51
|
Liu H, Giffen KP, Grati M, Morrill SW, Li Y, Liu X, Briegel KJ, He DZ. Transcription co-factor LBH is necessary for the survival of cochlear hair cells. J Cell Sci 2021; 134:237781. [PMID: 33674448 DOI: 10.1242/jcs.254458] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/11/2021] [Indexed: 11/20/2022] Open
Abstract
Hearing loss affects ∼10% of adults worldwide. Most sensorineural hearing loss is caused by the progressive loss of mechanosensitive hair cells (HCs) in the cochlea. The molecular mechanisms underlying HC maintenance and loss remain poorly understood. LBH, a transcription co-factor implicated in development, is abundantly expressed in outer hair cells (OHCs). We used Lbh-null mice to identify its role in HCs. Surprisingly, Lbh deletion did not affect differentiation and the early development of HCs, as nascent HCs in Lbh knockout mice had normal looking stereocilia. The stereocilia bundle was mechanosensitive and OHCs exhibited the characteristic electromotility. However, Lbh-null mice displayed progressive hearing loss, with stereocilia bundle degeneration and OHC loss as early as postnatal day 12. RNA-seq analysis showed significant gene enrichment of biological processes related to transcriptional regulation, cell cycle, DNA damage/repair and autophagy in Lbh-null OHCs. In addition, Wnt and Notch pathway-related genes were found to be dysregulated in Lbh-deficient OHCs. Our study implicates, for the first time, loss of LBH function in progressive hearing loss, and demonstrates a critical requirement of LBH in promoting HC survival in adult mice.
Collapse
Affiliation(s)
- Huizhan Liu
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Kimberlee P Giffen
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - M'Hamed Grati
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Seth W Morrill
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Yi Li
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE 68178, USA.,Department of Otorhinolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, 100730 Beijing, China
| | - Xuezhong Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Karoline J Briegel
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - David Z He
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE 68178, USA
| |
Collapse
|
52
|
Que L, Lukacsovich D, Luo W, Földy C. Transcriptional and morphological profiling of parvalbumin interneuron subpopulations in the mouse hippocampus. Nat Commun 2021; 12:108. [PMID: 33398060 PMCID: PMC7782706 DOI: 10.1038/s41467-020-20328-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 11/27/2020] [Indexed: 12/21/2022] Open
Abstract
The diversity reflected by >100 different neural cell types fundamentally contributes to brain function and a central idea is that neuronal identity can be inferred from genetic information. Recent large-scale transcriptomic assays seem to confirm this hypothesis, but a lack of morphological information has limited the identification of several known cell types. In this study, we used single-cell RNA-seq in morphologically identified parvalbumin interneurons (PV-INs), and studied their transcriptomic states in the morphological, physiological, and developmental domains. Overall, we find high transcriptomic similarity among PV-INs, with few genes showing divergent expression between morphologically different types. Furthermore, PV-INs show a uniform synaptic cell adhesion molecule (CAM) profile, suggesting that CAM expression in mature PV cells does not reflect wiring specificity after development. Together, our results suggest that while PV-INs differ in anatomy and in vivo activity, their continuous transcriptomic and homogenous biophysical landscapes are not predictive of these distinct identities.
Collapse
Affiliation(s)
- Lin Que
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Zürich, Switzerland
| | - David Lukacsovich
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Zürich, Switzerland
| | - Wenshu Luo
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Zürich, Switzerland
| | - Csaba Földy
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
53
|
Zhang Y, Wang Y, Yao X, Wang C, Chen F, Liu D, Shao M, Xu Z. Rbm24a Is Necessary for Hair Cell Development Through Regulating mRNA Stability in Zebrafish. Front Cell Dev Biol 2020; 8:604026. [PMID: 33392193 PMCID: PMC7773828 DOI: 10.3389/fcell.2020.604026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/01/2020] [Indexed: 11/30/2022] Open
Abstract
Hair cells in the inner ear and lateral lines are mechanosensitive receptor cells whose development and function are tightly regulated. Several transcription factors as well as splicing factors have been identified to play important roles in hair cell development, whereas the role of RNA stability in this process is poorly understood. In the present work, we report that RNA-binding motif protein 24a (Rbm24a) is indispensable for hair cell development in zebrafish. Rbm24a expression is detected in the inner ear as well as lateral line neuromasts. Albeit rbm24a deficient zebrafish do not survive beyond 9 days post fertilization (dpf) due to effects outside of the inner ear, rbm24a deficiency does not affect the early development of inner ear except for delayed otolith formation and semicircular canal fusion. However, hair cell development is severely affected and hair bundle is disorganized in rbm24a mutants. As a result, the auditory and vestibular function of rbm24a mutants are compromised. RNAseq analyses identified several Rbm24a-target mRNAs that are directly bound by Rbm24a and are dysregulated in rbm24a mutants. Among the identified Rbm24a-target genes, lrrc23, dfna5b, and smpx are particularly interesting as their dysregulation might contribute to the inner ear phenotypes in rbm24a mutants. In conclusion, our data suggest that Rbm24a affects hair cell development in zebrafish through regulating mRNA stability.
Collapse
Affiliation(s)
- Yan Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Yanfei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Xuebo Yao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Changquan Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Fangyi Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Dong Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, School of Life Sciences, Nantong University, Nantong, China
| | - Ming Shao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China.,Shandong Provincial Collaborative Innovation Center of Cell Biology, Shandong Normal University, Jinan, China
| |
Collapse
|
54
|
Lewis MA, Di Domenico F, Ingham NJ, Prosser HM, Steel KP. Hearing impairment due to Mir183/96/182 mutations suggests both loss and gain of function effects. Dis Model Mech 2020; 14:dmm.047225. [PMID: 33318051 PMCID: PMC7903918 DOI: 10.1242/dmm.047225] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/03/2020] [Indexed: 01/13/2023] Open
Abstract
The microRNA miR-96 is important for hearing, as point mutations in humans and mice result in dominant progressive hearing loss. Mir96 is expressed in sensory cells along with Mir182 and Mir183, but the roles of these closely-linked microRNAs are as yet unknown. Here we analyse mice carrying null alleles of Mir182, and of Mir183 and Mir96 together to investigate their roles in hearing. We found that Mir183/96 heterozygous mice had normal hearing and homozygotes were completely deaf with abnormal hair cell stereocilia bundles and reduced numbers of inner hair cell synapses at four weeks old. Mir182 knockout mice developed normal hearing then exhibited progressive hearing loss. Our transcriptional analyses revealed significant changes in a range of other genes, but surprisingly there were fewer genes with altered expression in the organ of Corti of Mir183/96 null mice compared with our previous findings in Mir96 Dmdo mutants, which have a point mutation in the miR-96 seed region. This suggests the more severe phenotype of Mir96 Dmdo mutants compared with Mir183/96 mutants, including progressive hearing loss in Mir96 Dmdo heterozygotes, is likely to be mediated by the gain of novel target genes in addition to the loss of its normal targets. We propose three mechanisms of action of mutant miRNAs; loss of targets that are normally completely repressed, loss of targets whose transcription is normally buffered by the miRNA, and gain of novel targets. Any of these mechanisms could lead to a partial loss of a robust cellular identity and consequent dysfunction.
Collapse
Affiliation(s)
- Morag A Lewis
- Wolfson Centre for Age-Related Diseases, King's College London, London, SE1 1UL, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | | | - Neil J Ingham
- Wolfson Centre for Age-Related Diseases, King's College London, London, SE1 1UL, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Haydn M Prosser
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Karen P Steel
- Wolfson Centre for Age-Related Diseases, King's College London, London, SE1 1UL, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| |
Collapse
|
55
|
Escalera-Balsera A, Roman-Naranjo P, Lopez-Escamez JA. Systematic Review of Sequencing Studies and Gene Expression Profiling in Familial Meniere Disease. Genes (Basel) 2020; 11:E1414. [PMID: 33260921 PMCID: PMC7761472 DOI: 10.3390/genes11121414] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023] Open
Abstract
Familial Meniere Disease (FMD) is a rare inner ear disorder characterized by episodic vertigo associated with sensorineural hearing loss, tinnitus and/or aural fullness. We conducted a systematic review to find sequencing studies segregating rare variants in FMD to obtain evidence to support candidate genes for MD. After evaluating the quality of the retrieved records, eight studies were selected to carry out a quantitative synthesis. These articles described 20 single nucleotide variants (SNVs) in 11 genes (FAM136A, DTNA, PRKCB, COCH, DPT, SEMA3D, STRC, HMX2, TMEM55B, OTOG and LSAMP), most of them in singular families-the exception being the OTOG gene. Furthermore, we analyzed the pathogenicity of each SNV and compared its allelic frequency with reference datasets to evaluate its role in the pathogenesis of FMD. By retrieving gene expression data in these genes from different databases, we could classify them according to their gene expression in neural or inner ear tissues. Finally, we evaluated the pattern of inheritance to conclude which genes show an autosomal dominant (AD) or autosomal recessive (AR) inheritance in FMD.
Collapse
Affiliation(s)
- Alba Escalera-Balsera
- Otology & Neurotology Group CTS 495, Department of Genomic Medicine, Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica, 18016 Granada, Spain; (A.E.-B.); (P.R.-N.)
| | - Pablo Roman-Naranjo
- Otology & Neurotology Group CTS 495, Department of Genomic Medicine, Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica, 18016 Granada, Spain; (A.E.-B.); (P.R.-N.)
| | - Jose Antonio Lopez-Escamez
- Otology & Neurotology Group CTS 495, Department of Genomic Medicine, Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica, 18016 Granada, Spain; (A.E.-B.); (P.R.-N.)
- Department of Otolaryngology, Instituto de Investigación Biosanitaria, ibs.GRANADA, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
- Department of Surgery, Division of Otolaryngology, Universidad de Granada, 18016 Granada, Spain
| |
Collapse
|
56
|
Lemeille S, Paschaki M, Baas D, Morlé L, Duteyrat JL, Ait-Lounis A, Barras E, Soulavie F, Jerber J, Thomas J, Zhang Y, Holtzman MJ, Kistler WS, Reith W, Durand B. Interplay of RFX transcription factors 1, 2 and 3 in motile ciliogenesis. Nucleic Acids Res 2020; 48:9019-9036. [PMID: 32725242 PMCID: PMC7498320 DOI: 10.1093/nar/gkaa625] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/08/2020] [Accepted: 07/16/2020] [Indexed: 12/16/2022] Open
Abstract
Cilia assembly is under strict transcriptional control during animal development. In vertebrates, a hierarchy of transcription factors (TFs) are involved in controlling the specification, differentiation and function of multiciliated epithelia. RFX TFs play key functions in the control of ciliogenesis in animals. Whereas only one RFX factor regulates ciliogenesis in C. elegans, several distinct RFX factors have been implicated in this process in vertebrates. However, a clear understanding of the specific and redundant functions of different RFX factors in ciliated cells remains lacking. Using RNA-seq and ChIP-seq approaches we identified genes regulated directly and indirectly by RFX1, RFX2 and RFX3 in mouse ependymal cells. We show that these three TFs have both redundant and specific functions in ependymal cells. Whereas RFX1, RFX2 and RFX3 occupy many shared genomic loci, only RFX2 and RFX3 play a prominent and redundant function in the control of motile ciliogenesis in mice. Our results provide a valuable list of candidate ciliary genes. They also reveal stunning differences between compensatory processes operating in vivo and ex vivo.
Collapse
Affiliation(s)
- Sylvain Lemeille
- Department of Pathology and Immunology, University of Geneva Medical School, CMU, Geneva, Switzerland
| | - Marie Paschaki
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, F-69008, Lyon, France
| | - Dominique Baas
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, F-69008, Lyon, France
| | - Laurette Morlé
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, F-69008, Lyon, France
| | - Jean-Luc Duteyrat
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, F-69008, Lyon, France
| | - Aouatef Ait-Lounis
- Department of Pathology and Immunology, University of Geneva Medical School, CMU, Geneva, Switzerland
| | - Emmanuèle Barras
- Department of Pathology and Immunology, University of Geneva Medical School, CMU, Geneva, Switzerland
| | - Fabien Soulavie
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, F-69008, Lyon, France
| | - Julie Jerber
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, F-69008, Lyon, France
| | - Joëlle Thomas
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, F-69008, Lyon, France
| | - Yong Zhang
- Department of Medicine and Department of Cell Biology, Washington University School of Medicine, St. Louis, Missouri
| | - Michael J Holtzman
- Department of Medicine and Department of Cell Biology, Washington University School of Medicine, St. Louis, Missouri
| | - W Stephen Kistler
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, United States of America
| | - Walter Reith
- Department of Pathology and Immunology, University of Geneva Medical School, CMU, Geneva, Switzerland
| | - Bénédicte Durand
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, F-69008, Lyon, France
| |
Collapse
|
57
|
Alsina B. Mechanisms of cell specification and differentiation in vertebrate cranial sensory systems. Curr Opin Cell Biol 2020; 67:79-85. [PMID: 32950922 DOI: 10.1016/j.ceb.2020.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 11/28/2022]
Abstract
Vertebrates sense a large variety of sensory stimuli that ranges from temperature, volatile and nonvolatile chemicals, touch, pain, light, sound and gravity. To achieve this, they use specialized cells present in sensory organs and cranial ganglia. Much of our understanding of the transcription factors and mechanisms responsible for sensory cell specification comes from cell-lineage tracing and genetic experiments in different species, but recent advances in single-cell transcriptomics, high-resolution imaging and systems biology approaches have allowed to study these processes in an unprecedented resolution. Here I will point to the transcription factor programs driving cell diversity in the different sensory organs of vertebrates to then discuss in vivo data of how cell specification is coupled with tissue morphogenesis.
