51
|
Hellas JA, Andrew RD. Neuronal Swelling: A Non-osmotic Consequence of Spreading Depolarization. Neurocrit Care 2021; 35:112-134. [PMID: 34498208 PMCID: PMC8536653 DOI: 10.1007/s12028-021-01326-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/04/2021] [Indexed: 01/22/2023]
Abstract
An acute reduction in plasma osmolality causes rapid uptake of water by astrocytes but not by neurons, whereas both cell types swell as a consequence of lost blood flow (ischemia). Either hypoosmolality or ischemia can displace the brain downwards, potentially causing death. However, these disorders are fundamentally different at the cellular level. Astrocytes osmotically swell or shrink because they express functional water channels (aquaporins), whereas neurons lack functional aquaporins and thus maintain their volume. Yet both neurons and astrocytes immediately swell when blood flow to the brain is compromised (cytotoxic edema) as following stroke onset, sudden cardiac arrest, or traumatic brain injury. In each situation, neuronal swelling is the direct result of spreading depolarization (SD) generated when the ATP-dependent sodium/potassium ATPase (the Na+/K+ pump) is compromised. The simple, and incorrect, textbook explanation for neuronal swelling is that increased Na+ influx passively draws Cl- into the cell, with water following by osmosis via some unknown conduit. We first review the strong evidence that mammalian neurons resist volume change during acute osmotic stress. We then contrast this with their dramatic swelling during ischemia. Counter-intuitively, recent research argues that ischemic swelling of neurons is non-osmotic, involving ion/water cotransporters as well as at least one known amino acid water pump. While incompletely understood, these mechanisms argue against the dogma that neuronal swelling involves water uptake driven by an osmotic gradient with aquaporins as the conduit. Promoting clinical recovery from neuronal cytotoxic edema evoked by spreading depolarizations requires a far better understanding of molecular water pumps and ion/water cotransporters that act to rebalance water shifts during brain ischemia.
Collapse
Affiliation(s)
- Julia A Hellas
- Center for Neuroscience Studies, Queen's University, Kingston, ON, K7L 3N6, Canada.
| | - R David Andrew
- Center for Neuroscience Studies, Queen's University, Kingston, ON, K7L 3N6, Canada
| |
Collapse
|
52
|
Kim A, Madara JC, Wu C, Andermann ML, Lowell BB. Neural basis for regulation of vasopressin secretion by anticipated disturbances in osmolality. eLife 2021; 10:66609. [PMID: 34585668 PMCID: PMC8601670 DOI: 10.7554/elife.66609] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 09/28/2021] [Indexed: 12/01/2022] Open
Abstract
Water balance, tracked by extracellular osmolality, is regulated by feedback and feedforward mechanisms. Feedback regulation is reactive, occurring as deviations in osmolality are detected. Feedforward or presystemic regulation is proactive, occurring when disturbances in osmolality are anticipated. Vasopressin (AVP) is a key hormone regulating water balance and is released during hyperosmolality to limit renal water excretion. AVP neurons are under feedback and feedforward regulation. Not only do they respond to disturbances in blood osmolality, but they are also rapidly suppressed and stimulated, respectively, by drinking and eating, which will ultimately decrease and increase osmolality. Here, we demonstrate that AVP neuron activity is regulated by multiple anatomically and functionally distinct neural circuits. Notably, presystemic regulation during drinking and eating are mediated by non-overlapping circuits that involve the lamina terminalis and hypothalamic arcuate nucleus, respectively. These findings reveal neural mechanisms that support differential regulation of AVP release by diverse behavioral and physiological stimuli. Fine-tuning the amount of water present in the body at any given time is a tight balancing act. The hormone vasopressin helps to ensure that organisms do not get too dehydrated by allowing water in the urine to be reabsorbed into the bloodstream. A group of vasopressin neurons in the brain trigger the release of the hormone if water levels get too low (as reflected by an increase in osmolality, the level of substances dissolved in a unit of blood). However, these cells also receive additional information that allows them to predict and respond to upcoming changes in water levels. For example, drinking water while dehydrated ‘switches off’ the neurons, even before osmolality is restored in the blood to normal levels. Eating, on the other hand, rapidly activates vasopressin neurons before the food is digested and blood osmolality increases as a result. How vasopressin neurons receive this ‘anticipatory’ information remains unclear. Kim et al. explored this question in mice by inhibiting different sets of brain cells one by one, and then examining whether the neurons could still exhibit anticipatory responses. This revealed a remarkable division of labor in the neural circuits that regulate vasopressin neurons: two completely different sets of neurons from distinct areas of the brain are dedicated to relaying anticipatory information about either water or food intake. These findings help to understand how healthy levels of water can be maintained in the body. Overall, they give a glimpse into the neural mechanisms that underlie anticipatory forms of regulation, which can also take place when hunger or thirst neurons ‘foresee’ that food or water will be consumed.
Collapse
Affiliation(s)
- Angela Kim
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States.,Program in Neuroscience, Harvard Medical School, Boston, United States
| | - Joseph C Madara
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States
| | - Chen Wu
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States
| | - Mark L Andermann
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States.,Program in Neuroscience, Harvard Medical School, Boston, United States
| | - Bradford B Lowell
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States.,Program in Neuroscience, Harvard Medical School, Boston, United States
| |
Collapse
|
53
|
Jeong JK, Dow SA, Young CN. Sensory Circumventricular Organs, Neuroendocrine Control, and Metabolic Regulation. Metabolites 2021; 11:metabo11080494. [PMID: 34436435 PMCID: PMC8402088 DOI: 10.3390/metabo11080494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/13/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022] Open
Abstract
The central nervous system is critical in metabolic regulation, and accumulating evidence points to a distributed network of brain regions involved in energy homeostasis. This is accomplished, in part, by integrating peripheral and central metabolic information and subsequently modulating neuroendocrine outputs through the paraventricular and supraoptic nucleus of the hypothalamus. However, these hypothalamic nuclei are generally protected by a blood-brain-barrier limiting their ability to directly sense circulating metabolic signals—pointing to possible involvement of upstream brain nuclei. In this regard, sensory circumventricular organs (CVOs), brain sites traditionally recognized in thirst/fluid and cardiovascular regulation, are emerging as potential sites through which circulating metabolic substances influence neuroendocrine control. The sensory CVOs, including the subfornical organ, organum vasculosum of the lamina terminalis, and area postrema, are located outside the blood-brain-barrier, possess cellular machinery to sense the metabolic interior milieu, and establish complex neural networks to hypothalamic neuroendocrine nuclei. Here, evidence for a potential role of sensory CVO-hypothalamic neuroendocrine networks in energy homeostasis is presented.
Collapse
Affiliation(s)
| | | | - Colin N. Young
- Correspondence: ; Tel.: +1-202-994-9575; Fax: +1-202-994-287
| |
Collapse
|
54
|
Fry WM, Ferguson AV. The subfornical organ and organum vasculosum of the lamina terminalis: Critical roles in cardiovascular regulation and the control of fluid balance. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:203-215. [PMID: 34225930 DOI: 10.1016/b978-0-12-820107-7.00013-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In this chapter, we review the extensive literature describing the roles of the subfornical organ (SFO), the organum vasculosum of the terminalis (OVLT), and the median preoptic nucleus (MnPO), comprising the lamina terminalis, in cardiovascular regulation and the control of fluid balance. We present this information in the context of both historical and technological developments which can effectively be overlaid upon each other. We describe intrinsic anatomy and connectivity and then discuss early work which described how circulating angiotensin II acts at the SFO to stimulate drinking and increase blood pressure. Extensive studies using direct administration and lesion approaches to highlight the roles of all regions of the lamina terminalis are then discussed. At the cellular level we describe c-Fos and electrophysiological work, which has highlighted an extensive group of circulating hormones which appear to influence the activity of specific neurons in the SFO, OVLT, and MnPO. We highlight optogenetic studies that have begun to unravel the complexities of circuitries underlying physiological outcomes, especially those related to different components of drinking. Finally, we describe the somewhat limited human literature supporting conclusions that these structures play similar and potentially important roles in human physiology.
Collapse
Affiliation(s)
- W Mark Fry
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Alastair V Ferguson
- Department of Biomedical and Molecular Sciences and Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
55
|
Mietlicki-Baase EG, Santollo J, Daniels D. Fluid intake, what's dopamine got to do with it? Physiol Behav 2021; 236:113418. [PMID: 33838203 DOI: 10.1016/j.physbeh.2021.113418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/12/2021] [Accepted: 04/05/2021] [Indexed: 12/27/2022]
Abstract
Maintaining fluid balance is critical for life. The central components that control fluid intake are only partly understood. This contribution to the collection of papers highlighting work by members of the Society for the Study of Ingestive Behavior focuses on the role that dopamine has on fluid intake and describes the roles that various bioregulators can have on thirst and sodium appetite by influencing dopamine systems in the brain. The goal of the review is to highlight areas in need of more research and to propose a framework to guide that research. We hope that this framework will inspire researchers in the field to investigate these interesting questions in order to form a more complete understanding of how fluid intake is controlled.
Collapse
Affiliation(s)
- Elizabeth G Mietlicki-Baase
- Department of Exercise and Nutrition Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, United States; Center for Ingestive Behavior Research, University at Buffalo, State University of New York, Buffalo, NY 14260, United States
| | - Jessica Santollo
- Department of Biology, University of Kentucky, Lexington, KY 40506, United States
| | - Derek Daniels
- Center for Ingestive Behavior Research, University at Buffalo, State University of New York, Buffalo, NY 14260, United States; Department of Psychology, University at Buffalo, State University of New York, Buffalo, NY 14260, United States
| |
Collapse
|
56
|
Wei HH, Yuan XS, Chen ZK, Chen PP, Xiang Z, Qu WM, Li RX, Zhou GM, Huang ZL. Presynaptic inputs to vasopressin neurons in the hypothalamic supraoptic nucleus and paraventricular nucleus in mice. Exp Neurol 2021; 343:113784. [PMID: 34139240 DOI: 10.1016/j.expneurol.2021.113784] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 05/29/2021] [Accepted: 06/13/2021] [Indexed: 11/29/2022]
Abstract
Arginine vasopressin (AVP) neurons in the hypothalamic supraoptic nucleus (SON) and paraventricular nucleus (PVN) are involved in important physiological behaviors, such as controling osmotic stability and thermoregulation. However, the presynaptic input patterns governing AVP neurons have remained poorly understood due to their heterogeneity, as well as intermingling of AVP neurons with other neurons both in the SON and PVN. In the present study, we employed a retrograde modified rabies-virus system to reveal the brain areas that provide specific inputs to AVP neurons in the SON and PVN. We found that AVP neurons of the SON and PVN received similar input patterns from multiple areas of the brain, particularly massive afferent inputs from the diencephalon and other brain regions of the limbic system; however, PVNAVP neurons received relatively broader and denser inputs compared to SONAVP neurons. Additionally, SONAVP neurons received more projections from the median preoptic nucleus and organum vasculosum of the lamina terminalis (a circumventricular organ), compared to PVNAVP neurons, while PVNAVP neurons received more afferent inputs from the bed nucleus of stria terminalis and dorsomedial nucleus of the hypothalamus, both of which are thermoregulatory nuclei, compared to those of SONAVP neurons. In addition, both SONAVP and PVNAVP neurons received direct afferent projections from the bilateral suprachiasmatic nucleus, which is the master regulator of circadian rhythms and is concomitantly responsible for fluctuations in AVP levels. Taken together, our present results provide a comprehensive understanding of the specific afferent framework of AVP neurons both in the SON and PVN, and lay the foundation for further dissecting the diverse roles of SONAVP and PVNAVP neurons.
