51
|
Rahman M, Steuer J, Gillgren P, Végvári Á, Liu A, Frostegård J. Malondialdehyde Conjugated With Albumin Induces Pro-Inflammatory Activation of T Cells Isolated From Human Atherosclerotic Plaques Both Directly and Via Dendritic Cell-Mediated Mechanism. JACC Basic Transl Sci 2019; 4:480-494. [PMID: 31468003 PMCID: PMC6712057 DOI: 10.1016/j.jacbts.2019.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 12/14/2022]
Abstract
Human dendritic cells were differentiated from blood monocytes and treated with malondialdehyde (MDA) conjugated with human serum albumin (HSA). Autologous T cells from human plaques or blood were co-cultured with the pre-treated dendritic cells or treated directly. MDA modifications were studied by mass spectrometry. MDA-HSA induced a pro-inflammatory DC-mediated T-cell activation and also a strong direct effect on T cells, inhibited by an inhibitor of oxidative stress and antibodies against MDA. Atherogenic heat shock protein-60 was strongly induced in T cells activated by MDA-HSA. Two peptide modifications in atherosclerotic patients' HSA were similar to those present in in vitro MDA-modified HSA.
Collapse
Key Words
- ATP, adenosine triphosphate
- CVD, cardiovascular disease
- DC, dendritic cell
- GM-CSF, granulocyte-macrophage colony-stimulating factor
- HLA, human leukocyte antigen
- HSA, human serum albumin
- HSP, heat shock protein
- IFN, interferon
- IL, interleukin
- IgM, immunoglobulin M
- LDL, low-density lipoprotein
- MDA, malondialdehyde
- MS, mass spectrometry
- OxLDL, oxidized low-density lipoprotein
- PCR, polymerase chain reaction
- T cells
- TCR, T-cell receptor
- TGF, transforming growth factor
- TLR, Toll-like receptor
- TNF, tumor necrosis factor
- atherosclerosis
- dendritic cells
- malondialdehyde
- oxidized low-density lipoprotein
Collapse
Affiliation(s)
- Mizanur Rahman
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Johnny Steuer
- Section of Vascular Surgery, Department of Surgery, Södersjukhuset, Institution of Clinical Science and Education, Karolinska Institutet, Stockholm, Sweden
| | - Peter Gillgren
- Section of Vascular Surgery, Department of Surgery, Södersjukhuset, Institution of Clinical Science and Education, Karolinska Institutet, Stockholm, Sweden
| | - Ákos Végvári
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Anquan Liu
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Johan Frostegård
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
52
|
Gungor B, Vanharanta L, Hölttä-Vuori M, Pirhonen J, Petersen NHT, Gramolelli S, Ojala PM, Kirkegaard T, Ikonen E. HSP70 induces liver X receptor pathway activation and cholesterol reduction in vitro and in vivo. Mol Metab 2019; 28:135-143. [PMID: 31327756 PMCID: PMC6822257 DOI: 10.1016/j.molmet.2019.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022] Open
Abstract
Objective Heat Shock Proteins (HSPs) maintain cellular homeostasis under stress. HSP70 represents a major stress-inducible family member and has been identified as a druggable target in inherited cholesterol-sphingolipid storage diseases. We investigated if HSP70 modulates cholesterol accumulation in more common conditions related to atherogenesis. Methods We studied the effects of recombinant HSP70 in cholesterol-laden primary macrophages from human blood donors and pharmacological HSP70 upregulation in high-cholesterol diet fed zebrafish. Results Recombinant HSP70 facilitated cholesterol removal from primary human macrophage foam cells. RNA sequencing revealed that HSP70 induced a robust transcriptional re-programming, including upregulation of key targets of liver X receptors (LXR), master regulators of whole-body cholesterol removal. Mechanistically, HSP70 interacted with the macrophage LXRalpha promoter, increased LXRalpha and its target mRNAs, and led to elevated levels of key proteins facilitating cholesterol efflux, including ATP-binding cassette transporters A1 and G1. Pharmacological augmentation of endogenous HSP70 in high-cholesterol diet fed zebrafish activated LXR and its target mRNAs and reduced cholesterol storage at the whole organism level. Conclusion These data demonstrate that HSP70 exerts a cholesterol lowering effect in primary human cells and animals and uncover a nuclear action of HSP70 in mediating cross-talk between HSP and LXR transcriptional regulation.
Collapse
Affiliation(s)
- Burcin Gungor
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8 00290 Helsinki, Finland; Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290 Helsinki, Finland
| | - Lauri Vanharanta
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8 00290 Helsinki, Finland; Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290 Helsinki, Finland
| | - Maarit Hölttä-Vuori
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8 00290 Helsinki, Finland; Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290 Helsinki, Finland
| | - Juho Pirhonen
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8 00290 Helsinki, Finland; Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290 Helsinki, Finland
| | | | - Silvia Gramolelli
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Päivi M Ojala
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland; Foundation for the Finnish Cancer Institute, Helsinki, Finland
| | | | - Elina Ikonen
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8 00290 Helsinki, Finland; Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290 Helsinki, Finland.
| |
Collapse
|
53
|
Pietiäinen M, Liljestrand JM, Kopra E, Pussinen PJ. Mediators between oral dysbiosis and cardiovascular diseases. Eur J Oral Sci 2019; 126 Suppl 1:26-36. [PMID: 30178551 DOI: 10.1111/eos.12423] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2018] [Indexed: 12/11/2022]
Abstract
Clinical periodontitis is associated with an increased risk for cardiovascular diseases (CVDs) through systemic inflammation as the etiopathogenic link. Whether the oral microbiota, especially its quality, quantity, serology, and virulence factors, plays a role in atherogenesis is not clarified. Patients with periodontitis are exposed to bacteria and their products, which have access to the circulation directly through inflamed oral tissues and indirectly (via saliva) through the gastrointestinal tract, resulting in systemic inflammatory and immunologic responses. Periodontitis is associated with persistent endotoxemia, which has been identified as a notable cardiometabolic risk factor. The serology of bacterial biomarkers for oral dysbiosis is associated with an increased risk for subclinical atherosclerosis, prevalent and future coronary artery disease, and incident and recurrent stroke. In addition to species-specific antibodies, the immunologic response includes persistent, cross-reactive, proatherogenic antibodies against host-derived antigens. Periodontitis may affect lipoprotein metabolism at all levels, and all lipoprotein classes are affected. Periodontitis or its bacterial signatures may be involved not only in increased storage of proatherogenic lipids but also in attenuation of the anti-atherogenic processes, thereby putatively increasing the net risk of atherosclerosis. In this review we summarize possible molecular mediators between the dysbiotic oral microbiota and atherosclerotic processes.
Collapse
Affiliation(s)
- Milla Pietiäinen
- Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - John M Liljestrand
- Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Elisa Kopra
- Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Pirkko J Pussinen
- Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
54
|
|
55
|
Abstract
There is now overwhelming experimental and clinical evidence that arteriosclerosis is a chronic inflammatory disease. Lessons learned from genome-wide association studies, advanced in vivo imaging techniques, transgenic lineage tracing mice models and clinical interventional studies have shown that both innate and adaptive immune mechanisms can accelerate or curb arteriosclerosis. This article summarizes and discusses the pathogenesis of arteriosclerosis with a focus on the role of the adaptive immune system. Some limitations of animal models are discussed and the need for models that are tailored to better translate to human atherosclerosis and ultimately progress in prevention and treatment are emphasized.
Collapse
Affiliation(s)
- D Wolf
- Abteilung für Kardiologie und Angiologie I, Universitäts-Herzzentrum Freiburg, Freiburg, Deutschland
- Medizinische Fakultät, Universität Freiburg, Freiburg, Deutschland
| | - K Ley
- Division of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Cir, 92037, La Jolla, CA, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
56
|
Justo-Junior A, Villarejos L, Lima X, Nadruz W, Sposito A, Mamoni R, Abdalla R, Fernandes J, Oliveira R, Blotta M. Monocytes of patients with unstable angina express high levels of chemokine and pattern-recognition receptors. Cytokine 2019; 113:61-67. [DOI: 10.1016/j.cyto.2018.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 11/26/2022]
|
57
|
Cappello F, Mazzola M, Jurjus A, Zeenny MN, Jurjus R, Carini F, Leone A, Bonaventura G, Tomasello G, Bucchieri F, Conway de Macario E, Macario AJL. Hsp60 as a Novel Target in IBD Management: A Prospect. Front Pharmacol 2019; 10:26. [PMID: 30800066 PMCID: PMC6376446 DOI: 10.3389/fphar.2019.00026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 01/10/2019] [Indexed: 12/16/2022] Open
Abstract
Inflammatory bowel disease (IBD) encompasses various pathological conditions similar but distinct that share a multifactorial etiology, including involvement of the intestinal barrier function, the immune system, and intestinal microorganisms. Hsp60 is a chaperonin component of the chaperoning system, present in all cells and tissues, including the intestine. It plays important roles in cell physiology outside and inside mitochondria, its canonical place of residence. However, Hsp60 can also be pathogenic in many conditions, the Hsp60 chaperonopathies, possibly including IBD. The various clinico-pathological types of IBD have a complicated mix of causative factors, among which Hsp60 can be considered a putatively important driver of events and could play an etiopathogenic role. This possibility is discussed in this review. We also indicate that Hsp60 can be a biomarker useful in disease diagnosing and monitoring and, if found active in pathogenesis, should become a target for developing new therapies. The latter are particularly needed to alleviate patient suffering and to prevent complications, including colon cancer.
Collapse
Affiliation(s)
- Francesco Cappello
- Department of Experimental Biomedicine and Clinical Neuroscience University of Palermo (BIONEC-UniPA), Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States
- *Correspondence: Francesco Cappello,
| | - Margherita Mazzola
- Department of Experimental Biomedicine and Clinical Neuroscience University of Palermo (BIONEC-UniPA), Palermo, Italy
| | - Abdo Jurjus
- Department of Anatomy, Cell Biology and Physiology, American University of Beirut, Beirut, Lebanon
| | - Marie-Noel Zeenny
- Department of Anatomy, Cell Biology and Physiology, American University of Beirut, Beirut, Lebanon
| | - Rosalyn Jurjus
- Department of Anatomy and Cell Biology, Faculty Development Associate for Education Research, Center for Faculty Excellence, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Francesco Carini
- Department of Experimental Biomedicine and Clinical Neuroscience University of Palermo (BIONEC-UniPA), Palermo, Italy
| | - Angelo Leone
- Department of Experimental Biomedicine and Clinical Neuroscience University of Palermo (BIONEC-UniPA), Palermo, Italy
| | - Giuseppe Bonaventura
- Department of Experimental Biomedicine and Clinical Neuroscience University of Palermo (BIONEC-UniPA), Palermo, Italy
| | - Giovanni Tomasello
- Department of Experimental Biomedicine and Clinical Neuroscience University of Palermo (BIONEC-UniPA), Palermo, Italy
| | - Fabio Bucchieri
- Department of Experimental Biomedicine and Clinical Neuroscience University of Palermo (BIONEC-UniPA), Palermo, Italy
| | - Everly Conway de Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore – Institute of Marine and Environmental Technology (IMET), Baltimore, MD, United States
| | - Alberto J. L. Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore – Institute of Marine and Environmental Technology (IMET), Baltimore, MD, United States
| |
Collapse
|
58
|
Tikhomirova TS, Galzitskaya OV. Functionally Significant Amino Acid Motifs of Heat Shock Proteins: Structural and Bioinformatics Analyses of Hsp60/Hsp10 in Five Classes of Chordata. Mol Biol 2018. [DOI: 10.1134/s0026893318050138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
59
|
Kawasaki Y, Uehara T, Kawana S. Cutaneous Vasculitis in Cogan's Syndrome: A Report of Two Cases Associated with Chlamydia Infection. J NIPPON MED SCH 2018; 85:172-177. [PMID: 30135344 DOI: 10.1272/jnms.jnms.2018_85-25] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cogan's syndrome (CS) is defined by the combination of hearing loss, vertigo, and ocular inflammation of uncertain cause, and can be associated with variable vessel vasculitis. Vasculitic manifestations may include arteritis (affecting large, medium or small arteries), aortitis, and aortic and mitral valvulitis. Cutaneous manifestations including erythema, papules, subcutaneous nodules, and purpura sometimes occur; however, to date, only six cases have been histologically confirmed to have genuine vasculitis. Here, we report two cases of CS, one of which involved a patient who developed the typical symptoms of Takayasu arteritis and purpuric lesions in the legs, with histologic findings consistent with small vessel vaculitis in the dermis. The second case involved a patient who developed subcutaneous nodules in the legs and the axilla, and histologic findings revealed a necrotizing vasculitis of the small arteries in the interlobular area. Both cases were successfully treated with systemic steroid therapy. Based on the clinical features and the examination data, there is a possibility that a Chlamydia trachomatis infection played a pivotal role in the pathogenesis of those vasculitides.
