51
|
Abstract
Wilson disease is an autosomal recessive inherited disorder of copper metabolism resulting in pathological accumulation of copper in many organs and tissues. ATP7B is the gene product of the Wilson disease gene located on chromosome 13 and resides in hepatocytes in the trans-Golgi network, transporting copper into the secretory pathway for incorporation into apoceruloplasmin and excretion into the bile. Mutations of the gene result in impaired trafficking of copper in and through the hepatocytes. More than 200 mutations of Wilson disease gene were found, the most common ones being H1069Q (in Europe) and R778L (in Asia). Wilson disease may present under a variety of clinical conditions, commonly as liver and/or neuropsychiatric disease. The pathogenesis of hepatic and neurologic Wilson disease is a direct consequence of copper accumulation. Presence of copper causes oxidative stress resulting in cell destruction. The diagnosis of Wilson disease requires a combination of a variety of clinical symptoms, biochemical tests, and detection of gene mutations, which are the basis of a score proposed by a group of international experts. Initial treatment for symptomatic patients should include a chelating agent (penicillamine or trientine). Treatment of presymptomatic patients or maintenance therapy can also be accomplished with zinc.
Collapse
Affiliation(s)
- Peter Ferenci
- Department of Internal Medicine IV, Gastroenterology and Hepatology, Medical University of Vienna, Währinger Gürtel 18-20, A 1090 Vienna, Austria.
| |
Collapse
|
52
|
Bauerly KA, Kelleher SL, Lönnerdal B. Functional and molecular responses of suckling rat pups and human intestinal Caco-2 cells to copper treatment. J Nutr Biochem 2004; 15:155-62. [PMID: 15023397 DOI: 10.1016/j.jnutbio.2003.10.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2003] [Revised: 10/09/2003] [Accepted: 10/16/2003] [Indexed: 11/25/2022]
Abstract
Ctr1 and Atp7A are copper (Cu) transporters that may play a role in the regulation of intestinal Cu absorption; however, intestinal regulation of these transporters by Cu in vivo has not been well defined. In this study, we hypothesized that Cu supplementation would alter the expression of intestine Ctr1 and Atp7A in vivo and further documented effects of Cu exposure on Cu transport, Ctr1 and Atp7A levels and localization in enterocyte-like Caco-2 cells. Suckling rat pups were supplemented with Cu (0 and 25 microg Cu/day) for 10 days and small intestine Cu concentration, Ctr1, Atp7A and metallothionein (MT) gene expression were measured by Northern blot analysis. Caco-2 cells were treated with basal medium, or medium supplemented with 3 and 94 microM CuSO4 and 67Cu transport, Ctr1 and Atp7A levels and localization were determined. In rat pups, Cu supplementation increased intestinal Cu, Ctr1 and MT gene expression; however, Atp7A gene expression was not significantly affected. Caco-2 cells treated with 94 microM Cu had lower cellular Cu uptake and export compared to untreated cells. While Ctr1 and Atp7A gene and protein levels were unaffected, confocal microscopy indicated that Ctr1 was endocytosed and co-localized with transferrin in Cu treated cells. This study demonstrates the functional response of intestinal cells to Cu treatment and suggests that both Ctr1 and Atp7A may regulate Cu absorption.
Collapse
Affiliation(s)
- Kathryn A Bauerly
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
53
|
Mackenzie NC, Brito M, Reyes AE, Allende ML. Cloning, expression pattern and essentiality of the high-affinity copper transporter 1 (ctr1) gene in zebrafish. Gene 2004; 328:113-20. [PMID: 15019990 DOI: 10.1016/j.gene.2003.11.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2003] [Revised: 11/03/2003] [Accepted: 11/24/2003] [Indexed: 10/26/2022]
Abstract
The high-affinity copper transporter 1 (Ctr1) is a highly conserved transmembrane protein that mediates the internalization of copper ions from the extracellular medium. In this study, we have isolated the zebrafish ctr1 gene. The zebrafish ctr1 cDNA encodes a protein with 69% identity to the human orthologue and shows conservation of specific amino acid residues involved in copper transport. We find only a single ctr1 gene in the zebrafish genome which maps to linkage group 5. The genomic structure of the zebrafish gene shows that it consists of five exons and that exon-intron boundaries are absolutely conserved with the mammalian ctr1 genes. Expression in embryos was analyzed by reverse transcription-polymerase chain reaction (RT-PCR) and by in situ hybridization. Zebrafish ctr1 is maternally loaded, and transcripts can be detected throughout development and in adult fish. Distribution of ctr1 message appears ubiquitous during early stages becoming restricted to the brain and ventral tissues by 24 h post fertilization (hpf). Beginning at 3 days post fertilization (dpf), expression is found mainly in the developing intestine. Specific knockdown of ctr1 by antisense morpholino oligonucleotides (MOs) causes early larval lethality. Defects include cell death in tissues where ctr1 is most heavily expressed, a finding similar to that described for a mouse knockout of mCtr1. Despite the existence of at least one other copper transport mechanism in the fish, our studies show that zebrafish ctr1 is an essential gene for development.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Binding Sites/genetics
- Cation Transport Proteins/genetics
- Cation Transport Proteins/metabolism
- Cloning, Molecular
- Copper Transporter 1
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Embryo, Nonmammalian/drug effects
- Embryo, Nonmammalian/metabolism
- Embryonic Development
- Exons
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Developmental/drug effects
- Genes/genetics
- Genes, Essential/genetics
- In Situ Hybridization
- Introns
- Male
- Membrane Transport Proteins/genetics
- Microinjections
- Molecular Sequence Data
- Oligonucleotides, Antisense/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Zebrafish/embryology
- Zebrafish/genetics
- Zebrafish Proteins/genetics
Collapse
Affiliation(s)
- Natalia C Mackenzie
- Millennium Nucleus in Developmental Biology, Departamento de Biología, Facultad de Ciencias Universidad de Chile, Casilla 653 Santiago, Chile
| | | | | | | |
Collapse
|
54
|
Abstract
Autism is a neurodevelopmental syndrome defined by deficits in social reciprocity and communication and by unusual repetitive behaviors. Although there is an underlying genetic predisposition, the etiology of autism is currently unknown. A recent increase in prevalence suggests that genetically determined vulnerability to environmental exposure might contribute to the causation of autism. We performed family-based association studies of polymorphisms in metal-regulatory transcription factor 1(MTF1), a multispecific organic anion transporter (ABCC1), proton-coupled divalent metal ion transporters (SLC11A3 and SLC11A2), paraoxonase 1 (PON1), and glutathione S-transferase (GSTP1) genes in 196 autistic disorder families. There was deviation from the expected pattern of transmission for polymorphisms in MTF1 (Single nucleotide polymorphism database reference identification number, dbSNP rs3790625, P = .02) and divalent metal ion transporter SLC11A3 (dbSNP rs2304704, P = .07) genes. Although these results might represent chance finding, further investigations of genetic variations of metal metabolism in autism are warranted.