Collapse
Affiliation(s)
- Hao-Hua Wei
- Department of Anatomy and Histoembryology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China; Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Xiang-Shan Yuan
- Department of Anatomy and Histoembryology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China; Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Ze-Ka Chen
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Pei-Pei Chen
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Zhe Xiang
- Department of Anatomy and Histoembryology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Wei-Min Qu
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Rui-Xi Li
- Department of Anatomy and Histoembryology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Guo-Min Zhou
- Department of Anatomy and Histoembryology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Zhi-Li Huang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
57
|
Lucera GM, Menani JV, Colombari E, Colombari DSA. ANG II and Aldosterone Acting Centrally Participate in the Enhanced Sodium Intake in Water-Deprived Renovascular Hypertensive Rats. Front Pharmacol 2021; 12:679985. [PMID: 34113255 PMCID: PMC8186501 DOI: 10.3389/fphar.2021.679985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/04/2021] [Indexed: 11/29/2022] Open
Abstract
Renovascular hypertension is a type of secondary hypertension caused by renal artery stenosis, leading to an increase in the renin–angiotensin–aldosterone system (RAAS). Two-kidney, 1-clip (2K1C) is a model of renovascular hypertension in which rats have an increased sodium intake induced by water deprivation (WD), a common situation found in the nature. In addition, a high-sodium diet in 2K1C rats induces glomerular lesion. Therefore, the purpose of this study was to investigate whether angiotensin II (ANG II) and/or aldosterone participates in the increased sodium intake in 2K1C rats under WD. In addition, we also verified if central AT1 and mineralocorticoid receptor blockade would change the high levels of arterial pressure in water-replete (WR) and WD 2K1C rats, because blood pressure changes can facilitate or inhibit water and sodium intake. Finally, possible central areas activated during WD or WD followed by partial rehydration (PR) in 2K1C rats were also investigated. Male Holtzman rats (150–180 g) received a silver clip around the left renal artery to induce renovascular hypertension. Six weeks after renal surgery, a stainless-steel cannula was implanted in the lateral ventricle, followed by 5–7 days of recovery before starting tests. Losartan (AT1 receptor antagonist) injected intracerebroventricularly attenuated water intake during the thirst test. Either icv losartan or RU28318 (mineralocorticoid receptor antagonist) reduced 0.3 M NaCl intake, whereas the combination of losartan and RU28318 icv totally blocked 0.3 M NaCl intake induced by WD in 2K1C rats. Losartan and RU28318 icv did not change hypertension levels of normohydrated 2K1C rats, but reduced the increase in mean arterial pressure (MAP) produced by WD. c-Fos expression increased in the lamina terminalis and in the NTS in WD condition, and increased even more after WD-PR. These results suggest the participation of ANG II and aldosterone acting centrally in the enhanced sodium intake in WD 2K1C rats, and not in the maintenance of hypertension in satiated and fluid-replete 2K1C rats.
Collapse
Affiliation(s)
- Gabriela Maria Lucera
- Department of Physiology and Pathology, School of Dentistry, Sao Paulo State University, Araraquara, Brazil
| | - José Vanderlei Menani
- Department of Physiology and Pathology, School of Dentistry, Sao Paulo State University, Araraquara, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, Sao Paulo State University, Araraquara, Brazil
| | | |
Collapse
|
58
|
Al-Qusairi L, Grimm PR, Zapf AM, Welling PA. Rapid development of vasopressin resistance in dietary K + deficiency. Am J Physiol Renal Physiol 2021; 320:F748-F760. [PMID: 33749322 PMCID: PMC8174811 DOI: 10.1152/ajprenal.00655.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 12/27/2022] Open
Abstract
The association between diabetes insipidus (DI) and chronic dietary K+ deprivation is well known, but it remains uncertain how the disorder develops and whether it is influenced by the sexual dimorphism in K+ handling. Here, we determined the plasma K+ (PK) threshold for DI in male and female mice and ascertained if DI is initiated by polydipsia or by a central or nephrogenic defect. C57BL6J mice were randomized to a control diet or to graded reductions in dietary K+ for 8 days, and kidney function and transporters involved in water balance were characterized. We found that male and female mice develop polyuria and secondary polydipsia. Altered water balance coincided with a decrease in aquaporin-2 (AQP2) phosphorylation and apical localization despite increased levels of the vasopressin surrogate marker copeptin. No change in the protein abundance of urea transporter-A1 was observed. The Na+-K+-2Cl- cotransporter decreased only in males. Desmopressin treatment failed to reverse water diuresis in K+-restricted mice. These findings indicate that even a small fall in PK is associated with nephrogenic DI (NDI), coincident with the development of altered AQP2 regulation, implicating low PK as a causal trigger of NDI. We found that PK decreased more in females, and, consequently, females were more prone to develop NDI. Together, these data indicate that AQP2 regulation is disrupted by a small decrease in PK and that the response is influenced by sexual dimorphism in K+ handling. These findings provide new insights into the mechanisms linking water and K+ balances and support defining the disorder as "potassium-dependent NDI."NEW & NOTEWORTHY This study shows that aquaporin-2 regulation is disrupted by a small fall in plasma potassium levels and the response is influenced by sexual dimorphism in renal potassium handling. The findings provided new insights into the mechanisms by which water balance is altered in dietary potassium deficiency and support defining the disorder as "potassium-dependent nephrogenic diabetes insipidus."
Collapse
Affiliation(s)
- Lama Al-Qusairi
- Departments of Medicine, Nephrology, and Physiology, Johns Hopkins University Medical School, Baltimore, Maryland
| | - P Richard Grimm
- Departments of Medicine, Nephrology, and Physiology, Johns Hopkins University Medical School, Baltimore, Maryland
| | - Ava M Zapf
- Graduate Program in Life Sciences, University of Maryland, Baltimore, Maryland
| | - Paul A Welling
- Departments of Medicine, Nephrology, and Physiology, Johns Hopkins University Medical School, Baltimore, Maryland
| |
Collapse
|
59
|
Underwood CF, Mcmullan S, Goodchild AK, Phillips JK, Hildreth CM. The subfornical organ drives hypertension in polycystic kidney disease via the hypothalamic paraventricular nucleus. Cardiovasc Res 2021; 118:1138-1149. [PMID: 33774660 DOI: 10.1093/cvr/cvab122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/25/2021] [Indexed: 11/14/2022] Open
Abstract
AIMS Hypertension is a prevalent yet poorly understood feature of polycystic kidney disease. Previously we demonstrated that increased glutamatergic neurotransmission within the hypothalamic paraventricular nucleus produces hypertension in the Lewis Polycystic Kidney rat model of polycystic kidney disease. Here we tested the hypothesis that augmented glutamatergic drive to the paraventricular nucleus in Lewis Polycystic Kidney rats originates from the forebrain lamina terminalis, a sensory structure that relays blood-borne information throughout the brain. METHODS AND RESULTS Anatomical experiments revealed that 38% of paraventricular nucleus-projecting neurons in the subfornical organ of the lamina terminalis expressed Fos/Fra, an activation marker, in Lewis Polycystic Kidney rats while <1% of neurons were Fos/Fra+ in Lewis control rats (P = 0.01, n = 8). In anaesthetised rats, subfornical organ neuronal inhibition using isoguvacine produced a greater reduction in systolic blood pressure in the Lewis Polycystic Kidney versus Lewis rats (-21 ± 4 vs. -7 ± 2 mmHg, P < 0.01; n = 10), which could be prevented by prior blockade of paraventricular nucleus ionotropic glutamate receptors using kynurenic acid. Blockade of ionotropic glutamate receptors in the paraventricular nucleus produced an exaggerated depressor response in Lewis Polycystic Kidney relative to Lewis rats (-23 ± 4 vs. -2 ± 3 mmHg, P < 0.001; n = 13), which was corrected by prior inhibition of the subfornical organ with muscimol but unaffected by chronic systemic angiotensin II type I receptor antagonism or lowering of plasma hyperosmolality through high-water intake (P > 0.05); treatments that both nevertheless lowered blood pressure in Lewis Polycystic Kidney rats (P < 0.0001). CONCLUSION Our data reveal multiple independent mechanisms contribute to hypertension in polycystic kidney disease, and identify high plasma osmolality, angiotensin II type I receptor activation and, importantly, a hyperactive subfornical organ to paraventricular nucleus glutamatergic pathway as potential therapeutic targets. TRANSLATIONAL PERSPECTIVE Hypertension is a significant comorbidity for all forms of chronic kidney disease and for individuals with polycystic kidney disease, often an early presenting feature. Nevertheless, the cause(s) of hypertension in polycystic kidney disease are poorly defined. Here we define the contribution of a neural pathway that contributes to hypertension in polycystic kidney disease. Critically, targeting this pathway may provide an additional antihypertensive effect beyond that achieved with current conventional antihypertensive therapies. Future work identifying the drivers of this neural pathway will aid in the development of newer generation antihypertensive medication.
Collapse
Affiliation(s)
- Conor F Underwood
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, AUSTRALIA.,Department of Anatomy, School of Biomedical Sciences, University of Otago, Otago, NEW ZEALAND
| | - Simon Mcmullan
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, AUSTRALIA
| | - Ann K Goodchild
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, AUSTRALIA
| | - Jacqueline K Phillips
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, AUSTRALIA
| | - Cara M Hildreth
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, AUSTRALIA
| |
Collapse
|
60
|
Puri S, Lee Y. Salt Sensation and Regulation. Metabolites 2021; 11:metabo11030175. [PMID: 33802977 PMCID: PMC8002656 DOI: 10.3390/metabo11030175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/08/2021] [Accepted: 03/15/2021] [Indexed: 12/02/2022] Open
Abstract
Taste sensation and regulation are highly conserved in insects and mammals. Research conducted over recent decades has yielded major advances in our understanding of the molecular mechanisms underlying the taste sensors for a variety of taste sensations and the processes underlying regulation of ingestion depending on our internal state. Salt (NaCl) is an essential ingested nutrient. The regulation of internal sodium concentrations for physiological processes, including neuronal activity, fluid volume, acid–base balance, and muscle contraction, are extremely important issues in animal health. Both mammals and flies detect low and high NaCl concentrations as attractive and aversive tastants, respectively. These attractive or aversive behaviors can be modulated by the internal nutrient state. However, the differential encoding of the tastes underlying low and high salt concentrations in the brain remain unclear. In this review, we discuss the current view of taste sensation and modulation in the brain with an emphasis on recent advances in this field. This work presents new questions that include but are not limited to, “How do the fly’s neuronal circuits process this complex salt code?” and “Why do high concentrations of salt induce a negative valence only when the need for salt is low?” A better understanding of regulation of salt homeostasis could improve our understanding of why our brains enjoy salty food so much.