Collapse
Affiliation(s)
- Yushi Kawasaki
- Department of Dermatology, Nippon Medical School Chiba Hokusoh Hospital
| | - Takashi Uehara
- Department of Respiratory Medicine, Yokosuka General Hospital
| | - Seiji Kawana
- Department of Dermatology, Nippon Medical School
| |
Collapse
|
60
|
Zhang Y, Lu S, Alahdal M, Gao H, Shen Y, Pan Y, Wu J, Xing Y, Jin L. Novel mutant P277 peptide VP to ameliorate atherogenic side-effects and to preserve anti-diabetic effects in NOD mice. Exp Cell Res 2018; 371:399-408. [PMID: 30179603 DOI: 10.1016/j.yexcr.2018.08.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/31/2018] [Indexed: 01/22/2023]
Abstract
P277 is a 24 amino-acids peptide, residues 437-460 of human heat shock protein 60 (HSP60). P277 or sequence repeated 6 × P277 was previously found showing potency preventive and therapeutic anti-diabetes functions in NOD mice, but aroused atherosclerosis due to the induction of anti-HSP65 autoantibodies as reported. To determine the intrinsic B epitope sequence, we screened P277 with pepscan method and then proved by detection of sera IgG from peptide fragments vaccinated mouse and rabbits. Results indicated HSP60 443-448 (ALLRCI) is potential intrinsic B epitope sequence of P277. We modified P277 by deleting the former three amino acids of ALLRCI (VP) or replacing these six with alanine (AP). The detection of serum lipid parameter in NOD mice and aorta endothelial damage levels in high-cholesterol diets fed rabbits demonstrated that VP induced higher anti-diabetes efficacy and caused less arteriosclerosis-liked diseases separately. With less TLR2/4 activation of dendritic cells and macrophages, VP treatment reduced Th1 related P277 specific pro-inflammatory cytokines production and increased regulatory immune responses both in vivo and in vitro. These results indicated that optimized VP peptide might serve as a promising candidate for mouse type 1 diabetes therapy.
Collapse
Affiliation(s)
- Yanfeng Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, China
| | - Shiping Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, China
| | - Murad Alahdal
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, China
| | - Huashan Gao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, China
| | - Yumeng Shen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, China
| | - Yi Pan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, China
| | - Jie Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, China; Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, China
| | - Yun Xing
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, China
| | - Liang Jin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, China.
| |
Collapse
|
61
|
Abstract
The development of stress drives a host of biological responses that include the overproduction of a family of proteins named heat shock proteins (HSPs), because they were initially studied after heat exposure. HSPs are evolutionarily preserved proteins with a high degree of interspecies homology. HSPs are intracellular proteins that also have extracellular expression. The primary role of HSPs is to protect cell function by preventing irreversible protein damage and facilitating molecular traffic through intracellular pathways. However, in addition to their chaperone role, HSPs are immunodominant molecules that stimulate natural as well as disease-related immune reactivity. The latter may be a consequence of molecular mimicry, generating cross-reactivity between human HSPs and the HSPs of infectious agents. Autoimmune reactivity driven by HSPs could also be the result of enhancement of the immune response to peptides generated during cellular injury and of their role in the delivery of peptides to the major histocompatibility complex in antigen-presenting cells. In humans, HSPs have been found to participate in the pathogenesis of a large number of diseases. This review is focused on the role of HSPs in atherosclerosis and essential hypertension.
Collapse
Affiliation(s)
- B Rodríguez-Iturbe
- 1 Instituto Venezolano de Investigaciones Científicas (IVIC-Zulia), Nephrology Service Hospital Universitario, Universidad del Zulia , Maracaibo, Venezuela
| | - R J Johnson
- 2 Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus , Aurora, CO, USA
| |
Collapse
|
62
|
Ponnusamy T, Venkatachala SK, Ramanjappa M, Kakkar VV, Mundkur LA. Inverse association of ApoB and HSP60 antibodies with coronary artery disease in Indian population. HEART ASIA 2018; 10:e011018. [PMID: 30018661 DOI: 10.1136/heartasia-2018-011018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 12/12/2022]
Abstract
Objective Atherosclerosis is an autoimmune condition and the underlying cause of coronary artery disease (CAD). Circulating antibodies to self-antigens can have a pathogenic or protective function in atherosclerosis. The objective of the study was to understand the association of autoantibody levels with CAD and its correlation with circulating immune cells. Methods We assessed antigen concentration and antibodies to apolipoprotein B (ApoB) and heat shock protein (HSP)60 by ELISA in 252 acute coronary syndromes (ACS), 112 patients with stable angina (SA) and 203 healthy controls from Indian population. T cells in peripheral blood mononuclear cells (PBMC) were enumerated by flow cytometry. Cytokine concentrations were measured by multiplex assay. Results IgG and IgM antibodies to ApoB and HSP60 proteins were significantly lower in patients with ACS while only IgG levels to ApoB were lower in patients with SA, compared with control. Subjects in the highest tertile of antibodies showed significantly lower OR for ACS (IgG 0.52, 95% CI 0.31 to 0.88, p=0.02 and IgM 0.58, 95% CI 0.34 to 0.98, p=0.04), ApoB100 (IgG 0.52, 95% CI 0.31 to 0.88, p=0.02 and IgM 0.58, 95% CI 0.34 to 0.99, p=0.04) and HSP60, respectively. Interestingly, T helper 17 (TH17) cells showed an inverse relationship with ApoB and HSP60 IgG antibodies (r2=-0.17, p<0.001 and r2=-0.20, p<0.001, respectively), while interleukin 17 concentrations were negatively correlated with IgM antibodies to the proteins. Conclusion This study shows that higher antibodies to ApoB and HSP60 proteins are less often associated with ACS and that these antibodies are inversely associated with inflammatory Th17 cells.
Collapse
Affiliation(s)
- Thiruvelselvan Ponnusamy
- Mary and Gary Western and Tata Molecular Immunology Unit, Thrombosis Research Institute, Manipal University, Bangalore, India
| | | | | | - Vijay V Kakkar
- Mary and Gary Western and Tata Molecular Immunology Unit, Thrombosis Research Institute, Manipal University, Bangalore, India
| | - Lakshmi A Mundkur
- Mary and Gary Western and Tata Molecular Immunology Unit, Thrombosis Research Institute, Manipal University, Bangalore, India
| |
Collapse
|
63
|
Roles of Oral Infections in the Pathomechanism of Atherosclerosis. Int J Mol Sci 2018; 19:ijms19071978. [PMID: 29986441 PMCID: PMC6073301 DOI: 10.3390/ijms19071978] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/28/2018] [Accepted: 06/30/2018] [Indexed: 12/14/2022] Open
Abstract
Oral infections occur frequently in humans and often lead to chronic inflammations affecting the teeth (i.e., caries), the gingival tissues surrounding the teeth (i.e., gingivitis and endodontic lesions), and the tooth-supporting structures (i.e., periodontitis). At least four basic pathogenic mechanisms have been proposed that involve oral inflammations in the pathogenesis of atherosclerosis: (1) low level bacteremia by which oral bacteria enter the blood stream and invade the arterial wall; (2) systemic inflammation induced by inflammatory mediators released from the sites of the oral inflammation into the blood stream; (3) autoimmunity to host proteins caused by the host immune response to specific components of oral pathogens; (4) pro-atherogenic effects resulting from specific bacterial toxins that are produced by oral pathogenic bacteria. In this narrative review, we summarize published experimental evidence related to these four mechanisms and discuss their impact on the pathogenesis of atherosclerosis.
Collapse
|
64
|
Binder RJ. Immunosurveillance of cancer and the heat shock protein-CD91 pathway. Cell Immunol 2018; 343:103814. [PMID: 29784128 DOI: 10.1016/j.cellimm.2018.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/03/2018] [Accepted: 05/15/2018] [Indexed: 12/16/2022]
Abstract
The intracellular functions of heat shock proteins (HSPs) as chaperones of macromolecules are well known. Current observations point to a role of these chaperones in initiating and modulating immune responses to tumors via receptor(s) on dendritic cells. In this article we provide an insight into, and a basis for, the importance of these HSP-mediated immune responses in rejecting nascent and emerging tumors.
Collapse
Affiliation(s)
- Robert J Binder
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, United States.
| |
Collapse
|
65
|
In vivo Molecular Imaging of Glutamate Carboxypeptidase II Expression in Re-endothelialisation after Percutaneous Balloon Denudation in a Rat Model. Sci Rep 2018; 8:7411. [PMID: 29743623 PMCID: PMC5943322 DOI: 10.1038/s41598-018-25863-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/30/2018] [Indexed: 11/08/2022] Open
Abstract
The short- and long-term success of intravascular stents depends on a proper re-endothelialisation after the intervention-induced endothelial denudation. The aim of this study was to evaluate the potential of in vivo molecular imaging of glutamate carboxypeptidase II (GCPII; identical with prostate-specific membrane antigen PSMA) expression as a marker of re-endothelialisation. Fifteen Sprague Dawley rats underwent unilateral balloon angioplasty of the common carotid artery (CCA). Positron emission tomography (PET) using the GCPII-targeting tracer [18F]DCFPyL was performed after 5-21 days (scan 60-120 min post injection). In two animals, the GCPII inhibitor PMPA (23 mg/kg BW) was added to the tracer solution. After PET, both CCAs were removed, dissected, and immunostained with the GCPII specific antibody YPSMA-1. Difference of GCPII expression between both CCAs was established by PCR analysis. [18F]DCFPyL uptake was significantly higher in the ipsilateral compared to the contralateral CCA with an ipsi-/contralateral ratio of 1.67 ± 0.39. PMPA blocked tracer binding. The selective expression of GCPII in endothelial cells of the treated CCA was confirmed by immunohistological staining. PCR analysis verified the site-specific GCPII expression. By using a molecular imaging marker of GCPII expression, we provide the first non-invasive in vivo delineation of re-endothelialisation after angioplasty.