Collapse
Affiliation(s)
- Fatema J Serajee
- Department of Pediatrics, Wayne State University, Detroit, MI, USA
| | | | | | | |
Collapse
|
55
|
Tapia L, González-Agüero M, Cisternas MF, Suazo M, Cambiazo V, Uauy R, González M. Metallothionein is crucial for safe intracellular copper storage and cell survival at normal and supra-physiological exposure levels. Biochem J 2004; 378:617-24. [PMID: 14627437 PMCID: PMC1223976 DOI: 10.1042/bj20031174] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2003] [Revised: 10/02/2003] [Accepted: 11/19/2003] [Indexed: 11/17/2022]
Abstract
MTs (metallothioneins) increase the resistance of cells to exposure to high Cu (copper) levels. Characterization of the MT-Cu complex suggests that MT has an important role in the cellular storage and/or delivery of Cu ions to cuproenzymes. In this work we investigate how these properties contribute to Cu homoeostasis by evaluating the uptake, accumulation and efflux of Cu in wild-type and MT I/II null rat fibroblast cell lines. We also assessed changes in the expression of Cu metabolism-related genes in response to Cu exposure. At sub-physiological Cu levels (0.4 microM), the metal content was not dependent on MT; however, when extracellular Cu was increased to physiological levels (10 microM), MTs were required for the cell's ability to accumulate the metal. The subcellular localization of the accumulated metal in the cytoplasm was MT-dependent. Following supra-physiological Cu exposure (>50 microM), MT null cells had a decreased capacity for Cu storage and an elevated sensitivity to a minor increment in intracellular metal levels, suggesting that intracellular Cu toxicity is due not to the metal content but to the interactions of the metal with cellular components. Moreover, MT null cells failed to show increased levels of mRNAs encoding MT I, SOD1 (superoxide dismutase 1) and Ccs1 (Cu chaperone for SOD) in response to Cu exposure. These results support a role for MT in the storage of Cu in a safe compartment and in sequestering an intracellular excess of Cu in response to supra-physiological Cu exposure. Gene expression analysis suggests the necessity of having MT as part of the signalling pathway that induces gene expression in response to Cu.
Collapse
Affiliation(s)
- Lucía Tapia
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Macul 5540, 138-11 Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
56
|
Abstract
Wilson's disease is an autosomal recessive inherited disorder of hepatic copper metabolism resulting in liver disease and/or neuropsychiatric disease. The diagnosis of neurological disease is straightforward if the following symptoms are present: Kayser-Fleischer rings, typical neurological symptoms and low serum ceruloplasmin levels. The diagnosis is more complex in patients presenting with liver diseases. None of the commonly used parameters alone allows a diagnosis with certainty. A combination of various laboratory parameters is necessary to firmly establish the diagnosis. In the future, limited mutation analysis may play an important diagnostic role. Recently, a group of international experts has proposed a score based on a variety of tests and clinical symptoms. The validity of this score needs to be assessed prospectively. Treatment requires life-long administration of copper chelators (d-penicillamine, trientine). A frequently used alternative is zinc. None of these treatments has been tested by prospective randomized controlled studies. Liver transplantation is reserved for severe or treatment-resistant cases with advanced liver disease, whilst experience with refractory neuropsychiatric disease is limited.
Collapse
Affiliation(s)
- P Ferenci
- Department of Internal Medicine IV, Gastroenterology and Hepatology, University of Vienna, Austria.
| |
Collapse
|
57
|
Affiliation(s)
- Jonathan D Gitlin
- Edward Mallincroft Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| |
Collapse
|
58
|
Penkowa M, Hidalgo J. Treatment with metallothionein prevents demyelination and axonal damage and increases oligodendrocyte precursors and tissue repair during experimental autoimmune encephalomyelitis. J Neurosci Res 2003; 72:574-86. [PMID: 12749022 DOI: 10.1002/jnr.10615] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is an animal model for the human demyelinating disease multiple sclerosis (MS). EAE and MS are characterized by significant inflammation, demyelination, neuroglial damage, and cell death. Metallothionein-I and -II (MT-I + II) are antiinflammatory and neuroprotective proteins that are expressed during EAE and MS. We have shown recently that exogenous administration of Zn-MT-II to Lewis rats with EAE significantly reduced clinical symptoms and the inflammatory response, oxidative stress, and apoptosis of the infiltrated central nervous system areas. We show for the first time that Zn-MT-II treatment during EAE significantly prevents demyelination and axonal damage and transection, and stimulates oligodendroglial regeneration from precursor cells, as well as the expression of the growth factors basic fibroblast growth factor (bFGF), transforming growth factor (TGF)beta, neurotrophin-3 (NT-3), NT-4/5, and nerve growth factor (NGF). These beneficial effects of Zn-MT-II treatment could not be attributable to its zinc content per se. The present results support further the use of Zn-MT-II as a safe and successful therapy for multiple sclerosis.
Collapse
Affiliation(s)
- Milena Penkowa
- Department of Medical Anatomy, The Panum Institute, University of Copenhagen, Copenhagen, Denmark.
| | | |
Collapse
|
59
|
Affiliation(s)
- Ting Y Tao
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | | |
Collapse
|
60
|
Liu T, Nakashima S, Hirose K, Uemura Y, Shibasaka M, Katsuhara M, Kasamo K. A metallothionein and CPx-ATPase handle heavy-metal tolerance in the filamentous cyanobacterium Oscillatoria brevis. FEBS Lett 2003; 542:159-63. [PMID: 12729917 DOI: 10.1016/s0014-5793(03)00370-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A metallothionein (BmtA) and a CPx-ATPase (Bxa1) have been identified and characterized from the cyanobacterium Oscillatoria brevis. Both bmtA and bxa1 expression can be markedly induced in vivo by Zn(2+) or Cd(2+). Over-expression of bmtA or bxa1 in Escherichia coli enhances Zn(2+) and Cd(2+) tolerance in the transformant. Dynamic studies on the expression of two genes showed that the maximum expression of bxa1 induced by Zn(2+) and Cd(2+) was much quicker than that of bmtA, suggesting distinct physiological roles of metallothionein and CPx-ATPase in the handling of surplus metal.
Collapse
Affiliation(s)
- Tong Liu
- Research Institute for Bioresources, Okayama University, Kurashiki, Okayama 710-0046, Japan.
| | | | | | | | | | | | | |
Collapse
|
61
|
Affiliation(s)
- Dennis R Winge
- University of Utah Health Sciences Center, Salt Lake City, Utah 84132, USA
| |
Collapse
|
62
|
El Meskini R, Culotta VC, Mains RE, Eipper BA. Supplying copper to the cuproenzyme peptidylglycine alpha-amidating monooxygenase. J Biol Chem 2003; 278:12278-84. [PMID: 12529325 DOI: 10.1074/jbc.m211413200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We explored the role of known copper transporters and chaperones in delivering copper to peptidylglycine-alpha-hydroxylating monooxygenase (PHM), a copper-dependent enzyme that functions in the secretory pathway lumen. We examined the roles of yeast Ccc2, a P-type ATPase related to human ATP7A (Menkes disease protein) and ATP7B (Wilson disease protein), as well as yeast Atx1, a cytosolic copper chaperone. We expressed soluble PHMcc (catalytic core) in yeast using the yeast pre-pro-alpha-mating factor leader region to target the enzyme to the secretory pathway. Although the yeast genome encodes no PHM-like enzyme, PHMcc expressed in yeast is at least as active as PHMcc produced by mammalian cells. PHMcc partially co-migrated with a Golgi marker during subcellular fractionation and partially co-localized with Ccc2 based on immunofluorescence. To determine whether production of active PHM was dependent on copper trafficking pathways involving the CCC2 or ATX1 genes, we expressed PHMcc in wild-type, ccc2, and atx1 mutant yeast. Although ccc2 and atx1 mutant yeast produce normal levels of PHMcc protein, it lacks catalytic activity. Addition of exogenous copper yields fully active PHMcc. Similarly, production of active PHM in mouse fibroblasts is impaired in the presence of a mutant ATP7A gene. Although delivery of copper to lumenal cuproproteins like PAM involves ATP7A, lumenal chaperones may not be required.