Collapse
Affiliation(s)
- Sonali Puri
- Interdisciplinary Program for Bio-Health Convergence, Kookmin University, Seoul 02707, Korea;
| | - Youngseok Lee
- Interdisciplinary Program for Bio-Health Convergence, Kookmin University, Seoul 02707, Korea;
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Korea
- Correspondence: ; Tel.: +82-2-910-5734
| |
Collapse
|
61
|
Gasparini S, Resch JM, Gore AM, Peltekian L, Geerling JC. Pre-locus coeruleus neurons in rat and mouse. Am J Physiol Regul Integr Comp Physiol 2021; 320:R342-R361. [PMID: 33296280 PMCID: PMC7988775 DOI: 10.1152/ajpregu.00261.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022]
Abstract
Previously, we identified a population of neurons in the hindbrain tegmentum, bordering the locus coeruleus (LC). We named this population the pre-locus coeruleus (pre-LC) because in rats its neurons lie immediately rostral to the LC. In mice, however, pre-LC and LC neurons intermingle, making them difficult to distinguish. Here, we use molecular markers and anterograde tracing to clarify the location and distribution of pre-LC neurons in mice, relative to rats. First, we colocalized the transcription factor FoxP2 with the activity marker Fos to identify pre-LC neurons in sodium-deprived rats and show their distribution relative to surrounding catecholaminergic and cholinergic neurons. Next, we used sodium depletion and chemogenetic activation of the aldosterone-sensitive HSD2 neurons in the nucleus of the solitary tract (NTS) to identify the homologous population of pre-LC neurons in mice, along with a related population in the central lateral parabrachial nucleus. Using Cre-reporter mice for Pdyn, we confirmed that most of these sodium-depletion-activated neurons are dynorphinergic. Finally, after confirming that these neurons receive excitatory input from the NTS and paraventricular hypothalamic nucleus, plus convergent input from the inhibitory AgRP neurons in the arcuate hypothalamic nucleus, we identify a major, direct input projection from the medial prefrontal cortex. This new information on the location, distribution, and input to pre-LC neurons provides a neuroanatomical foundation for cell-type-specific investigation of their properties and functions in mice. Pre-LC neurons likely integrate homeostatic information from the brainstem and hypothalamus with limbic, contextual information from the cerebral cortex to influence ingestive behavior.
Collapse
Affiliation(s)
- Silvia Gasparini
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Jon M Resch
- Department of Medicine, Beth Israel Deaconess Medical Center, Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts
| | - Anuradha M Gore
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Lila Peltekian
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Joel C Geerling
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| |
Collapse
|
62
|
Kim DH, Kim KK, Lee TH, Eom H, Kim JW, Park JW, Jeong JK, Lee BJ. Transcription Factor TonEBP Stimulates Hyperosmolality-Dependent Arginine Vasopressin Gene Expression in the Mouse Hypothalamus. Front Endocrinol (Lausanne) 2021; 12:627343. [PMID: 33796071 PMCID: PMC8008816 DOI: 10.3389/fendo.2021.627343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/17/2021] [Indexed: 11/13/2022] Open
Abstract
The hypothalamic neuroendocrine system is strongly implicated in body energy homeostasis. In particular, the degree of production and release of arginine vasopressin (AVP) in the hypothalamus is affected by plasma osmolality, and that hypothalamic AVP is responsible for thirst and osmolality-dependent water and metabolic balance. However, the osmolality-responsive intracellular mechanism within AVP cells that regulates AVP synthesis is not clearly understood. Here, we report a role for tonicity-responsive enhancer binding protein (TonEBP), a transcription factor sensitive to cellular tonicity, in regulating osmosensitive hypothalamic AVP gene transcription. Our immunohistochemical work shows that hypothalamic AVP cellular activity, as recognized by c-fos, was enhanced in parallel with an elevation in TonEBP expression within AVP cells following water deprivation. Interestingly, our in vitro investigations found a synchronized pattern of TonEBP and AVP gene expression in response to osmotic stress. Those results indicate a positive correlation between hypothalamic TonEBP and AVP production during dehydration. Promoter and chromatin immunoprecipitation assays confirmed that TonEBP can bind directly to conserved binding motifs in the 5'-flanking promoter regions of the AVP gene. Furthermore, dehydration- and TonEBP-mediated hypothalamic AVP gene activation was reduced in TonEBP haploinsufficiency mice, compared with wild TonEBP homozygote animals. Therefore, our result support the idea that TonEBP is directly necessary, at least in part, for the elevation of AVP transcription in dehydration conditions. Additionally, dehydration-induced reductions in body weight were rescued in TonEBP haploinsufficiency mice. Altogether, our results demonstrate an intracellular machinery within hypothalamic AVP cells that is responsible for dehydration-induced AVP synthesis.
Collapse
Affiliation(s)
- Dong Hee Kim
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Kwang Kon Kim
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Tae Hwan Lee
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Hyejin Eom
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Jin Woo Kim
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Jeong Woo Park
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Jin Kwon Jeong
- Department of Pharmacology and Physiology, School of Medicine & Health Sciences, The George Washington University, Washington, DC, United States
- *Correspondence: Byung Ju Lee, ; Jin Kwon Jeong,
| | - Byung Ju Lee
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
- *Correspondence: Byung Ju Lee, ; Jin Kwon Jeong,
| |
Collapse
|
63
|
Smardencas A, Denton DA, McKinley MJ. Hyperdipsia in sheep bearing lesions in the medial septal nucleus. Brain Res 2020; 1752:147223. [PMID: 33358728 DOI: 10.1016/j.brainres.2020.147223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/30/2020] [Accepted: 11/25/2020] [Indexed: 10/22/2022]
Abstract
Previous experiments in rodents showed that ablation of the septal brain region caused hyperdipsia. We investigated which part of the septal region needs ablation to produce hyperdipsia in sheep, and whether increased drinking was a primary hyperdipsia. Following ablation of the medial septal region (n = 5), but not parts of the lateral septal region (n = 4), daily water intake increased from ~2.5-5 L/day up to 10 L/day for up to 3 months post-lesion. In hyperdipsic sheep, plasma osmolality increased on the first day post-lesion and body weight fell, suggesting that initial hyperdipsia was secondary to fluid loss. However hyperosmolality was not sustained long-term and plasma hypo-osmolality persisted from 0.5 to 3 months post-lesion. Acute dipsogenic responses to intravenous hypertonic saline, intravenous or intracerebroventricular angiotensin II, water deprivation for 2 days, or feeding over 5 h were not potentiated by medial septal lesions, showing that the rapid pre-systemic inhibitory influences that cause satiation of thirst upon the act of drinking were intact. However, hyperdipsic sheep continued to ingest water when hyponatremic (plasma [Na] was 127-132 mmol/l) and plasma osmolality was 262-268 mosmol/kg due to retention of ingested fluid resulting from intravenous infusion of vasopressin administered to maintain a basal blood level of antidiuretic hormone. The results show that septal lesion-induced hyperdipsia is not due to disruption of acute pre-systemic influences associated with drinking water that initiates rapid satiation of thirst. Rather, inhibitory influences of hyponatremia, hypo-osmolality or hypervolemia on drinking appear to be disrupted by medial septal lesions.
Collapse
Affiliation(s)
- A Smardencas
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Vic 3010, Australia.
| | - D A Denton
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Vic 3010, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Vic 3010, Australia; Baker IDI Heart and Diabetes Institute, Melbourne, Vic 3010, Australia.
| | - M J McKinley
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Vic 3010, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Vic 3010, Australia; Department of Physiology, University of Melbourne, Melbourne, Vic 3010, Australia.
| |
Collapse
|
64
|
Larval Zebrafish Use Olfactory Detection of Sodium and Chloride to Avoid Salt Water. Curr Biol 2020; 31:782-793.e3. [PMID: 33338431 DOI: 10.1016/j.cub.2020.11.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022]
Abstract
Salinity levels constrain the habitable environment of all aquatic organisms. Zebrafish are freshwater fish that cannot tolerate high-salt environments and would therefore benefit from neural mechanisms that enable the navigation of salt gradients to avoid high salinity. Yet zebrafish lack epithelial sodium channels, the primary conduit land animals use to taste sodium. This suggests fish may possess novel, undescribed mechanisms for salt detection. In the present study, we show that zebrafish indeed respond to small temporal increases in salt by reorienting more frequently. Further, we use calcium imaging techniques to identify the olfactory system as the primary sense used for salt detection, and we find that a specific subset of olfactory receptor neurons encodes absolute salinity concentrations by detecting monovalent anions and cations. In summary, our study establishes that zebrafish larvae have the ability to navigate and thus detect salinity gradients and that this is achieved through previously undescribed sensory mechanisms for salt detection.
Collapse
|
65
|
Zanaty M, Seara FAC, Nakagawa P, Deng G, Mathieu NM, Balapattabi K, Karnik SS, Grobe JL, Sigmund CD. β-Arrestin-Biased Agonist Targeting the Brain AT 1R (Angiotensin II Type 1 Receptor) Increases Aversion to Saline and Lowers Blood Pressure in Deoxycorticosterone Acetate-Salt Hypertension. Hypertension 2020; 77:420-431. [PMID: 33249862 DOI: 10.1161/hypertensionaha.120.15793] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Activation of central AT1Rs (angiotensin type 1 receptors) is required for the increased blood pressure, polydipsia, and salt intake in deoxycorticosterone acetate (DOCA)-salt hypertension. TRV120027 (TRV027) is an AT1R-biased agonist that selectively acts through β-arrestin. We hypothesized that intracerebroventricular administration of TRV027 would ameliorate the effects of DOCA-salt. In a neuronal cell line, TRV027 induced AT1aR internalization through dynamin and clathrin-mediated endocytosis. We next evaluated the effect of chronic intracerebroventricular infusion of TRV027 on fluid intake. We measured the relative intake of water versus various saline solutions using a 2-bottle choice paradigm in mice subjected to DOCA with a concomitant intracerebroventricular infusion of either vehicle, TRV027, or losartan. Sham mice received intracerebroventricular vehicle without DOCA. TRV027 potentiated DOCA-induced water intake in the presence or absence of saline. TRV027 and losartan both increased the aversion for saline-an effect particularly pronounced for highly aversive saline solutions. Intracerebroventricular Ang (angiotensin) II, but not TRV027, increased water and saline intake in the absence of DOCA. In a separate cohort, blood pressure responses to acute intracerebroventricular injection of vehicle, TRV, or losartan were measured by radiotelemetry in mice with established DOCA-salt hypertension. Central administration of intracerebroventricular TRV027 or losartan each caused a significant and similar reduction of blood pressure and heart rate. We conclude that administration of TRV027 a selective β-arrestin biased agonist directly into the brain increases aversion to saline and lowers blood pressure in a model of salt-sensitive hypertension. These data suggest that selective activation of AT1R β-arrestin pathways may be exploitable therapeutically.
