51
|
Furukawa E, Chen Z, Kubo T, Wu Y, Ueda K, Chelenga M, Chiba H, Yanagawa Y, Katagiri S, Nagano M, Hui SP. Simultaneous free fatty acid elevations and accelerated desaturation in plasma and oocytes in early postpartum dairy cows under intensive feeding management. Theriogenology 2022; 193:20-29. [PMID: 36122530 DOI: 10.1016/j.theriogenology.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022]
Abstract
A severe negative energy balance and high circulating free fatty acids (FFA) in postpartum cows impair fertility. The lipotoxicity of FFA has been shown to decrease the quality of bovine oocytes in vitro. Therefore, excess FFA in cells is converted to triacylglycerol (TAG), a non-toxic form, to avoid lipotoxicity. We recently reported that the TAG content in oocytes was higher in postpartum lactating cows subjected to grazing management than in heifers (Theriogenology 176: 174-182, 2021). The present study investigated the compositions of the energy metabolism-related lipids, FFA and TAG, in the plasma and oocytes of cows at different lactation stages under indoor intensive feeding management in order to obtain insights into lipotoxicity in oocytes, particularly those in early postpartum cows. Blood and oocytes were collected from 20 lactating cows categorized into the following lactation groups: 20-30 days in milk (DIM) (n = 5), 40-50 DIM (n = 5), 60-80 DIM (n = 5), and 130-160 DIM (n = 5). Daily energy balance data were obtained for 3 weeks prior to oocyte collection using the ovum pick up (OPU) method. The contents and compositions of FFA and TAG in plasma and oocytes were analyzed using liquid chromatography-mass spectrometry. As expected, plasma FFA was high at 20-30 DIM, decreased by 50 DIM, and was maintained at a low level for the remainder of the experimental period. Similar changes were observed in oocyte FFA and TAG with DIM as plasma FFA. Oocyte FFA positively correlated with plasma FFA (P < 0.05), but negatively correlated with the mean energy balance 1 and 21 days before OPU (P < 0.05). Relationships were noted between the composition and content of FFA in plasma and oocytes, with the FFA 16:1/16:0 and 18:1/18:0 ratios positively correlating with the total amount of FFA (P < 0.05). Elevated oocyte FFA in cows in the early postpartum period under intensive feeding management suggested that oocytes were at a high risk of FFA lipotoxicity. Furthermore, the present results implied that the severe negative energy balance in the previous few weeks was closely related to increases in oocyte FFA, which supports the importance of long-term cow feeding management for preserving the quality of oocytes in the early postpartum period. The present results provide insights into the effects of high circulating FFA on the fertility of postpartum cows.
Collapse
Affiliation(s)
- Eri Furukawa
- Laboratory of Theriogenology, Graduate School of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Zhen Chen
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Tomoaki Kubo
- Dairy Cattle Group, Dairy Research Center, Hokkaido Research Organization, 7, Asahigaoka, Nakashibetsu, Hokkaido, 086-1135, Japan
| | - Yue Wu
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Koichiro Ueda
- Laboratory of Animal Production System, Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo, Hokkaido, 060-8589, Japan
| | - Madalitso Chelenga
- Laboratory of Theriogenology, Graduate School of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Nakanuma Nishi-4-2-1-15, Higashi-ku, Sapporo, Hokkaido, 007-0894, Japan
| | - Yojiro Yanagawa
- Laboratory of Theriogenology, Graduate School of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Seiji Katagiri
- Laboratory of Theriogenology, Graduate School of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Masashi Nagano
- Laboratory of Theriogenology, Graduate School of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan; Laboratory of Animal Reproduction, Department of Animal Science, School of Veterinary Medicine, Kitasato University, 35-1, Higashi-23 Bancho, Towada, 034-8628, Japan.
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.
| |
Collapse
|
52
|
Oral administration of Blautia wexlerae ameliorates obesity and type 2 diabetes via metabolic remodeling of the gut microbiota. Nat Commun 2022; 13:4477. [PMID: 35982037 PMCID: PMC9388534 DOI: 10.1038/s41467-022-32015-7] [Citation(s) in RCA: 181] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 07/12/2022] [Indexed: 11/09/2022] Open
Abstract
The gut microbiome is an important determinant in various diseases. Here we perform a cross-sectional study of Japanese adults and identify the Blautia genus, especially B. wexlerae, as a commensal bacterium that is inversely correlated with obesity and type 2 diabetes mellitus. Oral administration of B. wexlerae to mice induce metabolic changes and anti-inflammatory effects that decrease both high-fat diet–induced obesity and diabetes. The beneficial effects of B. wexlerae are correlated with unique amino-acid metabolism to produce S-adenosylmethionine, acetylcholine, and l-ornithine and carbohydrate metabolism resulting in the accumulation of amylopectin and production of succinate, lactate, and acetate, with simultaneous modification of the gut bacterial composition. These findings reveal unique regulatory pathways of host and microbial metabolism that may provide novel strategies in preventive and therapeutic approaches for metabolic disorders. Here, the authors inversely associate Blautia wexlerae with obesity and type 2 diabetes mellitus in humans and further show that administration of B. wexlerae to mice decrease both high-fat diet–induced obesity and diabetes via modulating gut microbial metabolism.
Collapse
|
53
|
Glasauer SMK, Goderie SK, Rauch JN, Guzman E, Audouard M, Bertucci T, Joy S, Rommelfanger E, Luna G, Keane-Rivera E, Lotz S, Borden S, Armando AM, Quehenberger O, Temple S, Kosik KS. Human tau mutations in cerebral organoids induce a progressive dyshomeostasis of cholesterol. Stem Cell Reports 2022; 17:2127-2140. [PMID: 35985329 PMCID: PMC9481908 DOI: 10.1016/j.stemcr.2022.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/26/2022] Open
Abstract
Mutations in the MAPT gene that encodes tau lead to frontotemporal dementia (FTD) with pathology evident in both cerebral neurons and glia. Human cerebral organoids (hCOs) from individuals harboring pathogenic tau mutations can reveal the earliest downstream effects on molecular pathways within a developmental context, generating interacting neurons and glia. We found that in hCOs carrying the V337M and R406W tau mutations, the cholesterol biosynthesis pathway in astrocytes was the top upregulated gene set compared with isogenic controls by single-cell RNA sequencing (scRNA-seq). The 15 upregulated genes included HMGCR, ACAT2, STARD4, LDLR, and SREBF2. This result was confirmed in a homozygous R406W mutant cell line by immunostaining and sterol measurements. Cholesterol abundance in the brain is tightly regulated by efflux and cholesterol biosynthetic enzyme levels in astrocytes, and dysregulation can cause aberrant phosphorylation of tau. Our findings suggest that cholesterol dyshomeostasis is an early event in the etiology of neurodegeneration caused by tau mutations. Cerebral organoid models of tauopathy caused by MAPT mutations Upregulated cholesterol and fatty acid biosynthesis genes in MAPT mutant astrocytes Elevation of cholesterol and its precursors in MAPT mutant cerebral organoids
Collapse
Affiliation(s)
- Stella M K Glasauer
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | | | - Jennifer N Rauch
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Elmer Guzman
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Morgane Audouard
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | | | - Shona Joy
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA
| | - Emma Rommelfanger
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Gabriel Luna
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Erica Keane-Rivera
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Steven Lotz
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA
| | - Susan Borden
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA
| | - Aaron M Armando
- Department of Pharmacology, University of California, San Diego, San Diego, CA 92093, USA
| | - Oswald Quehenberger
- Department of Pharmacology, University of California, San Diego, San Diego, CA 92093, USA
| | - Sally Temple
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA.
| | - Kenneth S Kosik
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
54
|
Wang Q, Cao H, Su X, Liu W. Identification of key miRNAs regulating fat metabolism based on RNA-seq from fat-tailed sheep and F2 of wild Argali. Gene X 2022; 834:146660. [PMID: 35680029 DOI: 10.1016/j.gene.2022.146660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/30/2022] [Accepted: 06/03/2022] [Indexed: 12/26/2022] Open
Abstract
The evolution mechanism of sheep tail fat has not yet been clear, many researches focus on this issue, yet there still many gaps to be filled in the targets and non-coding RNA regulation. In our study, the differential expression mRNAs and miRNAs were detected by RNA-seq and constructed a mRNA-miRNA network related to the lipid deposition in tail of fat-tailed sheep and F2 of Argali with domestic sheep (thin-tailed). Then 6 kinds of tissues from thin-tailed and control group were extracted for function validation of candidate genes and its regulator miRNAs. 125 differentially expressed miRNAs were identified by RNA-seq, and enrichment analysis of their target genes revealed 10 significantly enriched pathways related to lipid metabolism. In these pathways, 126 DE-miRNA target genes were also differentially expression in the same tissues in our previous transcriptomic data. In PPI network, 6 hubgenes (SCD, ACACA, GPD2, ELOVL6, ELOVL5, GPAM) were extracted using the cytoHubba application, and they may be target genes for 3 candidate DE-miRNAs (miR-320d, miR-151b, miR-6715). The validation results of RT-qPCR show: the expression trend of miR-320d is opposite to the target gene SCD, and that of miR-151b and the target gene ACACA are also opposite in 6 tissues, implying that they may have direct targeting relationships. Moreover, the expression of miR-320d in F2 tail fat was significantly higher than that in fat-tailed sheep (P < 0.05), and the expression of SCD in F2 tail fat was extremely significantly lower than that in fat-tailed sheep (P < 0.01). The expression of miR-151b in F2 tail fat and subcutaneous fat was significantly higher than that in fat-tailed sheep (P < 0.05), and the expression of ACACA in F2 subcutaneous fat was significantly lower than that in fat-tailed sheep. miR-320d may directly and negatively regulate tail fat deposition by targeting SCD, while miR-151b may indirectly and negatively regulate tail fat deposition by targeting ACACA.
Collapse
Affiliation(s)
- Qiong Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Hang Cao
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Xiaohui Su
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Wujun Liu
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China.
| |
Collapse
|
55
|
Yoh K, Ikeda K, Nagai S, Horie K, Takeda S, Inoue S. Constitutive activation of estrogen receptor α signaling in muscle prolongs exercise endurance in mice. Biochem Biophys Res Commun 2022; 628:11-17. [DOI: 10.1016/j.bbrc.2022.08.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022]
|
56
|
Wang H, Shen Z, Huang R, Zhao A, Jiang J, Li P, Zhou X, Yang S, Hou L. A polymorphism in porcine miR-22 is associated with pork color. Front Vet Sci 2022; 9:939440. [PMID: 35968001 PMCID: PMC9366310 DOI: 10.3389/fvets.2022.939440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/28/2022] [Indexed: 11/20/2022] Open
Abstract
MicroRNAs (miRNAs) are posttranscriptional regulators that play key roles in meat color regulation. Changes in miRNA expression affect their target mRNAs, leading to multifunctional effects on biological processes and phenotypes. In this study, a G > A mutation site located upstream of the precursor miR-22 sequence in Suhuai pigs was significantly correlated with the meat color parameter a*(redness) of the porcine longissimus dorsi (LD) muscle. AA genotype individuals had the highest average meat color a* value and the lowest miR-22 level. When G > A mutation was performed in the miR-22 overexpression vector, miR-22 expression significantly decreased. Considering that Ca2+ homeostasis is closely related to pig meat color, our results further demonstrated that ELOVL6 is a direct target of miR-22 in pigs. The effects of miR-22 on skeletal muscle intracellular Ca2+ were partially caused by the suppression of ELOVL6 expression.
Collapse
Affiliation(s)
- Han Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Department of Animal Breeding, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Zhonghao Shen
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Department of Animal Breeding, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Ruihua Huang
- Institute of Swine Science, Department of Animal Breeding, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ayong Zhao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Department of Animal Breeding, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Jiani Jiang
- Department of Statistical Sciences, University of Toronto, Toronto, ON, Canada
| | - Pinghua Li
- Institute of Swine Science, Department of Animal Breeding, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiaolong Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Department of Animal Breeding, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Songbai Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Department of Animal Breeding, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Liming Hou
- Institute of Swine Science, Department of Animal Breeding, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Liming Hou
| |
Collapse
|
57
|
Huang L, Luo J, Gao W, Song N, Tian H, Zhu L, Jiang Q, Loor JJ. CRISPR/Cas9-Induced Knockout of miR-24 Reduces Cholesterol and Monounsaturated Fatty Acid Content in Primary Goat Mammary Epithelial Cells. Foods 2022; 11:2012. [PMID: 35885255 PMCID: PMC9316712 DOI: 10.3390/foods11142012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 12/02/2022] Open
Abstract
In nonruminants, microRNA (miRNA)-24 plays an important role in lipid metabolism in adipose tissue and the liver. Although the abundance of miR-24 in ruminant mammary glands is the highest during peak lactation, its potential role in regulating the synthesis and secretion of fat into milk is unclear. This study aimed to identify the function of miR-24 in these processes using CRISPR/Cas9 technology in primary goat mammary epithelial cells (GMEC). A single clone containing a 66-nucleotide deletion between two sgRNAs mediating double-strand break (DSB) sites was obtained. The abundance of miR-24-3p and miR-24-5p encoded by the deleted sequence was decreased, whereas the target genes INSIG1 and FASN increased. In addition, miR-24 knockout reduced the gene abundance of genes associated with fatty acid and TAG synthesis and transcription regulator. Similarly, the content of cholesterol and monounsaturated fatty acid (MUFA) C18:1 decreased, whereas that of polyunsaturated fatty acids (PUFA) C18:2, C20:3, C20:4 and C20:5 increased. Subsequently, knocking down of INSIG1 but not FASN reversed the effect of miR-24 knockout, indicating that miR-24 modulated cholesterol and fatty acid synthesis mainly by targeting INSIG1. Overall, the present in vitro data demonstrated a critical role for miR-24 in regulating lipid and fatty acid synthesis and highlighted the possibility of manipulating milk components in dairy goats.
Collapse
Affiliation(s)
- Lian Huang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (L.H.); (W.G.); (N.S.); (H.T.); (L.Z.)
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610000, China
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (L.H.); (W.G.); (N.S.); (H.T.); (L.Z.)
| | - Wenchang Gao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (L.H.); (W.G.); (N.S.); (H.T.); (L.Z.)
| | - Ning Song
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (L.H.); (W.G.); (N.S.); (H.T.); (L.Z.)
| | - Huibin Tian
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (L.H.); (W.G.); (N.S.); (H.T.); (L.Z.)
| | - Lu Zhu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (L.H.); (W.G.); (N.S.); (H.T.); (L.Z.)
| | - Qianming Jiang
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA;
| | - Juan J. Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA;
| |
Collapse
|
58
|
Li P, Zhang R, Wang M, Chen Y, Chen Z, Ke X, Zuo L, Wang J. Baicalein Prevents Fructose-Induced Hepatic Steatosis in Rats: In the Regulation of Fatty Acid De Novo Synthesis, Fatty Acid Elongation and Fatty Acid Oxidation. Front Pharmacol 2022; 13:917329. [PMID: 35847050 PMCID: PMC9280198 DOI: 10.3389/fphar.2022.917329] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/13/2022] [Indexed: 11/30/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), ranging from simple steatosis to non-alcoholic steatohepatitis (NASH), hepatic fibrosis and even hepatocellular carcinoma, is a liver disease worldwide without approved therapeutic drugs. Baicalein (BAL), a flavonoid compound extracted from the Traditional Chinese Medicine (TCM) Scutellariae Radix (Scutellaria baicalensis Georgi.), has been used in TCM clinical practice for thousands of years to treat liver diseases due to its "hepatoprotective effect". However, the underlying liver-protecting mechanisms remain largely unknown. Here, we found that oral administration of BAL significantly decreased excess serum levels of triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), aspartate aminotransferase (AST) as well as hepatic TG in fructose-fed rats. Attenuation of the increased vacuolization and Oil Red O staining area was evident on hepatic histological examination in BAL-treated rats. Mechanistically, results of RNA-sequencing, western-blot, real-time quantitative PCR (RT-qPCR) and hepatic metabolomics analyses indicated that BAL decreased fructose-induced excessive nuclear expressions of mature sterol regulatory element-binding protein 1c (mSREBP1c) and carbohydrate response element-binding protein (ChREBP), which led to the decline of lipogenic molecules [including fatty acid synthase (FASN), stearoyl-CoA desaturase 1 (SCD1), elongation of very long chain fatty acids 6 (ELOVL6), acetyl-CoA carboxylase (ACC)], accompanying with the alternation of hepatic fatty acids composition. Meanwhile, BAL enhanced fatty acid oxidation by activating AMPK/PGC1α signaling axis and PPARα signal pathway, which elicited high expression of carnitine palmitoyl transferase 1α (CPT1α) and Acyl-CoA oxidase 1 (ACO1) in livers of fructose-fed rats, respectively. BAL ameliorated fructose-induced hepatic steatosis, which is associated with regulating fatty acid synthesis, elongation and oxidation.