Collapse
|
66
|
Khadir A, Kavalakatt S, Cherian P, Warsame S, Abubaker JA, Dehbi M, Tiss A. Physical Exercise Enhanced Heat Shock Protein 60 Expression and Attenuated Inflammation in the Adipose Tissue of Human Diabetic Obese. Front Endocrinol (Lausanne) 2018; 9:16. [PMID: 29467719 PMCID: PMC5808138 DOI: 10.3389/fendo.2018.00016] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/15/2018] [Indexed: 12/17/2022] Open
Abstract
Heat shock protein 60 (HSP60) is a key protein in the crosstalk between cellular stress and inflammation. However, the status of HSP60 in diabetes and obesity is unclear. In the present study, we investigated the hypothesis that HSP60 expression levels in the adipose tissue of human obese adults with and without diabetes are different and physical exercise might affect these levels. Subcutaneous adipose tissue (SAT) and blood samples were collected from obese adults with and without diabetes (n = 138 and n = 92, respectively, at baseline; n = 43 for both groups after 3 months of physical exercise). Conventional RT-PCR, immunohistochemistry, immunofluorescence, and ELISA were used to assess the expression and secretion of HSP60. Compared with obese adults without diabetes, HSP60 mRNA and protein levels were decreased in SAT in diabetic obese together with increased inflammatory marker expression and glycemic levels but lower VO2 Max. More interestingly, a 3-month physical exercise differentially affected HSP60 expression and the heat shock response but attenuated inflammation in both groups, as reflected by decreased endogenous levels of IL-6 and TNF-α. Indeed, HSP60 expression levels in SAT were significantly increased by exercise in the diabetes group, whereas they were decreased in the non-diabetes group. These results were further confirmed using immunofluorescence microscopy and anti-HSP60 antibody in SAT. Exercise had only marginal effects on HSP60 secretion and HSP60 autoantibody levels in plasma in both obese with and without diabetes. Physical exercise differentially alleviates cellular stress in obese adults with and without diabetes despite concomitant attenuation of the inflammatory response.
Collapse
Affiliation(s)
- Abdelkrim Khadir
- Research Division, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Sina Kavalakatt
- Research Division, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Preethi Cherian
- Research Division, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Samia Warsame
- Research Division, Dasman Diabetes Institute, Kuwait City, Kuwait
| | | | - Mohammed Dehbi
- Diabetes Research Centre, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Ali Tiss
- Research Division, Dasman Diabetes Institute, Kuwait City, Kuwait
| |
Collapse
|
67
|
Vilasi S, Bulone D, Caruso Bavisotto C, Campanella C, Marino Gammazza A, San Biagio PL, Cappello F, Conway de Macario E, Macario AJL. Chaperonin of Group I: Oligomeric Spectrum and Biochemical and Biological Implications. Front Mol Biosci 2018; 4:99. [PMID: 29423396 PMCID: PMC5788889 DOI: 10.3389/fmolb.2017.00099] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 12/28/2017] [Indexed: 01/13/2023] Open
Abstract
Chaperonins play various physiological roles and can also be pathogenic. Elucidation of their structure, e.g., oligomeric status and post-translational modifications (PTM), is necessary to understand their functions and mechanisms of action in health and disease. Group I chaperonins form tetradecamers with two stacked heptameric rings. The tetradecamer is considered the typical functional complex for folding of client polypeptides. However, other forms such as the monomer and oligomers with smaller number of subunits than the classical tetradecamer, also occur in cells. The properties and functions of the monomer and oligomers, and their roles in chaperonin-associated diseases are still incompletely understood. Chaperonin I in eukaryotes occurs in various locations, not just the mitochondrion, which is its canonical place of residence and function. Eukaryotic Chaperonin I, namely Hsp60 (designated HSP60 or HSPD1 in humans) has, indeed, been found in the cytosol; the plasma-cell membrane; on the outer surface of cells; in the intercellular space; in biological liquids such as lymph, blood, and cerebrospinal fluid; and in secretions, for instance saliva and urine. Hsp60 has also been found in cell-derived vesicles such as exosomes. The functions of Hsp60 in all these non-canonical locales are still poorly characterized and one of the questions not yet answered is in what form, i.e., monomer or oligomer, is the chaperonin present in these non-canonical locations. In view of the steady increase in interest on chaperonopathies over the last several years, we have studied human HSP60 to determine its role in various diseases, its locations in cells and tissues and migrations in the body, and its post-translational modifications that might have an impact on its location and function. We also carried out experiments to characterize the oligomeric status of extramitochondrial of HSP60 in solution. Here, we provide an overview of our results, focusing on the oligomeric equilibrium and stability of the various forms of HSP60 in comparison with GroEL. We also discuss post-translational modifications associated with anti-cancer drugs to indicate the potential of Hsp60 in Medicine, as a biomarker and etiopathogenic factor.
Collapse
Affiliation(s)
- Silvia Vilasi
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Donatella Bulone
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Celeste Caruso Bavisotto
- Section of Human Anatomy, Department of Experimental Biomedicine and Clinical Neuroscience (BIONEC), University of Palermo, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Claudia Campanella
- Section of Human Anatomy, Department of Experimental Biomedicine and Clinical Neuroscience (BIONEC), University of Palermo, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Antonella Marino Gammazza
- Section of Human Anatomy, Department of Experimental Biomedicine and Clinical Neuroscience (BIONEC), University of Palermo, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | | | - Francesco Cappello
- Section of Human Anatomy, Department of Experimental Biomedicine and Clinical Neuroscience (BIONEC), University of Palermo, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Everly Conway de Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore, and Institute of Marine and Environmental Technology (IMET), Columbus Center, Baltimore, MD, United States
| | - Alberto J L Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy.,Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore, and Institute of Marine and Environmental Technology (IMET), Columbus Center, Baltimore, MD, United States
| |
Collapse
|
68
|
Cappello F, Conway de Macario E, Rappa F, Zummo G, Macario AJL. Immunohistochemistry of Human Hsp60 in Health and Disease: From Autoimmunity to Cancer. Methods Mol Biol 2018; 1709:293-305. [PMID: 29177667 DOI: 10.1007/978-1-4939-7477-1_21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Hsp60 (also called Cpn60) is a chaperonin with essential functions for cell physiology and survival. Additionally, its involvement in the pathogenesis of a variety of diseases (e.g., some autoimmune disorders and cancer) is becoming evident with new research. For example, the distribution and levels of Hsp60 in cells and tissues have been found altered in many pathologic conditions, and the significance of these alterations is being investigated in a number of laboratories. The aim of this ongoing research is to determine the meaning of these Hsp60 alterations with regard to pathogenetic mechanisms, diagnosis, classification of lesions, and assessing prognosis and response to treatment.Hsp60 occurs in the mitochondria, i.e., its typical residence according to classic knowledge, and also in other locales, such as the cytosol, the cell membrane, the intercellular space, and biological fluids (e.g., blood and cerebrospinal fluid). Detection and quantitative determinations in all these locations are becoming essential components of laboratory pathology in clinics and research. Consequently, immunohistochemistry targeting Hsp60 is also becoming essential for pathologists and researchers interested in disorders involving this chaperonin.In this chapter, we summarize some recent discoveries on the participation of Hsp60 in the pathogenesis of human diseases, and describe in detail how to perform immunohistochemical reactions for detecting the chaperonin, determining its location, and measuring its quantitative levels.
Collapse
Affiliation(s)
- Francesco Cappello
- Human Anatomy Section, Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Everly Conway de Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy.,Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore, and IMET; Columbus Center, 701 East Pratt Street, Baltimore, MD, 21202, USA
| | - Francesca Rappa
- Human Anatomy Section, Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Giovanni Zummo
- Human Anatomy Section, Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy
| | - Alberto J L Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy. .,Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore, and IMET; Columbus Center, 701 East Pratt Street, Baltimore, MD, 21202, USA.
| |
Collapse
|
69
|
Abstract
Atherosclerosis is initiated by cholesterol entry into arteries that triggers chronic immune-inflammatory lesions in the vessels. Early lesions are clinically insignificant but advanced complex lesions and vulnerable rupture prone lesions impact on quality of life and can be life threatening. Rupture of vulnerable atherosclerotic lesions initiates thrombotic occlusion of vital arteries precipitating heart attacks and strokes that remain major killers globally despite therapeutic use of statins to lower blood cholesterol levels. Conventional B2 cells are proatherogenic whereas peritoneal Bla cells are atheroprotective. Depletion of B2 cells by administration of mAb to CD20 or to BAFF receptor or in BAFF receptor-deficient mice ameliorates atherosclerosis. B2 cells may promote atherosclerosis by production of IgG, secretion of proinflammatory cytokine TNFα and activation of CD4 T cells. Together these B2 cell mechanisms contribute to generation of rupture-prone vulnerable atherosclerotic plaques characterised by large necrotic cores. In contrast, peritoneal Bla cells protect against atherosclerosis by secretion of natural IgM that scavenges apoptotic cells and oxidised LDL and reduces necrotic cores in atherosclerotic lesions. These atheroprotective effects can be further increased by stimulating Bla cells by administration of apoptotic cells, liposomes of phosphatidylserine abundant on surfaces of apoptotic cell, by mAb to TIM1, a phosphatidylserine receptor expressed by B1a cells and by TLR4-MyD88 activation. Experimental studies of atherosclerosis in mouse models indicate that reductions in atherogenic B2 cells and/or activation of atheroprotective B1a cells protects against atherosclerosis development, findings which have potential for clinical translation to reduce risks of deaths from heart attacks and strokes.
Collapse
Affiliation(s)
- Tin Kyaw
- a Australia and Baker IDI Heart and Diabetes Institute , Victoria , Australia.,b Department of Medicine , Southern Clinical School, Monash University , Victoria , Australia , and
| | - Peter Tipping
- b Department of Medicine , Southern Clinical School, Monash University , Victoria , Australia , and
| | - Alex Bobik
- a Australia and Baker IDI Heart and Diabetes Institute , Victoria , Australia.,c Department of Immunology , Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University , Victoria , Australia
| | - Ban-Hock Toh
- b Department of Medicine , Southern Clinical School, Monash University , Victoria , Australia , and
| |
Collapse
|
70
|
Heat Shock Proteins in Vascular Diabetic Complications: Review and Future Perspective. Int J Mol Sci 2017; 18:ijms18122709. [PMID: 29240668 PMCID: PMC5751310 DOI: 10.3390/ijms18122709] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/09/2017] [Accepted: 12/11/2017] [Indexed: 01/22/2023] Open
Abstract
Heat shock proteins (HSPs) are a large family of proteins highly conserved throughout evolution because of their unique cytoprotective properties. Besides assisting protein refolding and regulating proteostasis under stressful conditions, HSPs also play an important role in protecting cells from oxidative stress, inflammation, and apoptosis. Therefore, HSPs are crucial in counteracting the deleterious effects of hyperglycemia in target organs of diabetes vascular complications. Changes in HSP expression have been demonstrated in diabetic complications and functionally related to hyperglycemia-induced cell injury. Moreover, associations between diabetic complications and altered circulating levels of both HSPs and anti-HSPs have been shown in clinical studies. HSPs thus represent an exciting therapeutic opportunity and might also be valuable as clinical biomarkers. However, this field of research is still in its infancy and further studies in both experimental diabetes and humans are required to gain a full understanding of HSP relevance. In this review, we summarize current knowledge and discuss future perspective.
Collapse
|
71
|
Rahman M, Steuer J, Gillgren P, Hayderi A, Liu A, Frostegård J. Induction of Dendritic Cell-Mediated Activation of T Cells From Atherosclerotic Plaques by Human Heat Shock Protein 60. J Am Heart Assoc 2017; 6:JAHA.117.006778. [PMID: 29151033 PMCID: PMC5721770 DOI: 10.1161/jaha.117.006778] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Atherosclerosis is characterized by the presence of activated immune-competent cells including dendritic cells (DCs) and T cells, dead cells, and oxidized low-density lipoprotein. HSP60 (Heat shock protein 60) has been implicated in atherosclerosis. A plasma protein, Annexin A5, has atheroprotective properties. METHODS AND RESULTS Human DCs differentiated from peripheral blood monocytes were treated with human HSP60 or HSP90 and autologous T cells were cocultured with these pretreated DCs (mDCs). HSP60 induced mDCs and T-cell activation as determined by FACScan (Fluorescence associated cell scan), gene-activation, and cytokine production. HSP60-induced T-cell activation was partly major histocompatibility complex class II-dependent. T cells exposed to HSP60-treated mDCs produced interferon-γ, interleukin-17, but not transforming growth factor-β. HSP60 did not promote expression of Toll-like receptors 2 or 4. HSP90 promoted mDCs maturation but had no effect on T-cell activation. Annexin A5 inhibited HSP60-proinflammatory Th1/Th17 effects on mDCs and T cells, and partly bound HSP60. Further, Annexin A5 inhibited HSP-induced activation of mDCs and also oxidized low-density lipoprotein-induced HSP-production from mDCs. Experiments on mDCs and T cells derived from carotid atherosclerotic plaques from patients with symptomatic carotid disease gave similar results as from blood donors. CONCLUSIONS HSP60 induces mDCs activation and partly major histocompatibility complex class II-dependent activation of blood- and plaque-derived T cells, which is mostly of Th1/Th17 type. HSP60 could thus be an important T-cell antigen in plaques, and also mediate oxidized low-density lipoproteins immunogenic effects on DC-T-cell activation, promoting plaque rupture and clinical manifestations of cardiovascular disease. Annexin A5 inhibits both oxidized low-density lipoprotein-induced HSP60, and HSP60-mediated immune activation, which suggests a potential therapeutic role.