Collapse
Affiliation(s)
- Mario Zanaty
- From the Department of Physiology, Cardiovascular Center Medical College of Wisconsin, Milwaukee, WI (M.Z., P.N., N.M.M., K.B., J.L.G., C.D.S.).,Department of Neurosurgery (M.Z.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Fernando A C Seara
- Department of Pharmacology and Neuroscience (F.A.C.S., G.D.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Pablo Nakagawa
- From the Department of Physiology, Cardiovascular Center Medical College of Wisconsin, Milwaukee, WI (M.Z., P.N., N.M.M., K.B., J.L.G., C.D.S.)
| | - Guorui Deng
- Department of Pharmacology and Neuroscience (F.A.C.S., G.D.), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Natalia M Mathieu
- From the Department of Physiology, Cardiovascular Center Medical College of Wisconsin, Milwaukee, WI (M.Z., P.N., N.M.M., K.B., J.L.G., C.D.S.)
| | - Kirthikaa Balapattabi
- From the Department of Physiology, Cardiovascular Center Medical College of Wisconsin, Milwaukee, WI (M.Z., P.N., N.M.M., K.B., J.L.G., C.D.S.)
| | - Sadashiva S Karnik
- Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH (S.S.K.)
| | - Justin L Grobe
- From the Department of Physiology, Cardiovascular Center Medical College of Wisconsin, Milwaukee, WI (M.Z., P.N., N.M.M., K.B., J.L.G., C.D.S.)
| | - Curt D Sigmund
- From the Department of Physiology, Cardiovascular Center Medical College of Wisconsin, Milwaukee, WI (M.Z., P.N., N.M.M., K.B., J.L.G., C.D.S.)
| |
Collapse
|
66
|
Matsuda T, Hiyama TY, Kobayashi K, Kobayashi K, Noda M. Distinct CCK-positive SFO neurons are involved in persistent or transient suppression of water intake. Nat Commun 2020; 11:5692. [PMID: 33173030 PMCID: PMC7655816 DOI: 10.1038/s41467-020-19191-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 10/02/2020] [Indexed: 01/29/2023] Open
Abstract
The control of water-intake behavior is critical for life because an excessive water intake induces pathological conditions, such as hyponatremia or water intoxication. However, the brain mechanisms controlling water intake currently remain unclear. We previously reported that thirst-driving neurons (water neurons) in the subfornical organ (SFO) are cholecystokinin (CCK)-dependently suppressed by GABAergic interneurons under Na-depleted conditions. We herein show that CCK-producing excitatory neurons in the SFO stimulate the activity of GABAergic interneurons via CCK-B receptors. Fluorescence-microscopic Ca2+ imaging demonstrates two distinct subpopulations in CCK-positive neurons in the SFO, which are persistently activated under hyponatremic conditions or transiently activated in response to water drinking, respectively. Optical and chemogenetic silencings of the respective types of CCK-positive neurons both significantly increase water intake under water-repleted conditions. The present study thus reveals CCK-mediated neural mechanisms in the central nervous system for the control of water-intake behaviors. Water intake is critical to our life, and the subfornical organ in the brain involved in the control of this behavior. Here, the authors reveal that two distinct groups of CCK-producing neurons in the SFO suppress water intake according to the physiological condition or water-intake stimulus.
Collapse
Affiliation(s)
- Takashi Matsuda
- Homeostatic Mechanism Research Unit, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8503, Japan.,Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki, Aichi, 444-8787, Japan
| | - Takeshi Y Hiyama
- Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki, Aichi, 444-8787, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki, Aichi, 444-8585, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Fukushima, 960-1295, Japan
| | - Masaharu Noda
- Homeostatic Mechanism Research Unit, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8503, Japan. .,Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki, Aichi, 444-8787, Japan.
| |
Collapse
|
67
|
Sano H, Kobayashi K, Yoshioka N, Takebayashi H, Nambu A. Retrograde gene transfer into neural pathways mediated by adeno-associated virus (AAV)-AAV receptor interaction. J Neurosci Methods 2020; 345:108887. [DOI: 10.1016/j.jneumeth.2020.108887] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/17/2020] [Accepted: 07/27/2020] [Indexed: 12/21/2022]
|
68
|
Chapman CL, Johnson BD, Parker MD, Hostler D, Pryor RR, Schlader Z. Kidney physiology and pathophysiology during heat stress and the modification by exercise, dehydration, heat acclimation and aging. Temperature (Austin) 2020; 8:108-159. [PMID: 33997113 PMCID: PMC8098077 DOI: 10.1080/23328940.2020.1826841] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
The kidneys' integrative responses to heat stress aid thermoregulation, cardiovascular control, and water and electrolyte regulation. Recent evidence suggests the kidneys are at increased risk of pathological events during heat stress, namely acute kidney injury (AKI), and that this risk is compounded by dehydration and exercise. This heat stress related AKI is believed to contribute to the epidemic of chronic kidney disease (CKD) occurring in occupational settings. It is estimated that AKI and CKD affect upwards of 45 million individuals in the global workforce. Water and electrolyte disturbances and AKI, both of which are representative of kidney-related pathology, are the two leading causes of hospitalizations during heat waves in older adults. Structural and physiological alterations in aging kidneys likely contribute to this increased risk. With this background, this comprehensive narrative review will provide the first aggregation of research into the integrative physiological response of the kidneys to heat stress. While the focus of this review is on the human kidneys, we will utilize both human and animal data to describe these responses to passive and exercise heat stress, and how they are altered with heat acclimation. Additionally, we will discuss recent studies that indicate an increased risk of AKI due to exercise in the heat. Lastly, we will introduce the emerging public health crisis of older adults during extreme heat events and how the aging kidneys may be more susceptible to injury during heat stress.
Collapse
Affiliation(s)
- Christopher L. Chapman
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | - Blair D. Johnson
- Department of Kinesiology, School of Public Health, Indiana University, Bloomington, IN, USA
| | - Mark D. Parker
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - David Hostler
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY, USA
| | - Riana R. Pryor
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY, USA
| | - Zachary Schlader
- Department of Kinesiology, School of Public Health, Indiana University, Bloomington, IN, USA
| |
Collapse
|
69
|
Kato S, Kobayashi K. Pseudotyped lentiviral vectors for tract-targeting and application for the functional control of selective neural circuits. J Neurosci Methods 2020; 344:108854. [PMID: 32663549 DOI: 10.1016/j.jneumeth.2020.108854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 12/13/2022]
Abstract
A lentiviral vector strategy for efficient gene transfer through retrograde axonal transport provides a powerful approach for studying the neural circuit mechanisms that mediate higher level functions of the central nervous system. Pseudotyping of human immunodeficiency virus type-1 with different types of fusion glycoproteins (FuGs), which are composed of segments of rabies virus glycoprotein (RV-G) and vesicular stomatitis virus glycoprotein (VSV-G), enhances the efficiency of retrograde gene transfer in both rodent and non-human primate brains. These pseudotyped lentiviral vectors are classified into two groups, highly efficient retrograde gene transfer (HiRet) and neuron-specific retrograde gene transfer (NeuRet) vectors, based on their properties of gene transduction. Combinatorial use of the pseudotyped vectors with various molecular tools for manipulating neural circuit functions (such as the cell targeting, synaptic silencing, and optogenetic or chemogenetic approaches) enables us to control the function of specific neural circuits, thus leading to a deeper understanding of the mechanism underlying various nervous system functions.
Collapse
Affiliation(s)
- Shigeki Kato
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan.
| |
Collapse
|
70
|
Mukai Y, Nagayama A, Itoi K, Yamanaka A. Identification of substances which regulate activity of corticotropin-releasing factor-producing neurons in the paraventricular nucleus of the hypothalamus. Sci Rep 2020; 10:13639. [PMID: 32788592 PMCID: PMC7424526 DOI: 10.1038/s41598-020-70481-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/30/2020] [Indexed: 12/24/2022] Open
Abstract
The stress response is a physiological system for adapting to various internal and external stimuli. Corticotropin-releasing factor-producing neurons in the paraventricular nucleus of the hypothalamus (PVN-CRF neurons) are known to play an important role in the stress response as initiators of the hypothalamic-pituitary-adrenal axis. However, the mechanism by which activity of PVN-CRF neurons is regulated by other neurons and bioactive substances remains unclear. Here, we developed a screening method using calcium imaging to identify how physiological substances directly affect the activity of PVN-CRF neurons. We used acute brain slices expressing a genetically encoded calcium indicator in PVN-CRF neurons using CRF-Cre recombinase mice and an adeno-associated viral vector under Cre control. PVN-CRF neurons were divided into ventral and dorsal portions. Bath application of candidate substances revealed 12 substances that increased and 3 that decreased intracellular calcium concentrations. Among these substances, angiotensin II and histamine mainly increased calcium in the ventral portion of the PVN-CRF neurons via AT1 and H1 receptors, respectively. Conversely, carbachol mainly increased calcium in the dorsal portion of the PVN-CRF neurons via both nicotinic and muscarinic acetylcholine receptors. Our method provides a precise and reliable means of evaluating the effect of a substance on PVN-CRF neuronal activity.
Collapse
Affiliation(s)
- Yasutaka Mukai
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, 464-8601, Japan.,Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.,CREST, JST, Honcho, Kawaguchi, Saitama, 332-0012, Japan.,JSPS Research Fellowship for Young Scientists, Tokyo, 102-0083, Japan
| | - Ayako Nagayama
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, 464-8601, Japan.,Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Keiichi Itoi
- Department of Neuroendocrinology, Graduate School of Medicine, Tohoku University, Sendai, 980-8575, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, 464-8601, Japan. .,Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan. .,CREST, JST, Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
71
|
Augustine V, Lee S, Oka Y. Neural Control and Modulation of Thirst, Sodium Appetite, and Hunger. Cell 2020; 180:25-32. [PMID: 31923398 DOI: 10.1016/j.cell.2019.11.040] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/13/2019] [Accepted: 11/27/2019] [Indexed: 01/01/2023]
Abstract
The function of central appetite neurons is instructing animals to ingest specific nutrient factors that the body needs. Emerging evidence suggests that individual appetite circuits for major nutrients-water, sodium, and food-operate on unique driving and quenching mechanisms. This review focuses on two aspects of appetite regulation. First, we describe the temporal relationship between appetite neuron activity and consumption behaviors. Second, we summarize ingestion-related satiation signals that differentially quench individual appetite circuits. We further discuss how distinct appetite and satiation systems for each factor may contribute to nutrient homeostasis from the functional and evolutional perspectives.
Collapse
Affiliation(s)
- Vineet Augustine
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA; Department of Neuroscience, The Scripps Research Institute, La Jolla, California, USA
| | - Sangjun Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Yuki Oka
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA.
| |
Collapse
|
72
|
Abstract
Recent experiments using optogenetic tools facilitate the identification and functional analysis of thirst neurons and vasopressin-producing neurons. Four major advances provide a detailed anatomy and physiology of thirst, taste for water, and arginine-vasopressin (AVP) release: ( a) Thirst and AVP release are regulated by the classical homeostatic, interosensory plasma osmolality negative feedback as well as by novel, exterosensory, anticipatory signals. These anticipatory signals for thirst and vasopressin release concentrate on the same homeostatic neurons and circumventricular organs that monitor the composition of blood. ( b) Acid-sensing taste receptor cells (TRCs) expressing otopetrin 1 on type III presynaptic TRCs on the tongue, which were previously suggested as the sour taste sensors, also mediate taste responses to water. ( c) Dehydration is aversive, and median preoptic nucleus (MnPO) neuron activity is proportional to the intensity of this aversive state. ( d) MnPOGLP1R neurons serve as a central detector that discriminates fluid ingestion from solid ingestion, which promotes acute satiation of thirst through the subfornical organ and other downstream targets.
