51
|
Cui L, Qiao L, Wang J, Wang X, Yang Z, Ma B, Shi Y, Zhou X, Wu K, Han Y, Fan D. New Monoclonal Antibody B7 Selectively Recognizes Rat Myocardium Microvascular Endothelial Cells. Hybridoma (Larchmt) 2010; 29:413-8. [PMID: 21050042 DOI: 10.1089/hyb.2010.0033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Lina Cui
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Lijuan Qiao
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Jingbo Wang
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Xuechang Wang
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Zhao Yang
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Bin Ma
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Yongquan Shi
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Xinmin Zhou
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Kaichun Wu
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Ying Han
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
52
|
The role of angiogenesis in the transformation of plexiform neurofibroma into malignant peripheral nerve sheath tumors in children with neurofibromatosis type 1. J Pediatr Hematol Oncol 2010; 32:548-53. [PMID: 20686424 DOI: 10.1097/mph.0b013e3181e887c7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE The role of angiogenesis in the transformation of peripheral neurofibroma (PNF) to malignant peripheral nerve sheath tumor (MPNST) in neurofibromatosis type 1 (NF1) remains elusive and forms the objective of this study. EXPERIMENTAL DESIGN Archival tissue from 5 children with NF1 and PNF, who developed MPNST between the ages of 8 and 15 years were analyzed for differences in microvasculature. The role of proangiogenic growth factors such as Vascular Endothelial Growth Factor (VEGF), and its receptors Flk-1 and Flt-1, and vessel maturity, defined as von Willebrand factor (vWf), α-smooth muscle actin+ (SMA+), were evaluated by immuno-histochemistry. RESULTS A qualitative evaluation of the vasculature showed predominantly α-SMA+/vWf+ more stable vessels in PNF, and an irregular meshwork of α-SMA-/vWf+ endothelial cells structures in MPNST. In NF and PNF tumor cells were VEGF-, in contrast to VEGF+ tumor cells in MPNST. If present, the VEGF stain was confined mainly to the perivascular spaces in PNF, unlike the mainly stromal VEGF stain in MPNST. VEGF receptors also manifested a tumor stage-specific pattern. Flk-1 and Flt-1 were restricted to the mature, well-formed vasculature in PNF, but exhibited a diffuse pattern in MPNST. CONCLUSION Our study provides a rare opportunity to document consistent and histologically detectable differences in the vascular organization of PNF and MPNST. It permits a pair-wise evaluation of the malignant conversion of benign PNF into its malignant counterpart, in the same patients. The phenotypic variations and characteristics of the vessels in these tumors are consistent with the idea that a strong proangiogenic drive contributes to the progressive growth in MPNST.
Collapse
|
53
|
Yi J, Chen M, Wu X, Yang X, Xu T, Zhuang Y, Han M, Xu R. Endothelial SUR-8 acts in an ERK-independent pathway during atrioventricular cushion development. Dev Dyn 2010; 239:2005-13. [PMID: 20549726 PMCID: PMC3138404 DOI: 10.1002/dvdy.22343] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2010] [Indexed: 01/22/2023] Open
Abstract
SUR-8, a conserved leucine-rich repeats protein, was first identified as a positive regulator of Ras pathway in Caenorhabditis elegans. Biochemical studies indicated that SUR-8 interacts with Ras and Raf, leading to the elevated ERK activity. However, the physiological role of SUR-8 during mammalian development remains unclear. Here we found that germline deletion of SUR-8 in mice resulted in early embryonic lethality. Inactivated SUR-8 specifically in mouse endothelial cells (ECs) revealed that SUR-8 is essential for embryonic heart development. SUR-8 deficiency in ECs resulted in late embryonic lethality, and the mutant mice displayed multiple cardiac defects. The reduced endothelial-mesenchymal transformation (EMT) and the reduced mesenchyme proliferation phase were observed in the atrioventricular canal (AVC) within the mutant hearts, leading to the formation of hypoplastic endocardial cushions. However, ERK activation did not appear to be affected in mutant ECs, suggesting that SUR-8 may act in an ERK-independent pathway to regulate AVC development.
Collapse
Affiliation(s)
- Jing Yi
- Institute of Developmental Biology & Molecular Medicine, School of Life Sciences, Fudan UniversityShanghai, PR China
| | - Muyun Chen
- Institute of Developmental Biology & Molecular Medicine, School of Life Sciences, Fudan UniversityShanghai, PR China
| | - Xiaohui Wu
- Institute of Developmental Biology & Molecular Medicine, School of Life Sciences, Fudan UniversityShanghai, PR China
| | - Xiao Yang
- Genetic Laboratory of Development and Diseases, Institute of BiotechnologyBeijing, PR China
| | - Tian Xu
- Institute of Developmental Biology & Molecular Medicine, School of Life Sciences, Fudan UniversityShanghai, PR China
- Howard Hughes Medical Institute and Department of Genetics, Yale University School of MedicineNew Haven, Connecticut
| | - Yuan Zhuang
- Institute of Developmental Biology & Molecular Medicine, School of Life Sciences, Fudan UniversityShanghai, PR China
- Department of Immunology, Duke University Medical CenterDurham, North Carolina
| | - Min Han
- Institute of Developmental Biology & Molecular Medicine, School of Life Sciences, Fudan UniversityShanghai, PR China
- Howard Hughes Medical Institute and Department of MCDB, University of ColoradoBoulder, Colorado
| | - Rener Xu
- Institute of Developmental Biology & Molecular Medicine, School of Life Sciences, Fudan UniversityShanghai, PR China
| |
Collapse
|
54
|
Bajaj A, Zheng Q, Adam A, Vincent P, Pumiglia K. Activation of endothelial ras signaling bypasses senescence and causes abnormal vascular morphogenesis. Cancer Res 2010; 70:3803-12. [PMID: 20388785 PMCID: PMC2862130 DOI: 10.1158/0008-5472.can-09-2648] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Angiogenesis is crucial for embryogenesis, reproduction, and wound healing and is a critical determinant of tumor growth and metastasis. The multifunctional signal transducer Ras is a proto-oncogene and frequently becomes mutated in a variety of human cancers, including angiosarcomas. Regulation of Ras is important for endothelial cell function and angiogenesis. Hyperactivation of Ras is linked with oncogene-induced senescence in many cell types. Given links between vascular malformations and angiosarcoma with activated Ras signaling, we sought to determine the consequence of sustained Ras activation on endothelial cell function. We find that sustained Ras activation in primary endothelial cells leads to prolonged activation of progrowth signaling, accompanied by a senescence bypass, enhanced proliferation, autonomous growth, and increased survival. Moreover, Ras severely compromises the ability of these cells to organize into vascular structures, instead promoting formation of planar endothelial sheets. This abnormal phenotype is regulated by phosphoinositide 3-kinase signaling, highlighting the therapeutic potential of agents targeting this axis in dealing with vascular morphogenic disorders and vascular normalization of tumors.
Collapse
Affiliation(s)
- Anshika Bajaj
- Center for Cell Biology and Cancer Research, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208
| | - Qingxia Zheng
- Center for Cell Biology and Cancer Research, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208
| | - Alejandro Adam
- Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208
| | - Peter Vincent
- Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208
| | - Kevin Pumiglia
- Center for Cell Biology and Cancer Research, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208
| |
Collapse
|
55
|
Gao Z, Kim GH, Mackinnon AC, Flagg AE, Bassett B, Earley JU, Svensson EC. Ets1 is required for proper migration and differentiation of the cardiac neural crest. Development 2010; 137:1543-51. [PMID: 20356956 DOI: 10.1242/dev.047696] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Defects in cardiac neural crest lead to congenital heart disease through failure of cardiac outflow tract and ventricular septation. In this report, we demonstrate a previously unappreciated role for the transcription factor Ets1 in the regulation of cardiac neural crest development. When bred onto a C57BL/6 genetic background, Ets1(-/-) mice have a nearly complete perinatal lethality. Histologic examination of Ets1(-/-) embryos revealed a membranous ventricular septal defect and an abnormal nodule of cartilage within the heart. Lineage-tracing experiments in Ets1(-/-) mice demonstrated that cells of the neural crest lineage form this cartilage nodule and do not complete their migration to the proximal aspects of the outflow tract endocardial cushions, resulting in the failure of membranous interventricular septum formation. Given previous studies demonstrating that the MEK/ERK pathway directly regulates Ets1 activity, we cultured embryonic hearts in the presence of the MEK inhibitor U0126 and found that U0126 induced intra-cardiac cartilage formation, suggesting the involvement of a MEK/ERK/Ets1 pathway in blocking chondrocyte differentiation of cardiac neural crest. Taken together, these results demonstrate that Ets1 is required to direct the proper migration and differentiation of cardiac neural crest in the formation of the interventricular septum, and therefore could play a role in the etiology of human congenital heart disease.
Collapse
Affiliation(s)
- Zhiguang Gao
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
56
|
Lasater EA, Li F, Bessler WK, Estes ML, Vemula S, Hingtgen CM, Dinauer MC, Kapur R, Conway SJ, Ingram DA. Genetic and cellular evidence of vascular inflammation in neurofibromin-deficient mice and humans. J Clin Invest 2010; 120:859-70. [PMID: 20160346 DOI: 10.1172/jci41443] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 01/06/2010] [Indexed: 11/17/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) results from mutations in the NF1 tumor suppressor gene, which encodes the protein neurofibromin. NF1 patients display diverse clinical manifestations, including vascular disease, which results from neointima formation and vessel occlusion. However, the pathogenesis of NF1 vascular disease remains unclear. Vessel wall homeostasis is maintained by complex interactions between vascular and bone marrow-derived cells (BMDCs), and neurofibromin regulates the function of each cell type. Therefore, utilizing cre/lox techniques and hematopoietic stem cell transplantation to delete 1 allele of Nf1 in endothelial cells, vascular smooth muscle cells, and BMDCs alone, we determined which cell lineage is critical for neointima formation in vivo in mice. Here we demonstrate that heterozygous inactivation of Nf1 in BMDCs alone was necessary and sufficient for neointima formation after vascular injury and provide evidence of vascular inflammation in Nf1+/- mice. Further, analysis of peripheral blood from NF1 patients without overt vascular disease revealed increased concentrations of inflammatory cells and cytokines previously linked to vascular inflammation and vasoocclusive disease. These data provide genetic and cellular evidence of vascular inflammation in NF1 patients and Nf1+/- mice and provide a framework for understanding the pathogenesis of NF1 vasculopathy and potential therapeutic and diagnostic interventions.
