51
|
Therapeutic Potential for Intractable Asthma by Targeting L-Type Amino Acid Transporter 1. Biomolecules 2022; 12:biom12040553. [PMID: 35454142 PMCID: PMC9029068 DOI: 10.3390/biom12040553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 11/30/2022] Open
Abstract
Bronchial asthma is a chronic disease characterized by airway inflammation, obstruction, and hyperresponsiveness. CD4+ T cells, particularly T helper (Th) 2 cells, and their specific cytokines are important mediators in asthma pathogenesis. However, it has been established that Th subsets, other than Th2, as well as various cell types, including innate lymphoid cells (ILCs), significantly contribute to the development of allergic inflammation. These cells require facilitated amino acid uptake to ensure their full function upon activation. Emerging studies have suggested the potential of pharmacological inhibition of amino acid transporters to inhibit T cell activation and the application of this strategy for treating immunological and inflammatory disorders. In the present review, we explore the possibility of targeting L-type amino acid transporter (LAT) as a novel therapeutic approach for bronchial asthma, including its steroid-resistant endotypes.
Collapse
|
52
|
Ma C, Wang S, Cao Y, Tang W, Wuniqiemu T, Teng F, Zhu X, Wei Y, Dong J. Screening and Verification of Differentially Expressed Long Non-coding RNAs in the Peripheral Blood of Patients With asthma. Front Pharmacol 2022; 13:834009. [PMID: 35273507 PMCID: PMC8902465 DOI: 10.3389/fphar.2022.834009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/19/2022] [Indexed: 12/21/2022] Open
Abstract
Growing evidence suggests that long non-coding RNAs (lncRNAs) play a key role in the pathogenesis of asthma. Although some differentially expressed lncRNAs have been identified in asthmatic patients, many asthma-related lncRNAs have not been annotated. In the present study, six patients and three healthy subjects were randomly selected from 34 asthmatic patients and 17 healthy subjects. Second-generation high-throughput sequencing was performed on their peripheral blood samples. There were 1,137 differentially expressed lncRNAs in the asthma patients compared to in the healthy controls, of which 485 were upregulated and 652 were downregulated. The top 30 enriched GO and KEGG terms were identified, and the cytosolic ribosome (GO:0022626) and ribosome (hsa03010) were associated with the most differentially expressed lncRNAs. The top 10 differentially expressed lncRNAs associated with asthma were verified by an lncRNA-mRNA co-expression network and RT-qPCR. Seven of the these (NONHSAT015495.2, MSTRG.71212.2, NONHSAT163272.1, NONHSAT181891.1, NONHSAT190964.1, ENST00000564809, and NONHSAT076890.2) were down-regulated in the peripheral blood of asthmatic patients, which was consistent with the sequencing results. Three patients and three healthy subjects were randomly selected from the remaining subjects to verify these seven lncRNAs by RT-qPCR, which further confirmed the sequencing results. Public database GSE106230 was also in agreement with the FPKM (Fragments Per kilobase of exon model per Million mapped reads) trends of ENST00000564809, NONHSAT015495.2, NONHSAT181891.1, and NONHSAT190964.1. In conclusion, the present study identified seven lncRNAs that may serve as potential biological markers for asthma.
Collapse
Affiliation(s)
- Cheng Ma
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Shiyuan Wang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Yuxue Cao
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Weifeng Tang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Tulake Wuniqiemu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Fangzhou Teng
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Xueyi Zhu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| |
Collapse
|
53
|
Liao X, Zhang W, Dai H, Jing R, Ye M, Ge W, Pei S, Pan L. Neutrophil-Derived IL-17 Promotes Ventilator-Induced Lung Injury via p38 MAPK/MCP-1 Pathway Activation. Front Immunol 2022; 12:768813. [PMID: 34975857 PMCID: PMC8714799 DOI: 10.3389/fimmu.2021.768813] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/29/2021] [Indexed: 12/28/2022] Open
Abstract
Ventilator-induced lung injury (VILI) is one of the most common complications of mechanical ventilation and can severely affect health. VILI appears to involve excessive inflammatory responses, but its pathogenesis has not yet been clarified. Since interleukin-17 (IL-17) plays a critical role in the immune system and the development of infectious and inflammatory diseases, we investigated here whether it plays a role in VILI. In a mouse model of VILI, mechanical ventilation with high tidal volume promoted the accumulation of lung neutrophils, leading to increased IL-17 levels in the lung, which in turn upregulated macrophage chemoattractant protein-1 via p38 mitogen-activated protein kinase. Depletion of neutrophils decreases the production IL-17 in mice and inhibition of IL-17 significantly reduced HTV-induced lung injury and inflammatory response. These results were confirmed in vitro using RAW264.7 macrophage cultures. Our results suggest that IL-17 plays a pro-inflammatory role in VILI and could serve as a new target for its treatment.
Collapse
Affiliation(s)
- Xiaoting Liao
- Department of Anesthesiology, Guangxi Key Laboratory of Basic Research on Perioperative Organ Function Injury & Control, and Guangxi Medical Engineering Research Center of Tissue Injury and Repair, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Weikang Zhang
- Department of Anesthesiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Huijun Dai
- Department of Anesthesiology, Guangxi Key Laboratory of Basic Research on Perioperative Organ Function Injury & Control, and Guangxi Medical Engineering Research Center of Tissue Injury and Repair, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Ren Jing
- Department of Anesthesiology, Guangxi Key Laboratory of Basic Research on Perioperative Organ Function Injury & Control, and Guangxi Medical Engineering Research Center of Tissue Injury and Repair, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Mengling Ye
- Department of Anesthesiology, Guangxi Key Laboratory of Basic Research on Perioperative Organ Function Injury & Control, and Guangxi Medical Engineering Research Center of Tissue Injury and Repair, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Wanyun Ge
- Department of Anesthesiology, Guangxi Key Laboratory of Basic Research on Perioperative Organ Function Injury & Control, and Guangxi Medical Engineering Research Center of Tissue Injury and Repair, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Shenglin Pei
- Department of Anesthesiology, Guangxi Key Laboratory of Basic Research on Perioperative Organ Function Injury & Control, and Guangxi Medical Engineering Research Center of Tissue Injury and Repair, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Linghui Pan
- Department of Anesthesiology, Guangxi Key Laboratory of Basic Research on Perioperative Organ Function Injury & Control, and Guangxi Medical Engineering Research Center of Tissue Injury and Repair, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
54
|
Margelidon-Cozzolino V, Tsicopoulos A, Chenivesse C, de Nadai P. Role of Th17 Cytokines in Airway Remodeling in Asthma and Therapy Perspectives. FRONTIERS IN ALLERGY 2022; 3:806391. [PMID: 35386663 PMCID: PMC8974749 DOI: 10.3389/falgy.2022.806391] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/10/2022] [Indexed: 12/07/2022] Open
Abstract
Airway remodeling is a frequent pathological feature of severe asthma leading to permanent airway obstruction in up to 50% of cases and to respiratory disability. Although structural changes related to airway remodeling are well-characterized, immunological processes triggering and maintaining this phenomenon are still poorly understood. As a consequence, no biotherapy targeting cytokines are currently efficient to treat airway remodeling and only bronchial thermoplasty may have an effect on bronchial nerves and smooth muscles with uncertain clinical relevance. Th17 cytokines, including interleukin (IL)-17 and IL-22, play a role in neutrophilic inflammation in severe asthma and may be involved in airway remodeling. Indeed, IL-17 is increased in sputum from severe asthmatic patients, induces the expression of "profibrotic" cytokines by epithelial, endothelial cells and fibroblasts, and provokes human airway smooth muscle cell migration in in vitro studies. IL-22 is also increased in asthmatic samples, promotes myofibroblast differentiation, epithelial-mesenchymal transition and proliferation and migration of smooth muscle cells in vitro. Accordingly, we also found high levels of IL-17 and IL-22 in a mouse model of dog-allergen induced asthma characterized by a strong airway remodeling. Clinical trials found no effect of therapy targeting IL-17 in an unselected population of asthmatic patients but showed a potential benefit in a sub-population of patients exhibiting a high level of airway reversibility, suggesting a potential role on airway remodeling. Anti-IL-22 therapies have not been evaluated in asthma yet but were demonstrated efficient in severe atopic dermatitis including an effect on skin remodeling. In this review, we will address the role of Th17 cytokines in airway remodeling through data from in vitro, in vivo and translational studies, and examine the potential place of Th17-targeting therapies in the treatment of asthma with airway remodeling.
Collapse
Affiliation(s)
- Victor Margelidon-Cozzolino
- Univ. Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, Unité INSERM U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Anne Tsicopoulos
- Univ. Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, Unité INSERM U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Cécile Chenivesse
- Univ. Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, Unité INSERM U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
- CRISALIS (Clinical Research Initiative in Severe Asthma: a Lever for Innovation & Science), F-CRIN Network, INSERM US015, Toulouse, France
| | - Patricia de Nadai
- Univ. Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, Unité INSERM U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
| |
Collapse
|
55
|
Xie Y, Abel PW, Casale TB, Tu Y. T H17 cells and corticosteroid insensitivity in severe asthma. J Allergy Clin Immunol 2022; 149:467-479. [PMID: 34953791 PMCID: PMC8821175 DOI: 10.1016/j.jaci.2021.12.769] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/30/2021] [Accepted: 12/15/2021] [Indexed: 02/03/2023]
Abstract
Asthma is classically described as having either a type 2 (T2) eosinophilic phenotype or a non-T2 neutrophilic phenotype. T2 asthma usually responds to classical bronchodilation therapy and corticosteroid treatment. Non-T2 neutrophilic asthma is often more severe. Patients with non-T2 asthma or late-onset T2 asthma show poor response to the currently available anti-inflammatory therapies. These therapeutic failures result in increased morbidity and cost associated with asthma and pose a major health care problem. Recent evidence suggests that some non-T2 asthma is associated with elevated TH17 cell immune responses. TH17 cells producing Il-17A and IL-17F are involved in the neutrophilic inflammation and airway remodeling processes in severe asthma and have been suggested to contribute to the development of subsets of corticosteroid-insensitive asthma. This review explores the pathologic role of TH17 cells in corticosteroid insensitivity of severe asthma and potential targets to treat this endotype of asthma.
Collapse
Affiliation(s)
- Yan Xie
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, USA
| | - Peter W. Abel
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, USA
| | - Thomas B. Casale
- Department of Internal Medicine, University of South Florida School of Medicine, Tampa, FL, USA
| | - Yaping Tu
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, USA
| |
Collapse
|
56
|
Herjan T, Xiao J, Dziendziel Kolanek M. RNA-Binding Protein HuR Promotes Airway Inflammation in a House Dust Mite-Induced Allergic Asthma Model. J Interferon Cytokine Res 2022; 42:29-38. [PMID: 35041516 PMCID: PMC8787712 DOI: 10.1089/jir.2021.0171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mounting evidence indicates that interleukin 17 (IL-17) is critically involved in the pathogenesis of severe asthma. We have previously reported that upon IL-17 stimulation, Act1, an IL-17-receptor-complex adaptor, directly binds to its target mRNAs and utilizes other proteins, such as HuR, to upregulate mRNA stability and translation. HuR mRNA targets include multiple asthma-related genes. In this study, we have used house dust mite (HDM), a natural allergen, to test the role of HuR in the pathogenesis of allergic asthma. We found that HuR deletion in airway epithelium diminished HDM-induced lung inflammation, including neutrophil and eosinophil infiltration. While Th2 cytokines were not altered, the production of CXCL1, CXCL5 and CCL11 chemokines was significantly diminished. Airway smooth muscle (ASM) cells contribute to the pathogenesis of allergic asthma by orchestrating inflammatory and remodeling responses. We found that IL-17 treatment of ASM cells induced translocation of HuR from nucleus to cytoplasm, where it bound directly to Cxcl1 and Ccl11 mRNA. Deletion of HuR in ASM cells decreased their proliferation as well as CXCL1 and CCL11 production in response to IL-17. Taken together, our findings demonstrate the importance of HuR-mediated regulation of gene expression to the pathogenesis of allergic asthma, in both airway epithelial and ASM cells.
Collapse
Affiliation(s)
- Tomasz Herjan
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, Ohio, USA.,Department of General Biochemistry, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jianxin Xiao
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, Ohio, USA
| | - Monika Dziendziel Kolanek
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
57
|
Fainardi V, Passadore L, Labate M, Pisi G, Esposito S. An Overview of the Obese-Asthma Phenotype in Children. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020636. [PMID: 35055456 PMCID: PMC8775557 DOI: 10.3390/ijerph19020636] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 12/14/2022]
Abstract
Asthma is the most common chronic disease in childhood. Overweight and obesity are included among the comorbidities considered in patients with difficult-to-treat asthma, suggesting a specific phenotype of the disease. Therefore, the constant increase in obesity prevalence in children and adolescents raises concerns about the parallel increase of obesity-associated asthma. The possible correlation between obesity and asthma has been investigated over the last decade by different authors, who suggest a complex multifactorial relationship. Although the particular non-eosinophilic endotype of obesity-related asthma supports the concept that high body weight precedes asthma development, there is ongoing debate about the direct causality of these two entities. A number of mechanisms may be involved in asthma in combination with obesity disease in children, including reduced physical activity, abnormal ventilation, chronic systemic inflammation, hormonal influences, genetics and additional comorbidities, such as gastroesophageal reflux and dysfunctional breathing. The identification of the obesity-related asthma phenotype is crucial to initiate specific therapeutic management. Besides the cornerstones of asthma treatment, lifestyle should be optimized, with interventions aiming to promote physical exercise, healthy diet, and comorbidities. Future studies should clarify the exact association between asthma and obesity and the mechanisms underlying the pathogenesis of these two related conditions with the aim to define personalized therapeutic strategies for asthma management in this population.