Collapse
Affiliation(s)
- Mizanur Rahman
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Johnny Steuer
- Institute of Clinical Science and Education, Karolinska Institutet, Stockholm, Sweden.,Section of Vascular Surgery, Department of Surgery, Södersjukhuset, Stockholm, Sweden
| | - Peter Gillgren
- Institute of Clinical Science and Education, Karolinska Institutet, Stockholm, Sweden.,Section of Vascular Surgery, Department of Surgery, Södersjukhuset, Stockholm, Sweden
| | - Assim Hayderi
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anquan Liu
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Johan Frostegård
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden .,Division of Emergency Medicine, Karolinska University Hospital, Huddinge, Sweden
| |
Collapse
|
72
|
Wu MY, Li CJ, Hou MF, Chu PY. New Insights into the Role of Inflammation in the Pathogenesis of Atherosclerosis. Int J Mol Sci 2017; 18:ijms18102034. [PMID: 28937652 PMCID: PMC5666716 DOI: 10.3390/ijms18102034] [Citation(s) in RCA: 257] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipids, smooth muscle cell proliferation, cell apoptosis, necrosis, fibrosis, and local inflammation. Immune and inflammatory responses have significant effects on every phase of atherosclerosis, and increasing evidence shows that immunity plays a more important role in atherosclerosis by tightly regulating its progression. Therefore, understanding the relationship between immune responses and the atherosclerotic microenvironment is extremely important. This article reviews existing knowledge regarding the pathogenesis of immune responses in the atherosclerotic microenvironment, and the immune mechanisms involved in atherosclerosis formation and activation.
Collapse
Affiliation(s)
- Meng-Yu Wu
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan.
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| | - Chia-Jung Li
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
| | - Ming-Feng Hou
- Department of Surgery, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Surgery, Kaohsiung Municipal Hsiao Kang Hospital, Kaohsiung 807, Taiwan.
- Division of Breast Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
| | - Pei-Yi Chu
- Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
- School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei 242, Taiwan.
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
| |
Collapse
|
73
|
Efthymiou G, Dardiotis E, Liaskos C, Marou E, Tsimourtou V, Rigopoulou EI, Scheper T, Daponte A, Meyer W, Sakkas LI, Hadjigeorgiou G, Bogdanos DP. Immune responses against Helicobacter pylori-specific antigens differentiate relapsing remitting from secondary progressive multiple sclerosis. Sci Rep 2017; 7:7929. [PMID: 28801580 PMCID: PMC5554191 DOI: 10.1038/s41598-017-07801-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/29/2017] [Indexed: 01/12/2023] Open
Abstract
To assess whether Helicobacter pylori (Hp) antibody (ab) reactivity against individual Hp antigens is pathogenetically relevant to multiple sclerosis (MS), we systematically investigated prevalence and clinical significance of abs against 14 immunodominant and subdominant Hp antigens by ELISA and immunoblotting in 139 consecutive MS patients with relapsing-remitting (RRMS, n = 102) or secondary progressive (SPMS, n = 37). Sera from 39 patients with Parkinson’s disease (PD), 21 with Alzheimer’s disease (ALZ) and 68 healthy controls (HCs), were also tested. Anti-flagellin (18.3%) and anti-p41 (25.0%) abs in MS were less frequent than in HCs (39.4%, 48.5%, respectively). Abs against 5 of the 14 antigens were less frequent in RRMS than HCs, including p41, p54-flagellin, p29-UreA, p67-FSH, and p120-CagA. Anti-VacA abs were more frequent in SPMS than in HCs (42.1 vs 12.1%, p = 0.019). Anti-p54, anti-p29-UreA and anti-p26 correlated with extended disability status scale (EDSS) (p = 0.017, p = 0.005, p = 0.002, respectively). Anti-p26 and anti-p17 correlated with the number of relapses (p = 0.037 and p = 0.047, respectively). This is the first comprehensive analysis of ab reactivities against most Hp antigens in MS patients. Ab responses differ between MS and HCs and between RRMS and SPMS, being more prevalent in SPMS than RRMS, thus suggesting an association between anti-Hp and the former type of MS.
Collapse
Affiliation(s)
- Georgios Efthymiou
- Department of Rheumatology and Clinical Immunology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Viopolis, 40500, Larissa, Greece.,Department of Neurology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 40500, Larissa, Greece.,Cellular Immunotherapy & Molecular Immunodiagnostics, Biomedical Section, Centre for Research and Technology-Hellas (CERTH) - Institute for Research and Technology-Thessaly (IRETETH), 41222, Larissa, Greece
| | - Efthymios Dardiotis
- Department of Neurology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 40500, Larissa, Greece
| | - Christos Liaskos
- Department of Rheumatology and Clinical Immunology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Viopolis, 40500, Larissa, Greece.,Cellular Immunotherapy & Molecular Immunodiagnostics, Biomedical Section, Centre for Research and Technology-Hellas (CERTH) - Institute for Research and Technology-Thessaly (IRETETH), 41222, Larissa, Greece
| | - Emmanouela Marou
- Department of Rheumatology and Clinical Immunology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Viopolis, 40500, Larissa, Greece.,Cellular Immunotherapy & Molecular Immunodiagnostics, Biomedical Section, Centre for Research and Technology-Hellas (CERTH) - Institute for Research and Technology-Thessaly (IRETETH), 41222, Larissa, Greece
| | - Vana Tsimourtou
- Department of Neurology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 40500, Larissa, Greece
| | - Eirini I Rigopoulou
- Department of Internal Medicine, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 40500, Larissa, Greece
| | - Thomas Scheper
- Institute of Experimental Immunology, affiliated to EUROIMMUN AG, Lubeck, Germany
| | - Alexandros Daponte
- Department of Obstetrics and Gynecology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Viopolis, 40500, Larissa, Greece
| | - Wolfgang Meyer
- Institute of Experimental Immunology, affiliated to EUROIMMUN AG, Lubeck, Germany
| | - Lazaros I Sakkas
- Cellular Immunotherapy & Molecular Immunodiagnostics, Biomedical Section, Centre for Research and Technology-Hellas (CERTH) - Institute for Research and Technology-Thessaly (IRETETH), 41222, Larissa, Greece
| | - Georgios Hadjigeorgiou
- Department of Neurology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 40500, Larissa, Greece
| | - Dimitrios P Bogdanos
- Department of Rheumatology and Clinical Immunology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Viopolis, 40500, Larissa, Greece. .,Cellular Immunotherapy & Molecular Immunodiagnostics, Biomedical Section, Centre for Research and Technology-Hellas (CERTH) - Institute for Research and Technology-Thessaly (IRETETH), 41222, Larissa, Greece.
| |
Collapse
|
74
|
Wang SH, Chien WC, Chung CH, Lin FH, Peng CK, Chian CF, Shen CH. Tuberculosis increases the risk of peripheral arterial disease: A nationwide population-based study. Respirology 2017; 22:1670-1676. [PMID: 28681508 DOI: 10.1111/resp.13117] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/14/2017] [Accepted: 05/19/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVE According to several studies, tuberculosis (TB) may be involved in the pathogenesis of cardiovascular disease. However, the relationship between TB and peripheral arterial disease (PAD) has not been studied. The aim of this study was to investigate whether patients with TB exhibit an increased risk of developing PAD. METHODS The data assessed in this national population-based cohort study were obtained from the Taiwan National Health Insurance Database from 2000 to 2010. Patients with newly diagnosed TB were selected using the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) codes. The non-TB cohort was randomly frequency-matched to the TB cohort at a ratio of 2:1 according to age, sex and index year. Cox's proportional hazards regression models were used to analyse the risk of PAD. RESULTS We enrolled 14 350 patients with TB and 28 700 controls in this study. The risk of PAD was 3.93-fold higher in the patients with TB than in the non-TB controls after adjusting for age, sex, co-morbidities and socio-economic status. Based on the subgroup analysis, the TB cohort exhibited an increased risk of developing PAD compared with the non-TB cohort, regardless of age, sex, co-morbidities and socio-economic status. Patients with TB had a higher risk of developing PAD than healthy control subjects after 1 year of follow-up. CONCLUSION Patients with TB have a significantly higher risk of developing PAD than patients without TB. TB should be considered when evaluating a patient's risk of developing PAD.
Collapse
Affiliation(s)
- Sheng-Huei Wang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wu-Chien Chien
- School of Public Health, National Defense Medical Center, Taipei, Taiwan.,Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chi-Hsiang Chung
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Fu-Huang Lin
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Chung-Kan Peng
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Institute of Undersea and Hyperbaric Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Feng Chian
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Hao Shen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
75
|
Jakic B, Buszko M, Cappellano G, Wick G. Elevated sodium leads to the increased expression of HSP60 and induces apoptosis in HUVECs. PLoS One 2017; 12:e0179383. [PMID: 28604836 PMCID: PMC5467851 DOI: 10.1371/journal.pone.0179383] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/28/2017] [Indexed: 11/19/2022] Open
Abstract
Atherosclerosis is the leading cause of death in the world. We have previously shown that expression of heat shock protein 60 (HSP60) on the surface of endothelial cells is the main cause of initiating the disease as it acts as a T cell auto-antigen and can be triggered by classical atherosclerosis risk factors, such as infection (e.g. Chlamydia pneumoniae), chemical stress (smoking, oxygen radicals, drugs), physical insult (heat, shear blood flow) and inflammation (inflammatory cytokines, lipopolysaccharide, oxidized low density lipoprotein, advanced glycation end products). In the present study, we show that increasing levels of sodium chloride can also induce an increase in intracellular and surface expression of HSP60 protein in human umbilical vein endothelial cells. In addition, we found that elevated sodium induces apoptosis.
Collapse
Affiliation(s)
- Bojana Jakic
- Laboratory of Autoimmunity, Division of Experimental Pathophysiology and Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
- * E-mail:
| | - Maja Buszko
- Laboratory of Autoimmunity, Division of Experimental Pathophysiology and Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Giuseppe Cappellano
- Laboratory of Autoimmunity, Division of Experimental Pathophysiology and Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Georg Wick
- Laboratory of Autoimmunity, Division of Experimental Pathophysiology and Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
76
|
Ley K, Gerdes N, Winkels H. ATVB Distinguished Scientist Award: How Costimulatory and Coinhibitory Pathways Shape Atherosclerosis. Arterioscler Thromb Vasc Biol 2017; 37:764-777. [PMID: 28360089 PMCID: PMC5424816 DOI: 10.1161/atvbaha.117.308611] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/20/2017] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Immune cells play a critical role in atherosclerosis. Costimulatory and coinhibitory molecules of the tumor necrosis factor receptor and CD28 immunoglobulin superfamilies not only shape T-cell and B-cell responses but also have a major effect on antigen-presenting cells and nonimmune cells. APPROACH AND RESULTS Pharmacological inhibition or activation of costimulatory and coinhibitory molecules and genetic deletion demonstrated their involvement in atherosclerosis. This review highlights recent advances in understanding how costimulatory and coinhibitory pathways shape the immune response in atherosclerosis. CONCLUSIONS Insights gained from costimulatory and coinhibitory molecule function in atherosclerosis may inform future therapeutic approaches.
