |
Collapse
|
100
|
Exercise-Dependent Regulation of NK Cells in Cancer Protection. Trends Mol Med 2016; 22:565-577. [PMID: 27262760 DOI: 10.1016/j.molmed.2016.05.007] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 12/19/2022]
Abstract
Natural killer (NK) cells are the most responsive immune cells to exercise, displaying an acute mobilization to the circulation during physical exertion. Recently, exercise-dependent mobilization of NK cells was found to play a central role in exercise-mediated protection against cancer. Here, we review the link between exercise and NK cell function, focusing on circulating exercise factors and additional effects, including vascularization, hypoxia, and body temperature in mediating the effects on NK cell functionality. Exercise-dependent mobilization and activation of NK cells provides a mechanistic explanation for the protective effect of exercise on cancer, and we propose that exercise represents a potential strategy as adjuvant therapy in cancer, by improving NK cell recruitment and infiltration in solid tumors.
Collapse
|