Collapse
|
58
|
Chiba Y, Ando Y, Kato Y, Hanazaki M, Sakai H. Down-regulation of miR-140-3p is a cause of the interlukin-13-induced up-regulation of RhoA protein in bronchial smooth muscle cells. Small GTPases 2022; 13:1-6. [PMID: 33427568 PMCID: PMC9707530 DOI: 10.1080/21541248.2021.1872318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The current study aimed to determine the role of a microRNA (miRNA), miR-140-3p, in the control of RhoA expression in bronchial smooth muscle cells (BSMCs). In cultured human BSMCs, incubation with interleukin-13 (IL-13) caused an up-regulation of RhoA protein concurrently with a down-regulation of miR-140-3p. Transfection of the cells with a miR-140-3p inhibitor caused an increase in basal RhoA protein level. Although a mimic of miR-140-3p had little effect on the basal RhoA level, its treatment inhibited the IL-13-induced up-regulation of RhoA. These findings suggest that RhoA expression is negatively regulated by miR-140-3p, and that the negative regulation is inhibited by IL-13 to cause an up-regulation of RhoA protein in BSMCs.
Collapse
Affiliation(s)
- Yoshihiko Chiba
- Laboratory of Molecular Biology and Physiology, School of Pharmacy, Hoshi University, Tokyo, Japan,CONTACT Yoshihiko Chiba Laboratory of Molecular Biology and Physiology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo142-8501, Japan
| | - Yusuke Ando
- Laboratory of Clinical Pathology, Faculty of Pharmacy, Josai University, Saitama, Japan
| | - Yasuna Kato
- Laboratory of Molecular Biology and Physiology, School of Pharmacy, Hoshi University, Tokyo, Japan
| | - Motohiko Hanazaki
- Laboratory of Molecular Biology and Physiology, School of Pharmacy, Hoshi University, Tokyo, Japan,Department of Anesthesiology and Intensive Care Medicine, School of Medicine, International University of Health and Welfare, Chiba, Japan
| | - Hiroyasu Sakai
- Laboratory of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, Tokyo, Japan
| |
Collapse
|
59
|
Lad N, Murphy A, Parenti C, Nelson C, Williams N, Sharpe G, McTernan P. Asthma and obesity: endotoxin another insult to add to injury? Clin Sci (Lond) 2021; 135:2729-2748. [PMID: 34918742 PMCID: PMC8689194 DOI: 10.1042/cs20210790] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022]
Abstract
Low-grade inflammation is often an underlying cause of several chronic diseases such as asthma, obesity, cardiovascular disease, and type 2 diabetes mellitus (T2DM). Defining the mediators of such chronic low-grade inflammation often appears dependent on which disease is being investigated. However, downstream systemic inflammatory cytokine responses in these diseases often overlap, noting there is no doubt more than one factor at play to heighten the inflammatory response. Furthermore, it is increasingly believed that diet and an altered gut microbiota may play an important role in the pathology of such diverse diseases. More specifically, the inflammatory mediator endotoxin, which is a complex lipopolysaccharide (LPS) derived from the outer membrane cell wall of Gram-negative bacteria and is abundant within the gut microbiota, and may play a direct role alongside inhaled allergens in eliciting an inflammatory response in asthma. Endotoxin has immunogenic effects and is sufficiently microscopic to traverse the gut mucosa and enter the systemic circulation to act as a mediator of chronic low-grade inflammation in disease. Whilst the role of endotoxin has been considered in conditions of obesity, cardiovascular disease and T2DM, endotoxin as an inflammatory trigger in asthma is less well understood. This review has sought to examine the current evidence for the role of endotoxin in asthma, and whether the gut microbiota could be a dietary target to improve disease management. This may expand our understanding of endotoxin as a mediator of further low-grade inflammatory diseases, and how endotoxin may represent yet another insult to add to injury.
Collapse
Affiliation(s)
- Nikita Lad
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, U.K
| | - Alice M. Murphy
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, U.K
| | - Cristina Parenti
- SHAPE Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, U.K
| | - Carl P. Nelson
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, U.K
| | - Neil C. Williams
- SHAPE Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, U.K
| | - Graham R. Sharpe
- SHAPE Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, U.K
| | - Philip G. McTernan
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, U.K
| |
Collapse
|
60
|
Lewis BW, Jackson D, Amici SA, Walum J, Guessas M, Guessas S, Coneglio E, Boda AV, Guerau-de-Arellano M, Grayson MH, Britt RD. Corticosteroid insensitivity persists in the absence of STAT1 signaling in severe allergic airway inflammation. Am J Physiol Lung Cell Mol Physiol 2021; 321:L1194-L1205. [PMID: 34755542 PMCID: PMC8715027 DOI: 10.1152/ajplung.00244.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Corticosteroid insensitivity in asthma limits the ability to effectively manage severe asthma, which is characterized by persistent airway inflammation, airway hyperresponsiveness (AHR), and airflow obstruction despite corticosteroid treatment. Recent reports indicate that corticosteroid insensitivity is associated with increased interferon-γ (IFN-γ) levels and T-helper (Th) 1 lymphocyte infiltration in severe asthma. Signal transducer and activator of transcription 1 (STAT1) activation by IFN-γ is a key signaling pathway in Th1 inflammation; however, its role in the context of severe allergic airway inflammation and corticosteroid sensitivity remains unclear. In this study, we challenged wild-type (WT) and Stat1-/- mice with mixed allergens (MA) augmented with c-di-GMP [bis-(3'-5')-cyclic dimeric guanosine monophosphate], an inducer of Th1 cell infiltration with increased eosinophils, neutrophils, Th1, Th2, and Th17 cells. Compared with WT mice, Stat1-/- had reduced neutrophils, Th1, and Th17 cell infiltration. To evaluate corticosteroid sensitivity, mice were treated with either vehicle, 1 or 3 mg/kg fluticasone propionate (FP). Corticosteroids significantly reduced eosinophil infiltration and cytokine levels in both c-di-GMP + MA-challenged WT and Stat1-/- mice. However, histological and functional analyses show that corticosteroids did not reduce airway inflammation, epithelial mucous cell abundance, airway smooth muscle mass, and AHR in c-di-GMP + MA-challenged WT or Stat1-/- mice. Collectively, our data suggest that increased Th1 inflammation is associated with a decrease in corticosteroid sensitivity. However, increased airway pathology and AHR persist in the absence of STAT1 indicate corticosteroid insensitivity in structural airway cells is a STAT1 independent process.
Collapse
Affiliation(s)
- Brandon W. Lewis
- 1Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Devine Jackson
- 1Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Stephanie A. Amici
- 5Division of Medical Laboratory Science, Wexner Medical Center, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, Ohio
| | - Joshua Walum
- 1Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Manel Guessas
- 1Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Sonia Guessas
- 1Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Elise Coneglio
- 1Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Akhila V. Boda
- 1Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Mireia Guerau-de-Arellano
- 5Division of Medical Laboratory Science, Wexner Medical Center, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, Ohio,6Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio,7Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio,8Department of Neuroscience, The Ohio State University, Columbus, Ohio
| | - Mitchell H. Grayson
- 2Center for Clinical and Translational Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio,3Division of Allergy and Immunology, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio,4Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Rodney D. Britt
- 1Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio,4Department of Pediatrics, The Ohio State University, Columbus, Ohio
| |
Collapse
|
61
|
Jeong J, Lee HK. The Role of CD4 + T Cells and Microbiota in the Pathogenesis of Asthma. Int J Mol Sci 2021; 22:11822. [PMID: 34769255 PMCID: PMC8584410 DOI: 10.3390/ijms222111822] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 12/22/2022] Open
Abstract
Asthma, a chronic respiratory disease involving variable airflow limitations, exhibits two phenotypes: eosinophilic and neutrophilic. The asthma phenotype must be considered because the prognosis and drug responsiveness of eosinophilic and neutrophilic asthma differ. CD4+ T cells are the main determinant of asthma phenotype. Th2, Th9 and Tfh cells mediate the development of eosinophilic asthma, whereas Th1 and Th17 cells mediate the development of neutrophilic asthma. Elucidating the biological roles of CD4+ T cells is thus essential for developing effective asthma treatments and predicting a patient's prognosis. Commensal bacteria also play a key role in the pathogenesis of asthma. Beneficial bacteria within the host act to suppress asthma, whereas harmful bacteria exacerbate asthma. Recent literature indicates that imbalances between beneficial and harmful bacteria affect the differentiation of CD4+ T cells, leading to the development of asthma. Correcting bacterial imbalances using probiotics reportedly improves asthma symptoms. In this review, we investigate the effects of crosstalk between the microbiota and CD4+ T cells on the development of asthma.
Collapse
Affiliation(s)
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea;
| |
Collapse
|
62
|
Zhang YL, Zhang RG, Chen FY, Qiu ZE, Chen L, Huang ZX, Huang J, Zhu YX, Zhao L, Zhou WL. Cellular Mechanism Underlying the Facilitation of Contractile Response Induced by Tumor Necrosis Factor-α in Mouse Tracheal Smooth Muscle. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 192:104-111. [PMID: 34756873 DOI: 10.1016/j.ajpath.2021.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 01/10/2023]
Abstract
The proinflammatory cytokine tumor necrosis factor-α (TNF-α) augments intracellular Ca2+ signaling and contractile responses of airway smooth muscles, leading to airway hyperresponsiveness. However, the underlying mechanism has not been fully elucidated. This study aimed to investigate the cellular mechanism of the potentiated contraction of mouse tracheal smooth muscle induced by TNF-α. The results showed that TNF-α triggered facilitation of mouse tracheal smooth muscle contraction in an epithelium-independent manner. The TNF-α-induced hypercontractility could be suppressed by the protein kinase C inhibitor GF109203X, the tyrosine kinase inhibitor genistein, the Src inhibitor PP2, or the L-type voltage-dependent Ca2+ channel blocker nifedipine. After TNF-α incubation, the α1C L-type Ca2+ channel (CaV1.2) was up-regulated in primary cultured mouse tracheal smooth muscle cells. Pronounced phosphotyrosine levels also were observed in mouse tracheas. In conclusion, this study showed that TNF-α enhanced airway smooth muscle contraction via protein kinase C-Src-CaV1.2 pathways, which provides novel insights into the pathologic role of proinflammatory cytokines in mediating airway hyperresponsiveness.
Collapse
Affiliation(s)
- Yi-Lin Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Rui-Gang Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China; Department of Physiology, Basic Medical School, Guangdong Medical University, Zhanjiang, China
| | - Feng-Ying Chen
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China; Department of Pathology, The Maternal and Child Health Care Hospital of HuaDu District (Huzhong Hospital), Guangzhou, China
| | - Zhuo-Er Qiu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lei Chen
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ze-Xin Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiehong Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yun-Xin Zhu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lei Zhao
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.
| | - Wen-Liang Zhou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
63
|
Shin JW, Kim J, Ham S, Choi SM, Lee CH, Lee JC, Kim JH, Cho SH, Kang HR, Kim YM, Chung DH, Chung Y, Bae YS, Bae YS, Roh TY, Kim T, Kim HY. A unique population of neutrophils generated by air pollutant-induced lung damage exacerbates airway inflammation. J Allergy Clin Immunol 2021; 149:1253-1269.e8. [PMID: 34653517 DOI: 10.1016/j.jaci.2021.09.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/26/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Diesel exhaust particles (DEPs) are the main component of traffic-related air pollution and have been implicated in the pathogenesis and exacerbation of asthma. However, the mechanism by which DEP exposure aggravates asthma symptoms remains unclear. OBJECTIVE This study aimed to identify a key cellular player of air pollutant-induced asthma exacerbation and development. METHODS We examined the distribution of innate immune cells in the murine models of asthma induced by house dust mite and DEP. Changes in immune cell profiles caused by DEP exposure were confirmed by flow cytometry and RNA-Seq analysis. The roles of sialic acid-binding, Ig-like lectin F (SiglecF)-positive neutrophils were further evaluated by adoptive transfer experiment and in vitro functional studies. RESULTS DEP exposure induced a unique population of lung granulocytes that coexpressed Ly6G and SiglecF. These cells differed phenotypically, morphologically, functionally, and transcriptionally from other SiglecF-expressing cells in the lungs. Our findings with murine models suggest that intratracheal challenge with DEPs induces the local release of adenosine triphosphate, which is a damage-associated molecular pattern signal. Adenosine triphosphate promotes the expression of SiglecF on neutrophils, and these SiglecF+ neutrophils worsen type 2 and 3 airway inflammation by producing high levels of cysteinyl leukotrienes and neutrophil extracellular traps. We also found Siglec8- (which corresponds to murine SiglecF) expressing neutrophils, and we found it in patients with asthma-chronic obstructive pulmonary disease overlap. CONCLUSION The SiglecF+ neutrophil is a novel and critical player in airway inflammation and targeting this population could reverse or ameliorate asthma.
Collapse
Affiliation(s)
- Jae Woo Shin
- Laboratory of Mucosal Immunology in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jihyun Kim
- Laboratory of Mucosal Immunology in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seokjin Ham
- Department of Life Sciences and Division of Integrative Biosciences & Biotechnology, Pohang University of Science & Technology (POSTECH), Pohang, Republic of Korea
| | - Sun Mi Choi
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Chang-Hoon Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jung Chan Lee
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ji Hyung Kim
- College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Sang-Heon Cho
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hye Ryun Kang
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - You-Me Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Doo Hyun Chung
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yeonseok Chung
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Yoe-Sik Bae
- Department of Biological Sciences, SRC Center for Immune Research on Non-lymphoid Organs, Sungkyunkwan University, Suwon, Republic of Korea; Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yong-Soo Bae
- Department of Biological Sciences, SRC Center for Immune Research on Non-lymphoid Organs, Sungkyunkwan University, Suwon, Republic of Korea; Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Tae-Young Roh
- Department of Life Sciences and Division of Integrative Biosciences & Biotechnology, Pohang University of Science & Technology (POSTECH), Pohang, Republic of Korea; SysGenLab Inc, Pohang, Republic of Korea
| | - Taesoo Kim
- Department of Life Science, Ewha Womans University, Seoul, Republic of Korea
| | - Hye Young Kim
- Laboratory of Mucosal Immunology in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
64
|
Zhao J, Zhang J, Tang S, Wang J, Liu T, Zeng R, Zhu W, Zhang K, Wu J. The different functions of short and long thymic stromal lymphopoietin isoforms in autophagy-mediated asthmatic airway inflammation and remodeling. Immunobiology 2021; 226:152124. [PMID: 34333403 DOI: 10.1016/j.imbio.2021.152124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 11/16/2022]
Abstract
Asthma is a chronic respiratory disease characterized by airway inflammation and remodeling as well as hyper-responsiveness. Thymic stromal lymphopoietin (TSLP), which is a crucial inflammatory cytokine in immune homeostasis, consists of two isoforms, the long isoform lfTSLP and short isoform sfTSLP. The lfTSLP promotes inflammation and plays a pivotal role in asthma pathogenesis, while sfTSLP had been reported to have anti-asthma effects. Experiments have shown that lfTSLP could induce autophagy in hepatocytes. It is unknown whether lfTSLP or sfTSLP could influence autophagy and affect the progression of asthma. Using house dust mite (HDM)-stimulated airway smooth muscle cells as an in vitro model and HDM-induced asthma mice as in vivo model, we found that lfTSLP could induce autophagy and remodeling, while sfTSLP has the reverse effect. Strikingly, sfTSLP treatment in vivo reversed HDM-mediated activation of inflammation and airway remodeling, partly determined by autophagy change. These findings may help us understand the function of TSLP isoforms in the pathogenesis of asthma, and they support the use of drugs targeting sfTSLP and TSLP for asthma treatment.