Collapse
Affiliation(s)
- Pan Li
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Ruoyu Zhang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Meng Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Yuwei Chen
- The Pharmacy Department, the Second People’s Hospital of Jiulongpo District, Chongqing, China
| | - Zhiwei Chen
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Xiumei Ke
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Ling Zuo
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Jianwei Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
59
|
Saul N, Dhondt I, Kuokkanen M, Perola M, Verschuuren C, Wouters B, von Chrzanowski H, De Vos WH, Temmerman L, Luyten W, Zečić A, Loier T, Schmitz-Linneweber C, Braeckman BP. Identification of healthspan-promoting genes in Caenorhabditis elegans based on a human GWAS study. Biogerontology 2022; 23:431-452. [PMID: 35748965 PMCID: PMC9388463 DOI: 10.1007/s10522-022-09969-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/16/2022] [Indexed: 12/03/2022]
Abstract
To find drivers of healthy ageing, a genome-wide association study (GWAS) was performed in healthy and unhealthy older individuals. Healthy individuals were defined as free from cardiovascular disease, stroke, heart failure, major adverse cardiovascular event, diabetes, dementia, cancer, chronic obstructive pulmonary disease (COPD), asthma, rheumatism, Crohn’s disease, malabsorption or kidney disease. Six single nucleotide polymorphisms (SNPs) with unknown function associated with ten human genes were identified as candidate healthspan markers. Thirteen homologous or closely related genes were selected in the model organism C. elegans for evaluating healthspan after targeted RNAi-mediated knockdown using pathogen resistance, muscle integrity, chemotaxis index and the activity of known longevity and stress response pathways as healthspan reporters. In addition, lifespan was monitored in the RNAi-treated nematodes. RNAi knockdown of yap-1, wwp-1, paxt-1 and several acdh genes resulted in heterogeneous phenotypes regarding muscle integrity, pathogen resistance, chemotactic behaviour, and lifespan. Based on these observations, we hypothesize that their human homologues WWC2, CDKN2AIP and ACADS may play a role in health maintenance in the elderly.
Collapse
Affiliation(s)
- Nadine Saul
- Molecular Genetics Group, Institute of Biology, Humboldt University of Berlin, Berlin, Germany.
| | - Ineke Dhondt
- Laboratory of Aging Physiology and Molecular Evolution, Biology Department, Ghent University, Ghent, Belgium
| | - Mikko Kuokkanen
- Genomics and Biomarkers Unit, Department of Health, National Institute for Health and Welfare, Helsinki, Finland.,Department of Human Genetics and South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Markus Perola
- Genomics and Biomarkers Unit, Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| | - Clara Verschuuren
- Laboratory of Aging Physiology and Molecular Evolution, Biology Department, Ghent University, Ghent, Belgium
| | | | - Henrik von Chrzanowski
- Molecular Genetics Group, Institute of Biology, Humboldt University of Berlin, Berlin, Germany.,The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | | | | | - Aleksandra Zečić
- Laboratory of Aging Physiology and Molecular Evolution, Biology Department, Ghent University, Ghent, Belgium
| | - Tim Loier
- Laboratory of Aging Physiology and Molecular Evolution, Biology Department, Ghent University, Ghent, Belgium
| | | | - Bart P Braeckman
- Laboratory of Aging Physiology and Molecular Evolution, Biology Department, Ghent University, Ghent, Belgium
| |
Collapse
|
60
|
Branched-Chain Fatty Acids Alter the Expression of Genes Responsible for Lipid Synthesis and Inflammation in Human Adipose Cells. Nutrients 2022; 14:nu14112310. [PMID: 35684110 PMCID: PMC9183013 DOI: 10.3390/nu14112310] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Recently, we have demonstrated a decreased level of iso-branched-chain fatty acids (iso-BCFAs) in patients with excessive weight. However, it is still unclear whether BCFAs may influence lipid metabolism and inflammation in lipogenic tissues. To verify this, human visceral adipocytes were cultured with three different concentrations of selected iso-BCFA (14-methylpentadecanoic acid) and anteiso-BCFA (12-methyltetradecanoic acid), and then the expression of genes associated with lipid metabolism (FASN-fatty acid synthase; SREBP1-sterol regulatory element-binding protein 1; SCD1-stearoyl-CoA desaturase; ELOVL4-fatty acid elongase 4; ELOVL6-fatty acid elongase 6; FADS2-fatty acid desaturase 2; FADS1-fatty acid desaturase 1) and inflammation (COX-2-cyclooxygenase 2; ALOX-15-lipoxygenase 15; IL-6-interleukin 6) were determined. This study demonstrates for the first time that incubation with iso-BCFA decreases the expression of adipocyte genes that are associated with lipid metabolism (except FASN) and inflammation. These findings suggest that changes in the iso-BCFA profile in obese patients may contribute to adipose inflammation and dyslipidemia. Further studies should evaluate whether iso-BCFA supplementation in obese patients would be beneficial.
Collapse
|
61
|
Inokuchi JI, Kanoh H. Pathophysiological Significance of GM3 Ganglioside Molecular Species With a Particular Attention to the Metabolic Syndrome Focusing on Toll-Like Receptor 4 Binding. Front Mol Biosci 2022; 9:918346. [PMID: 35712350 PMCID: PMC9196240 DOI: 10.3389/fmolb.2022.918346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
GM3 ganglioside, the first molecule in ganglioside family biosynthesis, is formed by transfer of sialic acid to lactosylceramide. Several dozen GM3 molecular species exist, based on diversity of ceramide structures. Among ceramide structures composed of sphingosine and fatty acids, there is a great diversity resulting from different combinations of chain length, hydroxylation, and unsaturation of fatty acid chains. Expression patterns of GM3 species in serum vary during pathogenesis of metabolic syndrome. Physiological activity of each species, and significance of the variability, are poorly understood. Our studies revealed that GM3 species with differing fatty acid structures act as pro- or anti-inflammatory endogenous Toll-like receptor 4 (TLR4) ligands. Very long-chain fatty acid (VLCFA) and α-hydroxyl VLCFA GM3 variants strongly enhanced TLR4 activation. In contrast, long-chain fatty acid (LCFA) and ω-9 unsaturated VLCFA GM3 variants suppressed TLR4 activation. GM3 interacted with extracellular TLR4/myeloid differentiation factor 2 (MD-2) complex, thereby promoting dimerization/oligomerization. In obesity and metabolic syndrome, VLCFA-variant GM3 species were elevated in serum and adipose tissue, whereas LCFA-variant species were reduced, and such imbalances were correlated with disease progression. Our findings summarized in this review demonstrate that GM3 molecular species are disease-related endogenous TLR4 ligands and modulate homeostatic and pathogenic innate immune responses.
Collapse
Affiliation(s)
- Jin-ichi Inokuchi
- Division of Glycopathology, Institute of Molecular Biomembranes and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, Osaka, Japan
- *Correspondence: Jin-ichi Inokuchi,
| | - Hirotaka Kanoh
- Division of Glycopathology, Institute of Molecular Biomembranes and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
62
|
Sun W, Zhang T, Hu S, Tang Q, Long X, Yang X, Gun S, Chen L. Chromatin accessibility landscape of stromal subpopulations reveals distinct metabolic and inflammatory features of porcine subcutaneous and visceral adipose tissue. PeerJ 2022; 10:e13250. [PMID: 35646489 PMCID: PMC9138157 DOI: 10.7717/peerj.13250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/21/2022] [Indexed: 01/13/2023] Open
Abstract
Background Fat accumulation in visceral adipose tissue (VAT) confers increased risk for metabolic disorders of obesity, whereas accumulation of subcutaneous adipose tissue (SAT) is associated with lower risk and may be protective. Previous studies have shed light on the gene expression profile differences between SAT and VAT; however, the chromatin accessibility landscape differences and how the cis-regulatory elements govern gene expression changes between SAT and VAT are unknown. Methods Pig were used to characterize the differences in chromatin accessibility between the two adipose depots-derived stromal vascular fractions (SVFs) using DNase-sequencing (DNase-seq). Using integrated data from DNase-seq, H3K27ac ChIP-sequencing (ChIP-seq), and RNA-sequencing (RNA-seq), we investigated how the regulatory locus complexity regulated gene expression changes between SAT and VAT and the possible impact that these changes may have on the different biological functions of these two adipose depots. Results SVFs form SAT and VAT (S-SVF and V-SVF) have differential chromatin accessibility landscapes. The differential DNase I hypersensitive site (DHS)-associated genes, which indicate dynamic chromatin accessibility, were mainly involved in metabolic processes and inflammatory responses. Additionally, the Krüppel-like factor family of transcription factors were enriched in the differential DHSs. Furthermore, the chromatin accessibility data were highly associated with differential gene expression as indicated using H3K27ac ChIP-seq and RNA-seq data, supporting the validity of the differential gene expression determined using DNase-seq. Moreover, by combining epigenetic and transcriptomic data, we identified two candidate genes, NR1D1 and CRYM, could be crucial to regulate distinct metabolic and inflammatory characteristics between SAT and VAT. Together, these results uncovered differences in the transcription regulatory network and enriched the mechanistic understanding of the different biological functions between SAT and VAT.
Collapse
Affiliation(s)
- Wenyang Sun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China,Key Laboratory of Pig Industry Sciences (Ministry of Agriculture), Chongqing Academy of Animal Science, Chongqing, China
| | - Tinghuan Zhang
- Key Laboratory of Pig Industry Sciences (Ministry of Agriculture), Chongqing Academy of Animal Science, Chongqing, China
| | - Silu Hu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qianzi Tang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xi Long
- Key Laboratory of Pig Industry Sciences (Ministry of Agriculture), Chongqing Academy of Animal Science, Chongqing, China
| | - Xu Yang
- College of Nursing, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Lei Chen
- Key Laboratory of Pig Industry Sciences (Ministry of Agriculture), Chongqing Academy of Animal Science, Chongqing, China
| |
Collapse
|
63
|
Genome-wide characterization of the Elovl gene family in Gymnocypris przewalskii and their potential roles in adaptation to cold temperature. Comp Biochem Physiol B Biochem Mol Biol 2022; 262:110759. [PMID: 35605755 DOI: 10.1016/j.cbpb.2022.110759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/01/2022] [Accepted: 05/17/2022] [Indexed: 11/21/2022]
Abstract
The elongase of the very long-chain fatty acids (Elovls) gene family in fish has more diversity than in other vertebrates, which plays several critical roles in fatty acid synthesis and low-temperature stress adaptation. Gymnocypris przewalskii settles in plateau lakes with cold and resource-poor settings, and the evolution and function of Elovl genes in this fish are unknown. In the study, to identify the Elovl genes in G. przewalskii, the genome-wide identification and phylogenetic analysis of the gene members have been conducted with the expression profile of different tissues under cold stress. Fatty acid compositions, meanwhile, were detected in both the hepatopancreas and skeletal muscle during cold adaptation. A total of 21 Elovl members have been identified from the genome of G. przewalskii, belonging to Elovl1, Elovl2, Elovl4, Elovl5, Elovl6, Elovl7, and Elovl8 subgroups, with conserved ELO domain and four common motifs. Phylogenetic analysis revealed that subfamilies Elovl1 and Elovl7, Elov2, and Elovl5 have a closer genetic relationship, while the Elovl6 class was classed into an independent clade. Synteny analysis showed that whole-genome duplication, tandem duplicates, and gene conversion could drive the Elovls family expansion in G. przewalskii. The Ka/Ks and RELAX analysis showed distinguishing positive selection traces in ORF sequences of gpElovl2. Transcriptional data showed that different gpElovl subtypes exhibited a tissue-specific expression. Subtypes gpElovl1a, gpElovl2 and gpElovl6l were highly expressed induced by cold stress, as well as fatty acid metabolism-related genes, including Acyl-CoA synthetase long-chain gene (Ascl1a-1) and Stearyl-CoA desaturase gene (Scd1a-1). In addition, monounsaturated fatty acid (MUFA) and polyunsaturated fatty acid (PUFA) contents of the hepatopancreas and skeletal muscle were significantly increased under 15-day cold stress. These results provide a better understanding of fish Elovl genes and their roles in cold adaptation.
Collapse
|
64
|
Matsuzaka T, Shimano H. Role of Fatty Acid Elongase Elovl6 in the Regulation of Fatty Acid Quality and Lifestyle-related Diseases. YAKUGAKU ZASSHI 2022; 142:473-476. [DOI: 10.1248/yakushi.21-00176-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Takashi Matsuzaka
- Department of Endocrinology and Metabolism, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba
| |
Collapse
|
65
|
Identification of the Metabolomics Signature of Human Follicular Fluid from PCOS Women with Insulin Resistance. DISEASE MARKERS 2022; 2022:6877541. [PMID: 35465261 PMCID: PMC9019454 DOI: 10.1155/2022/6877541] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/22/2022] [Indexed: 12/30/2022]
Abstract
Context. Polycystic ovary syndrome (PCOS) is a gynecological endocrine disease, and approximately 60% of patients with PCOS have different degrees of insulin resistance (IR). The regulatory role of metabolic networks in human follicular fluid (FF) related to IR in PCOS remains unclear. Aims. To explore the effect of IR on the metabolism of PCOS by analyzing the changes in FF metabolites in PCOS patients who are undergoing assisted reproductive technology based on the metabonomic platform of ultraperformance gas chromatography coupled to mass spectrometry (GC/MS). Method. Eight PCOS patients with IR (PCOS-IR) and 8 PCOS patients without IR (PCOS-NIR) were enrolled. All patients received controlled ovarian stimulation by using the gonadotropin-releasing hormone (GnRH) antagonist protocol, and the FF of a single dominant follicle was collected on the day of oocyte retrieval. The metabolite profiles of the FF were determined by GC/MS. Key Results. A total of 20 differentially expressed metabolites in FF were identified. Compared with levels in the PCOS-NIR group, stearic acid, palmitic acid, pentadecanoic acid, stigmasterol, citric acid, isocitric acid, thymine, and pyruvic acid in FF were significantly increased in the PCOS-IR group. Lithocholic acid and sinapinic acid in FF decreased significantly. The affected metabolic pathways with potential regulatory roles were identified by KEGG annotation. Conclusion. Compared with the PCOS-NIR group, the PCOS-IR group showed more significant metabolic abnormalities. Implications. These results will help us to understand the pathogenesis of PCOS combined with IR and will provide new clues for studying metabolic disorders associated with PCOS, e.g., IR.
