51
|
Jin Y, Li H. Revisiting Dscam diversity: lessons from clustered protocadherins. Cell Mol Life Sci 2019; 76:667-680. [PMID: 30343321 PMCID: PMC11105660 DOI: 10.1007/s00018-018-2951-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/13/2018] [Accepted: 10/15/2018] [Indexed: 12/14/2022]
Abstract
The complexity of neuronal wiring relies on the extraordinary recognition diversity of cell surface molecules. Drosophila Dscam1 and vertebrate clustered protocadherins (Pcdhs) are two classic examples of the striking diversity from a complex genomic locus, wherein the former encodes more than 10,000 distinct isoforms via alternative splicing, while the latter employs alternative promoters to attain isoform diversity. These structurally unrelated families show remarkably striking molecular parallels and even similar functions. Recent studies revealed a novel Dscam gene family with tandemly arrayed 5' cassettes in Chelicerata (e.g., the scorpion Mesobuthus martensii and the tick Ixodes scapularis), similar to vertebrate clustered Pcdhs. Likewise, octopus shows a more remarkable expansion of the Pcdh isoform repertoire than human. These discoveries of Dscam and Pcdh diversification reshape the evolutionary landscape of recognition molecule diversity and provide a greater understanding of convergent molecular strategies for isoform diversity. This article reviews new insights into the evolution, regulatory mechanisms, and functions of Dscam and Pcdh isoform diversity. In particular, the convergence of clustered Dscams and Pcdhs is highlighted.
Collapse
Affiliation(s)
- Yongfeng Jin
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang (ZJ), People's Republic of China.
| | - Hao Li
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang (ZJ), People's Republic of China
| |
Collapse
|
52
|
Clark DA, Odell SR, Armstrong JM, Turcotte M, Kohler D, Mathis A, Schmidt DR, Mathew D. Behavior Responses to Chemical and Optogenetic Stimuli in Drosophila Larvae. Front Behav Neurosci 2018; 12:324. [PMID: 30622461 PMCID: PMC6308144 DOI: 10.3389/fnbeh.2018.00324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/10/2018] [Indexed: 11/13/2022] Open
Abstract
An animal’s ability to navigate an olfactory environment is critically dependent on the activities of its first-order olfactory receptor neurons (ORNs). While considerable research has focused on ORN responses to odorants, the mechanisms by which olfactory information is encoded in the activities of ORNs and translated into navigational behavior remain poorly understood. We sought to determine the contributions of most Drosophila melanogaster larval ORNs to navigational behavior. Using odorants to activate ORNs and a larval tracking assay to measure the corresponding behavioral response, we observed that larval ORN activators cluster into four groups based on the behavior responses elicited from larvae. This is significant because it provides new insights into the functional relationship between ORN activity and behavioral response. Subsequent optogenetic analyses of a subset of ORNs revealed previously undescribed properties of larval ORNs. Furthermore, our results indicated that different temporal patterns of ORN activation elicit different behavioral outputs: some ORNs respond to stimulus increments while others respond to stimulus decrements. These results suggest that the ability of ORNs to encode temporal patterns of stimulation increases the coding capacity of the olfactory circuit. Moreover, the ability of ORNs to sense stimulus increments and decrements facilitates instantaneous evaluations of concentration changes in the environment. Together, these ORN properties enable larvae to efficiently navigate a complex olfactory environment. Ultimately, knowledge of how ORN activity patterns and their weighted contributions influence odor coding may eventually reveal how peripheral information is organized and transmitted to subsequent layers of a neural circuit.
Collapse
Affiliation(s)
- David A Clark
- Department of Biology, University of Nevada, Reno, NV, United States.,Integrated Neuroscience Graduate Program, University of Nevada, Reno, NV, United States
| | - Seth R Odell
- Department of Biology, University of Nevada, Reno, NV, United States.,Integrated Neuroscience Graduate Program, University of Nevada, Reno, NV, United States
| | - Joanna M Armstrong
- Department of Mathematics & Statistics, University of Nevada, Reno, NV, United States
| | - Mariah Turcotte
- Department of Biology, University of Nevada, Reno, NV, United States
| | - Donovan Kohler
- Department of Biology, University of Nevada, Reno, NV, United States
| | - America Mathis
- Department of Biology, University of Nevada, Reno, NV, United States
| | - Deena R Schmidt
- Integrated Neuroscience Graduate Program, University of Nevada, Reno, NV, United States.,Department of Mathematics & Statistics, University of Nevada, Reno, NV, United States
| | - Dennis Mathew
- Department of Biology, University of Nevada, Reno, NV, United States.,Integrated Neuroscience Graduate Program, University of Nevada, Reno, NV, United States
| |
Collapse
|
53
|
Abstract
Hypoplastic left heart syndrome (HLHS) is one of the most lethal congenital heart defects, and remains clinically challenging. While surgical palliation allows most HLHS patients to survive their critical heart disease with a single-ventricle physiology, many will suffer heart failure, requiring heart transplantation as the only therapeutic course. Current paradigm suggests HLHS is largely of hemodynamic origin, but recent findings from analysis of the first mouse model of HLHS showed intrinsic cardiomyocyte proliferation and differentiation defects underlying the left ventricular (LV) hypoplasia. The findings of similar defects of lesser severity in the right ventricle suggest this could contribute to the heart failure risks in surgically palliated HLHS patients. Analysis of 8 independent HLHS mouse lines showed HLHS is genetically heterogeneous and multigenic in etiology. Detailed analysis of the Ohia mouse line accompanied by validation studies in CRISPR gene-targeted mice revealed a digenic etiology for HLHS. Mutation in Sap130, a component of the HDAC repressor complex, was demonstrated to drive the LV hypoplasia, while mutation in Pcdha9, a protocadherin cell adhesion molecule played a pivotal role in the valvular defects associated with HLHS. Based on these findings, we propose a new paradigm in which complex CHD such as HLHS may arise in a modular fashion, mediated by multiple mutations. The finding of intrinsic cardiomyocyte defects would suggest hemodynamic intervention may not rescue LV growth. The profound genetic heterogeneity and oligogenic etiology indicated for HLHS would suggest that the genetic landscape of HLHS may be complex and more accessible in clinical studies built on a familial study design.
Collapse
|
54
|
Enhancer hubs and loop collisions identified from single-allele topologies. Nat Genet 2018; 50:1151-1160. [PMID: 29988121 DOI: 10.1038/s41588-018-0161-5] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/11/2018] [Indexed: 11/08/2022]
Abstract
Chromatin folding contributes to the regulation of genomic processes such as gene activity. Existing conformation capture methods characterize genome topology through analysis of pairwise chromatin contacts in populations of cells but cannot discern whether individual interactions occur simultaneously or competitively. Here we present multi-contact 4C (MC-4C), which applies Nanopore sequencing to study multi-way DNA conformations of individual alleles. MC-4C distinguishes cooperative from random and competing interactions and identifies previously missed structures in subpopulations of cells. We show that individual elements of the β-globin superenhancer can aggregate into an enhancer hub that can simultaneously accommodate two genes. Neighboring chromatin domain loops can form rosette-like structures through collision of their CTCF-bound anchors, as seen most prominently in cells lacking the cohesin-unloading factor WAPL. Here, massive collision of CTCF-anchored chromatin loops is believed to reflect 'cohesin traffic jams'. Single-allele topology studies thus help us understand the mechanisms underlying genome folding and functioning.
Collapse
|
55
|
Molecular diversity of clustered protocadherin-α required for sensory integration and short-term memory in mice. Sci Rep 2018; 8:9616. [PMID: 29941942 PMCID: PMC6018629 DOI: 10.1038/s41598-018-28034-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/14/2018] [Indexed: 12/11/2022] Open
Abstract
Clustered protocadherins (Pcdhs) are neuronal cell adhesion molecules characterized by homophilic adhesion between the tetramers of 58 distinct isoforms in mice. The diversity of Pcdhs and resulting highly-specific neuronal adhesion may be required for the formation of neural circuits for executing higher brain functions. However, this hypothesis remains to be tested, because knockout of Pcdh genes produces abnormalities that may interfere with higher brain functions indirectly. In Pcdh-α1,12 mice, only α1, α12 and two constitutive isoforms are expressed out of 14 isoforms. The appearance and behavior of Pcdh-α1,12 mice are similar to those of wild-type mice, and most abnormalities reported in Pcdh-α knockout mice are not present in Pcdh-α1,12 mice. We examined Pcdh-α1,12 mice in detail, and found that cortical depression induced by sensory mismatches between vision and whisker sensation in the visual cortex was impaired. Since Pcdh-α is densely distributed over the cerebral cortex, various types of higher function are likely impaired in Pcdh-α1,12 mice. As expected, visual short-term memory of space/shape was impaired in behavioral experiments using space/shape cues. Furthermore, behavioral learning based on audio-visual associative memory was also impaired. These results indicate that the molecular diversity of Pcdh-α plays essential roles for sensory integration and short-term memory.
Collapse
|
56
|
Millard SS, Pecot MY. Strategies for assembling columns and layers in the Drosophila visual system. Neural Dev 2018; 13:11. [PMID: 29875010 PMCID: PMC5991427 DOI: 10.1186/s13064-018-0106-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/24/2018] [Indexed: 11/23/2022] Open
Abstract
A striking feature of neural circuit structure is the arrangement of neurons into regularly spaced ensembles (i.e. columns) and neural connections into parallel layers. These patterns of organization are thought to underlie precise synaptic connectivity and provide a basis for the parallel processing of information. In this article we discuss in detail specific findings that contribute to a framework for understanding how columns and layers are assembled in the Drosophila visual system, and discuss their broader implications.
Collapse
Affiliation(s)
- S. Sean Millard
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Matthew Y. Pecot
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
57
|
Ing-Esteves S, Kostadinov D, Marocha J, Sing AD, Joseph KS, Laboulaye MA, Sanes JR, Lefebvre JL. Combinatorial Effects of Alpha- and Gamma-Protocadherins on Neuronal Survival and Dendritic Self-Avoidance. J Neurosci 2018; 38:2713-2729. [PMID: 29439167 PMCID: PMC5852656 DOI: 10.1523/jneurosci.3035-17.2018] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/12/2018] [Accepted: 01/29/2018] [Indexed: 12/16/2022] Open
Abstract
The clustered protocadherins (Pcdhs) comprise 58 cadherin-related proteins encoded by three tandemly arrayed gene clusters, Pcdh-α, Pcdh-β, and Pcdh-γ (Pcdha, Pcdhb, and Pcdhg, respectively). Pcdh isoforms from different clusters are combinatorially expressed in neurons. They form multimers that interact homophilically and mediate a variety of developmental processes, including neuronal survival, synaptic maintenance, axonal tiling, and dendritic self-avoidance. Most studies have analyzed clusters individually. Here, we assessed functional interactions between Pcdha and Pcdhg clusters. To circumvent neonatal lethality associated with deletion of Pcdhgs, we used Crispr-Cas9 genome editing in mice to combine a constitutive Pcdha mutant allele with a conditional Pcdhg allele. We analyzed roles of Pcdhas and Pcdhgs in the retina and cerebellum from mice (both sexes) lacking one or both clusters. In retina, Pcdhgs are essential for survival of inner retinal neurons and dendritic self-avoidance of starburst amacrine cells, whereas Pcdhas are dispensable for both processes. Deletion of both Pcdha and Pcdhg clusters led to far more dramatic defects in survival and self-avoidance than Pcdhg deletion alone. Comparisons of an allelic series of mutants support the conclusion that Pcdhas and Pcdhgs function together in a dose-dependent and cell-type-specific manner to provide a critical threshold of Pcdh activity. In the cerebellum, Pcdhas and Pcdhgs also cooperate to mediate self-avoidance of Purkinje cell dendrites, with modest but significant defects in either single mutant and dramatic defects in the double mutant. Together, our results demonstrate complex patterns of redundancy between Pcdh clusters and the importance of Pcdh cluster diversity in postnatal CNS development.SIGNIFICANCE STATEMENT The formation of neural circuits requires diversification and combinatorial actions of cell surface proteins. Prominent among them are the clustered protocadherins (Pcdhs), a family of ∼60 neuronal recognition molecules. Pcdhs are encoded by three closely linked gene clusters called Pcdh-α, Pcdh-β, and Pcdh-γ. The Pcdhs mediate a variety of developmental processes, including neuronal survival, synaptic maintenance, and spatial patterning of axons and dendrites. Most studies to date have been limited to single clusters. Here, we used genome editing to assess interactions between Pcdh-α and Pcdh-γ gene clusters. We examined two regions of the CNS, the retina and cerebellum and show that the 14 α-Pcdhs and 22 γ-Pcdhs act synergistically to mediate neuronal survival and dendrite patterning.