Collapse
Affiliation(s)
- Jiping Zhao
- Department of Respiratory and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jintao Zhang
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250014, China
| | - Shuangmei Tang
- Department of Otolaryngology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Junfei Wang
- Department of Respiratory and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Tian Liu
- Department of Respiratory and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Rong Zeng
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250014, China
| | - Weichun Zhu
- Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Kangda Zhang
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jinxiang Wu
- Department of Respiratory and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| |
Collapse
|
65
|
Addis DR, Aggarwal S, Lazrak A, Jilling T, Matalon S. Halogen-Induced Chemical Injury to the Mammalian Cardiopulmonary Systems. Physiology (Bethesda) 2021; 36:272-291. [PMID: 34431415 DOI: 10.1152/physiol.00004.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The halogens chlorine (Cl2) and bromine (Br2) are highly reactive oxidizing elements with widespread industrial applications and a history of development and use as chemical weapons. When inhaled, depending on the dose and duration of exposure, they cause acute and chronic injury to both the lungs and systemic organs that may result in the development of chronic changes (such as fibrosis) and death from cardiopulmonary failure. A number of conditions, such as viral infections, coexposure to other toxic gases, and pregnancy increase susceptibility to halogens significantly. Herein we review their danger to public health, their mechanisms of action, and the development of pharmacological agents that when administered post-exposure decrease morbidity and mortality.
Collapse
Affiliation(s)
- Dylan R Addis
- Department of Anesthesiology and Perioperative Medicine, Division of Cardiothoracic Anesthesiology, University of Alabama at Birmingham, Birmingham, Alabama.,Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Saurabh Aggarwal
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, Alabama.,Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ahmed Lazrak
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, Alabama.,Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Tamas Jilling
- Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Pediatrics, Division of Neonatology, Children's Hospital, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, Alabama.,Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
66
|
Jung HJ, Ko YK, Shim WS, Kim HJ, Kim DY, Rhee CS, Park MK, Han DH. Diesel exhaust particles increase nasal symptoms and IL-17A in house dust mite-induced allergic mice. Sci Rep 2021; 11:16300. [PMID: 34381060 PMCID: PMC8357916 DOI: 10.1038/s41598-021-94673-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/16/2021] [Indexed: 12/15/2022] Open
Abstract
Diesel exhaust particles (DEPs), traffic-related air pollutants, are considered environmental factors adversely affecting allergic diseases. However, the immunological basis for the adjuvant effects of DEP in allergic rhinitis (AR) remains unclear. Therefore, this study aimed to investigate the effect of DEP exposure on AR using a mouse model. BALB/c mice sensitized to house dust mite (HDM) were intranasally challenged with HDM in the presence and absence of DEP. Allergic symptom scores, serum total and HDM-specific immunoglobulins (Igs), eosinophil infiltration in the nasal mucosa, cytological profiles in bronchoalveolar lavage fluid (BALF), and cytokine levels in the nasal mucosa and spleen cell culture were analyzed. Mice co-exposed to HDM and DEP showed increased allergic symptom scores compared with mice exposed to HDM alone. Reduced total IgE and HDM-specific IgE and IgG1 levels, decreased eosinophil infiltration in the nasal mucosa, and increased proportion of neutrophils in BALF were found in mice co-exposed to HDM and DEP. Interleukin (IL)-17A level was found to be increased in the nasal mucosa of the co-exposure group compared with that in the HDM-exposed group. The levels of IL-4, IL-13, interferon-γ, IL-25, IL-33, and TSLP expression showed no difference between the groups with and without DEP treatment. Increased expression of IL-17A in the nasal mucosa may contribute to DEP-mediated exacerbation of AR in HDM-sensitized murine AR model.
Collapse
Affiliation(s)
- Hahn Jin Jung
- Department of Otorhinolaryngology-Head and Neck Surgery, Chungbuk National University College of Medicine, Chungbuk National University Hospital, Cheongju, Korea
| | - Young-Kyung Ko
- Graduate School of Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Woo Sub Shim
- Department of Otorhinolaryngology-Head and Neck Surgery, Chungbuk National University College of Medicine, Chungbuk National University Hospital, Cheongju, Korea
| | - Hyun Jik Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Dong-Young Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Chae-Seo Rhee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.,Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Korea
| | - Moo Kyun Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Doo Hee Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
| |
Collapse
|
67
|
Diversity of T Helper and Regulatory T Cells and Their Contribution to the Pathogenesis of Allergic Diseases. Handb Exp Pharmacol 2021; 268:265-296. [PMID: 34247282 DOI: 10.1007/164_2021_486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
T helper (Th) and regulatory T (Treg) cells represent important effectors of adaptive immunity. They mediate communication between the immune system and tissue sites and thereby coordinate effective defense against environmental threats or maintain tolerance, respectively. Since the discovery of two prototypic T helper cells, Th1 and Th2, additional phenotypic and functional distinct subsets have been described ranging from Th17, Th22, Th9, and T follicular helper cells. The same holds true for regulatory T cells that represent a family with functionally distinct subsets characterized by co-expression of the transcription factors T-bet, Gata3, or RORγt. Here, we summarize the current knowledge on differentiation and function of T helper and regulatory T cell subsets and discuss their lineage stability versus plasticity towards other subsets. In addition, we highlight the direct and indirect contribution of each subset to the pathology of allergies and indicate novel therapies for specific targeting the effector functions of T helper and regulatory T cells.
Collapse
|
68
|
Hou X, Zhu F, Ni Y, Chen T, Du J, Liu X, Han Y, Liu Y, Du W, Li Y, Wang X, Li D, Liang R, Li B, Shi G. USP4 is pathogenic in allergic airway inflammation by inhibiting regulatory T cell response. Life Sci 2021; 281:119720. [PMID: 34144056 DOI: 10.1016/j.lfs.2021.119720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/05/2021] [Accepted: 06/05/2021] [Indexed: 11/17/2022]
Abstract
AIMS Asthma is characterized by chronic inflammation and airway hyperresponsiveness (AHR). It is controllable, but not curable. Ubiquitin-specific peptidase 4 (USP4) has been verified as a regulator of regulatory T (Treg) cells and Th17 cells in vitro. In this study, we aim to investigate whether USP4 could serve as a therapeutic target for asthma. MAIN METHODS Age-matched USP4 wild-type and knockout mice received an intraperitoneal injection of 100 μg ovalbumin (OVA) mixed in 2 mg aluminum hydroxide in 1 × PBS on days 0, 7 and 14. On days 21 to 27, the mice were challenged with aerosolized 1% OVA in 1 × PBS for 30 min. Tissue histology, ELISA and flow cytometry were applied 24 h after the last OVA challenge. KEY FINDINGS USP4 deficiency protected mice from OVA-induced AHR and decreased the production of several inflammatory cytokines in T cells in vivo. Compared to the lung cells isolated from WT mice, Usp4-/- lung cells decreased secretion of IL-4, IL-13 and IL-17A upon stimulation in vitro. Meanwhile, the percentage of CD4+Foxp3+ Treg cells was elevated, with more CCR6+Foxp3+ Treg cells accumulating in the lungs of OVA-challenged USP4 deficient mice than in their wild-type counterparts. Treatment with the USP4 inhibitor, Vialinin A, reduced inflammatory cell infiltration in the lungs of OVA-challenged mice in vivo. SIGNIFICANCE We found USP4 deficiency contributes to attenuated airway inflammation and AHR in allergen-induced murine asthma, and Vialinin A treatment alleviates asthma pathogenesis and may serve as a promising therapeutic target for asthma.
Collapse
Affiliation(s)
- Xiaoxia Hou
- Department of Pulmonary and Critical Care Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Respiratory Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangming Zhu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Institute Shanghai Key Laboratory of Bio-Energy Crops, School of Life Science, Shanghai University, Shanghai, China
| | - Yingmeng Ni
- Department of Pulmonary and Critical Care Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Respiratory Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tiantian Chen
- Department of Pulmonary and Critical Care Medicine, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juan Du
- Department of Pulmonary and Critical Care Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Respiratory Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinnan Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yichao Han
- Department of Thoracic Surgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yahui Liu
- Department of Pulmonary and Critical Care Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Respiratory Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Du
- Department of Pulmonary and Critical Care Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Respiratory Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yangyang Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoxia Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dan Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Rui Liang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Guochao Shi
- Department of Pulmonary and Critical Care Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Respiratory Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
69
|
Liu S, Ngo U, Tang XZ, Ren X, Qiu W, Huang X, DeGrado W, Allen CD, Jo H, Sheppard D, Sundaram AB. Integrin α2β1 regulates collagen I tethering to modulate hyperresponsiveness in reactive airway disease models. J Clin Invest 2021; 131:138140. [PMID: 33956668 DOI: 10.1172/jci138140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/05/2021] [Indexed: 12/26/2022] Open
Abstract
Severe asthma remains challenging to manage and has limited treatment options. We have previously shown that targeting smooth muscle integrin α5β1 interaction with fibronectin can mitigate the effects of airway hyperresponsiveness by impairing force transmission. In this study, we show that another member of the integrin superfamily, integrin α2β1, is present in airway smooth muscle and capable of regulating force transmission via cellular tethering to the matrix protein collagen I and, to a lesser degree, laminin-111. The addition of an inhibitor of integrin α2β1 impaired IL-13-enhanced contraction in mouse tracheal rings and human bronchial rings and abrogated the exaggerated bronchoconstriction induced by allergen sensitization and challenge. We confirmed that this effect was not due to alterations in classic intracellular myosin light chain phosphorylation regulating muscle shortening. Although IL-13 did not affect surface expression of α2β1, it did increase α2β1-mediated adhesion and the level of expression of an activation-specific epitope on the β1 subunit. We developed a method to simultaneously quantify airway narrowing and muscle shortening using 2-photon microscopy and demonstrated that inhibition of α2β1 mitigated IL-13-enhanced airway narrowing without altering muscle shortening by impairing the tethering of muscle to the surrounding matrix. Our data identified cell matrix tethering as an attractive therapeutic target to mitigate the severity of airway contraction in asthma.
Collapse
Affiliation(s)
- Sean Liu
- Lung Biology Center, Division of Pulmonary, Critical Care, Allergy and Sleep, Department of Medicine
| | - Uyen Ngo
- Lung Biology Center, Division of Pulmonary, Critical Care, Allergy and Sleep, Department of Medicine
| | - Xin-Zi Tang
- Cardiovascular Research Institute.,Sandler Asthma Basic Research Center.,Biomedical Sciences Graduate Program
| | - Xin Ren
- Lung Biology Center, Division of Pulmonary, Critical Care, Allergy and Sleep, Department of Medicine
| | - Wenli Qiu
- Lung Biology Center, Division of Pulmonary, Critical Care, Allergy and Sleep, Department of Medicine
| | - Xiaozhu Huang
- Lung Biology Center, Division of Pulmonary, Critical Care, Allergy and Sleep, Department of Medicine
| | - William DeGrado
- Cardiovascular Research Institute.,Department of Pharmaceutical Chemistry, and
| | - Christopher Dc Allen
- Cardiovascular Research Institute.,Sandler Asthma Basic Research Center.,Department of Anatomy, UCSF, San Francisco, California, USA
| | - Hyunil Jo
- Cardiovascular Research Institute.,Department of Pharmaceutical Chemistry, and
| | - Dean Sheppard
- Lung Biology Center, Division of Pulmonary, Critical Care, Allergy and Sleep, Department of Medicine.,Cardiovascular Research Institute
| | - Aparna B Sundaram
- Lung Biology Center, Division of Pulmonary, Critical Care, Allergy and Sleep, Department of Medicine
| |
Collapse
|
70
|
Lamb D, De Sousa D, Quast K, Fundel-Clemens K, Erjefält JS, Sandén C, Hoffmann HJ, Kästle M, Schmid R, Menden K, Delic D. RORγt inhibitors block both IL-17 and IL-22 conferring a potential advantage over anti-IL-17 alone to treat severe asthma. Respir Res 2021; 22:158. [PMID: 34022896 PMCID: PMC8141258 DOI: 10.1186/s12931-021-01743-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND RORγt is a transcription factor that enables elaboration of Th17-associated cytokines (including IL-17 and IL-22) and is proposed as a pharmacological target for severe asthma. METHODS IL-17 immunohistochemistry was performed in severe asthma bronchial biopsies (specificity confirmed with in situ hybridization). Primary human small airway epithelial cells in air liquid interface and primary bronchial smooth muscle cells were stimulated with recombinant human IL-17 and/or IL-22 and pro-inflammatory cytokines measured. Balb/c mice were challenged intratracheally with IL-17 and/or IL-22 and airway hyperreactivity, pro-inflammatory cytokines and airway neutrophilia measured. Balb/c mice were sensitized intraperitoneally and challenged intratracheally with house dust mite extract and the effect of either a RORγt inhibitor (BIX119) or an anti-IL-11 antibody assessed on airway hyperreactivity, pro-inflammatory cytokines and airway neutrophilia measured. RESULTS We confirmed in severe asthma bronchial biopsies both the presence of IL-17-positive lymphocytes and that an IL-17 transcriptome profile in a severe asthma patient sub-population. Both IL-17 and IL-22 stimulated the release of pro-inflammatory cytokine and chemokine release from primary human lung cells and in mice. Furthermore, IL-22 in combination with IL-17, but neither alone, elicits airway hyperresponsiveness (AHR) in naïve mice. A RORγt inhibitor specifically blocked both IL-17 and IL-22, AHR and neutrophilia in a mouse house dust mite model unlike other registered or advanced pipeline modes of action. Full efficacy versus these parameters was associated with 90% inhibition of IL-17 and 50% inhibition of IL-22. In contrast, anti-IL-17 also blocked IL-17, but not IL-22, AHR or neutrophilia. Moreover, the deregulated genes in the lungs from these mice correlated well with deregulated genes from severe asthma biopsies suggesting that this model recapitulates significant severe asthma-relevant biology. Furthermore, these genes were reversed upon RORγt inhibition in the HDM model. Cell deconvolution suggested that the responsible cells were corticosteroid insensitive γδ-T-cells. CONCLUSION These data strongly suggest that both IL-17 and IL-22 are required for Th2-low endotype associated biology and that a RORγt inhibitor may provide improved clinical benefit in a severe asthma sub-population of patients by blocking both IL-17 and IL-22 biology compared with blocking IL-17 alone.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Animals
- Anti-Asthmatic Agents/pharmacology
- Asthma/drug therapy
- Asthma/immunology
- Asthma/metabolism
- Asthma/physiopathology
- Cells, Cultured
- Disease Models, Animal
- Epithelial Cells/drug effects
- Epithelial Cells/immunology
- Epithelial Cells/metabolism
- Female
- Humans
- Interleukin-17/metabolism
- Interleukins/antagonists & inhibitors
- Interleukins/metabolism
- Lung/drug effects
- Lung/immunology
- Lung/metabolism
- Lung/physiopathology
- Male
- Mice, Inbred BALB C
- Middle Aged
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/immunology
- Myocytes, Smooth Muscle/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 3/antagonists & inhibitors
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Pyroglyphidae/immunology
- Signal Transduction
- Th17 Cells/drug effects
- Th17 Cells/immunology
- Th17 Cells/metabolism
- Young Adult
- Interleukin-22
- Mice
Collapse
Affiliation(s)
- David Lamb
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397, Biberach-an-der-Riss, Germany.