Collapse
Affiliation(s)
- Berta Alsina
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra-Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain.
| |
Collapse
|
58
|
Kalra G, Milon B, Casella AM, Herb BR, Humphries E, Song Y, Rose KP, Hertzano R, Ament SA. Biological insights from multi-omic analysis of 31 genomic risk loci for adult hearing difficulty. PLoS Genet 2020; 16:e1009025. [PMID: 32986727 PMCID: PMC7544108 DOI: 10.1371/journal.pgen.1009025] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 10/08/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
Age-related hearing impairment (ARHI), one of the most common medical conditions, is strongly heritable, yet its genetic causes remain largely unknown. We conducted a meta-analysis of GWAS summary statistics from multiple hearing-related traits in the UK Biobank (n = up to 330,759) and identified 31 genome-wide significant risk loci for self-reported hearing difficulty (p < 5x10-8), of which eight have not been reported previously in the peer-reviewed literature. We investigated the regulatory and cell specific expression for these loci by generating mRNA-seq, ATAC-seq, and single-cell RNA-seq from cells in the mouse cochlea. Risk-associated genes were most strongly enriched for expression in cochlear epithelial cells, as well as for genes related to sensory perception and known Mendelian deafness genes, supporting their relevance to auditory function. Regions of the human genome homologous to open chromatin in epithelial cells from the mouse were strongly enriched for heritable risk for hearing difficulty, even after adjusting for baseline effects of evolutionary conservation and cell-type non-specific regulatory regions. Epigenomic and statistical fine-mapping most strongly supported 50 putative risk genes. Of these, 39 were expressed robustly in mouse cochlea and 16 were enriched specifically in sensory hair cells. These results reveal new risk loci and risk genes for hearing difficulty and suggest an important role for altered gene regulation in the cochlear sensory epithelium.
Collapse
Affiliation(s)
- Gurmannat Kalra
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Beatrice Milon
- Department of Otorhinolaryngology-Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Alex M. Casella
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Physician Scientist Training Program, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Brian R. Herb
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Elizabeth Humphries
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Program in Molecular Epidemiology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Yang Song
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Kevin P. Rose
- Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Department of Otorhinolaryngology-Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Ronna Hertzano
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Department of Otorhinolaryngology-Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Seth A. Ament
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|
59
|
Novel Mutations in CLPP, LARS2, CDH23, and COL4A5 Identified in Familial Cases of Prelingual Hearing Loss. Genes (Basel) 2020; 11:genes11090978. [PMID: 32842620 PMCID: PMC7564084 DOI: 10.3390/genes11090978] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 12/30/2022] Open
Abstract
We report the underlying genetic causes of prelingual hearing loss (HL) segregating in eight large consanguineous families, ascertained from the Punjab province of Pakistan. Exome sequencing followed by segregation analysis revealed seven potentially pathogenic variants, including four novel alleles c.257G>A, c.6083A>C, c.89A>G, and c.1249A>G of CLPP, CDH23, COL4A5, and LARS2, respectively. We also identified three previously reported HL-causing variants (c.4528C>T, c.35delG, and c.1219T>C) of MYO15A, GJB2, and TMPRSS3 segregating in four families. All identified variants were either absent or had very low frequencies in the control databases. Our in silico analyses and 3-dimensional (3D) molecular modeling support the deleterious impact of these variants on the encoded proteins. Variants identified in MYO15A, GJB2, TMPRSS3, and CDH23 were classified as “pathogenic” or “likely pathogenic”, while the variants in CLPP and LARS2 fall in the category of “uncertain significance” based on the American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) variant pathogenicity guidelines. This paper highlights the genetic diversity of hearing disorders in the Pakistani population and reports the identification of four novel mutations in four HL families.
Collapse
|
60
|
The Purinergic Receptor P2rx3 is Required for Spiral Ganglion Neuron Branch Refinement during Development. eNeuro 2020; 7:ENEURO.0179-20.2020. [PMID: 32675174 PMCID: PMC7418533 DOI: 10.1523/eneuro.0179-20.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/03/2020] [Accepted: 07/08/2020] [Indexed: 12/18/2022] Open
Abstract
The mammalian cochlea undergoes a highly dynamic process of growth and innervation during development. This process includes spiral ganglion neuron (SGN) branch refinement, a process whereby Type I SGNs undergo a phase of “debranching” before forming unramified synaptic contacts with inner hair cells. Using Sox2CreERT2 and R26RtdTomato as a strategy to genetically label individual SGNs in mice of both sexes, we report on both a time course of SGN branch refinement and a role for P2rx3 in this process. P2rx3 is an ionotropic ATP receptor that was recently implicated in outer hair cell spontaneous activity and Type II SGN synapse development (Ceriani et al., 2019), but its function in Type I SGN development is unknown. Here, we demonstrate that P2rx3 is expressed by Type I SGNs and hair cells during developmental periods that coincide with SGN branching refinement. P2rx3 null mice show SGNs with more complex branching patterns on their peripheral synaptic terminals and near their cell bodies around the time of birth. Loss of P2rx3 does not appear to confer general changes in axon outgrowth or hair cell formation, and alterations in branching complexity appear to mostly recover by postnatal day (P)6. However, when we examined the distribution of Type I SGN subtypes using antibodies that bind Calb2, Calb1, and Pou4f1, we found that P2rx3 null mice showed an increased proportion of SGNs that express Calb2. These data suggest P2rx3 may be necessary for normal Type I SGN differentiation in addition to serving a role in branch refinement.
Collapse
|
61
|
Li J, Zhang T, Ramakrishnan A, Fritzsch B, Xu J, Wong EYM, Loh YHE, Ding J, Shen L, Xu PX. Dynamic changes in cis-regulatory occupancy by Six1 and its cooperative interactions with distinct cofactors drive lineage-specific gene expression programs during progressive differentiation of the auditory sensory epithelium. Nucleic Acids Res 2020; 48:2880-2896. [PMID: 31956913 PMCID: PMC7102962 DOI: 10.1093/nar/gkaa012] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/16/2019] [Accepted: 01/17/2020] [Indexed: 12/23/2022] Open
Abstract
The transcription factor Six1 is essential for induction of sensory cell fate and formation of auditory sensory epithelium, but how it activates gene expression programs to generate distinct cell-types remains unknown. Here, we perform genome-wide characterization of Six1 binding at different stages of auditory sensory epithelium development and find that Six1-binding to cis-regulatory elements changes dramatically at cell-state transitions. Intriguingly, Six1 pre-occupies enhancers of cell-type-specific regulators and effectors before their expression. We demonstrate in-vivo cell-type-specific activity of Six1-bound novel enhancers of Pbx1, Fgf8, Dusp6, Vangl2, the hair-cell master regulator Atoh1 and a cascade of Atoh1's downstream factors, including Pou4f3 and Gfi1. A subset of Six1-bound sites carry consensus-sequences for its downstream factors, including Atoh1, Gfi1, Pou4f3, Gata3 and Pbx1, all of which physically interact with Six1. Motif analysis identifies RFX/X-box as one of the most significantly enriched motifs in Six1-bound sites, and we demonstrate that Six1-RFX proteins cooperatively regulate gene expression through binding to SIX:RFX-motifs. Six1 targets a wide range of hair-bundle regulators and late Six1 deletion disrupts hair-bundle polarity. This study provides a mechanistic understanding of how Six1 cooperates with distinct cofactors in feedforward loops to control lineage-specific gene expression programs during progressive differentiation of the auditory sensory epithelium.
Collapse
Affiliation(s)
- Jun Li
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ting Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Aarthi Ramakrishnan
- Department of Neurosciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa, IA 52242-1324
| | - Jinshu Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Elaine Y M Wong
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yong-Hwee Eddie Loh
- Department of Neurosciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jianqiang Ding
- Department of Infectious Diseases, Shunde Hospital, Southern Medical University, Shunde 528308, Guangdong, China
| | - Li Shen
- Department of Neurosciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pin-Xian Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
62
|
Sadler E, Ryals MM, May LA, Martin D, Welsh N, Boger ET, Morell RJ, Hertzano R, Cunningham LL. Cell-Specific Transcriptional Responses to Heat Shock in the Mouse Utricle Epithelium. Front Cell Neurosci 2020; 14:123. [PMID: 32528249 PMCID: PMC7247426 DOI: 10.3389/fncel.2020.00123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/15/2020] [Indexed: 12/21/2022] Open
Abstract
Sensory epithelia of the inner ear contain mechanosensory hair cells (HCs) and glia-like supporting cells (SCs), both of which are required for hearing and balance functions. Each of these cell types has unique responses to ototoxic and cytoprotective stimuli. Non-lethal heat stress in the mammalian utricle induces heat shock proteins (HSPs) and protects against ototoxic drug-induced hair cell death. Induction of HSPs in the utricle demonstrates cell-type specificity at the protein level, with HSP70 induction occurring primarily in SCs, while HSP32 (also known as heme oxygenase 1, HMOX1) is induced primarily in resident macrophages. Neither of these HSPs are robustly induced in HCs, suggesting that HCs may have little capacity for induction of stress-induced protective responses. To determine the transcriptional responses to heat shock of these different cell types, we performed cell-type-specific transcriptional profiling using the RiboTag method, which allows for immunoprecipitation (IP) of actively translating mRNAs from specific cell types. RNA-Seq differential gene expression analyses demonstrated that the RiboTag method identified known cell type-specific markers as well as new markers for HCs and SCs. Gene expression differences suggest that HCs and SCs exhibit differential transcriptional heat shock responses. The chaperonin family member Cct8 was significantly enriched only in heat-shocked HCs, while Hspa1l (HSP70 family), and Hspb1 and Cryab (HSP27 and HSP20 families, respectively) were enriched only in SCs. Together our data indicate that HCs exhibit a limited but unique heat shock response, and SCs exhibit a broader and more robust transcriptional response to protective heat stress.
Collapse
Affiliation(s)
- Erica Sadler
- Section on Sensory Cell Biology, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, United States
| | - Matthew M Ryals
- Section on Sensory Cell Biology, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, United States.,Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lindsey A May
- Section on Sensory Cell Biology, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, United States
| | - Daniel Martin
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, United States.,Genomics and Computational Biology Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Nora Welsh
- Section on Sensory Cell Biology, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, United States
| | - Erich T Boger
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, United States
| | - Robert J Morell
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, United States
| | - Ronna Hertzano
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States.,Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Lisa L Cunningham
- Section on Sensory Cell Biology, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
63
|
Kolla L, Kelly MC, Mann ZF, Anaya-Rocha A, Ellis K, Lemons A, Palermo AT, So KS, Mays JC, Orvis J, Burns JC, Hertzano R, Driver EC, Kelley MW. Characterization of the development of the mouse cochlear epithelium at the single cell level. Nat Commun 2020; 11:2389. [PMID: 32404924 PMCID: PMC7221106 DOI: 10.1038/s41467-020-16113-y] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 04/10/2020] [Indexed: 12/14/2022] Open
Abstract
Mammalian hearing requires the development of the organ of Corti, a sensory epithelium comprising unique cell types. The limited number of each of these cell types, combined with their close proximity, has prevented characterization of individual cell types and/or their developmental progression. To examine cochlear development more closely, we transcriptionally profile approximately 30,000 isolated mouse cochlear cells collected at four developmental time points. Here we report on the analysis of those cells including the identification of both known and unknown cell types. Trajectory analysis for OHCs indicates four phases of gene expression while fate mapping of progenitor cells suggests that OHCs and their surrounding supporting cells arise from a distinct (lateral) progenitor pool. Tgfβr1 is identified as being expressed in lateral progenitor cells and a Tgfβr1 antagonist inhibits OHC development. These results provide insights regarding cochlear development and demonstrate the potential value and application of this data set. How the development of the cochlear epithelium is regulated is unclear. Here, the authors use single cell RNAseq analysis to provide insight into the transcriptional changes arising during development of the murine cochlear inner and outer hair cells.
Collapse
Affiliation(s)
- Likhitha Kolla
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michael C Kelly
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zoe F Mann
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - Alejandro Anaya-Rocha
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kathryn Ellis
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Abigail Lemons
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Adam T Palermo
- Decibel Therapeutics, 1325 Boylston, Str., Suite 500, Boston, MA, 02215, USA
| | - Kathy S So
- Decibel Therapeutics, 1325 Boylston, Str., Suite 500, Boston, MA, 02215, USA
| | - Joseph C Mays
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Joshua Orvis
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Joseph C Burns
- Decibel Therapeutics, 1325 Boylston, Str., Suite 500, Boston, MA, 02215, USA
| | - Ronna Hertzano
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Department of Otorhinolaryngology Head and Neck Surgery, Anatomy and Neurobiology, and Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Elizabeth C Driver
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Matthew W Kelley
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
64
|
Ranum PT, Goodwin AT, Yoshimura H, Kolbe DL, Walls WD, Koh JY, He DZZ, Smith RJH. Insights into the Biology of Hearing and Deafness Revealed by Single-Cell RNA Sequencing. Cell Rep 2020; 26:3160-3171.e3. [PMID: 30865901 PMCID: PMC6424336 DOI: 10.1016/j.celrep.2019.02.053] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/16/2018] [Accepted: 02/13/2019] [Indexed: 01/03/2023] Open
Abstract
Single-cell RNA sequencing is a powerful tool by which to characterize the transcriptional profile of low-abundance cell types, but its application to the inner ear has been hampered by the bony labyrinth, tissue sparsity, and difficulty dissociating the ultra-rare cells of the membranous cochlea. Herein, we present a method to isolate individual inner hair cells (IHCs), outer hair cells (OHCs), and Deiters' cells (DCs) from the murine cochlea at any post-natal time point. We harvested more than 200 murine IHCs, OHCs, and DCs from post-natal days 15 (p15) to 228 (p228) and leveraged both short- and long-read single-cell RNA sequencing to profile transcript abundance and structure. Our results provide insights into the expression profiles of these cells and document an unappreciated complexity in isoform variety in deafness-associated genes. This refined view of transcription in the organ of Corti improves our understanding of the biology of hearing and deafness.