Collapse
Affiliation(s)
- Samantha Ing-Esteves
- Program for Neurosciences and Mental Health, Hospital for Sick Children, Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 0A4, Canada and
| | - Dimitar Kostadinov
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138
| | - Julie Marocha
- Program for Neurosciences and Mental Health, Hospital for Sick Children, Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 0A4, Canada and
| | - Anson D Sing
- Program for Neurosciences and Mental Health, Hospital for Sick Children, Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 0A4, Canada and
| | - Kezia S Joseph
- Program for Neurosciences and Mental Health, Hospital for Sick Children, Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 0A4, Canada and
| | - Mallory A Laboulaye
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138
| | - Joshua R Sanes
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138
| | - Julie L Lefebvre
- Program for Neurosciences and Mental Health, Hospital for Sick Children, Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 0A4, Canada and
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
58
|
Shen Q, Zhang H, Su Y, Wen Z, Zhu Z, Chen G, Peng L, Du C, Xie H, Li H, Lv X, Lu C, Xia Y, Tang W. Identification of two novel PCDHA9 mutations associated with Hirschsprung's disease. Gene 2018; 658:96-104. [PMID: 29477871 DOI: 10.1016/j.gene.2018.02.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/19/2018] [Accepted: 02/22/2018] [Indexed: 01/02/2023]
Abstract
Hirschsprung's disease (HSCR) is a complex disorder with multiple pathogenic gene mutations. Protocadherin alpha 9 (PCDHA9) was identified as a potential candidate gene for HSCR by whole-exome sequencing in a Chinese family. Sanger sequencing in 298 HSCR cases revealed two sporadic Chinese patients with a novel missence PCDHΑ9 mutation (NM_031857; c.1280C > T[p.Ala427Val]) and one sporadic Chinese patient with another novel missence PCDHΑ9 mutation (c.1425C > G[p.Phe475Leu]).The silico predictions and 3D modeling suggest the deleterious effect of identified mutations on protein function. Immunohistochemistry analysis showed PCDHΑ9 was predominantly expressed in the myenteric plexus of human colon tissues. For mouse embryos, PCDHΑ9 was expressed in the stomach but rarely seen in the intestine during E10.5-12.5, then obviously expressed in the intestinal mucosa at E13.5 and extensively expressed in intestinal muscularis and mucosa at E14.5. Moreover, the down-regulation of PCDHΑ9 in the SH-SY5Y cell line promoted the proliferation and migration rate but inhibited the apoptotic rate. In summary, PCDHΑ9 is potentially related to HSCR and the clustered protocadherins (Pcdhs) may involve in the enteric nervous system (ENS) ontogeny.
Collapse
Affiliation(s)
- Qiyang Shen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Hua Zhang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Yang Su
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Zechao Wen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Zhongxian Zhu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Guanglin Chen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Lei Peng
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Chunxia Du
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Hua Xie
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Hongxing Li
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Xiaofeng Lv
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Changgui Lu
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology (Nanjing Medical University), Ministry of Education, China.
| | - Weibing Tang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.
| |
Collapse
|
59
|
Gui B, Slone J, Huang T. Perspective: Is Random Monoallelic Expression a Contributor to Phenotypic Variability of Autosomal Dominant Disorders? Front Genet 2017; 8:191. [PMID: 29250101 PMCID: PMC5718016 DOI: 10.3389/fgene.2017.00191] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/14/2017] [Indexed: 11/13/2022] Open
Abstract
Several factors have been proposed as contributors to interfamilial and intrafamilial phenotypic variability in autosomal dominant disorders, including allelic variation, modifier genes, environmental factors and complex genetic and environmental interactions. However, regardless of the similarity of genetic background and environmental factors, asymmetric limb or trunk anomalies in a single individual and variable manifestation between monozygotic twins have been observed, indicating other mechanisms possibly involved in expressivity of autosomal dominant diseases. One such example is Holt-Oram syndrome (HOS), which is characterized by congenital cardiac defects and forelimb anomalies, mainly attributed to mutations in the TBX5 gene. We hypothesize that monoallelic expression of the TBX5 gene occurs during embryo development, and, in the context of a mutation, random monoallelic expression (RME) can create discrepant functions in a proportion of cells and thus contribute to variable phenotypes. A hybrid mouse model was used to investigate the occurrence of RME with the Tbx5 gene, and single-cell reverse transcription PCR and restriction digestion were performed for limb bud cells from developing embryos (E11.5) of the hybrid mice. RME of Tbx5 was observed in approximately two-thirds of limb bud cells. These results indicate that RME of the Tbx5 gene occurs frequently during embryo development, resulting in a mosaic expression signature (monoallelic, biallelic, or null) that may provide a potential explanation for the widespread phenotypic variability in HOS. This model will further provide novel insights into the variability of autosomal dominant traits and a better understanding of the complex expressivity of disease conditions.
Collapse
Affiliation(s)
- Baoheng Gui
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jesse Slone
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Taosheng Huang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
60
|
Protocadherin-αC2 is required for diffuse projections of serotonergic axons. Sci Rep 2017; 7:15908. [PMID: 29162883 PMCID: PMC5698425 DOI: 10.1038/s41598-017-16120-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/08/2017] [Indexed: 12/04/2022] Open
Abstract
Serotonergic axons extend diffuse projections throughout various brain areas, and serotonergic system disruption causes neuropsychiatric diseases. Loss of the cytoplasmic region of protocadherin-α (Pcdh-α) family proteins, products of the diverse clustered Pcdh genes, causes unbalanced distributions (densification and sparsification) of serotonergic axons in various target regions. However, which Pcdh-α member(s) are responsible for the phenotype is unknown. Here we demonstrated that Pcdh-αC2 (αC2), a Pcdh-α isoform, was highly expressed in serotonergic neurons, and was required for normal diffusion in single-axon-level analyses of serotonergic axons. The loss of αC2 from serotonergic neurons, but not from their target brain regions, led to unbalanced distributions of serotonergic axons. Our results suggest that αC2 expressed in serotonergic neurons is required for serotonergic axon diffusion in various brain areas. The αC2 extracellular domain displays homophilic binding activity, suggesting that its homophilic interaction between serotonergic axons regulates axonal density via αC2′s cytoplasmic domain.
Collapse
|
61
|
Zhao D, Lin M, Pedrosa E, Lachman HM, Zheng D. Characteristics of allelic gene expression in human brain cells from single-cell RNA-seq data analysis. BMC Genomics 2017; 18:860. [PMID: 29126398 PMCID: PMC5681780 DOI: 10.1186/s12864-017-4261-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 11/01/2017] [Indexed: 12/24/2022] Open
Abstract
Background Monoallelic expression of autosomal genes has been implicated in human psychiatric disorders. However, there is a paucity of allelic expression studies in human brain cells at the single cell and genome wide levels. Results In this report, we reanalyzed a previously published single-cell RNA-seq dataset from several postmortem human brains and observed pervasive monoallelic expression in individual cells, largely in a random manner. Examining single nucleotide variants with a predicted functional disruption, we found that the “damaged” alleles were overall expressed in fewer brain cells than their counterparts, and at a lower level in cells where their expression was detected. We also identified many brain cell type-specific monoallelically expressed genes. Interestingly, many of these cell type-specific monoallelically expressed genes were enriched for functions important for those brain cell types. In addition, function analysis showed that genes displaying monoallelic expression and correlated expression across neuronal cells from different individual brains were implicated in the regulation of synaptic function. Conclusions Our findings suggest that monoallelic gene expression is prevalent in human brain cells, which may play a role in generating cellular identity and neuronal diversity and thus increasing the complexity and diversity of brain cell functions. Electronic supplementary material The online version of this article (10.1186/s12864-017-4261-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dejian Zhao
- Department of Neurology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, USA.,Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, USA
| | - Mingyan Lin
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, USA.,Present address: Department of Neuroscience, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu, 21166, China
| | - Erika Pedrosa
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, USA
| | - Herbert M Lachman
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, USA.,Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, USA.,Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, USA.,Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, USA
| | - Deyou Zheng
- Department of Neurology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, USA. .,Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, USA. .,Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, USA.
| |
Collapse
|
62
|
Peek SL, Mah KM, Weiner JA. Regulation of neural circuit formation by protocadherins. Cell Mol Life Sci 2017; 74:4133-4157. [PMID: 28631008 PMCID: PMC5643215 DOI: 10.1007/s00018-017-2572-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/01/2017] [Accepted: 06/13/2017] [Indexed: 12/20/2022]
Abstract
The protocadherins (Pcdhs), which make up the most diverse group within the cadherin superfamily, were first discovered in the early 1990s. Data implicating the Pcdhs, including ~60 proteins encoded by the tandem Pcdha, Pcdhb, and Pcdhg gene clusters and another ~10 non-clustered Pcdhs, in the regulation of neural development have continually accumulated, with a significant expansion of the field over the past decade. Here, we review the many roles played by clustered and non-clustered Pcdhs in multiple steps important for the formation and function of neural circuits, including dendrite arborization, axon outgrowth and targeting, synaptogenesis, and synapse elimination. We further discuss studies implicating mutation or epigenetic dysregulation of Pcdh genes in a variety of human neurodevelopmental and neurological disorders. With recent structural modeling of Pcdh proteins, the prospects for uncovering molecular mechanisms of Pcdh extracellular and intracellular interactions, and their role in normal and disrupted neural circuit formation, are bright.
Collapse
Affiliation(s)
- Stacey L Peek
- Interdisciplinary Graduate Program in Neuroscience, The University of Iowa, Iowa City, IA, USA
- Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Kar Men Mah
- Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Joshua A Weiner
- Department of Biology, The University of Iowa, Iowa City, IA, USA.
- Department of Psychiatry, The University of Iowa, 143 Biology Building, Iowa City, IA, 52242, USA.
| |
Collapse
|
63
|
Abstract
Clustered protocadherins (Pcdhs) mediate numerous neural patterning functions, including neuronal self-recognition and non-self-discrimination to direct self-avoidance among vertebrate neurons. Individual neurons stochastically express a subset of Pcdh isoforms, which assemble to form a stochastic repertoire of cis-dimers. We describe the structure of a PcdhγB7 cis-homodimer, which includes the membrane-proximal extracellular cadherin domains EC5 and EC6. The structure is asymmetric with one molecule contributing interface surface from both EC5 and EC6, and the other only from EC6. Structural and sequence analyses suggest that all Pcdh isoforms will dimerize through this interface. Site-directed mutants at this interface interfere with both Pcdh cis-dimerization and cell surface transport. The structure explains the known restrictions of cis-interactions of some Pcdh isoforms, including α-Pcdhs, which cannot form homodimers. The asymmetry of the interface approximately doubles the size of the recognition repertoire, and restrictions on cis-interactions among Pcdh isoforms define the limits of the Pcdh recognition unit repertoire.
Collapse
|
64
|
Affiliation(s)
- Satoshi Yoshinaga
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Kazunori Nakajima
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
65
|
Mining Novel Candidate Imprinted Genes Using Genome-Wide Methylation Screening and Literature Review. EPIGENOMES 2017. [DOI: 10.3390/epigenomes1020013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
66
|
Lefebvre JL. Neuronal territory formation by the atypical cadherins and clustered protocadherins. Semin Cell Dev Biol 2017; 69:111-121. [DOI: 10.1016/j.semcdb.2017.07.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 02/04/2023]
|
67
|
Mah KM, Weiner JA. Regulation of Wnt signaling by protocadherins. Semin Cell Dev Biol 2017; 69:158-171. [PMID: 28774578 PMCID: PMC5586504 DOI: 10.1016/j.semcdb.2017.07.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/21/2017] [Accepted: 07/28/2017] [Indexed: 12/23/2022]
Abstract
The ∼70 protocadherins comprise the largest group within the cadherin superfamily. Their diversity, the complexity of the mechanisms through which their genes are regulated, and their many critical functions in nervous system development have engendered a growing interest in elucidating the intracellular signaling pathways through which they act. Recently, multiple protocadherins across several subfamilies have been implicated as modulators of Wnt signaling pathways, and through this as potential tumor suppressors. Here, we review the extant data on the regulation by protocadherins of Wnt signaling pathways and components, and highlight some key unanswered questions that could shape future research.
