51
|
Acharya A, Nemade H, Papadopoulos S, Hescheler J, Neumaier F, Schneider T, Rajendra Prasad K, Khan K, Hemmersbach R, Gusmao EG, Mizi A, Papantonis A, Sachinidis A. Microgravity-induced stress mechanisms in human stem cell-derived cardiomyocytes. iScience 2022; 25:104577. [PMID: 35789849 PMCID: PMC9249673 DOI: 10.1016/j.isci.2022.104577] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/25/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022] Open
Abstract
Exposure to outer space microgravity poses a risk for the development of various pathologies including cardiovascular disease. To study this, we derived cardiomyocytes (CMs) from human-induced pluripotent stem cells and exposed them to simulated microgravity (SMG). We combined different “omics” and chromosome conformation capture technologies with live-cell imaging of various transgenic lines to discover that SMG impacts on the contractile velocity and function of CMs via the induction of senescence processes. This is linked to SMG-induced changes of reactive oxygen species (ROS) generation and energy metabolism by mitochondria. Taken together, we uncover a microgravity-controlled axis causing contractile dysfunctions to CMs. Our findings can contribute to the design of preventive and therapeutic strategies against senescence-associated disease. Simulated microgravity (SMG) causes ROS production in human cardiomyocytes (CMs) SMG inhibits mitochondria function and energy metabolism and induces senescence of CMs SMG attenuates contractile velocity, beating frequency and Ca2+ influx in CMs SMG induces chromosomal changes and modifies the chromosomal architecture in CMs
Collapse
|
52
|
Pantalone D, Chiara O, Henry S, Cimbanassi S, Gupta S, Scalea T. Facing Trauma and Surgical Emergency in Space: Hemorrhagic Shock. Front Bioeng Biotechnol 2022; 10:780553. [PMID: 35845414 PMCID: PMC9283715 DOI: 10.3389/fbioe.2022.780553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 04/22/2022] [Indexed: 11/16/2022] Open
Abstract
Although the risk of trauma in space is low, unpredictable events can occur that may require surgical treatment. Hemorrhage can be a life-threatening condition while traveling to another planet and after landing on it. These exploration missions call for a different approach than rapid return to Earth, which is the policy currently adopted on the International Space Station (ISS) in low Earth orbit (LEO). Consequences are difficult to predict, given the still scarce knowledge of human physiology in such environments. Blood loss in space can deplete the affected astronaut’s physiological reserves and all stored crew supplies. In this review, we will describe different aspects of hemorrhage in space, and by comparison with terrestrial conditions, the possible solutions to be adopted, and the current state of the art.
Collapse
Affiliation(s)
- D. Pantalone
- Department of Experimental and Clinical Medicine, Fellow of the American College of Surgeons, Core Board and Head for Studies on Traumatic Events and Surgery in the European Space Agency-Topical Team on “Tissue Healing in Space Techniques for Promoting and Monitoring Tissue Repair and Regeneration” for Life Science Activities Agency, Assistant Professor in General Surgery, Specialist in Vascular Surgery, Emergency Surgery Unit–Trauma Team, Emergency Department–Careggi University Hospital, University of Florence, Florence, Italy
- *Correspondence: D. Pantalone,
| | - O. Chiara
- Fellow of the American College of Surgeons, Director of General Surgery–Trauma Team, ASST GOM Grande Ospedale Metropolitano Niguarda, Professor of Surgery, University of Milan, Milan, Italy
| | - S. Henry
- Fellow of the American College of Surgeons, Director Division of Wound Healing and Metabolism, R Adams Cowley Shock Trauma Center University of Maryland, Baltimore, MD, United States
| | - S. Cimbanassi
- Fellow of the American College of Surgeons, EMDM, Vice Director of General Surgery-Trauma Team, ASST GOM Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - S. Gupta
- Fellow of the American College of Surgeons, R Adams Cowl y Shock Trauma Center, University of Maryland, Baltimore, MD, United States
| | - T. Scalea