Collapse
Affiliation(s)
- Daniel G Bichet
- University of Montreal and Nephrology Service, Research Center, Hôpital du Sacré-Coeur de Montreal, Montreal, Quebec H4J 1C5, Canada;
| |
Collapse
|
73
|
Sakuta H, Lin CH, Hiyama TY, Matsuda T, Yamaguchi K, Shigenobu S, Kobayashi K, Noda M. SLC9A4 in the organum vasculosum of the lamina terminalis is a [Na+] sensor for the control of water intake. Pflugers Arch 2020; 472:609-624. [DOI: 10.1007/s00424-020-02389-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/17/2020] [Accepted: 04/28/2020] [Indexed: 12/19/2022]
|
74
|
Sakuta H, Lin CH, Yamada M, Kita Y, Tokuoka SM, Shimizu T, Noda M. Nax-positive glial cells in the organum vasculosum laminae terminalis produce epoxyeicosatrienoic acids to induce water intake in response to increases in [Na+] in body fluids. Neurosci Res 2020; 154:45-51. [DOI: 10.1016/j.neures.2019.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/24/2019] [Accepted: 05/27/2019] [Indexed: 01/06/2023]
|
75
|
Katayama Y, Wong MKS, Kusakabe M, Fujio M, Takahashi N, Yaguchi M, Tsukada T. Seawater transfer down-regulates C-type natriuretic peptide-3 expression in prolactin-producing cells of Japanese eel: Negative correlation with plasma chloride concentration. Mol Cell Endocrinol 2020; 507:110780. [PMID: 32142860 DOI: 10.1016/j.mce.2020.110780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/30/2020] [Accepted: 02/27/2020] [Indexed: 10/24/2022]
Abstract
In euryhaline fishes, atrial and B-type natriuretic peptides are important hormones in hypo-osmoregulation, whereas osmoregulatory functions of C-type natriuretic peptides (CNPs) remain to be investigated. Although four CNP isoforms (CNP1-4) are mainly expressed in the brain, multiorgan expression of CNP3 was found in euryhaline Japanese eel, Anguilla japonica. Here we identified the CNP3-expressing cells and examined their response to osmotic stress in eel. CNP3 was expressed in several endocrine cells: prolactin-producing cells (pituitary), glucagon-producing cells (pancreas), and cardiomyocytes (heart). Pituitary CNP3 expression was the highest among organs and was decreased following seawater transfer, followed by a decrease in the freshwater-adaptating (hyper-osmoregulatory) hormone prolactin. We also showed the negative correlation between CNP3/prolactin expression in the pituitary and plasma Cl- concentration, but not for plasma Na+ concentration. These results suggest that CNP3 in the pituitary (and pancreas) plays a critical role in freshwater adaptation of euryhaline eel together with prolactin.
Collapse
Affiliation(s)
- Yukitoshi Katayama
- Department of Biomolecular Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Marty Kwok-Shing Wong
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8564, Japan
| | - Makoto Kusakabe
- Faculty of Science, Shizuoka University, 836 Otani, Suruga, Shizuoka, Shizuoka, 422-8529, Japan
| | - Megumi Fujio
- Department of Biomolecular Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Natsuki Takahashi
- Department of Biomolecular Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Miku Yaguchi
- Department of Biomolecular Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Takehiro Tsukada
- Department of Biomolecular Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan.
| |
Collapse
|
76
|
Sugizaki CSDA, Braga CC, Freitas ATVDS, Peixoto MDRG. Transcultural adaptation of the Thirst Distress Scale (TDS) into Brazilian Portuguese and an analysis of the psychometric properties of the scale for patients on hemodialysis. J Bras Nefrol 2020; 42:153-162. [PMID: 32187260 PMCID: PMC7427644 DOI: 10.1590/2175-8239-jbn-2019-0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/18/2019] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE To produce a transcultural adaptation of the Thirst Distress Scale (TDS) into Brazilian Portuguese and analyze the scale's psychometric properties for patients on hemodialysis (HD). METHODS The original scale was translated, back translated, and discussed with psychometric assessment experts. The final version was tested with 126 patients on HD and retested with 70 individuals from the original patient population. Cronbach's alpha was used to measure the scale's internal consistency. Reliability of thirst intensity evaluated via the visual analogue scale (VAS) was tested with Kappa statistic and the Bland-Altman plot. Reproducibility was assessed based on the intraclass correlation coefficient (ICC). RESULTS The wording of three items and the verb tenses of six had to be adjusted in the final version of the Brazilian Portuguese TDS. Comprehension of the scale by patients on HD was good, the scale's internal consistency was satisfactory (0.84; p<0.001), agreement with a visual analogue scale (VAS) was moderate (kappa=0.44; p<0.001), and reproducibility neared perfection (ICC=0.87; p<0.001). CONCLUSION Our results showed that the Brazilian Portuguese version of the scale might be used reliably. The Brazilian Portuguese version of the TDS is a practical, affordable, accessible and well-accepted tool that has a lot to offer for the management of patients with HD.
Collapse
Affiliation(s)
| | - Clarice Carneiro Braga
- Universidade Federal de Goiás, Faculdade de Nutrição, Programa
de Pós-Graduação em Nutrição e Saúde, Goiânia, GO, Brasil
| | | | | |
Collapse
|
77
|
Hill CM, Qualls-Creekmore E, Berthoud HR, Soto P, Yu S, McDougal DH, Münzberg H, Morrison CD. FGF21 and the Physiological Regulation of Macronutrient Preference. Endocrinology 2020; 161:5734531. [PMID: 32047920 PMCID: PMC7053867 DOI: 10.1210/endocr/bqaa019] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/06/2020] [Indexed: 12/15/2022]
Abstract
The ability to respond to variations in nutritional status depends on regulatory systems that monitor nutrient intake and adaptively alter metabolism and feeding behavior during nutrient restriction. There is ample evidence that the restriction of water, sodium, or energy intake triggers adaptive responses that conserve existing nutrient stores and promote the ingestion of the missing nutrient, and that these homeostatic responses are mediated, at least in part, by nutritionally regulated hormones acting within the brain. This review highlights recent research that suggests that the metabolic hormone fibroblast growth factor 21 (FGF21) acts on the brain to homeostatically alter macronutrient preference. Circulating FGF21 levels are robustly increased by diets that are high in carbohydrate but low in protein, and exogenous FGF21 treatment reduces the consumption of sweet foods and alcohol while alternatively increasing the consumption of protein. In addition, while control mice adaptively shift macronutrient preference and increase protein intake in response to dietary protein restriction, mice that lack either FGF21 or FGF21 signaling in the brain fail to exhibit this homeostatic response. FGF21 therefore mediates a unique physiological niche, coordinating adaptive shifts in macronutrient preference that serve to maintain protein intake in the face of dietary protein restriction.
Collapse
Affiliation(s)
| | | | | | - Paul Soto
- Pennington Biomedical Research Center, Baton Rouge, LA
| | - Sangho Yu
- Pennington Biomedical Research Center, Baton Rouge, LA
| | | | | | - Christopher D Morrison
- Pennington Biomedical Research Center, Baton Rouge, LA
- Correspondence: Christopher D. Morrison, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, 70808. E-mail:
| |
Collapse
|
78
|
Park S, Williams KW, Liu C, Sohn JW. A neural basis for tonic suppression of sodium appetite. Nat Neurosci 2020; 23:423-432. [PMID: 31959933 PMCID: PMC7065971 DOI: 10.1038/s41593-019-0573-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 12/09/2019] [Indexed: 11/09/2022]
Abstract
Sodium appetite is a powerful form of motivation that can drive ingestion of high, yet aversive concentrations of sodium in animals that are depleted of sodium. However, in normal conditions, sodium appetite is suppressed to prevent homeostatic deviations. Although molecular and neural mechanisms underlying the stimulation of sodium appetite have received much attention recently, mechanisms that inhibit sodium appetite remain largely obscure. Here we report that serotonin 2c receptor (Htr2c)-expressing neurons in the lateral parabrachial nucleus (LPBNHtr2c neurons) inhibit sodium appetite. Activity of these neurons is regulated by bodily sodium content, and their activation can rapidly suppress sodium intake. Conversely, inhibition of these neurons specifically drives sodium appetite, even during euvolemic conditions. Notably, the physiological role of Htr2c expressed by LPBN neurons is to disinhibit sodium appetite. Our results suggest that LPBNHtr2c neurons act as a brake against sodium appetite and that their alleviation is required for the full manifestation of sodium appetite.
Collapse
Affiliation(s)
- Seahyung Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Kevin W Williams
- The Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chen Liu
- The Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Jong-Woo Sohn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea.
| |
Collapse
|
79
|
Porcari CY, Debarba LK, Amigone JL, Caeiro XE, Reis LC, Cunha TM, Mecawi AS, Elias LL, Antunes-Rodrigues J, Vivas L, Godino A. Brain osmo-sodium sensitive channels and the onset of sodium appetite. Horm Behav 2020; 118:104658. [PMID: 31874139 DOI: 10.1016/j.yhbeh.2019.104658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/14/2019] [Accepted: 12/17/2019] [Indexed: 01/13/2023]
Abstract
The aim of the present study was to determine whether the TRPV1 channel is involved in the onset of sodium appetite. For this purpose, we used TRPV1-knockout mice to investigate sodium depletion-induced drinking at different times (2/24 h) after furosemide administration combined with a low sodium diet (FURO-LSD). In sodium depleted wild type and TRPV1 KO (SD-WT/SD-TPRV1-KO) mice, we also evaluated the participation of other sodium sensors, such as TPRV4, NaX and angiotensin AT1-receptors (by RT-PCR), as well as investigating the pattern of neural activation shown by Fos immunoreactivity, in different nuclei involved in hydromineral regulation. TPRV1 SD-KO mice revealed an increased sodium preference, ingesting a higher hypertonic cocktail in comparison with SD-WT mice. Our results also showed in SD-WT animals that SFO-Trpv4 expression increased 2 h after FURO-LSD, compared to other groups, thus supporting a role of SFO-Trpv4 channels during the hyponatremic state. However, the SD-TPRV1-KO animals did not show this early increase, and maybe as a consequence drank more hypertonic cocktail. Regarding the SFO-NaX channel expression, in both genotypes our findings revealed a reduction 24 h after FURO-LSD. In addition, there was an increase in the OVLT-NaX expression of SD-WT 24 h after FURO-LSD, suggesting the participation of OVLT-NaX channels in the appearance of sodium appetite, possibly as an anticipatory response in order to limit sodium intake and to induce thirst. Our work demonstrates changes in the expression of different osmo‑sodium-sensitive channels at specific nuclei, related to the body sodium status in order to stimulate an adequate drinking.