Collapse
Affiliation(s)
- Rajaâ El Meskini
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030-3401, USA
| | | | | | | |
Collapse
|
63
|
Hamza I, Prohaska J, Gitlin JD. Essential role for Atox1 in the copper-mediated intracellular trafficking of the Menkes ATPase. Proc Natl Acad Sci U S A 2003; 100:1215-20. [PMID: 12538877 PMCID: PMC298753 DOI: 10.1073/pnas.0336230100] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The metallochaperone Atox1 directly interacts with the copper-transporting ATPases and plays a critical role in perinatal copper homeostasis. To determine the cell biological mechanisms of Atox1 function, intracellular copper metabolism, and Menkes ATPase abundance, localization and trafficking were examined in immortalized fibroblast cell lines derived from Atox1(+/+) and Atox1(-/-) embryos. Consistent with the proposed role for Atox1 in copper delivery to the secretory pathway, a marked increase in intracellular copper content secondary to impaired copper efflux was observed in Atox1-deficient cells. Although the localization of the Menkes ATPase was identical in Atox1(+/+) and Atox1(-/-) cells under conditions of equivalent intracellular copper content, a significant impairment in copper-mediated Menkes ATPase trafficking was observed in the absence of Atox1. When quantitative confocal immunofluorescence was used, significant differences in the time and dose-dependent trafficking of the Menkes ATPase from the Golgi compartment in response to copper were observed between Atox1(+/+) and Atox1(-/-) cells. These data reveal an essential role for Atox1 in establishing the threshold for copper-dependent movement of the copper-transporting ATPases within the secretory compartment and that, in the absence of Atox1, this movement alone is not sufficient to restore normal copper efflux. Taken together, these findings provide a cell biological model for the role of this metallochaperone under the physiological conditions of copper limitation in mammalian cells.
Collapse
Affiliation(s)
- Iqbal Hamza
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
64
|
Brouwer M, Syring R, Hoexum Brouwer T. Role of a copper-specific metallothionein of the blue crab, Callinectes sapidus, in copper metabolism associated with degradation and synthesis of hemocyanin. J Inorg Biochem 2002; 88:228-39. [PMID: 11803044 DOI: 10.1016/s0162-0134(01)00381-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have identified three MT encoding genes in the blue crab: MT-I, inducible by cadmium, zinc and copper; MT-II, inducible by cadmium and zinc; and MT-III, inducible by copper only [Syring et al., Comp. Biochem. Physiol. C, 125 (2000) 325-332]. To examine the role of the CuMT-I and CuMT-III isoforms in copper metabolism associated with the synthesis and degradation of the oxygen-binding copper protein, hemocyanin, we (1) cloned and sequenced hemocyanin cDNA, (2) examined interaction of the CuMTs with endoplasmic reticulum (ER) vesicles and (3) measured changes in levels of hemocyanin, MT-I, MT-III protein and mRNA that occur in crabs during different stages of the molt cycle. The cDNA-derived hemocyanin amino-acid sequence revealed the presence of a leader peptide indicating that hemocyanin is a secretory protein that is synthesized on the ER. Copper uptake studies show that ER vesicles take up both Cu1+ and Cu2+ in an ATP-independent process. The copper transporter has a Km of 10.8+/-2.4 microM copper and a Vmax of 6.1+/-0.5 nmol Cu/mg protein/10 min. ER vesicles contain hemocyanin, and bind CuMT-I and, preferentially, CuMT-III. However, binding does not result in copper transfer to the ER. There are statistically significant changes in hepatopancreas MT-III and hemocyanin mRNA, and in hemolymph hemocyanin concentrations during the molt cycle. MT-I mRNA remains constant. Changes in MT-III mRNA are positively correlated with changes in hemocyanin mRNA and hemocyanin protein, which points to coordinate control of MT-III and hemocyanin transcription. No CuMT-III protein is observed in hepatopancreas of intermolt crabs when levels of both MT-III and hemocyanin mRNA are high, suggesting rapid utilization of copper bound to MT-III when cells are actively synthesizing hemocyanin. CuMT-III is present in premolt and softshell crabs, and its emergence appears to coincide with a decrease in hemocyanin synthesis and increase in hemocyanin degradation. These results support the hypothesis that the copper-specific metallothionein is intricately involved in copper homeostasis associated with both the synthesis and degradation of hemocyanin.
Collapse
Affiliation(s)
- Marius Brouwer
- College of Marine Sciences, Department of Coastal Sciences, University of Southern Mississippi, Ocean Springs, MS 39564, USA.
| | | | | |
Collapse
|
65
|
Ghoshal K, Majumder S, Zhu Q, Hunzeker J, Datta J, Shah M, Sheridan JF, Jacob ST. Influenza virus infection induces metallothionein gene expression in the mouse liver and lung by overlapping but distinct molecular mechanisms. Mol Cell Biol 2001; 21:8301-17. [PMID: 11713267 PMCID: PMC99995 DOI: 10.1128/mcb.21.24.8301-8317.2001] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2001] [Accepted: 09/19/2001] [Indexed: 11/20/2022] Open
Abstract
Metallothionein I (MT-I) and MT-II have been implicated in the protection of cells against reactive oxygen species (ROS), heavy metals, and a variety of pathological and environmental stressors. Here, we show a robust increase in MT-I/MT-II mRNA level and MT proteins in the livers and lungs of C57BL/6 mice exposed to the influenza A/PR8 virus that infects the upper respiratory tract and lungs. Interleukin-6 (IL-6) had a pronounced effect on the induction of these genes in the liver but not the lung. Treatment of the animals with RU-486, a glucocorticoid receptor antagonist, inhibited induction of MT-I/MT-II in both liver and lung, revealing a direct role of glucocorticoid that is increased upon infection in this induction process. In vivo genomic footprinting (IVGF) analysis demonstrated involvement of almost all metal response elements, major late transcription factor/antioxidant response element (MLTF/ARE), the STAT3 binding site on the MT-I upstream promoter, and the glucocorticoid responsive element (GRE1), located upstream of the MT-II gene, in the induction process in the liver and lung. In the lung, inducible footprinting was also identified at a unique gamma interferon (IFN-gamma) response element (gamma-IRE) and at Sp1 sites. The mobility shift analysis showed activation of STAT3 and the glucocorticoid receptor in the liver and lung nuclear extracts, which was consistent with the IVGF data. Analysis of the newly synthesized mRNA for cytokines in the infected lung by real-time PCR showed a robust increase in the levels of IL-10 and IFN-gamma mRNA that can activate STAT3 and STAT1, respectively. A STAT1-containing complex that binds to the gamma-IRE in vitro was activated in the infected lung. No major change in MLTF/ARE DNA binding activity in the liver and lung occurred after infection. These results have demonstrated that MT-I and MT-II can be induced robustly in the liver and lung following experimental influenza virus infection by overlapping but distinct molecular mechanisms.