Collapse
Affiliation(s)
- Paul T Ranum
- Interdisciplinary Graduate Program in Molecular & Cellular Biology, University of Iowa Graduate College, University of Iowa, Iowa City, IA 52242, USA; Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Alexander T Goodwin
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Hidekane Yoshimura
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Diana L Kolbe
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - William D Walls
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Jin-Young Koh
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - David Z Z He
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Richard J H Smith
- Interdisciplinary Graduate Program in Molecular & Cellular Biology, University of Iowa Graduate College, University of Iowa, Iowa City, IA 52242, USA; Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Department of Otolaryngology, Head and Neck Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
65
|
Kozak EL, Palit S, Miranda-Rodríguez JR, Janjic A, Böttcher A, Lickert H, Enard W, Theis FJ, López-Schier H. Epithelial Planar Bipolarity Emerges from Notch-Mediated Asymmetric Inhibition of Emx2. Curr Biol 2020; 30:1142-1151.e6. [PMID: 32109392 DOI: 10.1016/j.cub.2020.01.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/28/2019] [Accepted: 01/08/2020] [Indexed: 12/24/2022]
Abstract
Most plane-polarized tissues are formed by identically oriented cells [1, 2]. A notable exception occurs in the vertebrate vestibular system and lateral-line neuromasts, where mechanosensory hair cells orient along a single axis but in opposite directions to generate bipolar epithelia [3-5]. In zebrafish neuromasts, pairs of hair cells arise from the division of a non-sensory progenitor [6, 7] and acquire opposing planar polarity via the asymmetric expression of the polarity-determinant transcription factor Emx2 [8-11]. Here, we reveal the initial symmetry-breaking step by decrypting the developmental trajectory of hair cells using single-cell RNA sequencing (scRNA-seq), diffusion pseudotime analysis, lineage tracing, and mutagenesis. We show that Emx2 is absent in non-sensory epithelial cells, begins expression in hair-cell progenitors, and is downregulated in one of the sibling hair cells via signaling through the Notch1a receptor. Analysis of Emx2-deficient specimens, in which every hair cell adopts an identical direction, indicates that Emx2 asymmetry does not result from auto-regulatory feedback. These data reveal a two-tiered mechanism by which the symmetric monodirectional ground state of the epithelium is inverted by deterministic initiation of Emx2 expression in hair-cell progenitors and a subsequent stochastic repression of Emx2 in one of the sibling hair cells breaks directional symmetry to establish planar bipolarity.
Collapse
Affiliation(s)
- Eva L Kozak
- Research Unit of Sensory Biology & Organogenesis, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Subarna Palit
- Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Jerónimo R Miranda-Rodríguez
- Research Unit of Sensory Biology & Organogenesis, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Aleksandar Janjic
- Department Biology II, Anthropology and Human Genomics, Ludwig Maximilians University of Munich, Großhaderner Straße 2, 82152 Martinsried, Germany
| | - Anika Böttcher
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; German Center for Diabetes Research, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; German Center for Diabetes Research, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; School of Medicine, Technical University of Munich, Ismaninger Straße 22, 81675 Munich, Germany
| | - Wolfgang Enard
- Department Biology II, Anthropology and Human Genomics, Ludwig Maximilians University of Munich, Großhaderner Straße 2, 82152 Martinsried, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; School of Life Sciences Weihenstephan, Technical University of Munich, Alte Akademie, 85354 Freising, Germany; Department of Mathematics, Technical University of Munich, Boltzmannstraße 3, 85748 Garching, Germany
| | - Hernán López-Schier
- Research Unit of Sensory Biology & Organogenesis, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| |
Collapse
|
66
|
Gao J, Xu C. Structural basis for the recognition of RFX7 by ANKRA2 and RFXANK. Biochem Biophys Res Commun 2020; 523:263-266. [DOI: 10.1016/j.bbrc.2019.12.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 10/25/2022]
|
67
|
Ringers C, Olstad EW, Jurisch-Yaksi N. The role of motile cilia in the development and physiology of the nervous system. Philos Trans R Soc Lond B Biol Sci 2019; 375:20190156. [PMID: 31884916 DOI: 10.1098/rstb.2019.0156] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Motile cilia are miniature, whip-like organelles whose beating generates a directional fluid flow. The flow generated by ciliated epithelia is a subject of great interest, as defective ciliary motility results in severe human diseases called motile ciliopathies. Despite the abundance of motile cilia in diverse organs including the nervous system, their role in organ development and homeostasis remains poorly understood. Recently, much progress has been made regarding the identity of motile ciliated cells and the role of motile-cilia-mediated flow in the development and physiology of the nervous system. In this review, we will discuss these recent advances from sensory organs, specifically the nose and the ear, to the spinal cord and brain ventricles. This article is part of the Theo Murphy meeting issue 'Unity and diversity of cilia in locomotion and transport'.
Collapse
Affiliation(s)
- Christa Ringers
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway
| | - Emilie W Olstad
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway
| | - Nathalie Jurisch-Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway.,Department of Neurology and Clinical Neurophysiology, St Olavs University Hospital, Edvard Griegs Gate 8, 7030 Trondheim, Norway
| |
Collapse
|
68
|
Cheng C, Wang Y, Guo L, Lu X, Zhu W, Muhammad W, Zhang L, Lu L, Gao J, Tang M, Chen F, Gao X, Li H, Chai R. Age-related transcriptome changes in Sox2+ supporting cells in the mouse cochlea. Stem Cell Res Ther 2019; 10:365. [PMID: 31791390 PMCID: PMC6889721 DOI: 10.1186/s13287-019-1437-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/29/2019] [Accepted: 10/01/2019] [Indexed: 12/17/2022] Open
Abstract
Background Inner ear supporting cells (SCs) in the neonatal mouse cochlea are a potential source for hair cell (HC) regeneration, but several studies have shown that the regeneration ability of SCs decreases dramatically as mice age and that lost HCs cannot be regenerated in adult mice. To better understand how SCs might be better used to regenerate HCs, it is important to understand how the gene expression profile changes in SCs at different ages. Methods Here, we used Sox2GFP/+ mice to isolate the Sox2+ SCs at postnatal day (P)3, P7, P14, and P30 via flow cytometry. Next, we used RNA-seq to determine the transcriptome expression profiles of P3, P7, P14, and P30 SCs. To further analyze the relationships between these age-related and differentially expressed genes in Sox2+ SCs, we performed gene ontology (GO) analysis. Results Consistent with previous reports, we also found that the proliferation and HC regeneration ability of isolated Sox2+ SCs significantly decreased as mice aged. We identified numerous genes that are enriched and differentially expressed in Sox2+ SCs at four different postnatal ages, including cell cycle genes, signaling pathway genes, and transcription factors that might be involved in regulating the proliferation and HC differentiation ability of SCs. We thus present a set of genes that might regulate the proliferation and HC regeneration ability of SCs, and these might serve as potential new therapeutic targets for HC regeneration. Conclusions In our research, we found several genes that might play an important role in regulating the proliferation and HC regeneration ability of SCs. These datasets are expected to serve as a resource to provide potential new therapeutic targets for regulating the ability of SCs to regenerate HCs in postnatal mammals.
Collapse
Affiliation(s)
- Cheng Cheng
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, China.,Research Institute of Otolaryngology, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Yunfeng Wang
- Shanghai Fenyang Vision & Audition Center, Shanghai, China.,ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Room 611, Building 9, No. 83, Fenyang Road, Xuhui District, Shanghai, 200031, China
| | - Luo Guo
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Room 611, Building 9, No. 83, Fenyang Road, Xuhui District, Shanghai, 200031, China
| | - Xiaoling Lu
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Room 611, Building 9, No. 83, Fenyang Road, Xuhui District, Shanghai, 200031, China
| | - Weijie Zhu
- MOE Key Laboratory for Developmental Genes and Human Disease, State Key Laboratory of Bioelectronics, Co-Innovation Center of Neuroregeneration, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Waqas Muhammad
- MOE Key Laboratory for Developmental Genes and Human Disease, State Key Laboratory of Bioelectronics, Co-Innovation Center of Neuroregeneration, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.,Department of Biotechnology, Federal Urdu University of Arts, Science and Technology, Gulshan-e-Iqbal Campus, Karachi, Pakistan
| | - Liyan Zhang
- MOE Key Laboratory for Developmental Genes and Human Disease, State Key Laboratory of Bioelectronics, Co-Innovation Center of Neuroregeneration, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Ling Lu
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Junyan Gao
- Jiangsu Rehabilitation Research Center for Hearing and Speech Impairment, Nanjing, 210004, Jiangsu, China
| | - Mingliang Tang
- MOE Key Laboratory for Developmental Genes and Human Disease, State Key Laboratory of Bioelectronics, Co-Innovation Center of Neuroregeneration, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Fangyi Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Xia Gao
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, China.
| | - Huawei Li
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Room 611, Building 9, No. 83, Fenyang Road, Xuhui District, Shanghai, 200031, China.
| | - Renjie Chai
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Room 611, Building 9, No. 83, Fenyang Road, Xuhui District, Shanghai, 200031, China. .,MOE Key Laboratory for Developmental Genes and Human Disease, State Key Laboratory of Bioelectronics, Co-Innovation Center of Neuroregeneration, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China. .,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China. .,Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
69
|
Gao J, Jiang X, Wang J, Xue Y, Li X, Sun Z, Xie H, Nie P, Zou J, Gao Q. Phylogeny and expression modulation of interleukin 1 receptors in grass carp (Ctenopharyngodon idella). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 99:103401. [PMID: 31145914 DOI: 10.1016/j.dci.2019.103401] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
The interleukin (IL) -1 family members play an important role in regulating inflammatory responses and their functions are mediated by a group of receptors consisting of immunoglobulin and Toll/IL-1 receptor (TIR) domains. In humans, 10 IL-1Rs are found. In this study, 5 IL-1 receptors including IL-1R3/IL-1RAcP, IL-1R8/SIGIRR, IL-1R9a/IL-1RAcPL1a, IL-1R9b/IL-1RAcPL1b and IL-1R10/IL-1RAcPL2 were identified in grass carp (Ctenopharyngodon idella). Phylogenetic analysis reveals that the IL-1R9a/IL-1RAcPL1a and IL-1R9b/IL-1RAcPL1b share significantly high sequence similarity and are believed to have been duplicated from the same gene prior to the radiation of teleosts. Further, these two receptors closely relate to the IL-1R10/IL-1RAcPL2, suggesting that they may have evolved from a common ancestor. The IL-1R3/IL-1RAcP, IL-1R9a/IL-1RAcPL1a, IL-1R9b/IL-1RAcPL1b and IL-1R10/IL-1RAcPL2 are highly expressed in the brain. Stimulation of primary spleen leucocytes by LPS and intraperitoneal injection of fish with poly (I:C) or bacterial infection results in significant increases of IL-1R3/IL-1RAcP expression. Interestingly, the IL-1R8/SIGIRR and IL-1R10/IL-1RAcPL2 showed similar expression patterns.
Collapse
Affiliation(s)
- Jingduo Gao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xinyu Jiang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yujie Xue
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xia Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Zhaosheng Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Haixia Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Qian Gao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
70
|
Tarchini B, Lu X. New insights into regulation and function of planar polarity in the inner ear. Neurosci Lett 2019; 709:134373. [PMID: 31295539 PMCID: PMC6732021 DOI: 10.1016/j.neulet.2019.134373] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/02/2019] [Accepted: 07/06/2019] [Indexed: 12/18/2022]
Abstract
Acquisition of cell polarity generates signaling and cytoskeletal asymmetry and thus underpins polarized cell behaviors during tissue morphogenesis. In epithelial tissues, both apical-basal polarity and planar polarity, which refers to cell polarization along an axis orthogonal to the apical-basal axis, are essential for epithelial morphogenesis and function. A prime example of epithelial planar polarity can be found in the auditory sensory epithelium (or organ of Corti, OC). Sensory hair cells, the sound receptors, acquire a planar polarized apical cytoskeleton which is uniformely oriented along an axis orthogonal to the longitudinal axis of the cochlear duct. Both cell-intrinsic and tissue-level planar polarity are necessary for proper perception of sound. Here we review recent insights into the novel roles and mechanisms of planar polarity signaling gained from genetic analysis in mice, focusing mainly on the OC but also with some discussions on the vestibular sensory epithelia.