Collapse
Affiliation(s)
- C Y Porcari
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina
| | - L K Debarba
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - J L Amigone
- Sección de Bioquímica Clínica, Hospital Privado, Córdoba, Argentina
| | - X E Caeiro
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina
| | - L C Reis
- Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - T M Cunha
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - A S Mecawi
- Laboratory of Molecular Neuroendocrinology, Department of Biophysics, Paulista Medical School, Federal University of São Paulo, São Paulo, Brazil
| | - L L Elias
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - J Antunes-Rodrigues
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - L Vivas
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina; Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - A Godino
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina; Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
80
|
Integration of Hypernatremia and Angiotensin II by the Organum Vasculosum of the Lamina Terminalis Regulates Thirst. J Neurosci 2020; 40:2069-2079. [PMID: 32005766 DOI: 10.1523/jneurosci.2208-19.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/08/2020] [Accepted: 01/23/2020] [Indexed: 11/21/2022] Open
Abstract
The organum vasculosum of the lamina terminalis (OVLT) contains NaCl-sensitive neurons to regulate thirst, neuroendocrine function, and autonomic outflow. The OVLT also expresses the angiotensin II (AngII) type1 receptor, and AngII increases Fos expression in OVLT neurons. The present study tested whether individual OVLT neurons sensed both NaCl and AngII to regulate thirst and body fluid homeostasis. A multifaceted approach, including in vitro whole-cell patch recordings, in vivo single-unit recordings, and optogenetic manipulation of OVLT neurons, was used in adult, male Sprague Dawley rats. First, acute intravenous infusion of hypertonic NaCl or AngII produced anatomically distinct patterns of Fos-positive nuclei in the OVLT largely restricted to the dorsal cap versus vascular core, respectively. However, in vitro patch-clamp recordings indicate 66% (23 of 35) of OVLT neurons were excited by bath application of both hypertonic NaCl and AngII. Similarly, in vivo single-unit recordings revealed that 52% (23 of 44) of OVLT neurons displayed an increased discharge to intracarotid injection of both hypertonic NaCl and AngII. In marked contrast to Fos immunoreactivity, neuroanatomical mapping of Neurobiotin-filled cells from both in vitro and in vivo recordings revealed that NaCl- and AngII-responsive neurons were distributed throughout the OVLT. Next, optogenetic excitation of OVLT neurons stimulated thirst but not salt appetite. Conversely, optogenetic inhibition of OVLT neurons attenuated thirst stimulated by hypernatremia or elevated AngII but not hypovolemia. Collectively, these findings provide the first identification of individual OVLT neurons that respond to both elevated NaCl and AngII concentrations to regulate thirst and body fluid homeostasis.SIGNIFICANCE STATEMENT Body fluid homeostasis requires the integration of neurohumoral signals to coordinate behavior, neuroendocrine function, and autonomic function. Extracellular NaCl concentrations and the peptide hormone angiotensin II (AngII) are two major neurohumoral signals that regulate body fluid homeostasis. Herein, we present the first compelling evidence that individual neurons located in the organum vasculosum of the lamina terminalis detect both NaCl and AngII. Furthermore, optogenetic interrogations demonstrate that these neurons play a pivotal role in the regulation of thirst stimulated by NaCl and AngII. These novel observations lay the foundation for future investigations for how such inputs as well as others converge onto unique organum vasculosum of the lamina terminalis neurons to coordinate body fluid homeostasis and contribute to disorders of fluid balance.
Collapse
|
81
|
Abstract
Nonalcoholic fatty liver disease (NAFLD) is considered the hepatic manifestation of the metabolic syndrome (MetS) and comprises one of the largest health threats of the twenty-first century. In this chapter, we review the current state of knowledge of NAFLD and underline the striking similarities with atherosclerosis. We first describe current epidemiological data showing the staggering increase of NAFLD numbers and its related clinical and economic costs. We then provide an overview of pathophysiological hepatic processes in NAFLD and highlight the systemic aspects of NAFLD that point toward metabolic crosstalk between organs as an important cause of metabolic disease. Finally, we end by highlighting the currently investigated therapeutic approaches for NAFLD, which also show strong similarities with a range of treatment options for atherosclerosis.
Collapse
|
82
|
Armstrong LE, Kavouras SA. Thirst and Drinking Paradigms: Evolution from Single Factor Effects to Brainwide Dynamic Networks. Nutrients 2019; 11:nu11122864. [PMID: 31766680 PMCID: PMC6950074 DOI: 10.3390/nu11122864] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 01/10/2023] Open
Abstract
The motivation to seek and consume water is an essential component of human fluid–electrolyte homeostasis, optimal function, and health. This review describes the evolution of concepts regarding thirst and drinking behavior, made possible by magnetic resonance imaging, animal models, and novel laboratory techniques. The earliest thirst paradigms focused on single factors such as dry mouth and loss of water from tissues. By the end of the 19th century, physiologists proposed a thirst center in the brain that was verified in animals 60 years later. During the early- and mid-1900s, the influences of gastric distention, neuroendocrine responses, circulatory properties (i.e., blood pressure, volume, concentration), and the distinct effects of intracellular dehydration and extracellular hypovolemia were recognized. The majority of these studies relied on animal models and laboratory methods such as microinjection or lesioning/oblation of specific brain loci. Following a quarter century (1994–2019) of human brain imaging, current research focuses on networks of networks, with thirst and satiety conceived as hemispheric waves of neuronal activations that traverse the brain in milliseconds. Novel technologies such as chemogenetics, optogenetics, and neuropixel microelectrode arrays reveal the dynamic complexity of human thirst, as well as the roles of motivation and learning in drinking behavior.
Collapse
Affiliation(s)
- Lawrence E. Armstrong
- Human Performance Laboratory and Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269-1110, USA
- Correspondence:
| | - Stavros A. Kavouras
- Arizona State University, College of Health Solutions, Hydration Science Lab, Phoenix, AZ 85004, USA;
| |
Collapse
|
83
|
The influence of opioid dependence on salt consumption and related psychological parameters in mice and humans. Drug Alcohol Depend 2019; 203:19-26. [PMID: 31400713 DOI: 10.1016/j.drugalcdep.2019.05.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 01/15/2023]
Abstract
BACKGROUND The consumption of dietary salt (NaCl) is controlled by neuronal pathways that are modulated by endogenous opioid signalling. The latter is disrupted by chronic use of exogenous opioid receptor agonists, such as morphine. Therefore, opioid dependence may influence salt consumption, which we investigated in two complimentary studies in humans and mice. METHODS Human study: three groups were recruited: i. Individuals who are currently opioid dependent and receiving opioid substitution treatment (OST); ii. Previously opioid dependent individuals, who are currently abstinent, and; iii. Healthy controls with no history of opioid dependence. Participants tasted solutions containing different salt concentrations and indicated levels of salt 'desire', salt 'liking', and perceptions of 'saltiness'. Mouse study: preference for 0.1 M versus 0.2 M NaCl and overall levels of salt consumption were recorded during and after chronic escalating morphine treatment. RESULTS Human study: Abstinent participants' 'desire' for and 'liking' of salt was shifted towards more highly concentrated salt solutions relative to control and OST individuals. Mouse study: Mice increased their total salt consumption during morphine treatment relative to vehicle controls, which persisted for 3 days after cessation of treatment. Preference for 'low' versus 'high' concentrations of salt were unchanged. CONCLUSION These findings suggest a possible common mechanistic cross-sensitization to salt that is present in both mice and humans and builds our understanding of how opioid dependence can influence dietary salt consumption. This research may help inform better strategies to improve the diet and overall wellbeing of the growing number of individuals who develop opioid dependence.
Collapse
|
84
|
Interaction of central angiotensin II and aldosterone on sodium intake and blood pressure. Brain Res 2019; 1720:146299. [DOI: 10.1016/j.brainres.2019.06.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/12/2019] [Accepted: 06/15/2019] [Indexed: 12/25/2022]
|
85
|
Allostasis: A Brain-Centered, Predictive Mode of Physiological Regulation. Trends Neurosci 2019; 42:740-752. [PMID: 31488322 DOI: 10.1016/j.tins.2019.07.010] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/10/2019] [Accepted: 07/30/2019] [Indexed: 12/26/2022]
Abstract
Although the concept of allostasis was proposed some 30 years ago, doubts persist about its precise meaning and whether it is useful. Here we review the concept in the context of recent studies as a strategy to efficiently regulate physiology and behavior. The brain, sensing the internal and external milieu, and consulting its database, predicts what is likely to be needed; then, it computes the best response. The brain rewards a better-than-predicted result with a pulse of dopamine, thereby encouraging the organism to learn effective regulatory behaviors. The brain, by prioritizing behaviors and dynamically adjusting the flows of energy and nutrients, reduces costly errors and exploits more opportunities. Despite significant costs of computation, allostasis pays off and can now be recognized as a core principle of organismal design.
Collapse
|
86
|
Abstract
Diabetes insipidus (DI) is a disorder characterized by excretion of large amounts of hypotonic urine. Central DI results from a deficiency of the hormone arginine vasopressin (AVP) in the pituitary gland or the hypothalamus, whereas nephrogenic DI results from resistance to AVP in the kidneys. Central and nephrogenic DI are usually acquired, but genetic causes must be evaluated, especially if symptoms occur in early childhood. Central or nephrogenic DI must be differentiated from primary polydipsia, which involves excessive intake of large amounts of water despite normal AVP secretion and action. Primary polydipsia is most common in psychiatric patients and health enthusiasts but the polydipsia in a small subgroup of patients seems to be due to an abnormally low thirst threshold, a condition termed dipsogenic DI. Distinguishing between the different types of DI can be challenging and is done either by a water deprivation test or by hypertonic saline stimulation together with copeptin (or AVP) measurement. Furthermore, a detailed medical history, physical examination and imaging studies are needed to ensure an accurate DI diagnosis. Treatment of DI or primary polydipsia depends on the underlying aetiology and differs in central DI, nephrogenic DI and primary polydipsia.
Collapse
|
87
|
Ichiki T, Augustine V, Oka Y. Neural populations for maintaining body fluid balance. Curr Opin Neurobiol 2019; 57:134-140. [PMID: 30836260 PMCID: PMC7006364 DOI: 10.1016/j.conb.2019.01.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 01/14/2019] [Indexed: 01/03/2023]
Abstract
Fine balance between loss-of water and gain-of water is essential for maintaining body fluid homeostasis. The development of neural manipulation and mapping tools has opened up new avenues to dissect the neural circuits underlying body fluid regulation. Recent studies have identified several nodes in the brain that positively and negatively regulate thirst. The next step forward would be to elucidate how neural populations interact with each other to control drinking behavior.
Collapse
Affiliation(s)
- Takako Ichiki
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd Mail Code: 216-76, Pasadena, CA 91125, USA
| | - Vineet Augustine
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd Mail Code: 216-76, Pasadena, CA 91125, USA
| | - Yuki Oka
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd Mail Code: 216-76, Pasadena, CA 91125, USA.
| |
Collapse
|
88
|
Ch'ng SS, Lawrence AJ. The subfornical organ in sodium appetite: Recent insights. Neuropharmacology 2019; 154:107-113. [DOI: 10.1016/j.neuropharm.2018.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/10/2018] [Accepted: 08/11/2018] [Indexed: 12/17/2022]
|
89
|
Leib DE, Zimmerman CA, Poormoghaddam A, Huey EL, Ahn JS, Lin YC, Tan CL, Chen Y, Knight ZA. The Forebrain Thirst Circuit Drives Drinking through Negative Reinforcement. Neuron 2019; 96:1272-1281.e4. [PMID: 29268095 DOI: 10.1016/j.neuron.2017.11.041] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/09/2017] [Accepted: 11/30/2017] [Indexed: 10/18/2022]
Abstract
The brain transforms the need for water into the desire to drink, but how this transformation is performed remains unknown. Here we describe the motivational mechanism by which the forebrain thirst circuit drives drinking. We show that thirst-promoting subfornical organ neurons are negatively reinforcing and that this negative-valence signal is transmitted along projections to the organum vasculosum of the lamina terminalis (OVLT) and median preoptic nucleus (MnPO). We then identify molecularly defined cell types within the OVLT and MnPO that are activated by fluid imbalance and show that stimulation of these neurons is sufficient to drive drinking, cardiovascular responses, and negative reinforcement. Finally, we demonstrate that the thirst signal exits these regions through at least three parallel pathways and show that these projections dissociate the cardiovascular and behavioral responses to fluid imbalance. These findings reveal a distributed thirst circuit that motivates drinking by the common mechanism of drive reduction.