| | | | - Karsten Quast
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397, Biberach-an-der-Riss, Germany
| | - Katrin Fundel-Clemens
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397, Biberach-an-der-Riss, Germany
| | | | | | | | - Marc Kästle
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397, Biberach-an-der-Riss, Germany
| | - Ramona Schmid
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397, Biberach-an-der-Riss, Germany
| | - Kevin Menden
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397, Biberach-an-der-Riss, Germany
| | - Denis Delic
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397, Biberach-an-der-Riss, Germany
| |
Collapse
|
71
|
Shi T, Li N, He Y, Feng J, Mei Z, Du Y, Jie Z. Th17/Treg cell imbalance plays an important role in respiratory syncytial virus infection compromising asthma tolerance in mice. Microb Pathog 2021; 156:104867. [PMID: 33957244 DOI: 10.1016/j.micpath.2021.104867] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 12/14/2022]
Abstract
Mucosal tolerance is induced early in life and is an important mechanism of protection from diseases, such as asthma. Respiratory syncytial virus (RSV) is a main cause of bronchiolitis and pneumonia in infants. Clinical studies have found that there is a strong association between RSV infection in infancy and later development of asthma, but the underlying mechanisms are unclear. A mouse model of immune tolerance induced by oral feeding of ovalbumin(OVA) was successfully established in our previous studies. We found that RSV infection could break the oral immune tolerance state.RSV infection increased the mRNA expression of IL-17A and IL-17A/Foxp3(the transcription factor forkhead box P3) in OT mice, but the mRNA expression of IL-4 and other T helper(Th)2 cytokines did not change significantly. As detected by flow cytometry analysis, RSV infection elevated Th17 cell levels and correspondingly decreased Regulatory T(Treg) cell levels in the hilar lymph nodes (HLNs) and mesenteric lymph nodes (MLNs), but there were no significant differences in the spleen or peripheral blood.We hypothesized that an imbalance in Th cells played an important role in RSV infection compromising asthma tolerance.RSV infection disrupted asthma tolerance by increasing the Th17/Treg ratio rather than the Th1/Th2 ratio'.Therefore, altering the Th17/Treg ratio has been identified as a potential therapeutic target in asthma caused by RSV or another virus.
Collapse
Affiliation(s)
- Tianyun Shi
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China; Center of Community-Based Health Research, Fudan University, China
| | - Na Li
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China; Center of Community-Based Health Research, Fudan University, China
| | - Yanchao He
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China; Center of Community-Based Health Research, Fudan University, China
| | - Jingjing Feng
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China; Center of Community-Based Health Research, Fudan University, China
| | - Zhoufang Mei
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China; Center of Community-Based Health Research, Fudan University, China
| | - Yong Du
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China; Center of Community-Based Health Research, Fudan University, China
| | - Zhijun Jie
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China; Center of Community-Based Health Research, Fudan University, China.
| |
Collapse
|
72
|
Deng Y, Chen S, Song S, Huang Y, Chen R, Tao A. Anti-DLL4 ameliorates toluene diisocyanate-induced experimental asthma by inhibiting Th17 response. Int Immunopharmacol 2021; 94:107444. [PMID: 33578263 DOI: 10.1016/j.intimp.2021.107444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 11/22/2022]
Abstract
Toluene diisocyanate (TDI) exhibits an ability to induce steroid insensitive asthma with the involvement of Th17 cells. And emerging evidence has indicated that DLL4 signaling promotes Th17 differentiation through directly upregulating Rorc and IL-17 transcription. Thus, we sought to evaluate the effects of DLL4 blocking antibody on TDI-induced asthma model. Female BALB/c mice were sensitized and challenged with TDI to generate an asthma model. TDI-exposed mice were intraperitoneally injected with anti-DLL4 antibody and then analyzed for various parameters of the airway inflammatory responses. Increased expression of DLL4 in spleen and lung was detected in TDI-exposed mice. Furthermore, anti-DLL4 treatment alleviated TDI-induced airway hyperreactivity (AHR), airway inflammation, airway epithelial injury and airway smooth muscle (ASM) thickening. In the meantime, neutralizing DLL4 also blunted Th17 response via downregulation of ROR-γt expression, while had no effect on Th2 cells and regulatory T (Treg) cells. Overall, anti-DLL4 ameliorated TDI-induced experimental asthma by inhibiting Th17 response, implying the feasibility of targeting DLL4 for therapy of Th17-predominant severe asthma.
Collapse
Affiliation(s)
- Yao Deng
- The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 510260, China
| | - Shuyu Chen
- The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 510260, China; Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China; The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Shijie Song
- The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 510260, China
| | - Yin Huang
- The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 510260, China
| | - Rongchang Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
| | - Ailin Tao
- The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 510260, China.
| |
Collapse
|
73
|
Role of Airway Smooth Muscle in Inflammation Related to Asthma and COPD. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:139-172. [PMID: 33788192 DOI: 10.1007/978-3-030-63046-1_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Airway smooth muscle contributes to both contractility and inflammation in the pathophysiology of asthma and COPD. Airway smooth muscle cells can change the degree of a variety of functions, including contraction, proliferation, migration, and the secretion of inflammatory mediators (phenotype plasticity). Airflow limitation, airway hyperresponsiveness, β2-adrenergic desensitization, and airway remodeling, which are fundamental characteristic features of these diseases, are caused by phenotype changes in airway smooth muscle cells. Alterations between contractile and hyper-contractile, synthetic/proliferative phenotypes result from Ca2+ dynamics and Ca2+ sensitization. Modulation of Ca2+ dynamics through the large-conductance Ca2+-activated K+ channel/L-type voltage-dependent Ca2+ channel linkage and of Ca2+ sensitization through the RhoA/Rho-kinase pathway contributes not only to alterations in the contractile phenotype involved in airflow limitation, airway hyperresponsiveness, and β2-adrenergic desensitization but also to alteration of the synthetic/proliferative phenotype involved in airway remodeling. These Ca2+ signal pathways are also associated with synergistic effects due to allosteric modulation between β2-adrenergic agonists and muscarinic antagonists. Therefore, airway smooth muscle may be a target tissue in the therapy for these diseases. Moreover, the phenotype changing in airway smooth muscle cells with focuses on Ca2+ signaling may provide novel strategies for research and development of effective remedies against both bronchoconstriction and inflammation.
Collapse
|
74
|
Pandey R, Parkash V, Kant S, Verma AK, Sankhwar SN, Agrawal A, Parmar D, Verma S, Ahmad MK. An update on the diagnostic biomarkers for asthma. J Family Med Prim Care 2021; 10:1139-1148. [PMID: 34041141 PMCID: PMC8140254 DOI: 10.4103/jfmpc.jfmpc_2037_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/02/2020] [Accepted: 01/01/2021] [Indexed: 01/13/2023] Open
Abstract
Asthma is a respiratory disorder accounts for ~339 million cases per annum. The initial diagnosis of asthma relies on the symptomatic identification of characters, such as wheeze, shortness of breath, chest tightness, and cough. The presence of two or more of these symptoms may be considered as indicative of asthma. The asthma-diagnostic also involves spirometry test before and after inhaling a bronchodilator like albuterol. Because asthma pathophysiology involves participation of immune system, the cytokines play an important role. The review discusses various molecules that are or may be used as biomarkers for the asthma diagnosis.
Collapse
Affiliation(s)
- Rashmi Pandey
- Department of Pulmonary and Critical Care Medicine, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Ved Parkash
- Department of Pulmonary and Critical Care Medicine, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Surya Kant
- Department of Respiratory Medicine, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Ajay K. Verma
- Department of Respiratory Medicine, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - S. N. Sankhwar
- Department of Urology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Avinash Agrawal
- Department of Critical Care Medicine, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Devendra Parmar
- Department of Development Toxicology, CSIR IITR, Lucknow, Uttar Pradesh, India
| | - Sheetal Verma
- Department of Microbiology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Md. Kaleem Ahmad
- Department of Biochemistry, King George's Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
75
|
Song MK, Kim DI, Lee K. Causal relationship between humidifier disinfectant exposure and Th17-mediated airway inflammation and hyperresponsiveness. Toxicology 2021; 454:152739. [PMID: 33640443 DOI: 10.1016/j.tox.2021.152739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/03/2021] [Accepted: 02/23/2021] [Indexed: 12/15/2022]
Abstract
In this study, we investigated whether humidifier disinfectants (HDs) induce asthmatic airway inflammation in an animal model and compared the features of HD-induced inflammatory symptoms with ovalbumin (OVA)-induced allergic asthma. Mice were intratracheally instilled three times with either the control or 0.1, 0.3, or 0.5 mg/kg of polyhexamethylene guanidine phosphate (PHMG-P). To characterize asthmatic features, the following parameters were analyzed: (i) differential cell counts and cytokine expression in the bronchoalveolar lavage fluid (BALF); (ii) presence of mucus-producing goblet cells and pulmonary eosinophilic infiltration in the lungs; (iii) serum immunoglobulin levels; and (iv) airway hyperresponsiveness (AHR). RNA-Seq and bioinformatics tools were used to investigate whether PHMG-P altered asthma-related gene expression in lung tissues. The PHMG-P exposure groups showed higher peribronchial/perivascular inflammation, elevated goblet cell hyperplasia, and inhaled methacholine-induced airway resistance. Additionally, IL-13 and IL-17 in BALF were significantly increased in the PHMG-P exposure groups. However, there were no significant differences in total serum IgE and BALF IL-4 and IL-5 levels in the PHMG-P exposure groups compared to the control group. PHMG-P exposure modulated the expression of genes related to Th17 signaling pathways including the IL-17A, IL-23, and STAT3 signaling pathways, but not the Th2 signaling pathway. Altogether, our results suggest that repeated exposure to low does PHMG-P induces asthma-like symptoms and is thus a possible risk factor for developing asthma. The PHMG-P-induced asthmatic airway inflammation showed a different pattern from that found in typical allergic asthma and may be related to irritant-induced airway inflammation and hyperresponsiveness characterized by Th2-low, Th17-related, IgE-independent, and mixed granulocytic features.
Collapse
Affiliation(s)
- Mi-Kyung Song
- National Center for Efficacy Evaluation for Respiratory Disease Products, Korea Institute of Toxicology, 30 Baehak1-gil, Jeongeup, Jeollabuk-do, 56212, Republic of Korea; Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Dong Im Kim
- National Center for Efficacy Evaluation for Respiratory Disease Products, Korea Institute of Toxicology, 30 Baehak1-gil, Jeongeup, Jeollabuk-do, 56212, Republic of Korea
| | - Kyuhong Lee
- National Center for Efficacy Evaluation for Respiratory Disease Products, Korea Institute of Toxicology, 30 Baehak1-gil, Jeongeup, Jeollabuk-do, 56212, Republic of Korea; Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
76
|
Sponchiado M, Liao YS, Atanasova KR, Collins EN, Schurmann V, Bravo L, Reznikov LR. Overexpression of Substance P in pig airways increases MUC5AC through an NF-kβ pathway. Physiol Rep 2021; 9:e14749. [PMID: 33580593 PMCID: PMC7881348 DOI: 10.14814/phy2.14749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 01/04/2023] Open
Abstract
Substance P (SP) is a tachykinin that regulates airway mucous secretion in both health and disease. Our study aimed to determine whether overexpression of SP without pre‐existing inflammation was sufficient to induce changes in mucin secretion and transport in small airways. Utilizing porcine precision‐cut lung slices, we measured the impact of AAV‐mediated overexpression of SP on airway physiology ex vivo. Immunofluorescence signal intensity for MUC5AC was significantly increased in SP‐overexpressed precision‐cut lung slices compared to GFP controls. No difference in MUC5B signal intensity between treatments was detected. SP‐overexpressed precision‐cut lung slices also exhibited decreased IL10 mRNA, an important inhibitor of mucous cell metaplasia. Overt deficits in mucociliary transport were not noted, though a trend for decreased mean transport speed was detected in methacholine‐challenged airways overexpressing SP compared to GFP controls. Pharmacologic inhibition of the NF‐kβ pathway abrogated the effects of overexpression of SP on both MUC5AC and IL10. Collectively, these data suggest that overexpression of SP in the absence of existing inflammation increases MUC5AC via activation of the NF‐kβ pathway. Thus, these data further highlight SP as a key driver of abnormal mucous secretion and underscore NF‐kβ signaling as a pathway of potential therapeutic intervention.