- Fellow of the American College of Surgeons, The Honorable Francis X. Kelly Distinguished Professor of Trauma Surgery.Physician-in-Chief, R Adams Cowley Shock Trauma Center, System Chief for Critical Care Services, University of Maryland Medical System, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
53
|
Nishiyama A, Kitada K, Suzuki M. Blood pressure adaptation in vertebrates: Comparative biology. Kidney Int 2022; 102:242-247. [PMID: 35671910 DOI: 10.1016/j.kint.2022.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/18/2022] [Accepted: 03/30/2022] [Indexed: 11/26/2022]
Abstract
With evolution from water to land, the osmotic regulation of body fluids and cardiovascular systems of vertebrates evolved to cope with dryness and gravity. While aquatic vertebrates can use buoyancy to compensate for the effects of gravity, terrestrial vertebrates cannot, and must circulate blood throughout their body - a necessity that likely led to the development of strong hearts and high blood pressure. These changes may be supported by anatomical evolution of the cardiovascular system and by functional evolution, with alterations in hormonal systems. Thus, during the evolution of terrestrial animals, increased performance of body functions to endure harsher environments was required, necessitating increased blood pressure. In an age of overeating and insufficient exercise, modern man does not fully utilize the high levels of physical functions acquired through evolution. Drastic changes in our living environment cause hypertension, the pathogenesis of which remains unknown. To survive in new environments, as might be expected in outer space or underwater, an understanding is required of how changes in blood pressure have occurred that enabled adaptation through evolution in vertebrates.
Collapse
Affiliation(s)
- Akira Nishiyama
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan.
| | - Kento Kitada
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Miwa Suzuki
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| |
Collapse
|
54
|
Silvani G, Bradbury P, Basirun C, Mehner C, Zalli D, Poole K, Chou J. Testing 3D printed biological platform for advancing simulated microgravity and space mechanobiology research. NPJ Microgravity 2022; 8:19. [PMID: 35662260 PMCID: PMC9166742 DOI: 10.1038/s41526-022-00207-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 05/13/2022] [Indexed: 12/02/2022] Open
Abstract
The advancement of microgravity simulators is helping many researchers better understanding the impact of the mechanically unloaded space environment on cellular function and disfunction. However, performing microgravity experiments on Earth, using simulators such as the Random Positioning Machine, introduces some unique practical challenges, including air bubble formation and leakage of growth medium from tissue culture flask and plates, all of which limit research progress. Here, we developed an easy-to-use hybrid biological platform designed with the precision of 3D printing technologies combined with PDMS microfluidic fabrication processes to facilitate reliable and reproducible microgravity cellular experiments. The system has been characterized for applications in the contest of brain cancer research by exposing glioblastoma and endothelial cells to 24 h of simulated microgravity condition to investigate the triggered mechanosensing pathways involved in cellular adaptation to the new environment. The platform demonstrated compatibility with different biological assays, i.e., proliferation, viability, morphology, protein expression and imaging of molecular structures, showing advantages over the conventional usage of culture flask. Our results indicated that both cell types are susceptible when the gravitational vector is disrupted, confirming the impact that microgravity has on both cancer and healthy cells functionality. In particular, we observed deactivation of Yap-1 molecule in glioblastoma cells and the remodeling of VE-Cadherin junctional protein in endothelial cells. The study provides support for the application of the proposed biological platform for advancing space mechanobiology research, also highlighting perspectives and strategies for developing next generation of brain cancer molecular therapies, including targeted drug delivery strategies.