Collapse
Affiliation(s)
- David E Leib
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Christopher A Zimmerman
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ailar Poormoghaddam
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Erica L Huey
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jamie S Ahn
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yen-Chu Lin
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Chan Lek Tan
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yiming Chen
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Zachary A Knight
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
90
|
Augustine V, Ebisu H, Zhao Y, Lee S, Ho B, Mizuno GO, Tian L, Oka Y. Temporally and Spatially Distinct Thirst Satiation Signals. Neuron 2019; 103:242-249.e4. [PMID: 31153646 DOI: 10.1016/j.neuron.2019.04.039] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/27/2019] [Accepted: 04/26/2019] [Indexed: 11/27/2022]
Abstract
For thirsty animals, fluid intake provides both satiation and pleasure of drinking. How the brain processes these factors is currently unknown. Here, we identified neural circuits underlying thirst satiation and examined their contribution to reward signals. We show that thirst-driving neurons receive temporally distinct satiation signals by liquid-gulping-induced oropharyngeal stimuli and gut osmolality sensing. We demonstrate that individual thirst satiation signals are mediated by anatomically distinct inhibitory neural circuits in the lamina terminalis. Moreover, we used an ultrafast dopamine (DA) sensor to examine whether thirst satiation itself stimulates the reward-related circuits. Interestingly, spontaneous drinking behavior but not thirst drive reduction triggered DA release. Importantly, chemogenetic stimulation of thirst satiation neurons did not activate DA neurons under water-restricted conditions. Together, this study dissected the thirst satiation circuit, the activity of which is functionally separable from reward-related brain activity.
Collapse
Affiliation(s)
- Vineet Augustine
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Haruka Ebisu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yuan Zhao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sangjun Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Brittany Ho
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Grace O Mizuno
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Lin Tian
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Yuki Oka
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
91
|
Pate AT, Schnell AL, Ennis TA, Samson WK, Yosten GLC. Expression and function of nesfatin-1 are altered by stage of the estrous cycle. Am J Physiol Regul Integr Comp Physiol 2019; 317:R328-R336. [PMID: 31141415 DOI: 10.1152/ajpregu.00249.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nesfatin-1 is a peptide derived from the nucleobindin 2 (Nucb2) precursor protein that has been shown to exert potent effects on appetite and cardiovascular function in male animals. Sex hormones modulate the expression of Nucb2 in several species, including goldfish, mouse, and rat, and human studies have revealed differential expression based on male or female sex. We therefore hypothesized that the ability of nesfatin-1 to increase mean arterial pressure (MAP) would be influenced by stage of the estrous cycle. Indeed, we found that in cycling female Sprague-Dawley rats, nesfatin-1 induced an increase in MAP on diestrus, when both estrogen and progesterone levels are low but not on proestrus or estrus. The effect of nesfatin-1 on MAP was dependent on functional central melanocortin receptors, because the nesfatin-1-induced increase in MAP was abolished by pretreatment with the melanocortin 3/4 receptor antagonist, SHU9119. We previously reported that nesfatin-1 inhibited angiotensin II-induced water drinking in male rats but found no effect of nesfatin-1 in females in diestrus. However, nesfatin-1 enhanced angiotensin II-induced elevations in MAP in females in diestrus but had no effect on males. Finally, in agreement with previous reports, the expression of Nucb2 mRNA in hypothalamus was significantly reduced in female rats in proestrus compared with rats in diestrus. From these data we conclude that the function and expression of nesfatin-1 are modulated by sex hormone status. Further studies are required to determine the contributions of chromosomal sex and individual sex hormones to the cardiovascular effects of nesfatin-1.
Collapse
Affiliation(s)
- Alicia T Pate
- Saint Louis College of Pharmacy, St. Louis, Missouri
| | - Abigayle L Schnell
- Department of Pharmacology and Physiology, St. Louis University School of Medicine, St. Louis, Missouri
| | - Teresa A Ennis
- Department of Pharmacology and Physiology, St. Louis University School of Medicine, St. Louis, Missouri
| | - Willis K Samson
- Department of Pharmacology and Physiology, St. Louis University School of Medicine, St. Louis, Missouri
| | - Gina L C Yosten
- Department of Pharmacology and Physiology, St. Louis University School of Medicine, St. Louis, Missouri
| |
Collapse
|
92
|
Benz F, Wichitnaowarat V, Lehmann M, Germano RF, Mihova D, Macas J, Adams RH, Taketo MM, Plate KH, Guérit S, Vanhollebeke B, Liebner S. Low wnt/β-catenin signaling determines leaky vessels in the subfornical organ and affects water homeostasis in mice. eLife 2019; 8:43818. [PMID: 30932814 PMCID: PMC6481993 DOI: 10.7554/elife.43818] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/28/2019] [Indexed: 12/17/2022] Open
Abstract
The circumventricular organs (CVOs) in the central nervous system (CNS) lack a vascular blood-brain barrier (BBB), creating communication sites for sensory or secretory neurons, involved in body homeostasis. Wnt/β-catenin signaling is essential for BBB development and maintenance in endothelial cells (ECs) in most CNS vessels. Here we show that in mouse development, as well as in adult mouse and zebrafish, CVO ECs rendered Wnt-reporter negative, suggesting low level pathway activity. Characterization of the subfornical organ (SFO) vasculature revealed heterogenous claudin-5 (Cldn5) and Plvap/Meca32 expression indicative for tight and leaky vessels, respectively. Dominant, EC-specific β-catenin transcription in mice, converted phenotypically leaky into BBB-like vessels, by augmenting Cldn5+vessels, stabilizing junctions and by reducing Plvap/Meca32+ and fenestrated vessels, resulting in decreased tracer permeability. Endothelial tightening augmented neuronal activity in the SFO of water restricted mice. Hence, regulating the SFO vessel barrier may influence neuronal function in the context of water homeostasis. Infections and diseases in the brain and spine can be very damaging and debilitating. Indeed, the central nervous system also needs a carefully controlled biochemical environment to survive. As such, all animals with a backbone have barriers and defenses to protect and preserve this key system. One of these is the blood-brain barrier, a physical barrier between the brain and the outside world. Where most blood vessels allow relatively free exchange of chemicals between the blood and surrounding cells, the blood-brain barrier controls what can move between the bloodstream and the brain. Yet, there are gaps in the blood-brain barrier, specifically within structures in the brain called the circumventricular organs. These leaky vessels allow the brain cells in these regions to monitor the blood and respond to changes, for example, by triggering sensations such as hunger, thirst or nausea. It is not clear what stops the blood-brain barrier from forming in these regions and what effect the presence of a barrier would have on the brains activity, or the health and behavior of the animal. Benz et al. have now used mice and zebrafish to examine the development and structure of the blood-brain barrier. The investigation revealed that the signals that induce the blood-brain barrier throughout the brain are absent in the circumventricular organs of both species. Next, by artificially activating a protein involved in cell-cell interactions in mice, Benz et al. created blood-brain barrier-like structures in circumventricular organs by converting the leaky vessels into tight ones. This change meant that the brain cells in these regions did not respond properly to water deprivation, which potentially may have affected the regulation of thirst in these mice. Understanding the blood-brain barrier could have a variety of impacts on how we treat diseases in the central nervous system. This includes stroke, brain tumors and Alzheimers disease. These findings could particularly help scientists to better understand conditions that affect basic needs like thirst and hunger.
Collapse
Affiliation(s)
- Fabienne Benz
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Viraya Wichitnaowarat
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Martin Lehmann
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Raoul Fv Germano
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles, Bruxelles, Belgium
| | - Diana Mihova
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jadranka Macas
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ralf H Adams
- Department of Tissue Morphogenesis, Max-Planck-Institute for Molecular Biomedicine, University of Münster, Faculty of Medicine, Münster, Germany
| | - M Mark Taketo
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Karl-Heinz Plate
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany.,Excellence Cluster Cardio-Pulmonary systems (ECCPS), Partner site Frankfurt, Frankfurt, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Frankfurt/Mainz, Frankfurt, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sylvaine Guérit
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Benoit Vanhollebeke
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles, Bruxelles, Belgium.,Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Wallonia, Belgium
| | - Stefan Liebner
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany.,Excellence Cluster Cardio-Pulmonary systems (ECCPS), Partner site Frankfurt, Frankfurt, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany
| |
Collapse
|
93
|
Chemosensory modulation of neural circuits for sodium appetite. Nature 2019; 568:93-97. [PMID: 30918407 PMCID: PMC7122814 DOI: 10.1038/s41586-019-1053-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/31/2019] [Indexed: 11/11/2022]
Abstract
Sodium is the main cation in the extracellular fluid that regulates various physiological functions. Sodium-depletion in the body elevates the hedonic value of sodium taste, which drives animals toward sodium consumption 1,2. Conversely, oral sodium detection rapidly promotes satiation of sodium appetite 3,4, suggesting that chemosensory signals have a central role in sodium appetite and its satiety. Nevertheless, the neural basis of chemosensory-based appetite regulation remains poorly understood. Here, we dissect genetically-defined neural circuits in mice that control sodium intake by integrating sodium taste and internal depletion signals. We show that a subset of excitatory neurons in the pre-locus coeruleus (pre-LC) that express prodynorphin (PDYN) serve as a critical neural substrate for sodium intake behavior. Acute stimulation of this population triggered robust sodium ingestion even from rock salt by transmitting negative valence signals. Inhibition of the same neurons selectively reduced sodium consumption. We further demonstrate that peripheral chemosensory signals rapidly suppressed these sodium appetite neurons. Simultaneous in vivo optical recording and gastric infusion revealed that sensory detection of sodium, but not sodium ingestion per se, is required for the acute modulation of pre-LC PDYN neurons and satiety of sodium appetite. Moreover, retrograde virus tracing showed that sensory modulation is partly mediated by specific GABAergic neurons in the bed nucleus of the stria terminalis. This inhibitory neural population is activated upon sodium ingestion, and sends rapid inhibitory signals to sodium appetite neurons. Together, this study reveals a dynamic circuit diagram that integrates chemosensory signals and the internal need to maintain sodium balance.
Collapse
|
94
|
A note on retrograde gene transfer efficiency and inflammatory response of lentiviral vectors pseudotyped with FuG-E vs. FuG-B2 glycoproteins. Sci Rep 2019; 9:3567. [PMID: 30837514 PMCID: PMC6400974 DOI: 10.1038/s41598-019-39535-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 01/04/2019] [Indexed: 11/08/2022] Open
Abstract
Pseudotyped lentiviral vectors give access to pathway-selective gene manipulation via retrograde transfer. Two types of such lentiviral vectors have been developed. One is the so-called NeuRet vector pseudotyped with fusion glycoprotein type E, which preferentially transduces neurons. The other is the so-called HiRet vector pseudotyped with fusion glycoprotein type B2, which permits gene transfer into both neurons and glial cells at the injection site. Although these vectors have been applied in many studies investigating neural network functions, it remains unclear which vector is more appropriate for retrograde gene delivery in the brain. To compare the gene transfer efficiency and inflammatory response of the NeuRet vs. HiRet vectors, each vector was injected into the striatum in macaque monkeys, common marmosets, and rats. It was revealed that retrograde gene delivery of the NeuRet vector was equal to or greater than that of the HiRet vector. Furthermore, inflammation characterized by microglial and lymphocytic infiltration occurred when the HiRet vector, but not the NeuRet vector, was injected into the primate brain. The present results indicate that the NeuRet vector is more suitable than the HiRet vector for retrograde gene transfer in the primate and rodent brains.