Collapse
Affiliation(s)
- Mariana Sponchiado
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Yan-Shin Liao
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Kalina R Atanasova
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA.,Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL, USA
| | - Emily N Collins
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Veronica Schurmann
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Laura Bravo
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Leah R Reznikov
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|
77
|
Chiba Y, Ando Y, Fujii S, Miyakawa Y, Suto W, Kamei J, Sakai H, Hanazaki M. Downregulation of miR-140-3p Is a Cause of Upregulation of RhoA Protein in Bronchial Smooth Muscle of Murine Experimental Asthma. Am J Respir Cell Mol Biol 2021; 64:138-140. [PMID: 33385215 DOI: 10.1165/rcmb.2020-0292le] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
| | - Yusuke Ando
- Hoshi University School of Pharmacy Tokyo, Japan and
| | - Shigeki Fujii
- Hoshi University School of Pharmacy Tokyo, Japan and
| | - Yui Miyakawa
- Hoshi University School of Pharmacy Tokyo, Japan and
| | - Wataru Suto
- Hoshi University School of Pharmacy Tokyo, Japan and
| | - Junzo Kamei
- Hoshi University School of Pharmacy Tokyo, Japan and
| | | | - Motohiko Hanazaki
- Hoshi University School of Pharmacy Tokyo, Japan and.,International University of Health and Welfare Chiba, Japan
| |
Collapse
|
78
|
Tang YJ, Xie LL, Zheng XR, Liu CT, Wang X. The role of peripheral type 2 innate lymphoid cells in bronchiolitis. Sci Rep 2021; 11:2668. [PMID: 33514798 PMCID: PMC7846835 DOI: 10.1038/s41598-021-82096-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 01/12/2021] [Indexed: 11/09/2022] Open
Abstract
Our aim was to detect type 2 innate lymphoid cells (ILC2s)-related cytokines of infants with bronchiolitis by using Elisa, Liquidchip technology and RT-PCR and investigated its correlation with bronchiolitis. We recruited 26 infants with bronchiolitis and 20 healthy infants as control from Xiangya Hospital. Compared to the control group, the serum levels of interleukin-5 (IL-5) [41.99 (21.11) vs 25.70 (19.64)], IL-9 [27.04 (37.51) vs 8.30 (0.54)], IL-13 [184.05 (132.81) vs 121.75 (176.13)], IL-33 [83.70 (46.69) vs 11.23 (55.31)] and thymic stromal lymphopoietin (TSLP) [31.42 (5.41) vs 28.76 (2.56)] were significantly increased in infants with bronchiolitis (P < 0.05), while the level of IgE had no significant difference between the two groups [19.05 (14.15) vs 14.85 (20.2), P > 0.05]. The mRNA expression of IL-17RB (9.83 ± 0.35 vs 9.19 ± 0.58), TSLP (16.98 ± 2.12 vs 15.07 ± 2.25), retinoid acid receptor related orphan receptor α (7.18 ± 0.71 vs 5.46 ± 1.09) and trans-acting T-cell-specific transcription factor 3 (4.86 ± 0.66 vs 4.19 ± 0.90) were significantly increased in infants with bronchiolitis versus the control group (P < 0.05), while there was no statistical significance for suppression of tumorigenicity 2 (5.59 ± 0.68 vs 5.41 ± 0.87, P > 0.05). Our findings suggested that ILC2s possibly play a specific role in immunopathology of bronchiolitis.
Collapse
Affiliation(s)
- Yong-Jun Tang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Li-Li Xie
- Newborn Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, 430000, Hubei, People's Republic of China
| | - Xiang-Rong Zheng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Chen-Tao Liu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Xia Wang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
79
|
Hinks TSC, Levine SJ, Brusselle GG. Treatment options in type-2 low asthma. Eur Respir J 2021; 57:13993003.00528-2020. [PMID: 32586877 DOI: 10.1183/13993003.00528-2020] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/01/2020] [Indexed: 12/17/2022]
Abstract
Monoclonal antibodies targeting IgE or the type-2 cytokines interleukin (IL)-4, IL-5 and IL-13 are proving highly effective in reducing exacerbations and symptoms in people with severe allergic and eosinophilic asthma, respectively. However, these therapies are not appropriate for 30-50% of patients in severe asthma clinics who present with non-allergic, non-eosinophilic, "type-2 low" asthma. These patients constitute an important and common clinical asthma phenotype, driven by distinct, yet poorly understood pathobiological mechanisms. In this review we describe the heterogeneity and clinical characteristics of type-2 low asthma and summarise current knowledge on the underlying pathobiological mechanisms, which includes neutrophilic airway inflammation often associated with smoking, obesity and occupational exposures and may be driven by persistent bacterial infections and by activation of a recently described IL-6 pathway. We review the evidence base underlying existing treatment options for specific treatable traits that can be identified and addressed. We focus particularly on severe asthma as opposed to difficult-to-treat asthma, on emerging data on the identification of airway bacterial infection, on the increasing evidence base for the use of long-term low-dose macrolides, a critical appraisal of bronchial thermoplasty, and evidence for the use of biologics in type-2 low disease. Finally, we review ongoing research into other pathways including tumour necrosis factor, IL-17, resolvins, apolipoproteins, type I interferons, IL-6 and mast cells. We suggest that type-2 low disease frequently presents opportunities for identification and treatment of tractable clinical problems; it is currently a rapidly evolving field with potential for the development of novel targeted therapeutics.
Collapse
Affiliation(s)
- Timothy S C Hinks
- Respiratory Medicine Unit and National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Nuffield Dept of Medicine, Experimental Medicine, University of Oxford, Oxford, UK
| | - Stewart J Levine
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Guy G Brusselle
- Dept of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium.,Depts of Epidemiology and Respiratory Medicine, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
80
|
Royer DJ, Cook DN. Regulation of Immune Responses by Nonhematopoietic Cells in Asthma. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:292-301. [PMID: 33397743 PMCID: PMC8581969 DOI: 10.4049/jimmunol.2000885] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022]
Abstract
Nonhematopoietic cells are emerging as important contributors to many inflammatory diseases, including allergic asthma. Recent advances have led to a deeper understanding of how these cells interact with traditional immune cells, thereby modulating their activities in both homeostasis and disease. In addition to their well-established roles in gas exchange and barrier function, lung epithelial cells express an armament of innate sensors that can be triggered by various inhaled environmental agents, leading to the production of proinflammatory molecules. Advances in cell lineage tracing and single-cell RNA sequencing have expanded our knowledge of rare, but immunologically important nonhematopoietic cell populations. In parallel with these advances, novel reverse genetic approaches are revealing how individual genes in different lung-resident nonhematopoietic cell populations contribute to the initiation and maintenance of asthma. This knowledge is already revealing new pathways that can be selectively targeted to treat distinct forms of asthma.
Collapse
Affiliation(s)
- Derek J Royer
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - Donald N Cook
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| |
Collapse
|
81
|
Bantulà M, Roca-Ferrer J, Arismendi E, Picado C. Asthma and Obesity: Two Diseases on the Rise and Bridged by Inflammation. J Clin Med 2021; 10:jcm10020169. [PMID: 33418879 PMCID: PMC7825135 DOI: 10.3390/jcm10020169] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Asthma and obesity are two epidemics affecting the developed world. The relationship between obesity and both asthma and severe asthma appears to be weight-dependent, causal, partly genetic, and probably bidirectional. There are two distinct phenotypes: 1. Allergic asthma in children with obesity, which worsens a pre-existing asthma, and 2. An often non allergic, late-onset asthma developing as a consequence of obesity. In obesity, infiltration of adipose tissue by macrophages M1, together with an increased expression of multiple mediators that amplify and propagate inflammation, is considered as the culprit of obesity-related inflammation. Adipose tissue is an important source of adipokines, such as pro-inflammatory leptin, produced in excess in obesity, and adiponectin with anti-inflammatory effects with reduced synthesis. The inflammatory process also involves the synthesis of pro-inflammatory cytokines such as IL-1β, IL-6, TNFα, and TGFβ, which also contribute to asthma pathogenesis. In contrast, asthma pro-inflammatory cytokines such as IL-4, IL-5, IL-13, and IL-33 contribute to maintain the lean state. The resulting regulatory effects of the immunomodulatory pathways underlying both diseases have been hypothesized to be one of the mechanisms by which obesity increases asthma risk and severity. Reduction of weight by diet, exercise, or bariatric surgery reduces inflammatory activity and improves asthma and lung function.
Collapse
Affiliation(s)
- Marina Bantulà
- Department of Internal Medicine, Hospital Clinic, Institut d’Investigació Biomèdica August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.B.); (J.R.-F.); (E.A.)
- Department of Medicine, University of Barcelona, 08036 Barcelona, Spain
| | - Jordi Roca-Ferrer
- Department of Internal Medicine, Hospital Clinic, Institut d’Investigació Biomèdica August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.B.); (J.R.-F.); (E.A.)
- Department of Medicine, University of Barcelona, 08036 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 08036 Barcelona, Spain
| | - Ebymar Arismendi
- Department of Internal Medicine, Hospital Clinic, Institut d’Investigació Biomèdica August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.B.); (J.R.-F.); (E.A.)
- Department of Medicine, University of Barcelona, 08036 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 08036 Barcelona, Spain
- Servei de Pneumologia, Hospital Clinic, 08036 Barcelona, Spain
| | - César Picado
- Department of Internal Medicine, Hospital Clinic, Institut d’Investigació Biomèdica August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.B.); (J.R.-F.); (E.A.)
- Department of Medicine, University of Barcelona, 08036 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 08036 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-227-5400
| |
Collapse
|
82
|
Liu NN, Ma Q, Ge Y, Yi CX, Wei LQ, Tan JC, Chu Q, Li JQ, Zhang P, Wang H. Microbiome dysbiosis in lung cancer: from composition to therapy. NPJ Precis Oncol 2020; 4:33. [PMID: 33303906 PMCID: PMC7730185 DOI: 10.1038/s41698-020-00138-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023] Open
Abstract
The correlations between microbiota dysbiosis and cancer have gained extensive attention and been widely explored. As a leading cancer diagnosis worldwide, lung cancer poses a great threat to human health. The healthy human lungs are consistently exposed to external environment and harbor a specific pattern of microbiota, sharing many key pathological and physiological characteristics with the intestinal tract. Although previous findings uncovered the critical roles of microbiota in tumorigenesis and response to anticancer therapy, most of them were focused on the intestinal microbiota rather than lung microbiota. Notably, the considerable functions of microbiota in maintaining lung homeostasis should not be neglected as the microbiome dysbiosis may promote tumor development and progression through production of cytokines and toxins and multiple other pathways. Despite the fact that increasing studies have revealed the effect of microbiome on the induction of lung cancer and different disease status, the underlying mechanisms and potential therapeutic strategies remained unclear. Herein, we summarized the recent progresses about microbiome in lung cancer and further discussed the role of microbial communities in promoting lung cancer progression and the current status of therapeutic approaches targeting microbiome to alleviate and even cure lung cancer.
Collapse
Affiliation(s)
- Ning-Ning Liu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Qiang Ma
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital Tongji University, Shanghai, China
| | - Yang Ge
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Cheng-Xiang Yi
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital Tongji University, Shanghai, China
| | - Lu-Qi Wei
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Jing-Cong Tan
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Qiao Chu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Jing-Quan Li
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Peng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital Tongji University, Shanghai, China.
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| |
Collapse
|
83
|
Habener A, Happle C, Grychtol R, Skuljec J, Busse M, Dalüge K, Obernolte H, Sewald K, Braun A, Meyer-Bahlburg A, Hansen G. Regulatory B cells control airway hyperreactivity and lung remodeling in a murine asthma model. J Allergy Clin Immunol 2020; 147:2281-2294.e7. [PMID: 33249168 DOI: 10.1016/j.jaci.2020.09.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 06/05/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Asthma is a widespread, multifactorial chronic airway disease. The influence of regulatory B cells on airway hyperreactivity (AHR) and remodeling in asthma is poorly understood. OBJECTIVE Our aim was to analyze the role of B cells in a house dust mite (HDM)-based murine asthma model. METHODS The influence of B cells on lung function, tissue remodeling, and the immune response were analyzed by using wild-type and B-cell-deficient (μMT) mice and transfer of IL-10-proficient and IL-10-deficient B cells to μMT mice. RESULTS After HDM-sensitization, both wild-type and μMT mice developed AHR, but the AHR was significantly stronger in μMT mice, as confirmed by 2 independent techniques: invasive lung function measurement in vivo and examination of precision-cut lung slices ex vivo. Moreover, airway remodeling was significantly increased in allergic μMT mice, as shown by enhanced collagen deposition in the airways, whereas the numbers of FoxP3+ and FoxP3- IL-10-secreting regulatory T cells were reduced. Adoptive transfer of IL-10-proficient but not IL-10-deficient B cells into μMT mice before HDM-sensitization attenuated AHR and lung remodeling. In contrast, FoxP3+ regulatory T cells were equally upregulated by transfer of IL-10-proficient and IL-10-deficient B cells. CONCLUSION Our data in a murine asthma model illustrate a central role of regulatory B cells in the control of lung function and airway remodeling and may support future concepts for B-cell-targeted prevention and treatment strategies for allergic asthma.