Collapse
Affiliation(s)
- Giulia Silvani
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia
| | - Peta Bradbury
- Institut Curie, Paris Sciences et Lettres Research University, Mechanics and Genetics of Embryonic and Tumoral Development Group, Paris, France
| | - Carin Basirun
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia
| | - Christine Mehner
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Jacksonville, FL, USA
| | - Detina Zalli
- Institute of Continuing Education, University of Cambridge, Camridge, UK
| | - Kate Poole
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, Faculty of Medicine & Health, Sydney, NSW, Australia
| | - Joshua Chou
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia.
| |
Collapse
|
55
|
Effects of Titanium Dioxide Nanoparticles on Cell Growth and Migration of A549 Cells under Simulated Microgravity. NANOMATERIALS 2022; 12:nano12111879. [PMID: 35683734 PMCID: PMC9182076 DOI: 10.3390/nano12111879] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 01/27/2023]
Abstract
With the increasing application of nanomaterials in aerospace technology, the long-term space exposure to nanomaterials especially in the space full of radiation coupled with microgravity condition has aroused great health concerns of the astronauts. However, few studies have been conducted to assess these effects, which are crucial for seeking the possible intervention strategy. Herein, using a random positioning machine (RPM) to simulate microgravity, we investigated the behaviors of cells under simulated microgravity and also evaluated the possible toxicity of titanium dioxide nanoparticles (TiO2 NPs), a multifunctional nanomaterial with potential application in aerospace. Pulmonary epithelial cells A549 were exposed to normal gravity (1 g) and simulated gravity (~10−3 g), respectively. The results showed that simulated microgravity had no significant effect on the viability of A549 cells as compared with normal gravity within 48 h. The effects of TiO2 NPs exposure on cell viability and apoptosis were marginal with only a slightly decrease in cell viability and a subtle increase in apoptosis rate observed at a high concentration of TiO2 NPs (100 μg/mL). However, it was observed that the exposure to simulated microgravity could obviously reduce A549 cell migration compared with normal gravity. The disruption of F-actin network and the deactivation of FAK (Tyr397) might be responsible for the impaired mobility of simulated microgravity-exposed A549 cells. TiO2 NPs exposure inhibited cell migration under two different gravity conditions, but to different degrees, with a milder inhibition under simulated microgravity. Meanwhile, it was found that A549 cells internalized more TiO2 NPs under normal gravity than simulated microgravity, which may account for the lower cytotoxicity and the lighter inhibition of cell migration induced by the same exposure concentration of TiO2 NPs under simulated microgravity at least partially. Our study has provided some tentative information on the effects of TiO2 NPs exposure on cell behaviors under simulated microgravity.
Collapse
|
56
|
Huff JL, Plante I, Blattnig SR, Norman RB, Little MP, Khera A, Simonsen LC, Patel ZS. Cardiovascular Disease Risk Modeling for Astronauts: Making the Leap From Earth to Space. Front Cardiovasc Med 2022; 9:873597. [PMID: 35665268 PMCID: PMC9161032 DOI: 10.3389/fcvm.2022.873597] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/26/2022] [Indexed: 11/24/2022] Open
Abstract
NASA has recently completed several long-duration missions to the International Space Station and is solidifying plans to return to the Moon, with an eye toward Mars and beyond. As NASA pushes the boundaries of human space exploration, the hazards of spaceflight, including space radiation, levy an increasing burden on astronaut health and performance. The cardiovascular system may be especially vulnerable due to the combined impacts of space radiation exposure, lack of gravity, and other spaceflight hazards. On Earth, the risk for cardiovascular disease (CVD) following moderate to high radiation doses is well-established from clinical, environmental, and occupational exposures (largely from gamma- and x-rays). Less is known about CVD risks associated with high-energy charged ions found in space and increasingly used in radiotherapy applications on Earth, making this a critical area of investigation for occupational radiation protection. Assessing CVD risk is complicated by its multifactorial nature, where an individual's risk is strongly influenced by factors such as family history, blood pressure, and lipid profiles. These known risk factors provide the basis for development of a variety of clinical risk prediction models (CPMs) that inform the likelihood of medical outcomes over a defined period. These tools improve clinical decision-making, personalize care, and support primary prevention of CVD. They may also be useful for individualizing risk estimates for CVD following radiation exposure both in the clinic and in space. In this review, we summarize unique aspects of radiation risk assessment for astronauts, and we evaluate the most widely used CVD CPMs for their use in NASA radiation risk assessment applications. We describe a comprehensive dual-use risk assessment framework that supports both clinical care and operational management of space radiation health risks using quantitative metrics. This approach is a first step in using personalized medicine for radiation risk assessment to support safe and productive spaceflight and long-term quality of life for NASA astronauts.