Collapse
Affiliation(s)
- Kar Men Mah
- Department of Biology, The University of Iowa, Iowa City, IA, USA.
| | - Joshua A Weiner
- Department of Biology, The University of Iowa, Iowa City, IA, USA; Department of Psychiatry, The University of Iowa, Iowa City, IA, USA; Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
68
|
Rubinstein R, Goodman KM, Maniatis T, Shapiro L, Honig B. Structural origins of clustered protocadherin-mediated neuronal barcoding. Semin Cell Dev Biol 2017; 69:140-150. [PMID: 28743640 DOI: 10.1016/j.semcdb.2017.07.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 12/20/2022]
Abstract
Clustered protocadherins mediate neuronal self-recognition and non-self discrimination-neuronal "barcoding"-which underpin neuronal self-avoidance in vertebrate neurons. Recent structural, biophysical, computational, and cell-based studies on protocadherin structure and function have led to a compelling molecular model for the barcoding mechanism. Protocadherin isoforms assemble into promiscuous cis-dimeric recognition units and mediate cell-cell recognition through homophilic trans-interactions. Each recognition unit is composed of two arms extending from the membrane proximal EC6 domains. A cis-dimeric recognition unit with each arm coding adhesive trans homophilic specificity can generate a zipper-like assembly that in turn suggests a chain termination mechanism for self-vs-non-self-discrimination among vertebrate neurons.
Collapse
Affiliation(s)
- Rotem Rubinstein
- Department of Biochemistry and Molecular Biophysics, New York, NY 10032, USA; Department of Systems Biology, New York, NY 10032, USA
| | - Kerry Marie Goodman
- Department of Biochemistry and Molecular Biophysics, New York, NY 10032, USA
| | - Tom Maniatis
- Department of Biochemistry and Molecular Biophysics, New York, NY 10032, USA; Zuckerman Mind Brain and Behavior Institute, New York, NY 10032, USA.
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, New York, NY 10032, USA; Zuckerman Mind Brain and Behavior Institute, New York, NY 10032, USA.
| | - Barry Honig
- Department of Biochemistry and Molecular Biophysics, New York, NY 10032, USA; Department of Systems Biology, New York, NY 10032, USA; Zuckerman Mind Brain and Behavior Institute, New York, NY 10032, USA; Howard Hughes Medical Institute, New York, NY 10032, USA; Department of Medicine, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
69
|
Epigenetic dysregulation of protocadherins in human disease. Semin Cell Dev Biol 2017; 69:172-182. [PMID: 28694114 DOI: 10.1016/j.semcdb.2017.07.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/03/2017] [Accepted: 07/06/2017] [Indexed: 12/12/2022]
Abstract
Protocadherins (Pcdhs) are a group of cell-cell adhesion molecules that are highly expressed in the nervous system and have a major function in dendrite development and neural circuit formation. However, the role protocadherins play in human health and disease remains unclear. Several recent studies have associated epigenetic dysregulation of protocadherins with possible implications for disease pathogenesis. In this review, we briefly recap the various epigenetic mechanisms regulating protocadherin genes, particularly the clustered Pcdhs. We further outline research describing altered epigenetic regulation of protocadherins in neurological and psychiatric disorders, as well as in cancer and during aging. We additionally present preliminary data on DNA methylation dynamics of clustered protocadherins during fetal brain development, as well as the epigenetic differences distinguishing adult neuronal and glial cells. A deeper understanding of the role of protocadherins in disease is crucial for designing novel diagnostic tools and therapies targeting brain disorders.
Collapse
|
70
|
Hirayama T, Yagi T. Regulation of clustered protocadherin genes in individual neurons. Semin Cell Dev Biol 2017; 69:122-130. [PMID: 28591566 DOI: 10.1016/j.semcdb.2017.05.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 02/06/2023]
Abstract
Individual neurons are basic functional units in the complex system of the brain. One aspect of neuronal individuality is generated by stochastic and combinatorial expression of diverse clustered protocadherins (Pcdhs), encoded by the Pcdha, Pcdhb, and Pcdhg gene clusters, that are critical for several aspects of neural circuit formation. Each clustered Pcdh gene has its own promoter containing conserved sequences and is transcribed by a promoter choice mechanism involving interaction between the promoter and enhancers. A CTCF/Cohesin complex induces this interaction by configuration of DNA-looping in the chromatin structure. At the same time, the semi-stochastic expression of clustered Pcdh genes is regulated in individual neurons by DNA methylation: the methyltransferase Dnmt3b regulates methylation state of individual clustered Pcdh genes during early embryonic stages prior to the establishment of neural stem cells. Several other factors, including Smchd1, also contribute to the regulation of clustered Pcdh gene expression. In addition, psychiatric diseases and early life experiences of individuals can influence expression of clustered Pcdh genes in the brain, through epigenetic alterations. Clustered Pcdh gene expression is thus a significant and highly regulated step in establishing neuronal individuality and generating functional neural circuits in the brain.
Collapse
Affiliation(s)
- Teruyoshi Hirayama
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takeshi Yagi
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
71
|
Chen WV, Nwakeze CL, Denny CA, O'Keeffe S, Rieger MA, Mountoufaris G, Kirner A, Dougherty JD, Hen R, Wu Q, Maniatis T. Pcdhαc2 is required for axonal tiling and assembly of serotonergic circuitries in mice. Science 2017; 356:406-411. [PMID: 28450636 PMCID: PMC5529183 DOI: 10.1126/science.aal3231] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/21/2017] [Indexed: 12/19/2022]
Abstract
Serotonergic neurons project their axons pervasively throughout the brain and innervate various target fields in a space-filling manner, leading to tiled arrangements of their axon terminals to allow optimal allocation of serotonin among target neurons. Here we show that conditional deletion of the mouse protocadherin α (Pcdhα) gene cluster in serotonergic neurons disrupts local axonal tiling and global assembly of serotonergic circuitries and results in depression-like behaviors. Genetic dissection and expression profiling revealed that this role is specifically mediated by Pcdhαc2, which is the only Pcdhα isoform expressed in serotonergic neurons. We conclude that, in contrast to neurite self-avoidance, which requires single-cell identity mediated by Pcdh diversity, a single cell-type identity mediated by the common C-type Pcdh isoform is required for axonal tiling and assembly of serotonergic circuitries.
Collapse
Affiliation(s)
- Weisheng V Chen
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Chiamaka L Nwakeze
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Christine A Denny
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
- Division of Integrative Neuroscience, Research Foundation for Mental Hygiene, New York, NY 10032, USA
| | - Sean O'Keeffe
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Michael A Rieger
- Departments of Genetics and Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - George Mountoufaris
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Amy Kirner
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Joseph D Dougherty
- Departments of Genetics and Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - René Hen
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
- Division of Integrative Neuroscience, Research Foundation for Mental Hygiene, New York, NY 10032, USA
- Departments of Neuroscience and Pharmacology, Columbia University, New York, NY 10032, USA
| | - Qiang Wu
- Center for Comparative Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tom Maniatis
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| |
Collapse
|
72
|
Mountoufaris G, Chen WV, Hirabayashi Y, O'Keeffe S, Chevee M, Nwakeze CL, Polleux F, Maniatis T. Multicluster Pcdh diversity is required for mouse olfactory neural circuit assembly. Science 2017; 356:411-414. [PMID: 28450637 PMCID: PMC5529182 DOI: 10.1126/science.aai8801] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/16/2017] [Indexed: 11/02/2022]
Abstract
The vertebrate clustered protocadherin (Pcdh) cell surface proteins are encoded by three closely linked gene clusters (Pcdhα, Pcdhβ, and Pcdhγ). Here, we show that all three gene clusters functionally cooperate to provide individual mouse olfactory sensory neurons (OSNs) with the cell surface diversity required for their assembly into distinct glomeruli in the olfactory bulb. Although deletion of individual Pcdh clusters had subtle phenotypic consequences, the loss of all three clusters (tricluster deletion) led to a severe axonal arborization defect and loss of self-avoidance. By contrast, when endogenous Pcdh diversity is overridden by the expression of a single-tricluster gene repertoire (α and β and γ), OSN axons fail to converge to form glomeruli, likely owing to contact-mediated repulsion between axons expressing identical combinations of Pcdh isoforms.
Collapse
Affiliation(s)
- George Mountoufaris
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA
| | - Weisheng V Chen
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA
| | - Yusuke Hirabayashi
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA
- Department of Neuroscience, Kavli Institute for Brain Science, Columbia University, New York, NY 10032, USA
| | - Sean O'Keeffe
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA
| | - Maxime Chevee
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA
| | - Chiamaka L Nwakeze
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA
| | - Franck Polleux
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA
- Department of Neuroscience, Kavli Institute for Brain Science, Columbia University, New York, NY 10032, USA
| | - Tom Maniatis
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA
| |
Collapse
|
73
|
Hasegawa S, Kobayashi H, Kumagai M, Nishimaru H, Tarusawa E, Kanda H, Sanbo M, Yoshimura Y, Hirabayashi M, Hirabayashi T, Yagi T. Clustered Protocadherins Are Required for Building Functional Neural Circuits. Front Mol Neurosci 2017; 10:114. [PMID: 28484370 PMCID: PMC5401904 DOI: 10.3389/fnmol.2017.00114] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/05/2017] [Indexed: 01/08/2023] Open
Abstract
Neuronal identity is generated by the cell-surface expression of clustered protocadherin (Pcdh) isoforms. In mice, 58 isoforms from three gene clusters, Pcdhα, Pcdhβ, and Pcdhγ, are differentially expressed in neurons. Since cis-heteromeric Pcdh oligomers on the cell surface interact homophilically with that in other neurons in trans, it has been thought that the Pcdh isoform repertoire determines the binding specificity of synapses. We previously described the cooperative functions of isoforms from all three Pcdh gene clusters in neuronal survival and synapse formation in the spinal cord. However, the neuronal loss and the following neonatal lethality prevented an analysis of the postnatal development and characteristics of the clustered-Pcdh-null (Δαβγ) neural circuits. Here, we used two methods, one to generate the chimeric mice that have transplanted Δαβγ neurons into mouse embryos, and the other to generate double mutant mice harboring null alleles of both the Pcdh gene and the proapoptotic gene Bax to prevent neuronal loss. First, our results showed that the surviving chimeric mice that had a high contribution of Δαβγ cells exhibited paralysis and died in the postnatal period. An analysis of neuronal survival in postnatally developing brain regions of chimeric mice clarified that many Δαβγ neurons in the forebrain were spared from apoptosis, unlike those in the reticular formation of the brainstem. Second, in Δαβγ/Bax null double mutants, the central pattern generator (CPG) for locomotion failed to create a left-right alternating pattern even in the absence of neurodegeneraton. Third, calcium imaging of cultured hippocampal neurons showed that the network activity of Δαβγ neurons tended to be more synchronized and lost the variability in the number of simultaneously active neurons observed in the control network. Lastly, a comparative analysis for trans-homophilic interactions of the exogenously introduced single Pcdh-γA3 isoforms between the control and the Δαβγ neurons suggested that the isoform-specific trans-homophilic interactions require a complete match of the expressed isoform repertoire at the contacting sites between interactive neurons. These results suggested that combinations of clustered Pcdh isoforms are required for building appropriate neural circuits.