Collapse
Affiliation(s)
- Elisabeth A Lasater
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, 46202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Cardiac and vascular functions of the zebrafish orthologues of the type I neurofibromatosis gene NFI. Proc Natl Acad Sci U S A 2009; 106:22305-10. [PMID: 19966217 DOI: 10.1073/pnas.0901932106] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Von Recklinghausen neurofibromatosis is a common autosomal dominant genetic disorder characterized by benign and malignant tumors of neural crest origin. Significant progress in understanding the pathophysiology of this disease has occurred in recent years, largely aided by the development of relevant animal models. Von Recklinghausen neurofibromatosis is caused by mutations in the NF1 gene, which encodes neurofibromin, a large protein that modulates the activity of Ras. Here, we describe the identification and characterization of zebrafish nf1a and nf1b, orthologues of NF1, and show neural crest and cardiovascular defects resulting from morpholino knockdown, including vascular and cardiac valvular abnormalities. Development of a zebrafish model of von Recklinghausen neurofibromatosis will allow for structure-function analysis and genetic screens in this tractable vertebrate system.
Collapse
|
58
|
Oceandy D, Cartwright EJ, Neyses L. Ras-association domain family member 1A (RASSF1A)-where the heart and cancer meet. Trends Cardiovasc Med 2009; 19:262-7. [PMID: 20447568 DOI: 10.1016/j.tcm.2010.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The close relationship between signaling pathways regulating tumor growth and cardiac hypertrophy has attracted considerable interest. Although the involvement of proto-oncogenes in positively modulating myocardial hypertrophy has long been recognized, little is known about factors that counterregulate them. In this article, we review the novel tumor suppressor Ras-association domain family protein isoform 1A (RASSF1A), which strongly inhibits the prohypertrophic Ras-Raf1-ERK1/2 pathway in the heart. RASSF1A interacts with a number of important signaling molecules regulating cell growth, survival, and apoptosis; therefore, it serves as a key adaptor molecule that integrates the upstream stimuli and transduces them to the selective downstream effectors.
Collapse
Affiliation(s)
- Delvac Oceandy
- The Cardiovascular Medicine Research Group, School of Biomedicine, University of Manchester, Manchester Academic Health Science Center, Manchester, United Kingdom.
| | | | | |
Collapse
|
59
|
Xu J, Ismat FA, Wang T, Lu MM, Antonucci N, Epstein JA. Cardiomyocyte-specific loss of neurofibromin promotes cardiac hypertrophy and dysfunction. Circ Res 2009; 105:304-11. [PMID: 19574548 PMCID: PMC2747036 DOI: 10.1161/circresaha.109.201509] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
RATIONALE Neurofibromatosis type 1 (NF1) is a common autosomal dominant disorder with a broad array of clinical manifestations, including benign and malignant tumors, and characteristic cutaneous findings. NF1 patients also have an increased incidence of cardiovascular diseases, including obstructive vascular disorders and hypertension. The disease gene, NF1, encodes neurofibromin, a ubiquitously expressed protein that acts, in part, as a Ras-GAP (GTP-ase activating protein), downregulating the activity of activated Ras protooncogenes. In animal models, endothelial and smooth muscle expression of the disease gene is critical for normal heart development and the prevention of vascular disease, respectively. OBJECTIVE To determine the role of NF1 in the postnatal and adult heart. METHODS AND RESULTS We generated mice with homozygous loss of the murine homolog Nf1 in myocardium (Nf1mKO) and evaluated their hearts for biochemical, structural, and functional changes. Nf1mKO mice have normal embryonic cardiovascular development but have marked cardiac hypertrophy, progressive cardiomyopathy, and fibrosis in the adult. Hyperactivation of Ras and downstream pathways are seen in the heart with the loss of Nf1, along with activation of a fetal gene program. CONCLUSIONS This report describes a critical role of Nf1 in the regulation of cardiac growth and function. Activation of pathways known to be involved in cardiac hypertrophy and dysfunction are seen with the loss of myocardial neurofibromin.
Collapse
Affiliation(s)
- Junwang Xu
- Department of Cell and Developmental Biology and the Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA 19104
| | - Fraz A. Ismat
- Department of Cell and Developmental Biology and the Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA 19104
- Division of Cardiology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA 19104
| | - Tao Wang
- Department of Cell and Developmental Biology and the Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA 19104
| | - Min Min Lu
- Department of Cell and Developmental Biology and the Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA 19104
| | - Nicole Antonucci
- Department of Cell and Developmental Biology and the Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA 19104
| | - Jonathan A. Epstein
- Department of Cell and Developmental Biology and the Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA 19104
| |
Collapse
|
60
|
Xu K, Chong DC, Rankin SA, Zorn AM, Cleaver O. Rasip1 is required for endothelial cell motility, angiogenesis and vessel formation. Dev Biol 2009; 329:269-79. [PMID: 19272373 PMCID: PMC2683470 DOI: 10.1016/j.ydbio.2009.02.033] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 02/20/2009] [Accepted: 02/24/2009] [Indexed: 01/27/2023]
Abstract
Ras proteins are small GTPases that regulate cellular growth and differentiation. Components of the Ras signaling pathway have been shown to be important during embryonic vasculogenesis and angiogenesis. Here, we report that Rasip1, which encodes a novel Ras-interacting protein, is strongly expressed in vascular endothelial cells throughout development, in both mouse and frog. Similar to the well-characterized vascular markers VEGFR2 and PECAM, Rasip1 is specifically expressed in angioblasts prior to vessel formation, in the initial embryonic vascular plexus, in the growing blood vessels during angiogenesis and in the endothelium of mature blood vessels into the postnatal period. Rasip1 expression is undetectable in VEGFR2 null embryos, which lack endothelial cells, suggesting that Rasip1 is endothelial specific. siRNA-mediated reduction of Rasip1 severely impairs angiogenesis and motility in endothelial cell cultures, and morpholino knockdown experiments in frog embryos demonstrate that Rasip1 is required for embryonic vessel formation in vivo. Together, these data identify Rasip1 as a novel endothelial factor that plays an essential role in vascular development.
Collapse
Affiliation(s)
- Ke Xu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas, USA 75390
| | - Diana C. Chong
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas, USA 75390
| | - Scott A. Rankin
- Division of Developmental Biology, Cincinnati Children’s Research Foundation and Department of Pediatrics, College of Medicine, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | - Aaron M. Zorn
- Division of Developmental Biology, Cincinnati Children’s Research Foundation and Department of Pediatrics, College of Medicine, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | - Ondine Cleaver
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas, USA 75390
| |
Collapse
|
61
|
|
62
|
Noonan syndrome cardiac defects are caused by PTPN11 acting in endocardium to enhance endocardial-mesenchymal transformation. Proc Natl Acad Sci U S A 2009; 106:4736-41. [PMID: 19251646 DOI: 10.1073/pnas.0810053106] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Noonan syndrome (NS), the most common single-gene cause of congenital heart disease, is an autosomal dominant disorder that also features proportionate short stature, facial abnormalities, and an increased risk of myeloproliferative disease. Germline-activating mutations in PTPN11, which encodes the protein tyrosine phosphatase SHP2, cause about half of NS cases; other causative alleles include KRAS, SOS1, and RAF1 mutants. We showed previously that knock-in mice bearing the NS mutant Ptpn11(D61G) on a mixed 129S4/SvJae X C57BL6/J background exhibit all major NS features, including a variety of cardiac defects, with variable penetrance. However, the cellular and molecular mechanisms underlying NS cardiac defects and whether genetic background and/or the specific NS mutation contribute to the NS phenotype remained unclear. Here, using an inducible knock-in approach, we show that all cardiac defects in NS result from mutant Shp2 expression in the endocardium, not in the myocardium or neural crest. Furthermore, the penetrance of NS defects is affected by genetic background and the specific Ptpn11 allele. Finally, ex vivo assays and pharmacological approaches show that NS mutants cause cardiac valve defects by increasing Erk MAPK activation, probably downstream of ErbB family receptor tyrosine kinases, extending the interval during which cardiac endocardial cells undergo endocardial-mesenchymal transformation. Our data provide a mechanistic underpinning for the cardiac defects in this disorder.
Collapse
|
63
|
Azhar M, Runyan RB, Gard C, Sanford LP, Miller ML, Andringa A, Pawlowski S, Rajan S, Doetschman T. Ligand-specific function of transforming growth factor beta in epithelial-mesenchymal transition in heart development. Dev Dyn 2009; 238:431-42. [PMID: 19161227 PMCID: PMC2805850 DOI: 10.1002/dvdy.21854] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The ligand specificity of transforming growth factor beta (TGFbeta) in vivo in mouse cardiac cushion epithelial-to-mesenchymal transition (EMT) is poorly understood. To elucidate the function of TGFbeta in cushion EMT, we analyzed Tgfb1(-/-), Tgfb2(-/-), and Tgfb3(-/-) mice between embryonic day (E) 9.5 and E14.5 using both in vitro and in vivo approaches. Atrioventricular (AV) canal collagen gel assays at E9.5 indicated normal EMT in both Tgfb1(-/-) and Tgfb3(-/-) mice. However, analysis of Tgfb2(-/-) AV explants at E9.5 and E10.5 indicated that EMT, but not cushion cell proliferation, was initially delayed but later remained persistent. This was concordant with the observation that Tgfb2(-/-) embryos, and not Tgfb1(-/-) or Tgfb3(-/-) embryos, develop enlarged cushions at E14.5 with elevated levels of well-validated indicators of EMT. Collectively, these data indicate that TGFbeta2, and not TGFbeta1 or TGFbeta3, mediates cardiac cushion EMT by promoting both the initiation and cessation of EMT.