Collapse
|
66
|
Wei L, Weng S, Lu X, Zhu S, Yang Q, Chen YQ. 3-Hydroxyacyl-CoA dehydratase 2 deficiency confers resistance to diet-induced obesity and glucose intolerance. Biochem Biophys Res Commun 2022; 605:134-140. [PMID: 35325655 DOI: 10.1016/j.bbrc.2022.03.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 11/02/2022]
Abstract
Obesity and associated complications are becoming a pandemic. Inhibiting fatty acid synthesis and elongation is an important intervention for the treatment of obesity. Despite intensive investigations, many potential therapeutic targets have yet to be discovered. In this study, decreased expression of Hacd2 (a newly found enzyme in fatty acid elongation) was found in HFD induced mice and loss of Hacd2 expression in the liver protected mice against HFD induced obesity as well as associated fatty liver disease and diabetes. Additionally, further study indicated that hepatic HACD2 deficiency increased energy expenditure by upregulating the transcription of thermogenic programming genes. Our results suggest that HACD2 may be a promising therapeutic target for the management of obesity and associated metabolic diseases.
Collapse
Affiliation(s)
- Lengyun Wei
- Wuxi School of Medicine, Jiangnan University, Jiangsu Province, 214122, China; Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, China; School of Food Science and Technology, Jiangnan University, Jiangsu Province, 214122, China
| | - Shengmei Weng
- Wuxi School of Medicine, Jiangnan University, Jiangsu Province, 214122, China; Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, China
| | - Xuyang Lu
- Wuxi School of Medicine, Jiangnan University, Jiangsu Province, 214122, China; Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, China; School of Food Science and Technology, Jiangnan University, Jiangsu Province, 214122, China
| | - Shenglong Zhu
- Wuxi School of Medicine, Jiangnan University, Jiangsu Province, 214122, China; Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, China
| | - Qin Yang
- Wuxi School of Medicine, Jiangnan University, Jiangsu Province, 214122, China; Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, China
| | - Yong Q Chen
- Wuxi School of Medicine, Jiangnan University, Jiangsu Province, 214122, China; Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, China; School of Food Science and Technology, Jiangnan University, Jiangsu Province, 214122, China.
| |
Collapse
|
67
|
Sato D, Nakamura T, Amarume J, Yano M, Umehara Y, Nishina A, Tsutsumi K, Feng Z, Kusunoki M. Effects of dapagliflozin on adipose and liver fatty acid composition and mRNA expression involved in lipid metabolism in high-fat-fed rats. Endocr Metab Immune Disord Drug Targets 2022; 22:944-953. [PMID: 35255800 DOI: 10.2174/1871530322666220307153618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/23/2021] [Accepted: 01/25/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND SGLT2 inhibitor enhances not only glucose excretion but also fatty acid utilization. Those facts suggest that SGLT2 inhibitor affects fat accumulation and lipid storage. OBJECTIVE In the present study, we evaluated the effects of dapagliflozin on fatty acid composition and gene expression involved in fatty acid metabolism in rat adipose and liver tissues. METHODS We administered 1 mg/kg/day dapagliflozin for 7 weeks to male high-fat-fed rats (DAPA group), and then weights and 22 fatty acid contents in the epididymal (EPI), mesenteric (MES), retroperitoneal (RET) and subcutaneous (SUB) adipose tissues, and the liver were compared with vehicle-administered control group. RESULTS In the EPI, RET, and SUB in the DAPA group, contents of several fatty acids were lower (P<0.05) than those in the control group while no significant difference was detected in tissue weight. In the MES, not only tissue weight but also wide variety of fatty acid contents including saturated, monounsaturated, and polyunsaturated fatty acids were lower (P<0.05). As for the liver tissue, no significant difference was observed in fatty acid contents between the groups. mRNA expression of Srebp1c in EPI was significantly higher (P<0.05) in the DAPA group than in the control group, while Scd1 expression in the liver was lower (P<0.01). CONCLUSION These results suggest that dapagliflozin might suppress lipid accumulation especially in the MES, and could reduce contents of fatty acids not in the liver but in adipose tissues in high-fat-fed rats. In addition, dapagliflozin could influence mRNA expression involved in lipogenesis in the EPI and liver.
Collapse
Affiliation(s)
- Daisuke Sato
- Department of Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University (4-3-16 Johnan, Yonezawa 992-8510, Japan)
| | - Takao Nakamura
- Department of Biomedical Information Engineering, Graduate School of Medical Science, Yamagata University (2-2-2 Iida-nishi, Yamagata 990-9585, Japan)
| | - Jota Amarume
- Department of Bio-Systems Engineering, Graduate School of Science and Engineering, Yamagata University (4-3-16 Johnan, Yonezawa 992-8510, Japan)
| | - Mizuna Yano
- Department of Bio-Systems Engineering, Graduate School of Science and Engineering, Yamagata University (4-3-16 Johnan, Yonezawa 992-8510, Japan)
| | - Yuta Umehara
- Department of Bio-Systems Engineering, Graduate School of Science and Engineering, Yamagata University (4-3-16 Johnan, Yonezawa 992-8510, Japan)
| | - Atsuyoshi Nishina
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University (1-8-14 Kandasurugadai, Chiyoda-ku, 101-8308, Japan)
| | - Kazuhiko Tsutsumi
- Okinaka Memorial Institute for Medical Research (2-2-2 Toranomon, Minato-ku, Tokyo 105-8470, Japan)
| | - Zhonggang Feng
- Department of Bio-Systems Engineering, Graduate School of Science and Engineering, Yamagata University (4-3-16 Johnan, Yonezawa 992-8510, Japan)
| | - Masataka Kusunoki
- Research Center of Health, Physical Fitness and Sports, Nagoya University (Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan)
| |
Collapse
|
68
|
Kanoh H. [Homeostatic and Pathophysiological Regulation of Toll-like Receptor 4 Signaling by GM3 Ganglioside Molecular Species]. YAKUGAKU ZASSHI 2022; 142:195-203. [PMID: 35228371 DOI: 10.1248/yakushi.21-00193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic inflammation plays an important role in the pathogenesis of obesity and metabolic disorders. In obesity, pattern-recognition receptors in innate immune system, such as Toll-like receptor 4 (TLR4), cause chronic inflammation through prolonged activation by various endogenous ligands, including fatty acids and its metabolites. Gangliosides and other glycosphingolipids are important metabolites of fatty acids and saccharides. GM3, the simplest ganglioside comprising α2,3-sialyllactose, is expressed in insulin-sensitive peripheral tissues such as liver and adipose tissue, and furthermore secreted abundantly into serum. It has been shown that GM3 regulates the signal transduction of insulin receptor in adipose tissue as a component of membrane microdomains, and elevation in GM3 level causes insulin resistance. However, the homeostatic and pathophysiological functions of extracellularly secreted GM3 are poorly understood. We recently reported that GM3 species with differing fatty acid structures act as pro- and anti-inflammatory endogenous TLR4 ligands. GM3 with very long-chain fatty acid (VLCFA) and α-hydroxyl VLCFA strongly enhanced TLR4 activation. Conversely, GM3 with long-chain fatty acid (LCFA) and ω-9 unsaturated VLCFA inhibited TLR4 activation, counteracting the VLCFA species. GM3 interacted with the extracellular complex of TLR4 and promoted dimerization/oligomerization. In obesity and metabolic disorders, VLCFA species were increased in serum and adipose tissue, whereas LCFA species was relatively decreased; their imbalances were correlated to disease progression. Our findings suggest that GM3 species are disease-related endogenous TLR4 ligands, and "glycosphingolipid sensing" by TLR4 controls the homeostatic and pathological roles of innate immune signaling.
Collapse
Affiliation(s)
- Hirotaka Kanoh
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Department of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| |
Collapse
|
69
|
Risha MA, Ali A, Siengdee P, Trakooljul N, Dannenberger D, Wimmers K, Ponsuksili S. Insights into molecular pathways and fatty acid membrane composition during the temperature stress response in the murine C2C12 cell model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151019. [PMID: 34662617 DOI: 10.1016/j.scitotenv.2021.151019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Daily and seasonal temperature fluctuations are inevitable due to climate change, which highlights the importance of studying the detrimental effects of temperature fluctuations on the health, productivity, and product quality of farm animals. Muscle membrane composition and the molecular signals are vital for muscle cell differentiation and muscle growth, but their response to temperature stress is not well characterized. Temperature changes can lead to modification of membrane components of the cell, which may affect its surroundings and intracellular signaling pathways. Using C2C12 myoblast cells as a model of skeletal muscle development, this study was designed to investigate the effects of high temperature (39 °C and 41 °C) and low temperature (35 °C) on molecular pathways in the cells as well as the cell membrane fatty acid composition. Our results show that several genes were differentially expressed in C2C12 cells cultured under heat or cold stress, and these genes were enriched important KEGG pathways including PI3K-Akt signaling pathway, lysosome and HIF- signaling pathway, Wnt signaling pathway and AMPK signaling pathway. Our analysis further reveals that several membrane transporters and genes involved in lipid metabolism and fatty acid elongation were also differentially expressed in C2C12 cells cultured under high or low temperature. Additionally, temperature stress shifts the fatty acid composition in the cell membranes, including the proportion of saturated, monounsaturated and polyunsaturated fatty acids. This study revealed an interference between fatty acid composition in the membranes and changing molecular pathways including lipid metabolism and fatty acids elongation mediated under thermal stress. These findings will reinforce a better understanding of the adaptive mechanisms in skeletal muscle under temperature stress.
Collapse
Affiliation(s)
- Marua Abu Risha
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Functional Genome Analysis Research Unit, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Asghar Ali
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Functional Genome Analysis Research Unit, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Puntita Siengdee
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Functional Genome Analysis Research Unit, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Nares Trakooljul
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Genomics Research Unit, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Dirk Dannenberger
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Muscle Biology and Growth, Lipid metabolism and muscular adaptation workgroup, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Klaus Wimmers
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Genomics Research Unit, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany; Faculty of Agricultural and Environmental Sciences, University Rostock, 18059 Rostock, Germany
| | - Siriluck Ponsuksili
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Functional Genome Analysis Research Unit, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany.
| |
Collapse
|
70
|
Xu Y, Miller PC, Phoon CK, Ren M, Nargis T, Rajan S, Hussain MM, Schlame M. LPGAT1 controls the stearate/palmitate ratio of phosphatidylethanolamine and phosphatidylcholine in sn-1 specific remodeling. J Biol Chem 2022; 298:101685. [PMID: 35131264 PMCID: PMC8892159 DOI: 10.1016/j.jbc.2022.101685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 01/18/2023] Open
Abstract
Most mammalian phospholipids contain a saturated fatty acid at the sn-1 carbon atom and an unsaturated fatty acid at the sn-2 carbon atom of the glycerol backbone group. While the sn-2 linked chains undergo extensive remodeling by deacylation and reacylation (Lands cycle), it is not known how the composition of saturated fatty acids is controlled at the sn-1 position. Here, we demonstrate that lysophosphatidylglycerol acyltransferase 1 (LPGAT1) is an sn-1 specific acyltransferase that controls the stearate/palmitate ratio of phosphatidylethanolamine (PE) and phosphatidylcholine. Bacterially expressed murine LPGAT1 transferred saturated acyl-CoAs specifically into the sn-1 position of lysophosphatidylethanolamine (LPE) rather than lysophosphatidylglycerol and preferred stearoyl-CoA over palmitoyl-CoA as the substrate. In addition, genetic ablation of LPGAT1 in mice abolished 1-LPE:stearoyl-CoA acyltransferase activity and caused a shift from stearate to palmitate species in PE, dimethyl-PE, and phosphatidylcholine. Lysophosphatidylglycerol acyltransferase 1 KO mice were leaner and had a shorter life span than their littermate controls. Finally, we show that total lipid synthesis was reduced in isolated hepatocytes of LPGAT1 knockout mice. Thus, we conclude that LPGAT1 is an sn-1 specific LPE acyltransferase that controls the stearate/palmitate homeostasis of PE and the metabolites of the PE methylation pathway and that LPGAT1 plays a central role in the regulation of lipid biosynthesis with implications for body fat content and longevity.
Collapse
|
71
|
Moriyama K, Masuda Y, Suzuki N, Yamada C, Kishimoto N, Takashimizu S, Kubo A, Nishizaki Y. Estimated Elovl6 and delta-5 desaturase activities might represent potential markers for insulin resistance in Japanese adults. J Diabetes Metab Disord 2022; 21:197-207. [PMID: 35673485 PMCID: PMC9167368 DOI: 10.1007/s40200-021-00958-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/07/2021] [Indexed: 01/31/2023]
Abstract
Purpose Results from a recent study indicated that lower stearic acid/palmitic acid (SA/PA) and arachidonic acid/dihomo-γ-linolenic acid (AA/DGLA) ratios were associated with metabolically unhealthy obesity. However, this has not been extensively studied in the Japanese population. Methods We recruited 291 Japanese subjects with serum free fatty acid profiles undergoing health examinations. Whole serum desaturase activity was estimated as the product: precursor ratio -SA/PA ratio for elongation of long-chain fatty acid family member 6 (Elovl6) and AA/DGLA for delta-5 desaturase (D5D). The determinants of Elovl6 and D5D activity were investigated using multiple regression analyses. Results The Elovl6 and D5D activities exhibited a negative correlation with the logmatic-transformed TG/HDL-C ratio and TyG index. Multiple regression analyses revealed that the TG/HDL-C ratio and TyG index were negatively associated with Elovl6 and D5D activities. Most atherogenic markers were worse in the low Elovl6 or D5D activity group than in the high Elovl6 or D5D activity group. When study subjects were further stratified by TG levels, most atherogenic markers were the worst in the highest TG group in either the lowest Elovl6 or lowest D5D activity groups. Conclusion The estimated Elovl6 and D5D activities might be useful markers of insulin resistance in Japanese subjects.
Collapse
Affiliation(s)
- Kengo Moriyama
- Department of Clinical Health Science, Tokai University School of Medicine, Tokai University Hachioji Hospital, 1838 Ishikawa-machi, Hachioji, Tokyo 192-0032 Japan
| | - Yumi Masuda
- Department of Clinical Health Science, Tokai University School of Medicine, 1-2-5, Yoyogi, Tokyo 151-0053 Japan
| | - Nana Suzuki
- Department of Clinical Health Science, Tokai University School of Medicine, Tokai University Hospital, 143 Shimokasuya, Isehara, Kanagawa 259-1193 Japan
| | - Chizumi Yamada
- Department of Clinical Health Science, Tokai University School of Medicine, 1-2-5, Yoyogi, Tokyo 151-0053 Japan
- Tokai University Tokyo Hospital, 1-2-5, Yoyogi, Tokyo 151-0053 Japan
| | - Noriaki Kishimoto
- Department of Clinical Health Science, Tokai University School of Medicine, 1-2-5, Yoyogi, Tokyo 151-0053 Japan
- Tokai University Tokyo Hospital, 1-2-5, Yoyogi, Tokyo 151-0053 Japan
| | - Shinji Takashimizu
- Department of Clinical Health Science, Tokai University School of Medicine, Tokai University Hospital, 143 Shimokasuya, Isehara, Kanagawa 259-1193 Japan
| | - Akira Kubo
- Department of Clinical Health Science, Tokai University School of Medicine, 1-2-5, Yoyogi, Tokyo 151-0053 Japan
- Tokai University Tokyo Hospital, 1-2-5, Yoyogi, Tokyo 151-0053 Japan
| | - Yasuhiro Nishizaki
- Department of Clinical Health Science, Tokai University School of Medicine, 1-2-5, Yoyogi, Tokyo 151-0053 Japan
- Tokai University Tokyo Hospital, 1-2-5, Yoyogi, Tokyo 151-0053 Japan
| |
Collapse
|
72
|
Geng J, Liu Y, Dai H, Wang C. Fatty Acid Metabolism and Idiopathic Pulmonary Fibrosis. Front Physiol 2022; 12:794629. [PMID: 35095559 PMCID: PMC8795701 DOI: 10.3389/fphys.2021.794629] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Fatty acid metabolism, including the de novo synthesis, uptake, oxidation, and derivation of fatty acids, plays several important roles at cellular and organ levels. Recent studies have identified characteristic changes in fatty acid metabolism in idiopathic pulmonary fibrosis (IPF) lungs, which implicates its dysregulation in the pathogenesis of this disorder. Here, we review the evidence for how fatty acid metabolism contributes to the development of pulmonary fibrosis, focusing on the profibrotic processes associated with specific types of lung cells, including epithelial cells, macrophages, and fibroblasts. We also summarize the potential therapeutics that target this metabolic pathway in treating IPF.