Collapse
Affiliation(s)
- K Ghoshal
- Department of Molecular and Cellular Biochemistry, College of Medicine, The Ohio State University, 333 Hamilton Hall, 1645 Neil Ave., Columbus, OH 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Van Hoof NALM, Koevoets PLM, Hakvoort HWJ, Ten Bookum WM, Schat H, Verkleij JAC, Ernst WHO. Enhanced ATP-dependent copper efflux across the root cell plasma membrane in copper-tolerant Silene vulgaris. PHYSIOLOGIA PLANTARUM 2001; 113:225-232. [PMID: 12060300 DOI: 10.1034/j.1399-3054.2001.1130210.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We studied copper uptake in inside-out plasma membrane vesicles derived from roots of copper-sensitive, moderately copper-tolerant and highly copper-tolerant populations of Silene vulgaris (Amsterdam, Marsberg and Imsbach, respectively). Plasma membrane vesicles were isolated using the two-phase partitioning method and copper efflux was measured using direct filtration experiments. Vesicles derived from Imsbach plants accumulated two and three times more copper than those derived from Marsberg and Amsterdam plants, respectively. This accumulation was ATP-dependent. Also, 9-amino-6-chloro-2-methoxyacridine fluorescence quenching rates upon copper addition decreased in the order Imsbach>Marsberg>Amsterdam. Our results support the hypothesis that efflux of copper across the root plasma membrane plays a role in the copper tolerance mechanism in S. vulgaris.
Collapse
Affiliation(s)
- Nathalie A. L. M. Van Hoof
- Department of Ecology and Ecotoxicology of Plants, Faculty of Biology, Vrije Universiteit, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
67
|
Hamza I, Faisst A, Prohaska J, Chen J, Gruss P, Gitlin JD. The metallochaperone Atox1 plays a critical role in perinatal copper homeostasis. Proc Natl Acad Sci U S A 2001; 98:6848-52. [PMID: 11391006 PMCID: PMC34441 DOI: 10.1073/pnas.111058498] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Copper plays a fundamental role in the biochemistry of all aerobic organisms. The delivery of this metal to specific intracellular targets is mediated by metallochaperones. To elucidate the role of the metallochaperone Atox1, we analyzed mice with a disruption of the Atox1 locus. Atox1(-/-) mice failed to thrive immediately after birth, with 45% of pups dying before weaning. Surviving animals exhibited growth failure, skin laxity, hypopigmentation, and seizures because of perinatal copper deficiency. Maternal Atox1 deficiency markedly increased the severity of Atox1(-/-) phenotype, resulting in increased perinatal mortality as well as severe growth retardation and congenital malformations among surviving Atox1(-/-) progeny. Furthermore, Atox1-deficient cells accumulated high levels of intracellular copper, and metabolic studies indicated that this defect was because of impaired cellular copper efflux. Taken together, these data reveal a direct role for Atox1 in trafficking of intracellular copper to the secretory pathway of mammalian cells and demonstrate that this metallochaperone plays a critical role in perinatal copper homeostasis.
Collapse
Affiliation(s)
- I Hamza
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
68
|
Nagano S, Satoh M, Sumi H, Fujimura H, Tohyama C, Yanagihara T, Sakoda S. Reduction of metallothioneins promotes the disease expression of familial amyotrophic lateral sclerosis mice in a dose-dependent manner. Eur J Neurosci 2001; 13:1363-70. [PMID: 11298796 DOI: 10.1046/j.0953-816x.2001.01512.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We previously reported that abnormal copper release from mutated Cu, Zn-superoxide dismutase (SOD1) proteins might be a common toxic gain-of-function in the pathogenesis of familial amyotrophic lateral sclerosis (FALS) [Ogawa et al. (1997) Biochem. Biophys. Res. Commun., 241, 251-257.]. In the present study, we first examined metallothioneins (MTs), known to bind copper ions and decrease oxidative toxicity, and found a twofold increase in MTs in the spinal cord of the SOD1 transgenic mice with a FALS-linked mutation (G93A), but not in the spinal cord of wild-type SOD1 transgenic mice. We then investigated whether the clinical course of FALS mice could be modified by the reduced expression of MTs, by crossing the FALS mice with MT-I- and MT-II-deficient mice. FALS mice clearly reached the onset of clinical signs and death significantly earlier in response to the reduction of protein expression. These results indicated that the copper-mediated free radical generation derived from mutant SOD1 might be related to the degeneration of motor neurons in FALS and that MTs might play a protective role against the expression of the disease.
Collapse
Affiliation(s)
- S Nagano
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
69
|
Ghoshal K, Jacob ST. Regulation of metallothionein gene expression. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2001; 66:357-84. [PMID: 11051769 DOI: 10.1016/s0079-6603(00)66034-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The rapid and robust induction of metallothioneins (MT)-I and II by a variety of inducers that include heavy toxic metals, reactive oxygen species, and different types of stress provide a useful system to study the molecular mechanisms of this unique induction process. The specific expression of MT-III in the brain and of MT-IV in the squamous epithelium of skin and tongue offers a unique opportunity to identify and characterize the tissue-specific factors involved in their expression. Studies using transgenic mice that overexpress MTs or MT null mice have revealed the role of MT in the protection of cells against numerous tissue-damaging agents such as reactive oxygen species. The primary physiological function of these proteins, however, remains an enigma. Considerable advances have been made in the identification of the cis-acting elements that are involved in the constitutive and induced expression of MT-I and MT-II. By contrast, only one key trans-activating factor, namely MTF-1, has been extensively characterized. Studies on the epigenetic silencing of MT-I and MT-II by promoter hypermethylation in some cancer cells have posed interesting questions concerning the functional relevance of MT gene silencing, the molecular mechanisms of MT suppression in these cells, particularly chromatin modifications, and the characteristics of the repressors.
Collapse
Affiliation(s)
- K Ghoshal
- Department of Molecular and Cellular Biochemistry, Ohio State University College of Medicine, Columbus 43210, USA
| | | |
Collapse
|
70
|
Kling PG, Olsson P. Involvement of differential metallothionein expression in free radical sensitivity of RTG-2 and CHSE-214 cells. Free Radic Biol Med 2000; 28:1628-37. [PMID: 10938459 DOI: 10.1016/s0891-5849(00)00277-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The role of metallothionein (MT) in free radical regulation and scavenging was investigated using two fish cell lines, the rainbow trout gonadal (RTG-2) cell line and the chinook salmon embryonic (CHSE-214) cell line. Exposure of RTG-2 cells to H(2)O(2) resulted in upregulation of both MT mRNA and MT protein and was also demonstrated by immunocytochemistry, confirming that MT was regulated by free radicals. We then compared the H(2)O(2) resistance in RTG-2 and CHSE-214 cells following metal treatment with Zn or Cd to induce MT. Comparison of survival of control cells and metal-exposed cells showed that metal treatment, which induced MT, significantly raised the H(2)O(2) tolerance in a dose-dependent manner in RTG-2 cells, while no increased H(2)O(2) resistance was observed in CHSE-214 cells. Transient over-expression of MT in CHSE-214: 59 cells also resulted in a dose-dependent increase in resistance to H(2)O(2) exposure. The raised resistance against H(2)O(2) in metal treated RTG-2 cells as well as transfected CHSE-214: 59 cells strongly demonstrate that MT is involved in the protection against H(2)O(2) and suggest a physiologically important function for MT when cells or whole organisms are exposed to oxidative stress.