Collapse
Affiliation(s)
- Klaus Ley
- From the Division of Inflammation Biology, La Jolla Institute for Allergy & Immunology, CA (K.L., H.W.); Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Germany (N.G.); and Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU), Munich, Germany (N.G.).
| | - Norbert Gerdes
- From the Division of Inflammation Biology, La Jolla Institute for Allergy & Immunology, CA (K.L., H.W.); Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Germany (N.G.); and Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU), Munich, Germany (N.G.)
| | - Holger Winkels
- From the Division of Inflammation Biology, La Jolla Institute for Allergy & Immunology, CA (K.L., H.W.); Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Germany (N.G.); and Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU), Munich, Germany (N.G.)
| |
Collapse
|
77
|
Shen L, Lu S, Huang D, Li G, Liu K, Cao R, Zong L, Jin L, Wu J. A rationally designed peptide IA-2-P2 against type 1 diabetes in streptozotocin-induced diabetic mice. Diab Vasc Dis Res 2017; 14:184-190. [PMID: 28467202 DOI: 10.1177/1479164116664189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Recent studies have investigated the potential of type 1 diabetes mellitus-related autoantigens, such as heat shock protein 60, to induce immunological tolerance or to suppress the immune response. A functional 24-residue peptide derived from heat shock protein 60 (P277) has shown anti-type 1 diabetes mellitus potential in experimental animals and in clinical studies, but it also carries a potential atherogenic effect. In this study, we have modified P277 to retain an anti-type 1 diabetes mellitus effect and minimize the atherogenic potential by replacing the P277 B epitope with another diabetes-associated autoantigen, insulinoma antigen-2 (IA-2), to create the fusion peptide IA-2-P2. In streptozotocin-induced diabetic C57BL/6J mice, the IA-2-P2 peptide displayed similar anti-diabetic effects to the control P277 peptide. Also, the IA-2-P2 peptide did not show atherogenic activity in a rabbit model. Our findings indicate the potential of IA-2-P2 as a promising vaccine against type 1 diabetes mellitus.
Collapse
MESH Headings
- Animals
- Atherosclerosis/chemically induced
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Cell Proliferation/drug effects
- Cells, Cultured
- Chaperonin 60/administration & dosage
- Chaperonin 60/pharmacology
- Chaperonin 60/toxicity
- Cytokines/metabolism
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/immunology
- Diabetes Mellitus, Type 1/blood
- Diabetes Mellitus, Type 1/chemically induced
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/immunology
- Drug Design
- Hypoglycemic Agents/administration & dosage
- Hypoglycemic Agents/pharmacology
- Hypoglycemic Agents/toxicity
- Immunization
- Lymphocyte Activation/drug effects
- Male
- Mice, Inbred C57BL
- Peptide Fragments/administration & dosage
- Peptide Fragments/pharmacology
- Peptide Fragments/toxicity
- Rabbits
- Receptor-Like Protein Tyrosine Phosphatases, Class 8/administration & dosage
- Receptor-Like Protein Tyrosine Phosphatases, Class 8/pharmacology
- Receptor-Like Protein Tyrosine Phosphatases, Class 8/toxicity
- Recombinant Fusion Proteins/administration & dosage
- Recombinant Fusion Proteins/pharmacology
- Recombinant Fusion Proteins/toxicity
- Streptozocin
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Time Factors
- Vaccines/administration & dosage
- Vaccines/pharmacology
- Vaccines/toxicity
Collapse
Affiliation(s)
- Lili Shen
- 1 Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Shiping Lu
- 1 Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Dongcheng Huang
- 1 Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Guoliang Li
- 1 Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Kunfeng Liu
- 1 Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Rongyue Cao
- 1 Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Li Zong
- 2 Institute of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Liang Jin
- 1 Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jie Wu
- 1 Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
78
|
Görtz AL, Peferoen LAN, Gerritsen WH, van Noort JM, Bugiani M, Amor S. Heat shock protein expression in cerebral X-linked adrenoleukodystrophy reveals astrocyte stress prior to myelin loss. Neuropathol Appl Neurobiol 2017; 44:363-376. [DOI: 10.1111/nan.12399] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 03/15/2017] [Accepted: 03/20/2017] [Indexed: 11/28/2022]
Affiliation(s)
- A. L. Görtz
- Department of Pathology; VU University Medical Centre; Amsterdam The Netherlands
| | - L. A. N. Peferoen
- Department of Pathology; VU University Medical Centre; Amsterdam The Netherlands
| | - W. H. Gerritsen
- Department of Pathology; VU University Medical Centre; Amsterdam The Netherlands
| | | | - M. Bugiani
- Department of Pathology; VU University Medical Centre; Amsterdam The Netherlands
- Department of Child Neurology; Neuroscience Campus Amsterdam; VU University Medical Centre; Amsterdam The Netherlands
| | - S. Amor
- Department of Pathology; VU University Medical Centre; Amsterdam The Netherlands
- Queen Mary University of London; Blizard Institute; Barts and The London School of Medicine and Dentistry; London UK
| |
Collapse
|
79
|
Abstract
Cardiovascular disease is the leading cause of death worldwide, both in the general population and among patients with chronic kidney disease (CKD). In most cases, the underlying cause of the cardiovascular event is atherosclerosis - a chronic inflammatory disease. CKD accelerates atherosclerosis via augmentation of inflammation, perturbation of lipid metabolism, and other mechanisms. In the artery wall, subendothelial retention of plasma lipoproteins triggers monocyte-derived macrophages and T helper type 1 (TH1) cells to form atherosclerotic plaques. Inflammation is initiated by innate immune reactions to modified lipoproteins and is perpetuated by TH1 cells that react to autoantigens from the apolipoprotein B100 protein of LDL. Other T cells are also active in atherosclerotic lesions; regulatory T cells inhibit pathological inflammation, whereas TH17 cells can promote plaque fibrosis. The slow build-up of atherosclerotic plaques is asymptomatic, but plaque rupture or endothelial erosion can induce thrombus formation, leading to myocardial infarction or ischaemic stroke. Targeting risk factors for atherosclerosis has reduced mortality, but a need exists for novel therapies to stabilize plaques and to treat arterial inflammation. Patients with CKD would likely benefit from such preventive measures.
Collapse
Affiliation(s)
- Anton Gisterå
- Center for Molecular Medicine, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, SE-17176 Stockholm, Sweden
| | - Göran K Hansson
- Center for Molecular Medicine, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, SE-17176 Stockholm, Sweden
| |
Collapse
|
80
|
Karkhah A, Saadi M, Nouri HR. In silico analyses of heat shock protein 60 and calreticulin to designing a novel vaccine shifting immune response toward T helper 2 in atherosclerosis. Comput Biol Chem 2017; 67:244-254. [PMID: 28189968 DOI: 10.1016/j.compbiolchem.2017.01.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/17/2017] [Accepted: 01/27/2017] [Indexed: 02/07/2023]
Abstract
Recent experiments demonstrated that atherosclerosis is a Th1 dominant autoimmune condition, whereas Th2 cells are rarely detected within the atherosclerotic lesions. Several studies have indicated that Th2 type cytokines could be effective in the reduction and stabilization of atherosclerotic plaque. Therefore, the modulation of the adaptive immune response by shifting immune responses toward Th2 cells by a novel vaccine could represent a promising approach to prevent from progression and thromboembolic events in coronary artery disease. In the present study, an in silico approach was applied to design a novel multi-epitope vaccine to elicit a desirable immune response against atherosclerosis. Six novel IL-4 inducing epitopes were selected from HSP60 and calreticulin proteins. To enhance epitope presentation, IL-4 inducing epitopes were linked together by AAY and HEYGAEALERAG linkers. In addition, helper epitopes selected from Tetanus toxin fragment C (TTFrC) were applied to induce CD4+ helper T lymphocytes (HTLs) responses. Moreover, cholera toxin B (CTB) was employed as an adjuvant. A multi-epitope construct was designed based on predicted epitopes which was 320 residues in length. Then, the physico-chemical properties, secondary and tertiary structures, stability, intrinsic protein disorder, solubility and allergenicity of this chimeric protein were analyzed using bioinformatics tools and servers. Based on bioinformatics analysis, a soluble, and non-allergic protein with 35.405kDa molecular weight was designed. Expasy ProtParam classified this chimeric protein as a stable protein. In addition, predicted epitopes in the chimeric vaccine indicated strong potential to induce B-cell mediated immune response and shift immune responses toward protective Th2 immune response. Various in silico analyses indicate that this vaccine is a qualified candidate for improvement of atherosclerosis by inducing immune responses toward T helper 2.
Collapse
Affiliation(s)
- Ahmad Karkhah
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Mahdiye Saadi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Hamid Reza Nouri
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
81
|
Gesualdo M, Scicchitano P, Carbonara S, Ricci G, Principi M, Ierardi E, Di Leo A, Cortese F, Ciccone MM. The association between cardiac and gastrointestinal disorders: causal or casual link? J Cardiovasc Med (Hagerstown) 2017; 17:330-8. [PMID: 26702598 DOI: 10.2459/jcm.0000000000000351] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiovascular diseases are the leading cause of death worldwide: among them, coronary artery disease and arrhythmias represent the most frequent pathological conditions. Similarly, the gastrointestinal disorders, that is, gastroesophageal reflux and inflammatory bowel diseases, have a high incidence in the general population. Several pieces of evidence have documented a link between cardiac and gastrointestinal disorders as they often share similar risk factors and symptoms. Furthermore, both can simultaneously occur in the same patient, thus creating problems in the correct clinical diagnosis. It is well known that gastrointestinal disorders may present with chest pain and mimic angina pectoris. In contrast, they can also unmask heart disease, such as in the case of the angina-linked ischemia. The aim of this review was to elucidate the mechanisms underlying the relationship between cardiac and gastrointestinal diseases to better understand the causal or casual character of such a linkage.
Collapse
Affiliation(s)
- Michele Gesualdo
- aCardiovascular Diseases Section bDivision of Gastroenterology, Department of Emergency and Organ Transplantation (DETO), University of Bari, Bari, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Şelli ME, Wick G, Wraith DC, Newby AC. Autoimmunity to HSP60 during diet induced obesity in mice. Int J Obes (Lond) 2016; 41:348-351. [PMID: 27899808 PMCID: PMC5300117 DOI: 10.1038/ijo.2016.216] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 10/18/2016] [Accepted: 11/13/2016] [Indexed: 02/06/2023]
Abstract
Adaptive immunity has been implicated in adipose tissue inflammation, obesity and its adverse metabolic consequences. No obesity-related autoantigen has yet been identified, although heat shock protein 60 (HSP60) has been implicated in other autoimmune diseases. We investigated whether feeding a high-fat diet to C57BL/6J mice would cause autoimmunity to HSP60 and whether immunomodulation with peptides from HSP60 would reverse the resulting obesity or metabolic dysfunction. Obese mice had higher circulating levels of HSP60 associated with increased T-lymphocyte proliferation responses and the emergence of circulating IgG1 and IgG2c antibody levels against HSP60. Treatment with escalating doses of a mixture of three proven immunomodulatory HSP60 peptides did not reduce weight but completely reversed the increase in VLDL/LDL levels and partially reversed the glucose intolerance in obese mice. Obese mice mount an autoimmune response to HSP60, which partly underlies the resulting metabolic disturbances.