Collapse
Affiliation(s)
- Jing Geng
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuan Liu
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huaping Dai
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Huaping Dai,
| | - Chen Wang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Chen Wang,
| |
Collapse
|
73
|
Okajima Y, Matsuzaka T, Miyazaki S, Motomura K, Ohno H, Sharma R, Shimura T, Istiqamah N, Han SI, Mizunoe Y, Osaki Y, Iwasaki H, Yatoh S, Suzuki H, Sone H, Miyamoto T, Aita Y, Takeuchi Y, Sekiya M, Yahagi N, Nakagawa Y, Tomita T, Shimano H. Morphological and functional adaptation of pancreatic islet blood vessels to insulin resistance is impaired in diabetic db/db mice. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166339. [PMID: 35017029 DOI: 10.1016/j.bbadis.2022.166339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 11/07/2021] [Accepted: 12/22/2021] [Indexed: 11/19/2022]
Abstract
The pancreatic islet vasculature is of fundamental importance to the β-cell response to obesity-associated insulin resistance. To explore islet vascular alterations in the pathogenesis of type 2 diabetes, we evaluated two insulin resistance models: ob/ob mice, which sustain large β-cell mass and hyperinsulinemia, and db/db mice, which progress to diabetes due to secondary β-cell compensation failure for insulin secretion. Time-dependent changes in islet vasculature and blood flow were investigated using tomato lectin staining and in vivo live imaging. Marked islet capillary dilation was observed in ob/ob mice, but this adaptive change was blunted in db/db mice. Islet blood flow volume was augmented in ob/ob mice, whereas it was reduced in db/db mice. The protein concentrations of total and phosphorylated endothelial nitric oxide synthase (eNOS) at Ser1177 were increased in ob/ob islets, while they were diminished in db/db mice, indicating decreased eNOS activity. This was accompanied by an increased retention of advanced glycation end-products in db/db blood vessels. Amelioration of diabetes by Elovl6 deficiency involved a restoration of capillary dilation, blood flow, and eNOS phosphorylation in db/db islets. Our findings suggest that the disability of islet capillary dilation due to endothelial dysfunction impairs local islet blood flow, which may play a role in the loss of β-cell function and further exacerbate type 2 diabetes.
Collapse
Affiliation(s)
- Yuka Okajima
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Takashi Matsuzaka
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| | - Shun Miyazaki
- Timelapse Vision Inc., 5-23-11 Honcho, Shiki, Saitama 353-0004, Japan
| | - Kaori Motomura
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hiroshi Ohno
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Rahul Sharma
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Takuya Shimura
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Nurani Istiqamah
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Song-Iee Han
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yuhei Mizunoe
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yoshinori Osaki
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hitoshi Iwasaki
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Shigeru Yatoh
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hiroaki Suzuki
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hirohito Sone
- Department of Internal Medicine, Faculty of Medicine, Niigata University, 1-754 Asahimachi, Niigata 951-8510, Japan
| | - Takafumi Miyamoto
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yuichi Aita
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yoshinori Takeuchi
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Motohiro Sekiya
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Naoya Yahagi
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yoshimi Nakagawa
- Division of Complex Biosystem Research, Department of Research and Development, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan
| | - Tsutomu Tomita
- Timelapse Vision Inc., 5-23-11 Honcho, Shiki, Saitama 353-0004, Japan
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Life Science Center of Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; AMED-CREST, Japan Agency for Medical Research and Development (AMED), 1-7-1, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan.
| |
Collapse
|
74
|
Nagatake T, Kishino S, Urano E, Murakami H, Kitamura N, Konishi K, Ohno H, Tiwari P, Morimoto S, Node E, Adachi J, Abe Y, Isoyama J, Sawane K, Honda T, Inoue A, Uwamizu A, Matsuzaka T, Miyamoto Y, Hirata SI, Saika A, Shibata Y, Hosomi K, Matsunaga A, Shimano H, Arita M, Aoki J, Oka M, Matsutani A, Tomonaga T, Kabashima K, Miyachi M, Yasutomi Y, Ogawa J, Kunisawa J. Intestinal microbe-dependent ω3 lipid metabolite αKetoA prevents inflammatory diseases in mice and cynomolgus macaques. Mucosal Immunol 2022; 15:289-300. [PMID: 35013573 PMCID: PMC8866125 DOI: 10.1038/s41385-021-00477-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 02/07/2023]
Abstract
Dietary ω3 fatty acids have important health benefits and exert their potent bioactivity through conversion to lipid mediators. Here, we demonstrate that microbiota play an essential role in the body's use of dietary lipids for the control of inflammatory diseases. We found that amounts of 10-hydroxy-cis-12-cis-15-octadecadienoic acid (αHYA) and 10-oxo-cis-12-cis-15-octadecadienoic acid (αKetoA) increased in the feces and serum of specific-pathogen-free, but not germ-free, mice when they were maintained on a linseed oil diet, which is high in α-linolenic acid. Intake of αKetoA, but not αHYA, exerted anti-inflammatory properties through a peroxisome proliferator-activated receptor (PPAR)γ-dependent pathway and ameliorated hapten-induced contact hypersensitivity by inhibiting the development of inducible skin-associated lymphoid tissue through suppression of chemokine secretion from macrophages and inhibition of NF-κB activation in mice and cynomolgus macaques. Administering αKetoA also improved diabetic glucose intolerance by inhibiting adipose tissue inflammation and fibrosis through decreased macrophage infiltration in adipose tissues and altering macrophage M1/M2 polarization in mice fed a high-fat diet. These results collectively indicate that αKetoA is a novel postbiotic derived from α-linolenic acid, which controls macrophage-associated inflammatory diseases and may have potential for developing therapeutic drugs as well as probiotic food products.
Collapse
Affiliation(s)
- Takahiro Nagatake
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Asagi Saito, Ibaraki, Osaka, 567-0085 Japan
| | - Shigenobu Kishino
- grid.258799.80000 0004 0372 2033Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Emiko Urano
- grid.482562.fLaboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, NIBIOHN, 1-1 Hachimandai, Tsukuba, Ibaraki, 305-0843 Japan
| | - Haruka Murakami
- grid.482562.fDepartment of Physical Activity Research, NIBIOHN, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8636 Japan
| | - Nahoko Kitamura
- grid.258799.80000 0004 0372 2033Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Kana Konishi
- grid.482562.fDepartment of Physical Activity Research, NIBIOHN, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8636 Japan
| | - Harumi Ohno
- grid.482562.fDepartment of Physical Activity Research, NIBIOHN, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8636 Japan
| | - Prabha Tiwari
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Asagi Saito, Ibaraki, Osaka, 567-0085 Japan
| | - Sakiko Morimoto
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Asagi Saito, Ibaraki, Osaka, 567-0085 Japan
| | - Eri Node
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Asagi Saito, Ibaraki, Osaka, 567-0085 Japan
| | - Jun Adachi
- Laboratory of Proteome Research and Laboratory of Proteomics for Drug Discovery, NIBIOHN, 7-6-8 Asagi Saito, Ibaraki, Osaka, 567-0085 Japan
| | - Yuichi Abe
- Laboratory of Proteome Research and Laboratory of Proteomics for Drug Discovery, NIBIOHN, 7-6-8 Asagi Saito, Ibaraki, Osaka, 567-0085 Japan ,grid.410800.d0000 0001 0722 8444Division of Molecular Diagnostics, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya, 464-8681 Japan
| | - Junko Isoyama
- Laboratory of Proteome Research and Laboratory of Proteomics for Drug Discovery, NIBIOHN, 7-6-8 Asagi Saito, Ibaraki, Osaka, 567-0085 Japan
| | - Kento Sawane
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Asagi Saito, Ibaraki, Osaka, 567-0085 Japan ,grid.136593.b0000 0004 0373 3971Graduate School of Pharmaceutical Sciences, Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871 Japan
| | - Tetsuya Honda
- grid.258799.80000 0004 0372 2033Department of Dermatology, Kyoto University Graduate School of Medicine, 54 Shogoin Kawara-cho, Kyoto, 606-8507 Japan ,grid.505613.40000 0000 8937 6696Department of Dermatology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192 Japan
| | - Asuka Inoue
- grid.69566.3a0000 0001 2248 6943Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578 Japan
| | - Akiharu Uwamizu
- grid.69566.3a0000 0001 2248 6943Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578 Japan ,grid.26999.3d0000 0001 2151 536XGraduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Takashi Matsuzaka
- grid.20515.330000 0001 2369 4728Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575 Japan ,grid.20515.330000 0001 2369 4728Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575 Japan
| | - Yoichi Miyamoto
- Laboratory of Nuclear Transport Dynamics, NIBIOHN, 7-6-8 Asagi Saito, Ibaraki, Osaka, 567-0085 Japan
| | - So-ichiro Hirata
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Asagi Saito, Ibaraki, Osaka, 567-0085 Japan ,grid.31432.370000 0001 1092 3077Department of Microbiology and Immunology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017 Japan
| | - Azusa Saika
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Asagi Saito, Ibaraki, Osaka, 567-0085 Japan ,grid.136593.b0000 0004 0373 3971Graduate School of Pharmaceutical Sciences, Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871 Japan
| | - Yuki Shibata
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Asagi Saito, Ibaraki, Osaka, 567-0085 Japan ,grid.136593.b0000 0004 0373 3971Graduate School of Pharmaceutical Sciences, Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871 Japan
| | - Koji Hosomi
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Asagi Saito, Ibaraki, Osaka, 567-0085 Japan
| | - Ayu Matsunaga
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Asagi Saito, Ibaraki, Osaka, 567-0085 Japan ,grid.412904.a0000 0004 0606 9818Faculty of Agriculture, Takasaki University of Health and Welfare, 54 Nakaoruimachi, Takasaki, Gumma 370-0033 Japan
| | - Hitoshi Shimano
- grid.20515.330000 0001 2369 4728Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575 Japan
| | - Makoto Arita
- grid.26091.3c0000 0004 1936 9959Division of Physiological Chemistry and Metabolism, Keio University Faculty of Pharmacy, 1-5-30 Shibakouen, Minato-ku, Tokyo, 105-8512 Japan ,grid.509459.40000 0004 0472 0267Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan ,grid.268441.d0000 0001 1033 6139Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Junken Aoki
- grid.69566.3a0000 0001 2248 6943Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578 Japan ,grid.26999.3d0000 0001 2151 536XGraduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Masahiro Oka
- Laboratory of Nuclear Transport Dynamics, NIBIOHN, 7-6-8 Asagi Saito, Ibaraki, Osaka, 567-0085 Japan
| | - Akira Matsutani
- Department of Internal Medicine, Shunan City Shin-nanyo Hospital, 2-3-15 Miyanomae, Shunan, Yamaguchi, 746-0017 Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome Research and Laboratory of Proteomics for Drug Discovery, NIBIOHN, 7-6-8 Asagi Saito, Ibaraki, Osaka, 567-0085 Japan
| | - Kenji Kabashima
- grid.258799.80000 0004 0372 2033Department of Dermatology, Kyoto University Graduate School of Medicine, 54 Shogoin Kawara-cho, Kyoto, 606-8507 Japan
| | - Motohiko Miyachi
- grid.482562.fDepartment of Physical Activity Research, NIBIOHN, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8636 Japan
| | - Yasuhiro Yasutomi
- grid.482562.fLaboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, NIBIOHN, 1-1 Hachimandai, Tsukuba, Ibaraki, 305-0843 Japan
| | - Jun Ogawa
- grid.258799.80000 0004 0372 2033Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Asagi Saito, Ibaraki, Osaka, 567-0085 Japan ,grid.136593.b0000 0004 0373 3971Graduate School of Pharmaceutical Sciences, Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871 Japan ,grid.31432.370000 0001 1092 3077Department of Microbiology and Immunology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017 Japan ,grid.26999.3d0000 0001 2151 536XInternational Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639 Japan ,grid.136593.b0000 0004 0373 3971Graduate School of Medicine, Graduate School of Dentistry, Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871 Japan ,grid.5290.e0000 0004 1936 9975Research Organization for Nano and Life Innovation, Waseda University, Tokyo, 162-0041 Japan
| |
Collapse
|
75
|
Li X, Lyu C, Luo Z, Zhao J, Wang Z, Yang C, Dai Q, Li H, Zhou Y, Li Z, Chen F, Gao Y. The roles of IGF2 and DNMT methylation and elongase6 related fatty acids in metabolic syndrome. Food Funct 2021; 12:10253-10262. [PMID: 34549217 DOI: 10.1039/d1fo00502b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: The prevalence of metabolic syndrome (MetS) has increased along with rapid socio-economic development in China in recent decades, aggravating the burden of the health care system. Both plasma levels of fatty acids (FAs) and aberrant DNA methylation profiles are associated with MetS risk. However, studies exploring the role of DNA methylation and FAs simultaneously in MetS etiology are sparse. Objective: We aimed to explore the association between the gene methylation levels of insulin-like growth factor II (IGF2), H19, DNA methyltransferases 1 (DNMT1), DNA methyltransferases 3a (DNMT3a), and DNA methyltransferases 3b (DNMT3b) and MetS risk, and the etiological role of elongation of very-long-chain fatty acid elongase 6 (ELOVL6) related fatty acids. Method: Plasma levels of FAs were measured using a Gas Chromatography-Flame Ionization Detector (GC-FID) after organic extraction, and gene methylation was quantified using a real-time Quantitative Polymerase Chain Reaction (Q-PCR) detecting system after bisulfite treatment. The C18/C16 ratio was used as the indicator of ELOVL6 activity. Odds Ratio (OR) and 95% Confidence Interval (CI) were estimated with logistic regression. Results: Methylation levels in IGF2 and DNMT3a were not significantly associated with MetS risk. However, when stratified by C18/C16 ratio (high vs. low), positive associations were observed between the risk of MetS and methylation levels (>median) of IGF2a3 (OR = 3.1, 95% CI = 1.3-7.5) and DNMT3a (OR = 2.5, 95% CI = 1.1-5.8) genes, in individuals with lower C18/C16 ratios, while no significant associations were observed in subjects with high C18/C16 ratios. Conclusion: Methylation levels in IGF2 and DNMT3a genes may affect the risk of MetS in an ELOVL6 activity-dependent way among Chinese adults. Further studies in other populations are needed to validate this finding.