Collapse
Affiliation(s)
- P G Kling
- Department of Cell and Molecular Biology, Division of Physiology, Umeâ University, Umeå, Sweden.
| | | |
Collapse
|
71
|
Beattie JH, Wood AM, Trayhurn P, Jasani B, Vincent A, McCormack G, West AK. Metallothionein is expressed in adipocytes of brown fat and is induced by catecholamines and zinc. Am J Physiol Regul Integr Comp Physiol 2000; 278:R1082-9. [PMID: 10749798 DOI: 10.1152/ajpregu.2000.278.4.r1082] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Metallothionein (MT) is thought to have an antioxidant function and is strongly expressed during activation of thermogenesis and increased oxidative stress in brown adipose tissue (BAT). Localization and regulation of MT expression in BAT was therefore investigated in rats and mice. Immunohistochemical analysis of BAT from rats exposed to 4 degrees C for 24 h showed that MT and uncoupling protein 1 (UCP1) were coexpressed in differentiated adipocytes, and both cytoplasmic and nuclear localization of MT was observed. Cold induction of MT-1 expression in BAT was also observed in mice. Administration of norepinephrine to rats and isoproterenol to mice stimulated MT and UCP1 expression in BAT, implying a sympathetically mediated pathway for MT induction. In mice, zinc, and particularly dexamethasone, induced MT-2 expression in BAT and liver. Surprisingly, zinc also induced UCP1 in BAT, suggesting that elevated zinc may induce thermogenesis. We conclude that expression of MT in mature brown adipocytes upon beta-adrenoceptor activation is consistent with a role in protecting against physiological oxidative stress or in facilitating the mobilization or utilization of energy reserves.
Collapse
Affiliation(s)
- J H Beattie
- Trace Element and Gene Expression Group, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
72
|
Camakaris J, Voskoboinik I, Mercer JF. Molecular mechanisms of copper homeostasis. Biochem Biophys Res Commun 1999; 261:225-32. [PMID: 10425169 DOI: 10.1006/bbrc.1999.1073] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Copper is an essential trace element which plays a pivotal role in cell physiology as it constitutes a core part of important cuproenzymes. Novel components of copper homeostasis in humans have been identified recently which have been characterised at the molecular level. These include copper-transporting P-type ATPases, Menkes and Wilson proteins, and copper chaperones. These findings have paved the way towards better understanding of the role of copper deficiency or copper toxicity in physiological and pathological conditions.
Collapse
Affiliation(s)
- J Camakaris
- Department of Genetics, University of Melbourne, Parkville, Victoria, 3052, Australia.
| | | | | |
Collapse
|
73
|
Klaassen CD, Liu J, Choudhuri S. Metallothionein: an intracellular protein to protect against cadmium toxicity. Annu Rev Pharmacol Toxicol 1999; 39:267-94. [PMID: 10331085 DOI: 10.1146/annurev.pharmtox.39.1.267] [Citation(s) in RCA: 762] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metallothioneins (MT) are low-molecular-weight, cysteine-rich, metal-binding proteins. MT genes are readily induced by various physiologic and toxicologic stimuli. Because the cysteines in MT are absolutely conserved across species, it was suspected that the cysteines are necessary for function and MT is essential for life. In attempts to determine the function(s) of MT, studies have been performed using four different experimental paradigms: (a) animals injected with chemicals known to induce MT; (b) cells adapted to survive and grow in high concentrations of MT-inducing toxicants; (c) cells transfected with the MT gene; and (d) MT-transgenic and MT-null mice. Most often, results from studies using the first three approaches have indicated multiple functions of MT in cell biology: MT (a) is a "storehouse" for zinc, (b) is a free-radical scavenger, and (c) protects against cadmium (Cd) toxicity. However, studies using MT-transgenic and null mice have not strongly supported the first two proposed functions but strongly support its function in protecting against Cd toxicity. Repeated administration of Cd to MT-null mice results in nephrotoxicity at one tenth the dose that produces nephrotoxicity in control mice. Human studies indicate that 7% of the general population have renal dysfunction from Cd exposure. Therefore, if humans did not have MT, "normal" Cd exposure would be nephrotoxic to humans. Thus, it appears that during evolution, the ability of MT to protect against Cd toxicity might have taken a more pivotal role in the maintenance of life processes, as compared with its other proposed functions (i.e. storehouse for zinc and free radical scavenger).
Collapse
Affiliation(s)
- C D Klaassen
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City 66160, USA.
| | | | | |
Collapse
|
74
|
Abstract
To characterize the physiological role of metallothioneins I and II (MT-I+II) in the brain, we have examined the chronological effects of a freeze injury to the cortex in normal and MT-I+II null mice. In normal mice, microglia/macrophage activation and astrocytosis were observed in the areas surrounding the lesion site, peaking at approximately 1 and 3 d postlesion (dpl), respectively. At 20 dpl, the parenchyma had regenerated. Both brain macrophages and astrocytes surrounding the lesion increased the MT-I+II immunoreactivity, peaking at approximately 3 dpl, and at 20 dpl it was similar to that of unlesioned mice. In situ hybridization analysis indicates that MT-I+II immunoreactivity reflects changes in the messenger levels. In MT-I+II null mice, microglia/macrophages infiltrated the lesion heavily, and at 20 dpl they were still present. Reactive astrocytosis was delayed and persisted at 20 dpl. In contrast to normal mice, at 20 dpl no wound healing had occurred. The rate of apoptosis, as determined by using terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling, was drastically increased in neurons of ipsilateral cortex of the MT-I+II null mice. Our results demonstrate that MT-I+II are essential for a normal wound repair in the CNS, and that their deficiency impairs neuronal survival.