Collapse
Affiliation(s)
- Mohamad Azhar
- BIO5 Institute, University of Arizona, Tucson, AZ
- Department of Cell Biology & Anatomy, University of Arizona, Tucson, AZ
| | - Raymond B. Runyan
- Department of Cell Biology & Anatomy, University of Arizona, Tucson, AZ
| | - Connie Gard
- BIO5 Institute, University of Arizona, Tucson, AZ
| | | | - Marian L. Miller
- Departments of Environmental health, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Anastasia Andringa
- Departments of Environmental health, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Sharon Pawlowski
- Molecular Genetics, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Sudarsan Rajan
- Molecular Genetics, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Tom Doetschman
- BIO5 Institute, University of Arizona, Tucson, AZ
- Department of Cell Biology & Anatomy, University of Arizona, Tucson, AZ
| |
Collapse
|
64
|
Hacking DF. 'Knock, and it shall be opened': knocking out and knocking in to reveal mechanisms of disease and novel therapies. Early Hum Dev 2008; 84:821-7. [PMID: 18838236 DOI: 10.1016/j.earlhumdev.2008.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent significant advances in molecular biology have generated genetically modified bacteria, yeast, nematodes, fruit flies, and fish. However, it is the genetic modification of mammalian model organisms, particularly the mouse, that has the greatest potential to shed light on human development, physiology and pathology in ways that have significant implications for neonatal and paediatric clinical practice. Here, we review some of the techniques for knocking out (inactivating), mutating and knocking in (inserting) selected genes that are important to neonatology and show how this research will lead both to a better understanding of disease and to novel therapies for infants and children.
Collapse
Affiliation(s)
- Douglas F Hacking
- Division of Molecular Medicine, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.
| |
Collapse
|
65
|
Abstract
The development of the embryonic heart is dependent upon the generation and incorporation of different mesenchymal subpopulations that derive from intra- and extra-cardiac sources, including the endocardium, epicardium, neural crest, and second heart field. Each of these populations plays a crucial role in cardiovascular development, in particular in the formation of the valvuloseptal apparatus. Notwithstanding shared mechanisms by which these cells are generated, their fate and function differ profoundly by their originating source. While most of our early insights into the origin and fate of the cardiac mesenchyme has come from experimental studies in avian model systems, recent advances in transgenic mouse technology has enhanced our ability to study these cell populations in the mammalian heart. In this article, we will review the current understanding of the role of cardiac mesenchyme in cardiac morphogenesis and discuss several new paradigms based on recent studies in the mouse.
Collapse
Affiliation(s)
- Brian S Snarr
- Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | |
Collapse
|
66
|
Role of ERK1/2 signaling in congenital valve malformations in Noonan syndrome. Proc Natl Acad Sci U S A 2008; 105:18930-5. [PMID: 19017799 DOI: 10.1073/pnas.0806556105] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Noonan syndrome (NS) is the most common nonchromosomal genetic disorder associated with cardiovascular malformations. The most prominent cardiac defects in NS are pulmonary valve stenosis and hypertrophic cardiomyopathy. Gain-of-function mutations in the protein tyrosine phosphatase Shp2 have been identified in 50% of NS families. We created a NS mouse model with selective overexpression of mutant Shp2 (Q79R-Shp2) in the developing endocardial cushions. In our model, Cre recombinase driven by the Tie2 promoter irreversibly activates transgenic Q79R-Shp2 expression in the endothelial-derived cell lineage. Q79R-Shp2 expression resulted in embryonic lethality by embryonic day 14.5. Importantly, mutant embryos showed significantly enlarged endocardial cushions in the atrioventricular canal and in the outflow tract. In contrast, overexpression of wild-type Shp2 protein at comparable levels did not enhance endocardial cushion growth or alter the morphology of the mature adult valves. Expression of Q79R-Shp2 was accompanied by increased ERK1/2 activation in a subset of cells within the cushion mesenchyme, suggesting that hyperactivation of this signaling pathway may play a pathogenic role. To test this hypothesis in vivo, Q79R-Shp2-expressing mice were crossed with mice carrying either a homozygous ERK1 or a heterozygous ERK2 deletion. Deletion of ERK1 completely rescued the endocardial cushion phenotype, whereas ERK2 protein reduction did not affect endocardial cushion size. Constitutive hyperactivation of ERK1/2 signaling alone with a transgenic approach resulted in a phenocopy of the valvular phenotype. The data demonstrate both necessity and sufficiency of increased ERK activation downstream of Shp2 in mediating abnormal valve development in a NS mouse model.
Collapse
|
67
|
Abstract
Neurofibromas are benign tumors of peripheral nerve that occur sporadically or in patients with the autosomal dominant tumor predisposition syndrome neurofibromatosis type 1 (NF1). Multiple neurofibroma subtypes exist which differ in their site of occurrence, their association with NF1, and their tendency to undergo transformation to become malignant peripheral nerve sheath tumors (MPNSTs), the most common malignancy associated with NF1. Most NF1 patients carry a constitutional mutation of the NF1 tumor suppressor gene. Neurofibromas develop in these patients when an unknown cell type in the Schwann cell lineage loses its remaining functional NF1 gene and initiates a complex series of interactions with other cell types; these interactions may be influenced by aberrant expression of growth factors and growth factor receptors and the action of modifier genes. Cells within certain neurofibroma subtypes subsequently accumulate additional mutations affecting the p19(ARF)-MDM2-TP53 and p16INK4A-Rb signaling cascades, mutations of other as yet unidentified genes, and amplification of growth factor receptor genes, resulting in their transformation into MPNSTs. These observations have been validated using a variety of transgenic and knockout mouse models that recapitulate neurofibroma and MPNST pathogenesis. A new generation of mouse models is also providing important new insights into the identity of the cell type in the Schwann cell lineage that gives rise to neurofibromas. Our improving understanding of the mechanisms underlying the pathogenesis of neurofibromas and MPNSTs raises intriguing new questions about the origin and pathogenesis of these neoplasms and establishes models for the development of new therapies targeting these neoplasms.
Collapse
Affiliation(s)
- Steven L. Carroll
- Division of Neuropathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294-0017
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Research Foundation, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| |
Collapse
|
68
|
Lasater EA, Bessler WK, Mead LE, Horn WE, Clapp DW, Conway SJ, Ingram DA, Li F. Nf1+/- mice have increased neointima formation via hyperactivation of a Gleevec sensitive molecular pathway. Hum Mol Genet 2008; 17:2336-44. [PMID: 18442999 PMCID: PMC2733812 DOI: 10.1093/hmg/ddn134] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 04/21/2008] [Indexed: 12/28/2022] Open
Abstract
Neurofibromatosis type I (NF1) is a genetic disorder caused by mutations in the NF1 tumor suppressor gene. Neurofibromin is encoded by NF1 and functions as a negative regulator of Ras activity. Somatic mutations in the residual normal NF1 allele within cancers of NF1 patients is consistent with NF1 functioning as a tumor-suppressor. However, the prevalent non-malignant manifestations of NF1, including learning and bone disorders emphasize the importance of dissecting the cellular and biochemical effects of NF1 haploinsufficiency in multiple cell lineages. One of the least studied complications of NF1 involves cardiovascular disorders, including arterial occlusions that result in cerebral and visceral infarcts. NF1 vasculopathy is characterized by vascular smooth muscle cell (VSMC) accumulation in the intima area of vessels resulting in lumen occlusion. We recently showed that Nf1 haploinsufficiency increases VSMC proliferation and migration via hyperactivation of the Ras-Erk pathway, which is a signaling axis directly linked to neointima formation in diverse animal models of vasculopathy. Given this observation, we tested whether heterozygosity of Nf1 would lead to vaso-occlusive disease in genetically engineered mice in vivo. Strikingly, Nf1+/- mice have increased neointima formation, excessive vessel wall cell proliferation and Erk activation after vascular injury in vivo. Further, this effect is directly dependent on a Gleevec sensitive molecular pathway. Therefore, these studies establish an Nf1 model of vasculopathy, which mirrors features of human NF1 vaso-occlusive disease, identifies a potential therapeutic target and provides a platform to further dissect the effect of Nf1 haploinsufficiency in cardiovascular disease.
Collapse
Affiliation(s)
- Elisabeth A. Lasater
- Department of Pediatrics
- Herman B Wells Center for Pediatric Research
- Department of Biochemistry and Molecular Biology
| | - Waylan K. Bessler
- Department of Pediatrics
- Herman B Wells Center for Pediatric Research
| | - Laura E. Mead
- Department of Pediatrics
- Herman B Wells Center for Pediatric Research
| | - Whitney E. Horn
- Department of Pediatrics
- Herman B Wells Center for Pediatric Research
| | - D. Wade Clapp
- Department of Pediatrics
- Herman B Wells Center for Pediatric Research
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Simon J. Conway
- Department of Pediatrics
- Herman B Wells Center for Pediatric Research
- Department of Biochemistry and Molecular Biology
| | - David A. Ingram
- Department of Pediatrics
- Herman B Wells Center for Pediatric Research
- Department of Biochemistry and Molecular Biology
| | - Fang Li
- Department of Pediatrics
- Herman B Wells Center for Pediatric Research
| |
Collapse
|
69
|
Schuhmacher AJ, Guerra C, Sauzeau V, Cañamero M, Bustelo XR, Barbacid M. A mouse model for Costello syndrome reveals an Ang II-mediated hypertensive condition. J Clin Invest 2008; 118:2169-79. [PMID: 18483625 DOI: 10.1172/jci34385] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Accepted: 03/26/2008] [Indexed: 01/23/2023] Open
Abstract
Germline activation of H-RAS oncogenes is the primary cause of Costello syndrome (CS), a neuro-cardio-facio-cutaneous developmental syndrome. Here we describe the generation of a mouse model of CS by introduction of an oncogenic Gly12Val mutation in the mouse H-Ras locus using homologous recombination in ES cells. Germline expression of the endogenous H-RasG12V oncogene, even in homozygosis, resulted in hyperplasia of the mammary gland. However, development of tumors in these mice was rare. H-RasG12V mutant mice closely phenocopied some of the abnormalities observed in patients with CS, including facial dysmorphia and cardiomyopathies. These mice also displayed alterations in the homeostasis of the cardiovascular system, including development of systemic hypertension, extensive vascular remodeling, and fibrosis in both the heart and the kidneys. This phenotype was age dependent and was a consequence of the abnormal upregulation of the renin-Ang II system. Treatment with captopril, an inhibitor of Ang II biosynthesis, prevented development of the hypertension condition, vascular remodeling, and heart and kidney fibrosis. In addition, it partially alleviated the observed cardiomyopathies. These mice should help in elucidating the etiology of CS symptoms, identifying additional defects, and evaluating potential therapeutic strategies.