Collapse
Affiliation(s)
- Anika Habener
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany
| | - Christine Happle
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany
| | - Ruth Grychtol
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany
| | - Jelena Skuljec
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany; Department of Neurology, University Medicine Essen, Essen, Germany
| | - Mandy Busse
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany; Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Kathleen Dalüge
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Helena Obernolte
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany; Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Katherina Sewald
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany; Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Armin Braun
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany; Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Almut Meyer-Bahlburg
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany; Department of Pediatrics, University Medicine Greifswald, Greifswald, Germany
| | - Gesine Hansen
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.
| |
Collapse
|
84
|
Lazrak A, Song W, Zhou T, Aggarwal S, Jilling T, Garantziotis S, Matalon S. Hyaluronan and halogen-induced airway hyperresponsiveness and lung injury. Ann N Y Acad Sci 2020; 1479:29-43. [PMID: 32578230 PMCID: PMC7680259 DOI: 10.1111/nyas.14415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/18/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022]
Abstract
Chlorine (Cl2 ) and bromine (Br2 ) are produced in large quantities throughout the world and used in the industry and the sanitation of water. These halogens can pose a significant threat to public health when released into the atmosphere during transportation and industrial accidents, or as acts of terrorism. In this review, we discuss the evidence showing that the activity of Cl2 and Br2 , and of products formed by their interaction with biomolecules, fragment high-molecular-weight hyaluronan (HMW-HA), a key component of the interstitial space and present in epithelial cells, to form proinflammatory, low-molecular-weight hyaluronan fragments that increase intracellular calcium (Ca2+ ) and activate RAS homolog family member A (RhoA) in airway smooth muscle and epithelial and microvascular cells. These changes result in airway hyperresponsiveness (AHR) to methacholine and increase epithelial and microvascular permeability. The increase in intracellular Ca2+ is the result of the activation of the calcium-sensing receptor by Cl2 , Br2 , and their by-products. Posthalogen administration of a commercially available form of HMW-HA to mice and to airway cells in vitro reverses the increase of Ca2+ and the activation of RhoA, and restores AHR to near-normal levels of airway function. These data have established the potential of HMW-HA to be a countermeasure against Cl2 and Br2 toxicity.
Collapse
Affiliation(s)
- Ahmed Lazrak
- Division of Molecular and Translational Biomedicine, the University of Alabama at Birmingham School of Medicine, Birmingham, AL
- Pulmonary Injury and Repair Center, Department of Anesthesiology and Perioperative Medicine, the University of Alabama at Birmingham School of Medicine, Birmingham, AL
| | - Weifeng Song
- Division of Molecular and Translational Biomedicine, the University of Alabama at Birmingham School of Medicine, Birmingham, AL
- Pulmonary Injury and Repair Center, Department of Anesthesiology and Perioperative Medicine, the University of Alabama at Birmingham School of Medicine, Birmingham, AL
| | - Ting Zhou
- Division of Molecular and Translational Biomedicine, the University of Alabama at Birmingham School of Medicine, Birmingham, AL
- Pulmonary Injury and Repair Center, Department of Anesthesiology and Perioperative Medicine, the University of Alabama at Birmingham School of Medicine, Birmingham, AL
| | - Saurabh Aggarwal
- Division of Molecular and Translational Biomedicine, the University of Alabama at Birmingham School of Medicine, Birmingham, AL
- Pulmonary Injury and Repair Center, Department of Anesthesiology and Perioperative Medicine, the University of Alabama at Birmingham School of Medicine, Birmingham, AL
| | - Tamas Jilling
- Pulmonary Injury and Repair Center, Department of Anesthesiology and Perioperative Medicine, the University of Alabama at Birmingham School of Medicine, Birmingham, AL
- Division of Neonatology, Department of Pediatrics, the University of Alabama at Birmingham School of Medicine, Birmingham, AL
| | - Stavros Garantziotis
- Matrix Biology Group, Immunity, Inflammation, and Disease Laboratory, NIH/NIEHS, RTP, NC
| | - Sadis Matalon
- Division of Molecular and Translational Biomedicine, the University of Alabama at Birmingham School of Medicine, Birmingham, AL
- Pulmonary Injury and Repair Center, Department of Anesthesiology and Perioperative Medicine, the University of Alabama at Birmingham School of Medicine, Birmingham, AL
| |
Collapse
|
85
|
Gao P, Tang K, Lu Y, Huang Z, Wang S, Wang M, Wang J, Zhao J, Xie J. Pentraxin 3 promotes airway inflammation in experimental asthma. Respir Res 2020; 21:237. [PMID: 32938460 PMCID: PMC7493172 DOI: 10.1186/s12931-020-01499-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 08/31/2020] [Indexed: 01/11/2023] Open
Abstract
Background Pentraxin 3 (PTX3) regulates multiple aspects of innate immunity and tissue inflammation. Recently, it has been reported that PTX3 deficiency enhances interleukin (IL)-17A–dominant pulmonary inflammation in an ovalbumin (OVA)-induced mouse asthma model. However, whether PTX3 treatment would provide protection against allergic airway inflammation has not been clearly elucidated. The goal of this study was to further investigate the effect of recombinant PTX3 administration on the phenotype of asthma. Methods C57BL/6 J mice were sensitized and challenged with OVA to induce eosinophilic asthma model, as well as sensitized with OVA plus LPS and challenged with OVA to induce neutrophilic asthma model. We evaluated effect of recombinant PTX3 on asthma phenotype through both asthma models. The bronchoalveolar lavage fluid (BALF) inflammatory cells and cytokines, airway hyperresponsiveness, and pathological alterations of the lung tissues were assessed. Results In both eosinophilic and neutrophilic asthma models, PTX3 treatment provoked airway hyperresponsiveness, concomitant with increased inflammatory cytokines IL-4, IL-17, eotaxin, and transforming growth factor (TGF)-β1 and aggravated airway accumulation of inflammatory cells, especially eosinophils and neutrophils. In histological analysis of the lung tissue, administration of PTX3 promoted inflammatory cells infiltration, mucus production, and collagen deposition. In addition, PTX3 also significantly enhanced STAT3 phosphorylation in lung tissue. Conclusion Our results show that exogenous PTX3 can exacerbate multiple asthmatic features by promoting both eosinophils and neutrophils lung infiltration and provide new evidence to better understand the complex role of PTX3 in allergic airway inflammation.
Collapse
Affiliation(s)
- Pengfei Gao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, National Clinical Research Center of Respiratory Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Kun Tang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, National Clinical Research Center of Respiratory Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanjiao Lu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, National Clinical Research Center of Respiratory Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhenli Huang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, National Clinical Research Center of Respiratory Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shanshan Wang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, National Clinical Research Center of Respiratory Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meijia Wang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, National Clinical Research Center of Respiratory Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianmiao Wang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, National Clinical Research Center of Respiratory Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianping Zhao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, National Clinical Research Center of Respiratory Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Jungang Xie
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, National Clinical Research Center of Respiratory Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
86
|
Chen J, Chan WM, Leung HY, Leong PK, Yan CTM, Ko KM. Anti-Inflammatory Effects of a Cordyceps sinensis Mycelium Culture Extract (Cs-4) on Rodent Models of Allergic Rhinitis and Asthma. Molecules 2020; 25:molecules25184051. [PMID: 32899766 PMCID: PMC7570676 DOI: 10.3390/molecules25184051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022] Open
Abstract
Allergic rhinitis and asthma are common chronic allergic diseases of the respiratory tract, which are accompanied by immunoglobulin E (IgE)-mediated inflammation and the involvement of type 2 T helper cells, mast cells, and eosinophils. Cordyceps sinensis (Berk.) Sacc is a fungal parasite on the larva of Lepidoptera. It has been considered to be a health-promoting food and, also, one of the best-known herbal remedies for the treatment of airway diseases, such as asthma and lung inflammation. In the present study, we demonstrated the antiallergic rhinitis effect of Cs-4, a water extract prepared from the mycelium culture of Cordyceps sinensis (Berk) Sacc, on ovalbumin (OVA)-induced allergic rhinitis in mice and the anti-asthmatic effect of Cs-4 in a rat model of asthma. Treatment with Cs-4 suppressed the nasal symptoms induced in OVA-sensitized and challenged mice. The inhibition was associated with a reduction in IgE/OVA-IgE and interleukin (IL)-4/IL-13 levels in the nasal fluid. Cs-4 treatment also decreased airway responsiveness and ameliorated the scratching behavior in capsaicin-challenged rats. It also reduced plasma IgE levels, as well as IgE and eosinophil peroxidase levels, in the bronchoalveolar fluid. Cs-4 treatment completely suppressed the increases in IL-4, IL-5, and IL-13 levels in rat lung tissue. In conclusion, our results suggest that Cs-4 has the potential to alleviate immune hypersensitivity reactions in allergic rhinitis and asthma.
Collapse
Affiliation(s)
- Jihang Chen
- School of Life and Health Science, The Chinese University of Hong Kong, Shenzhen 518172, China;
| | - Wing Man Chan
- Division of Life Science, The Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong SAR 999077, China; (W.M.C.); (H.Y.L.); (P.K.L.)
| | - Hoi Yan Leung
- Division of Life Science, The Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong SAR 999077, China; (W.M.C.); (H.Y.L.); (P.K.L.)
| | - Pou Kuan Leong
- Division of Life Science, The Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong SAR 999077, China; (W.M.C.); (H.Y.L.); (P.K.L.)
| | - Choly Tat Ming Yan
- Royal Medic Group Holding Limited, 313 Castle Peak Road, Hong Kong SAR 999077, China;
| | - Kam Ming Ko
- Division of Life Science, The Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong SAR 999077, China; (W.M.C.); (H.Y.L.); (P.K.L.)
- Correspondence: ; Tel.: +85-223-587-298
| |
Collapse
|
87
|
Brandt EB, Bolcas PE, Ruff BP, Khurana Hershey GK. IL33 contributes to diesel pollution-mediated increase in experimental asthma severity. Allergy 2020; 75:2254-2266. [PMID: 31922608 DOI: 10.1111/all.14181] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 10/25/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Exposure to traffic pollution, notably diesel exhaust particles (DEP), increases risk for asthma and asthma exacerbations. The contribution of cytokines generated by stressed lung epithelial cells (IL25, IL33, TSLP) to DEP-induced asthma severity remains poorly understood. METHODS BALB/c mice were exposed intratracheally once to DEP or 9 times over 3-weeks to either saline, DEP, and/or house dust mite extract (HDM). Airway hyper-responsiveness (AHR), pulmonary inflammation, and T-cell subsets were assessed 24 hours after the last exposure in mice sufficient and deficient for the IL33 receptor ST2. RESULTS DEP exposure induces oxidative stress, IL6, neutrophils and pulmonary accumulation of IL33, but not IL25 or TSLP or other features of allergic disease. When mice are co-exposed to DEP and low doses of HDM, DEP increases IL33 lung levels and Th2 responses. ST2 deficiency partially protected mice from HDM + DEP induced AHR in association with decreased type 2 inflammation and lung levels of IL5+ IL17A+ co-producing T-cells. Upon in vitro HDM challenge of lung cells from HDM ± DEP exposed ST2-/- mice, secretion of IL5, IL13, IL6 and IL17A was abrogated by a mechanism involving IL33 signaling in both dendritic cells and T-cells. HDM + DEP exposed bone marrow derived dendritic cells and IL33 pulsed BMDC promote a mixed Th2/Th17 response that was dependent on ST2 expression by CD4+ T-cells. CONCLUSION IL33 contributes to DEP mediated increase in allergen-induced Th2 inflammation and AHR in a mouse model of severe steroid resistant asthma, potentially through the accumulation of pathogenic IL5+ IL17A+ CD4+ effector T-cells.
Collapse
Affiliation(s)
- Eric B. Brandt
- Division of Asthma Research Cincinnati Children's Hospital Medical Center Cincinnati OH USA
| | - Paige E. Bolcas
- Division of Asthma Research Cincinnati Children's Hospital Medical Center Cincinnati OH USA
| | - Brandy P. Ruff
- Division of Asthma Research Cincinnati Children's Hospital Medical Center Cincinnati OH USA
| | - Gurjit K. Khurana Hershey
- Division of Asthma Research Cincinnati Children's Hospital Medical Center Cincinnati OH USA
- Department of Pediatrics University of Cincinnati College of Medicine Cincinnati OH USA
| |
Collapse
|
88
|
Corren J. New Targeted Therapies for Uncontrolled Asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 7:1394-1403. [PMID: 31076057 DOI: 10.1016/j.jaip.2019.03.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 02/06/2023]
Abstract
Mechanistic studies have improved our understanding of molecular and cellular components involved in asthma and our ability to treat severe patients. An mAb directed against IgE (omalizumab) has become an established add-on therapy for patients with uncontrolled allergic asthma and mAbs specific for IL-5 (reslizumab, mepolizumab), IL-5R (benralizumab), and IL-4R (dupilumab) have been approved as add-on treatments for uncontrolled eosinophilic (type 2) asthma. While these medications have proven highly effective, some patients with severe allergic and/or eosinophilic asthma, as well as most patients with severe non-type-2 disease, have poorly controlled disease. Agents that have recently been evaluated in clinical trials include an antibody directed against thymic stromal lymphopoietin, small molecule antagonists to the chemoattractant receptor-homologous molecule expressed on TH2 cells (CRTH2) and the receptor for stem cell factor on mast cells (KIT), and a DNA enzyme directed at GATA3. Antibodies to IL-33 and its receptor, ST2, are being evaluated in ongoing clinical studies. In addition, a number of antagonists directed against other potential targets are under consideration for future trials, including IL-25, IL-6, TNF-like ligand 1A, CD6, and activated cell adhesion molecule (ALCAM). Clinical data from ongoing and future trials will be important in determining whether these new medications will offer benefits in place of or in addition to existing therapies for asthma.