Collapse
|
75
|
Kunz WS, Kuznetsov AV, Clark JF, Tracey I, Elger CE. Metabolic consequences of the cytochrome c oxidase deficiency in brain of copper-deficient Mo(vbr) mice. J Neurochem 1999; 72:1580-5. [PMID: 10098864 DOI: 10.1046/j.1471-4159.1999.721580.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Biochemical micromethods were used for the investigation of changes in mitochondrial oxidative phosphorylation associated with cytochrome c oxidase deficiency in brain cortex from Mo(vbr) (mottled viable brindled) mice, an animal model of Menkes' copper deficiency syndrome. Enzymatic analysis of cortex homogenates from Mo(vbr) mice showed an approximately twofold decrease in cytochrome c oxidase and a 1.4-fold decrease in NADH:cytochrome c reductase activities as compared with controls. Assessment of mitochondrial respiratory function was performed using digitonin-treated homogenates of the cortex, which exhibited the main characteristics of isolated brain mitochondria. Despite the substantial changes in respiratory chain enzyme activities, no significant differences were found in maximal pyruvate or succinate oxidation rates of brain cortex homogenates from Mo(vbr) and control mice. Inhibitor titrations were used to determine flux control coefficients of NADH:CoQ oxidoreductase and cytochrome c oxidase on the rate of mitochondrial respiration. Application of amobarbital to titrate the activity of NADH:CoQ oxidoreductase showed very similar flux control coefficients for control and mutant animals. Alternately, titration of respiration with azide revealed for Mo(vbr) mice significantly sharper inhibition curves than for controls, indicating a more than twofold elevated flux control coefficient of cytochrome c oxidase. Owing to the reserve capacity of respiratory chain enzymes, the reported changes in activities do not seem to affect whole-brain high-energy phosphates, as observed in a previous study using 31P NMR.
Collapse
Affiliation(s)
- W S Kunz
- Department of Epileptology, University of Bonn Medical Center, Germany
| | | | | | | | | |
Collapse
|
76
|
Mercer JF, Ambrosini L, Horton S, Gazeas S, Grimes A. Animal models of Menkes disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 448:97-108. [PMID: 10079818 DOI: 10.1007/978-1-4615-4859-1_8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- J F Mercer
- Murdoch Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|
77
|
Eskew JD, Vanacore RM, Sung L, Morales PJ, Smith A. Cellular protection mechanisms against extracellular heme. heme-hemopexin, but not free heme, activates the N-terminal c-jun kinase. J Biol Chem 1999; 274:638-48. [PMID: 9872997 DOI: 10.1074/jbc.274.2.638] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hemopexin protects cells lacking hemopexin receptors by tightly binding heme abrogating its deleterious effects and preventing nonspecific heme uptake, whereas cells with hemopexin receptors undergo a series of cellular events upon encountering heme-hemopexin. The biochemical responses to heme-hemopexin depend on its extracellular concentration and range from stimulation of cell growth at low levels to cell survival at otherwise toxic levels of heme. High (2-10 microM) but not low (0.01-1 microM) concentrations of heme-hemopexin increase, albeit transiently, the protein carbonyl content of mouse hepatoma (Hepa) cells. This is due to events associated with heme transport since cobalt-protoporphyrin IX-hemopexin, which binds to the receptor and activates signaling pathways without tetrapyrrole transport, does not increase carbonyl content. The N-terminal c-Jun kinase (JNK) is rapidly activated by 2-10 microM heme-hemopexin, yet the increased intracellular heme levels are neither toxic nor apoptotic. After 24 h exposure to 10 microM heme-hemopexin, Hepa cells become refractory to the growth stimulation seen with 0.1-0.75 microM heme-hemopexin but HO-1 remains responsive to induction by heme-hemopexin. Since free heme does not induce JNK, the signaling events, like phosphorylation of c-Jun via activation of JNK as well as the nuclear translocation of NFkappaB, G2/M arrest, and increased expression of p53 and of the cell cycle inhibitor p21(WAF1/CIP1/SDI1) generated by heme-hemopexin appear to be of paramount importance in cellular protection by heme-hemopexin.
Collapse
Affiliation(s)
- J D Eskew
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110-2499, USA
| | | | | | | | | |
Collapse
|
78
|
Abstract
In Indian childhood cirrhosis (ICC) and related disorders of infancy, hepatic copper overload is associated with cirrhosis. Since copper administration alone has not been shown to induce cirrhosis in animals, synergy between copper and a second hepatotoxin has been suggested. This study investigates the ability of long-term exposure to copper and a pyrrolizidine alkaloid, retrorsine, to produce a model of copper-associated cirrhosis in rats. Groups of rat pups suckled on mothers fed 25 mg/kg diet retrorsine were weaned onto a diet containing 0.5 g/kg diet copper and retrorsine in varying dosage for 13 weeks. Histological similarities between the human disease and rats given copper with retrorsine 5 mg/kg diet included parenchymal destruction, fibrosis, nodular regeneration, and copper accumulation. There were significant histological differences from the human disorder, possibly attributable to inter-species variability or the critical timing or duration of exposure to hepatotoxins in the neonatal period. The hypothesis that ICC results from copper and a second hepatotoxin has not been disproved.
Collapse
Affiliation(s)
- N S Aston
- Division of Paediatrics, University of Sheffield, Children's Hospital, U.K
| | | | | | | |
Collapse
|
79
|
Payne AS, Kelly EJ, Gitlin JD. Functional expression of the Wilson disease protein reveals mislocalization and impaired copper-dependent trafficking of the common H1069Q mutation. Proc Natl Acad Sci U S A 1998; 95:10854-9. [PMID: 9724794 PMCID: PMC27985 DOI: 10.1073/pnas.95.18.10854] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/1998] [Indexed: 11/18/2022] Open
Abstract
Wilson disease is an autosomal recessive disorder of hepatic copper metabolism caused by mutations in a gene encoding a copper-transporting P-type ATPase. To elucidate the function of the Wilson protein, wild-type and mutant Wilson cDNAs were expressed in a Menkes copper transporter-deficient mottled fibroblast cell line defective in copper export. Expression of the wild-type cDNA demonstrated trans-Golgi network localization and copper-dependent trafficking of the Wilson protein identical to previous observations for the endogenously expressed protein in hepatocytes. Furthermore, expression of the Wilson cDNA rescued the mottled phenotype as evidenced by a reduction in copper accumulation and restoration of cell viability. In contrast, expression of an H1069Q mutant Wilson cDNA did not rescue the mottled phenotype, and immunofluorescence studies showed that this mutant Wilson protein was localized in the endoplasmic reticulum. Consistent with these findings, pulse-chase analysis demonstrated a 5-fold decrease in the half-life of the H1069Q mutant as compared with the wild-type protein. Maintenance of these transfected cell lines at 28 degreesC resulted in localization of the H1069Q protein in the trans-Golgi network, suggesting that a temperature-sensitive defect in protein folding followed by degradation constitutes the molecular basis of Wilson disease in patients harboring the H1069Q mutation. Taken together, these studies describe a tractable expression system for elucidating the function and localization of the copper-transporting ATPases in mammalian cells and provide compelling evidence that the Wilson protein can functionally substitute for the Menkes protein, supporting the concept that these proteins use common biochemical mechanisms to effect cellular copper homeostasis.
Collapse
Affiliation(s)
- A S Payne
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
80
|
Cuthbert JA. Wilson's disease. Update of a systemic disorder with protean manifestations. Gastroenterol Clin North Am 1998; 27:655-81, vi-vii. [PMID: 9891702 DOI: 10.1016/s0889-8553(05)70025-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In Wilson's disease, a genetic defect in a copper transporter causes defective incorporation of copper into apo-ceruloplasmin and the failure to excrete copper into bile. Copper accumulated in hepatocytes generates damage via reactive oxygen species. Release of copper from necrotic hepatocytes leads to damage of other tissues, including the brain, urinary tract, red blood cells, heart, endocrine glands, skin, pancreas, bones, and joints. Treatment is designed to chelate the excess copper for urinary excretion, prevent copper absorption, and render tissue copper nontoxic. Liver transplantation, with replacement of the defective hepatic gene, may be necessary in some cases.