Collapse
Affiliation(s)
- Xiang Li
- CAS Key Laboratory of Nutrition Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Chen Lyu
- Department of Epidemiology and Biostatistics, School of Public Health-Bloomington, Indiana University, Bloomington, USA
| | - ZhongCheng Luo
- Lunenfeld-Tanenbaum Research Institute, Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - Jing Zhao
- CAS Key Laboratory of Nutrition Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Zhongli Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Jiaxing University, The Second Hospital of Jiaxing, Jiaxing, China
| | - Chun Yang
- School of Public Health, Capital Medical University, Beijing, China
| | - Qi Dai
- CAS Key Laboratory of Nutrition Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Hui Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| | - Yunhua Zhou
- CAS Key Laboratory of Nutrition Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Zi Li
- CAS Key Laboratory of Nutrition Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Fuxue Chen
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Ying Gao
- CAS Key Laboratory of Nutrition Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
76
|
Evolution and Functional Characteristics of the Novel elovl8 That Play Pivotal Roles in Fatty Acid Biosynthesis. Genes (Basel) 2021; 12:genes12081287. [PMID: 34440461 PMCID: PMC8392482 DOI: 10.3390/genes12081287] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/15/2021] [Accepted: 08/18/2021] [Indexed: 12/20/2022] Open
Abstract
Elongation of very long-chain fatty acid (Elovl) proteins are key enzymes that catalyze the rate-limiting step in the fatty acid elongation pathway. The most recently discovered member of the Elovl family, Elovl8, has been proposed to be a fish-specific elongase with two gene paralogs described in teleosts. However, the biological functions of Elovl8 are still to be elucidated. In this study, we showed that in contrast to previous findings, elovl8 is not unique to teleosts, but displays a rather unique and ample phylogenetic distribution. For functional determination, we generated elovl8a (elovl8a−/−) and elovl8b (elovl8b−/−) zebrafish using CRISPR/Cas9 technology. Fatty acid composition in vivo and zebrafish liver cell experiments suggest that the substrate preference of Elovl8 overlapped with other existing Elovl enzymes. Zebrafish Elovl8a could elongate the polyunsaturated fatty acids (PUFAs) C18:2n-6 and C18:3n-3 to C20:2n-6 and C20:3n-3, respectively. Along with PUFA, zebrafish Elovl8b also showed the capacity to elongate C18:0 and C20:1. Gene expression quantification suggests that Elovl8a and Elovl8b may play a potentially important role in fatty acid biosynthesis. Overall, our results provide novel insights into the function of Elovl8a and Elovl8b, representing additional fatty acid elongases not previously described in chordates.
Collapse
|
77
|
Suzuki-Kemuriyama N, Abe A, Nakane S, Uno K, Ogawa S, Watanabe A, Sano R, Yuki M, Miyajima K, Nakae D. Non-obese mice with nonalcoholic steatohepatitis fed on a choline-deficient, L-amino acid-defined, high-fat diet exhibit alterations in signaling pathways. FEBS Open Bio 2021; 11:2950-2965. [PMID: 34390210 PMCID: PMC8564345 DOI: 10.1002/2211-5463.13272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/21/2021] [Accepted: 08/11/2021] [Indexed: 11/10/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is often associated with obesity, but some patients develop NASH without obesity. The physiological processes by which non-obese patients develop NASH and cirrhosis have not yet been determined. Here, we analyzed the effects of dietary methionine content on NASH induced in mice fed on a choline-deficient, methionine-lowered, L-amino acid-defined high-fat diet (CDAHFD). CDAHFD with insufficient methionine induced insulin sensitivity and enhanced NASH pathology, but without obesity. In contrast, CDAHFD with sufficient methionine induced steatosis, and unlike CDAHFD with insufficient methionine, also induced obesity and insulin resistance. Gene profile analysis revealed that the disease severity in CDAHFD may partially be due to upregulation of the Rho family GTPases pathway, and mitochondrial and nuclear receptor signal dysfunction. The signaling factors/pathways detected in this study may assist in future study of NASH regulation, especially its "non-obese" subtype.
Collapse
Affiliation(s)
- Noriko Suzuki-Kemuriyama
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1, Sakura-ga-Oka, Setagaya, Tokyo, 156-8502, Japan
| | - Akari Abe
- Department of Nutritional Science and Food Safety, Graduate School of Applied Bioscience, Tokyo University of Agriculture, 1-1-1, Sakura-ga-Oka, Setagaya, Tokyo, 156-8502, Japan
| | - Sae Nakane
- Department of Nutritional Science and Food Safety, Graduate School of Applied Bioscience, Tokyo University of Agriculture, 1-1-1, Sakura-ga-Oka, Setagaya, Tokyo, 156-8502, Japan
| | - Kiniko Uno
- Department of Food and Nutritional Science, Graduate School of Applied Bioscience, Tokyo University of Agriculture, 1-1-1, Sakura-ga-Oka, Setagaya, Tokyo, 156-8502, Japan
| | - Shuji Ogawa
- Department of Food and Nutritional Science, Graduate School of Applied Bioscience, Tokyo University of Agriculture, 1-1-1, Sakura-ga-Oka, Setagaya, Tokyo, 156-8502, Japan
| | - Atsushi Watanabe
- Department of Nutritional Science and Food Safety, Graduate School of Applied Bioscience, Tokyo University of Agriculture, 1-1-1, Sakura-ga-Oka, Setagaya, Tokyo, 156-8502, Japan
| | - Ryuhei Sano
- Department of Nutritional Science and Food Safety, Graduate School of Applied Bioscience, Tokyo University of Agriculture, 1-1-1, Sakura-ga-Oka, Setagaya, Tokyo, 156-8502, Japan
| | - Megumi Yuki
- Department of Nutritional Science and Food Safety, Graduate School of Applied Bioscience, Tokyo University of Agriculture, 1-1-1, Sakura-ga-Oka, Setagaya, Tokyo, 156-8502, Japan
| | - Katsuhiro Miyajima
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1, Sakura-ga-Oka, Setagaya, Tokyo, 156-8502, Japan.,Department of Nutritional Science and Food Safety, Graduate School of Applied Bioscience, Tokyo University of Agriculture, 1-1-1, Sakura-ga-Oka, Setagaya, Tokyo, 156-8502, Japan
| | - Dai Nakae
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1, Sakura-ga-Oka, Setagaya, Tokyo, 156-8502, Japan.,Department of Nutritional Science and Food Safety, Graduate School of Applied Bioscience, Tokyo University of Agriculture, 1-1-1, Sakura-ga-Oka, Setagaya, Tokyo, 156-8502, Japan
| |
Collapse
|
78
|
Misiakiewicz-Has K, Maciejewska-Markiewicz D, Rzeszotek S, Pilutin A, Kolasa A, Szumilas P, Stachowska E, Wiszniewska B. The Obscure Effect of Tribulus terrestris Saponins Plus Inulin on Liver Morphology, Liver Fatty Acids, Plasma Glucose, and Lipid Profile in SD Rats with and without Induced Type 2 Diabetes Mellitus. Int J Mol Sci 2021; 22:ijms22168680. [PMID: 34445384 PMCID: PMC8395419 DOI: 10.3390/ijms22168680] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/01/2021] [Accepted: 08/09/2021] [Indexed: 01/08/2023] Open
Abstract
Diabetes is a predictor of nonalcoholic fatty liver disease (NAFLD). There are data suggesting that Tribulus terrestris (TT) saponins act as antidiabetic agents and protect against NAFLD. The effect of saponins may be increased by fermentable fibers such as inulin. The aim of the present study was to investigate the influence of TT saponins and TT saponins plus inulin on the plasma lipid profile and liver fatty acids of rats with induced diabetes mellitus type 2 (T2DM). The study was performed on 36 male Sprague–Dawley rats divided into two main groups: control and diabetic. Animals of the diabetic (DM) group were fed a high-fat diet and injected with streptozotocin (low doses). Animals of the control group (nDM) were on a regular diet and were injected with buffer. After the injections, the animals were split into subgroups: three non-diabetic (nDM): (i) control (c-C); (ii) saponin-treated rats (C-Sap); (iii) rats treated with saponins + inulin (C-Sap + IN), and three diabetic subgroups (DM): (iv) control (c-DM); (v) saponin-treated rats (DM-Sap); (vi) rats treated with saponins + inulin (DM-Sap + IN). Liver fatty acids were extracted and analyzed by gas chromatography, and plasma glucose and lipids were measured. The study showed significant changes in liver morphology, liver fatty acids, plasma lipid profile, and plasma glucose. In summary, supplementation with TT saponins or saponins with inulin for one month decreased the level of steatosis in rats with induced type 2 diabetes. Moreover, there were favorable effects on the plasma lipid profile in the rats. However, additional supplementation with inulin had a negative effect on liver morphology (with a microvesicular type of steatosis) in the non-diabetes group. Moreover, supplementation with inulin had a negative effect on plasma glucose in both diabetic and non-diabetic rats. These data show that a diet enriched with fermentable fibers reveals different effects in different organisms, and not all sources and forms of fiber are beneficial to health.
Collapse
Affiliation(s)
- Kamila Misiakiewicz-Has
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland; (S.R.); (A.P.); (A.K.); (B.W.)
- Correspondence:
| | - Dominika Maciejewska-Markiewicz
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (D.M.-M.); (E.S.)
| | - Sylwia Rzeszotek
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland; (S.R.); (A.P.); (A.K.); (B.W.)
| | - Anna Pilutin
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland; (S.R.); (A.P.); (A.K.); (B.W.)
| | - Agnieszka Kolasa
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland; (S.R.); (A.P.); (A.K.); (B.W.)
| | - Paweł Szumilas
- Department of Social Medicine and Public Health, Pomeranian Medical University in Szczecin, 48 Żołnierska Str., 71-210 Szczecin, Poland;
| | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (D.M.-M.); (E.S.)
| | - Barbara Wiszniewska
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland; (S.R.); (A.P.); (A.K.); (B.W.)
| |
Collapse
|
79
|
Inokuchi JI, Kanoh H, Inamori KI, Nagafuku M, Nitta T, Fukase K. Homeostatic and pathogenic roles of the GM3 ganglioside. FEBS J 2021; 289:5152-5165. [PMID: 34125497 DOI: 10.1111/febs.16076] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/10/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022]
Abstract
Two decades ago, we achieved molecular cloning of ganglioside GM3 synthase (GM3S; ST3GAL5), the enzyme responsible for initiating biosynthesis of complex gangliosides. The efforts of our research group since then have been focused on clarifying the physiological and pathological roles of gangliosides, particularly GM3. This review summarizes our long-term studies on the roles of GM3 in insulin resistance and adipogenesis in adipose tissues, cholesterol uptake in intestine, and leptin resistance in hypothalamus. We hypothesized that GM3 plays a role in innate immune function of macrophages and demonstrated that molecular species of GM3 with differing acyl-chain structures and modifications functioned as pro- and anti-inflammatory endogenous Toll-like receptor 4 (TLR4) modulators in macrophages. Very-long-chain and α-hydroxy GM3 species enhanced TLR4 activation, whereas long-chain and unsaturated GM3 species counteracted this effect. Lipidomic analyses of serum and adipose tissues revealed that imbalances between such pro- and anti-inflammatory GM3 species promoted progression of metabolic disorders. GM3 thus functions as a physiological regulatory factor controlling the balance between homeostatic and pathological states. Ongoing studies based on these findings will clarify the mechanisms underlying ganglioside-dependent control of energy homeostasis and innate immune responses.
Collapse
Affiliation(s)
- Jin-Ichi Inokuchi
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan.,Core for Medicine and Science Collaborative Research and Education (MS-CORE), Project Research Center for Fundamental Sciences, Osaka University, Japan
| | - Hirotaka Kanoh
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Kei-Ichiro Inamori
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Masakazu Nagafuku
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Takahiro Nitta
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Koichi Fukase
- Core for Medicine and Science Collaborative Research and Education (MS-CORE), Project Research Center for Fundamental Sciences, Osaka University, Japan.,Department of Chemistry, Graduate School of Science, Osaka University, Japan
| |
Collapse
|
80
|
Nie L, Pascoa TC, Pike ACW, Bushell SR, Quigley A, Ruda GF, Chu A, Cole V, Speedman D, Moreira T, Shrestha L, Mukhopadhyay SM, Burgess-Brown NA, Love JD, Brennan PE, Carpenter EP. The structural basis of fatty acid elongation by the ELOVL elongases. Nat Struct Mol Biol 2021; 28:512-520. [PMID: 34117479 PMCID: PMC7611377 DOI: 10.1038/s41594-021-00605-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 05/11/2021] [Indexed: 02/05/2023]
Abstract
Very long chain fatty acids (VLCFAs) are essential building blocks for the synthesis of ceramides and sphingolipids. The first step in the fatty acid elongation cycle is catalyzed by the 3-keto acyl-coenzyme A (CoA) synthases (in mammals, ELOVL elongases). Although ELOVLs are implicated in common diseases, including insulin resistance, hepatic steatosis and Parkinson's, their underlying molecular mechanisms are unknown. Here we report the structure of the human ELOVL7 elongase, which comprises an inverted transmembrane barrel surrounding a 35-Å long tunnel containing a covalently attached product analogue. The structure reveals the substrate-binding sites in the narrow tunnel and an active site deep in the membrane. We demonstrate that chain elongation proceeds via an acyl-enzyme intermediate involving the second histidine in the canonical HxxHH motif. The unusual substrate-binding arrangement and chemistry suggest mechanisms for selective ELOVL inhibition, relevant for diseases where VLCFAs accumulate, such as X-linked adrenoleukodystrophy.
Collapse
Affiliation(s)
- Laiyin Nie
- Structural Genomics Consortium, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7DQ, UK
| | - Tomas C. Pascoa
- Structural Genomics Consortium, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7DQ, UK
| | - Ashley C. W. Pike
- Structural Genomics Consortium, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7DQ, UK
| | - Simon R. Bushell
- Structural Genomics Consortium, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7DQ, UK
| | - Andrew Quigley
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK,Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Gian Filippo Ruda
- Structural Genomics Consortium, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7DQ, UK
| | - Amy Chu
- Structural Genomics Consortium, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7DQ, UK
| | - Victoria Cole
- Structural Genomics Consortium, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7DQ, UK
| | - David Speedman
- Structural Genomics Consortium, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7DQ, UK
| | - Tiago Moreira
- Structural Genomics Consortium, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7DQ, UK
| | - Leela Shrestha
- Structural Genomics Consortium, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7DQ, UK
| | | | - Nicola A. Burgess-Brown
- Structural Genomics Consortium, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7DQ, UK
| | - James D. Love
- Albert Einstein College of Medicine, Department of Biochemistry, 1300 Morris Park Avenue, Bronx, NY 10461-1602, USA
| | - Paul E. Brennan
- Structural Genomics Consortium, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7DQ, UK,Alzheimer’s Research UK Oxford Drug Discovery Institute, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Elisabeth P. Carpenter
- Structural Genomics Consortium, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7DQ, UK,Correspondence and requests for materials should be addressed to E.P.C. ()
| |
Collapse
|
81
|
Suzuki A, Miyajima S, Mochizuki S, Umeki M, Sakai K, Koya M, Oda H, Nobuoka K, Ishikawa Y. Suppressive Effect of Yuzu ( Citrus junos) Peel Extract on Fatty Liver Steatosis Induced by a High-sucrose Diet in Rats. J JPN SOC FOOD SCI 2021. [DOI: 10.3136/nskkk.68.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Ayako Suzuki
- Division of Applied Chemistry, Department of Integrated Science and Technology, Faculty of Science and Technology, Oita University
| | - Shiori Miyajima
- Division of Applied Chemistry, Department of Integrated Science and Technology, Faculty of Science and Technology, Oita University
| | | | - Miki Umeki
- Faculty of Food Science and Nutrition, Beppu University
| | - Kumiko Sakai
- Institute for Research Promotion, Oita University
| | - Mami Koya
- Institute for Research Promotion, Oita University
| | - Hiroaki Oda
- Graduate School of Bioagricultural Sciences, Nagoya University
| | - Kaoru Nobuoka
- Division of Applied Chemistry, Department of Integrated Science and Technology, Faculty of Science and Technology, Oita University
| | - Yuichi Ishikawa
- Division of Applied Chemistry, Department of Integrated Science and Technology, Faculty of Science and Technology, Oita University
| |
Collapse
|
82
|
Macášek J, Zeman M, Žák A, Staňková B, Vecka M. Altered Indices of Fatty Acid Elongases ELOVL6, ELOVL5, and ELOVL2 Activities in Patients with Impaired Fasting Glycemia. Metab Syndr Relat Disord 2021; 19:386-392. [PMID: 33983851 DOI: 10.1089/met.2021.0012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background: Dysregulation of fatty acids (FA) seems to participate in the pathogenesis of disorders such as metabolic syndrome (MetS), cardiovascular diseases, or some cancers. Activities of enzymes FA desaturases and elongases [elongation of very long-chain fatty acid (ELOVL)] significantly influence FA profile in different body compartments. Although the impact of activities of desaturases on cardiometabolic diseases was broadly studied, relatively little attention was devoted to the role of elongases. Methods: Case-control study was carried out in 36 patients (18 men/18 women) with impaired fasting glycemia (IFG) without MetS and 36 age and gender-matched healthy controls. FA profiles in plasma phospholipids (PL) were assessed using gas chromatograph-flame ionization detector and indices of desaturase and elongase activities were calculated. Results: In the IFG group, we observed decreased estimated activities of ELOVL2 and ELOVL5, whereas higher estimated activities of elongase ELOVL6 were noted. IFG group was also characterized by altered composition of plasma PL FA, above all by lower percentage of cis-vaccenic acid (cVA; 18:1n-7) and of total polyunsaturated FA n-6, especially linoleic acid, and by higher proportion of stearic acid and gamma-linolenic acid. Concurrently, elevated estimated activities of desaturases delta-9-desaturase (D9D), D6D were found. Conclusions: Lower estimated activities of ELOVL2 and ELOVL5 with lowered proportion of PL cVA could be associated with disturbances of glucose homeostasis development and their corresponding indices could serve as biomarkers of such risk.