Collapse
Affiliation(s)
- Sonoko Hasegawa
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka UniversitySuita, Japan.,Japan Science and Technology Agency-Core Research for Evolutional Science and Technology, CREST, Osaka UniversitySuita, Osaka, Japan
| | - Hiroaki Kobayashi
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka UniversitySuita, Japan.,Japan Science and Technology Agency-Core Research for Evolutional Science and Technology, CREST, Osaka UniversitySuita, Osaka, Japan
| | - Makiko Kumagai
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka UniversitySuita, Japan.,Japan Science and Technology Agency-Core Research for Evolutional Science and Technology, CREST, Osaka UniversitySuita, Osaka, Japan
| | - Hiroshi Nishimaru
- System Emotional Science, Graduate School of Medicine, University of ToyamaToyama, Japan
| | - Etsuko Tarusawa
- Section of Visual Information Processing, National Institute for Physiological Sciences, National Institutes of Natural SciencesOkazaki, Japan
| | - Hiro Kanda
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka UniversitySuita, Japan.,Japan Science and Technology Agency-Core Research for Evolutional Science and Technology, CREST, Osaka UniversitySuita, Osaka, Japan
| | - Makoto Sanbo
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological SciencesOkazaki, Japan
| | - Yumiko Yoshimura
- Section of Visual Information Processing, National Institute for Physiological Sciences, National Institutes of Natural SciencesOkazaki, Japan
| | - Masumi Hirabayashi
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological SciencesOkazaki, Japan
| | - Takahiro Hirabayashi
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka UniversitySuita, Japan.,Japan Science and Technology Agency-Core Research for Evolutional Science and Technology, CREST, Osaka UniversitySuita, Osaka, Japan
| | - Takeshi Yagi
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka UniversitySuita, Japan.,Japan Science and Technology Agency-Core Research for Evolutional Science and Technology, CREST, Osaka UniversitySuita, Osaka, Japan
| |
Collapse
|
74
|
Cheung WA, Shao X, Morin A, Siroux V, Kwan T, Ge B, Aïssi D, Chen L, Vasquez L, Allum F, Guénard F, Bouzigon E, Simon MM, Boulier E, Redensek A, Watt S, Datta A, Clarke L, Flicek P, Mead D, Paul DS, Beck S, Bourque G, Lathrop M, Tchernof A, Vohl MC, Demenais F, Pin I, Downes K, Stunnenberg HG, Soranzo N, Pastinen T, Grundberg E. Functional variation in allelic methylomes underscores a strong genetic contribution and reveals novel epigenetic alterations in the human epigenome. Genome Biol 2017; 18:50. [PMID: 28283040 PMCID: PMC5346261 DOI: 10.1186/s13059-017-1173-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/17/2017] [Indexed: 01/24/2023] Open
Abstract
Background The functional impact of genetic variation has been extensively surveyed, revealing that genetic changes correlated to phenotypes lie mostly in non-coding genomic regions. Studies have linked allele-specific genetic changes to gene expression, DNA methylation, and histone marks but these investigations have only been carried out in a limited set of samples. Results We describe a large-scale coordinated study of allelic and non-allelic effects on DNA methylation, histone mark deposition, and gene expression, detecting the interrelations between epigenetic and functional features at unprecedented resolution. We use information from whole genome and targeted bisulfite sequencing from 910 samples to perform genotype-dependent analyses of allele-specific methylation (ASM) and non-allelic methylation (mQTL). In addition, we introduce a novel genotype-independent test to detect methylation imbalance between chromosomes. Of the ~2.2 million CpGs tested for ASM, mQTL, and genotype-independent effects, we identify ~32% as being genetically regulated (ASM or mQTL) and ~14% as being putatively epigenetically regulated. We also show that epigenetically driven effects are strongly enriched in repressed regions and near transcription start sites, whereas the genetically regulated CpGs are enriched in enhancers. Known imprinted regions are enriched among epigenetically regulated loci, but we also observe several novel genomic regions (e.g., HOX genes) as being epigenetically regulated. Finally, we use our ASM datasets for functional interpretation of disease-associated loci and show the advantage of utilizing naïve T cells for understanding autoimmune diseases. Conclusions Our rich catalogue of haploid methylomes across multiple tissues will allow validation of epigenome association studies and exploration of new biological models for allelic exclusion in the human genome. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1173-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Warren A Cheung
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - Xiaojian Shao
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - Andréanne Morin
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - Valérie Siroux
- Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Inserm U1209, CNRS, University Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Tony Kwan
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - Bing Ge
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - Dylan Aïssi
- Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Inserm U1209, CNRS, University Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Lu Chen
- Department of Human Genetics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1HH, UK.,Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge, CB2 0PT, UK
| | - Louella Vasquez
- Department of Human Genetics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1HH, UK
| | - Fiona Allum
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - Frédéric Guénard
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, G1V 0A6, Canada
| | - Emmanuelle Bouzigon
- Genetic Variation and Human Diseases Unit, UMR-946, INSERM, Université Paris Diderot, Université Sorbonne Paris Cité, Paris, France
| | | | - Elodie Boulier
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - Adriana Redensek
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - Stephen Watt
- Department of Human Genetics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1HH, UK
| | - Avik Datta
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Laura Clarke
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Daniel Mead
- Department of Human Genetics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1HH, UK
| | - Dirk S Paul
- UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK.,Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Worts Causeway, Cambridge, CB1 8RN, UK
| | - Stephan Beck
- UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Guillaume Bourque
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - Mark Lathrop
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - André Tchernof
- Québec Heart and Lung Institute, Laval University, Québec, QC, G1V 4G5, Canada
| | - Marie-Claude Vohl
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, G1V 0A6, Canada
| | - Florence Demenais
- Genetic Variation and Human Diseases Unit, UMR-946, INSERM, Université Paris Diderot, Université Sorbonne Paris Cité, Paris, France
| | - Isabelle Pin
- Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Inserm U1209, CNRS, University Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France.,Pédiatrie, Centre Hospitalier Universitaire (CHU) Grenoble Alpes, Grenoble, France
| | - Kate Downes
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge, CB2 0PT, UK.,National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Long Road, Cambridge, CB2 0PT, UK
| | - Hendrick G Stunnenberg
- Faculty of Science, Department of Molecular Biology, Radboud University, Nijmegen, 6525GA, The Netherlands
| | - Nicole Soranzo
- Department of Human Genetics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1HH, UK.,Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge, CB2 0PT, UK.,British Heart Foundation Centre of Excellence, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK.,The National Institute for Health Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and Genomics, University of Cambridge, Strangeways Research Laboratory, Wort's Causeway, Cambridge, CB1 8RN, UK
| | - Tomi Pastinen
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada. .,McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada.
| | - Elin Grundberg
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada. .,McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada.
| |
Collapse
|
75
|
Jensen KP, Smith AH, Herman AI, Farrer LA, Kranzler HR, Sofuoglu M, Gelernter J. A protocadherin gene cluster regulatory variant is associated with nicotine withdrawal and the urge to smoke. Mol Psychiatry 2017; 22:242-249. [PMID: 27067016 PMCID: PMC5390815 DOI: 10.1038/mp.2016.43] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 02/18/2016] [Accepted: 02/22/2016] [Indexed: 01/03/2023]
Abstract
Nicotine withdrawal symptoms contribute to relapse in smokers, thereby prolonging the harm caused by smoking. To investigate the molecular basis for this phenomenon, we conducted a genome-wide association study of DSM-IV nicotine withdrawal in a sample of African American (AA) and European American (EA) smokers. A combined AA and EA meta-analysis (n=8021) identified three highly correlated single nucleotide polymorphisms (SNPs) in the protocadherin (PCDH)-α, -β and -γ gene cluster on chromosome 5 that were associated with nicotine withdrawal (P<5 × 10-8). We then studied one of the SNPs, rs31746, in an independent sample of smokers who participated in an intravenous nicotine infusion study that followed overnight smoking abstinence. After nicotine infusion, abstinent smokers with the withdrawal risk allele experienced greater alleviation of their urges to smoke, as assessed by the Brief Questionnaire on Smoking Urges (BQSU). Prior work has shown that the PCDH-α, -β and -γ genes are expressed in neurons in a highly organized manner. We found that rs31746 mapped to a long-range neuron-specific enhancer element shown previously to regulate PCDH-α, -β and -γ gene expression. Using Braincloud mRNA expression data, we identified a robust and specific association between rs31746 and PCDH-β8 mRNA expression in frontal cortex tissue (P<1 × 10-5). We conclude that PCDH-α, -β and -γ gene cluster regulatory variation influences the severity of nicotine withdrawal. Further studies on the PCDH-α, -β and -γ genes and their role in nicotine withdrawal may inform the development of novel smoking cessation treatments and reduce the harm caused by tobacco smoking.
Collapse
Affiliation(s)
- Kevin P. Jensen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA and VA Connecticut Healthcare System, West Haven, CT, USA
| | - Andrew H. Smith
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA and VA Connecticut Healthcare System, West Haven, CT, USA
- Interdepartmental Neuroscience Program and Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT, USA
| | - Aryeh I. Herman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA and VA Connecticut Healthcare System, West Haven, CT, USA
| | - Lindsay A. Farrer
- Department of Medicine (Biomedical Genetics), Neurology, Ophthalmology, Epidemiology, and Biostatistics, Boston University School of Medicine and Public Health, Boston, MA, USA
| | - Henry R. Kranzler
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine and the VISN4 MIRECC, Philadelphia VA Medical Center, Philadelphia, PA, USA
| | - Mehmet Sofuoglu
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA and VA Connecticut Healthcare System, West Haven, CT, USA
| | - Joel Gelernter
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA and VA Connecticut Healthcare System, West Haven, CT, USA
- Departments of Genetics and Neurobiology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
76
|
Hasegawa S, Kumagai M, Hagihara M, Nishimaru H, Hirano K, Kaneko R, Okayama A, Hirayama T, Sanbo M, Hirabayashi M, Watanabe M, Hirabayashi T, Yagi T. Distinct and Cooperative Functions for the Protocadherin-α, -β and -γ Clusters in Neuronal Survival and Axon Targeting. Front Mol Neurosci 2016; 9:155. [PMID: 28066179 PMCID: PMC5179546 DOI: 10.3389/fnmol.2016.00155] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/07/2016] [Indexed: 01/29/2023] Open
Abstract
The clustered protocadherin (Pcdh) genes are divided into the Pcdhα, Pcdhβ, and Pcdhγ clusters. Gene-disruption analyses in mice have revealed the in vivo functions of the Pcdhα and Pcdhγ clusters. However, all Pcdh protein isoforms form combinatorial cis-hetero dimers and enter trans-homophilic interactions. Here we addressed distinct and cooperative functions in the Pcdh clusters by generating six cluster-deletion mutants (Δα, Δβ, Δγ, Δαβ, Δβγ, and Δαβγ) and comparing their phenotypes: Δα, Δβ, and Δαβ mutants were viable and fertile; Δγ mutants lived less than 12 h; and Δβγ and Δαβγ mutants died shortly after birth. The Pcdhα, Pcdhβ, and Pcdhγ clusters were individually and cooperatively important in olfactory-axon targeting and spinal-cord neuron survival. Neurodegeneration was most severe in Δαβγ mutants, indicating that Pcdhα and Pcdhβ function cooperatively for neuronal survival. The Pcdhα, Pcdhβ, and Pcdhγ clusters share roles in olfactory-axon targeting and neuronal survival, although to different degrees.