Collapse
Affiliation(s)
- J A Cuthbert
- Department of Internal Medicine, Southwestern Medical School, University of Texas Southwestern Medical Center, Dallas, USA.
| |
Collapse
|
81
|
Abstract
Biochemistry and genetics are both required to elucidate the function of macromolecules. There is no question that metallothioneins (MTs) have unique biochemical properties, but genetic experiments have not substantiated the importance of MTs under physiological conditions. Even after thousands of studies describing the structure, biochemical characteristics, tissue distribution, induction, and consequences of genetic disruption and deliberate overexpression, the evolutionary forces that led to the initial appearance, gene duplications, and nearly ubiquitous expression of MTs remain enigmatic.
Collapse
Affiliation(s)
- R D Palmiter
- Howard Hughes Medical Institute and Department of Biochemistry, University of Washington, Box 357370, Seattle, WA 98195, USA.
| |
Collapse
|
82
|
Martín MG. The biology of inherited disorders of the gastrointestinal tract part I: gastrointestinal disorders. J Pediatr Gastroenterol Nutr 1998; 26:321-35. [PMID: 9523870 DOI: 10.1097/00005176-199803000-00016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- M G Martín
- Department of Pediatrics, UCLA School of Medicine, Los Angeles, California 90095-1752, USA
| |
Collapse
|
83
|
Beattie JH, Wood AM, Newman AM, Bremner I, Choo KH, Michalska AE, Duncan JS, Trayhurn P. Obesity and hyperleptinemia in metallothionein (-I and -II) null mice. Proc Natl Acad Sci U S A 1998; 95:358-63. [PMID: 9419380 PMCID: PMC18223 DOI: 10.1073/pnas.95.1.358] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Metallothionein (MT) has several putative roles in metal detoxification, in Zn and Cu homeostasis, in scavenging free radicals, and in the acute phase response. Mice of mixed 129/Ola and C57BL/6J background with targeted disruption of MT-I and MT-II genes are more sensitive to toxic metals and oxidative stress. We noted that these animals were larger than most strains of mice, and we systematically studied aspects of their physiology and biochemistry relating to energy metabolism. During the first 2 weeks after weaning, the growth rates of MT-null and C57BL/6J mice were similar, but the transgenic mice became significantly heavier at age 5-6 weeks. At age 14 weeks, the body weight and food intake of MT-null mice was 16 and 30% higher, respectively, compared with C57BL/6J mice. Most 22- to 39-week-old male MT-null mice were obese, as shown by increased fat accretion, elevated obese (ob) gene expression, and high plasma leptin levels, similar to those recorded in Zucker fatty (fa/fa) rats. Seven-week-old MT-null mice also had significantly higher levels of plasma leptin and elevated expression of ob, lipoprotein lipase, and CCAAT enhancer binding protein alpha genes as compared with age-matched C57BL/6J mice. These observations indicate that abnormal accretion of body fat and adipocyte maturation is initiated at 5-7 weeks of age, possibly coincident with sexual maturation. Targeted disruption of MT-I and MT-II genes seems to induce moderate obesity, providing a new obese animal model. A link between MT and the regulation of energy balance is implied.
Collapse
Affiliation(s)
- J H Beattie
- Trace Element and Gene Expression Group, Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Suzuki-Kurasaki M, Okabe M, Kurasaki M. Copper-metallothionein in the kidney of macular mice: a model for Menkes disease. J Histochem Cytochem 1997; 45:1493-501. [PMID: 9358851 DOI: 10.1177/002215549704501106] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Menkes disease is an X-linked disorder of copper metabolism. Excess amounts of copper in the kidney of Macular mice, a model for this disease, were found as copper-metallothionein (Cu-MT) from kidney of the mice. Histochemical studies of Cu-MT based on its autofluorescent emission properties showed that the protein was predominant in the proximal convoluted tubule (PCT) cells of the cortex. PCT cells are known to be the primary site of the nephrotoxicity caused by heavy metals. MT mRNA was also observed in the cortex, indicating that the protein was biosynthesized in this region. On the basis of these results, we suggest that biosynthesis and degradation of Cu-MT occur repeatedly in the PCT cells of the cortex. We also compared the histochemical localization of Cu-MT in Macular mice and Long-Evans cinnamon rats, a model for Wilson's disease. The significance of this comparison is discussed.
Collapse
Affiliation(s)
- M Suzuki-Kurasaki
- Department of Environmental Medicine and Informatics, Graduate School of Environmental Earth Science, Hokkaido University, Sapporo, Japan
| | | | | |
Collapse
|
85
|
Winge DR. Copper-regulatory domain involved in gene expression. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1997; 58:165-95. [PMID: 9308366 DOI: 10.1016/s0079-6603(08)60036-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Copper ion homeostasis in yeast is maintained through regulated expression of genes involved in copper ion uptake, Cu(I) sequestration, and defense against reactive oxygen intermediates. Positive and negative copper ion regulation is observed, and both effects are mediated by Cu(I)-sensing transcription factors. The mechanism of Cu(I) regulation is distinct for transcriptional activation versus transcriptional repression. Cu(I) activation of gene expression in S. cerevisiae and C. glabrata occurs through Cu-regulated DNA binding. The activation process involves Cu(I) cluster formation within the regulatory domain in Ace1 and Amt1. Cu(I) binding stabilizes a specific conformation capable of high-affinity interaction with specific DNA promoter sequences. Cu(I)-activated transcription factors are modular proteins in which the DNA-binding domain is distinct from the domain that mediates transcriptional activation. The all-or-nothing formation of the polycopper cluster permits a graded response of the cell to environmental copper. Cu(I) triggering may involve a metal exchange reaction converting Ace1 from a Zn(II)-specific conformer to a clustered Cu(I) conformer. The Cu(I) regulatory domain occurs in transcription factors from S. cerevisiae and C. glabrata. Sequence homologs are also known in Y. lipolytica and S. pombe, although no functional information is available for these candidate regulatory molecules. The presence of the Cu(I) regulatory domain in four distinct yeast strains suggests that this Cu-responsive domain may occur in other eukaryotes. Cu-mediated repression of gene expression in S. cerevisiae occurs through Cu(I) regulation of Mac1. Cu(I) binding to Mac1 appears to inhibit the transactivation domain. The Cu(I) specificity of this repression is likely to arise from formation of a polycopper thiolate cluster.