Collapse
Affiliation(s)
- Janice L. Huff
- National Aeronautics and Space Administration, Langley Research Center, Hampton, VA, United States
- *Correspondence: Janice L. Huff
| | - Ianik Plante
- KBR, Houston, TX, United States
- National Aeronautics and Space Administration, Johnson Space Center, Houston, TX, United States
| | - Steve R. Blattnig
- National Aeronautics and Space Administration, Langley Research Center, Hampton, VA, United States
| | - Ryan B. Norman
- National Aeronautics and Space Administration, Langley Research Center, Hampton, VA, United States
| | - Mark P. Little
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services (DHHS), Radiation Epidemiology Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Amit Khera
- Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Lisa C. Simonsen
- National Aeronautics and Space Administration, NASA Headquarters, Washington, DC, United States
| | - Zarana S. Patel
- KBR, Houston, TX, United States
- National Aeronautics and Space Administration, Johnson Space Center, Houston, TX, United States
| |
Collapse
|
57
|
Jordan J, Limper U, Tank J. Cardiovascular autonomic nervous system responses and orthostatic intolerance in astronauts and their relevance in daily medicine. Neurol Sci 2022; 43:3039-3051. [PMID: 35194757 PMCID: PMC9018660 DOI: 10.1007/s10072-022-05963-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/17/2022] [Indexed: 11/12/2022]
Abstract
Background The harsh environmental conditions during space travel, particularly weightlessness, impose a major burden on the human body including the cardiovascular system. Given its importance in adjusting the cardiovascular system to environmental challenges, the autonomic nervous system has been in the focus of scientists and clinicians involved in human space flight. This review provides an overview on human autonomic research under real and simulated space conditions with a focus on orthostatic intolerance. Methods The authors conducted a targeted literature search using Pubmed. Results Overall, 120 articles were identified and included in the review. Conclusions Postflight orthostatic intolerance is commonly observed in astronauts and could pose major risks when landing on another celestial body. The phenomenon likely results from changes in volume status and adaptation of the autonomic nervous system to weightlessness. Over the years, various non-pharmacological and pharmacological countermeasures have been investigated. In addition to enabling safe human space flight, this research may have implications for patients with disorders affecting cardiovascular autonomic control on Earth.
Collapse
Affiliation(s)
- Jens Jordan
- Institute of Aerospace Medicine, German Aerospace Center DLR, Linder Hoehe, 51147, Cologne, Germany. .,Aerospace Medicine, Medical Faculty, University of Cologne, Cologne, Germany.
| | - Ulrich Limper
- Institute of Aerospace Medicine, German Aerospace Center DLR, Linder Hoehe, 51147, Cologne, Germany.,Department of Anesthesiology and Intensive Care Medicine, Merheim Medical Center, Hospitals of Cologne, University of Witten/Herdecke, Cologne, Germany
| | - Jens Tank
- Institute of Aerospace Medicine, German Aerospace Center DLR, Linder Hoehe, 51147, Cologne, Germany
| |
Collapse
|
58
|
Locatelli L, Castiglioni S, Maier JAM. From Cultured Vascular Cells to Vessels: The Cellular and Molecular Basis of Vascular Dysfunction in Space. Front Bioeng Biotechnol 2022; 10:862059. [PMID: 35480977 PMCID: PMC9036997 DOI: 10.3389/fbioe.2022.862059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/18/2022] [Indexed: 11/23/2022] Open
Abstract
Life evolved on this planet under the pull of gravity, shielded from radiation by the magnetosphere and shaped by circadian rhythms due to Earth’s rotation on its axis. Once living beings leave such a protective environment, adaptive responses are activated to grant survival. In view of long manned mission out of Earth’s orbit, it is relevant to understand how humans adapt to space and if the responses activated might reveal detrimental in the long run. Here we review present knowledge about the effects on the vessels of various extraterrestrial factors on humans as well as in vivo and in vitro experimental models. It emerges that the vasculature activates complex adaptive responses finalized to supply oxygen and nutrients to all the tissues and to remove metabolic waste and carbon dioxide. Most studies point to oxidative stress and mitochondrial dysfunction as mediators of vascular alterations in space. Unraveling the cellular and molecular mechanisms involved in these adaptive processes might offer hints to design proper and personalized countermeasures to predict a safe future in space.