Collapse
|
95
|
Leng G, Russell JA. The osmoresponsiveness of oxytocin and vasopressin neurones: Mechanisms, allostasis and evolution. J Neuroendocrinol 2019; 31:e12662. [PMID: 30451331 DOI: 10.1111/jne.12662] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/29/2018] [Accepted: 11/15/2018] [Indexed: 12/27/2022]
Abstract
In the rat supraoptic nucleus, every oxytocin cell projects to the posterior pituitary, and is involved both in reflex milk ejection during lactation and in regulating uterine contractions during parturition. All are also osmosensitive, regulating natriuresis. All are also regulated by signals that control appetite, including the neural and hormonal signals that arise from the gut after food intake and from the sites of energy storage. All are also involved in sexual behaviour, anxiety-related behaviours and social behaviours. The challenge is to understand how a single population of neurones can coherently regulate such a diverse set of functions and adapt to changing physiological states. Their multiple functions arise from complex intrinsic properties that confer sensitivity to a wide range of internal and environmental signals. Many of these properties have a distant evolutionary origin in multifunctional, multisensory neurones of Urbilateria, the hypothesised common ancestor of vertebrates, insects and worms. Their properties allow different patterns of oxytocin release into the circulation from their axon terminals in the posterior pituitary into other brain areas from axonal projections, as well as independent release from their dendrites.
Collapse
Affiliation(s)
- Gareth Leng
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - John A Russell
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
96
|
McKinley MJ, Denton DA, Ryan PJ, Yao ST, Stefanidis A, Oldfield BJ. From sensory circumventricular organs to cerebral cortex: Neural pathways controlling thirst and hunger. J Neuroendocrinol 2019; 31:e12689. [PMID: 30672620 DOI: 10.1111/jne.12689] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/20/2019] [Accepted: 01/21/2019] [Indexed: 01/14/2023]
Abstract
Much progress has been made during the past 30 years with respect to elucidating the neural and endocrine pathways by which bodily needs for water and energy are brought to conscious awareness through the generation of thirst and hunger. One way that circulating hormones influence thirst and hunger is by acting on neurones within sensory circumventricular organs (CVOs). This is possible because the subfornical organ and organum vasculosum of the lamina terminalis (OVLT), the sensory CVOs in the forebrain, and the area postrema in the hindbrain lack a normal blood-brain barrier such that neurones within them are exposed to blood-borne agents. The neural signals generated by hormonal action in these sensory CVOs are relayed to several sites in the cerebral cortex to stimulate or inhibit thirst or hunger. The subfornical organ and OVLT respond to circulating angiotensin II, relaxin and hypertonicity to drive thirst-related neural pathways, whereas circulating amylin, leptin and possibly glucagon-like peptide-1 act at the area postrema to influence neural pathways inhibiting food intake. As a result of investigations using functional brain imaging techniques, the insula and anterior cingulate cortex, as well as several other cortical sites, have been implicated in the conscious perception of thirst and hunger in humans. Viral tracing techniques show that the anterior cingulate cortex and insula receive neural inputs from thirst-related neurones in the subfornical organ and OVLT, with hunger-related neurones in the area postrema having polysynaptic efferent connections to these cortical regions. For thirst, initially, the median preoptic nucleus and, subsequently, the thalamic paraventricular nucleus and lateral hypothalamus have been identified as likely sites of synaptic links in pathways from the subfornical organ and OVLT to the cortex. The challenge remains to identify the links in the neural pathways that relay signals originating in sensory CVOs to cortical sites subserving either thirst or hunger.
Collapse
Affiliation(s)
- Michael J McKinley
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
- Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Derek A Denton
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
- Office of the Dean of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Philip J Ryan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Song T Yao
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Aneta Stefanidis
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Brian J Oldfield
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
97
|
Abstract
Well-being requires the maintenance of energy stores, water, and sodium within permissive zones. The brain, as ringleader, orchestrates their homeostatic control. It senses disturbances, decides what needs to be done next, and then restores balance by altering physiological processes and ingestive drives (i.e., hunger, thirst, and salt appetite). But how the brain orchestrates this control has been unknown until recently — largely because we have lacked the ability to elucidate and then probe the underlying neuronal “wiring diagrams.” This has changed with the advent of new, transformative neuroscientific tools. When targeted to specific neurons, these tools make it possible to selectively map a neuron’s connections, measure its responses to various homeostatic challenges, and experimentally manipulate its activity. This review examines these approaches and then highlights how they are advancing, and in some cases profoundly changing, our understanding of energy, water, and salt homeostasis and the linked ingestive drives.
Collapse
Affiliation(s)
- Bradford B Lowell
- From the Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, and the Program in Neuroscience, Harvard Medical School - both in Boston
| |
Collapse
|
98
|
Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, Scalia R, Eguchi S. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol Rev 2018; 98:1627-1738. [PMID: 29873596 DOI: 10.1152/physrev.00038.2017] [Citation(s) in RCA: 663] [Impact Index Per Article: 110.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renin-angiotensin-aldosterone system plays crucial roles in cardiovascular physiology and pathophysiology. However, many of the signaling mechanisms have been unclear. The angiotensin II (ANG II) type 1 receptor (AT1R) is believed to mediate most functions of ANG II in the system. AT1R utilizes various signal transduction cascades causing hypertension, cardiovascular remodeling, and end organ damage. Moreover, functional cross-talk between AT1R signaling pathways and other signaling pathways have been recognized. Accumulating evidence reveals the complexity of ANG II signal transduction in pathophysiology of the vasculature, heart, kidney, and brain, as well as several pathophysiological features, including inflammation, metabolic dysfunction, and aging. In this review, we provide a comprehensive update of the ANG II receptor signaling events and their functional significances for potential translation into therapeutic strategies. AT1R remains central to the system in mediating physiological and pathophysiological functions of ANG II, and participation of specific signaling pathways becomes much clearer. There are still certain limitations and many controversies, and several noteworthy new concepts require further support. However, it is expected that rigorous translational research of the ANG II signaling pathways including those in large animals and humans will contribute to establishing effective new therapies against various diseases.
Collapse
Affiliation(s)
- Steven J Forrester
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - George W Booz
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Curt D Sigmund
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Thomas M Coffman
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Victor Rizzo
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| |
Collapse
|
99
|
Nomura K, Hiyama TY, Sakuta H, Matsuda T, Lin CH, Kobayashi K, Kobayashi K, Kuwaki T, Takahashi K, Matsui S, Noda M. [Na +] Increases in Body Fluids Sensed by Central Na x Induce Sympathetically Mediated Blood Pressure Elevations via H +-Dependent Activation of ASIC1a. Neuron 2018; 101:60-75.e6. [PMID: 30503172 DOI: 10.1016/j.neuron.2018.11.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 10/08/2018] [Accepted: 11/08/2018] [Indexed: 02/07/2023]
Abstract
Increases in sodium concentrations ([Na+]) in body fluids elevate blood pressure (BP) by enhancing sympathetic nerve activity (SNA). However, the mechanisms by which information on increased [Na+] is translated to SNA have not yet been elucidated. We herein reveal that sympathetic activation leading to BP increases is not induced by mandatory high salt intakes or the intraperitoneal/intracerebroventricular infusions of hypertonic NaCl solutions in Nax-knockout mice in contrast to wild-type mice. We identify Nax channels expressed in specific glial cells in the organum vasculosum lamina terminalis (OVLT) as the sensors detecting increases in [Na+] in body fluids and show that OVLT neurons projecting to the paraventricular nucleus (PVN) are activated via acid-sensing ion channel 1a (ASIC1a) by H+ ions exported from Nax-positive glial cells. The present results provide an insight into the neurogenic mechanisms responsible for salt-induced BP elevations.
Collapse
Affiliation(s)
- Kengo Nomura
- Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki, Aichi 444-8787, Japan
| | - Takeshi Y Hiyama
- Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki, Aichi 444-8787, Japan; School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
| | - Hiraki Sakuta
- Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki, Aichi 444-8787, Japan; School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
| | - Takashi Matsuda
- Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki, Aichi 444-8787, Japan
| | - Chia-Hao Lin
- Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki, Aichi 444-8787, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Tomoyuki Kuwaki
- Department of Physiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Kunihiko Takahashi
- Department of Biostatistics, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Shigeyuki Matsui
- Department of Biostatistics, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Masaharu Noda
- Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki, Aichi 444-8787, Japan; School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan; Research Center for Cell Biology, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan.
| |
Collapse
|
100
|
Medlock L, Shute L, Fry M, Standage D, Ferguson AV. Ionic mechanisms underlying tonic and burst firing behavior in subfornical organ neurons: a combined experimental and modeling study. J Neurophysiol 2018; 120:2269-2281. [PMID: 30089060 DOI: 10.1152/jn.00340.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Subfornical organ (SFO) neurons exhibit heterogeneity in current expression and spiking behavior, where the two major spiking phenotypes appear as tonic and burst firing. Insight into the mechanisms behind this heterogeneity is critical for understanding how the SFO, a sensory circumventricular organ, integrates and selectively influences physiological function. To integrate efficient methods for studying this heterogeneity, we built a single-compartment, Hodgkin-Huxley-type model of an SFO neuron that is parameterized by SFO-specific in vitro patch-clamp data. The model accounts for the membrane potential distribution and spike train variability of both tonic and burst firing SFO neurons. Analysis of model dynamics confirms that a persistent Na+ and Ca2+ currents are required for burst initiation and maintenance and suggests that a slow-activating K+ current may be responsible for burst termination in SFO neurons. Additionally, the model suggests that heterogeneity in current expression and subsequent influence on spike afterpotential underlie the behavioral differences between tonic and burst firing SFO neurons. Future use of this model in coordination with single neuron patch-clamp electrophysiology provides a platform for explaining and predicting the response of SFO neurons to various combinations of circulating signals, thus elucidating the mechanisms underlying physiological signal integration within the SFO. NEW & NOTEWORTHY Our understanding of how the subfornical organ (SFO) selectively influences autonomic nervous system function remains incomplete but theoretically results from the electrical responses of SFO neurons to physiologically important signals. We have built a computational model of SFO neurons, derived from and supported by experimental data, which explains how SFO neurons produce different electrical patterns. The model provides an efficient system to theoretically and experimentally explore how changes in the essential features of SFO neurons affect their electrical activity.
Collapse
Affiliation(s)
- Laura Medlock
- Center for Neuroscience Studies, Queen's University , Kingston, Ontario , Canada
| | - Lauren Shute
- Department of Biological Sciences, University of Manitoba , Winnipeg, Manitoba , Canada
| | - Mark Fry
- Department of Biological Sciences, University of Manitoba , Winnipeg, Manitoba , Canada
| | - Dominic Standage
- Center for Neuroscience Studies, Queen's University , Kingston, Ontario , Canada
| | - Alastair V Ferguson
- Center for Neuroscience Studies, Queen's University , Kingston, Ontario , Canada
| |
Collapse
|