Collapse
Affiliation(s)
- D R Winge
- Department of Medicine, University of Utah Health Sciences Center, Salt Lake City 84132, USA
| |
Collapse
|
86
|
Yamaguchi-Iwai Y, Serpe M, Haile D, Yang W, Kosman DJ, Klausner RD, Dancis A. Homeostatic regulation of copper uptake in yeast via direct binding of MAC1 protein to upstream regulatory sequences of FRE1 and CTR1. J Biol Chem 1997; 272:17711-8. [PMID: 9211922 DOI: 10.1074/jbc.272.28.17711] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Copper deprivation of Saccharomyces cerevisiae induces transcription of the FRE1 and CTR1 genes. FRE1 encodes a surface reductase capable of reducing and mobilizing copper chelates outside the cell, and CTR1 encodes a protein mediating copper uptake at the plasma membrane. In this paper, the protein encoded by MAC1 is identified as the factor mediating this homeostatic control. A novel dominant allele of MAC1, MAC1(up2), is mutated in a Cys-rich domain that may function in copper sensing (a G to A change of nucleotide 812 resulting in a Cys-271 to Tyr substitution). This mutant is functionally similar to the MAC1(up1) allele in which His-279 in the same domain has been replaced by Gln. Both mutations confer constitutive copper-independent expression of FRE1 and CTR1. A sequence including the palindrome TTTGCTCA ... TGAGCAAA, appearing within the 5'-flanking region of the CTR1 promoter, is necessary and sufficient for the copper- and MAC1-dependent CTR1 transcriptional regulation. An identical sequence appears as a direct repeat in the FRE1 promoter. The data indicate that the signal resulting from copper deprivation is transduced via the Cys-rich motif of MAC1 encompassing residues 264-279. MAC1 then binds directly and specifically to the CTR1 and FRE1 promoter elements, inducing transcription of those target genes. This model defines the homeostatic mechanism by which yeast regulates the cell acquisition of copper in response to copper scarcity or excess.
Collapse
Affiliation(s)
- Y Yamaguchi-Iwai
- Cell Biology and Metabolism Branch, NICHHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
87
|
Radunović A, Delves HT, Robberecht W, Tilkin P, Enayat ZE, Shaw CE, Stević Z, Apostolski S, Powell JF, Leigh PN. Copper and zinc levels in familial amyotrophic lateral sclerosis patients with CuZnSOD gene mutations. Ann Neurol 1997; 42:130-1. [PMID: 9225698 DOI: 10.1002/ana.410420124] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
88
|
Disruption of the metallothionein-III gene in mice: analysis of brain zinc, behavior, and neuron vulnerability to metals, aging, and seizures. J Neurosci 1997. [PMID: 9006971 DOI: 10.1523/jneurosci.17-04-01271.1997] [Citation(s) in RCA: 193] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Metallothionein-III (MT-III), a brain-specific member of the metallothionein family of metal-binding proteins, is abundant in glutamatergic neurons that release zinc from their synaptic terminals, such as hippocampal pyramidal neurons and dentate granule cells. MT-III may be an important regulator of zinc in the nervous system, and its absence has been implicated in the development of Alzheimer's disease. However, the roles of MT-III in brain physiology and pathophysiology have not been elucidated. Mice lacking MT-III because of targeted gene inactivation were generated to evaluate the neurobiological significance of MT-III. MT-III-deficient mice had decreased concentrations of zinc in several brain regions, including hippocampus, but the pool of histochemically reactive zinc was not disturbed. Mutant mice exhibited normal spatial learning in the Morris water maze and were not sensitive to systemic zinc or cadmium exposure. No neuropathology or behavioral deficits were detected in 2-year-old MT-III-deficient mice, but the age-related increase in glial fibrillary acidic protein expression was more pronounced in mutant brain. MT-III-deficient mice were more susceptible to seizures induced by kainic acid and subsequently exhibited greater neuron injury in the CA3 field of hippocampus. Conversely, transgenic mice containing elevated levels of MT-III were more resistant to CA3 neuron injury induced by seizures. These observations suggest a potential role for MT-III in zinc regulation during neural stimulation.
Collapse
|
89
|
Aschner M, Cherian MG, Klaassen CD, Palmiter RD, Erickson JC, Bush AI. Metallothioneins in brain--the role in physiology and pathology. Toxicol Appl Pharmacol 1997; 142:229-42. [PMID: 9070344 DOI: 10.1006/taap.1996.8054] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A symposium on the role of brain metallothioneins (MTs) in physiology and pathology was held at the 1996 Annual Society of Toxicology Meeting in Anaheim, California. The objectives of this symposium were to: (1) review the physiologic function of MTs, (2) examine the distribution of brain MTs with particular emphasis on cell-specific localization (neurons vs neuroglia), (3) discuss MT gene responsiveness upon toxic insult with metals, and (4) discuss the potential role of MTs in the etiology of neurodegenerative disorders. Dr. Cherian discussed the biochemical properties of the MTs, emphasizing structural similarities and differences between the MTs. Dr. Klaassen addressed the expression and distribution of the MTs in brains with special reference to the cell-specific localization of MTs. Dr. Aschner provided data illustrating a potential role for MTs in attenuating the cytotoxicity caused by methylmercury (MeHg) in cultured neonatal astrocytes. Dr. Palmiter discussed the properties of MT-III and the increased sensitivity of MT-III knockout mice to kainate-induced seizures. Cerebral zinc metabolism, its relationship to MT homeostasis, and its pathogenic potential in Alzheimer's disease was addressed by Dr. Bush.
Collapse
Affiliation(s)
- M Aschner
- Department of Physiology and Pharmacology, Bowman Gray School of Medicine of Wake Forest University, Winston-Salem, North Carolina 27157-1083, USA
| | | | | | | | | | | |
Collapse
|
90
|
Bedell MA, Largaespada DA, Jenkins NA, Copeland NG. Mouse models of human disease. Part II: recent progress and future directions. Genes Dev 1997; 11:11-43. [PMID: 9000048 DOI: 10.1101/gad.11.1.11] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- M A Bedell
- Mammalian Genetics Laboratory, ABL-Basic Research Program, NCI-Frederick Cancer Research and Development Center, Frederick, Maryland 21702-1201, USA
| | | | | | | |
Collapse
|
91
|
Yamaguchi Y, Heiny ME, Suzuki M, Gitlin JD. Biochemical characterization and intracellular localization of the Menkes disease protein. Proc Natl Acad Sci U S A 1996; 93:14030-5. [PMID: 8943055 PMCID: PMC19489 DOI: 10.1073/pnas.93.24.14030] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Menkes disease is a fatal neurodegenerative disorder of childhood due to the absence or dysfunction of a putative copper-transporting P-type ATPase encoded on the X chromosome. To elucidate the biosynthesis and subcellular localization of this protein, polyclonal antisera were generated against a bacterial fusion protein encoding the 4th to 6th copper-binding domains in the amino terminus of the human Menkes protein. RNA blot analysis revealed abundant Menkes gene expression in several cell lines, and immunoblotting studies utilizing this antiserum readily detected a 178-kDa protein in lysates from these cells. Pulse-chase studies indicate that this protein is synthesized as a single-chain polypeptide which is modified by N-linked glycosylation to a mature endoglycosidase H-resistant form. Sucrose gradient fractionation of HeLa cell lysates followed by immunoblotting of individual fractions with antibodies to proteins of known intracellular location identified the Menkes ATPase in fractions similar to those containing the cation-independent mannose-6-phosphate receptor. Consistent with this observation, confocal immunofluorescence studies of these same cells localized this protein to the trans-Golgi network and a vesicular compartment with no expression in the nucleus or on the plasma membrane. Taken together, these data provide a unique model of copper transport into the secretory pathway of mammalian cells which is compatible with clinical observations in affected patients and with recent data on homologous proteins identified in prokaryotes and yeast.
Collapse
Affiliation(s)
- Y Yamaguchi
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|