Collapse
Affiliation(s)
- Basile Tarchini
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA; Department of Medicine, Tufts University, Boston, 02111, MA, USA; Graduate School of Biomedical Science and Engineering (GSBSE), University of Maine, Orono, 04469, ME, USA.
| | - Xiaowei Lu
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, 22908, USA.
| |
Collapse
|
71
|
Daniel JG, Panizzi JR. Spatiotemporal expression profile of embryonic and adult ankyrin repeat and EF-hand domain containing protein 1-encoding genes ankef1a and ankef1b in zebrafish. Gene Expr Patterns 2019; 34:119069. [PMID: 31520739 DOI: 10.1016/j.gep.2019.119069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 08/20/2019] [Accepted: 08/26/2019] [Indexed: 10/26/2022]
Abstract
Recent human next-generation sequencing (NGS) studies indicate a correlation between ANKEF1 (ankyrin repeat and EF-hand domain containing protein 1) expression and cilia formation or function. Additionally, a single study conducted in the African clawed frog (Xenopus laevis) showed ankef1 is down-regulated after pharmacological fibroblast growth factor (FGF) inhibition and plays a role in protocadherin-mediated cell protrusion and adhesion. That study also revealed a critical role for ankef1 in the embryonic development of the frog, with morphants exhibiting phenotypes including spina bifida and a shortened body axis. Interestingly, while little is known about ANKEF1 function in other vertebrate systems, recent proteomic data has shown ANKEF1 enriched in ciliated cells. Likewise, publicly available EST profile databases imply ANKEF1 expression in multiple human tissues, including high levels in the testes. Together, these previous studies suggest an important role for ANKEF1 in ciliated tissues and during embryonic development. Here, we report cloning of zebrafish (Danio rerio) ankef1a, as well as its paralog, ankef1b, and expression analyses by whole-mount in situ hybridization (WISH) and quantitative polymerase chain reaction (qPCR) during embryonic development and in adult tissues. WISH shows both forms are ubiquitously expressed early in development, with more discrete expression of both transcripts in embryonic tissues known to precede or possess motile cilia, including dorsal forerunner cells (DFC) and the otic vesicles, respectively. Additionally, both transcripts are enriched in the developing pharynx and swim bladder. Our qPCR results indicate enhanced expression in the testes, along with increased expression in brain. Certainly, our experiments in the zebrafish model system with ankef1a and ankef1b provide a solid foundation for future studies to uncover the molecular pathways through which Ankef1 acts in both healthy and disease states.
Collapse
Affiliation(s)
- Jeffrey G Daniel
- Department of Anatomy, Physiology, and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, 36849, USA
| | - Jennifer R Panizzi
- Department of Anatomy, Physiology, and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, 36849, USA.
| |
Collapse
|
72
|
Flook M, Frejo L, Gallego-Martinez A, Martin-Sanz E, Rossi-Izquierdo M, Amor-Dorado JC, Soto-Varela A, Santos-Perez S, Batuecas-Caletrio A, Espinosa-Sanchez JM, Pérez-Carpena P, Martinez-Martinez M, Aran I, Lopez-Escamez JA. Differential Proinflammatory Signature in Vestibular Migraine and Meniere Disease. Front Immunol 2019; 10:1229. [PMID: 31214186 PMCID: PMC6558181 DOI: 10.3389/fimmu.2019.01229] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/14/2019] [Indexed: 12/20/2022] Open
Abstract
Vestibular Migraine (VM) and Meniere's Disease (MD) are episodic vestibular syndromes defined by a set of associated symptoms such as tinnitus, hearing loss or migraine features during the attacks. Both conditions may show symptom overlap and there is no biological marker to distinguish them. Two subgroups of MD patients have been reported, according to their IL-1β profile. Therefore, considering the clinical similarity between VM and MD, we aimed to investigate the cytokine profile of MD and VM as a means to distinguish these patients. We have also carried out gene expression microarrays and measured the levels of 14 cytokines and 11 chemokines in 129 MD patients, 82 VM patients, and 66 healthy controls. Gene expression profile in peripheral blood mononuclear cells (PBMC) showed significant differences in MD patients with high and low basal levels of IL- 1β and VM patients. MD patients with high basal levels of IL- 1β (MDH) had overall higher levels of cytokines/chemokines when compared to the other subsets. CCL4 levels were significantly different between MDH, MD with low basal levels of IL- 1β (MDL), VM and controls. Logistic regression identified IL- 1β, CCL3, CCL22, and CXCL1 levels as capable of differentiating VM patients from MD patients (area under the curve = 0.995), suggesting a high diagnostic value in patients with symptoms overlap.
Collapse
Affiliation(s)
- Marisa Flook
- Otology and Neurotology Group CTS495, Department of Genomic Medicine, Centre for Genomics and Oncological Research-Pfizer/Universidad de Granada/Junta de Andalucía (GENYO), Granada, Spain
| | - Lidia Frejo
- Otology and Neurotology Group CTS495, Department of Genomic Medicine, Centre for Genomics and Oncological Research-Pfizer/Universidad de Granada/Junta de Andalucía (GENYO), Granada, Spain.,Department of Pediatric Otolaryngology and Department of Orthopedics, The Feinstein Institute for Medical Research, Northwell Health System, Manhasset, NY, United States
| | - Alvaro Gallego-Martinez
- Otology and Neurotology Group CTS495, Department of Genomic Medicine, Centre for Genomics and Oncological Research-Pfizer/Universidad de Granada/Junta de Andalucía (GENYO), Granada, Spain
| | - Eduardo Martin-Sanz
- Department of Otolaryngology, Hospital Universitario de Getafe, Getafe, Spain
| | | | | | - Andres Soto-Varela
- Division of Otoneurology, Department of Otorhinolaryngology, Complexo Hospitalario Universitario, Santiago de Compostela, Spain
| | - Sofia Santos-Perez
- Division of Otoneurology, Department of Otorhinolaryngology, Complexo Hospitalario Universitario, Santiago de Compostela, Spain
| | | | - Juan Manuel Espinosa-Sanchez
- Otology and Neurotology Group CTS495, Department of Genomic Medicine, Centre for Genomics and Oncological Research-Pfizer/Universidad de Granada/Junta de Andalucía (GENYO), Granada, Spain.,Department of Otolaryngology, Instituto de Investigación Biosanitaria ibs.GRANADA, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Patricia Pérez-Carpena
- Otology and Neurotology Group CTS495, Department of Genomic Medicine, Centre for Genomics and Oncological Research-Pfizer/Universidad de Granada/Junta de Andalucía (GENYO), Granada, Spain.,Department of Otolaryngology, Hospital Universitario San Cecilio, Granada, Spain
| | | | - Ismael Aran
- Department of Otolaryngology, Complexo Hospitalario de Pontevedra, Pontevedra, Spain
| | - Jose Antonio Lopez-Escamez
- Otology and Neurotology Group CTS495, Department of Genomic Medicine, Centre for Genomics and Oncological Research-Pfizer/Universidad de Granada/Junta de Andalucía (GENYO), Granada, Spain.,Department of Otolaryngology, Instituto de Investigación Biosanitaria ibs.GRANADA, Hospital Universitario Virgen de las Nieves, Granada, Spain
| |
Collapse
|
73
|
The EXPANDER Integrated Platform for Transcriptome Analysis. J Mol Biol 2019; 431:2398-2406. [PMID: 31100387 DOI: 10.1016/j.jmb.2019.05.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/07/2019] [Accepted: 05/07/2019] [Indexed: 11/21/2022]
Abstract
Genome-wide analysis of cellular transcriptomes using RNA-seq or expression arrays is a major mainstay of current biological and biomedical research. EXPANDER (EXPression ANalyzer and DisplayER) is a comprehensive software package for analysis of expression data, with built-in support for 18 different organisms. It is designed as a "one-stop shop" platform for transcriptomic analysis, allowing for execution of all analysis steps starting with gene expression data matrix. Analyses offered include low-level preprocessing and normalization, differential expression analysis, clustering, bi-clustering, supervised grouping, high-level functional and pathway enrichment tests, and networks and motif analyses. A variety of options is offered for each step, using established algorithms, including many developed and published by our laboratory. EXPANDER has been continuously developed since 2003, having to date over 18,000 downloads and 540 citations. One of the innovations in the recent version is support for combined analysis of gene expression and ChIP-seq data to enhance the inference of transcriptional networks and their functional interpretation. EXPANDER implements cutting-edge algorithms and makes them accessible to users through user-friendly interface and intuitive visualizations. It is freely available to users at http://acgt.cs.tau.ac.il/expander/.
Collapse
|
74
|
Pou4f1 Defines a Subgroup of Type I Spiral Ganglion Neurons and Is Necessary for Normal Inner Hair Cell Presynaptic Ca 2+ Signaling. J Neurosci 2019; 39:5284-5298. [PMID: 31085606 DOI: 10.1523/jneurosci.2728-18.2019] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/22/2019] [Accepted: 04/01/2019] [Indexed: 02/02/2023] Open
Abstract
Acoustic signals are relayed from the ear to the brain via spiral ganglion neurons (SGNs) that receive auditory information from the cochlear inner hair cells (IHCs) and transmit that information to the cochlear nucleus of the brainstem. Physiologically distinct classes of SGNs have been characterized by their spontaneous firing rate and responses to sound and those physiological distinctions are thought to correspond to stereotyped synaptic positions on the IHC. More recently, single-cell profiling has identified multiple groups of SGNs based on transcriptional profiling; however, correlations between any of these groups and distinct neuronal physiology have not been determined. In this study, we show that expression of the POU (Pit-Oct-Unc) transcription factor Pou4f1 in type I SGNs in mice of both sexes correlates with a synaptic location on the modiolar side of IHCs. Conditional deletion of Pou4f1 in SGNs beginning in mice at embryonic day 13 rescues the early path-finding and apoptotic phenotypes reported for germline deletion of Pou4f1, resulting in a phenotypically normal development of SGN patterning. However, conditional deletion of Pou4f1 in SGNs alters the activation of Ca2+ channels in IHCs primarily by increasing their voltage sensitivity. Moreover, the modiolar to pillar gradient of active zone Ca2+ influx strength is eliminated. These results demonstrate that a subset of modiolar-targeted SGNs retain expression of Pou4f1 beyond the onset of hearing and suggest that this transcription factor plays an instructive role in presynaptic Ca2+ signaling in IHCs.SIGNIFICANCE STATEMENT Physiologically distinct classes of type I spiral ganglion neurons (SGNs) are necessary to encode sound intensities spanning the audible range. Although anatomical studies have demonstrated structural correlates for some physiologically defined classes of type I SGNs, an understanding of the molecular pathways that specify each type is only now emerging. Here, we demonstrate that expression of the transcription factor Pou4f1 corresponds to a distinct subgroup of type I SGNs that synapse on the modiolar side of inner hair cells. The conditional deletion of Pou4f1 after SGN formation does not disrupt ganglion size or morphology, change the distribution of IHC synaptic locations, or affect the creation of synapses, but it does influence the voltage dependence and strength of Ca2+ influx at presynaptic active zones in inner hair cells.
Collapse
|
75
|
Celaya AM, Sánchez-Pérez I, Bermúdez-Muñoz JM, Rodríguez-de la Rosa L, Pintado-Berninches L, Perona R, Murillo-Cuesta S, Varela-Nieto I. Deficit of mitogen-activated protein kinase phosphatase 1 (DUSP1) accelerates progressive hearing loss. eLife 2019; 8:39159. [PMID: 30938680 PMCID: PMC6464786 DOI: 10.7554/elife.39159] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 04/01/2019] [Indexed: 12/12/2022] Open
Abstract
Mitogen-activated protein kinases (MAPK) such as p38 and the c-Jun N-terminal kinases (JNKs) are activated during the cellular response to stress signals. Their activity is regulated by the MAPK-phosphatase 1 (DUSP1), a key component of the anti-inflammatory response. Stress kinases are well-described elements of the response to otic injury and the otoprotective potential of JNK inhibitors is being tested in clinical trials. By contrast, there are no studies exploring the role of DUSP1 in hearing and hearing loss. Here we show that Dusp1 expression is age-regulated in the mouse cochlea. Dusp1 gene knock-out caused premature progressive hearing loss, as confirmed by auditory evoked responses in Dusp1-/- mice. Hearing loss correlated with cell death in hair cells, degeneration of spiral neurons and increased macrophage infiltration. Dusp1-/- mouse cochleae showed imbalanced redox status and dysregulated expression of cytokines. These data suggest that DUSP1 is essential for cochlear homeostasis in the response to stress during ageing.
Collapse
Affiliation(s)
- Adelaida M Celaya
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, ISCIII, Madrid, Spain
| | - Isabel Sánchez-Pérez
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, ISCIII, Madrid, Spain.,Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain.,Biochemistry Department, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain.,Biomedicine Unit UCLM-CSIC, Madrid, Spain
| | - Jose M Bermúdez-Muñoz
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, ISCIII, Madrid, Spain
| | - Lourdes Rodríguez-de la Rosa
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, ISCIII, Madrid, Spain.,Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Laura Pintado-Berninches
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Rosario Perona
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, ISCIII, Madrid, Spain.,Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Silvia Murillo-Cuesta
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, ISCIII, Madrid, Spain
| | - Isabel Varela-Nieto
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, ISCIII, Madrid, Spain
| |
Collapse
|
76
|
Ingham NJ, Pearson SA, Vancollie VE, Rook V, Lewis MA, Chen J, Buniello A, Martelletti E, Preite L, Lam CC, Weiss FD, Powis Z, Suwannarat P, Lelliott CJ, Dawson SJ, White JK, Steel KP. Mouse screen reveals multiple new genes underlying mouse and human hearing loss. PLoS Biol 2019; 17:e3000194. [PMID: 30973865 PMCID: PMC6459510 DOI: 10.1371/journal.pbio.3000194] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 03/07/2019] [Indexed: 11/23/2022] Open
Abstract
Adult-onset hearing loss is very common, but we know little about the underlying molecular pathogenesis impeding the development of therapies. We took a genetic approach to identify new molecules involved in hearing loss by screening a large cohort of newly generated mouse mutants using a sensitive electrophysiological test, the auditory brainstem response (ABR). We review here the findings from this screen. Thirty-eight unexpected genes associated with raised thresholds were detected from our unbiased sample of 1,211 genes tested, suggesting extreme genetic heterogeneity. A wide range of auditory pathophysiologies was found, and some mutant lines showed normal development followed by deterioration of responses, revealing new molecular pathways involved in progressive hearing loss. Several of the genes were associated with the range of hearing thresholds in the human population and one, SPNS2, was involved in childhood deafness. The new pathways required for maintenance of hearing discovered by this screen present new therapeutic opportunities.