Collapse
Affiliation(s)
- Jaroslav Macášek
- 4th Department of Medicine, First Medical Faculty, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Miroslav Zeman
- 4th Department of Medicine, First Medical Faculty, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Aleš Žák
- 4th Department of Medicine, First Medical Faculty, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Barbora Staňková
- 4th Department of Medicine, First Medical Faculty, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Marek Vecka
- 4th Department of Medicine, First Medical Faculty, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
83
|
Gómez-Vilarrubla A, Mas-Parés B, Díaz M, Xargay-Torrent S, Carreras-Badosa G, Jové M, Martin-Gari M, Bonmatí-Santané A, de Zegher F, Ibañez L, López-Bermejo A, Bassols J. Fatty acids in the placenta of appropiate- versus small-for-gestational-age infants at term birth. Placenta 2021; 109:4-10. [PMID: 33895685 DOI: 10.1016/j.placenta.2021.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/24/2021] [Accepted: 04/15/2021] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Fatty acids are essential nutrients for the fetus and are supplied by the mother through the placenta. Desaturase and elongase enzymes play an important role in modulating the fatty acid composition of body tissues. We aimed to compare the fatty acid profile and the estimated desaturase and elongase activities in the placenta of appropriate (AGA) versus small-for-gestational-age (SGA), and to determine their relationship with the offspring size at birth. METHODS The placental fatty acid profile was analyzed by gas chromatography in 84 infants (45 AGA and 30 SGA) from a prenatal cohort study. The estimated desaturase and elongase activities were calculated from product-precursor fatty acid ratios. Results were associated with maternal (age, body mass index and weight gain during gestation) and neonatal (gestational age, sex, birth weight and birth length) parameters. RESULTS Differences in placental fatty acid composition between AGA and SGA infants rather than correlations thereof with neonatal parameters were observed. Placentas from SGA infants contained lower levels of omega-3 (ALA, EPA, DPA, and DHA) and high omega-6/omega-3 ratios (AA/DHA and LA/ALA), as well as low elongase (Elovl5) and high desaturase (D9Dn7 and D5Dn6) activity as compared to AGA infants (all p < 0.0001). DISCUSSION Placentas of AGA and SGA infants differed in fatty acids profile as well as in estimated desaturase and elongase activities. A striking feature of SGA placentas was the low availability of omega-3. Hence, omega-3 fatty acid status deserves further attention, as a potential target of prenatal interventions.
Collapse
Affiliation(s)
- Ariadna Gómez-Vilarrubla
- Maternal-Fetal Metabolic Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190, Salt, Spain
| | - Berta Mas-Parés
- Pediatric Endocrinology Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190, Salt, Spain
| | - Marta Díaz
- Endocrinology, Pediatric Research Institute, Sant Joan de Déu Children's Hospital, 08950, Esplugues, Barcelona, Spain; CIBERDEM (Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders), ISCIII, 28029, Madrid, Spain
| | - Sílvia Xargay-Torrent
- Pediatric Endocrinology Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190, Salt, Spain
| | - Gemma Carreras-Badosa
- Pediatric Endocrinology Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190, Salt, Spain
| | - Mariona Jové
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida, Lleida, Spain
| | - Meritxell Martin-Gari
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida, Lleida, Spain
| | | | - Francis de Zegher
- Department of Development & Regeneration, University of Leuven, 3000, Leuven, Belgium
| | - Lourdes Ibañez
- Endocrinology, Pediatric Research Institute, Sant Joan de Déu Children's Hospital, 08950, Esplugues, Barcelona, Spain; CIBERDEM (Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders), ISCIII, 28029, Madrid, Spain
| | - Abel López-Bermejo
- Pediatric Endocrinology Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190, Salt, Spain; Department of Pediatrics, Dr. Josep Trueta Hospital, 17007, Girona, Spain.
| | - Judit Bassols
- Maternal-Fetal Metabolic Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190, Salt, Spain.
| |
Collapse
|
84
|
Hibi M, Nakagawa T, Hayakawa T, Yanase E, Shimada M. Dietary supplementation with myo-inositol reduces high-fructose diet-induced hepatic ChREBP binding and acetylation of histones H3 and H4 on the Elovl6 gene in rats. Nutr Res 2021; 88:28-33. [PMID: 33743322 DOI: 10.1016/j.nutres.2020.12.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 11/18/2022]
Abstract
ELOVL fatty acid elongase 6 (ELOVL6) is a long-chain fatty acid elongase, and the hepatic expression of the Elovl6 gene and accumulation of triglycerides (TG) are enhanced by long-term high-fructose intake. Fatty acid synthesis genes, including Elovl6, are regulated by lipogenic transcription factors, sterol regulatory element-binding protein 1c (SREBP-1c) and carbohydrate-responsive element-binding protein (ChREBP). In addition, carbohydrate signals induce the expression of fatty acid synthase not only via these transcription factors but also via histone acetylation. Since a major lipotrope, myo-inositol (MI), can repress short-term high-fructose-induced fatty liver and the expression of fatty acid synthesis genes, we hypothesized that MI might influence SREBP-1c, ChREBP, and histone acetylation of Elovl6 in fatty liver induced by even short-term high-fructose intake. This study aimed to investigate whether dietary supplementation with MI affects Elovl6 expression, SREBP-1 and ChREBP binding, and acetylation of histones H3 and H4 at the Elovl6 promoter in short-term high-fructose diet-induced fatty liver in rats. Rats were fed a control diet, high-fructose diet, or high-fructose diet supplemented with 0.5% MI for 10 days. This study showed that MI supplementation reduced short-term high-fructose diet-induced hepatic expression of the Elovl6 gene, ChREBP binding, but not SREBP-1 binding, and acetylation of histones H3 and H4 at the Elovl6 promoter.
Collapse
Affiliation(s)
- Mayu Hibi
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Tomoyuki Nakagawa
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan; Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Takashi Hayakawa
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan; Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Emiko Yanase
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan; Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Masaya Shimada
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan; Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan.
| |
Collapse
|
85
|
Fan X, Zhu W, Qiu L, Zhang G, Zhang Y, Miao Y. Elongase of very long chain fatty acids 6 (ELOVL6) promotes lipid synthesis in buffalo mammary epithelial cells. J Anim Physiol Anim Nutr (Berl) 2021; 106:1-11. [PMID: 33742447 DOI: 10.1111/jpn.13536] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/23/2021] [Accepted: 03/01/2021] [Indexed: 01/30/2023]
Abstract
Recent studies have shown elongase of very-long-chain fatty acids 6 (ELOVL6) is a vital protein for endogenous synthesis of saturated and monounsaturated long-chain fatty acids in some mammals. Nevertheless, its role in lipid synthesis in buffalo mammary gland is still unclear. In this work, the full-length coding sequence (CDS) of ELOVL6 was cloned and identified from buffalo mammary gland. As a result, the CDS of this gene is 795 bp, which encodes a polypeptide of 264 amino acid residues. The buffalo ELOVL6 contains an ELO domain which belongs to the ELO superfamily. Among the 10 tissues of buffalo in peak lactation detected by RT-qPCR, the expression level of ELOVL6 was the highest in the brain, followed by the spleen, and then decreased in the mammary gland, muscle, kidney, heart, liver, rumen, intestine and lung. However, only the expression in the brain and spleen was statistically different from that in other tissues (p < 0.05). Compared with that of the dry-off period, the mRNA abundance of ELOVL6 in the mammary gland was significantly increased in peak lactation. The experiments based on lentivirus transfection in buffalo mammary epithelial cells (BuMECs) displayed that the overexpression of ELOVL6 markedly promoted the expression of INSIG1, INSIG2, SREBP, PPARG, FASN, GPAM, DGAT2 and APGAT6 genes, and the knockdown of ELOVL6 significantly decreased the mRNA abundance of INSIG2, SREBP, FASN, SCD, GPAM, APGAT6 and TIP47 genes. In addition, the increase or decrease of ELOVL6 expression level also caused the corresponding change of total triglyceride content in the BuMECs. The results here suggest that the ELOVL6 can catalyse the synthesis of long-chain fatty acids in the BuMECs, and it can indirectly affect the expression of genes related to milk fat synthesis through its catalytic products to promote the lipid biosynthesis of BuMECs.
Collapse
Affiliation(s)
- Xinyang Fan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Wei Zhu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China.,College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Lihua Qiu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Guangle Zhang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yongyun Zhang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China.,Teaching Demonstration Center of the Basic Experiments of Agricultural Majors, Yunnan Agricultural University, Kunming, China
| | - Yongwang Miao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
86
|
He Q, Luo J, Wu J, Li Z, Yao W, Zang S, Niu H. ELOVL6 promoter binding sites directly targeted by sterol regulatory element binding protein 1 in fatty acid synthesis of goat mammary epithelial cells. J Dairy Sci 2021; 104:6253-6266. [PMID: 33685712 DOI: 10.3168/jds.2020-19292] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/07/2021] [Indexed: 11/19/2022]
Abstract
The elongation of long-chain fatty acid family member 6 (ELOVL6) gene plays an important role in the synthesis of long-chain saturated and monounsaturated fatty acids. Although some studies have revealed that ELOVL6 is the target of sterol regulatory element binding protein 1 (SREBP1; gene name SREBF1) in rodents, the mechanism underlying ELOVL6 regulation during lactation in dairy goats remains unknown. The present study aimed to investigate the transcriptional regulation mechanism of ELOVL6 in goat mammary epithelial cells (GMEC). We used PCR to clone and sequenced a 2,370 bp fragment of the ELOVL6 5' flanking region from goat genomic DNA. Deletion analysis revealed a core promoter region located -105 to -40 bp upstream of the transcriptional start site. Mutant sterol regulatory elements (SRE) 1 and 3 significantly reduced the ELOVL6 promoter activities in GMEC. Both SRE1 and SRE3 binding sites were required for the basal transcriptional activity of ELOVL6. Luciferase reporter assays showed that SREBF1 knockdown decreased ELOVL6 promoter activities in GMEC. Furthermore, SRE1 and SRE3 sites were simultaneously mutated completely abolished the stimulatory effect of SREBF1 and the repressive effect of linoleic acid on ELOVL6 gene promoter activities. Furthermore, chromatin immunoprecipitation assays confirmed that SREBP1 directly bound to SRE sites in the ELOVL6 promoter. In conclusion, these results indicate that SREBP1 regulates ELOVL6 transcription via the SRE elements located in the ELOVL6 promoter in goat mammary gland.
Collapse
Affiliation(s)
- Qiuya He
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Jiao Wu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zhuang Li
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Weiwei Yao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Saige Zang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Huimin Niu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| |
Collapse
|
87
|
Wada M, Yukawa K, Ogasawara H, Suzawa K, Maekawa T, Yamamoto Y, Ohta T, Lee E, Miki T. GPR52 accelerates fatty acid biosynthesis in a ligand-dependent manner in hepatocytes and in response to excessive fat intake in mice. iScience 2021; 24:102260. [PMID: 33796846 PMCID: PMC7995607 DOI: 10.1016/j.isci.2021.102260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/06/2021] [Accepted: 02/26/2021] [Indexed: 12/17/2022] Open
Abstract
Gpr52 is an orphan G-protein-coupled receptor of unknown physiological function. We found that Gpr52-deficient (Gpr52−/−) mice exhibit leanness associated with reduced liver weight, decreased hepatic de novo lipogenesis, and enhanced insulin sensitivity. Treatment of the hepatoma cell line HepG2 cells with c11, the synthetic GPR52 agonist, increased fatty acid biosynthesis, and GPR52 knockdown (KD) abolished the lipogenic action of c11. In addition, c11 induced the expressions of lipogenic enzymes (SCD1 and ELOVL6), whereas these inductions were attenuated by GPR52-KD. In contrast, cholesterol biosynthesis was not increased by c11, but its basal level was significantly suppressed by GPR52-KD. High-fat diet (HFD)-induced increase in hepatic expression of Pparg2 and its targets (Scd1 and Elovl6) was absent in Gpr52−/− mice with alleviated hepatosteatosis. Our present study showed that hepatic GPR52 promotes the biosynthesis of fatty acid and cholesterol in a ligand-dependent and a constitutive manner, respectively, and Gpr52 participates in HFD-induced fatty acid synthesis in liver. Hepatosteatosis is inherently an adaptive response to overnutrition to store energy On the other hand, it can be a pathological condition causing insulin resistance High-fat diet increases PPARγ2 expression and lipogenesis in liver via GPR52 Gpr52 ablation protects mice from developing hepatosteatosis and insulin resistance
Collapse
Affiliation(s)
- Mitsuo Wada
- Department of Medical Physiology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan.,Pharmaceutical Frontier Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Yokohama 236-0004, Japan
| | - Kayo Yukawa
- Pharmaceutical Frontier Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Yokohama 236-0004, Japan
| | - Hiroyuki Ogasawara
- Pharmaceutical Frontier Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Yokohama 236-0004, Japan
| | - Koichi Suzawa
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., Takatsuki 569-1125, Japan
| | - Tatsuya Maekawa
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., Takatsuki 569-1125, Japan
| | - Yoshihisa Yamamoto
- Pharmaceutical Frontier Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Yokohama 236-0004, Japan
| | - Takeshi Ohta
- Laboratory of Animal Physiology and Functional Anatomy, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Eunyoung Lee
- Department of Medical Physiology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
| | - Takashi Miki
- Department of Medical Physiology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
| |
Collapse
|
88
|
Zheng Z, Nakamura K, Gershbaum S, Wang X, Thomas S, Bessler M, Schrope B, Krikhely A, Liu RM, Ozcan L, López JA, Tabas I. Interacting hepatic PAI-1/tPA gene regulatory pathways influence impaired fibrinolysis severity in obesity. J Clin Invest 2021; 130:4348-4359. [PMID: 32657780 PMCID: PMC7410057 DOI: 10.1172/jci135919] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/13/2020] [Indexed: 12/13/2022] Open
Abstract
Fibrinolysis is initiated by tissue-type plasminogen activator (tPA) and inhibited by plasminogen activator inhibitor 1 (PAI-1). In obese humans, plasma PAI-1 and tPA proteins are increased, but PAI-1 dominates, leading to reduced fibrinolysis and thrombosis. To understand tPA–PAI-1 regulation in obesity, we focused on hepatocytes, a functionally important source of tPA and PAI-1 that sense obesity-induced metabolic stress. We showed that obese mice, like humans, had reduced fibrinolysis and increased plasma PAI-1 and tPA, due largely to their increased hepatocyte expression. A decrease in the PAI-1 (SERPINE1) gene corepressor Rev-Erbα increased PAI-1, which then increased the tPA gene PLAT via a PAI-1/LRP1/PKA/p-CREB1 pathway. This pathway was partially counterbalanced by increased DACH1, a PLAT-negative regulator. We focused on the PAI-1/PLAT pathway, which mitigates the reduction in fibrinolysis in obesity. Thus, silencing hepatocyte PAI-1, CREB1, or tPA in obese mice lowered plasma tPA and further impaired fibrinolysis. The PAI-1/PLAT pathway was present in primary human hepatocytes, and associations among PAI-1, tPA, and PLAT in livers from obese and lean humans were consistent with these findings. Knowledge of PAI-1 and tPA regulation in hepatocytes in obesity may suggest therapeutic strategies for improving fibrinolysis and lowering the risk of thrombosis in this setting.