Collapse
Affiliation(s)
- M E Şelli
- School of Clinical Sciences and Bristol Heart Institute, Bristol Royal Infirmary, University of Bristol, Bristol, UK
| | - G Wick
- Laboratory of Autoimmunity, Division for Experimental Pathology and Immunology, Biocenter Innsbruck Medical University, Innsbruck, Austria
| | - D C Wraith
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - A C Newby
- School of Clinical Sciences and Bristol Heart Institute, Bristol Royal Infirmary, University of Bristol, Bristol, UK
| |
Collapse
|
83
|
Abstract
The host takes use of pattern recognition receptors (PRRs) to defend against pathogen invasion or cellular damage. Among microorganism-associated molecular patterns detected by host PRRs, nucleic acids derived from bacteria or viruses are tightly supervised, providing a fundamental mechanism of host defense. Pathogenic DNAs are supposed to be detected by DNA sensors that induce the activation of NFκB or TBK1-IRF3 pathway. DNA sensor cGAS is widely expressed in innate immune cells and is a key sensor of invading DNAs in several cell types. cGAS binds to DNA, followed by a conformational change that allows the synthesis of cyclic guanosine monophosphate–adenosine monophosphate (cGAMP) from adenosine triphosphate and guanosine triphosphate. cGAMP is a strong activator of STING that can activate IRF3 and subsequent type I interferon production. Here we describe recent progresses in DNA sensors especially cGAS in the innate immune responses against pathogenic DNAs.
Collapse
|
84
|
Kantidze OL, Velichko AK, Razin SV. Heat Stress-Induced Transcriptional Repression. BIOCHEMISTRY (MOSCOW) 2016; 80:990-3. [PMID: 26547066 DOI: 10.1134/s0006297915080039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Heat stress is one of the most popular models for studying the regulation of gene expression. For decades, researchers' attention was focused on the study of the mechanisms of transcriptional activation of stress-induced genes. Although the phenomenon of heat stress-induced global transcriptional repression is known for a long time, the exact molecular mechanisms of such a repression are poorly explored. In this mini-review, we attempt to summarize the existing experimental data on heat stress-induced transcriptional repression.
Collapse
Affiliation(s)
- O L Kantidze
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | | | | |
Collapse
|
85
|
Xie F, Zhan R, Yan LC, Gong JB, Zhao Y, Ma J, Qian LJ. Diet-induced elevation of circulating HSP70 may trigger cell adhesion and promote the development of atherosclerosis in rats. Cell Stress Chaperones 2016; 21:907-14. [PMID: 27435079 PMCID: PMC5003808 DOI: 10.1007/s12192-016-0716-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/21/2016] [Accepted: 06/23/2016] [Indexed: 02/07/2023] Open
Abstract
Although accumulating evidence indicates that heat shock protein 70 (HSP70) could be secreted into plasma and its levels have been found to have an ambiguous association with atherosclerosis, our knowledge for the exact role of circulating HSP70 in the development of atherosclerosis is still limited. In the present study, we report an adhesion-promoting effect of exogenous HSP70 and evaluate the potential involvement of elevated circulating HSP70 in the development of atherosclerosis. Time-dependent elevation of plasma HSP70 was found in diet-induced atherosclerotic rats, whose effect was investigated through further in vitro experiments. In rat aortic endothelial cell (RAEC) cultures, exogenous HSP70 incubation neither produced cell injuries by itself nor had protective effects on cell injuries caused by Ox-LDL or homocysteine. However, exogenous HSP70 administration could lead to a higher adhesion rate between rat peripheral blood monocytes (PBMCs) and RAECs. This adhesion-promoting effect appeared only when PBMCs, rather than RAECs, were pretreated with HSP70 incubation. PBMCs in an HSP70 environment released more IL-6 to supernatant, which subsequently up-regulated the expression of ICAM-1 in RAECs. These results indicate that the diet-induced elevation of circulating HSP70 could trigger cell adhesion with the help of IL-6 as a mediator, which provides a novel possible mechanism for understanding the role of circulating HSP70 in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Fang Xie
- Department of Stress Medicine, Institute of Basic Medical Sciences, #27 Taiping Road, Haidian, Beijing, 100039, People's Republic of China
| | - Rui Zhan
- Department of Stress Medicine, Institute of Basic Medical Sciences, #27 Taiping Road, Haidian, Beijing, 100039, People's Republic of China
| | - Li-Cheng Yan
- Department of Stress Medicine, Institute of Basic Medical Sciences, #27 Taiping Road, Haidian, Beijing, 100039, People's Republic of China
| | - Jing-Bo Gong
- Department of Stress Medicine, Institute of Basic Medical Sciences, #27 Taiping Road, Haidian, Beijing, 100039, People's Republic of China
| | - Yun Zhao
- Department of Stress Medicine, Institute of Basic Medical Sciences, #27 Taiping Road, Haidian, Beijing, 100039, People's Republic of China
| | - Jing Ma
- Department of Stress Medicine, Institute of Basic Medical Sciences, #27 Taiping Road, Haidian, Beijing, 100039, People's Republic of China
| | - Ling-Jia Qian
- Department of Stress Medicine, Institute of Basic Medical Sciences, #27 Taiping Road, Haidian, Beijing, 100039, People's Republic of China.
| |
Collapse
|
86
|
Björkbacka H. Can Circulating Regulatory T Cells Predict Cardiovascular Disease? EBioMedicine 2016; 11:15-16. [PMID: 27592599 PMCID: PMC5049994 DOI: 10.1016/j.ebiom.2016.08.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 08/28/2016] [Indexed: 01/10/2023] Open
Affiliation(s)
- Harry Björkbacka
- Experimental Cardiovascular Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden.
| |
Collapse
|
87
|
Pan Y, Ke H, Yan Z, Geng Y, Asner N, Palani S, Munirathinam G, Dasari S, Nitiss KC, Bliss S, Patel P, Shen H, Reardon CA, Getz GS, Chen A, Zheng G. The western-type diet induces anti-HMGB1 autoimmunity in Apoe(-/-) mice. Atherosclerosis 2016; 251:31-38. [PMID: 27240253 PMCID: PMC4983250 DOI: 10.1016/j.atherosclerosis.2016.05.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 05/15/2016] [Accepted: 05/18/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND AND AIMS Anti-HMGB1 autoimmunity plays a role in systemic lupus erythematosus (SLE). Because SLE increases atherosclerosis, we asked whether the same autoimmunity might play a role in atherogenesis. METHODS We looked for the induction of HMGB1-specific B and T cell responses by a western-type diet (WTD) in the Apoe(-/-) mouse model of atherosclerosis. We also determined whether modifying the responses modulates atherosclerosis. RESULTS In the plasma of male Apoe(-/-) mice fed WTD, the level of anti-HMGB1 antibodies (Abs) was detected at ∼50 μg/ml, which was ∼6 times higher than that in either Apoe(-/-) mice fed a normal chow or Apoe(+/+) mice fed WTD (p ≤ 0.0005). The Abs were directed largely toward a novel, dominant epitope of HMGB1 named HMW4; accordingly, compared with chow-fed mice, WTD-fed Apoe(-/-) mice had more activated HMW4-reactive B and T cells (p = 0.005 and p = 0.01, respectively). Compared with mock-immunized mice, Apoe(-/-) mice immunized with HMW4 along with an immunogenic adjuvant showed proportional increases in anti-HMW4 IgG and IgM Abs, HMW4-reactive B-1 and B-2 cells, and HMW4-reactive Treg and Teff cells, which was associated with ∼30% increase in aortic arch lesions (p ≤ 0.01) by two methods. In contrast, Apoe(-/-) mice immunized with HMW4 using a tolerogenic adjuvant showed preferential increases in anti-HMW4 IgM (over IgG) Abs, HMW4-reactive B-1 (over B-2) cells, and HMW4-specific Treg (over Teff) cells, which was associated with ∼40% decrease in aortic arch lesions (p ≤ 0.03). CONCLUSIONS Anti-HMGB1 autoimmunity may potentially play a role in atherogenesis.
Collapse
Affiliation(s)
- Yue Pan
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA
| | - Hanzhong Ke
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA
| | - Zhaoqi Yan
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA
| | - Yajun Geng
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA
| | - Nathan Asner
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA
| | - Sunil Palani
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA
| | - Gnanasekar Munirathinam
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA
| | - Subramanyam Dasari
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA
| | - Karin C Nitiss
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA
| | - Sarah Bliss
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA
| | - Priyanka Patel
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA
| | - Hongming Shen
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA
| | - Catherine A Reardon
- Department of Pathology (C.A.R., G.S.G.), University of Chicago, Chicago, IL 60637, USA
| | - Godfrey S Getz
- Department of Pathology (C.A.R., G.S.G.), University of Chicago, Chicago, IL 60637, USA
| | - Aoshuang Chen
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Guoxing Zheng
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| |
Collapse
|
88
|
Wierzbicki AS, Grant P. Drugs for hypercholesterolaemia - from statins to pro-protein convertase subtilisin kexin 9 (PCSK9) inhibition. Clin Med (Lond) 2016; 16:353-7. [PMID: 27481380 PMCID: PMC6280202 DOI: 10.7861/clinmedicine.16-4-353] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cardiovascular disease (CVD) remains one of the commonest sources of morbidity and mortality in the world. Lipids and especially low density lipoprotein cholesterol (LDL-C) contribute to the risk of CVD events. Statins are the primary therapy for hypercholesterolaemia and recent evidence supports the use of ezetimibe as a second-line agent. Pro-protein convertase subtilisin kexin 9 (PCSK9) is a regulator of LDL receptor expression. Activating mutations in PCSK9 give rise to a form of familial hypercholesterolaemia, while inactivating mutations lead to lower LDL-C levels and fewer CVD events. Therapies to inhibit PCSK9 are in development and two antibody-based therapies - alirocumab and evolocumab - have recently been licensed. This article reviews the actions of PCSK9, the novel therapeutics targeted on this molecule and how they are likely to be used in clinical practice until large scale CVD outcome studies with PCSK9 inhibitors are published.
Collapse
Affiliation(s)
| | - Paul Grant
- OCDEM, Churchill Hospital, Headington, Oxford, UK
| |
Collapse
|
89
|
The Ratio of Regulatory (FOXP3+) to Total (CD3+) T Cells Determined by Epigenetic Cell Counting and Cardiovascular Disease Risk: A Prospective Case-cohort Study in Non-diabetics. EBioMedicine 2016; 11:151-156. [PMID: 27499494 PMCID: PMC5049920 DOI: 10.1016/j.ebiom.2016.07.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/19/2016] [Accepted: 07/29/2016] [Indexed: 01/12/2023] Open
Abstract
Background Experimental and clinical evidence indicate that inflammatory processes in atherogenesis and the development of cardiovascular complications are promoted by a loss of regulatory T cell (Treg)-mediated immunological tolerance to plaque antigens. Yet, the association between alterations of systemic Treg frequency and cardiovascular disease incidence remains uncertain. Methods A nested case-cohort study was conducted within the European Prospective Investigation into Cancer and Nutrition (EPIC)-Heidelberg, comprising a random subcohort (n = 778) and primary cases of myocardial infarction (MI, n = 276) and ischemic stroke (n = 151). Pre-diagnostic FOXP3 + Treg and total CD3 + T-lymphocyte (tTL) frequencies in blood were measured by epigenetic-based, quantitative real-time PCR-assisted cell counting. Results Multivariate, Prentice-weighted Cox regression analyses revealed that lower Treg/tTL ratios were not associated with the risk of either MI (lowest vs. highest sex-specific quartile; hazard ratio: 0.72, 95% confidence interval: 0.46 to 1.13; Ptrend = 0.51) or stroke (HR: 0.90, 95% CI: 0.51 to 1.60; Ptrend = 0.78). There were no correlations of Treg/tTL ratios with C-reactive protein, HbA1c, and various lipid parameters. Conclusions Among middle-aged adults from the general population, imbalances in the relative frequency of Tregs within the total T cell compartment do not confer an increased risk of MI or stroke. We studied if peripheral immune tolerance, as reflected by regulatory (FOXP3+) to total (CD3+) T cells, relates to CVD risk. Epigenetic-based, qPCR assisted cell counting was used to quantify T cell subsets in long-term stored buffy coat samples. Lower Treg-mediated immune tolerance does not confer an increased risk of major CVD events.