Collapse
Affiliation(s)
- Neil J Ingham
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | | | | | - Victoria Rook
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Morag A Lewis
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Jing Chen
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Annalisa Buniello
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Elisa Martelletti
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Lorenzo Preite
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Chi Chung Lam
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Felix D Weiss
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Zӧe Powis
- Department of Emerging Genetics Medicine, Ambry Genetics, Aliso Viejo, California, United States of America
| | - Pim Suwannarat
- Mid-Atlantic Permanente Medical Group, Rockville, Maryland, United States of America
| | | | - Sally J Dawson
- UCL Ear Institute, University College London, London, United Kingdom
| | | | - Karen P Steel
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
77
|
Du P, Gao K, Cao Y, Yang S, Wang Y, Guo R, Zhao M, Jia S. RFX1 downregulation contributes to TLR4 overexpression in CD14 + monocytes via epigenetic mechanisms in coronary artery disease. Clin Epigenetics 2019; 11:44. [PMID: 30857550 PMCID: PMC6413463 DOI: 10.1186/s13148-019-0646-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/01/2019] [Indexed: 02/07/2023] Open
Abstract
Background Toll-like receptor 4 (TLR4) expression is increased in activated monocytes, which play a critical role in the pathogenesis of coronary artery disease (CAD). However, the mechanism remains unclear. Regulatory factor X1 (RFX1) is a critical transcription factor regulating epigenetic modifications. In this study, we investigated whether RFX1 and epigenetic modifications mediated by RFX1 contributed to the overexpression of TLR4 in activated monocytes. Results Compared with those of the controls, the mRNA and protein expression of RFX1 were downregulated and the mRNA expression of TLR4 was upregulated in CD14+ monocytes obtained from CAD patients and CD14+ monocytes obtained from healthy controls treated with low-density lipoprotein (LDL). The mRNA expression of RFX1 was negatively correlated with the mRNA expression of TLR4 in CD14+ monocytes. RFX1 knockdown led to the overexpression of TLR4 and the activation of CD14+ monocytes. In contrast, the overexpression of RFX1 inhibited TLR4 expression and the activation of CD14+ monocytes stimulated with LDL. Moreover, TLR4 was identified as a target gene of RFX1. The results indicated that RFX1 downregulation contributed to the decreased DNA methylation and histone H3 lysine 9 trimethylation and the increased H3 and H4 acetylation in the TLR4 promoter via the lack of recruitments of DNA methyltransferase 1 (DNMT1), histone deacetylase 1 (HDAC1), and histone-lysine N-methyltransferase SUV39H1 (SUV39H1), which were observed in CD14+ monocytes of CAD patients. Conclusions Our results show that RFX1 expression deficiency leads to the overexpression of TLR4 and the activation of CD14+ monocytes in CAD patients by regulating DNA methylation and histone modifications, which highlights the vital role of RFX1 in the pathogenesis of CAD. Electronic supplementary material The online version of this article (10.1186/s13148-019-0646-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pei Du
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Keqin Gao
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Pharmacy, Weifang People's Hospital, Weifang, China
| | - Yu Cao
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shuang Yang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yang Wang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ren Guo
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ming Zhao
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China.
| | - Sujie Jia
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China. .,Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
78
|
Yizhar-Barnea O, Valensisi C, Jayavelu ND, Kishore K, Andrus C, Koffler-Brill T, Ushakov K, Perl K, Noy Y, Bhonker Y, Pelizzola M, Hawkins RD, Avraham KB. DNA methylation dynamics during embryonic development and postnatal maturation of the mouse auditory sensory epithelium. Sci Rep 2018; 8:17348. [PMID: 30478432 PMCID: PMC6255903 DOI: 10.1038/s41598-018-35587-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/08/2018] [Indexed: 12/17/2022] Open
Abstract
The inner ear is a complex structure responsible for hearing and balance, and organ pathology is associated with deafness and balance disorders. To evaluate the role of epigenomic dynamics, we performed whole genome bisulfite sequencing at key time points during the development and maturation of the mouse inner ear sensory epithelium (SE). Our single-nucleotide resolution maps revealed variations in both general characteristics and dynamics of DNA methylation over time. This allowed us to predict the location of non-coding regulatory regions and to identify several novel candidate regulatory factors, such as Bach2, that connect stage-specific regulatory elements to molecular features that drive the development and maturation of the SE. Constructing in silico regulatory networks around sites of differential methylation enabled us to link key inner ear regulators, such as Atoh1 and Stat3, to pathways responsible for cell lineage determination and maturation, such as the Notch pathway. We also discovered that a putative enhancer, defined as a low methylated region (LMR), can upregulate the GJB6 gene and a neighboring non-coding RNA. The study of inner ear SE methylomes revealed novel regulatory regions in the hearing organ, which may improve diagnostic capabilities, and has the potential to guide the development of therapeutics for hearing loss by providing multiple intervention points for manipulation of the auditory system.
Collapse
Affiliation(s)
- Ofer Yizhar-Barnea
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Cristina Valensisi
- Division of Medical Genetics, Department of Medicine, Department of Genome Sciences, Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Naresh Doni Jayavelu
- Division of Medical Genetics, Department of Medicine, Department of Genome Sciences, Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Kamal Kishore
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Milano, 20139, Italy
| | - Colin Andrus
- Division of Medical Genetics, Department of Medicine, Department of Genome Sciences, Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Tal Koffler-Brill
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Kathy Ushakov
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Kobi Perl
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Yael Noy
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Yoni Bhonker
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Mattia Pelizzola
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Milano, 20139, Italy
| | - R David Hawkins
- Division of Medical Genetics, Department of Medicine, Department of Genome Sciences, Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, 98195, USA.
| | - Karen B Avraham
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
79
|
Helios is a key transcriptional regulator of outer hair cell maturation. Nature 2018; 563:696-700. [PMID: 30464345 PMCID: PMC6542691 DOI: 10.1038/s41586-018-0728-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/25/2018] [Indexed: 11/09/2022]
Abstract
The sensory cells that are responsible for hearing include the cochlear inner hair cells (IHCs) and outer hair cells (OHCs), with the OHCs being necessary for sound sensitivity and tuning1. Both cell types are thought to arise from common progenitors; however, our understanding of the factors that control the fate of IHCs and OHCs remains limited. Here we identify Ikzf2 (which encodes Helios) as an essential transcription factor in mice that is required for OHC functional maturation and hearing. Helios is expressed in postnatal mouse OHCs, and in the cello mouse model a point mutation in Ikzf2 causes early-onset sensorineural hearing loss. Ikzf2cello/cello OHCs have greatly reduced prestin-dependent electromotile activity, a hallmark of OHC functional maturation, and show reduced levels of crucial OHC-expressed genes such as Slc26a5 (which encodes prestin) and Ocm. Moreover, we show that ectopic expression of Ikzf2 in IHCs: induces the expression of OHC-specific genes; reduces the expression of canonical IHC genes; and confers electromotility to IHCs, demonstrating that Ikzf2 can partially shift the IHC transcriptome towards an OHC-like identity.
Collapse
|
80
|
Hearn T. ALMS1 and Alström syndrome: a recessive form of metabolic, neurosensory and cardiac deficits. J Mol Med (Berl) 2018; 97:1-17. [PMID: 30421101 PMCID: PMC6327082 DOI: 10.1007/s00109-018-1714-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/25/2018] [Accepted: 10/30/2018] [Indexed: 12/12/2022]
Abstract
Alström syndrome (AS) is characterised by metabolic deficits, retinal dystrophy, sensorineural hearing loss, dilated cardiomyopathy and multi-organ fibrosis. Elucidating the function of the mutated gene, ALMS1, is critical for the development of specific treatments and may uncover pathways relevant to a range of other disorders including common forms of obesity and type 2 diabetes. Interest in ALMS1 is heightened by the recent discovery of its involvement in neonatal cardiomyocyte cell cycle arrest, a process with potential relevance to regenerative medicine. ALMS1 encodes a ~ 0.5 megadalton protein that localises to the base of centrioles. Some studies have suggested a role for this protein in maintaining centriole-nucleated sensory organelles termed primary cilia, and AS is now considered to belong to the growing class of human genetic disorders linked to ciliary dysfunction (ciliopathies). However, mechanistic details are lacking, and recent studies have implicated ALMS1 in several processes including endosomal trafficking, actin organisation, maintenance of centrosome cohesion and transcription. In line with a more complex picture, multiple isoforms of the protein likely exist and non-centrosomal sites of localisation have been reported. This review outlines the evidence for both ciliary and extra-ciliary functions of ALMS1.
Collapse
Affiliation(s)
- Tom Hearn
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK.
| |
Collapse
|
81
|
Li Y, Liu H, Giffen KP, Chen L, Beisel KW, He DZZ. Transcriptomes of cochlear inner and outer hair cells from adult mice. Sci Data 2018; 5:180199. [PMID: 30277483 PMCID: PMC6167952 DOI: 10.1038/sdata.2018.199] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/02/2018] [Indexed: 01/09/2023] Open
Abstract
Inner hair cells (IHCs) and outer hair cells (OHCs) are the two anatomically and functionally distinct types of mechanosensitive receptor cells in the mammalian cochlea. The molecular mechanisms defining their morphological and functional specializations are largely unclear. As a first step to uncover the underlying mechanisms, we examined the transcriptomes of IHCs and OHCs isolated from adult CBA/J mouse cochleae. One thousand IHCs and OHCs were separately collected using the suction pipette technique. RNA sequencing of IHCs and OHCs was performed and their transcriptomes were analyzed. The results were validated by comparing some IHC and OHC preferentially expressed genes between present study and published microarray-based data as well as by real-time qPCR. Antibody-based immunocytochemistry was used to validate preferential expression of SLC7A14 and DNM3 in IHCs and OHCs. These data are expected to serve as a highly valuable resource for unraveling the molecular mechanisms underlying different biological properties of IHCs and OHCs as well as to provide a road map for future characterization of genes expressed in IHCs and OHCs.
Collapse
Affiliation(s)
- Yi Li
- Department of Otorhinolaryngology, Beijing Tongren Hospital, Beijing Capital Medical University, Beijing 100730, China
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68170, USA
| | - Huizhan Liu
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68170, USA
| | - Kimberlee P. Giffen
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68170, USA
| | - Lei Chen
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68170, USA
- Chongqing Academy of Animal Science, Chongqing 402460, China
| | - Kirk W. Beisel
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68170, USA
| | - David Z. Z. He
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68170, USA
| |
Collapse
|
82
|
Liu H, Chen L, Giffen KP, Stringham ST, Li Y, Judge PD, Beisel KW, He DZZ. Cell-Specific Transcriptome Analysis Shows That Adult Pillar and Deiters' Cells Express Genes Encoding Machinery for Specializations of Cochlear Hair Cells. Front Mol Neurosci 2018; 11:356. [PMID: 30327589 PMCID: PMC6174830 DOI: 10.3389/fnmol.2018.00356] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/11/2018] [Indexed: 11/13/2022] Open
Abstract
The mammalian auditory sensory epithelium, the organ of Corti, is composed of hair cells and supporting cells. Hair cells contain specializations in the apical, basolateral and synaptic membranes. These specializations mediate mechanotransduction, electrical and mechanical activities and synaptic transmission. Supporting cells maintain homeostasis of the ionic and chemical environment of the cochlea and contribute to the stiffness of the cochlear partition. While spontaneous proliferation and transdifferentiation of supporting cells are the source of the regenerative response to replace lost hair cells in lower vertebrates, supporting cells in adult mammals no longer retain that capability. An important first step to revealing the basic biological properties of supporting cells is to characterize their cell-type specific transcriptomes. Using RNA-seq, we examined the transcriptomes of 1,000 pillar and 1,000 Deiters' cells, as well as the two types of hair cells, individually collected from adult CBA/J mouse cochleae using a suction pipette technique. Our goal was to determine whether pillar and Deiters' cells, the commonly targeted cells for hair cell replacement, express the genes known for encoding machinery for hair cell specializations in the apical, basolateral, and synaptic membranes. We showed that both pillar and Deiters' cells express these genes, with pillar cells being more similar to hair cells than Deiters' cells. The fact that adult pillar and Deiters' cells express the genes cognate to hair cell specializations provides a strong molecular basis for targeting these cells for mammalian hair cell replacement after hair cells are lost due to damage.