Collapse
Affiliation(s)
- Ze Zheng
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Keiko Nakamura
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA.,Graduate School of Medicine and.,Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Shana Gershbaum
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA.,Neuroscience and Behavior Department, Barnard College, New York, New York, USA
| | - Xiaobo Wang
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Sherry Thomas
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Marc Bessler
- Department of Surgery, Columbia University Irving Medical Center, New York, New York, USA
| | - Beth Schrope
- Department of Surgery, Columbia University Irving Medical Center, New York, New York, USA
| | - Abraham Krikhely
- Department of Surgery, Columbia University Irving Medical Center, New York, New York, USA
| | - Rui-Ming Liu
- Division of Pulmonary Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Lale Ozcan
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - José A López
- Department of Medicine, University of Washington, Seattle, Washington, USA.,Bloodworks Research Institute, Seattle, Washington, USA
| | - Ira Tabas
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA.,Department of Physiology and.,Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
89
|
Joshi H, Vastrad B, Joshi N, Vastrad C, Tengli A, Kotturshetti I. Identification of Key Pathways and Genes in Obesity Using Bioinformatics Analysis and Molecular Docking Studies. Front Endocrinol (Lausanne) 2021; 12:628907. [PMID: 34248836 PMCID: PMC8264660 DOI: 10.3389/fendo.2021.628907] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/19/2021] [Indexed: 01/01/2023] Open
Abstract
Obesity is an excess accumulation of body fat. Its progression rate has remained high in recent years. Therefore, the aim of this study was to diagnose important differentially expressed genes (DEGs) associated in its development, which may be used as novel biomarkers or potential therapeutic targets for obesity. The gene expression profile of E-MTAB-6728 was downloaded from the database. After screening DEGs in each ArrayExpress dataset, we further used the robust rank aggregation method to diagnose 876 significant DEGs including 438 up regulated and 438 down regulated genes. Functional enrichment analysis was performed. These DEGs were shown to be significantly enriched in different obesity related pathways and GO functions. Then protein-protein interaction network, target genes - miRNA regulatory network and target genes - TF regulatory network were constructed and analyzed. The module analysis was performed based on the whole PPI network. We finally filtered out STAT3, CORO1C, SERPINH1, MVP, ITGB5, PCM1, SIRT1, EEF1G, PTEN and RPS2 hub genes. Hub genes were validated by ICH analysis, receiver operating curve (ROC) analysis and RT-PCR. Finally a molecular docking study was performed to find small drug molecules. The robust DEGs linked with the development of obesity were screened through the expression profile, and integrated bioinformatics analysis was conducted. Our study provides reliable molecular biomarkers for screening and diagnosis, prognosis as well as novel therapeutic targets for obesity.
Collapse
Affiliation(s)
- Harish Joshi
- Department of Endocrinology, Endocrine and Diabetes Care Center, Hubbali, India
| | - Basavaraj Vastrad
- Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, India
| | - Nidhi Joshi
- Department of Medicine, Dr. D. Y. Patil Medical College, Kolhapur, India
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad, India
- *Correspondence: Chanabasayya Vastrad,
| | - Anandkumar Tengli
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru and JSS Academy of Higher Education & Research, Mysuru, India
| | - Iranna Kotturshetti
- Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, India
| |
Collapse
|
90
|
Recazens E, Mouisel E, Langin D. Hormone-sensitive lipase: sixty years later. Prog Lipid Res 2020; 82:101084. [PMID: 33387571 DOI: 10.1016/j.plipres.2020.101084] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/12/2020] [Accepted: 12/24/2020] [Indexed: 12/19/2022]
Abstract
Hormone-sensitive lipase (HSL) was initially characterized as the hormonally regulated neutral lipase activity responsible for the breakdown of triacylglycerols into fatty acids in adipose tissue. This review aims at providing up-to-date information on structural properties, regulation of expression, activity and function as well as therapeutic potential. The lipase is expressed as different isoforms produced from tissue-specific alternative promoters. All isoforms are composed of an N-terminal domain and a C-terminal catalytic domain within which a regulatory domain containing the phosphorylation sites is embedded. Some isoforms possess additional N-terminal regions. The catalytic domain shares similarities with bacteria, fungus and vascular plant proteins but not with other mammalian lipases. HSL singularity is provided by regulatory and N-terminal domains sharing no homology with other proteins. HSL has a broad substrate specificity compared to other neutral lipases. It hydrolyzes acylglycerols, cholesteryl and retinyl esters among other substrates. A novel role of HSL, independent of its enzymatic function, has recently been described in adipocytes. Clinical studies revealed dysregulations of HSL expression and activity in disorders, such as lipodystrophy, obesity, type 2 diabetes and cancer-associated cachexia. Development of specific inhibitors positions HSL as a pharmacological target for the treatment of metabolic complications.
Collapse
Affiliation(s)
- Emeline Recazens
- Institute of Metabolic and Cardiovascular Diseases, Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1297, 31432 Toulouse, France; University of Toulouse, Paul Sabatier University, UMR1297, Toulouse, France
| | - Etienne Mouisel
- Institute of Metabolic and Cardiovascular Diseases, Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1297, 31432 Toulouse, France; University of Toulouse, Paul Sabatier University, UMR1297, Toulouse, France
| | - Dominique Langin
- Institute of Metabolic and Cardiovascular Diseases, Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1297, 31432 Toulouse, France; University of Toulouse, Paul Sabatier University, UMR1297, Toulouse, France; Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague and Paul Sabatier University, Toulouse, France; Toulouse University Hospitals, Laboratory of Clinical Biochemistry, Toulouse, France.
| |
Collapse
|
91
|
Role of fatty acid elongase Elovl6 in the regulation of energy metabolism and pathophysiological significance in diabetes. Diabetol Int 2020; 12:68-73. [PMID: 33479581 DOI: 10.1007/s13340-020-00481-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is an expanding epidemic, closely linked to obesity. Peripheral insulin resistance and impaired insulin secretion remain the core defects in T2DM. Despite significant advances in unraveling the underlying these defects, many of the metabolic pathways and regulators involved in insulin resistance and β-cell dysfunction are not completely understood. This review proposes that manipulating the fatty acid (FA) composition by blocking ELOVL fatty acid elongase 6 (Elovl6) could protect against insulin resistance, impaired insulin secretion, and obesity-related disorders. The molecular mechanism of this new paradigm is also discussed. Elovl6 is a microsomal enzyme involved in the elongation of C16 saturated and monounsaturated FAs to form C18 FAs. We have reported that mice with Elovl6 deletion are protected against obesity-induced insulin resistance or β-cell failure when mated to leptin receptor-deficient db/db mice because the cellular FA composition is changed, even with concurrent obesity. Therefore, Elovl6 appears to be a crucial metabolic checkpoint, and limiting Elovl6 expression or activity could be a new therapeutic approach to treat T2DM.
Collapse
|
92
|
Suzuki-Kemuriyama N, Abe A, Uno K, Ogawa S, Watanabe A, Sano R, Yuki M, Miyajima K, Nakae D. A trans fatty acid substitute enhanced development of liver proliferative lesions induced in mice by feeding a choline-deficient, methionine-lowered, L-amino acid-defined, high-fat diet. Lipids Health Dis 2020; 19:251. [PMID: 33317575 PMCID: PMC7737357 DOI: 10.1186/s12944-020-01423-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/22/2020] [Indexed: 02/06/2023] Open
Abstract
Background Nonalcoholic steatohepatitis (NASH) is a form of liver disease characterized by steatosis, necroinflammation, and fibrosis, resulting in cirrhosis and cancer. Efforts have focused on reducing the intake of trans fatty acids (TFAs) because of potential hazards to human health and the increased risk for NASH. However, the health benefits of reducing dietary TFAs have not been fully elucidated. Here, the effects of TFAs vs. a substitute on NASH induced in mice by feeding a choline-deficient, methionine-lowered, L-amino acid-defined, high-fat diet (CDAA-HF) were investigated. Methods Mice were fed CDAA-HF containing shortening with TFAs (CDAA-HF-T(+)), CDAA-HF containing shortening without TFAs (CDAA-HF-T(−)), or a control chow for 13 or 26 weeks. Results At week 13, NASH was induced in mice by feeding CDAA-HF-T(+) containing TFAs or CDAA-HF-T(−) containing no TFAs, but rather mostly saturated fatty acids (FAs), as evidenced by elevated serum transaminase activity and liver changes, including steatosis, inflammation, and fibrosis. CDAA-HF-T(−) induced a greater extent of hepatocellular apoptosis at week 13. At week 26, proliferative (preneoplastic and non-neoplastic) nodular lesions were more pronounced in mice fed CDAA-HF-T(−) than CDAA-HF-T(+). Conclusions Replacement of dietary TFAs with a substitute promoted the development of proliferation lesions in the liver of a mouse NASH model, at least under the present conditions. Attention should be paid regarding use of TFA substitutes in foods for human consumption, and a balance of FAs is likely more important than the particular types of FAs. Supplementary Information The online version contains supplementary material available at 10.1186/s12944-020-01423-3.
Collapse
Affiliation(s)
- Noriko Suzuki-Kemuriyama
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture , 1-1-1, Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
| | - Akari Abe
- Department of Nutritional Science and Food Safety, Graduate School of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
| | - Kiniko Uno
- Department of Food and Nutritional Science, Graduate School of Applied Bioscience, Tokyo University of Agriculture, 1-1-1, Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
| | - Shuji Ogawa
- Department of Food and Nutritional Science, Graduate School of Applied Bioscience, Tokyo University of Agriculture, 1-1-1, Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
| | - Atsushi Watanabe
- Department of Nutritional Science and Food Safety, Graduate School of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
| | - Ryuhei Sano
- Department of Nutritional Science and Food Safety, Graduate School of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
| | - Megumi Yuki
- Department of Nutritional Science and Food Safety, Graduate School of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
| | - Katsuhiro Miyajima
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture , 1-1-1, Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan.,Department of Nutritional Science and Food Safety, Graduate School of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
| | - Dai Nakae
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture , 1-1-1, Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan. .,Department of Nutritional Science and Food Safety, Graduate School of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan.
| |
Collapse
|
93
|
Li VL, Kim JT, Long JZ. Adipose Tissue Lipokines: Recent Progress and Future Directions. Diabetes 2020; 69:2541-2548. [PMID: 33219098 PMCID: PMC7679773 DOI: 10.2337/dbi20-0012] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 08/28/2020] [Indexed: 12/27/2022]
Abstract
Beyond classical metabolic functions in energy storage and energy expenditure, adipose tissue is also a dynamic endocrine organ that secretes bioactive factors into blood plasma. Historically, studies of the adipose secretome have predominantly focused on polypeptide adipokines. Recently, adipose-derived blood-borne lipids ("lipokines") have emerged as a distinct class of endocrine factors. Lipokines are intimately connected to intracellular pathways of fatty acid metabolism and therefore uniquely poised to communicate the intracellular energy status of adipocytes to other nonadipose tissues including liver, muscle, and pancreas. Here, we discuss recent progress on our understanding of adipose-secreted lipokines as endocrine regulators of glucose and lipid metabolism. We also provide our perspective on future directions for adipose-secreted lipids, including limitations of the currently available experimental data as well as potential strategies for addressing the remaining open questions.
Collapse
Affiliation(s)
- Veronica L Li
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
- Stanford ChEM-H, Stanford University, Stanford, CA
| | - Joon T Kim
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
- Stanford ChEM-H, Stanford University, Stanford, CA
| | - Jonathan Z Long
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
- Stanford ChEM-H, Stanford University, Stanford, CA
| |
Collapse
|
94
|
Rossi A, Eid M, Dodgson J, Davies G, Musial B, Wabitsch M, Church C, Hornigold D. In vitro characterization of the effects of chronic insulin stimulation in mouse 3T3-L1 and human SGBS adipocytes. Adipocyte 2020; 9:415-426. [PMID: 32718202 PMCID: PMC7469436 DOI: 10.1080/21623945.2020.1798613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Hyperinsulinemia is the hallmark of the development of insulin resistance and precedes the diagnosis of type 2 diabetes. Here we evaluated the effects of prolonged exposure (≥4 days) to high insulin doses (150 nM) in vitro in two adipose cell types, mouse 3T3-L1 and human SGBS. Chronic insulin treatment significantly decreased lipid droplet size, insulin signalling and insulin-stimulated glucose uptake. 3T3-L1 displayed an increased basal glucose internalization following chronic insulin treatment, which was associated with increased GLUT1 expression. In addition, both cells showed increased basal lipolysis. In conclusion, we report the effects of prolonged hyperinsulinemia in 3T3-L1 and SGBS, highlighting similarities and discrepancies between the cell types, to be considered when using these cells to model insulin-induced insulin resistance.
Collapse
Affiliation(s)
- A. Rossi
- Bioscience Metabolism, Research And Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - M. Eid
- Bioscience Metabolism, Research And Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - J. Dodgson
- Biologics Therapeutics, Antibody and Protein Engineering, R&D, AstraZeneca, Cambridge, UK
| | - G. Davies
- Bioscience Metabolism, Research And Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - B. Musial
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - M. Wabitsch
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics and Adolescent Medicine, University Medical Center, Ulm, Germany
| | - C. Church
- Bioscience Metabolism, Research And Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - D.C. Hornigold
- Bioscience Metabolism, Research And Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
95
|
Jia Z, Yue F, Chen X, Narayanan N, Qiu J, Syed SA, Imbalzano AN, Deng M, Yu P, Hu C, Kuang S. Protein Arginine Methyltransferase PRMT5 Regulates Fatty Acid Metabolism and Lipid Droplet Biogenesis in White Adipose Tissues. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002602. [PMID: 33304767 PMCID: PMC7709973 DOI: 10.1002/advs.202002602] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Indexed: 02/06/2023]
Abstract
The protein arginine methyltransferase 5 (PRMT5) is an emerging regulator of cancer and stem cells including adipogenic progenitors. Here, a new physiological role of PRMT5 in adipocytes and systemic metabolism is reported. Conditional knockout mice were generated to ablate the Prmt5 gene specifically in adipocytes (Prmt5AKO). The Prmt5AKO mice exhibit sex- and depot-dependent progressive lipodystrophy that is more pronounced in females and in visceral (than subcutaneous) white fat. The lipodystrophy and associated energy imbalance, hyperlipidemia, hepatic steatosis, glucose intolerance, and insulin resistance are exacerbated by high-fat-diet. Mechanistically, Prmt5 methylates and releases the transcription elongation factor SPT5 from Berardinelli-Seip congenital lipodystrophy 2 (Bscl2, encoding Seipin) promoter, and Prmt5AKO disrupts Seipin-mediated lipid droplet biogenesis. Prmt5 also methylates Sterol Regulatory Element-Binding Transcription Factor 1a (SREBP1a) and promotes lipogenic gene expression, and Prmt5AKO suppresses SREBP1a-dependent fatty acid metabolic pathways in adipocytes. Thus, PRMT5 plays a critical role in regulating lipid metabolism and lipid droplet biogenesis in adipocytes.