Inflammation in the arterial intima plays a central role in atherosclerotic cardiovascular disease and may develop owing to autoimmune-like responses targeted against plaque antigens. While the ratio between regulatory T cells (Tregs) and effector T cells is thought to control such immune response outcomes and tolerance within the T cell compartment, we found no association with incidence of major CVD events. These findings imply that reduced systemic Treg frequencies observed in CVD patients follow rather than precede disease manifestation and that Treg variation within a physiological range may not – as previously reported - constitute a pre-disposing risk factor for CVD.
Collapse
|
90
|
Batulan Z, Pulakazhi Venu VK, Li Y, Koumbadinga G, Alvarez-Olmedo DG, Shi C, O'Brien ER. Extracellular Release and Signaling by Heat Shock Protein 27: Role in Modifying Vascular Inflammation. Front Immunol 2016; 7:285. [PMID: 27507972 PMCID: PMC4960997 DOI: 10.3389/fimmu.2016.00285] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 07/14/2016] [Indexed: 12/31/2022] Open
Abstract
Heat shock protein 27 (HSP27) is traditionally viewed as an intracellular chaperone protein with anti-apoptotic properties. However, recent data indicate that a number of heat shock proteins, including HSP27, are also found in the extracellular space where they may signal via membrane receptors to alter gene transcription and cellular function. Therefore, there is increasing interest in better understanding how HSP27 is released from cells, its levels and composition in the extracellular space, and the cognate cell membrane receptors involved in effecting cell signaling. In this paper, the knowledge to date, as well as some emerging paradigms about the extracellular function of HSP27 is presented. Of particular interest is the role of HSP27 in attenuating atherogenesis by modifying lipid uptake and inflammation in the plaque. Moreover, the abundance of HSP27 in serum is an emerging new biomarker for ischemic events. Finally, HSP27 replacement therapy may represent a novel therapeutic opportunity for chronic inflammatory disorders, such as atherosclerosis.
Collapse
Affiliation(s)
- Zarah Batulan
- Vascular Biology Laboratory, Health Research Innovation Centre, Libin Cardiovascular Institute of Alberta, University of Calgary Cumming School of Medicine , Calgary, AB , Canada
| | - Vivek Krishna Pulakazhi Venu
- Vascular Biology Laboratory, Health Research Innovation Centre, Libin Cardiovascular Institute of Alberta, University of Calgary Cumming School of Medicine , Calgary, AB , Canada
| | - Yumei Li
- Vascular Biology Laboratory, Health Research Innovation Centre, Libin Cardiovascular Institute of Alberta, University of Calgary Cumming School of Medicine , Calgary, AB , Canada
| | - Geremy Koumbadinga
- Vascular Biology Laboratory, Health Research Innovation Centre, Libin Cardiovascular Institute of Alberta, University of Calgary Cumming School of Medicine , Calgary, AB , Canada
| | - Daiana Gisela Alvarez-Olmedo
- Oncology Laboratory, Institute for Experimental Medicine and Biology of Cuyo (IMBECU), CCT CONICET , Mendoza , Argentina
| | - Chunhua Shi
- Vascular Biology Laboratory, Health Research Innovation Centre, Libin Cardiovascular Institute of Alberta, University of Calgary Cumming School of Medicine , Calgary, AB , Canada
| | - Edward R O'Brien
- Vascular Biology Laboratory, Health Research Innovation Centre, Libin Cardiovascular Institute of Alberta, University of Calgary Cumming School of Medicine , Calgary, AB , Canada
| |
Collapse
|
91
|
Kim H, Choi MS, Inn KS, Kim BJ. Inhibition of HIV-1 reactivation by a telomerase-derived peptide in a HSP90-dependent manner. Sci Rep 2016; 6:28896. [PMID: 27363520 PMCID: PMC4929463 DOI: 10.1038/srep28896] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/10/2016] [Indexed: 01/22/2023] Open
Abstract
A peptide vaccine designed to induce T-cell immunity to telomerase, GV1001, has been shown to modulate cellular signaling pathways and confer a direct anti-cancer effect through the interaction with heat shock protein (HSP) 90 and 70. Here, we have found that GV1001 can modulate transactivation protein-mediated human immunodeficiency virus (HIV)-1 transactivation in an HSP90-dependent manner. GV1001 treatment resulted in significant suppression of HIV-1 replication and rescue of infected cells from death by HIV-1. Transactivation of HIV-long terminal repeat (LTR) was inhibited by GV1001, indicating that GV1001 suppressed the transcription from proviral HIV DNA. The anti-HIV-1 activity of GV1001 was completely abrogated by an HSP90-neutralizing antibody, indicating that the antiviral activity depends on HSP90. Further mechanistic studies revealed that GV1001 suppresses basal NF-κB activation, which is required for HIV-1 LTR transactivation in an HSP90-dependent manner. Inhibition of LTR transactivation by GV1001 suggests its potential to suppress HIV-1 reactivation from latency. Indeed, PMA-mediated reactivation of HIV-1 from latent infected cells was suppressed by GV1001. The results suggest the potential therapeutic use of GV1001, a peptide proven to be safe for human use, as an anti-HIV-1 agent to suppress the reactivation from latently infected cells.
Collapse
Affiliation(s)
- Hong Kim
- Department of Microbiology and Immunology, Liver Research Institute, Biomedical Sciences and SNUMRC, College of Medicine, Seoul National University, Seoul, Korea
| | - Myung-Soo Choi
- Department of Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Korea
| | - Kyung-Soo Inn
- Department of Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Korea
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, Liver Research Institute, Biomedical Sciences and SNUMRC, College of Medicine, Seoul National University, Seoul, Korea
| |
Collapse
|
92
|
Chaperonin 60 regulation of SOX9 ubiquitination mitigates the development of knee osteoarthritis. J Mol Med (Berl) 2016; 94:755-69. [DOI: 10.1007/s00109-016-1422-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/06/2016] [Accepted: 04/17/2016] [Indexed: 02/04/2023]
|
93
|
Wick C. Tolerization against atherosclerosis using heat shock protein 60. Cell Stress Chaperones 2016; 21:201-11. [PMID: 26577462 PMCID: PMC4786533 DOI: 10.1007/s12192-015-0659-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/04/2015] [Accepted: 11/06/2015] [Indexed: 01/06/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease of the artery wall, and both innate and adaptive immunity play important roles in the pathogenesis of this disease. In several experimental and human experiments of early atherosclerotic lesions, it has been shown that the first pathogenic event in atherogenesis is intimal infiltration of T cells at predilection sites. These T cells react to heat shock protein 60 (HSP60), which is a ubiquitous self-antigen expressed on the surface of endothelial cells (ECs) together with adhesion molecules in response to classical risk factors for atherosclerosis. When HSP60 is expressed on the EC surface, it can act as a "danger-signal" for both cellular and humoral immune reactions. Acquired by infection or vaccination, beneficial protective immunity to microbial HSP60 and bona fide autoimmunity to biochemically altered autologous HSP60 is present in all humans. Thus, the development of atherosclerosis during aging is paid by the price for lifelong protective preexisting anti-HSP60 immunity by harmful (auto)immune cross-reactive attack on arterial ECs maltreated by atherosclerosis risk factors. This is supported by experiments, which shows that bacterial HSP60 immunization can lead and accelerate experimental atherosclerosis. This review article presents accumulating proof that supports the idea that tolerization with antigenic HSP60 protein or its peptides may arrest or even prevent atherosclerosis by increased production of regulatory T cells and/or anti-inflammatory cytokines. Recent data indicates that HSP60, or more likely some of its derivative peptides, has immunoregulatory functions. Therefore, these peptides may have important potential for being used as diagnostic agents or therapeutic targets.
Collapse
Affiliation(s)
- Cecilia Wick
- Department of Medicine, Rheumatology Unit, Karolinska Institutet, Center for Molecular Medicine (CMM) L8:04, Karolinska University Hospital Solna, S-17176, Stockholm, Sweden.
- Laboratory of Autoimmunity, Division for Experimental Pathophysiology and Immunology, Biocenter, Innsbruck Medical University, Innsbruck, A-6020, Austria.
| |
Collapse
|
94
|
Bellipanni G, Cappello F, Scalia F, Conway de Macario E, Macario AJ, Giordano A. Zebrafish as a Model for the Study of Chaperonopathies. J Cell Physiol 2016; 231:2107-14. [DOI: 10.1002/jcp.25319] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Gianfranco Bellipanni
- Sbarro Institute for Cancer Research and Molecular Medicine; Philadelphia Pennsylvania
- Department of Biology; College of Science and Technology, Temple University; Philadelphia Pennsylvania
- Euro-Mediterranean Institute of Science and Technology (IEMEST); Palermo Italy
| | - Francesco Cappello
- Department of Biology; College of Science and Technology, Temple University; Philadelphia Pennsylvania
- Euro-Mediterranean Institute of Science and Technology (IEMEST); Palermo Italy
- Department of Experimental Biomedicine and Clinical Neuroscience; University of Palermo; Palermo Italy
| | - Federica Scalia
- Department of Experimental Biomedicine and Clinical Neuroscience; University of Palermo; Palermo Italy
| | - Everly Conway de Macario
- Department of Microbiology and Immunology; School of Medicine, University of Maryland at Baltimore and IMET; Baltimore Maryland
| | - Alberto J.L. Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST); Palermo Italy
- Department of Microbiology and Immunology; School of Medicine, University of Maryland at Baltimore and IMET; Baltimore Maryland
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine; Philadelphia Pennsylvania
- Department of Biology; College of Science and Technology, Temple University; Philadelphia Pennsylvania
| |
Collapse
|
95
|
Karkhah A, Amani J. A potent multivalent vaccine for modulation of immune system in atherosclerosis: an in silico approach. Clin Exp Vaccine Res 2016; 5:50-9. [PMID: 26866024 PMCID: PMC4742599 DOI: 10.7774/cevr.2016.5.1.50] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/22/2015] [Accepted: 11/05/2015] [Indexed: 11/25/2022] Open
Abstract
Purpose Atherosclerosis is classically defined as an immune-mediated disease characterized by accumulation of low-density lipoprotein cholesterol over intima in medium sized and large arteries. Recent studies have demonstrated that both innate and adaptive immune responses are involved in atherosclerosis. In addition, experimental and human models have recognized many autoantigens in pathophysiology of this disease. Oxidized low-density lipoproteins, β2 glycoprotein I (β-2-GPI), and heat shock protein 60 (HSP60) are the best studied of them which can represent promising approach to design worthwhile vaccines for modulation of atherosclerosis. Materials and Methods In silico approaches are the best tools for design and evaluation of the vaccines before initiating the experimental study. In this study, we identified immunogenic epitopes of HSP60, ApoB-100, and β-2-GPI as major antigens to construct a chimeric protein through bioinformatics tools. Additionally, we have evaluated physico-chemical properties, structures, stability, MHC binding properties, humoral and cellular immune responses, and allergenicity of this chimeric protein by means of bioinformatics tools and servers. Results Validation results indicated that 89.1% residues locate in favorite or additional allowed region of Ramachandran plot. Also, based on Ramachandran plot analysis this protein could be classified as a stable fusion protein. In addition, the epitopes in the chimeric protein had strong potential to induce both the B-cell and T-cell mediated immune responses. Conclusion Our results supported that this chimeric vaccine could be effectively utilized as a multivalent vaccine for prevention and modulation of atherosclerosis.