Collapse
Affiliation(s)
- Sonoko Hasegawa
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka UniversitySuita, Japan; AMED-CREST, Japan Agency for Medical Research and Development (AMED)Suita, Japan
| | - Makiko Kumagai
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka UniversitySuita, Japan; AMED-CREST, Japan Agency for Medical Research and Development (AMED)Suita, Japan
| | - Mitsue Hagihara
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka UniversitySuita, Japan; AMED-CREST, Japan Agency for Medical Research and Development (AMED)Suita, Japan
| | - Hiroshi Nishimaru
- Division of Biomedical Science, Faculty of Medicine, University of Tsukuba Tsukuba, Japan
| | - Keizo Hirano
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University Suita, Japan
| | - Ryosuke Kaneko
- Bioresource Center, Graduate School of Medicine, Gunma University Maebashi, Japan
| | - Atsushi Okayama
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University Suita, Japan
| | - Teruyoshi Hirayama
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka UniversitySuita, Japan; AMED-CREST, Japan Agency for Medical Research and Development (AMED)Suita, Japan
| | - Makoto Sanbo
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences Okazaki, Japan
| | - Masumi Hirabayashi
- AMED-CREST, Japan Agency for Medical Research and Development (AMED)Suita, Japan; Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological SciencesOkazaki, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine Sapporo, Japan
| | - Takahiro Hirabayashi
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka UniversitySuita, Japan; AMED-CREST, Japan Agency for Medical Research and Development (AMED)Suita, Japan
| | - Takeshi Yagi
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka UniversitySuita, Japan; AMED-CREST, Japan Agency for Medical Research and Development (AMED)Suita, Japan
| |
Collapse
|
77
|
Tarusawa E, Sanbo M, Okayama A, Miyashita T, Kitsukawa T, Hirayama T, Hirabayashi T, Hasegawa S, Kaneko R, Toyoda S, Kobayashi T, Kato-Itoh M, Nakauchi H, Hirabayashi M, Yagi T, Yoshimura Y. Establishment of high reciprocal connectivity between clonal cortical neurons is regulated by the Dnmt3b DNA methyltransferase and clustered protocadherins. BMC Biol 2016; 14:103. [PMID: 27912755 PMCID: PMC5133762 DOI: 10.1186/s12915-016-0326-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/09/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The specificity of synaptic connections is fundamental for proper neural circuit function. Specific neuronal connections that underlie information processing in the sensory cortex are initially established without sensory experiences to a considerable extent, and then the connections are individually refined through sensory experiences. Excitatory neurons arising from the same single progenitor cell are preferentially connected in the postnatal cortex, suggesting that cell lineage contributes to the initial wiring of neurons. However, the postnatal developmental process of lineage-dependent connection specificity is not known, nor how clonal neurons, which are derived from the same neural stem cell, are stamped with the identity of their common neural stem cell and guided to form synaptic connections. RESULTS We show that cortical excitatory neurons that arise from the same neural stem cell and reside within the same layer preferentially establish reciprocal synaptic connections in the mouse barrel cortex. We observed a transient increase in synaptic connections between clonal but not nonclonal neuron pairs during postnatal development, followed by selective stabilization of the reciprocal connections between clonal neuron pairs. Furthermore, we demonstrate that selective stabilization of the reciprocal connections between clonal neuron pairs is impaired by the deficiency of DNA methyltransferase 3b (Dnmt3b), which determines DNA-methylation patterns of genes in stem cells during early corticogenesis. Dnmt3b regulates the postnatal expression of clustered protocadherin (cPcdh) isoforms, a family of adhesion molecules. We found that cPcdh deficiency in clonal neuron pairs impairs the whole process of the formation and stabilization of connections to establish lineage-specific connection reciprocity. CONCLUSIONS Our results demonstrate that local, reciprocal neural connections are selectively formed and retained between clonal neurons in layer 4 of the barrel cortex during postnatal development, and that Dnmt3b and cPcdhs are required for the establishment of lineage-specific reciprocal connections. These findings indicate that lineage-specific connection reciprocity is predetermined by Dnmt3b during embryonic development, and that the cPcdhs contribute to postnatal cortical neuron identification to guide lineage-dependent synaptic connections in the neocortex.
Collapse
Affiliation(s)
- Etsuko Tarusawa
- Section of Visual Information Processing, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585 Japan
- AMED-CREST, AMED, 1-3 Yamadaoka, Suita, 565-0871 Osaka Japan
| | - Makoto Sanbo
- National Institute for Physiological Sciences, Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, Okazaki, Aichi 444-8787 Japan
| | - Atsushi Okayama
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Toshio Miyashita
- Section of Visual Information Processing, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585 Japan
| | - Takashi Kitsukawa
- AMED-CREST, AMED, 1-3 Yamadaoka, Suita, 565-0871 Osaka Japan
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Teruyoshi Hirayama
- AMED-CREST, AMED, 1-3 Yamadaoka, Suita, 565-0871 Osaka Japan
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Takahiro Hirabayashi
- AMED-CREST, AMED, 1-3 Yamadaoka, Suita, 565-0871 Osaka Japan
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Sonoko Hasegawa
- AMED-CREST, AMED, 1-3 Yamadaoka, Suita, 565-0871 Osaka Japan
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Ryosuke Kaneko
- Bioresource Center, Gunma University Graduate School of Medicine, Maebashi, 371-8511 Japan
| | - Shunsuke Toyoda
- AMED-CREST, AMED, 1-3 Yamadaoka, Suita, 565-0871 Osaka Japan
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Toshihiro Kobayashi
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639 Japan
| | - Megumi Kato-Itoh
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639 Japan
| | - Hiromitsu Nakauchi
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639 Japan
- Department of Genetics, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, 291 Campus Drive, Li Ka Shing Building, Stanford, CA 94305-5101 USA
| | - Masumi Hirabayashi
- AMED-CREST, AMED, 1-3 Yamadaoka, Suita, 565-0871 Osaka Japan
- National Institute for Physiological Sciences, Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, Okazaki, Aichi 444-8787 Japan
- Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8585 Japan
| | - Takeshi Yagi
- AMED-CREST, AMED, 1-3 Yamadaoka, Suita, 565-0871 Osaka Japan
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Yumiko Yoshimura
- Section of Visual Information Processing, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585 Japan
- Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8585 Japan
| |
Collapse
|
78
|
Goodman KM, Rubinstein R, Thu CA, Mannepalli S, Bahna F, Ahlsén G, Rittenhouse C, Maniatis T, Honig B, Shapiro L. γ-Protocadherin structural diversity and functional implications. eLife 2016; 5. [PMID: 27782885 PMCID: PMC5106212 DOI: 10.7554/elife.20930] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/06/2016] [Indexed: 12/26/2022] Open
Abstract
Stochastic cell-surface expression of α-, β-, and γ-clustered protocadherins (Pcdhs) provides vertebrate neurons with single-cell identities that underlie neuronal self-recognition. Here we report crystal structures of ectodomain fragments comprising cell-cell recognition regions of mouse γ-Pcdhs γA1, γA8, γB2, and γB7 revealing trans-homodimers, and of C-terminal ectodomain fragments from γ-Pcdhs γA4 and γB2, which depict cis-interacting regions in monomeric form. Together these structures span the entire γ-Pcdh ectodomain. The trans-dimer structures reveal determinants of γ-Pcdh isoform-specific homophilic recognition. We identified and structurally mapped cis-dimerization mutations to the C-terminal ectodomain structures. Biophysical studies showed that Pcdh ectodomains from γB-subfamily isoforms formed cis dimers, whereas γA isoforms did not, but both γA and γB isoforms could interact in cis with α-Pcdhs. Together, these data show how interaction specificity is distributed over all domains of the γ-Pcdh trans interface, and suggest that subfamily- or isoform-specific cis-interactions may play a role in the Pcdh-mediated neuronal self-recognition code.
Collapse
Affiliation(s)
- Kerry Marie Goodman
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States
| | - Rotem Rubinstein
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States.,Department of Systems Biology, Columbia University, New York, United States
| | - Chan Aye Thu
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States
| | - Seetha Mannepalli
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States
| | - Fabiana Bahna
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States.,Howard Hughes Medical Institute, Columbia University, New York, United States
| | - Göran Ahlsén
- Department of Systems Biology, Columbia University, New York, United States.,Howard Hughes Medical Institute, Columbia University, New York, United States
| | - Chelsea Rittenhouse
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States
| | - Tom Maniatis
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States.,Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, United States
| | - Barry Honig
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States.,Department of Systems Biology, Columbia University, New York, United States.,Howard Hughes Medical Institute, Columbia University, New York, United States.,Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, United States.,Department of Medicine, Columbia University, New York, United States
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States.,Department of Systems Biology, Columbia University, New York, United States.,Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, United States
| |
Collapse
|
79
|
Mah KM, Houston DW, Weiner JA. The γ-Protocadherin-C3 isoform inhibits canonical Wnt signalling by binding to and stabilizing Axin1 at the membrane. Sci Rep 2016; 6:31665. [PMID: 27530555 PMCID: PMC4987702 DOI: 10.1038/srep31665] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/21/2016] [Indexed: 01/14/2023] Open
Abstract
The 22 γ-Protocadherin (γ-Pcdh) adhesion molecules encoded by the Pcdhg gene cluster play critical roles in nervous system development, including regulation of dendrite arborisation, neuronal survival, and synaptogenesis. Recently, they have been implicated in suppression of tumour cell growth by inhibition of canonical Wnt signalling, though the mechanisms through which this occurs remain unknown. Here, we show differential regulation of Wnt signalling by individual γ-Pcdhs: The C3 isoform uniquely inhibits the pathway, whilst 13 other isoforms upregulate signalling. Focusing on the C3 isoform, we show that its unique variable cytoplasmic domain (VCD) is the critical one for Wnt pathway inhibition. γ-Pcdh-C3, but not other isoforms, physically interacts with Axin1, a key component of the canonical Wnt pathway. The C3 VCD competes with Dishevelled for binding to the DIX domain of Axin1, which stabilizes Axin1 at the membrane and leads to reduced phosphorylation of Wnt co-receptor Lrp6. Finally, we present evidence that Wnt pathway activity can be modulated up (by γ-Pcdh-A1) or down (by γ-Pcdh-C3) in the cerebral cortex in vivo, using conditional transgenic alleles. Together, these data delineate opposing roles for γ-Pcdh isoforms in regulating Wnt signalling and identify Axin1 as a novel protein interactor of the widely-expressed γ-Pcdh-C3 isoform.
Collapse
Affiliation(s)
- Kar Men Mah
- Department of Biology, The University of Iowa, 143 Biology Building, Iowa City, 52242, IA, USA.,Integrated Biology Graduate Program, The University of Iowa, 143 Biology Building, Iowa City,52242, IA, USA
| | - Douglas W Houston
- Department of Biology, The University of Iowa, 143 Biology Building, Iowa City, 52242, IA, USA
| | - Joshua A Weiner
- Department of Biology, The University of Iowa, 143 Biology Building, Iowa City, 52242, IA, USA.,Department of Psychiatry, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, 52242, IA, USA
| |
Collapse
|
80
|
Shan M, Su Y, Kang W, Gao R, Li X, Zhang G. Aberrant expression and functions of protocadherins in human malignant tumors. Tumour Biol 2016; 37:12969-12981. [PMID: 27449047 DOI: 10.1007/s13277-016-5169-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 07/12/2016] [Indexed: 12/11/2022] Open
Abstract
Protocadherins (PCDHs) are a group of transmembrane proteins belonging to the cadherin superfamily and are subdivided into "clustered" and "non-clustered" groups. PCDHs vary in both structure and interaction partners and thus regulate multiple biological responses in complex and versatile patterns. Previous researches showed that PCDHs regulated the development of brain and were involved in some neuronal diseases. Recently, studies have revealed aberrant expression of PCDHs in various human malignant tumors. The down-regulation or absence of PCDHs in malignant cells has been associated with cancer progression. Further researches suggest that PCDHs may play major functions as tumor suppressor by inhibiting the proliferation and metastasis of cancer cells. In this review, we focus on the altered expression of PCDHs and their roles in the development of cancer progression. We also discuss the potential mechanisms, by which PCDHs are aberrantly expressed, and its implications in regulating cancers.
Collapse
Affiliation(s)
- Ming Shan
- Department of Breast Surgery, the Affiliated Tumor Hospital of Harbin Medical University, Harbin, China
| | - Yonghui Su
- Department of Breast Surgery, the Affiliated Tumor Hospital of Harbin Medical University, Harbin, China
| | - Wenli Kang
- Department of Oncology, General Hospital of Hei Longjiang Province Land Reclamation Headquarter, Harbin, China
| | - Ruixin Gao
- Department of Breast Surgery, The First Hospital of Qiqihaer City, Qiqihaer, China
| | - Xiaobo Li
- Department of Pathology, Harbin Medical University, Harbin, China.
| | - Guoqiang Zhang
- Department of Breast Surgery, the Affiliated Tumor Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
81
|
Lomvardas S, Maniatis T. Histone and DNA Modifications as Regulators of Neuronal Development and Function. Cold Spring Harb Perspect Biol 2016; 8:8/7/a024208. [PMID: 27371659 DOI: 10.1101/cshperspect.a024208] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
DNA and histone modifications, together with constraints imposed by nuclear architecture, contribute to the transcriptional regulatory landscape of the nervous system. Here, we provide select examples showing how these regulatory layers, often referred to as epigenetic, contribute to neuronal differentiation and function. We describe the interplay between DNA methylation and Polycomb-mediated repression during neuronal differentiation, the role of DNA methylation and long-range enhancer-promoter interactions in Protocadherin promoter choice, and the contribution of heterochromatic silencing and nuclear organization in singular olfactory receptor expression. Finally, we explain how the activity-dependent expression of a histone variant determines the longevity of olfactory sensory neurons.