Collapse
Affiliation(s)
- Laura Locatelli
- Department of Biomedical and Clinical Sciences L. Sacco, Università di Milano, Milano, Italy
| | - Sara Castiglioni
- Department of Biomedical and Clinical Sciences L. Sacco, Università di Milano, Milano, Italy
| | - Jeanette A M Maier
- Department of Biomedical and Clinical Sciences L. Sacco, Università di Milano, Milano, Italy.,Interdisciplinary Centre for Nanostructured Materials and Interfaces (CIMaINa), Università di Milano, Milan, Italy
| |
Collapse
|
59
|
Bishawi M, Lee FH, Abraham DM, Glass C, Blocker SJ, Cox DJ, Brown ZD, Rockman HA, Mao L, Slaba TC, Dewhirst MW, Truskey GA, Bowles DE. Late onset cardiovascular dysfunction in adult mice resulting from galactic cosmic ray exposure. iScience 2022; 25:104086. [PMID: 35378858 PMCID: PMC8976132 DOI: 10.1016/j.isci.2022.104086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/16/2022] [Accepted: 03/11/2022] [Indexed: 12/27/2022] Open
Abstract
The complex and inaccessible space radiation environment poses an unresolved risk to astronaut cardiovascular health during long-term space exploration missions. To model this risk, healthy male c57BL/6 mice aged six months (corresponding to an astronaut of 34 years) were exposed to simplified galactic cosmic ray (GCR5-ion; 5-ion sim) irradiation at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratories (BNL). Multi-modal cardiovascular functional assessments performed longitudinally and terminally revealed significant impairment in cardiac function in mice exposed to GCR5-ion compared to unirradiated controls, gamma irradiation, or single mono-energetic ions (56Fe or 16O). GCR5-ion-treated mice exhibited increased arterial elastance likely mediated by disruption of elastin fibers. This study suggests that a single exposure to GCR5-ion is associated with deterioration in cardiac structure and function that becomes apparent long after exposure, likely associated with increased morbidity and mortality. These findings represent important health considerations when preparing for successful space exploration.
Collapse
Affiliation(s)
- Muath Bishawi
- Department of Surgery, Division of Surgical Sciences, Duke University Medical Center, MRSB1 Rm. 421b, 203 Research Drive, Durham, NC 27710, USA
- Department of Biomedical Engineering, Pratt School of Engineering, Durham, NC 27708, USA
| | - Franklin H. Lee
- Department of Surgery, Division of Surgical Sciences, Duke University Medical Center, MRSB1 Rm. 421b, 203 Research Drive, Durham, NC 27710, USA
| | - Dennis M. Abraham
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Carolyn Glass
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Daniel J. Cox
- Department of Surgery, Division of Surgical Sciences, Duke University Medical Center, MRSB1 Rm. 421b, 203 Research Drive, Durham, NC 27710, USA
| | - Zachary D. Brown
- Department of Surgery, Division of Surgical Sciences, Duke University Medical Center, MRSB1 Rm. 421b, 203 Research Drive, Durham, NC 27710, USA
| | - Howard A. Rockman
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Lan Mao
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Tony C. Slaba
- NASA Langley Research Center, Hampton, VA 23681, USA
| | - Mark W. Dewhirst
- Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - George A. Truskey
- Department of Biomedical Engineering, Pratt School of Engineering, Durham, NC 27708, USA
| | - Dawn E. Bowles
- Department of Surgery, Division of Surgical Sciences, Duke University Medical Center, MRSB1 Rm. 421b, 203 Research Drive, Durham, NC 27710, USA
| |
Collapse
|
60
|