Collapse
Affiliation(s)
- Zhihao Jia
- Department of Animal SciencesPurdue UniversityWest LafayetteIN47907USA
| | - Feng Yue
- Department of Animal SciencesPurdue UniversityWest LafayetteIN47907USA
| | - Xiyue Chen
- Department of Animal SciencesPurdue UniversityWest LafayetteIN47907USA
| | - Naagarajan Narayanan
- Department of Agricultural and Biological EngineeringPurdue UniversityWest LafayetteIN47907USA
- Bindley Bioscience CenterPurdue UniversityWest LafayetteIN47907USA
| | - Jiamin Qiu
- Department of Animal SciencesPurdue UniversityWest LafayetteIN47907USA
| | - Sabriya A. Syed
- Department of Biochemistry and Molecular PharmacologyUniversity of Massachusetts Medical SchoolWorcesterMA01605USA
| | - Anthony N. Imbalzano
- Department of Biochemistry and Molecular PharmacologyUniversity of Massachusetts Medical SchoolWorcesterMA01605USA
| | - Meng Deng
- Department of Agricultural and Biological EngineeringPurdue UniversityWest LafayetteIN47907USA
- Bindley Bioscience CenterPurdue UniversityWest LafayetteIN47907USA
| | - Peng Yu
- West China Biomedical Big Data CenterWest China HospitalSichuan UniversityChengdu610041China
- Medical Big Data CenterSichuan UniversityChengdu610041China
| | - Changdeng Hu
- Department of Medicinal Chemistry and Molecular PharmacologyPurdue UniversityWest LafayetteIndiana47907USA
- Purdue University Center for Cancer ResearchWest LafayetteIndiana47907USA
| | - Shihuan Kuang
- Department of Animal SciencesPurdue UniversityWest LafayetteIN47907USA
- Purdue University Center for Cancer ResearchWest LafayetteIndiana47907USA
| |
Collapse
|
96
|
Maycotte-Cervantes ML, Aguilar-Galarza A, Anaya-Loyola MA, Anzures-Cortes MDL, Haddad-Talancón L, Méndez-Rangel AS, García-Gasca T, Rodríguez-García VM, Moreno-Celis U. Influence of Single Nucleotide Polymorphisms of ELOVL on Biomarkers of Metabolic Alterations in the Mexican Population. Nutrients 2020; 12:nu12113389. [PMID: 33158152 PMCID: PMC7694210 DOI: 10.3390/nu12113389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 12/26/2022] Open
Abstract
The elongation of very long chain fatty acids (ELOVL) is a family of seven enzymes that have specific functions in the synthesis of fatty acids. Some have been shown to be related to insulin secretion (ELOVL2), and in the lipid profile (ELOVL6) and patients with various pathologies. The present work focused on the study of ELOVL polymorphs with clinical markers of non-communicable chronic diseases in the Mexican population. A sample of 1075 participants was obtained, who underwent clinical, biochemical, and nutritional evaluation, and a genetic evaluation of 91 genetic variants of ELOVL was considered (2–7). The results indicate a 33.16% prevalence of obesity by body mass index, 13.84% prevalence of insulin resistance by homeostatic model assessment (HOMA) index, 7.85% prevalence of high cholesterol, and 20.37% prevalence of hypercholesterolemia. The deprived alleles showed that there is no association between them and clinical disease risk markers, and the notable finding of the association studies is that the ELOVL2 variants are exclusive in men and ELVOL7 in women. There is also a strong association of ELOVL6 with various markers. The present study shows, for the first time, the association between the different ELOVLs and clinical markers of chronic non-communicable diseases.
Collapse
Affiliation(s)
- María Luisa Maycotte-Cervantes
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Juriquilla, Querétaro CP 76230, Mexico; (M.L.M.-C.); (A.A.-G.); (M.A.A.-L.); (T.G.-G.)
| | - Adriana Aguilar-Galarza
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Juriquilla, Querétaro CP 76230, Mexico; (M.L.M.-C.); (A.A.-G.); (M.A.A.-L.); (T.G.-G.)
| | - Miriam Aracely Anaya-Loyola
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Juriquilla, Querétaro CP 76230, Mexico; (M.L.M.-C.); (A.A.-G.); (M.A.A.-L.); (T.G.-G.)
| | | | - Lorenza Haddad-Talancón
- Código 46 SA de CV, Cuernavaca, Morelos 62498, Mexico; (M.d.L.A.-C.); (L.H.-T.); (A.S.M.-R.)
| | | | - Teresa García-Gasca
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Juriquilla, Querétaro CP 76230, Mexico; (M.L.M.-C.); (A.A.-G.); (M.A.A.-L.); (T.G.-G.)
| | - Víctor Manuel Rodríguez-García
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, San Pablo, Querétaro 76130, Mexico
- Correspondence: (V.M.R.-G.); (U.M.-C.); Tel.: +52-442-238-3525 (V.M.R.-G.); +52-442-192-1200 (ext. 5367) (U.M.-C.)
| | - Ulisses Moreno-Celis
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Juriquilla, Querétaro CP 76230, Mexico; (M.L.M.-C.); (A.A.-G.); (M.A.A.-L.); (T.G.-G.)
- Correspondence: (V.M.R.-G.); (U.M.-C.); Tel.: +52-442-238-3525 (V.M.R.-G.); +52-442-192-1200 (ext. 5367) (U.M.-C.)
| |
Collapse
|
97
|
Mietus-Snyder M, Narayanan N, Krauss RM, Laine-Graves K, McCann JC, Shigenaga MK, McHugh TH, Ames BN, Suh JH. Randomized nutrient bar supplementation improves exercise-associated changes in plasma metabolome in adolescents and adult family members at cardiometabolic risk. PLoS One 2020; 15:e0240437. [PMID: 33079935 PMCID: PMC7575082 DOI: 10.1371/journal.pone.0240437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 09/26/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Poor diets contribute to metabolic complications of obesity, insulin resistance and dyslipidemia. Metabolomic biomarkers may serve as early nutrition-sensitive health indicators. This family-based lifestyle change program compared metabolic outcomes in an intervention group (INT) that consumed 2 nutrient bars daily for 2-months and a control group (CONT). METHODS Overweight, predominantly minority and female adolescent (Teen)/parent adult caretaker (PAC) family units were recruited from a pediatric obesity clinic. CONT (8 Teen, 8 PAC) and INT (10 Teen, 10 PAC) groups randomized to nutrient bar supplementation attended weekly classes that included group nutrition counseling and supervised exercise. Pre-post physical and behavioral parameters, fasting traditional biomarkers, plasma sphingolipids and amino acid metabolites were measured. RESULTS In the full cohort, a baseline sphingolipid ceramide principal component composite score correlated with adiponectin, triglycerides, triglyceride-rich very low density lipoproteins, and atherogenic small low density lipoprotein (LDL) sublasses. Inverse associations were seen between a sphingomyelin composite score and C-reactive protein, a dihydroceramide composite score and diastolic blood pressure, and the final principal component that included glutathionone with fasting insulin and the homeostatic model of insulin resistance. In CONT, plasma ceramides, sphinganine, sphingosine and amino acid metabolites increased, presumably due to increased physical activity. Nutrient bar supplementation (INT) blunted this rise and significantly decreased ureagenic, aromatic and gluconeogenic amino acid metabolites. Metabolomic changes were positively correlated with improvements in clinical biomarkers of dyslipidemia. CONCLUSION Nutrient bar supplementation with increased physical activity in obese Teens and PAC elicits favorable metabolomic changes that correlate with improved dyslipidemia. The trial from which the analyses reported upon herein was part of a series of nutrient bar clinical trials registered at clinicaltrials.gov as NCT02239198.
Collapse
Affiliation(s)
- Michele Mietus-Snyder
- Division of Cardiology, Department of Pediatrics, Children’s National Hospital, George Washington University School of Medicine and Health Sciences, Washington DC, United States of America
| | - Nisha Narayanan
- Weill Cornell Medical College, Cornell University, New York, New York, United States of America
| | - Ronald M. Krauss
- University of California Benioff Children’s Hospital San Francisco, San Francisco, California, United States of America
- Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Kirsten Laine-Graves
- University of California Benioff Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Joyce C. McCann
- University of California Benioff Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Mark K. Shigenaga
- University of California Benioff Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Tara H. McHugh
- United States Department of Agriculture, Western Regional Research Center, Albany, California, United States of America
| | - Bruce N. Ames
- University of California Benioff Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Jung H. Suh
- University of California Benioff Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
| |
Collapse
|
98
|
Yao D, Yang C, Ma J, Chen L, Luo J, Ma Y, Loor JJ. cAMP Response Element Binding Protein 1 (CREB1) Promotes Monounsaturated Fatty Acid Synthesis and Triacylglycerol Accumulation in Goat Mammary Epithelial Cells. Animals (Basel) 2020; 10:ani10101871. [PMID: 33066354 PMCID: PMC7602241 DOI: 10.3390/ani10101871] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary In non-ruminant liver and adipose tissue, cAMP response element binding protein 1(CREB1) is essential for lipid synthesis and triacylglycerol accumulation. The present study aimed to ascertain the role of CREB1 in regulating milk fatty acid composition synthesized by goat mammary gland. Our data found that overexpression of CREB1 in vitro alters the abundance of lipogenic genes, triacylglycerol accumulation and concentration of monounsaturated fatty acids in goat mammary epithelial cells. Thus, manipulation of CREB1 in vivo might be one approach to improve the quality of goat milk. Abstract cAMP response element binding protein 1 (CREB1) is a member of the leucine zipper transcription factor family of DNA binding proteins. Although studies in non-ruminants have demonstrated a crucial role of CREB1 in lipid synthesis in liver and adipose tissue, it is unknown if this transcription regulator exerts control of fatty acid synthesis in ruminant mammary cells. To address this question, we first defined the expression dynamics of CREB1 in mammary tissue during lactation. Analysis of CREB1 in mammary tissue revealed higher mRNA abundance in mammary tissue harvested at peak lactation. Overexpression of CREB1 markedly upregulated sterol regulatory element binding transcription factor 1 (SREBP1), fatty acid synthase (FASN), acetyl-coenzyme A carboxylase α (ACACA), elongase of very long chain fatty acids 6 (ELOVL6), lipoprotein lipase (LPL), fatty acid binding protein 3 (FABP3), lipin 1 (LPIN1) and diacylglycerol acyltransferase 1 (DGAT1), but had no effect on glycerol-3-phosphate acyltransferase, mitochondrial (GPAM) or 1-acylglycerol-3-phosphate O-acyltransferase 6 (AGPAT6). In addition, overexpressing CREB1 led to a significant increase in the concentration and desaturation index of C16:1 (palmitoleic acid) and C18:1 (oleic acid), along with increased concentration of triacylglycerol. Taken together, these results highlight an important role of CREB1 in regulating lipid synthesis in goat mammary epithelial cells. Thus, manipulation of CREB1 in vivo might be one approach to improve the quality of goat milk.
Collapse
Affiliation(s)
- Dawei Yao
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; (D.Y.); (C.Y.); (J.M.); (L.C.)
| | - Chunlei Yang
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; (D.Y.); (C.Y.); (J.M.); (L.C.)
| | - Jing Ma
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; (D.Y.); (C.Y.); (J.M.); (L.C.)
| | - Lili Chen
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; (D.Y.); (C.Y.); (J.M.); (L.C.)
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China;
| | - Yi Ma
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; (D.Y.); (C.Y.); (J.M.); (L.C.)
- Correspondence: (Y.M.); (J.J.L.)
| | - Juan. J. Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
- Correspondence: (Y.M.); (J.J.L.)
| |
Collapse
|
99
|
Bertolotti AC, Layer RM, Gundappa MK, Gallagher MD, Pehlivanoglu E, Nome T, Robledo D, Kent MP, Røsæg LL, Holen MM, Mulugeta TD, Ashton TJ, Hindar K, Sægrov H, Florø-Larsen B, Erkinaro J, Primmer CR, Bernatchez L, Martin SAM, Johnston IA, Sandve SR, Lien S, Macqueen DJ. The structural variation landscape in 492 Atlantic salmon genomes. Nat Commun 2020; 11:5176. [PMID: 33056985 PMCID: PMC7560756 DOI: 10.1038/s41467-020-18972-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/23/2020] [Indexed: 12/25/2022] Open
Abstract
Structural variants (SVs) are a major source of genetic and phenotypic variation, but remain challenging to accurately type and are hence poorly characterized in most species. We present an approach for reliable SV discovery in non-model species using whole genome sequencing and report 15,483 high-confidence SVs in 492 Atlantic salmon (Salmo salar L.) sampled from a broad phylogeographic distribution. These SVs recover population genetic structure with high resolution, include an active DNA transposon, widely affect functional features, and overlap more duplicated genes retained from an ancestral salmonid autotetraploidization event than expected. Changes in SV allele frequency between wild and farmed fish indicate polygenic selection on behavioural traits during domestication, targeting brain-expressed synaptic networks linked to neurological disorders in humans. This study offers novel insights into the role of SVs in genome evolution and the genetic architecture of domestication traits, along with resources supporting reliable SV discovery in non-model species. This study presents and validates a novel approach to reliably identify structural variations (SVs) in non-model genomes using whole genome sequencing, which was used to detect 15,483 SVs in 492 Atlantic salmon, shedding light on their roles in genome evolution and the genetic architecture of domestication.
Collapse
Affiliation(s)
- Alicia C Bertolotti
- School of Biological Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen, UK.,The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Ryan M Layer
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA.,Department of Computer Science, University of Colorado, Boulder, CO, USA
| | - Manu Kumar Gundappa
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Michael D Gallagher
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Ege Pehlivanoglu
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Torfinn Nome
- Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Matthew P Kent
- Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Line L Røsæg
- Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Matilde M Holen
- Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Teshome D Mulugeta
- Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | | | - Kjetil Hindar
- Norwegian Institute for Nature Research (NINA), P.O. Box 5685 Torgarden, 7485, Trondheim, Norway
| | | | - Bjørn Florø-Larsen
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, 0106, Oslo, Norway
| | - Jaakko Erkinaro
- Natural Resources Institute Finland (Luke), P.O. Box 413, FI-90014, Oulu, Finland
| | - Craig R Primmer
- Institute for Biotechnology, University of Helsinki, Helsinki, Finland
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS) Pavillon Charles-Eugène Marchand, Université Laval Québec, Québec, QC, Canada
| | - Samuel A M Martin
- School of Biological Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen, UK
| | | | - Simen R Sandve
- Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Sigbjørn Lien
- Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway.
| | - Daniel J Macqueen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
100
|
New Insights for BPIFB4 in Cardiovascular Therapy. Int J Mol Sci 2020; 21:ijms21197163. [PMID: 32998388 PMCID: PMC7583974 DOI: 10.3390/ijms21197163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023] Open
Abstract
Aging is the most relevant risk factor for cardiovascular diseases which are the main cause of mortality in industrialized countries. In this context, there is a progressive loss of cardiovascular homeostasis that translates in illness and death. The study of long living individuals (LLIs), which show compression of morbidity toward the end of their life, is a valuable approach to find the key to delay aging and postpone associate cardiovascular events. A contribution to the age-related decline of cardiovascular system (CVS) comes from the immune system; indeed, it is dysfunctional during aging, a process described as immunosenescence and comprises the combination of several processes overpowering both innate and adaptative immune system. We have recently discovered a longevity-associated variant (LAV) in bactericidal/permeability-increasing fold-containing family B member 4 (BPIFB4), which is a secreted protein able to enhance endothelial function through endothelial nitric oxide synthase (eNOS) activation and capable to protect from hypertension, atherosclerosis, diabetic cardiopathy, frailty, and inflammaging. Here, we sum up the state of the art of the mechanisms involved in the main pathological processes related to CVD (atherosclerosis, aging, diabetic cardiopathy, and frailty) and shed light on the therapeutic effects of LAV-BPIFB4 in these contexts.
Collapse
|