Collapse
Affiliation(s)
- Stavros Lomvardas
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, New York 10032
| | - Tom Maniatis
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, New York 10032
| |
Collapse
|
82
|
Irwin RE, Pentieva K, Cassidy T, Lees-Murdock DJ, McLaughlin M, Prasad G, McNulty H, Walsh CP. The interplay between DNA methylation, folate and neurocognitive development. Epigenomics 2016; 8:863-79. [PMID: 27319574 DOI: 10.2217/epi-2016-0003] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
DNA methylation provides an attractive possible means for propagating the effects of environmental inputs during fetal life and impacting subsequent adult mental health, which is leading to increasing collaboration between molecular biologists, nutritionists and psychiatrists. An area of interest is the potential role of folate, not just in neural tube closure in early pregnancy, but in later major neurodevelopmental events, with consequences for later sociocognitive maturation. Here, we set the scene for recent discoveries by reviewing the major events of neural development during fetal life, with an emphasis on tissues and structures where dynamic methylation changes are known to occur. Following this, we give an indication of some of the major classes of genes targeted by methylation and important for neurological and behavioral development. Finally, we highlight some cognitive disorders where methylation changes are implicated as playing an important role.
Collapse
Affiliation(s)
- Rachelle E Irwin
- EpiFASSTT study, Biomedical Sciences, Ulster University, Coleraine, UK
| | - Kristina Pentieva
- EpiFASSTT study, Biomedical Sciences, Ulster University, Coleraine, UK
| | - Tony Cassidy
- EpiFASSTT study, Psychology, Ulster University, Coleraine, UK
| | | | | | - Girijesh Prasad
- EpiFASSTT study, Computer Sciences Research Institutes, Ulster University, Londonderry, UK
| | - Helene McNulty
- EpiFASSTT study, Biomedical Sciences, Ulster University, Coleraine, UK
| | - Colum P Walsh
- EpiFASSTT study, Biomedical Sciences, Ulster University, Coleraine, UK
| |
Collapse
|
83
|
Goodman KM, Rubinstein R, Thu CA, Bahna F, Mannepalli S, Ahlsén G, Rittenhouse C, Maniatis T, Honig B, Shapiro L. Structural Basis of Diverse Homophilic Recognition by Clustered α- and β-Protocadherins. Neuron 2016; 90:709-23. [PMID: 27161523 DOI: 10.1016/j.neuron.2016.04.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/22/2016] [Accepted: 03/30/2016] [Indexed: 10/21/2022]
Abstract
Clustered protocadherin proteins (α-, β-, and γ-Pcdhs) provide a high level of cell-surface diversity to individual vertebrate neurons, engaging in highly specific homophilic interactions to mediate important roles in mammalian neural circuit development. How Pcdhs bind homophilically through their extracellular cadherin (EC) domains among dozens of highly similar isoforms has not been determined. Here, we report crystal structures for extracellular regions from four mouse Pcdh isoforms (α4, α7, β6, and β8), revealing a canonical head-to-tail interaction mode for homophilic trans dimers comprising primary intermolecular EC1:EC4 and EC2:EC3 interactions. A subset of trans interface residues exhibit isoform-specific conservation, suggesting roles in recognition specificity. Mutation of these residues, along with trans-interacting partner residues, altered the specificities of Pcdh interactions. Together, these data show how sequence variation among Pcdh isoforms encodes their diverse strict homophilic recognition specificities, which are required for their key roles in neural circuit assembly.
Collapse
Affiliation(s)
- Kerry Marie Goodman
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Rotem Rubinstein
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Chan Aye Thu
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Fabiana Bahna
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA
| | - Seetha Mannepalli
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Göran Ahlsén
- Department of Systems Biology, Columbia University, New York, NY 10032, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA
| | - Chelsea Rittenhouse
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Tom Maniatis
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10032, USA
| | - Barry Honig
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Systems Biology, Columbia University, New York, NY 10032, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA; Department of Medicine, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10032, USA.
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Systems Biology, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
84
|
Gendrel AV, Marion-Poll L, Katoh K, Heard E. Random monoallelic expression of genes on autosomes: Parallels with X-chromosome inactivation. Semin Cell Dev Biol 2016; 56:100-110. [PMID: 27101886 DOI: 10.1016/j.semcdb.2016.04.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/08/2016] [Accepted: 04/15/2016] [Indexed: 01/04/2023]
Abstract
Genes are generally expressed from their two alleles, except in some particular cases such as random inactivation of one of the two X chromosomes in female mammals or imprinted genes which are expressed only from the maternal or the paternal allele. A lesser-known phenomenon is random monoallelic expression (RME) of autosomal genes, where genes can be stably expressed in a monoallelic manner, from either one of the parental alleles. Studies on autosomal RME face several challenges. First, RME that is based on epigenetic mechanisms has to be distinguished from biased expression of one allele caused by a DNA sequence polymorphism in a regulatory element. Second, RME should not be confused with transient monoallelic expression often observed in single cell analyses, and that often corresponds to dynamic bursting of expression. Thanks to analyses on clonal cell populations, the existence of RME in cultured cells is now well established. Future studies of RME in vivo will have to overcome tissue heterogeneity and certain technical limitations. Here, we discuss current knowledge on autosomal RME, as well as possible mechanisms controlling these expression patterns and potential implications for development and disease, drawing parallels with what is known for X-chromosome inactivation, a paradigm of random monoallelic expression.
Collapse
Affiliation(s)
- Anne-Valerie Gendrel
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Mammalian Developmental Epigenetics group, F-75005 Paris, France; Sorbonne Universités, UPMC Univ Paris 6, F-75005 Paris, France.
| | - Lucile Marion-Poll
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Mammalian Developmental Epigenetics group, F-75005 Paris, France; Sorbonne Universités, UPMC Univ Paris 6, F-75005 Paris, France
| | - Kimiko Katoh
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Mammalian Developmental Epigenetics group, F-75005 Paris, France; Sorbonne Universités, UPMC Univ Paris 6, F-75005 Paris, France
| | - Edith Heard
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Mammalian Developmental Epigenetics group, F-75005 Paris, France; Sorbonne Universités, UPMC Univ Paris 6, F-75005 Paris, France.
| |
Collapse
|
85
|
Huang H, Wu Q. CRISPR Double Cutting through the Labyrinthine Architecture of 3D Genomes. J Genet Genomics 2016; 43:273-88. [PMID: 27210040 DOI: 10.1016/j.jgg.2016.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/03/2016] [Accepted: 03/16/2016] [Indexed: 02/06/2023]
Abstract
The genomes are organized into ordered and hierarchical topological structures in interphase nuclei. Within discrete territories of each chromosome, topologically associated domains (TADs) play important roles in various nuclear processes such as gene regulation. Inside TADs separated by relatively constitutive boundaries, distal elements regulate their gene targets through specific chromatin-looping contacts such as long-distance enhancer-promoter interactions. High-throughput sequencing studies have revealed millions of potential regulatory DNA elements, which are much more abundant than the mere ∼20,000 genes they control. The recently emerged CRISPR-Cas9 genome editing technologies have enabled efficient and precise genetic and epigenetic manipulations of genomes. The multiplexed and high-throughput CRISPR capabilities facilitate the discovery and dissection of gene regulatory elements. Here, we describe the applications of CRISPR for genome, epigenome, and 3D genome editing, focusing on CRISPR DNA-fragment editing with Cas9 and a pair of sgRNAs to investigate topological folding of chromatin TADs and developmental gene regulation.
Collapse
Affiliation(s)
- Haiyan Huang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Center for Comparative Biomedicine, Institute of Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China
| | - Qiang Wu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Center for Comparative Biomedicine, Institute of Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China.
| |
Collapse
|
86
|
Hammoud SS, Low DHP, Yi C, Lee CL, Oatley JM, Payne CJ, Carrell DT, Guccione E, Cairns BR. Transcription and imprinting dynamics in developing postnatal male germline stem cells. Genes Dev 2016; 29:2312-24. [PMID: 26545815 PMCID: PMC4647563 DOI: 10.1101/gad.261925.115] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Hammoud et al. conducted extensive genomic profiling and classified three broad spermatogonial stem cell (SSC) populations in juveniles: (1) epithelial-like SSCs, (2) more abundant mesenchymal-like SSCs, and (3) (in older juveniles) abundant cells committing to gametogenesis. Mesenchymal-like SSCs lacked imprinting specifically at paternally imprinted loci but fully restored imprinting prior to puberty. Mesenchymal-like SSCs also displayed developmentally linked DNA demethylation at meiotic genes and also at certain monoallelic neural genes. Postnatal spermatogonial stem cells (SSCs) progress through proliferative and developmental stages to populate the testicular niche prior to productive spermatogenesis. To better understand, we conducted extensive genomic profiling at multiple postnatal stages on subpopulations enriched for particular markers (THY1, KIT, OCT4, ID4, or GFRa1). Overall, our profiles suggest three broad populations of spermatogonia in juveniles: (1) epithelial-like spermatogonia (THY1+; high OCT4, ID4, and GFRa1), (2) more abundant mesenchymal-like spermatogonia (THY1+; moderate OCT4 and ID4; high mesenchymal markers), and (3) (in older juveniles) abundant spermatogonia committing to gametogenesis (high KIT+). Epithelial-like spermatogonia displayed the expected imprinting patterns, but, surprisingly, mesenchymal-like spermatogonia lacked imprinting specifically at paternally imprinted loci but fully restored imprinting prior to puberty. Furthermore, mesenchymal-like spermatogonia also displayed developmentally linked DNA demethylation at meiotic genes and also at certain monoallelic neural genes (e.g., protocadherins and olfactory receptors). We also reveal novel candidate receptor–ligand networks involving SSCs and the developing niche. Taken together, neonates/juveniles contain heterogeneous epithelial-like or mesenchymal-like spermatogonial populations, with the latter displaying extensive DNA methylation/chromatin dynamics. We speculate that this plasticity helps SSCs proliferate and migrate within the developing seminiferous tubule, with proper niche interaction and membrane attachment reverting mesenchymal-like spermatogonial subtype cells back to an epithelial-like state with normal imprinting profiles.
Collapse
Affiliation(s)
- Saher Sue Hammoud
- Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA; Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA; Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA; Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Diana H P Low
- Division of Cancer Genetics and Therapeutics, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology, and Research), Singapore 138673, Singapore
| | - Chongil Yi
- Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA; Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA; Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Chee Leng Lee
- Division of Cancer Genetics and Therapeutics, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology, and Research), Singapore 138673, Singapore
| | - Jon M Oatley
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA
| | - Christopher J Payne
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA; Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA; Human Molecular Genetics Program, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois 60614, USA
| | - Douglas T Carrell
- Department of Surgery (Urology), University of Utah School of Medicine, Salt Lake City, Utah 84112, USA; Department of Obstetrics and Gynecology, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA; Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Ernesto Guccione
- Division of Cancer Genetics and Therapeutics, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology, and Research), Singapore 138673, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Bradley R Cairns
- Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA; Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA; Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| |
Collapse
|
87
|
de Wit J, Ghosh A. Specification of synaptic connectivity by cell surface interactions. Nat Rev Neurosci 2015; 17:22-35. [PMID: 26656254 DOI: 10.1038/nrn.2015.3] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The molecular diversification of cell surface molecules has long been postulated to impart specific surface identities on neuronal cell types. The existence of unique cell surface identities would allow neurons to distinguish one another and connect with their appropriate target cells. Although progress has been made in identifying cell type-specific surface molecule repertoires and in characterizing their extracellular interactions, determining how this molecular diversity contributes to the precise wiring of neural circuitry has proven challenging. Here, we review the role of the cadherin, neurexin, immunoglobulin and leucine-rich repeat protein superfamilies in the specification of connectivity. The emerging evidence suggests that the concerted actions of these proteins may critically contribute to the assembly of neural circuits.