Collapse
Affiliation(s)
- Huizhan Liu
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
| | - Lei Chen
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States.,Chongqing Academy of Animal Science, Chongqing, China
| | - Kimberlee P Giffen
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
| | - Sean T Stringham
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
| | - Yi Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Beijing Tonren Hospital, Capital Medical University, Beijing, China
| | - Paul D Judge
- Department of Otolaryngology-Head and Neck Surgery, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kirk W Beisel
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
| | - David Z Z He
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
| |
Collapse
|
83
|
Chen B, Niu J, Kreuzer J, Zheng B, Jarugumilli GK, Haas W, Wu X. Auto-fatty acylation of transcription factor RFX3 regulates ciliogenesis. Proc Natl Acad Sci U S A 2018; 115:E8403-E8412. [PMID: 30127002 PMCID: PMC6130365 DOI: 10.1073/pnas.1800949115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Defects in cilia have been associated with an expanding human disease spectrum known as ciliopathies. Regulatory Factor X 3 (RFX3) is one of the major transcription factors required for ciliogenesis and cilia functions. In addition, RFX3 regulates pancreatic islet cell differentiation and mature β-cell functions. However, how RFX3 protein is regulated at the posttranslational level remains poorly understood. Using chemical reporters of protein fatty acylation and mass spectrometry analysis, here we show that RFX3 transcriptional activity is regulated by S-fatty acylation at a highly conserved cysteine residue in the dimerization domain. Surprisingly, RFX3 undergoes enzyme-independent, "self-catalyzed" auto-fatty acylation and displays preferences for 18-carbon stearic acid and oleic acid. The fatty acylation-deficient mutant of RFX3 shows decreased homodimerization; fails to promote ciliary gene expression, ciliogenesis, and elongation; and impairs Hedgehog signaling. Our findings reveal a regulation of RFX3 transcription factor and link fatty acid metabolism and protein lipidation to the regulation of ciliogenesis.
Collapse
Affiliation(s)
- Baoen Chen
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129
| | - Jixiao Niu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129
| | - Johannes Kreuzer
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129
- Department of Medicine, Harvard Medical School, Charlestown, MA 02129
| | - Baohui Zheng
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129
| | - Gopala K Jarugumilli
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129
| | - Wilhelm Haas
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129
- Department of Medicine, Harvard Medical School, Charlestown, MA 02129
| | - Xu Wu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129;
| |
Collapse
|
84
|
Michel V, Booth KT, Patni P, Cortese M, Azaiez H, Bahloul A, Kahrizi K, Labbé M, Emptoz A, Lelli A, Dégardin J, Dupont T, Aghaie A, Oficjalska-Pham D, Picaud S, Najmabadi H, Smith RJ, Bowl MR, Brown SD, Avan P, Petit C, El-Amraoui A. CIB2, defective in isolated deafness, is key for auditory hair cell mechanotransduction and survival. EMBO Mol Med 2018; 9:1711-1731. [PMID: 29084757 PMCID: PMC5709726 DOI: 10.15252/emmm.201708087] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Defects of CIB2, calcium‐ and integrin‐binding protein 2, have been reported to cause isolated deafness, DFNB48 and Usher syndrome type‐IJ, characterized by congenital profound deafness, balance defects and blindness. We report here two new nonsense mutations (pGln12* and pTyr110*) in CIB2 patients displaying nonsyndromic profound hearing loss, with no evidence of vestibular or retinal dysfunction. Also, the generated CIB2−/− mice display an early onset profound deafness and have normal balance and retinal functions. In these mice, the mechanoelectrical transduction currents are totally abolished in the auditory hair cells, whilst they remain unchanged in the vestibular hair cells. The hair bundle morphological abnormalities of CIB2−/− mice, unlike those of mice defective for the other five known USH1 proteins, begin only after birth and lead to regression of the stereocilia and rapid hair‐cell death. This essential role of CIB2 in mechanotransduction and cell survival that, we show, is restricted to the cochlea, probably accounts for the presence in CIB2−/− mice and CIB2 patients, unlike in Usher syndrome, of isolated hearing loss without balance and vision deficits.
Collapse
Affiliation(s)
- Vincent Michel
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France
| | - Kevin T Booth
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology- Head and Neck Surgery, University of Iowa, Iowa City, Iowa.,Department of Molecular Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Pranav Patni
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France
| | - Matteo Cortese
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France
| | - Hela Azaiez
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology- Head and Neck Surgery, University of Iowa, Iowa City, Iowa
| | - Amel Bahloul
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Ménélik Labbé
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France
| | - Alice Emptoz
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France
| | - Andrea Lelli
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France
| | - Julie Dégardin
- Sorbonne Universités, UPMC Univ Paris06, Paris, France.,Retinal information processing - Pharmacology and Pathology, Institut de la Vision, Paris, France
| | - Typhaine Dupont
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France
| | - Asadollah Aghaie
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France.,Syndrome de Usher et Autres Atteintes Rétino-Cochléaires, Institut de la Vision, Paris, France
| | - Danuta Oficjalska-Pham
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France
| | - Serge Picaud
- Sorbonne Universités, UPMC Univ Paris06, Paris, France.,Retinal information processing - Pharmacology and Pathology, Institut de la Vision, Paris, France
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Richard J Smith
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology- Head and Neck Surgery, University of Iowa, Iowa City, Iowa
| | - Michael R Bowl
- Mammalian Genetics Unit, MRC Harwell Institute, Oxford, UK
| | | | - Paul Avan
- Laboratoire de Biophysique Sensorielle, Faculté de Médecine, Biophysique Médicale, Centre Jean Perrin, Université d'Auvergne, Clermont-Ferrand, France
| | - Christine Petit
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France.,Collège de France, Paris, France
| | - Aziz El-Amraoui
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France .,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France
| |
Collapse
|
85
|
Li T, Bellen HJ, Groves AK. Using Drosophila to study mechanisms of hereditary hearing loss. Dis Model Mech 2018; 11:11/6/dmm031492. [PMID: 29853544 PMCID: PMC6031363 DOI: 10.1242/dmm.031492] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Johnston's organ - the hearing organ of Drosophila - has a very different structure and morphology to that of the hearing organs of vertebrates. Nevertheless, it is becoming clear that vertebrate and invertebrate auditory organs share many physiological, molecular and genetic similarities. Here, we compare the molecular and cellular features of hearing organs in Drosophila with those of vertebrates, and discuss recent evidence concerning the functional conservation of Usher proteins between flies and mammals. Mutations in Usher genes cause Usher syndrome, the leading cause of human deafness and blindness. In Drosophila, some Usher syndrome proteins appear to physically interact in protein complexes that are similar to those described in mammals. This functional conservation highlights a rational role for Drosophila as a model for studying hearing, and for investigating the evolution of auditory organs, with the aim of advancing our understanding of the genes that regulate human hearing and the pathogenic mechanisms that lead to deafness.
Collapse
Affiliation(s)
- Tongchao Li
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hugo J Bellen
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andrew K Groves
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA .,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
86
|
Booth KT, Azaiez H, Jahan I, Smith RJH, Fritzsch B. Intracellular Regulome Variability Along the Organ of Corti: Evidence, Approaches, Challenges, and Perspective. Front Genet 2018; 9:156. [PMID: 29868110 PMCID: PMC5951964 DOI: 10.3389/fgene.2018.00156] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/13/2018] [Indexed: 12/13/2022] Open
Abstract
The mammalian hearing organ is a regular array of two types of hair cells (HCs) surrounded by six types of supporting cells. Along the tonotopic axis, this conserved radial array of cell types shows longitudinal variations to enhance the tuning properties of basilar membrane. We present the current evidence supporting the hypothesis that quantitative local variations in gene expression profiles are responsible for local cell responses to global gene manipulations. With the advent of next generation sequencing and the unprecedented array of technologies offering high throughput analyses at the single cell level, transcriptomics will become a common tool to enhance our understanding of the inner ear. We provide an overview of the approaches and landmark studies undertaken to date to analyze single cell variations in the organ of Corti and discuss the current limitations. We next provide an overview of the complexity of known regulatory mechanisms in the inner ear. These mechanisms are tightly regulated temporally and spatially at the transcription, RNA-splicing, mRNA-regulation, and translation levels. Understanding the intricacies of regulatory mechanisms at play in the inner ear will require the use of complementary approaches, and most probably, a combinatorial strategy coupling transcriptomics, proteomics, and epigenomics technologies. We highlight how these data, in conjunction with recent insights into molecular cell transformation, can advance attempts to restore lost hair cells.
Collapse
Affiliation(s)
- Kevin T Booth
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, University of Iowa, Iowa City, IA, United States.,Interdisciplinary Graduate Program in Molecular Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Hela Azaiez
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, University of Iowa, Iowa City, IA, United States
| | - Israt Jahan
- Department of Biology, University of Iowa, Iowa City, IA, United States
| | - Richard J H Smith
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, University of Iowa, Iowa City, IA, United States
| | - Bernd Fritzsch
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, University of Iowa, Iowa City, IA, United States.,Department of Biology, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
87
|
Matern MS, Beirl A, Ogawa Y, Song Y, Paladugu N, Kindt KS, Hertzano R. Transcriptomic Profiling of Zebrafish Hair Cells Using RiboTag. Front Cell Dev Biol 2018; 6:47. [PMID: 29765956 PMCID: PMC5939014 DOI: 10.3389/fcell.2018.00047] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 04/13/2018] [Indexed: 01/27/2023] Open
Abstract
The zebrafish inner ear organs and lateral line neuromasts are comprised of a variety of cell types, including mechanosensitive hair cells. Zebrafish hair cells are evolutionarily homologous to mammalian hair cells, and have been particularly useful for studying normal hair cell development and function. However, the relative scarcity of hair cells within these complex organs, as well as the difficulty of fine dissection at early developmental time points, makes hair cell-specific gene expression profiling technically challenging. Cell sorting methods, as well as single-cell RNA-Seq, have proved to be very informative in studying hair cell-specific gene expression. However, these methods require that tissues are dissociated, the processing for which can lead to changes in gene expression prior to RNA extraction. To bypass this problem, we have developed a transgenic zebrafish model to evaluate the translatome of the inner ear and lateral line hair cells in their native tissue environment; the Tg(myo6b:RiboTag) zebrafish. This model expresses both GFP and a hemagglutinin (HA) tagged rpl10a gene under control of the myo6b promoter (myo6b:GFP-2A-rpl10a-3xHA), resulting in HA-tagged ribosomes expressed specifically in hair cells. Consequently, intact zebrafish larvae can be used to enrich for actively translated hair cell mRNA via an immunoprecipitation protocol using an antibody for the HA-tag (similar to the RiboTag mice). We demonstrate that this model can be used to reliably enrich for actively translated zebrafish hair cell mRNA. Additionally, we perform a global hair cell translatome analysis using RNA-Seq and show enrichment of known hair cell expressed transcripts and depletion of non-hair cell expressed transcripts in the immunoprecipitated material compared with mRNA extracted from whole fish (input). Our results show that our model can identify novel hair cell expressed genes in intact zebrafish, without inducing changes to gene expression that result from tissue dissociation and delays during cell sorting. Overall, we believe that this model will be highly useful for studying changes in zebrafish hair cell-specific gene expression in response to developmental progression, mutations, as well as hair cell damage by noise or ototoxic drug exposure.
Collapse
Affiliation(s)
- Maggie S. Matern
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Alisha Beirl
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, United States
| | - Yoko Ogawa
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Yang Song
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Nikhil Paladugu
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Katie S. Kindt
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, United States
| | - Ronna Hertzano
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, United States,Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States,*Correspondence: Ronna Hertzano
| |
Collapse
|
88
|
Liu Y, Jiang P, Wang G, Liu X, Luo S. Downregulation of RFX1 predicts poor prognosis of patients with small hepatocellular carcinoma. Eur J Surg Oncol 2018; 44:1087-1093. [PMID: 29764705 DOI: 10.1016/j.ejso.2018.04.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/08/2018] [Accepted: 04/18/2018] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE Regulatory factor X1 (RFX1) deletion has been reported to be correlated with poor prognosis of some types of cancer. The present study aimed to investigate the prognostic value of RFX1 in HCC, especially in small hepatocellular carcinoma. METHODS Immunohistochemical assay was used to investigate RFX1 expression in 221 HCC tissues and another validation cohort of 71 small HCC samples. We also performed in vitro experiments to investigate if RFX1 regulated invasive capacity of HCC cells and expression of epithelial-mesenchymal transition (EMT) markers. RESULTS We found that RFX1 expression was significantly lower in HCC tissues compared to the corresponding non-tumor tissues. Further survival analysis suggested that the downregulation of RFX1 correlated with poor prognosis and a high recurrence risk in HCC patients, particularly in small HCC patients. Furthermore, another validation cohort of small HCC samples confirmed that downregulation of RFX1 in HCC tissues predicted high recurrence risk and poor prognosis for early stage HCC patients. In vitro studies suggested that knocking down RFX1 facilitated HCC cell invasion, while overexpression of RFX1 reduced the invasion of HCC cells. Western blot assays also indicated that RFX1 regulated expression of some EMT markers. Knocking down RFX1 decreased E-cadherin and increased vimentin expression, while RFX1 overexpression enhanced E-cadherin and decreased vimentin expression. CONCLUSIONS Our study demonstrated that RFX1 downregulation is a new predictive marker of high recurrence risk and poor prognosis of HCC; It has potential to help guide treatment for postoperative HCC patients, especially for small HCC patients.