Collapse
Affiliation(s)
- Alberto J Schuhmacher
- Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
70
|
Abstract
Angiogenesis and vascular permeability occur following endothelium activation by vascular endothelial growth factor (VEGF). Downstream mechanisms that define these vascular responses remain unknown. H-Ras activation has been associated with the angiogenic response. However, active H-Ras initiates a wide spectrum of other biological responses through multiple downstream effectors. To identify vascular signaling by H-Ras and the immediate effectors we activated the extracellular signal regulated kinase/mitogen-activated protein kinase or phosphatidylinositol 3-kinase (PI3K) pathways in chicken and mouse endothelial tissues by ectopic expression of the Ras effector mutants H-RasV12S35 or H-RasV12C40, respectively. Constitutive activation of the extracellular signal-regulate kinase/mitogen-activated protein kinase pathway by H-RasV12S35 was sufficient to induce angiogenesis and not vascular permeability, whereas activation of the PI3K pathway by H-RasV12C40 was required for both angiogenesis and vascular permeability. Pharmacological inhibition of PI3K (alpha/beta) suppressed both Ras- or VEGF-mediated vascular response in vivo and survival of primary human endothelial cells in vitro. However, inhibition of PI3K (gamma/delta) suppressed Ras- or VEGF-mediated vascular permeability in vivo, with no effect on survival of primary endothelial cells. This was supported by genetic studies because PI3K p110gamma knockout mice showed impaired vascular permeability response to VEGF or H-RasV12C40 treatment yet produced a wild-type angiogenic response to H-RasV12S35. We conclude that downstream of VEGF, H-Ras serves as a cellular switch that controls neovascularization and vascular permeability by activation of distinct effectors.
Collapse
Affiliation(s)
- Doinita Serban
- University of California San Diego, Moores Cancer Center, 3855 Health Sciences Drive, La Jolla, CA 92093
| | - Jie Leng
- Cell Biolabs, Inc., 10225 Barnes Canyon Road, Suite A103, San Diego, CA 92121
| | - David Cheresh
- University of California San Diego, Moores Cancer Center, 3855 Health Sciences Drive, La Jolla, CA 92093
| |
Collapse
|
71
|
Genes in congenital heart disease: atrioventricular valve formation. Basic Res Cardiol 2008; 103:216-27. [PMID: 18392768 DOI: 10.1007/s00395-008-0713-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 01/29/2008] [Indexed: 12/16/2022]
Abstract
Through the use of animal studies, many candidate genes (mainly encoding transcriptional factors and receptors) have been implicated in the development of congenital heart disease. Thus far, only a minority of these genes have been shown to carry mutations associated with congenital disease in humans, e.g., GATA 4, TBX-5, NOTCH1 and NKX2-5. Mutations in these genes can cause a variety of cardiac defects even within the same family. Conversely, similar phenotypes are observed for different gene mutations suggesting a common pathway. Multiple genes and genetic pathways have been related to atrioventricular valve formation, although most of these genes have not yet been demonstrated as causative in human atrioventricular valve defects. Key pathways include the epidermal growth factor receptor pathway and related interacting pathways, most importantly the pathway of UDP-glucose dehydrogenase, resulting ultimately in activation of Ras. Other examples of interacting pathways include that of Nodal/Cited2/Pitx2, Wnt, Notch and ECE. Further studies are needed to investigate the pathways which are crucial for atrioventricular valve formation in humans. Understanding the underlying molecular process of abnormal atrioventricular valve formation in patients with congenital heart disease may provide important insight, in the etiology and possibly into preventive or treatment regimes.
Collapse
|
72
|
Zheng H, Chang L, Patel N, Yang J, Lowe L, Burns DK, Zhu Y. Induction of abnormal proliferation by nonmyelinating schwann cells triggers neurofibroma formation. Cancer Cell 2008; 13:117-28. [PMID: 18242512 DOI: 10.1016/j.ccr.2008.01.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 11/12/2007] [Accepted: 01/03/2008] [Indexed: 01/09/2023]
Abstract
Recent evidence suggests that alterations in the self-renewal program of stem/progenitor cells can cause tumorigenesis. By utilizing genetically engineered mouse models of neurofibromatosis type 1 (NF1), we demonstrated that plexiform neurofibroma, the only benign peripheral nerve sheath tumor with potential for malignant transformation, results from Nf1 deficiency in fetal stem/progenitor cells of peripheral nerves. Surprisingly, this did not cause hyperproliferation or tumorigenesis in early postnatal period. Instead, peripheral nerve development appeared largely normal in the absence of Nf1 except for abnormal Remak bundles, the nonmyelinated axon-Schwann cell unit, identified in postnatal mutant nerves. Subsequent degeneration of abnormal Remak bundles was accompanied by initial expansion of nonmyelinating Schwann cells. We suggest abnormally differentiated Remak bundles as a cell of origin for plexiform neurofibroma.
Collapse
Affiliation(s)
- Huarui Zheng
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
73
|
Wu J, Williams JP, Rizvi TA, Kordich JJ, Witte D, Meijer D, Stemmer-Rachamimov AO, Cancelas JA, Ratner N. Plexiform and dermal neurofibromas and pigmentation are caused by Nf1 loss in desert hedgehog-expressing cells. Cancer Cell 2008; 13:105-16. [PMID: 18242511 PMCID: PMC2846699 DOI: 10.1016/j.ccr.2007.12.027] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 10/12/2007] [Accepted: 12/26/2007] [Indexed: 12/14/2022]
Abstract
Neurofibromatosis type 1 (Nf1) mutation predisposes to benign peripheral nerve (glial) tumors called neurofibromas. The point(s) in development when Nf1 loss promotes neurofibroma formation are unknown. We show that inactivation of Nf1 in the glial lineage in vitro at embryonic day 12.5 + 1, but not earlier (neural crest) or later (mature Schwann cell), results in colony-forming cells capable of multilineage differentiation. In vivo, inactivation of Nf1 using a DhhCre driver beginning at E12.5 elicits plexiform neurofibromas, dermal neurofibromas, and pigmentation. Tumor Schwann cells uniquely show biallelic Nf1 inactivation. Peripheral nerve and tumors contain transiently proliferating Schwann cells that lose axonal contact, providing insight into early neurofibroma formation. We suggest that timing of Nf1 mutation is critical for neurofibroma formation.
Collapse
Affiliation(s)
- Jianqiang Wu
- Division of Experimental Hematology and Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45229
| | - Jon P. Williams
- Division of Experimental Hematology and Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45229
| | - Tilat A. Rizvi
- Division of Experimental Hematology and Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45229
| | - Jennifer J. Kordich
- Division of Experimental Hematology and Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45229
| | - David Witte
- Division of Pathology, Department of Pediatrics, Cincinnati Children’s Hospital, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45229
| | - Dies Meijer
- Departments of Cell Biology and Genetics, Erasmus University Medical Center, 3000DR Rotterdam, Netherlands
| | - Anat O. Stemmer-Rachamimov
- Departments of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jose A. Cancelas
- Division of Experimental Hematology and Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45229
- Hoxworth Blood Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45229
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45229
| |
Collapse
|
74
|
Joseph NM, Mosher JT, Buchstaller J, Snider P, McKeever PE, Lim M, Conway SJ, Parada LF, Zhu Y, Morrison SJ. The loss of Nf1 transiently promotes self-renewal but not tumorigenesis by neural crest stem cells. Cancer Cell 2008; 13:129-40. [PMID: 18242513 PMCID: PMC2566828 DOI: 10.1016/j.ccr.2008.01.003] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 11/15/2007] [Accepted: 01/03/2008] [Indexed: 11/22/2022]
Abstract
Neurofibromatosis is caused by the loss of neurofibromin (Nf1), leading to peripheral nervous system (PNS) tumors, including neurofibromas and malignant peripheral nerve sheath tumors (MPNSTs). A long-standing question has been whether these tumors arise from neural crest stem cells (NCSCs) or differentiated glia. Germline or conditional Nf1 deficiency caused a transient increase in NCSC frequency and self-renewal in most regions of the fetal PNS. However, Nf1-deficient NCSCs did not persist postnatally in regions of the PNS that developed tumors and could not form tumors upon transplantation into adult nerves. Adult P0a-Cre+Nf1(fl/-) mice developed neurofibromas, and Nf1(+/-)Ink4a/Arf(-/-) and Nf1/p53(+/-) mice developed MPNSTs, but NCSCs did not persist postnatally in affected locations in these mice. Tumors appeared to arise from differentiated glia, not NCSCs.