Collapse
Affiliation(s)
- Joris de Wit
- VIB Center for the Biology of Disease and Center for Human Genetics, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Anirvan Ghosh
- Neuroscience Discovery, Roche Innovation Center Basel, F. Hoffman-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| |
Collapse
|
88
|
Shonubi A, Roman C, Phillips GR. The clustered protocadherin endolysosomal trafficking motif mediates cytoplasmic association. BMC Cell Biol 2015; 16:28. [PMID: 26608278 PMCID: PMC4660814 DOI: 10.1186/s12860-015-0074-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 11/12/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Clustered protocadherins (Pcdhs) are a large family of neural cadherin-like proteins encoded by individual exons located within three gene clusters. Each exon codes an extracellular, transmembrane, and proximal cytoplasmic domain. These "variable" regions may be spliced to a constant cytoplasmic moiety encoded at the end of a cluster. Pcdh extracellular domains mediate homophilic cell-cell binding but their cytoplasmic domains cause intracellular retention and may negatively regulate Pcdh cell-cell binding. Pcdhs can be found at the cell surface in neurons and other cells but are also, unlike classical cadherins, prominently trafficked to the endolysosome system. It was previously found that a segment within the variable portion of the Pcdh-γA3 cytoplasmic domain (VCD) was shown to be necessary for endolysosomal trafficking. RESULTS Here it is shown that this same VCD segment can mediate cytoplasmic association among Pcdhs from the different clusters. Internal deletions within this VCD region (termed here the VCD motif) that disrupt the association altered trafficking of Pcdh-γA3 in the endolysosomal system while deletions outside VCD motif did not affect trafficking. CONCLUSIONS The results show that Pcdhs associate cytoplasmically via a motif within the VCD and that this is critical for Pcdh trafficking. Given that truncation at the VCD motif alters endolysosomal trafficking of Pcdhs, the VCD interaction described here may provide new insights into the dynamic nature of Pcdh mediated cell-cell interactions.
Collapse
Affiliation(s)
- Adam Shonubi
- Department of Biology, College of Staten Island, City University of New York, 2800 Victory Blvd, Staten Island, NY, 10314, USA.
| | - Chantelle Roman
- Department of Biology, College of Staten Island, City University of New York, 2800 Victory Blvd, Staten Island, NY, 10314, USA.
| | - Greg R Phillips
- Department of Biology, College of Staten Island, City University of New York, 2800 Victory Blvd, Staten Island, NY, 10314, USA. .,Center for Developmental Neuroscience, College of Staten Island, City University of New York, 2800 Victory Blvd, Staten Island, NY, 10314, USA. .,CUNY Graduate Center, College of Staten Island, City University of New York, 2800 Victory Blvd, Staten Island, NY, 10314, USA.
| |
Collapse
|
89
|
Nicoludis JM, Lau SY, Schärfe CPI, Marks DS, Weihofen WA, Gaudet R. Structure and Sequence Analyses of Clustered Protocadherins Reveal Antiparallel Interactions that Mediate Homophilic Specificity. Structure 2015; 23:2087-98. [PMID: 26481813 PMCID: PMC4635037 DOI: 10.1016/j.str.2015.09.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 09/14/2015] [Accepted: 09/15/2015] [Indexed: 01/07/2023]
Abstract
Clustered protocadherin (Pcdh) proteins mediate dendritic self-avoidance in neurons via specific homophilic interactions in their extracellular cadherin (EC) domains. We determined crystal structures of EC1-EC3, containing the homophilic specificity-determining region, of two mouse clustered Pcdh isoforms (PcdhγA1 and PcdhγC3) to investigate the nature of the homophilic interaction. Within the crystal lattices, we observe antiparallel interfaces consistent with a role in trans cell-cell contact. Antiparallel dimerization is supported by evolutionary correlations. Two interfaces, located primarily on EC2-EC3, involve distinctive clustered Pcdh structure and sequence motifs, lack predicted glycosylation sites, and contain residues highly conserved in orthologs but not paralogs, pointing toward their biological significance as homophilic interaction interfaces. These two interfaces are similar yet distinct, reflecting a possible difference in interaction architecture between clustered Pcdh subfamilies. These structures initiate a molecular understanding of clustered Pcdh assemblies that are required to produce functional neuronal networks.
Collapse
Affiliation(s)
- John M. Nicoludis
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| | - Sze-Yi Lau
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Charlotta P. I. Schärfe
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA,Applied Bioinformatics, Department of Computer Science, University of Tübingen, Tübingen, Germany
| | - Debora S. Marks
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Wilhelm A. Weihofen
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA, 02138, USA,Correspondence: (R. G.), (W. A.W.)
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA, 02138, USA,Correspondence: (R. G.), (W. A.W.)
| |
Collapse
|
90
|
The transfer and transformation of collective network information in gene-matched networks. Sci Rep 2015; 5:14984. [PMID: 26450411 PMCID: PMC4598864 DOI: 10.1038/srep14984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 09/15/2015] [Indexed: 11/08/2022] Open
Abstract
Networks, such as the human society network, social and professional networks, and biological system networks, contain vast amounts of information. Information signals in networks are distributed over nodes and transmitted through intricately wired links, making the transfer and transformation of such information difficult to follow. Here we introduce a novel method for describing network information and its transfer using a model network, the Gene-matched network (GMN), in which nodes (neurons) possess attributes (genes). In the GMN, nodes are connected according to their expression of common genes. Because neurons have multiple genes, the GMN is cluster-rich. We show that, in the GMN, information transfer and transformation were controlled systematically, according to the activity level of the network. Furthermore, information transfer and transformation could be traced numerically with a vector using genes expressed in the activated neurons, the active-gene array, which was used to assess the relative activity among overlapping neuronal groups. Interestingly, this coding style closely resembles the cell-assembly neural coding theory. The method introduced here could be applied to many real-world networks, since many systems, including human society and various biological systems, can be represented as a network of this type.
Collapse
|
91
|
Reinius B, Sandberg R. Random monoallelic expression of autosomal genes: stochastic transcription and allele-level regulation. Nat Rev Genet 2015; 16:653-64. [PMID: 26442639 DOI: 10.1038/nrg3888] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Random monoallelic expression (RME) of genes represents a striking example of how stochastic molecular processes can result in cellular heterogeneity. Recent transcriptome-wide studies have revealed both mitotically stable and cell-to-cell dynamic forms of autosomal RME, with the latter presumably resulting from burst-like stochastic transcription. Here, we discuss the distinguishing features of these two forms of RME and revisit literature on their nature, pervasiveness and regulation. Finally, we explore how RME may contribute to phenotypic variation, including the incomplete penetrance and variable expressivity often seen in genetic disease.
Collapse
Affiliation(s)
- Björn Reinius
- Ludwig Institute for Cancer Research, Box 240, and the Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Rickard Sandberg
- Ludwig Institute for Cancer Research, Box 240, and the Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
92
|
Massah S, Beischlag TV, Prefontaine GG. Epigenetic events regulating monoallelic gene expression. Crit Rev Biochem Mol Biol 2015; 50:337-58. [PMID: 26155735 DOI: 10.3109/10409238.2015.1064350] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In mammals, generally it is assumed that the genes inherited from each parent are expressed to similar levels. However, it is now apparent that in non-sex chromosomes, 6-10% of genes are selected for monoallelic expression. Monoallelic expression or allelic exclusion is established either in an imprinted (parent-of-origin) or a stochastic manner. The stochastic model explains random selection while the imprinted model describes parent-of-origin specific selection of alleles for expression. Allelic exclusion occurs during X chromosome inactivation, parent-of-origin expression of imprinted genes and stochastic monoallelic expression of cell surface molecules, clustered protocadherin (PCDH) genes. Mis-regulation or loss of allelic exclusion contributes to developmental diseases. Epigenetic mechanisms are fundamental players that determine this type of expression despite a homogenous genetic background. DNA methylation and histone modifications are two mediators of the epigenetic phenomena. The majority of DNA methylation is found on cytosines of the CpG dinucleotide in mammals. Several covalent modifications of histones change the electrostatic forces between DNA and histones modifying gene expression. Long-range chromatin interactions organize chromatin into transcriptionally permissive and prohibitive regions leading to simultaneous regulation of gene expression and repression. Non-coding RNAs (ncRNAs) are also players in regulating gene expression. Together, these epigenetic mechanisms fine-tune gene expression levels essential for normal development and survival. In this review, first we discuss what is known about monoallelic gene expression. Then, we focus on the molecular mechanisms that regulate expression of three monoallelically expressed gene classes: the X-linked genes, selected imprinted genes and PCDH genes.
Collapse
Affiliation(s)
- Shabnam Massah
- a The Faculty of Health Sciences , Simon Fraser University , Burnaby , BC , Canada
| | - Timothy V Beischlag
- a The Faculty of Health Sciences , Simon Fraser University , Burnaby , BC , Canada
| | | |
Collapse
|
93
|
Coughlin GM, Kurrasch DM. Protocadherins and hypothalamic development: do they play an unappreciated role? J Neuroendocrinol 2015; 27:544-55. [PMID: 25845440 DOI: 10.1111/jne.12280] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 03/26/2015] [Accepted: 03/27/2015] [Indexed: 12/17/2022]
Abstract
Normal brain development requires coordinated cell movements at precise times. It has long been established that cell-cell adhesion proteins of the cadherin superfamily are involved in the adhesion and sorting of cells during tissue morphogenesis. In the present review, we focus on protocadherins, which form the largest subfamily of the cadherin superfamily and mediate homophilic cell-cell adhesion in the developing brain. These molecules are highly expressed during neural development and the exact roles that they play are still emerging. Although, historically, protocadherins were considered to provide mechanical and chemical connections between adjacent cells, recent research suggests that they may also serve as molecular identity markers of neurones to help guide cell recognition and sorting, cell migration, outgrowth of neuronal processes, and synapse formation. This phenomenon of single cell diversity stems, in part, from the vast variation in protein structure, genomic organisation and molecular function of the protocadherins. Although expression profiles and genetic manipulations have provided evidence for the role of protocadherins in the developing brain, we have only begun to construct a complete understanding of protocadherin function. We examine our current understanding of how protocadherins influence brain development and discuss the possible roles for this large superfamily within the hypothalamus. We conclude that further research into these underappreciated but vitally important genes will shed insight into hypothalamic development and perhaps the underlying aetiology of neuroendocrine disorders.
Collapse
Affiliation(s)
- G M Coughlin
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - D M Kurrasch
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
94
|
Keeler AB, Molumby MJ, Weiner JA. Protocadherins branch out: Multiple roles in dendrite development. Cell Adh Migr 2015; 9:214-26. [PMID: 25869446 DOI: 10.1080/19336918.2014.1000069] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The proper formation of dendritic arbors is a critical step in neural circuit formation, and as such defects in arborization are associated with a variety of neurodevelopmental disorders. Among the best gene candidates are those encoding cell adhesion molecules, including members of the diverse cadherin superfamily characterized by distinctive, repeated adhesive domains in their extracellular regions. Protocadherins (Pcdhs) make up the largest group within this superfamily, encompassing over 80 genes, including the ∼60 genes of the α-, β-, and γ-Pcdh gene clusters and the non-clustered δ-Pcdh genes. An additional group includes the atypical cadherin genes encoding the giant Fat and Dachsous proteins and the 7-transmembrane cadherins. In this review we highlight the many roles that Pcdhs and atypical cadherins have been demonstrated to play in dendritogenesis, dendrite arborization, and dendritic spine regulation. Together, the published studies we discuss implicate these members of the cadherin superfamily as key regulators of dendrite development and function, and as potential therapeutic targets for future interventions in neurodevelopmental disorders.
Collapse
Key Words
- CNR, Cadherin related neuronal receptor
- CTCF, CCCTC-binding factor
- CaMKII, Ca2+/calmodulin-dependent protein kinase II.