Collapse
Affiliation(s)
- Yingjun Liu
- Department of General Surgery, Affiliated Tumor Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Peng Jiang
- Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China
| | - Gangcheng Wang
- Department of General Surgery, Affiliated Tumor Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Xiaonyong Liu
- Department of General Surgery, Affiliated Tumor Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Suxia Luo
- Department of Internal Medicine, Affiliated Tumor Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.
| |
Collapse
|
89
|
Requena T, Gallego-Martinez A, Lopez-Escamez JA. Bioinformatic Integration of Molecular Networks and Major Pathways Involved in Mice Cochlear and Vestibular Supporting Cells. Front Mol Neurosci 2018; 11:108. [PMID: 29674954 PMCID: PMC5895758 DOI: 10.3389/fnmol.2018.00108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 03/19/2018] [Indexed: 12/18/2022] Open
Abstract
Background: Cochlear and vestibular epithelial non-hair cells (ENHCs) are the supporting elements of the cellular architecture in the organ of Corti and the vestibular neuroepithelium in the inner ear. Intercellular and cell-extracellular matrix interactions are essential to prevent an abnormal ion redistribution leading to hearing and vestibular loss. The aim of this study is to define the main pathways and molecular networks in the mouse ENHCs. Methods: We retrieved microarray and RNA-seq datasets from mouse epithelial sensory and non-sensory cells from gEAR portal (http://umgear.org/index.html) and obtained gene expression fold-change between ENHCs and non-epithelial cells (NECs) against HCs for each gene. Differentially expressed genes (DEG) with a log2 fold change between 1 and -1 were discarded. The remaining genes were selected to search for interactions using Ingenuity Pathway Analysis and STRING platform. Specific molecular networks for ENHCs in the cochlea and the vestibular organs were generated and significant pathways were identified. Results: Between 1723 and 1559 DEG were found in the mouse cochlear and vestibular tissues, respectively. Six main pathways showed enrichment in the supporting cells in both tissues: (1) "Inhibition of Matrix Metalloproteases"; (2) "Calcium Transport I"; (3) "Calcium Signaling"; (4) "Leukocyte Extravasation Signaling"; (5) "Signaling by Rho Family GTPases"; and (6) "Axonal Guidance Si". In the mouse cochlea, ENHCs showed a significant enrichment in 18 pathways highlighting "axonal guidance signaling (AGS)" (p = 4.37 × 10-8) and "RhoGDI Signaling" (p = 3.31 × 10-8). In the vestibular dataset, there were 20 enriched pathways in ENHCs, the most significant being "Leukocyte Extravasation Signaling" (p = 8.71 × 10-6), "Signaling by Rho Family GTPases" (p = 1.20 × 10-5) and "Calcium Signaling" (p = 1.20 × 10-5). Among the top ranked networks, the most biologically significant network contained the "auditory and vestibular system development and function" terms. We also found 108 genes showing tonotopic gene expression in the cochlear ENHCs. Conclusions: We have predicted the main pathways and molecular networks for ENHCs in the organ of Corti and vestibular neuroepithelium. These pathways will facilitate the design of molecular maps to select novel candidate genes for hearing or vestibular loss to conduct functional studies.
Collapse
Affiliation(s)
- Teresa Requena
- Otology & Neurotology Group CTS495, Department of Genomic Medicine-Centro de Genómica e Investigación Oncológica-Pfizer/Universidad de Granada/Junta de Andalucía (GENYO), Granada, Spain
| | - Alvaro Gallego-Martinez
- Otology & Neurotology Group CTS495, Department of Genomic Medicine-Centro de Genómica e Investigación Oncológica-Pfizer/Universidad de Granada/Junta de Andalucía (GENYO), Granada, Spain
| | - Jose A Lopez-Escamez
- Otology & Neurotology Group CTS495, Department of Genomic Medicine-Centro de Genómica e Investigación Oncológica-Pfizer/Universidad de Granada/Junta de Andalucía (GENYO), Granada, Spain.,Department of Otolaryngology, Instituto de Investigación Biosanitaria, ibs.GRANADA, Hospital Virgen de las Nieves, Universidad de Granada, Granada, Spain.,Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
90
|
Chen YC, Tsai CL, Wei YH, Wu YT, Hsu WT, Lin HC, Hsu YC. ATOH1/RFX1/RFX3 transcription factors facilitate the differentiation and characterisation of inner ear hair cell-like cells from patient-specific induced pluripotent stem cells harbouring A8344G mutation of mitochondrial DNA. Cell Death Dis 2018; 9:437. [PMID: 29740017 PMCID: PMC5941227 DOI: 10.1038/s41419-018-0488-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 03/12/2018] [Accepted: 03/16/2018] [Indexed: 11/10/2022]
Abstract
Degeneration or loss of inner ear hair cells (HCs) is irreversible and results in sensorineural hearing loss (SHL). Human-induced pluripotent stem cells (hiPSCs) have been employed in disease modelling and cell therapy. Here, we propose a transcription factor (TF)-driven approach using ATOH1 and regulatory factor of x-box (RFX) genes to generate HC-like cells from hiPSCs. Our results suggest that ATOH1/RFX1/RFX3 could significantly increase the differentiation capacity of iPSCs into MYO7AmCherry-positive cells, upregulate the mRNA expression levels of HC-related genes and promote the differentiation of HCs with more mature stereociliary bundles. To model the molecular and stereociliary structural changes involved in HC dysfunction in SHL, we further used ATOH1/RFX1/RFX3 to differentiate HC-like cells from the iPSCs from patients with myoclonus epilepsy associated with ragged-red fibres (MERRF) syndrome, which is caused by A8344G mutation of mitochondrial DNA (mtDNA), and characterised by myoclonus epilepsy, ataxia and SHL. Compared with isogenic iPSCs, MERRF-iPSCs possessed ~42–44% mtDNA with A8344G mutation and exhibited significantly elevated reactive oxygen species (ROS) production and CAT gene expression. Furthermore, MERRF-iPSC-differentiated HC-like cells exhibited significantly elevated ROS levels and MnSOD and CAT gene expression. These MERRF-HCs that had more single cilia with a shorter length could be observed only by using a non-TF method, but those with fewer stereociliary bundle-like protrusions than isogenic iPSCs-differentiated-HC-like cells could be further observed using ATOH1/RFX1/RFX3 TFs. We further analysed and compared the whole transcriptome of M1ctrl-HCs and M1-HCs after treatment with ATOH1 or ATOH1/RFX1/RFX3. We revealed that the HC-related gene transcripts in M1ctrl-iPSCs had a significantly higher tendency to be activated by ATOH1/RFX1/RFX3 than M1-iPSCs. The ATOH1/RFX1/RFX3 TF-driven approach for the differentiation of HC-like cells from iPSCs is an efficient and promising strategy for the disease modelling of SHL and can be employed in future therapeutic strategies to treat SHL patients.
Collapse
Affiliation(s)
- Yen-Chun Chen
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| | - Chia-Ling Tsai
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| | - Yau-Huei Wei
- Center for Mitochondrial Medicine and Free Radical Research Changhua Christian Hospital, Changhua, Taiwan
| | - Yu-Ting Wu
- Center for Mitochondrial Medicine and Free Radical Research Changhua Christian Hospital, Changhua, Taiwan
| | - Wei-Ting Hsu
- Department of Audiology and Speech-Language Pathology, Mackay Medical College, New Taipei City, Taiwan
| | - Hung-Ching Lin
- Department of Audiology and Speech-Language Pathology, Mackay Medical College, New Taipei City, Taiwan.,Department of Otolaryngology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Yi-Chao Hsu
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan.
| |
Collapse
|
91
|
Sugiaman-Trapman D, Vitezic M, Jouhilahti EM, Mathelier A, Lauter G, Misra S, Daub CO, Kere J, Swoboda P. Characterization of the human RFX transcription factor family by regulatory and target gene analysis. BMC Genomics 2018; 19:181. [PMID: 29510665 PMCID: PMC5838959 DOI: 10.1186/s12864-018-4564-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/21/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Evolutionarily conserved RFX transcription factors (TFs) regulate their target genes through a DNA sequence motif called the X-box. Thereby they regulate cellular specialization and terminal differentiation. Here, we provide a comprehensive analysis of all the eight human RFX genes (RFX1-8), their spatial and temporal expression profiles, potential upstream regulators and target genes. RESULTS We extracted all known human RFX1-8 gene expression profiles from the FANTOM5 database derived from transcription start site (TSS) activity as captured by Cap Analysis of Gene Expression (CAGE) technology. RFX genes are broadly (RFX1-3, RFX5, RFX7) and specifically (RFX4, RFX6) expressed in different cell types, with high expression in four organ systems: immune system, gastrointestinal tract, reproductive system and nervous system. Tissue type specific expression profiles link defined RFX family members with the target gene batteries they regulate. We experimentally confirmed novel TSS locations and characterized the previously undescribed RFX8 to be lowly expressed. RFX tissue and cell type specificity arises mainly from differences in TSS architecture. RFX transcript isoforms lacking a DNA binding domain (DBD) open up new possibilities for combinatorial target gene regulation. Our results favor a new grouping of the RFX family based on protein domain composition. We uncovered and experimentally confirmed the TFs SP2 and ESR1 as upstream regulators of specific RFX genes. Using TF binding profiles from the JASPAR database, we determined relevant patterns of X-box motif positioning with respect to gene TSS locations of human RFX target genes. CONCLUSIONS The wealth of data we provide will serve as the basis for precisely determining the roles RFX TFs play in human development and disease.
Collapse
Affiliation(s)
| | - Morana Vitezic
- Department of Biology, Bioinformatics Centre, Section for Computational and RNA Biology, University of Copenhagen, Copenhagen, Denmark
| | - Eeva-Mari Jouhilahti
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Anthony Mathelier
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, Canada
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL partnership, University of Oslo, Oslo, Norway
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Gilbert Lauter
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Sougat Misra
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Carsten O Daub
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- School of Basic and Medical Biosciences, King's College London, London, UK
- Folkhälsan Institute of Genetics and Molecular Neurology Research Program, University of Helsinki, Helsinki, Finland
| | - Peter Swoboda
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.
| |
Collapse
|
92
|
De Stasio EA, Mueller KP, Bauer RJ, Hurlburt AJ, Bice SA, Scholtz SL, Phirke P, Sugiaman-Trapman D, Stinson LA, Olson HB, Vogel SL, Ek-Vazquez Z, Esemen Y, Korzynski J, Wolfe K, Arbuckle BN, Zhang H, Lombard-Knapp G, Piasecki BP, Swoboda P. An Expanded Role for the RFX Transcription Factor DAF-19, with Dual Functions in Ciliated and Nonciliated Neurons. Genetics 2018; 208:1083-1097. [PMID: 29301909 PMCID: PMC5844324 DOI: 10.1534/genetics.117.300571] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/02/2017] [Indexed: 02/06/2023] Open
Abstract
Regulatory Factor X (RFX) transcription factors (TFs) are best known for activating genes required for ciliogenesis in both vertebrates and invertebrates. In humans, eight RFX TFs have a variety of tissue-specific functions, while in the worm Caenorhabditis elegans, the sole RFX gene, daf-19, encodes a set of nested isoforms. Null alleles of daf-19 confer pleiotropic effects including altered development with a dauer constitutive phenotype, complete absence of cilia and ciliary proteins, and defects in synaptic protein maintenance. We sought to identify RFX/daf-19 target genes associated with neuronal functions other than ciliogenesis using comparative transcriptome analyses at different life stages of the worm. Subsequent characterization of gene expression patterns revealed one set of genes activated in the presence of DAF-19 in ciliated sensory neurons, whose activation requires the daf-19c isoform, also required for ciliogenesis. A second set of genes is downregulated in the presence of DAF-19, primarily in nonsensory neurons. The human orthologs of some of these neuronal genes are associated with human diseases. We report the novel finding that daf-19a is directly or indirectly responsible for downregulation of these neuronal genes in C. elegans by characterizing a new mutation affecting the daf-19a isoform (tm5562) and not associated with ciliogenesis, but which confers synaptic and behavioral defects. Thus, we have identified a new regulatory role for RFX TFs in the nervous system. The new daf-19 candidate target genes we have identified by transcriptomics will serve to uncover the molecular underpinnings of the pleiotropic effects that daf-19 exerts on nervous system function.
Collapse
Affiliation(s)
| | | | - Rosemary J Bauer
- Department of Biology, Lawrence University, Appleton, Wisconsin 54911
| | | | - Sophie A Bice
- Department of Biology, Lawrence University, Appleton, Wisconsin 54911
| | - Sophie L Scholtz
- Department of Biology, Lawrence University, Appleton, Wisconsin 54911
| | - Prasad Phirke
- Department of Biosciences and Nutrition, Karolinska Institute, 141 83 Huddinge, Sweden
| | | | - Loraina A Stinson
- Department of Biology, Lawrence University, Appleton, Wisconsin 54911
| | - Haili B Olson
- Department of Biology, Lawrence University, Appleton, Wisconsin 54911
| | - Savannah L Vogel
- Department of Biology, Lawrence University, Appleton, Wisconsin 54911
| | | | - Yagmur Esemen
- Department of Biology, Lawrence University, Appleton, Wisconsin 54911
| | - Jessica Korzynski
- Department of Biology, Lawrence University, Appleton, Wisconsin 54911
| | - Kelsey Wolfe
- Department of Biology, Lawrence University, Appleton, Wisconsin 54911
| | - Bonnie N Arbuckle
- Department of Biology, Lawrence University, Appleton, Wisconsin 54911
| | - He Zhang
- Department of Biology, Lawrence University, Appleton, Wisconsin 54911
| | | | - Brian P Piasecki
- Department of Biology, Lawrence University, Appleton, Wisconsin 54911
| | - Peter Swoboda
- Department of Biosciences and Nutrition, Karolinska Institute, 141 83 Huddinge, Sweden
| |
Collapse
|
93
|
IL-6/STAT3 pathway induced deficiency of RFX1 contributes to Th17-dependent autoimmune diseases via epigenetic regulation. Nat Commun 2018; 9:583. [PMID: 29422534 PMCID: PMC5805701 DOI: 10.1038/s41467-018-02890-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 01/08/2018] [Indexed: 01/07/2023] Open
Abstract
Epigenetic modifications affect the differentiation of T cell subsets and the pathogenesis of autoimmune diseases, but many mechanisms of epigenetic regulation of T cell differentiation are unclear. Here we show reduced expression of the transcription factor RFX1 in CD4+ T cells from patients with systemic lupus erythematosus, which leads to IL-17A overexpression through increased histone H3 acetylation and decreased DNA methylation and H3K9 tri-methylation. Conditional deletion of Rfx1 in mice exacerbates experimental autoimmune encephalomyelitis and pristane-induced lupus-like syndrome and increases induction of Th17 cells. In vitro, Rfx1 deficiency increases the differentiation of naive CD4+ T cells into Th17 cells, but this effect can be reversed by forced expression of Rfx1. Importantly, RFX1 functions downstream of STAT3 and phosphorylated STAT3 can inhibit RFX1 expression, highlighting a non-canonical pathway that regulates differentiation of Th17 cells. Collectively, our findings identify a unique role for RFX1 in Th17-related autoimmune diseases. Th17 cells are a common pathogenic effector cell in autoimmune inflammatory diseases. Here the authors show that the transcription factor RFX1 limits Th17 differentiation and is protective against the pathogenesis of Th17-driven autoimmune diseases.