Collapse
Affiliation(s)
- Nancy M. Joseph
- Center for Stem Cell Biology, Howard Hughes Medical Institute, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, 48109−2216
- Division of Molecular Medicine and Genetics, Departments of Internal Medicine and Cell & Developmental Biology, University of Michigan, Ann Arbor, Michigan, 48109−2216
| | - Jack T. Mosher
- Center for Stem Cell Biology, Howard Hughes Medical Institute, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, 48109−2216
- Division of Molecular Medicine and Genetics, Departments of Internal Medicine and Cell & Developmental Biology, University of Michigan, Ann Arbor, Michigan, 48109−2216
| | - Johanna Buchstaller
- Center for Stem Cell Biology, Howard Hughes Medical Institute, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, 48109−2216
| | - Paige Snider
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Paul E. McKeever
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, 48109−2216
| | - Megan Lim
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, 48109−2216
| | - Simon J. Conway
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Luis F. Parada
- Center for Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75235−9133
| | - Yuan Zhu
- Division of Molecular Medicine and Genetics, Departments of Internal Medicine and Cell & Developmental Biology, University of Michigan, Ann Arbor, Michigan, 48109−2216
| | - Sean J. Morrison
- Center for Stem Cell Biology, Howard Hughes Medical Institute, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, 48109−2216
- Division of Molecular Medicine and Genetics, Departments of Internal Medicine and Cell & Developmental Biology, University of Michigan, Ann Arbor, Michigan, 48109−2216
| |
Collapse
|
75
|
Xu J, Ismat FA, Wang T, Yang J, Epstein JA. NF1 regulates a Ras-dependent vascular smooth muscle proliferative injury response. Circulation 2007; 116:2148-56. [PMID: 17967772 DOI: 10.1161/circulationaha.107.707752] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Neurofibromatosis type I (NF1) is a common autosomal dominant disorder with a broad array of clinical manifestations, including benign and malignant tumors, osseous dysplasias, and characteristic cutaneous findings. In addition, NF1 patients have an increased incidence of cardiovascular diseases, including obstructive vascular disorders. In animal models, endothelial expression of the disease gene, NF1, is critical for normal heart development. However, the pathogeneses of the more common vascular disorders are not well characterized. METHODS AND RESULTS To examine the role of NF1 in vascular smooth muscle, we generated mice with homozygous loss of the murine homolog Nf1 in smooth muscle (Nf1smKO). These mice develop and breed normally. However, in response to vascular injury, they display a marked intimal hyperproliferation and abnormal activation of mitogen-activated protein kinase, a downstream effector of Ras. Vascular smooth muscle cells cultured from these mice also display enhanced proliferation and mitogen-activated protein kinase activity. Smooth muscle expression of the NF1 Ras-regulatory domain (GTPase activating protein-related domain) rescues intimal hyperplasia in Nf1smKO mice and normalizes vascular smooth muscle cell Ras effector activity and proliferation in vitro, similar to blockade of downstream effectors of Ras. CONCLUSIONS In this in vivo model of NF1 obstructive vascular disease, we have shown that Nf1 regulation of Ras plays a critical role in vascular smooth muscle proliferation after injury. These results suggest opportunities for targeted therapeutics in the prevention and treatment of NF1-related vascular disease and in the treatment of neointimal proliferation in other settings.
Collapse
Affiliation(s)
- Junwang Xu
- Department of Cell and Developmental Biology and Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|
76
|
Abstract
Valvulogenesis is an extremely complex process by which a fragile gelatinous matrix is populated and remodelled during embryonic development into thin fibrous leaflets capable of maintaining unidirectional flow over a lifetime. This process occurs during exposure to constantly changing haemodynamic forces, with a success rate of approximately 99%. Defective valvulogenesis results in impaired cardiac function and lifelong complications. This review integrates what is known about the roles of genetics and mechanics in the development of valves and how changes in either result in impaired morphogenesis. It is hoped that appropriate developmental cues and phenotypic endpoints could help engineers and clinicians in their efforts to regenerate living valve alternatives.
Collapse
Affiliation(s)
- Jonathan T Butcher
- Department of Biomedical Engineering, 270 Olin Hall, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
77
|
Ramakrishna S, Kim IM, Petrovic V, Malin D, Wang IC, Kalin TV, Meliton L, Zhao YY, Ackerson T, Qin Y, Malik AB, Costa RH, Kalinichenko VV. Myocardium defects and ventricular hypoplasia in mice homozygous null for the Forkhead Box M1 transcription factor. Dev Dyn 2007; 236:1000-13. [PMID: 17366632 DOI: 10.1002/dvdy.21113] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The Forkhead Box m1 (Foxm1) transcription factor is expressed in cardiomyocytes and cardiac endothelial cells during heart development. In this study, we used a novel Foxm1 -/- mouse line to demonstrate that Foxm1-deletion causes ventricular hypoplasia and diminished DNA replication and mitosis in developing cardiomyocytes. Proliferation defects in Foxm1 -/- hearts were associated with a reduced expression of Cdk1-activator Cdc25B phosphatase and NFATc3 transcription factor, and with abnormal nuclear accumulation of the Cdk-inhibitor p21(Cip1) protein. Depletion of Foxm1 levels by siRNA caused altered expression of these genes in cultured HL-1 cardiomyocytes. Endothelial-specific deletion of the Foxm1 fl/fl allele in Tie2-Cre Foxm1 fl/fl embryos did not influence heart development and cardiomyocyte proliferation. Foxm1 protein binds to the -9,259/-9,288-bp region of the endogenous mouse NFATc3 promoter, indicating that Foxm1 is a transcriptional activator of the NFATc3 gene. Foxm1 regulates expression of genes essential for the proliferation of cardiomyocytes during heart development.
Collapse
|
78
|
Mahller YY, Vaikunth SS, Currier MA, Miller SJ, Ripberger MC, Hsu YH, Mehrian-Shai R, Collins MH, Crombleholme TM, Ratner N, Cripe TP. Oncolytic HSV and erlotinib inhibit tumor growth and angiogenesis in a novel malignant peripheral nerve sheath tumor xenograft model. Mol Ther 2007; 15:279-86. [PMID: 17235305 DOI: 10.1038/sj.mt.6300038] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs), driven in part by hyperactive Ras and epidermal growth factor receptor (EGFR) signaling, are often incurable. Testing of therapeutics for MPNST has been hampered by lack of adequate xenograft models. We previously documented that human MPNST cells are permissive for lytic infection by oncolytic herpes simplex viruses (oHSV). Herein we developed and characterized a xenograft model of human MPNST and evaluated the antitumor effects of oHSV mutants (G207 and hrR3) and the EGFR inhibitor, erlotinib. Additive cytotoxicity of these agents was found in human MPNST cell lines, suggesting that EGFR signaling is not critical for virus replication. Mice bearing human MPNST tumors treated with G207 or hrR3 by intraperitoneal or intratumoral injection showed tumor-selective virus biodistribution, virus replication, and reduced tumor burden. oHSV injection demonstrated more dramatic antitumor activity than erlotinib. Combination therapies showed a trend toward an increased antiproliferative effect. Both oHSV and erlotinib were antiangiogenic as measured by proangiogenic gene expression, effect on endothelial cells and xenograft vessel density. Overall, oHSVs showed highly potent antitumor effects against MPNST xenografts, an effect not diminished by EGFR inhibition. Our data suggest that inclusion of MPNSTs in clinical trials of oHSV is warranted.
Collapse
Affiliation(s)
- Yonatan Y Mahller
- Division of Hematology/Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Romero MI, Lin L, Lush ME, Lei L, Parada LF, Zhu Y. Deletion of Nf1 in neurons induces increased axon collateral branching after dorsal root injury. J Neurosci 2007; 27:2124-34. [PMID: 17314307 PMCID: PMC6673560 DOI: 10.1523/jneurosci.4363-06.2007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Ras-mediated signaling pathways participate in multiple aspects of neural development and function. For example, Ras signaling lies downstream of neurotrophic factors and Trk family receptor tyrosine kinases to regulate neuronal survival and morphological differentiation, including axon extension and target innervation. Neurofibromin, the protein encoded by the tumor suppressor gene Nf1, is a negative regulator of Ras [Ras-GAP (GTPase-activating protein)], and we previously demonstrated that Nf1 null embryonic sensory and sympathetic neurons can survive and differentiate independent of neurotrophin support. In this report, we demonstrate that Nf1 loss in adult sensory neurons enhances their intrinsic capacity for neurite outgrowth and collateral branching in vitro and in vivo after dorsal root injury. In contrast to the permanent sensory deficits observed in control mice after dorsal rhizotomy, neuron-specific Nf1 mutant mice spontaneously recover proprioceptive function. This phenomenon appears to be mediated both by a cell-autonomous capacity of spared Nf1-/- DRG neurons for increased axonal sprouting, and by non-cell-autonomous contribution from Nf1-/- neurons in the denervated spinal cord.
Collapse
Affiliation(s)
- Mario I. Romero
- Department of Developmental Biology and Kent Waldrep Foundation Center for Basic Neuroscience Research on Nerve Growth and Regeneration, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9133
| | - Lu Lin
- Department of Developmental Biology and Kent Waldrep Foundation Center for Basic Neuroscience Research on Nerve Growth and Regeneration, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9133
| | - Mark E. Lush
- Department of Developmental Biology and Kent Waldrep Foundation Center for Basic Neuroscience Research on Nerve Growth and Regeneration, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9133
| | - Lei Lei
- Department of Developmental Biology and Kent Waldrep Foundation Center for Basic Neuroscience Research on Nerve Growth and Regeneration, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9133
| | - Luis F. Parada
- Department of Developmental Biology and Kent Waldrep Foundation Center for Basic Neuroscience Research on Nerve Growth and Regeneration, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9133
| | - Yuan Zhu
- Department of Developmental Biology and Kent Waldrep Foundation Center for Basic Neuroscience Research on Nerve Growth and Regeneration, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9133
| |
Collapse
|
80
|
Affiliation(s)
- Andrea I. McClatchey
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts 02129 and Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115;
| |
Collapse
|
81
|
Abstract
It is readily apparent that the process of heart development is an intricate one, in which cells derived from many embryonic sources coalesce and coordinate their behaviors and development, resulting in the mature heart. The behaviors and mechanisms of this process are complex, and still incompletely understood. However, it is readily apparent that communication between diverse cell types must be involved in this process. The signaling that emanates from epicardial and endocardial sources is the focus of this review.