Collapse
Affiliation(s)
- Ahmad Karkhah
- Cellular and Molecular Biology Research Center, Student Research Committee, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
96
|
Promotion of atherosclerosis in high cholesterol diet-fed rabbits by immunization with the P277 peptide. Immunol Lett 2015; 170:80-7. [PMID: 26730848 DOI: 10.1016/j.imlet.2015.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 12/12/2015] [Accepted: 12/20/2015] [Indexed: 01/25/2023]
Abstract
Previous evidence has proved the ability of immunization with heat shock protein (HSP) 60/65 to induce atherosclerosis. P277, a 24-residue peptide of human HSP60, is a promising peptide vaccine against autoimmune diabetes. But as a fragment of HSP60, its potential ability of promoting atherosclerosis has never been investigated yet. In the present study, the rabbits fed with normal standard diet or high cholesterol diet were immunized with P277 or PBS emulsified in incomplete Freund's adjuvant 4 times at 4-week intervals. Atherosclerotic lesions of the rabbits receiving P277 treatment and fed with high cholesterol diet increased significantly compared with those of the rabbits receiving PBS treatment and the same diet. However, no obvious lesions were found in the two groups of rabbits fed with the normal standard diet. Significant expression of P277 was detected in the high cholesterol diet-induced atherosclerotic lesions and heat-stressed endothelial cells. Surface exposure of P277 was also observed in the stressed cells. In the subsequent assay of endothelial cells in vitro, the purified anti-P277 antibodies mediated a noticeable cytotoxicity to the stressed cells with the participation of complement. In conclusion, subcutaneous immunization with P277 emulsified in IFA can aggravate the atherosclerosis in high cholesterol diet-fed rabbits. Surface expression of P277 was observed on stressed endothelial cells, and were suggested to mediate the autoimmune attack and promote the disease.
Collapse
|
97
|
Endothelial nitric oxide synthase induces heat shock protein HSPA6 (HSP70B') in human arterial smooth muscle cells. Nitric Oxide 2015; 52:41-8. [PMID: 26656590 DOI: 10.1016/j.niox.2015.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 11/22/2022]
Abstract
Endothelial nitric oxide synthase (eNOS) is the major source of nitric oxide (NO) production in blood vessels. One of the pleitropic functions of eNOS derived NO is to inhibit vascular smooth muscle cell proliferation in the blood vessel wall, and whose dysfunction is a primary cause of atherosclerosis and restenosis. In this study there was an interest in examining the gene profile of eNOS adenoviral (Ad-eNOS) transduced human coronary artery smooth muscle cells (HCASMC) to further understand the eNOS inhibitory effect on smooth muscle cell proliferation. To this aim a whole genome wide analysis of eNOS transduced HCASMCs was performed. A total of 19 genes were up regulated, and 31 genes down regulated in Ad-eNOS transduced HCASMCs compared to cells treated with an empty adenovirus. Noticeably, a cluster of HSP70 gene family members was amongst the genes up regulated. Quantitative PCR confirmed that transcripts for HSPA1A (HSP70A), HSPA1B (HSP70B) and HSPA6 (HSP70B') were elevated 2, 1.7 and 14-fold respectively in Ad-eNOS treated cells. The novel gene HSPA6 was further explored as a potential mediator of eNOS signaling in HCASMC. Immunoblotting showed that HSPA6 protein was induced by Ade-NOS. To functionally examine the effect of HSPA6 on SMCs, an adenovirus harboring the HSPA6 gene under the control of a constitutive promoter was generated. Transduction of HCASMCs with Ad-HSPA6 inhibited SMC proliferation at 3 and 6 days post serum growth stimulation, and paralleled the Ad-eNOS inhibition of SMC growth. The identification in this study that HSPA6 overexpression inhibits SMC proliferation coupled with the recent finding that inhibition of HSP90 has a similar effect, progresses the field of targeting HSPs for vascular repair.
Collapse
|
98
|
Zhong Y, Tang H, Wang X, Zeng Q, Liu Y, Zhao XI, Yu K, Shi H, Zhu R, Mao X. Intranasal immunization with heat shock protein 60 induces CD4(+) CD25(+) GARP(+) and type 1 regulatory T cells and inhibits early atherosclerosis. Clin Exp Immunol 2015; 183:452-68. [PMID: 26452441 DOI: 10.1111/cei.12726] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2015] [Indexed: 01/13/2023] Open
Abstract
Atherosclerosis is an autoimmune inflammatory disease involving both innate and adaptive immune mechanisms. Immune tolerance induction may have therapeutic potential for the suppression of atherosclerosis. Current interest is directed towards mucosal tolerance induction, especially nasal tolerance. Previous studies have shown that heat shock protein 60 (HSP60) is recognized as an important autoantigen in atherosclerosis, and nasal or oral HSP60 can induce tolerance and ameliorate atherosclerosis by inducing several subsets of regulatory T cells (Tregs ) such as latency-associated peptide (LAP)(+) and forkhead box transcription factor 3 (FoxP3)(+) Tregs. However, little is known regarding the detailed mechanisms of nasal tolerance. Here, we again investigated the impact of nasal HSP60 on atherosclerosis and the mechanisms underlying the anti-atherosclerosis responses. We found that nasal HSP60 caused a significant 33·6% reduction in plaque size at the aortic root in the early stages of atherosclerosis (P < 0·001). Notably, a significant increase in activated CD4(+) CD25(+) glycoprotein A repetitions predominant (GARP)(+) Tregs, type 1 Tregs (Tr1 cells), and CD4(+) CD25(+) FoxP3(+) Tregs, as well as a marked decrease in the numbers of type 1 and 17 T helper cells was detected in the spleens and cervical lymph nodes of HSP60-treated mice. Moreover, nasal HSP60 increases the production of transforming growth factor (TGF)-β and interleukin (IL)-10 and decreases the secretion of IFN-γ and IL-17. Interestingly, the atheroprotective role of nasal HSP60 treatment was abrogated partly by the neutralization of IL-10. Our findings show that nasal administration of HSP60 can attenuate atherosclerotic formation by inducing GARP(+) Tregs, Tr1 cells and FoxP3(+) Tregs, and that these Tregs maintain immune homeostasis by secreting IL-10 and TGF-β.
Collapse
Affiliation(s)
- Y Zhong
- Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - H Tang
- Department of Pediatric Infectious and Immunological Diseases, Wuhan Children's Hospital, Wuhan, China
| | - X Wang
- Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Q Zeng
- Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Y Liu
- Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - X I Zhao
- Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - K Yu
- Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - H Shi
- Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - R Zhu
- Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - X Mao
- Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| |
Collapse
|
99
|
Zhao Y, Zhang C, Wei X, Li P, Cui Y, Qin Y, Wei X, Jin M, Kohama K, Gao Y. Heat shock protein 60 stimulates the migration of vascular smooth muscle cells via Toll-like receptor 4 and ERK MAPK activation. Sci Rep 2015; 5:15352. [PMID: 26477505 PMCID: PMC4609986 DOI: 10.1038/srep15352] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 09/23/2015] [Indexed: 11/29/2022] Open
Abstract
Accumulating evidence indicates that heat shock protein (HSP) 60 is strongly associated with the pathology of atherosclerosis (AS). However, the precise mechanisms by which HSP60 promotes atherosclerosis remain unclear. In the present study, we found that HSP60 mRNA and protein expression levels in the thoracic aorta are enhanced not only in a mouse model of AS but also in high-fat diet (HFD) mice. HSP60 expression and secretion was activated by platelet-derived growth factor-BB (PDGF-BB) and interleukin (IL)-8 in both human umbilical vein endothelial cells (HUVECs) and vascular smooth muscle cells (VSMCs). HSP60 was found to induce VSMC migration, and exposure to HSP60 activated ERK MAPK signaling. U0126, an inhibitor of ERK, reduced VSMC migration. The HSP60-stimulated VSMCs were found to express TLR4 mRNA but not TLR2 mRNA. Knockdown of TLR4 by siRNA reduced HSP60-induced VSMC migration and HSP60-induced ERK activation. Finally, HSP60 induced IL-8 secretion in VSMCs. Together these results suggest that HSP60 is involved in the stimulation of VSMC migration, via TLR4 and ERK MAPK activation. Meanwhile, activation of HSP60 is one of the most powerful methods of sending a ‘danger signal’ to the immune system to generate IL-8, which assists in the management of an infection or disease.
Collapse
Affiliation(s)
- Ying Zhao
- Liaoning Provincial Core Lab of Medical Molecular Biology, Dalian Medical University, Dalian, 116044, China.,Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, 116044, China
| | - Chenxu Zhang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, 116044, China
| | - Xuge Wei
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, 116044, China
| | - Pei Li
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, 116044, China
| | - Ying Cui
- Liaoning Provincial Core Lab of Medical Molecular Biology, Dalian Medical University, Dalian, 116044, China.,Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, 116044, China
| | - Yuanhua Qin
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, 116044, China
| | - Xiaoqing Wei
- Liaoning Provincial Core Lab of Medical Molecular Biology, Dalian Medical University, Dalian, 116044, China
| | - Minli Jin
- Liaoning Provincial Core Lab of Medical Molecular Biology, Dalian Medical University, Dalian, 116044, China
| | - Kazuhiro Kohama
- Research Institute of Pharmaceutical Sciences, Musashino University, Nishitokyo, Tokyo, 2028585, Japan
| | - Ying Gao
- Liaoning Provincial Core Lab of Medical Molecular Biology, Dalian Medical University, Dalian, 116044, China.,Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, 116044, China
| |
Collapse
|
100
|
Grundtman C, Jakic B, Buszko M, Onestingel E, Almanzar G, Demetz E, Dietrich H, Cappellano G, Wick G. Mycobacterial heat shock protein 65 (mbHSP65)-induced atherosclerosis: Preventive oral tolerization and definition of atheroprotective and atherogenic mbHSP65 peptides. Atherosclerosis 2015; 242:303-10. [PMID: 26233917 DOI: 10.1016/j.atherosclerosis.2015.06.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 06/15/2015] [Accepted: 06/22/2015] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The aim of this study was to identify atherogenic and atheroprotective peptides of bacterial HSP60 [taking mycobacterial HSP65 (mbHSP65) as a potent paradigmatic representative] that could be used as candidates for an orally applied tolerizing vaccine against atherosclerosis. METHODS ApoE(-/-) mice were immunized with mbHSP65 protein or peptides, given mbHSP65 orally and then kept either on chow or high cholesterol diet. Atherosclerosis was assessed by en face and immunohistological analysis. Anti-HSP autoantibodies were detected by ELISA. The number and in vitro suppressive function of splenic and lymph node regulatory T cells (Tregs) were analyzed by flow cytometry. Specific T cell reactivity against mbHSP65 protein or peptides was assessed by proliferation assay. RESULTS Decreased lesion size was accompanied by (a) increased splenic Treg numbers; (b) increased interleukin (IL)-10 mRNA levels in the aorta; (c) increased levels of anti-mbHSP65 and anti-mouse HSP60 antibodies pointing to pro-eukaryotic HSP60 humoral crossreaction, not curtailed by oral tolerization; (d) most importantly, we identified and functionally characterized novel atherogenic and atheroprotective mbHSP65 epitopes. CONCLUSION Atheroprotective mbHSP65 peptides may be considered as potential candidates for the development of a tolerizing vaccine to prevent and treat atherosclerosis, while keeping protective immunity to non-atherogenic domains of mbHSP65 intact.
Collapse
Affiliation(s)
- Cecilia Grundtman
- Laboratory of Autoimmunity, Division for Experimental Pathophysiology and Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
| | - Bojana Jakic
- Laboratory of Autoimmunity, Division for Experimental Pathophysiology and Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Maja Buszko
- Laboratory of Autoimmunity, Division for Experimental Pathophysiology and Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Elisabeth Onestingel
- Laboratory of Autoimmunity, Division for Experimental Pathophysiology and Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Giovanni Almanzar
- Laboratory of Autoimmunity, Division for Experimental Pathophysiology and Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Egon Demetz
- Department of Internal Medicine VI, Clinical Immunology and Infectious Diseases, Medical University of Innsbruck, Innsbruck, Austria
| | - Hermann Dietrich
- Central Laboratory Animal Facility, Medical University of Innsbruck, Innsbruck, Austria
| | - Giuseppe Cappellano
- Laboratory of Autoimmunity, Division for Experimental Pathophysiology and Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Georg Wick
- Laboratory of Autoimmunity, Division for Experimental Pathophysiology and Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|