Collapse
|
94
|
Barta CL, Liu H, Chen L, Giffen KP, Li Y, Kramer KL, Beisel KW, He DZ. RNA-seq transcriptomic analysis of adult zebrafish inner ear hair cells. Sci Data 2018; 5:180005. [PMID: 29406519 PMCID: PMC5800389 DOI: 10.1038/sdata.2018.5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/11/2017] [Indexed: 02/03/2023] Open
Abstract
Although hair cells are the sensory receptors of the auditory and vestibular systems in the ears of all vertebrates, hair cell properties are different between non-mammalian vertebrates and mammals. To understand the basic biological properties of hair cells from non-mammalian vertebrates, we examined the transcriptome of adult zebrafish auditory and vestibular hair cells. GFP-labeled hair cells were isolated from inner-ear sensory epithelia of a pou4f3 promoter-driven GAP-GFP line of transgenic zebrafish. One thousand hair cells and 1,000 non-sensory surrounding cells (nsSCs) were separately collected for each biological replicate, using the suction pipette technique. RNA sequencing of three biological replicates for the two cell types was performed and analyzed. Comparisons between hair cells and nsSCs allow identification of enriched genes in hair cells, which may underlie hair cell specialization. Our dataset provides an extensive resource for understanding the molecular mechanisms underlying morphology, function, and pathology of adult zebrafish hair cells. It also establishes a framework for future characterization of genes expressed in hair cells and the study of hair cell evolution.
Collapse
Affiliation(s)
- Cody L Barta
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68178, USA
| | - Huizhan Liu
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68178, USA
| | - Lei Chen
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68178, USA.,Chongqing Academy of Animal Science, Chongqing 402460, China
| | - Kimberlee P Giffen
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68178, USA
| | - Yi Li
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68178, USA.,Department of Otorhinolaryngology-Head and Neck Surgery, Beijing Tonren Hospital, Capital Medical University, Beijing 100730, China
| | - Kenneth L Kramer
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68178, USA
| | - Kirk W Beisel
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68178, USA
| | - David Z He
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68178, USA
| |
Collapse
|
95
|
Tu F, Sedzinski J, Ma Y, Marcotte EM, Wallingford JB. Protein localization screening in vivo reveals novel regulators of multiciliated cell development and function. J Cell Sci 2018; 131:jcs.206565. [PMID: 29180514 DOI: 10.1242/jcs.206565] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 11/20/2017] [Indexed: 12/23/2022] Open
Abstract
Multiciliated cells (MCCs) drive fluid flow in diverse tubular organs and are essential for the development and homeostasis of the vertebrate central nervous system, airway and reproductive tracts. These cells are characterized by dozens or hundreds of motile cilia that beat in a coordinated and polarized manner. In recent years, genomic studies have not only elucidated the transcriptional hierarchy for MCC specification but also identified myriad new proteins that govern MCC ciliogenesis, cilia beating and cilia polarization. Interestingly, this burst of genomic data has also highlighted that proteins with no obvious role in cilia do, in fact, have important ciliary functions. Understanding the function of proteins with little prior history of study presents a special challenge, especially when faced with large numbers of such proteins. Here, we define the subcellular localization in MCCs of ∼200 proteins not previously implicated in cilia biology. Functional analyses arising from the screen provide novel links between actin cytoskeleton and MCC ciliogenesis.
Collapse
Affiliation(s)
- Fan Tu
- Dept. of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Jakub Sedzinski
- Dept. of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.,The Danish Stem Cell Centre (DanStem), University of Copenhagen, 2200 Copenhagen, Denmark
| | - Yun Ma
- Dept. of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.,The Otorhinolaryngology Hospital, First Affiliated Hospital of Sun Yat-sen University, SunYat-sen University, Guangzhou, P.R. China
| | - Edward M Marcotte
- Dept. of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - John B Wallingford
- Dept. of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
96
|
Lv K, Huang H, Yi X, Chertoff ME, Li C, Yuan B, Hinton RJ, Feng JQ. A novel auditory ossicles membrane and the development of conductive hearing loss in Dmp1-null mice. Bone 2017; 103:39-46. [PMID: 28603080 PMCID: PMC5568469 DOI: 10.1016/j.bone.2017.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 06/07/2017] [Accepted: 06/07/2017] [Indexed: 10/19/2022]
Abstract
Genetic mouse models are widely used for understanding human diseases but we know much less about the anatomical structure of the auditory ossicles in the mouse than we do about human ossicles. Furthermore, current studies have mainly focused on disease conditions such as osteomalacia and rickets in patients with hypophosphatemia rickets, although the reason that these patients develop late-onset hearing loss is unknown. In this study, we first analyzed Dmp1 lac Z knock-in auditory ossicles (in which the blue reporter is used to trace DMP1 expression in osteocytes) using X-gal staining and discovered a novel bony membrane surrounding the mouse malleus. This finding was further confirmed by 3-D micro-CT, X-ray, and alizarin red stained images. We speculate that this unique structure amplifies and facilitates sound wave transmissions in two ways: increasing the contact surface between the eardrum and malleus and accelerating the sound transmission due to its mineral content. Next, we documented a progressive deterioration in the Dmp1-null auditory ossicle structures using multiple imaging techniques. The auditory brainstem response test demonstrated a conductive hearing loss in the adult Dmp1-null mice. This finding may help to explain in part why patients with DMP1 mutations develop late-onset hearing loss, and supports the critical role of DMP1 in maintaining the integrity of the auditory ossicles and its bony membrane.
Collapse
Affiliation(s)
- Kun Lv
- Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX 75246, USA; The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Haiyang Huang
- Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX 75246, USA
| | - Xing Yi
- Department of Hearing and Speech, KU Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 6616, USA
| | - Mark E Chertoff
- Department of Hearing and Speech, KU Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 6616, USA
| | - Chaoyuan Li
- Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX 75246, USA
| | - Baozhi Yuan
- Department of Medicine, School of Medicine and Public Health, Univ. Wisconsin, Madison, WI 53726, USA
| | - Robert J Hinton
- Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX 75246, USA
| | - Jian Q Feng
- Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX 75246, USA.
| |
Collapse
|
97
|
Prickle1 regulates neurite outgrowth of apical spiral ganglion neurons but not hair cell polarity in the murine cochlea. PLoS One 2017; 12:e0183773. [PMID: 28837644 PMCID: PMC5570324 DOI: 10.1371/journal.pone.0183773] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 08/10/2017] [Indexed: 01/05/2023] Open
Abstract
In the mammalian organ of Corti (OC), the stereocilia on the apical surface of hair cells (HCs) are uniformly organized in a neural to abneural axis (or medial-laterally). This organization is regulated by planar cell polarity (PCP) signaling. Mutations of PCP genes, such as Vangl2, Dvl1/2, Celsr1, and Fzd3/6, affect the formation of HC orientation to varying degrees. Prickle1 is a PCP signaling gene that belongs to the prickle / espinas / testin family. Prickle1 protein is shown to be asymmetrically localized in the HCs of the OC, and this asymmetric localization is associated with loss of PCP in Smurf mutants, implying that Prickle1 is involved in HC PCP development in the OC. A follow-up study found no PCP polarity defects after loss of Prickle1 (Prickle1-/-) in the cochlea. We show here strong Prickle1 mRNA expression in the spiral ganglion by in situ hybridization and β-Gal staining, and weak expression in the OC by β-Gal staining. Consistent with this limited expression in the OC, cochlear HC PCP is unaffected in either Prickle1C251X/C251X mice or Prickle1f/f; Pax2-cre conditional null mice. Meanwhile, type II afferents of apical spiral ganglion neurons (SGN) innervating outer hair cells (OHC) have unusual neurite growth. In addition, afferents from the apex show unusual collaterals in the cochlear nuclei that overlap with basal turn afferents. Our findings argue against the role of Prickle1 in regulating hair cell polarity in the cochlea. Instead, Prickle1 regulates the polarity-related growth of distal and central processes of apical SGNs.
Collapse
|
98
|
Burns JC, Stone JS. Development and regeneration of vestibular hair cells in mammals. Semin Cell Dev Biol 2017; 65:96-105. [PMID: 27864084 PMCID: PMC5423856 DOI: 10.1016/j.semcdb.2016.11.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 11/03/2016] [Indexed: 10/20/2022]
Abstract
Vestibular sensation is essential for gaze stabilization, balance, and perception of gravity. The vestibular receptors in mammals, Type I and Type II hair cells, are located in five small organs in the inner ear. Damage to hair cells and their innervating neurons can cause crippling symptoms such as vertigo, visual field oscillation, and imbalance. In adult rodents, some Type II hair cells are regenerated and become re-innervated after damage, presenting opportunities for restoring vestibular function after hair cell damage. This article reviews features of vestibular sensory cells in mammals, including their basic properties, how they develop, and how they are replaced after damage. We discuss molecules that control vestibular hair cell regeneration and highlight areas in which our understanding of development and regeneration needs to be deepened.
Collapse
Affiliation(s)
- Joseph C Burns
- Decibel Therapeutics, 215 First St., Suite 430, Cambridge, MA 02142, USA.
| | - Jennifer S Stone
- Department of Otolaryngology/Head and Neck Surgery and The Virginia Merrill Bloedel Hearing Research Center, University of Washington School of Medicine, Box 357923, Seattle, WA 98195-7923, USA.
| |
Collapse
|
99
|
Modrell MS, Lyne M, Carr AR, Zakon HH, Buckley D, Campbell AS, Davis MC, Micklem G, Baker CV. Insights into electrosensory organ development, physiology and evolution from a lateral line-enriched transcriptome. eLife 2017; 6. [PMID: 28346141 PMCID: PMC5429088 DOI: 10.7554/elife.24197] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/23/2017] [Indexed: 01/22/2023] Open
Abstract
The anamniote lateral line system, comprising mechanosensory neuromasts and electrosensory ampullary organs, is a useful model for investigating the developmental and evolutionary diversification of different organs and cell types. Zebrafish neuromast development is increasingly well understood, but neither zebrafish nor Xenopus is electroreceptive and our molecular understanding of ampullary organ development is rudimentary. We have used RNA-seq to generate a lateral line-enriched gene-set from late-larval paddlefish (Polyodon spathula). Validation of a subset reveals expression in developing ampullary organs of transcription factor genes critical for hair cell development, and genes essential for glutamate release at hair cell ribbon synapses, suggesting close developmental, physiological and evolutionary links between non-teleost electroreceptors and hair cells. We identify an ampullary organ-specific proneural transcription factor, and candidates for the voltage-sensing L-type Cav channel and rectifying Kv channel predicted from skate (cartilaginous fish) ampullary organ electrophysiology. Overall, our results illuminate ampullary organ development, physiology and evolution.
Collapse
Affiliation(s)
- Melinda S Modrell
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Mike Lyne
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom.,Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Adrian R Carr
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom.,Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Harold H Zakon
- Department of Neuroscience, The University of Texas at Austin, Austin, United States.,Department of Integrative Biology, The University of Texas at Austin, Austin, United States
| | - David Buckley
- Departmento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales-MNCN-CSIC, Madrid, Spain.,Department of Natural Sciences, Saint Louis University - Madrid Campus, Madrid, Spain
| | - Alexander S Campbell
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Marcus C Davis
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, United States
| | - Gos Micklem
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom.,Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Clare Vh Baker
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
100
|
Gfi1 Cre mice have early onset progressive hearing loss and induce recombination in numerous inner ear non-hair cells. Sci Rep 2017; 7:42079. [PMID: 28181545 PMCID: PMC5299610 DOI: 10.1038/srep42079] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 01/05/2017] [Indexed: 12/20/2022] Open
Abstract
Studies of developmental and functional biology largely rely on conditional expression of genes in a cell type-specific manner. Therefore, the importance of specificity and lack of inherent phenotypes for Cre-driver animals cannot be overemphasized. The Gfi1Cre mouse is commonly used for conditional hair cell-specific gene deletion/reporter gene activation in the inner ear. Here, using immunofluorescence and flow cytometry, we show that the Gfi1Cre mice produce a pattern of recombination that is not strictly limited to hair cells within the inner ear. We observe a broad expression of Cre recombinase in the Gfi1Cre mouse neonatal inner ear, primarily in inner ear resident macrophages, which outnumber the hair cells. We further show that heterozygous Gfi1Cre mice exhibit an early onset progressive hearing loss as compared with their wild-type littermates. Importantly, vestibular function remains intact in heterozygotes up to 10 months, the latest time point tested. Finally, we detect minor, but statistically significant, changes in expression of hair cell-enriched transcripts in the Gfi1Cre heterozygous mice cochleae compared with their wild-type littermate controls. Given the broad use of the Gfi1Cre mice, both for gene deletion and reporter gene activation, these data are significant and necessary for proper planning and interpretation of experiments.
Collapse
|