Collapse
Affiliation(s)
- Travis K Smith
- The Stahlman Cardiovascular Research Laboratories, Program for Developmental Biology, Department of Medicine, Vanderbilt University Medical Center, 2200 Pierce Ave, 348 Preston Research Building, Nashville, TN 37232-6300, USA
| | | |
Collapse
|
82
|
Cardiac Development: Toward a Molecular Basis for Congenital Heart Disease. CARDIOVASCULAR MEDICINE 2007. [DOI: 10.1007/978-1-84628-715-2_52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
83
|
Flagg AE, Earley JU, Svensson EC. FOG-2 attenuates endothelial-to-mesenchymal transformation in the endocardial cushions of the developing heart. Dev Biol 2006; 304:308-16. [PMID: 17274974 PMCID: PMC1868509 DOI: 10.1016/j.ydbio.2006.12.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2006] [Revised: 12/04/2006] [Accepted: 12/17/2006] [Indexed: 11/30/2022]
Abstract
Development of the heart valves is a complex process that relies on the successful remodeling of endocardial cushions. This process is dependent on a number of transcriptional regulators, including GATA4 and its interacting partner FOG-2. We have previously shown that the endocardial cushions in FOG-2 deficient mice are hyperplastic and fail to remodel appropriately, suggesting a defect late in endocardial cushion development. To elucidate this defect, we examined the later steps in endocardial cushion development including mesenchymal cell proliferation, differentiation, and apoptosis. We also measured myocardialization and endothelial-to-mesenchymal transformation (EMT) using previously described in vitro assays. We found no difference in the ability of the endocardial cushions to undergo myocardialization or in the rates of mesenchymal cell proliferation, differentiation, or apoptosis in the FOG-2 deficient cushions when compared to wild-type controls. However, using a collagen gel invasion assay, we found a 78% increase in outflow tract cushion EMT and a 35% increase in atrioventricular cushion EMT in the FOG-2 deficient mice when compared with wild-type mice. Taken together with GATA4's known role in promoting EMT, these results suggest that FOG-2 functions in cardiac valve formation as an attenuator of EMT by repressing GATA4 activity within the developing endocardial cushions.
Collapse
Affiliation(s)
- Alleda E Flagg
- Department of Medicine, University of Chicago, Section of Cardiology, 5841 S. Maryland Ave, MC6088, Chicago, IL 60637, USA
| | | | | |
Collapse
|
84
|
Paruchuri S, Yang JH, Aikawa E, Melero-Martin JM, Khan ZA, Loukogeorgakis S, Schoen FJ, Bischoff J. Human pulmonary valve progenitor cells exhibit endothelial/mesenchymal plasticity in response to vascular endothelial growth factor-A and transforming growth factor-beta2. Circ Res 2006; 99:861-9. [PMID: 16973908 PMCID: PMC2810464 DOI: 10.1161/01.res.0000245188.41002.2c] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In situ analysis of fetal semilunar valve leaflets has revealed cells coexpressing endothelial and mesenchymal markers along the endothelium, with diminished frequency seen in adult valves. To determine whether such cells are progenitor cells, we isolated clonal populations from human pulmonary valves. The clones expressed endothelial markers but showed potential to further differentiate into endothelium in response to vascular endothelial growth factor (VEGF)-A. When exposed to transforming growth factor (TGF)-beta2, individual clones adopted a mesenchymal phenotype to varying degrees and expressed markers of endothelial to mesenchymal transformation (EMT). Both VEGF- and TGFbeta2-induced phenotypic changes were partially reversible, indicating the plasticity of these cells. When challenged with VEGF or TGFbeta2, a hierarchy of endothelial/mesenchymal potential could be seen among the clonal populations: cells initially closer to an endothelial phenotype showed a strong response to TGFbeta2 that could be inhibited by VEGF, whereas cells closer to a mesenchymal phenotype responded to TGFbeta2 but were resistant to endothelial-inducing effects of VEGF. These findings suggest the presence of bipotential valve progenitor cells with ability to differentiate into either endothelial or interstitial cells of the valve leaflet. Understanding the differentiation potential and function of these cells may be important for understanding heart valve disease and may also be applied to current paradigms for creating tissue-engineered heart valves.
Collapse
Affiliation(s)
- Sailaja Paruchuri
- Department of Surgery, Vascular Biology Program, Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts 02115
| | - Jeong-Hee Yang
- Department of Surgery, Vascular Biology Program, Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts 02115
| | - Elena Aikawa
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Juan M. Melero-Martin
- Department of Surgery, Vascular Biology Program, Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts 02115
| | - Zia A. Khan
- Department of Surgery, Vascular Biology Program, Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts 02115
| | - Stavros Loukogeorgakis
- Department of Surgery, Vascular Biology Program, Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts 02115
| | - Frederick J. Schoen
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Joyce Bischoff
- Department of Surgery, Vascular Biology Program, Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
85
|
Yim SH, Shah Y, Tomita S, Morris HD, Gavrilova O, Lambert G, Ward JM, Gonzalez FJ. Disruption of the Arnt gene in endothelial cells causes hepatic vascular defects and partial embryonic lethality in mice. Hepatology 2006; 44:550-60. [PMID: 16941684 PMCID: PMC1559728 DOI: 10.1002/hep.21284] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Vascular endothelial cells (ECs) play a critical role in angiogenesis and organogenesis, especially in embryonic liver development. Hypoxia-inducible transcription factors (Hifs) are a key trigger of hypoxic signals, a primary stimulus of angiogenesis. The aryl hydrocarbon receptor nuclear translocator (Arnt), also called Hif-1beta, serves as an obligate heterodimerization partner of Hif-1alpha and Hif-2alpha. Using Cre-Lox technology, the mouse Arnt gene was specifically disrupted in endothelial cells. The resulting mice, designated ArntDeltaEC, developed impaired hepatic vasculature, liver necrosis, and degenerative lesions in cardiac myocytes at the late embryonic stage (E16.5-E18.5), leading to approximately 90% neonatal lethality. Low serum glucose, downregulation of glucose transporter-1 and glucose-6-phosphatase mRNA, and hepatocyte proliferation were observed in ArntDeltaEC embryos. Magnetic resonance imaging on E16.5 embryonic livers revealed that ArntDeltaEC mice had a significant volume of avascular region. ArntDeltaEC mice that survived to the adult stage were fertile, showed normal behavioral activity, but had smaller livers with mild portal fibrosis, dilated blood vessels, abnormal collagen accumulation, and remarkable iron deposition. ArntDeltaEC mice had reduced adiposity, impaired serum lipid homeostasis, and a higher respiratory exchange ratio, indicating they utilized relatively more carbohydrates than their ArntF/F counterparts. In conclusion, endothelial Arnt plays a pivotal role in embryonic liver development. Adult ArntDeltaEC mice carrying embryonic hepatic defects developed what was possibly an early stage of cirrhosis with consequences of limited oxygen availability and altered lipid metabolism.
Collapse
Affiliation(s)
- Sun Hee Yim
- Laboratory of Metabolism, National Cancer Institute
| | - Yatrik Shah
- Laboratory of Metabolism, National Cancer Institute
| | - Shuhei Tomita
- Laboratory of Metabolism, National Cancer Institute
- Division of Experimental Immunology, Institute for Genome Research, University of Tokushima, Tokushima 770-8503, Japan
| | - H. Douglas Morris
- NMR Facility, National Institute of Neurological Disorders and Stroke
| | - Oksana Gavrilova
- Mouse Metabolism Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases
| | | | - Jerrold M. Ward
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892
| | - Frank J. Gonzalez
- Laboratory of Metabolism, National Cancer Institute
- Frank J. Gonzalez, Building 37, Room 3106, National Cancer Institute, Bethesda. MD 20892, Phone: 301-496-9067,
| |
Collapse
|
86
|
Rivera-Feliciano J, Lee KH, Kong SW, Rajagopal S, Ma Q, Springer Z, Izumo S, Tabin CJ, Pu WT. Development of heart valves requires Gata4 expression in endothelial-derived cells. Development 2006; 133:3607-18. [PMID: 16914500 PMCID: PMC2735081 DOI: 10.1242/dev.02519] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cardiac malformations due to aberrant development of the atrioventricular (AV) valves are among the most common forms of congenital heart disease. At localized swellings of extracellular matrix known as the endocardial cushions, the endothelial lining of the heart undergoes an epithelial to mesenchymal transition (EMT) to form the mesenchymal progenitors of the AV valves. Further growth and differentiation of these mesenchymal precursors results in the formation of portions of the atrial and ventricular septae, and the generation of thin, pliable valves. Gata4, which encodes a zinc finger transcription factor, is expressed in the endothelium and mesenchyme of the AV valves. Using a Tie2-Cre transgene, we selectively inactivated Gata4 within endothelial-derived cells. Mutant endothelium failed to undergo EMT, resulting in hypocellular cushions. Mutant cushions had decreased levels of Erbb3, an EGF-family receptor essential for EMT in the atrioventricular cushions. In Gata4 mutant embryos, Erbb3 downregulation was associated with impaired activation of Erk, which is also required for EMT. Expression of a Gata4 mutant protein defective in interaction with Friend of Gata (FOG) cofactors rescued the EMT defect, but resulted in a decreased proliferation of mesenchyme and hypoplastic cushions that failed to septate the ventricular inlet. We demonstrate two novel functions of Gata4 in development of the AV valves. First, Gata4 functions as an upstream regulator of an Erbb3-Erk pathway necessary for EMT, and second, Gata4 acts to promote cushion mesenchyme growth and remodeling.