Kurazumi T, Ogawa Y, Takko C, Kato T, Konishi T, Iwasaki KI. Short-Term Volume Loading Effects on Estimated Intracranial Pressure in Human Volunteers. Aerosp Med Hum Perform 2022; 93:347-353. [PMID: 35354513 DOI: 10.3357/amhp.6004.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND: Short-term fluid loading is used as part of post-spaceflight medical procedures and clinical treatment in hospitals. Hypervolemia with hemodilution induced by rapid fluid infusion reportedly impaired dynamic cerebral autoregulation. However, the effects on intracranial pressure (ICP) remain unknown. Therefore, we estimated ICP noninvasively (nICP) to examine whether rapid fluid infusion would raise ICP.METHODS: Twelve healthy male volunteers underwent two discrete normal saline (NS) infusions (15 and 30 ml · kg-1 stages, NS-15 and NS-30, respectively) at a rate of 100 ml · min-1. The cerebral blood flow (CBF) velocity (CBFv) waveform from the middle cerebral artery obtained by transcranial Doppler ultrasonography was recorded, as was the arterial blood pressure (ABP) waveform at the radial artery obtained by tonometry. We then used these waveforms to calculate nICP, cerebral artery compliance, and the pulsatility index (PI) in an intracranial hydraulic model.RESULTS: nICP increased significantly in both infusion stages from preinfusion (preinfusion: 7.6 ± 3.4 mmHg; NS-15: 10.9 ± 3.3 mmHg; NS-30: 11.7 ± 4.2 mmHg). No significant changes were observed in cerebral artery compliance or PI. Although ABP did not change in any stage, CBFv increased significantly (preinfusion: 67 ± 10 cm · s-1; NS-15: 72 ± 12 cm · s-1; NS-30: 73 ± 12 cm · s-1).DISCUSSION: Hypervolemia with hemodilution induced by rapid fluid infusion caused increases in nICP and CBFv. No changes were observed in cerebral artery compliance or PI related to cerebrovascular impedance. These findings suggest that rapid fluid infusion may raise ICP with increased CBF.Kurazumi T, Ogawa Y, Takko C, Kato T, Konishi T, Iwasaki K. Short-term volume loading effects on estimated intracranial pressure in human volunteers. Aerosp Med Hum Perform. 2022; 93(4):347-353.
Collapse
|
61
|
Tesei D, Jewczynko A, Lynch AM, Urbaniak C. Understanding the Complexities and Changes of the Astronaut Microbiome for Successful Long-Duration Space Missions. Life (Basel) 2022; 12:life12040495. [PMID: 35454986 PMCID: PMC9031868 DOI: 10.3390/life12040495] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 12/12/2022] Open
Abstract
During space missions, astronauts are faced with a variety of challenges that are unique to spaceflight and that have been known to cause physiological changes in humans over a period of time. Several of these changes occur at the microbiome level, a complex ensemble of microbial communities residing in various anatomic sites of the human body, with a pivotal role in regulating the health and behavior of the host. The microbiome is essential for day-to-day physiological activities, and alterations in microbiome composition and function have been linked to various human diseases. For these reasons, understanding the impact of spaceflight and space conditions on the microbiome of astronauts is important to assess significant health risks that can emerge during long-term missions and to develop countermeasures. Here, we review various conditions that are caused by long-term space exploration and discuss the role of the microbiome in promoting or ameliorating these conditions, as well as space-related factors that impact microbiome composition. The topics explored pertain to microgravity, radiation, immunity, bone health, cognitive function, gender differences and pharmacomicrobiomics. Connections are made between the trifecta of spaceflight, the host and the microbiome, and the significance of these interactions for successful long-term space missions.