Collapse
MESH Headings
- Activated-Leukocyte Cell Adhesion Molecule/immunology
- Anti-Asthmatic Agents/therapeutic use
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antigens, CD/immunology
- Antigens, Differentiation, T-Lymphocyte/immunology
- Asthma/drug therapy
- Asthma/immunology
- Asthma/physiopathology
- Cytokines/antagonists & inhibitors
- Cytokines/immunology
- DNA, Catalytic/therapeutic use
- Eosinophils/immunology
- GATA3 Transcription Factor
- Humans
- Imatinib Mesylate/therapeutic use
- Indoleacetic Acids/therapeutic use
- Interleukin-17/antagonists & inhibitors
- Interleukin-17/immunology
- Interleukin-6/immunology
- Lymphocytes/immunology
- Mast Cells/immunology
- Molecular Targeted Therapy
- Omalizumab/therapeutic use
- Proto-Oncogene Proteins c-kit/antagonists & inhibitors
- Proto-Oncogene Proteins c-kit/immunology
- Pyridines/therapeutic use
- Receptors, Immunologic/antagonists & inhibitors
- Receptors, Immunologic/immunology
- Receptors, Interleukin-17/antagonists & inhibitors
- Receptors, Interleukin-17/immunology
- Receptors, Prostaglandin/antagonists & inhibitors
- Receptors, Prostaglandin/immunology
- Ribonucleases/therapeutic use
- Th2 Cells/immunology
- Tumor Necrosis Factor Ligand Superfamily Member 15/antagonists & inhibitors
- Tumor Necrosis Factor Ligand Superfamily Member 15/immunology
Collapse
Affiliation(s)
- Jonathan Corren
- Departments of Medicine and Pediatrics, Division of Allergy and Clinical Immunology, David Geffen School of Medicine at UCLA, Los Angeles, Calif.
| |
Collapse
|
89
|
Abstract
PURPOSE OF REVIEW To analyze the status of precision medicine in atopic diseases. RECENT FINDINGS Atopic diseases are increasingly recognized as heterogeneous in nature and they can be quite different in severity, response to therapy, triggers, genetic back ground, ancestral risk and type of inflammation. This significant variability in the landscape of atopic diseases is not reflected in the common treatment guidelines that follow 'one fits all' approach for their management. Such an approach is largely based on minimal 'phenotype' elements, such as severity of disease and response to therapy and does not reflect the information accumulate in the last 20 years about particular pathogenic pathways (endotypes) leading to disease (phenotypes) based on biomolecular analysis of the single individuals. Accumulating data have defined asthma allergic rhinitis, food allergy based on their endotypes and clinically relevant phenotypes. In general, atopic diseases can be largely classified as high or low Th2 inflammatory status, which may explain the severity and response to therapy. SUMMARY Precision medicine is aiming to use known endotype phenotype to guide specific individualized treatment. The work aimed in deep characterization of diseases to guide the disease management is crucial in light of the availability of ever more precise treatment able to target specific pathways.
Collapse
|
90
|
Li B, Wang X, Wang R, Rutz B, Ciotkowska A, Gratzke C, Herlemann A, Spek A, Tamalunas A, Waidelich R, Stief CG, Hennenberg M. Inhibition of neurogenic and thromboxane A 2 -induced human prostate smooth muscle contraction by the integrin α2β1 inhibitor BTT-3033 and the integrin-linked kinase inhibitor Cpd22. Prostate 2020; 80:831-849. [PMID: 32449814 DOI: 10.1002/pros.23998] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/16/2020] [Accepted: 04/19/2020] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Prostate smooth muscle contraction is critical for etiology and treatment of lower urinary tract symptoms in benign prostatic hyperplasia (BPH). Integrins connect the cytoskeleton to membranes and cells to extracellular matrix, what is essential for force generation in smooth muscle contraction. Integrins are composed of different subunits and may cooperate with integrin-linked kinase (ILK). Here, we examined effects of inhibitors for different integrin heterodimers and ILK on contraction of human prostate tissues. METHODS Prostate tissues were obtained from radical prostatectomy. Integrins and ILK were detected by Western blot, real-time polymerase chain reaction (RT-PCR), and double fluorescence staining. Smooth muscle contractions of prostate strips were studied in an organ bath. Contractions were compared after application of solvent (controls), the ILK inhibitor Cpd22 (N-methyl-3-(1-(4-(piperazin-1-yl)phenyl)-5-(4'-(trifluoromethyl)-[1,1'-biphenyl]-4-yl)-1H-pyrazol-3-yl)propanamide), the integrin α2β1 inhibitor BTT-3033 (1-(4-fluorophenyl)-N-methyl-N-[4[[(phenylamino)carbonyl]amino]phenyl]-1H-pyrazole-4-sulfonamide), or the integrin α4β1/α9β1 inhibitor BOP (N-(benzenesulfonyl)- l-prolyl- l-O-(1-pyrrolidinylcarbonyl)tyrosine sodium salt). RESULTS Western blot analyses of prostate tissues using antibodies raised against integrins α2b, α4, α9, β1, and ILK revealed bands matching the expected sizes of corresponding antigens. Expression of integrins and ILK was confirmed by RT-PCR. Individual variations of expression levels occurred independently from divergent degree of BPH, reflected by different contents of prostate-specific antigen. Double fluorescence staining of prostate sections using antibodies raised against integrins α2 and β1, or against ILK resulted in immunoreactivity colocalizing with calponin, suggesting localization in prostate smooth muscle cells. Electric field stimulation (EFS) induced frequency-dependent contractions, which were inhibited by Cpd22 (3 µM) and BTT-3033 (1 µM) (inhibition around 37% by Cpd22 and 46% by BTT-3033 at 32 Hz). The thromboxane A2 analog U46619-induced concentration-dependent contractions, which were inhibited by Cpd22 and BTT-3033 (around 67% by Cpd22 and 39% by BTT-3033 at 30 µM U46619). Endothelin-1 induced concentration-dependent contractions, which were not affected by Cpd22 or BTT-3033. Noradrenaline and the α1 -adrenergic agonists methoxamine and phenylephrine-induced concentration-dependent contractions, which were not or very slightly inhibited by Cpd22 and BTT-3033. BOP did not change EFS- or agonist-induced contraction. CONCLUSIONS Integrin α2β1 and ILK inhibitors inhibit neurogenic and thromboxane A2 -induced prostate smooth muscle contraction in human BPH. A role for these targets for prostate smooth muscle contraction may appear possible.
Collapse
Affiliation(s)
- Bingsheng Li
- Department of Urology, LMU Munich, University Hospital, Munich, Germany
| | - Xiaolong Wang
- Department of Urology, LMU Munich, University Hospital, Munich, Germany
| | - Ruixiao Wang
- Department of Urology, LMU Munich, University Hospital, Munich, Germany
| | - Beata Rutz
- Department of Urology, LMU Munich, University Hospital, Munich, Germany
| | - Anna Ciotkowska
- Department of Urology, LMU Munich, University Hospital, Munich, Germany
| | | | - Annika Herlemann
- Department of Urology, LMU Munich, University Hospital, Munich, Germany
| | - Annabel Spek
- Department of Urology, LMU Munich, University Hospital, Munich, Germany
| | | | | | - Christian G Stief
- Department of Urology, LMU Munich, University Hospital, Munich, Germany
| | - Martin Hennenberg
- Department of Urology, LMU Munich, University Hospital, Munich, Germany
| |
Collapse
|
91
|
Tortola L, Jacobs A, Pohlmeier L, Obermair FJ, Ampenberger F, Bodenmiller B, Kopf M. High-Dimensional T Helper Cell Profiling Reveals a Broad Diversity of Stably Committed Effector States and Uncovers Interlineage Relationships. Immunity 2020; 53:597-613.e6. [PMID: 32735846 DOI: 10.1016/j.immuni.2020.07.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 12/27/2022]
Abstract
CD4+ T helper (Th) cells are fundamental players in immunity. Based on the expression of signature cytokines and transcription factors, several Th subsets have been defined. Th cells are thought to be far more heterogeneous and multifunctional than originally believed, but characterization of the full diversity has been hindered by technical limitations. Here, we employ mass cytometry to analyze the diversity of Th cell responses generated in vitro and in animal disease models, revealing a vast heterogeneity of effector states with distinct cytokine footprints. The diversities of cytokine responses established during primary antigen encounters in Th1- and Th2-cell-polarizing conditions are largely maintained after secondary challenge, regardless of the new inflammatory environment, highlighting many of the identified states as stable Th cell sublineages. We also find that Th17 cells tend to upregulate Th2-cell-associated cytokines upon challenge, indicating a closer developmental connection between Th17 and Th2 cells than previously anticipated.
Collapse
Affiliation(s)
- Luigi Tortola
- Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland.
| | - Andrea Jacobs
- Department of Quantitative Biomedicine, University of Zurich, 8057 Zurich, Switzerland
| | - Lea Pohlmeier
- Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | | | | | - Bernd Bodenmiller
- Department of Quantitative Biomedicine, University of Zurich, 8057 Zurich, Switzerland
| | - Manfred Kopf
- Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
92
|
Thompson EE, Dang Q, Mitchell-Handley B, Rajendran K, Ram-Mohan S, Solway J, Ober C, Krishnan R. Cytokine-induced molecular responses in airway smooth muscle cells inform genome-wide association studies of asthma. Genome Med 2020; 12:64. [PMID: 32690065 PMCID: PMC7370514 DOI: 10.1186/s13073-020-00759-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 06/26/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND A challenge in the post-GWAS era is to assign function to disease-associated variants. However, available resources do not include all tissues or environmental exposures that are relevant to all diseases. For example, exaggerated bronchoconstriction of airway smooth muscle cells (ASMCs) defines airway hyperresponsiveness (AHR), a cardinal feature of asthma. However, the contribution of ASMC to genetic and genomic studies has largely been overlooked. Our study aimed to address the gap in data availability from a critical tissue in genomic studies of asthma. METHODS We developed a cell model of AHR to discover variants associated with transcriptional, epigenetic, and cellular responses to two AHR promoting cytokines, IL-13 and IL-17A, and performed a GWAS of bronchial responsiveness (BRI) in humans. RESULTS Our study revealed significant response differences between ASMCs from asthma cases and controls, including genes implicated in asthma susceptibility. We defined molecular quantitative trait loci (QTLs) for expression (eQTLs) and methylation (meQTLs), and cellular QTLs for contractility (coQTLs) and performed a GWAS of BRI in human subjects. Variants in asthma GWAS were significantly enriched for ASM QTLs and BRI-associated SNPs, and near genes enriched for ASM function, many with small P values that did not reach stringent thresholds of significance in GWAS. CONCLUSIONS Our study identified significant differences between ASMCs from asthma cases and controls, potentially reflecting trained tolerance in these cells, as well as a set of variants, overlooked in previous GWAS, which reflect the AHR component of asthma.
Collapse
Affiliation(s)
- Emma E Thompson
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA.
| | - Quynh Dang
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Kavitha Rajendran
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sumati Ram-Mohan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Julian Solway
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Carole Ober
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Ramaswamy Krishnan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
93
|
Relationship of Serum Levels of IL-17, IL-18, TNF- α, and Lung Function Parameters in Patients with COPD, Asthma-COPD Overlap, and Bronchial Asthma. Mediators Inflamm 2020; 2020:4652898. [PMID: 32733164 PMCID: PMC7372292 DOI: 10.1155/2020/4652898] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/26/2019] [Accepted: 01/21/2020] [Indexed: 12/16/2022] Open
Abstract
Determination of markers of systemic inflammation is one of the important directions in the study of pathogenesis and improvement of diagnosis of chronic obstructive pulmonary disease (COPD), asthma-COPD overlap (ACO), and bronchial asthma (BA). The aim of our work was a comparative study of the features of changes in serum levels of IL-17, IL-18, and TNF-α in patients with COPD, ACO, and BA with various severity of the disease, as well as evaluation of the relationship between the level of these cytokines and lung ventilation function. A total of 147 patients with COPD (n = 58), ACO (n = 57), and BA (n = 32) during a stable period have been examined in this study. The control group included 21 healthy nonsmokers with similar sex-age indicators. Serum levels of IL-17, IL-18, and TNF-α were determined by ELISA. The concentrations of these cytokines in the circulation in the studied patients with COPD, ACO, and BA were higher than those in healthy nonsmokers (p ≤ 0.001). IL-17 and IL-18 levels in the blood serum were comparable in all examined patients. The mean TNF-α concentrations in the circulation in COPD and ACO were significantly higher than those in BA (p < 0.001). In patients with COPD, the levels of IL-17 and TNF-α increased progressively against the background of a decrease in numerous spirometric indicators, which allows us to consider these cytokines as systemic biomarkers of disease severity. In BA, the inverse correlations between the level of IL-17 and FEV1/FVC (%) and FEV1 have been found. In patients with ACO, the increase in IL-18 levels was associated with a decrease in FEV1 and TNF-α with FEV1/FVC (%). These findings indicate that IL-17, IL-18, and TNF-α can participate in the mechanisms of systemic inflammation and the genesis of disorders of airway obstruction in COPD, AСO, and BA. An increase in the levels of IL-17 and TNF-α may be associated with impaired bronchial patency in COPD and BA. The established associations of the IL-18 concentration in the blood serum and FEV1 only in patients with ACO allow using the level of IL-18 as a potential marker of the degree of impaired airway obstruction in this disease.
Collapse
|
94
|
Vella G, Lunding L, Ritzmann F, Honecker A, Herr C, Wegmann M, Bals R, Beisswenger C. The IL-17 receptor IL-17RE mediates polyIC-induced exacerbation of experimental allergic asthma. Respir Res 2020; 21:176. [PMID: 32641167 PMCID: PMC7346407 DOI: 10.1186/s12931-020-01434-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/23/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The interleukin 17 receptor E (IL-17RE) is specific for the epithelial cytokine interleukin-17C (IL-17C). Asthma exacerbations are frequently caused by viral infections. Polyinosinic:polycytidylic acid (pIC) mimics viral infections through binding to pattern recognition receptors (e.g. TLR-3). We and others have shown that pIC induces the expression of IL-17C in airway epithelial cells. Using different mouse models, we aimed to investigate the function of IL-17RE in the development of experimental allergic asthma and acute exacerbation thereof. METHODS Wild-type (WT) and IL-17RE deficient (Il-17re-/-) mice were sensitized and challenged with OVA to induce allergic airway inflammation. pIC or PBS were applied intranasally when allergic airway inflammation had been established. Pulmonary expression of inflammatory mediators, numbers of inflammatory cells, and airway hyperresponsiveness (AHR) were analyzed. RESULTS Ablation of IL-17RE did not affect the development of OVA-induced allergic airway inflammation and AHR. pIC induced inflammation independent of IL-17RE in the absence of allergic airway inflammation. Treatment of mice with pIC exacerbated pulmonary inflammation in sensitized and OVA-challenged mice in an IL-17RE-dependent manner. The pIC-induced expression of cytokines (e.g. keratinocyte-derived chemokine (KC), granulocyte-colony stimulating factor (G-CSF)) and recruitment of neutrophils were decreased in Il-17re-/- mice. pIC-exacerbated AHR was partially decreased in Il-17re-/- mice. CONCLUSIONS Our results indicate that IL-17RE mediates virus-triggered exacerbations but does not have a function in the development of allergic lung disease.