Collapse
Affiliation(s)
| | - Kyu-Ho Lee
- Department of Cardiology, Children’s Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Sek Won Kong
- Department of Cardiology, Children’s Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Satish Rajagopal
- Department of Cardiology, Children’s Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Qing Ma
- Department of Cardiology, Children’s Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Zhangli Springer
- Department of Cardiology, Children’s Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Seigo Izumo
- Cardiovascular Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Clifford J. Tabin
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - William T. Pu
- Department of Cardiology, Children’s Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
87
|
Bhattacharya S, Macdonald ST, Farthing CR. Molecular mechanisms controlling the coupled development of myocardium and coronary vasculature. Clin Sci (Lond) 2006; 111:35-46. [PMID: 16764556 DOI: 10.1042/cs20060003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiac failure affects 1.5% of the adult population and is predominantly caused by myocardial dysfunction secondary to coronary vascular insufficiency. Current therapeutic strategies improve prognosis only modestly, as the primary cause -- loss of normally functioning cardiac myocytes -- is not being corrected. Adult cardiac myocytes are unable to divide and regenerate to any significant extent following injury. New cardiac myocytes are, however, created during embryogenesis from progenitor cells and then by cell division from existing cardiac myocytes. This process is intimately linked to the development of coronary vasculature from progenitors originating in the endothelium, the proepicardial organ and neural crest. In this review, we systematically evaluate approx. 90 mouse mutations that impair heart muscle growth during development. These studies provide genetic evidence for interactions between myocytes, endothelium and cells derived from the proepicardial organ and the neural crest that co-ordinate myocardial and coronary vascular development. Conditional knockout and transgenic rescue experiments indicate that Vegfa, Bmpr1a (ALK3), Fgfr1/2, Mapk14 (p38), Hand1, Hand2, Gata4, Zfpm2 (FOG2), Srf and Txnrd2 in cardiac myocytes, Rxra and Wt1 in the proepicardial organ, EfnB2, Tek, Mapk7, Pten, Nf1 and Casp8 in the endothelium, and Bmpr1a and Pax3 in neural crest cells are key molecules controlling myocardial development. Coupling of myocardial and coronary development is mediated by BMP (bone morphogenetic protein), FGF (fibroblast growth factor) and VEGFA (vascular endothelial growth factor A) signalling, and also probably involves hypoxia. Pharmacological targeting of these molecules and pathways could, in principle, be used to recreate the embryonic state and achieve coupled myocardial and coronary vascular regeneration in failing hearts.
Collapse
Affiliation(s)
- Shoumo Bhattacharya
- Department of Cardiovascular Medicine, University of Oxford, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK.
| | | | | |
Collapse
|
88
|
Ismat FA, Xu J, Lu MM, Epstein JA. The neurofibromin GAP-related domain rescues endothelial but not neural crest development in Nf1 mice. J Clin Invest 2006; 116:2378-84. [PMID: 16906226 PMCID: PMC1533876 DOI: 10.1172/jci28341] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Accepted: 06/13/2006] [Indexed: 11/17/2022] Open
Abstract
Neurofibromatosis type I (NF1; also known as von Recklinghausen's disease) is a common autosomal-dominant condition primarily affecting neural crest-derived tissues. The disease gene, NF1, encodes neurofibromin, a protein of over 2,800 amino acids that contains a 216-amino acid domain with Ras-GTPase-activating protein (Ras-GAP) activity. Potential therapies for NF1 currently in development and being tested in clinical trials are designed to modify NF1 Ras-GAP activity or target downstream effectors of Ras signaling. Mice lacking the murine homolog (Nf1) have mid-gestation lethal cardiovascular defects due to a requirement for neurofibromin in embryonic endothelium. We sought to determine whether the GAP activity of neurofibromin is sufficient to rescue complete loss of function or whether other as yet unidentified functions of neurofibromin might also exist. Using cre-inducible ubiquitous and tissue-specific expression, we demonstrate that the isolated GAP-related domain (GRD) rescued cardiovascular development in Nf1(-/-) embryos, but overgrowth of neural crest-derived tissues persisted, leading to perinatal lethality. These results suggest that neurofibromin may possess activities outside of the GRD that modulate neural crest homeostasis and that therapeutic approaches solely aimed at targeting Ras activity may not be sufficient to treat tumors of neural crest origin in NF1.
Collapse
Affiliation(s)
- Fraz A Ismat
- Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | |
Collapse
|
89
|
Park C, Lavine K, Mishina Y, Deng CX, Ornitz DM, Choi K. Bone morphogenetic protein receptor 1A signaling is dispensable for hematopoietic development but essential for vessel and atrioventricular endocardial cushion formation. Development 2006; 133:3473-84. [PMID: 16887829 DOI: 10.1242/dev.02499] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bone morphogenetic protein 4 (BMP4) is crucial for the formation of FLK1-expressing (FLK1(+)) mesodermal cells. To further define the requirement for BMP signaling in the differentiation of blood, endothelial and smooth muscle cells from FLK1(+) mesoderm, we inactivated Alk3 (Bmpr1a) in FLK1(+) cells by crossing Alk3(floxed/floxed) and Flk1(+/Cre)Alk3(+/floxed) mice. Alk3 conditional knockout (CKO) mice died between E10.5 and E11.5. Unexpectedly, Alk3 CKO embryos did not show any hematopoietic defects. However, Alk3 CKO embryos displayed multiple abnormalities in vascular development, including vessel remodeling and maturation, which contributed to severe abdominal hemorrhage. Alk3 CKO embryos also displayed defects in atrioventricular canal (AVC) endocardial cushion formation in the heart. Collectively, our studies indicate a crucial role for ALK3 in vessel remodeling, vessel integrity and endocardial cushion formation during the development of the circulation system.
Collapse
Affiliation(s)
- Changwon Park
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid, St Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
90
|
Saitsu H, Shiota K, Ishibashi M. Analysis of Fibroblast growth factor 15 cis-elements reveals two conserved enhancers which are closely related to cardiac outflow tract development. Mech Dev 2006; 123:665-73. [PMID: 16930954 DOI: 10.1016/j.mod.2006.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Revised: 06/13/2006] [Accepted: 07/07/2006] [Indexed: 01/09/2023]
Abstract
Fibroblast growth factor 15 (Fgf15) is expressed in the developing mouse central nervous system and pharyngeal arches. Fgf15 mutant mice showed defects of the cardiac outflow tract probably because of aberrant behavior of the cardiac neural crest cells. In this study, we examined cis-elements of the Fgf15 gene by transient transgenic analysis using lacZ as a reporter. We identified two enhancers: one directed lacZ expression in the hindbrain/spinal cord and the other in the posterior midbrain (pmb), rhombomere1 (r1) and pharyngeal epithelia. Interestingly, human genomic regions which are highly homologous to these two mouse enhancers showed almost the same enhancer activities as those of mice in transgenic mouse embryos, indicating that the two enhancers are conserved between humans and mice. We also showed that the mouse and human pmb/r1 enhancer can regulate lacZ expression in chick embryos in almost the same way as in mouse embryos. We found that the lacZ expression domain with this enhancer was expanded by ectopic Fgf8b expression, suggesting that this enhancer is regulated by Fgf8 signaling. Moreover, over-expression of Fgf15 resulted in up-regulation of Fgf8 expression in the isthmus/r1. These findings suggest that a reciprocal positive regulation exists between Fgf15 and Fgf8 in the isthmus/r1. Together with cardiac outflow tract defects in Fgf15 mutants, the conservation of enhancers in the hindbrain/spinal cord and pharyngeal epithelia suggests that human FGF19 (ortholog of Fgf15) is involved in early development and the distribution of cardiac neural crest cells and is one of the candidate genes for congenital heart defects.
Collapse
Affiliation(s)
- Hirotomo Saitsu
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan.
| | | | | |
Collapse
|
91
|
Seo S, Kume T. Forkhead transcription factors, Foxc1 and Foxc2, are required for the morphogenesis of the cardiac outflow tract. Dev Biol 2006; 296:421-36. [PMID: 16839542 DOI: 10.1016/j.ydbio.2006.06.012] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 05/21/2006] [Accepted: 06/05/2006] [Indexed: 11/18/2022]
Abstract
Previous studies have shown that Foxc1 and Foxc2, closely related Fox transcription factors, have interactive roles in cardiovascular development. However, little is known about their functional overlap during early heart morphogenesis. Here, we show that Foxc genes are coexpressed in a novel heart field, the second heart field, as well as the cardiac neural crest cells (NCCs), endocardium, and proepicardium. Notably, compound Foxc1; Foxc2 mutants have a wide spectrum of cardiac abnormalities, including hypoplasia or lack of the outflow tract (OFT) and right ventricle as well as the inflow tract, dysplasia of the OFT and atrioventricular cushions, and abnormal formation of the epicardium, in a dose-dependent manner. Most importantly, in the second heart field, compound mutants exhibit significant downregulation of Tbx1 and Fgf8/10 and a reduction in cell proliferation. Moreover, NCCs in compound mutants show extensive apoptosis during migration, leading to a failure of the OFT septation. Taken together, our results demonstrate that Foxc1 and Foxc2 play pivotal roles in the early processes of heart development, especially acting upstream of the Tbx1-FGF cascade during the morphogenesis of the OFT.
Collapse
Affiliation(s)
- Seungwoon Seo
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, 332 PRB, 2220 Pierce Ave, Nashville, TN 37232-6300, USA
| | | |
Collapse
|
92
|
Kuorilehto T, Kinnunen P, Nissinen M, Alanne M, Leskelä HV, Lehenkari P, Peltonen J. Vasculopathy in two cases of NF1-related congenital pseudarthrosis. Pathol Res Pract 2006; 202:687-90. [PMID: 16735097 DOI: 10.1016/j.prp.2006.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Accepted: 03/15/2006] [Indexed: 11/22/2022]
Abstract
Neurofibromatosis type 1 (NF1) is a common dominantly inherited disease. More than half of NF1 patients suffer from skeletal manifestations, of which congenital pseudarthrosis of tibia (CPT) is one of the most incapacitating lesions. Two NF1 patients with CPT were operated, and the resected tissues were analyzed using immunohistochemistry and/or in situ hybridization for NF1 protein and mRNA, p-p44/42 MAPK, and S100 protein. Both patients displayed thick-walled arteries and veins with a small lumen within the fibrotic tissue in the vicinity of pseudarthrosis. Endothelial cells were highly positive for p-p44/42 MAPK. A subpopulation of cells surrounding the blood vessels was S100 protein-positive. However, the exact identity of the S100-positive cells remains to be elucidated. Neurofibromin mRNA and protein labeling was detected in both cell types. In conclusion, decreased NF1 function as a RAS-GAP in the endothelium may contribute to vascular thickening in CPT.