Collapse
Affiliation(s)
- Donatella Tesei
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| | - Anna Jewczynko
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Anne M. Lynch
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Camilla Urbaniak
- ZIN Technologies Inc., Middleburg Heights, OH 44130, USA
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
- Correspondence:
| |
Collapse
|
62
|
Abstract
The direct (eg, radiation, microgravity) and indirect (eg, lifestyle perturbations) effects of spaceflight extend across multiple systems resulting in whole-organism cardiovascular deconditioning. For over 50 years, National Aeronautics and Space Administration has continually enhanced a countermeasures program designed to characterize and offset the adverse cardiovascular consequences of spaceflight. In this review, we provide a historical overview of research evaluating the effects of spaceflight on cardiovascular health in astronauts and outline mechanisms underpinning spaceflight-related cardiovascular alterations. We also discuss how spaceflight could be leveraged for aging, industry, and model systems such as human induced pluripotent stem cell-derived cardiomyocytes, organoid, and organ-on-a-chip technologies. Finally, we outline the increasing opportunities for scientists and clinicians to engage in cardiovascular research in space and on Earth.
Collapse
Affiliation(s)
- Jessica M Scott
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY (J.M.S.).,Weill Cornell Medical College, New York, NY (J.M.S.)
| | | | - Lianne Dolan
- Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada (L.D.)
| | | |
Collapse
|
63
|
Jirak P, Mirna M, Rezar R, Motloch LJ, Lichtenauer M, Jordan J, Binneboessel S, Tank J, Limper U, Jung C. How spaceflight challenges human cardiovascular health. Eur J Prev Cardiol 2022; 29:1399-1411. [PMID: 35148376 DOI: 10.1093/eurjpc/zwac029] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/08/2022] [Accepted: 02/06/2022] [Indexed: 11/14/2022]
Abstract
The harsh environmental conditions in space, particularly weightlessness and radiation exposure, can negatively affect cardiovascular function and structure. In the future, preventive cardiology will be crucial in enabling safe space travel. Indeed, future space missions destined to the Moon and from there to Mars will create new challenges to cardiovascular health while limiting medical management. Moreover, commercial spaceflight evolves rapidly such that older persons with cardiovascular risk factors will be exposed to space conditions. This review provides an overview on studies conducted in space and in terrestrial models, particularly head-down bedrest studies. These studies showed that weightlessness elicits a fluid shift towards the head, which likely predisposes to the spaceflight-associated neuro-ocular syndrome, neck vein thrombosis, and orthostatic intolerance after return to Earth. Moreover, cardiovascular unloading produces cardiopulmonary deconditioning which may be associated with cardiac atrophy. In addition to limiting physical performance, the mechanism further worsens orthostatic tolerance after return to Earth. Finally, space conditions may directly affect vascular health, however, the clinical relevance of these findings in terms of morbidity and mortality is unknown. Targeted preventive measures, which are referred to as countermeasures in aerospace medicine, and technologies to identify vascular risks early on will be required to maintain cardiovascular performance and health during future space missions.
Collapse
Affiliation(s)
- Peter Jirak
- Clinic II for Internal Medicine, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Moritz Mirna
- Clinic II for Internal Medicine, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Richard Rezar
- Clinic II for Internal Medicine, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Lukas J Motloch
- Clinic II for Internal Medicine, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Michael Lichtenauer
- Clinic II for Internal Medicine, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Jens Jordan
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany.,Medical Faculty, University of Cologne, Germany
| | - Stephan Binneboessel
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Duesseldorf, Germany
| | - Jens Tank
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Ulrich Limper
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany.,Department of Anaesthesiology and Critical Care Medicine, Merheim Medical Center, Witten/Herdecke University, Cologne, Germany
| | - Christian Jung
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Duesseldorf, Germany
| |
Collapse
|
64
|
Dose Limits and Countermeasures for Mitigating Radiation Risk in Moon and Mars Exploration. PHYSICS 2022. [DOI: 10.3390/physics4010013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
After decades of research on low-Earth orbit, national space agencies and private entrepreneurs are investing in exploration of the Solar system. The main health risk for human space exploration is late toxicity caused by exposure to cosmic rays. On Earth, the exposure of radiation workers is regulated by dose limits and mitigated by shielding and reducing exposure times. For space travel, different international space agencies adopt different limits, recently modified as reviewed in this paper. Shielding and reduced transit time are currently the only practical solutions to maintain acceptable risks in deep space missions.