Collapse
Affiliation(s)
- Giovanna Vella
- Department of Internal Medicine V – Pulmonology, Allergology and Critical Care Medicine, Saarland University, D-66421 Homburg, Germany
| | - Lars Lunding
- Division of Asthma Exacerbation & Regulation, Priority Area Asthma and Allergy, Leibniz Lung Center Borstel, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Felix Ritzmann
- Department of Internal Medicine V – Pulmonology, Allergology and Critical Care Medicine, Saarland University, D-66421 Homburg, Germany
| | - Anja Honecker
- Department of Internal Medicine V – Pulmonology, Allergology and Critical Care Medicine, Saarland University, D-66421 Homburg, Germany
| | - Christian Herr
- Department of Internal Medicine V – Pulmonology, Allergology and Critical Care Medicine, Saarland University, D-66421 Homburg, Germany
| | - Michael Wegmann
- Division of Asthma Exacerbation & Regulation, Priority Area Asthma and Allergy, Leibniz Lung Center Borstel, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Robert Bals
- Department of Internal Medicine V – Pulmonology, Allergology and Critical Care Medicine, Saarland University, D-66421 Homburg, Germany
| | - Christoph Beisswenger
- Department of Internal Medicine V – Pulmonology, Allergology and Critical Care Medicine, Saarland University, D-66421 Homburg, Germany
| |
Collapse
|
95
|
Galvão I, Kim RY, Shen S, Budden KF, Vieira AT, Hansbro PM. Emerging therapeutic targets and preclinical models for severe asthma. Expert Opin Ther Targets 2020; 24:845-857. [PMID: 32569487 DOI: 10.1080/14728222.2020.1786535] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Asthma is a heterogeneous disease with complex multifactorial causes. It is possible to subclassify asthma into different phenotypes that have distinct immunological features. Eosinophilic asthma is a well-known phenotype of severe asthma; however, a large body of clinical and experimental evidence strongly associates persistent airway inflammation, including the accumulation of neutrophils in the bronchial mucosa, and resistance to corticosteroid therapy and non-Type-2 immune responses with severe asthma. Importantly, mainstay therapies are often ineffective in severe asthma and effective alternatives are urgently needed. AREAS COVERED Here, we discussed recently developed mouse models of severe asthma that recapitulates key features of the disease in humans. We also provide findings from clinically relevant experimental models that have identified potential therapeutic targets for severe asthma. The most relevant publications on the topic of interest were selected from PubMed. EXPERT COMMENTARY Increasing the understanding of disease-causing mechanisms in severe asthma may lead to the identification of novel therapeutic targets and the development of more effective therapies. Intense research interest into investigating the pathophysiological mechanisms of severe asthma has driven the development and interrogation of a myriad of mouse models that aim to replicate hallmark features of severe asthma in humans.
Collapse
Affiliation(s)
- Izabela Galvão
- Centre for Inflammation, Centenary Institute and University of Technology Sydney , Sydney, Australia
| | - Richard Y Kim
- Centre for Inflammation, Centenary Institute and University of Technology Sydney , Sydney, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and the University of Newcastle , Newcastle, Australia
| | - Sijie Shen
- Centre for Inflammation, Centenary Institute and University of Technology Sydney , Sydney, Australia
| | - Kurtis F Budden
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and the University of Newcastle , Newcastle, Australia
| | - Angélica T Vieira
- Laboratory of Microbiota and Immunomodulation, Department of Biochemistry and Immunology, Instituto De Ciências Biológicas, Federal University of Minas Gerais , Belo Horizonte, Brazil
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney , Sydney, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and the University of Newcastle , Newcastle, Australia
| |
Collapse
|
96
|
Lin X, Lv J, Ge D, Bai H, Yang Y, Wu J. Heme oxygenase-1 alleviates eosinophilic inflammation by inhibiting STAT3-SOCS3 signaling. Pediatr Pulmonol 2020; 55:1440-1447. [PMID: 32297710 DOI: 10.1002/ppul.24759] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/28/2020] [Accepted: 03/18/2020] [Indexed: 01/05/2023]
Abstract
Airway inflammation of eosinophilic asthma (EA) attributes to Th2 response, leaving the role of Th17 response unknown. Signal transducer and activator of transcription 3 (STAT3) induce both suppressors of cytokine signaling 3 (SOCS3) and retinoic acid receptor-related orphan nuclear receptor γ (RORγt) to initiate Th17 cell differentiation which is inhibited by SOCS3, a negative feedback regulator of STAT3. Heme oxygenase-1 (HO-1) is a stress-responsive, cytoprotective, and immunoregulatory molecular. Two other isoforms of the enzyme includes HO-2 and HO-3. Because HO-2 does not exhibit stress-related upregulation and distributes mainly in nervous system and HO-3 shows a low enzymatic activity, we tested a hypothesized anti-inflammatory role for HO-1 in EA by inhibiting STAT3-SOCS3 signaling. Animal model was established with Ovalbumin in wild type Balb/C mice. Hemin or SNPP was intraperitoneally (IP) injected ahead of the animal model to induce or inhibit HO-1 expression. Airway inflammation was evaluated by bronchoalveolar lavage, hematoxyline and eosin staining, enzyme-linked immunosorbent assay, and Western blot analysis. In vivo results showed that HO-1 induction inhibited phosphorylation of STAT3 and expression of SOCS3 and RORγt, decreased Th2 and Th17 immune responses, and alleviated airway inflammation. In vitro results revealed that HO-1 inhibited phosphorylation of STAT3 and expression of SOCS3 in naive CD4+ T cells. These findings identify HO-1 induction as a potential therapeutic strategy for EA treatment by reducing STAT3 phosphorylation, STAT3-SOCS3-mediated Th2/Th17 immune responses, and ultimate allergic airway inflammation.
Collapse
Affiliation(s)
- Xiaoliang Lin
- Department of Pediatrics, the First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jiajia Lv
- Department of Pediatrics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dandan Ge
- Department of Pediatrics, the First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Haitao Bai
- Department of Pediatrics, the First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yungang Yang
- Department of Pediatrics, the First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jinzhun Wu
- Department of Pediatrics, the First Affiliated Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
97
|
Zhang X, Zhang M, Jiang M, Nong G. Effect of IL‑7 on Th17 cell responses in a mouse model of neutrophilic asthma. Mol Med Rep 2020; 22:1205-1212. [PMID: 32468040 PMCID: PMC7339814 DOI: 10.3892/mmr.2020.11191] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 04/21/2020] [Indexed: 01/20/2023] Open
Abstract
Neutrophilic asthma (NA) is characterized by neutrophil-mediated inflammation and the presence of Th17 cells. However, the mechanisms underlying Th17 cell responses in NA remain unknown. The aim of the present study was to examine the effects of interleukin (IL)-7 on Th17 cell responses in NA. A NA mouse model was sensitized by airway delivery of ovalbumin (OVA) and lipopolysaccharide and challenged with 1% OVA aerosol from day 21 for 3 consecutive days. Airway resistance was then measured to assess airway hyper-responsiveness (AHR). Cells from bronchoalveolar lavage fluid (BALF) underwent Diff-Quick and hematoxylin and eosin staining for classification. The levels of IL-17 in the BALF were determined by ELISA. The effects of IL-7 administration and STAT5 inhibition on Th17 cells were also characterized in vitro using splenic CD4+ T cells. Ki-67, Bcl-2 and activated caspase-3 expression in differentiated Th17 cells were analyzed by flow cytometry. The mouse model of NA was characterized by increased AHR, elevated levels of IL-17, high neutrophil counts in BALF, accumulated inflammatory cells in the lung and Th17 cell responses. IL-7 promoted the expression of Ki-67 and Bcl-2 while reducing caspase-3 expression. STAT5 inhibitor treatment decreased the levels of Ki-67 and Bcl-2, and resulted in increased expression of caspase-3. These results suggested that the IL-7/JAK/STAT5 signaling pathway may be involved in Th17 cell responses in NA.
Collapse
Affiliation(s)
- Xiaobo Zhang
- Pediatric Department, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Min Zhang
- Pediatric Department, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Min Jiang
- Pediatric Department, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Guangmin Nong
- Pediatric Department, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
98
|
Hynes GM, Hinks TSC. The role of interleukin-17 in asthma: a protective response? ERJ Open Res 2020; 6:00364-2019. [PMID: 32494573 PMCID: PMC7248344 DOI: 10.1183/23120541.00364-2019] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/04/2020] [Indexed: 02/06/2023] Open
Abstract
While there now exist effective treatments for type 2 high, eosinophilic asthma, there are no specific therapies for 40–50% of people with asthma with other phenotypes, which result from poorly understood underlying pathological mechanisms. One such pathology is neutrophilic inflammation, which has been associated with interleukin (IL)-17 family cytokines. Human genetic studies identified IL-17 polymorphisms associated with asthma; in murine models of allergic airways disease, IL-17A contributes to airway hyperresponsiveness, and in humans, elevated airway IL-17A levels are repeatedly observed in severe asthma. However, the directionality of this association is unknown, and the assumption that IL-17 cytokines drive disease pathology remains speculative. Here, we explore the evidence underlying the relationship between IL-17 and asthma, we review lessons learned from investigating IL-17 in other inflammatory diseases, and discuss the possibility that IL-17 may even be protective in asthma rather than pathogenic. We also critically examine the newly proposed paradigm of a reciprocal relationship between type 2 and type 17 airways inflammation. In summary, we suggest an association between IL-17 and asthma, but research is needed examining the diverse functions of these cytokines, their longitudinal stability, their response to clinical interventions, and for mechanistic studies determining whether they are protective or pathogenic. IL-17 cytokines have been implicated in neutrophilic asthma by genetic, murine and human data. Here, previous studies are critiqued and the assumption their dominant role is pathogenic rather than protective of airway epithelial barrier integrity is challenged.http://bit.ly/3axB4Zs
Collapse
Affiliation(s)
- Gareth M Hynes
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, Nuffield Dept of Medicine, Experimental Medicine, University of Oxford, Oxford, UK
| | - Timothy S C Hinks
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, Nuffield Dept of Medicine, Experimental Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
99
|
The Role of Th17 Cells and IL-17 in Th2 Immune Responses of Allergic Conjunctivitis. J Ophthalmol 2020; 2020:6917185. [PMID: 32566265 PMCID: PMC7267877 DOI: 10.1155/2020/6917185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/12/2020] [Indexed: 11/24/2022] Open
Abstract
Allergic conjunctivitis (AC) is a common allergic disease that is often associated with the onset of rhinitis or asthma. The incidence of AC has increased significantly in recent years possibly due to air pollution and climate warming. AC seriously affects patients' quality of life and work efficiency. Th (T-helper) 2 immune responses and type I hypersensitivity reactions are generally considered the basis of occurrence of AC. It has been found that new subpopulations of T-helper cells, Th17 cells that produce interleukin-17 (IL-17), play an important role in the Th2-mediated pathogenesis of conjunctivitis. Studies have shown that Th17 cells are involved in a variety of immune inflammation, including psoriasis, rheumatoid arthritis, inflammatory bowel disease, systemic lupus erythematosus, and asthma. However, the role of Th17 and IL-17 in AC is unclear. This paper will focus on how T-helper 17 cells and interleukin-17 are activated in the Th2 immune response of allergic conjunctivitis and how they promote the Th2 immune response of AC.
Collapse
|
100
|
Zhang Y, Saradna A, Ratan R, Ke X, Tu W, Do DC, Hu C, Gao P. RhoA/Rho-kinases in asthma: from pathogenesis to therapeutic targets. Clin Transl Immunology 2020; 9:e01134. [PMID: 32355562 PMCID: PMC7190398 DOI: 10.1002/cti2.1134] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 12/13/2022] Open
Abstract
Asthma is a chronic and heterogeneous disease characterised by airway inflammation and intermittent airway narrowing. The key obstacle in the prevention and treatment of asthma has been our incomplete understanding of its aetiology and biological mechanisms. The ras homolog family member A (RhoA) of the Rho family GTPases has been considered to be one of the most promising and novel therapeutic targets for asthma. It is well known that RhoA/Rho‐kinases play an important role in the pathophysiology of asthma, including airway smooth muscle contraction, airway hyper‐responsiveness, β‐adrenergic desensitisation and airway remodelling. However, recent advances have suggested novel roles for RhoA in regulating allergic airway inflammation. Specifically, RhoA has been shown to regulate allergic airway inflammation through controlling Th2 or Th17 cell differentiation and to regulate airway remodelling through regulating mesenchymal stem cell (MSC) differentiation. In this review, we evaluate the literature regarding the recent advances in the activation of RhoA/Rho‐kinase, cytokine and epigenetic regulation of RhoA/Rho‐kinase, and the role of RhoA/Rho‐kinase in regulating major features of asthma, such as airway hyper‐responsiveness, remodelling and inflammation. We also discuss the importance of the newly identified role of RhoA/Rho‐kinase signalling in MSC differentiation and bronchial epithelial barrier dysfunction. These findings indicate the functional significance of the RhoA/Rho‐kinase pathway in the pathophysiology of asthma and suggest that RhoA/Rho‐kinase signalling may be a promising therapeutic target for the treatment of asthma.
Collapse
Affiliation(s)
- Yan Zhang
- Division of Allergy and Clinical Immunology Johns Hopkins University School of Medicine Baltimore MD USA.,Department of Respiratory Medicine Xiangya Hospital Central South University Changsha China
| | - Arjun Saradna
- Division of Allergy and Clinical Immunology Johns Hopkins University School of Medicine Baltimore MD USA.,Division of Pulmonary Critical Care and Sleep Medicine State University of New York at Buffalo Buffalo NY USA
| | - Rhea Ratan
- Division of Allergy and Clinical Immunology Johns Hopkins University School of Medicine Baltimore MD USA
| | - Xia Ke
- Division of Allergy and Clinical Immunology Johns Hopkins University School of Medicine Baltimore MD USA.,Department of Otorhinolaryngology First Affiliated Hospital of Chongqing Medical University Chongqing China
| | - Wei Tu
- Division of Allergy and Clinical Immunology Johns Hopkins University School of Medicine Baltimore MD USA.,Department of Respirology and Allergy Third Affiliated Hospital of Shenzhen University Shenzhen China
| | - Danh C Do
- Division of Allergy and Clinical Immunology Johns Hopkins University School of Medicine Baltimore MD USA
| | - Chengping Hu
- Department of Respiratory Medicine Xiangya Hospital Central South University Changsha China
| | - Peisong Gao
- Division of Allergy and Clinical Immunology Johns Hopkins University School of Medicine Baltimore MD USA
| |
Collapse
|