Collapse
Affiliation(s)
- Tommi Kuorilehto
- Department of Anatomy, Institute of Biomedicine, University of Turku, Kiinanmyllynkatu, Turku, Finland
| | | | | | | | | | | | | |
Collapse
|
93
|
Abstract
Mutations in the NF1 tumor-suppressor gene underlie neurofibromatosis type 1 (NF1), in which patients are predisposed to certain tumors such as neurofibromas and may associate with vascular disorder. Plexiform neurofibromas are slow growing benign tumors that are highly vascular and can progress to malignancy. The development of neurofibromas requires loss of both Nf1 alleles in Schwann cells destined to become neoplastic and may be exacerbated by Nf1 heterozygosity in other non-neoplastic cells. This study tested the hypothesis that Nf1 heterozygosity exaggerates angiogenesis. We found that Nf1 heterozygous mice showed increased neovascularization in both the retina and cornea in response to hypoxia and bFGF, respectively, compared to their wild-type littermates. The increase in corneal neovascularization was associated with heightened endothelial cell proliferation and migration, and increased infiltration of inflammatory cells. In addition, Nf1 heterozygous endothelial cell cultures showed an exaggerated proliferative response to angiogenic factors, particularly to bFGF. These findings support the conclusion that Nf1 heterozygosity in endothelial cells and perhaps inflammatory cells augments angiogenesis, which may promote neurofibroma formation in NF1.
Collapse
Affiliation(s)
- M Wu
- Department of Pediatrics, Division of Neurology, University of Florida, Gainesville, FL 32610, USA.
| | | | | |
Collapse
|
94
|
Munchhof AM, Li F, White HA, Mead LE, Krier TR, Fenoglio A, Li X, Yuan J, Yang FC, Ingram DA. Neurofibroma-associated growth factors activate a distinct signaling network to alter the function of neurofibromin-deficient endothelial cells. Hum Mol Genet 2006; 15:1858-69. [PMID: 16648142 DOI: 10.1093/hmg/ddl108] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Genetic inactivation of tumor suppressor genes initiates human cancers. However, interaction of accessory cells with the tumor-initiating cell within the microenvironment is often required for tumor progression. This paradigm is relevant to understanding neurofibroma development in neurofibromatosis type I patients. Somatic inactivation of the Nf1 tumor suppressor gene, which encodes neurofibromin, is necessary but not sufficient to initiate neurofibroma development. In contrast, neurofibromas occur with high penetrance in mice in which Nf1 is ablated in Schwann cells in the context of a heterozygous mutant (Nf1+/-) microenvironment. Neurofibromas are highly vascularized, and recent studies suggest that Nf1+/- mice have increased angiogenesis in vivo. However, the function of neurofibromin in human endothelial cells (ECs) and the biochemical mechanism by which neurofibromin regulates neoangiogenesis are not known. Utilizing Nf1+/- mice, primary human ECs and endothelial progenitor cells harvested from NF1 patients, we identified a discrete Ras effector pathway, which alters the proliferation and migration of neurofibromin-deficient ECs in response to neurofibroma-derived growth factors both in vitro and in vivo. Thus, these studies identify a unique biochemical pathway in Nf1+/- ECs as a potential therapeutic target in the neurofibroma microenvironment.
Collapse
Affiliation(s)
- Amy M Munchhof
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut Street, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Li F, Munchhof AM, White HA, Mead LE, Krier TR, Fenoglio A, Chen S, Wu X, Cai S, Yang FC, Ingram DA. Neurofibromin is a novel regulator of RAS-induced signals in primary vascular smooth muscle cells. Hum Mol Genet 2006; 15:1921-30. [PMID: 16644864 DOI: 10.1093/hmg/ddl114] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Neurofibromatosis type I (NF1) is a genetic disorder caused by mutations in the NF1 tumor suppressor gene. Neurofibromin is encoded by NF1 and functions as a negative regulator of Ras activity. NF1 patients develop renal artery stenosis and arterial occlusions resulting in cerebral and visceral infarcts. Further, NF1 patients develop vascular neurofibromas where tumor vessels are invested in a dense pericyte sheath. Although it is well established that aberrations in Ras signaling lead to human malignancies, emerging data generated in genetically engineered mouse models now implicate perturbations in the Ras signaling axis in vascular smooth muscular cells (VSMCs) as central to the initiation and progression of neointimal hyperplasia and arterial stenosis. Despite these observations, the function of neurofibromin in regulating VSMC function and how Ras signals are terminated in VSMCs is virtually unknown. Utilizing VSMCs harvested from Nf1+/- mice and primary human neurofibromin-deficient VSMCs, we identify a discrete Ras effector pathway, which is tightly regulated by neurofibromin to limit VSMC proliferation and migration. Thus, these studies identify neurofibromin as a novel regulator of Ras activity in VSMCs and provide a framework for understanding cardiovascular disease in NF1 patients and a mechanism by which Ras signals are attenuated for maintaining VSMC homeostasis in blood vessel walls.
Collapse
Affiliation(s)
- Fang Li
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut Street, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Lincoln J, Lange AW, Yutzey KE. Hearts and bones: shared regulatory mechanisms in heart valve, cartilage, tendon, and bone development. Dev Biol 2006; 294:292-302. [PMID: 16643886 DOI: 10.1016/j.ydbio.2006.03.027] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 03/06/2006] [Accepted: 03/19/2006] [Indexed: 10/24/2022]
Abstract
The mature heart valves are dynamic structures composed of highly organized cell lineages and extracellular matrices. The discrete architecture of connective tissue within valve leaflets and supporting structures allows the valve to withstand life-long functional demands and changes in hemodynamic forces and load. The dysregulation of ECM organization is a common feature of heart valve disease and can often be linked to genetic defects in matrix protein structure or developmental regulation. Recent studies have identified specific regulatory pathways that are active in the developing valve structures and also control cartilage, tendon, and bone development. This review will focus on the regulatory hierarchies that control normal and abnormal heart valve development in parallel with other connective tissue cell types.
Collapse
Affiliation(s)
- Joy Lincoln
- Division of Molecular Cardiovascular Biology, MLC 7020, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | |
Collapse
|
97
|
Yutzey KE, Colbert M, Robbins J. Ras-related signaling pathways in valve development: ebb and flow. Physiology (Bethesda) 2006; 20:390-7. [PMID: 16287988 DOI: 10.1152/physiol.00035.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Congenital heart defects affect approximately 1 in every 100 live births, and deficits in the formation of the mitral, tricuspid, and outflow tract valves account for 20-25% of all cardiac malformations. Mutations in genes that affect Ras signaling have been identified in individuals with congenital valve disease associated with Noonan syndrome and neurofibromatosis type 1. Dissection of Ras-related signaling pathways during valvulogenesis provides seminal insight into cellular and molecular mechanisms that contribute to congenital heart disease.
Collapse
Affiliation(s)
- Katherine E Yutzey
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Research Foundation, Ohio, USA
| | | | | |
Collapse
|
98
|
Abstract
Communication between endothelial cells and cardiomyocytes regulates not only early cardiac development but also adult cardiomyocyte function, including the contractile state. In the normal mammalian myocardium, each cardiomyocyte is surrounded by an intricate network of capillaries and is next to endothelial cells. Cardiomyocytes depend on endothelial cells not only for oxygenated blood supply but also for local protective signals that promote cardiomyocyte organization and survival. While endothelial cells direct cardiomyocytes, cardiomyocytes reciprocally secrete factors that impact endothelial cell function. Understanding how endothelial cells communicate with cardiomyocytes will be critical for cardiac regeneration, in which the ultimate goal is not simply to improve systolic function transiently but to establish new myocardium that is both structurally and functionally normal in the long term.
Collapse
Affiliation(s)
- Patrick C H Hsieh
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | |
Collapse
|
99
|
Kontaridis MI, Swanson KD, David FS, Barford D, Neel BG. PTPN11 (Shp2) mutations in LEOPARD syndrome have dominant negative, not activating, effects. J Biol Chem 2005; 281:6785-92. [PMID: 16377799 DOI: 10.1074/jbc.m513068200] [Citation(s) in RCA: 238] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Multiple lentigines/LEOPARD syndrome (LS) is a rare, autosomal dominant disorder characterized by Lentigines, Electrocardiogram abnormalities, Ocular hypertelorism, Pulmonic valvular stenosis, Abnormalities of genitalia, Retardation of growth, and Deafness. Like the more common Noonan syndrome (NS), LS is caused by germ line missense mutations in PTPN11, encoding the protein-tyrosine phosphatase Shp2. Enzymologic, structural, cell biological, and mouse genetic studies indicate that NS is caused by gain-of-function PTPN11 mutations. Because NS and LS share several features, LS has been viewed as an NS variant. We examined a panel of LS mutants, including the two most common alleles. Surprisingly, we found that in marked contrast to NS, LS mutants are catalytically defective and act as dominant negative mutations that interfere with growth factor/Erk-mitogen-activated protein kinase-mediated signaling. Molecular modeling and biochemical studies suggest that LS mutations contort the Shp2 catalytic domain and result in open, inactive forms of Shp2. Our results establish that the pathogenesis of LS and NS is distinct and suggest that these disorders should be distinguished by mutational analysis rather than clinical presentation.
Collapse
Affiliation(s)
- Maria I Kontaridis
- Cancer Biology Program, Division of Hematology-Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
100
|
Gallo EM, Canté-Barrett K, Crabtree GR. Lymphocyte calcium signaling from membrane to nucleus. Nat Immunol 2005; 7:25-32. [PMID: 16357855 DOI: 10.1038/ni1295] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Accepted: 11/14/2005] [Indexed: 12/14/2022]
Abstract
Ca(2+) signals control a variety of lymphocyte responses, ranging from short-term cytoskeletal modifications to long-term changes in gene expression. The identification of molecules and channels that modulate Ca(2+) entry into T and B lymphocytes has both provided details of the molecular events leading to immune responses and raised controversy. Here we review studies of the pathways that allow Ca(2+) entry, the function of Ca(2+) in the regulation of cell polarity and motility and the principles by which Ca(2+)-dependent transcription regulates lymphocyte function.
Collapse
Affiliation(s)
- Elena M Gallo
- Program in Immunology, Stanford University, Stanford, California 94305, USA
| | | | | |
Collapse
|