- Celsr, Cadherin EGF LAG 7-pass G-type receptor 1
- DSCAM, Down syndrome cell adhesion molecule
- Dnmt3b, DNA (cytosine-5-)-methyltransferase 3 β
- Ds, Dachsous
- EC, extracellular cadherin
- EGF, Epidermal growth factor
- FAK, Focal adhesion kinase
- FMRP, Fragile X mental retardation protein
- Fj, Four jointed
- Fjx1, Four jointed box 1
- GPCR, G-protein-coupled receptor
- Gogo, Golden Goal
- LIM domain, Lin11, Isl-1 & Mec-3 domain
- MARCKS, Myristoylated alanine-rich C-kinase substrate
- MEF2, Myocyte enhancer factor 2
- MEK3, Mitogen-activated protein kinase kinase 3
- PCP, planar cell polarity
- PKC, Protein kinase C
- PSD, Post-synaptic density
- PYK2, Protein tyrosine kinase 2
- Pcdh
- Pcdh, Protocadherin
- RGC, Retinal ganglion cell
- RNAi, RNA interference
- Rac1, Ras-related C3 botulinum toxin substrate 1
- S2 cells, Schneider 2 cells
- SAC, starburst amacrine cell
- TAF1, Template-activating factor 1
- TAO2β, Thousand and one amino acid protein kinase 2 β
- TM, transmembrane
- arborization
- atypical cadherin
- branching
- cadherin superfamily
- cell adhesion
- da neuron, dendritic arborization neuron
- dendritic
- dendritic spine
- dendritogenesis
- fmi, Flamingo
- md neuron, multiple dendrite neuron
- neural circuit formation
- p38 MAPK, p38 mitogen-activated protein kinase
- self avoidance
- synaptogenesis
Collapse
Affiliation(s)
- Austin B Keeler
- a Department of Biology ; Neuroscience Graduate Program; University of Iowa ; Iowa City , IA USA
| | | | | |
Collapse
|
95
|
Abstract
During brain development, billions of neurons organize into highly specific circuits. To form specific circuits, neurons must build the appropriate types of synapses with appropriate types of synaptic partners while avoiding incorrect partners in a dense cellular environment. Defining the cellular and molecular rules that govern specific circuit formation has significant scientific and clinical relevance because fine scale connectivity defects are thought to underlie many cognitive and psychiatric disorders. Organizing specific neural circuits is an enormously complicated developmental process that requires the concerted action of many molecules, neural activity, and temporal events. This review focuses on one class of molecules postulated to play an important role in target selection and specific synapse formation: the classic cadherins. Cadherins have a well-established role in epithelial cell adhesion, and although it has long been appreciated that most cadherins are expressed in the brain, their role in synaptic specificity is just beginning to be unraveled. Here, we review past and present studies implicating cadherins as active participants in the formation, function, and dysfunction of specific neural circuits and pose some of the major remaining questions.
Collapse
Affiliation(s)
- Raunak Basu
- a Department of Neurobiology and Anatomy ; University of Utah ; Salt Lake City , UT USA
| | | | | |
Collapse
|
96
|
Steele EJ, Lloyd SS. Soma-to-germline feedback is implied by the extreme polymorphism at IGHV relative to MHC: The manifest polymorphism of the MHC appears greatly exceeded at Immunoglobulin loci, suggesting antigen-selected somatic V mutants penetrate Weismann's Barrier. Bioessays 2015; 37:557-69. [PMID: 25810320 DOI: 10.1002/bies.201400213] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/15/2015] [Accepted: 02/24/2015] [Indexed: 01/22/2023]
Abstract
Soma-to-germline feedback is forbidden under the neo-Darwinian paradigm. Nevertheless, there is a growing realization it occurs frequently in immunoglobulin (Ig) variable (V) region genes. This is a surprising development. It arises from a most unlikely source in light of the exposure of co-author EJS to the haplotype data of RL Dawkins and others on the polymorphism of the Major Histocompatibility Complex, which is generally assumed to be the most polymorphic region in the genome (spanning ∼4 Mb). The comparison between the magnitude of MHC polymorphism with estimates for the human heavy chain immunoglobulin V locus (spanning ∼1 Mb), suggests IGHV could be many orders of magnitude more polymorphic than the MHC. This conclusion needs airing in the literature as it implies generational churn and soma-to-germline gene feedback. Pedigree-based experimental strategies to resolve the IGHV issue are outlined.
Collapse
Affiliation(s)
- Edward J Steele
- C.Y. O'Connor ERADE Village Foundation, Piara Waters, WA, Australia
| | | |
Collapse
|
97
|
Hayashi S, Takeichi M. Emerging roles of protocadherins: from self-avoidance to enhancement of motility. J Cell Sci 2015; 128:1455-64. [PMID: 25749861 DOI: 10.1242/jcs.166306] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Protocadherins are a group of transmembrane proteins belonging to the cadherin superfamily that are subgrouped into 'clustered' and 'non-clustered' protocadherins. Although cadherin superfamily members are known to regulate various forms of cell-cell interactions, including cell-cell adhesion, the functions of protocadherins have long been elusive. Recent studies are, however, uncovering their unique roles. The clustered protocadherins regulate neuronal survival, as well as dendrite self-avoidance. Combinatorial expression of clustered protocadherin isoforms creates a great diversity of adhesive specificity for cells, and this process is likely to underlie the dendritic self-avoidance. Non-clustered protocadherins promote cell motility rather than the stabilization of cell adhesion, unlike the classic cadherins, and mediate dynamic cellular processes, such as growth cone migration. Protocadherin dysfunction in humans is implicated in neurological disorders, such as epilepsy and mental retardation. This Commentary provides an overview of recent findings regarding protocadherin functions, as well as a discussion of the molecular basis underlying these functions.
Collapse
Affiliation(s)
- Shuichi Hayashi
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Masatoshi Takeichi
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
98
|
Meguro R, Hishida R, Tsukano H, Yoshitake K, Imamura R, Tohmi M, Kitsukawa T, Hirabayashi T, Yagi T, Takebayashi H, Shibuki K. Impaired clustered protocadherin-α leads to aggregated retinogeniculate terminals and impaired visual acuity in mice. J Neurochem 2015; 133:66-72. [PMID: 25650227 DOI: 10.1111/jnc.13053] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 01/16/2015] [Accepted: 01/26/2015] [Indexed: 11/26/2022]
Abstract
Clustered protocadherins (cPcdhs) comprising cPcdh-α, -β, and -γ, encode a large family of cadherin-like cell-adhesion molecules specific to neurons. Impairment of cPcdh-α results in abnormal neuronal projection patterns in specific brain areas. To elucidate the role of cPcdh-α in retinogeniculate projections, we investigated the morphological patterns of retinogeniculate terminals in the lateral geniculate (LG) nucleus of mice with impaired cPcdh-α. We found huge aggregated retinogeniculate terminals in the dorsal LG nucleus, whereas no such aggregated terminals derived from the retina were observed in the olivary pretectal nucleus and the ventral LG nucleus. These aggregated terminals appeared between P10 and P14, just before eye opening and at the beginning of the refinement stage of the retinogeniculate projections. Reduced visual acuity was observed in adult mice with impaired cPcdh-α, whereas the orientation selectivity and direction selectivity of neurons in the primary visual cortex were apparently normal. These findings suggest that cPcdh-α is required for adequate spacing of retinogeniculate projections, which may be essential for normal development of visual acuity.
Collapse
Affiliation(s)
- Reiko Meguro
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Thu CA, Chen WV, Rubinstein R, Chevee M, Wolcott HN, Felsovalyi KO, Tapia JC, Shapiro L, Honig B, Maniatis T. Single-cell identity generated by combinatorial homophilic interactions between α, β, and γ protocadherins. Cell 2015; 158:1045-1059. [PMID: 25171406 DOI: 10.1016/j.cell.2014.07.012] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/18/2014] [Accepted: 07/07/2014] [Indexed: 02/07/2023]
Abstract
Individual mammalian neurons stochastically express distinct repertoires of α, β, and γ protocadherin (Pcdh) proteins, which function in neural circuit assembly. We report that all three subfamilies of clustered Pcdhs can engage in specific homophilic interactions, that cell surface delivery of Pcdhα isoforms requires cis interactions with other Pcdhs, and that the extracellular cadherin domain EC6 plays a critical role in this process. Examination of homophilic interactions between specific combinations of multiple Pcdh isoforms revealed that Pcdh combinatorial recognition specificities depend on the identity of all of the expressed isoforms. A single mismatched Pcdh isoform can interfere with these combinatorial homophilic interactions. A theoretical analysis reveals that assembly of Pcdh isoforms into multimeric recognition units and the observed tolerance for mismatched isoforms can generate cell surface diversity sufficient for single-cell identity. However, the competing demands of nonself discrimination and self-recognition place limitations on the mechanisms by which homophilic recognition units can function.
Collapse
Affiliation(s)
- Chan Aye Thu
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, 701 W 168th Street, New York, NY 10032, USA
| | - Weisheng V Chen
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, 701 W 168th Street, New York, NY 10032, USA
| | - Rotem Rubinstein
- Center for Computational Biology and Bioinformatics, Columbia University Medical Center, 1130 St. Nicholas Avenue, New York, NY 10032, USA; Department of System Biology, Columbia University, 1130 St. Nicholas Avenue, New York, NY 10032, USA; Howard Hughes Medical Institute
| | - Maxime Chevee
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, 701 W 168th Street, New York, NY 10032, USA
| | - Holly N Wolcott
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, 1150 St. Nicholas Avenue, Russ Berrie Pavilion, New York, NY 10032, USA
| | - Klara O Felsovalyi
- Center for Computational Biology and Bioinformatics, Columbia University Medical Center, 1130 St. Nicholas Avenue, New York, NY 10032, USA; Department of System Biology, Columbia University, 1130 St. Nicholas Avenue, New York, NY 10032, USA; Howard Hughes Medical Institute
| | - Juan Carlos Tapia
- Department of Neuroscience, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, 1150 St. Nicholas Avenue, Russ Berrie Pavilion, New York, NY 10032, USA; Department of System Biology, Columbia University, 1130 St. Nicholas Avenue, New York, NY 10032, USA
| | - Barry Honig
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, 1150 St. Nicholas Avenue, Russ Berrie Pavilion, New York, NY 10032, USA; Center for Computational Biology and Bioinformatics, Columbia University Medical Center, 1130 St. Nicholas Avenue, New York, NY 10032, USA; Department of System Biology, Columbia University, 1130 St. Nicholas Avenue, New York, NY 10032, USA; Howard Hughes Medical Institute.
| | - Tom Maniatis
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, 701 W 168th Street, New York, NY 10032, USA.
| |
Collapse
|
100
|
Ichijo H, Hamada M, Takahashi S, Kobayashi M, Nagai T, Toyama T, Kawaguchi M. Lateralization, maturation, and anteroposterior topography in the lateral habenula revealed by ZIF268/EGR1 immunoreactivity and labeling history of neuronal activity. Neurosci Res 2015; 95:27-37. [PMID: 25637311 DOI: 10.1016/j.neures.2015.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 01/16/2015] [Accepted: 01/16/2015] [Indexed: 11/28/2022]
Abstract
We report habenular lateralization in a simple transgenic mouse model used for labeling a facet of neuronal activity history. A transgenic construct comprised of a zif268/egr1 immediate-early gene promoter and a gene for normal Venus fluorescent protein with a membrane tag converted promoter activity into long-life fluorescent proteins, which was thought to describe a facet of neuronal activity history by summing neuronal activity. In addition to mapping the immediate-early gene-immunopositive cells, this method helped demonstrate the functionality of the lateral habenular nucleus (LHb). During postnatal development, the LHb was activated between postnatal days 10 and 16. The water-immersion restraint stress also activated the LHb over a similar period. LHb activation was functionally lateralized, but had no directional bias at the population level. Moreover, the posterior LHb was activated in the early stage after the stress, while the anterior LHb was activated in the later stage. Our results indicate lateralization, maturation, and anteroposterior topography of the LHb during postnatal development and the stress response.
Collapse
Affiliation(s)
- Hiroyuki Ichijo
- Department of Anatomy, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan; Department of Anatomy and Embryology, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan.
| | - Michito Hamada
- Department of Anatomy and Embryology, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; Laboratory Animal Resource Center, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Makoto Kobayashi
- Department of Molecular and Developmental Biology, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Takeharu Nagai
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki 567-0047, Japan
| | - Tomoko Toyama
- Department of Anatomy and Embryology, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Masahumi Kawaguchi
- Department of Anatomy, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|