Collapse
|
65
|
Zhao Y, Zhong G, Du R, Zhao D, Li J, Li Y, Xing W, Jin X, Zhang W, Sun W, Liu C, Liu Z, Yuan X, Kan G, Han X, Li Q, Chang YZ, Li Y, Ling S. Ckip-1 3′-UTR Attenuates Simulated Microgravity-Induced Cardiac Atrophy. Front Cell Dev Biol 2022; 9:796902. [PMID: 35186951 PMCID: PMC8847737 DOI: 10.3389/fcell.2021.796902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/15/2021] [Indexed: 12/24/2022] Open
Abstract
Microgravity prominently affected cardiovascular health, which was the gravity-dependent physical factor. Deep space exploration had been increasing in frequency, but heart function was susceptible to conspicuous damage and cardiac mass declined in weightlessness. Understanding of the etiology of cardiac atrophy exposed to microgravity currently remains limited. The 3′-untranslated region (UTR) of casein kinase-2 interacting protein-1 (Ckip-1) was a pivotal mediator in pressure overload-induced cardiac remodeling. However, the role of Ckip-1 3′-UTR in the heart during microgravity was unknown. We analyzed Ckip-1 mRNA 3′-UTR and coding sequence (CDS) expression levels in ground-based analogs such as mice hindlimb unloading (HU) and rhesus monkey head-down bed rest model. Ckip-1 3′-UTR had transcribed levels in the opposite change trend with cognate CDS expression in the hearts. We then subjected wild-type (WT) mice and cardiac-specific Ckip-1 3′-UTR-overexpressing mice to hindlimb unloading for 28 days. Our results uncovered that Ckip-1 3′-UTR remarkably attenuated cardiac dysfunction and mass loss in simulated microgravity environments. Mechanistically, Ckip-1 3′-UTR inhibited lipid accumulation and elevated fatty acid oxidation-related gene expression in the hearts through targeting calcium/calmodulin-dependent kinase 2 (CaMKK2) and activation of the AMPK-PPARα-CPT1b signaling pathway. These findings demonstrated Ckip-1 3′-UTR was an important regulator in atrophic heart growth after simulated microgravity.
Collapse
Affiliation(s)
- Yinglong Zhao
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Guohui Zhong
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
- School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Ruikai Du
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Dingsheng Zhao
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Jianwei Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yuheng Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
- School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Wenjuan Xing
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
- School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Xiaoyan Jin
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Wenjuan Zhang
- State Key Laboratory of Proteomics, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Weijia Sun
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Caizhi Liu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Zizhong Liu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xinxin Yuan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Guanghan Kan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xuan Han
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Qi Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yan-Zhong Chang
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, China
- *Correspondence: Yan-Zhong Chang, ; Yingxian Li, ; Shukuan Ling,
| | - Yingxian Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
- *Correspondence: Yan-Zhong Chang, ; Yingxian Li, ; Shukuan Ling,
| | - Shukuan Ling
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
- *Correspondence: Yan-Zhong Chang, ; Yingxian Li, ; Shukuan Ling,
| |
Collapse
|
66
|
Randomized Comparison of Two New Methods for Chest Compressions during CPR in Microgravity-A Manikin Study. J Clin Med 2022; 11:jcm11030646. [PMID: 35160097 PMCID: PMC8836939 DOI: 10.3390/jcm11030646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/17/2022] Open
Abstract
Background: Although there have been no reported cardiac arrests in space to date, the risk of severe medical events occurring during long-duration spaceflights is a major concern. These critical events can endanger both the crew as well as the mission and include cardiac arrest, which would require cardiopulmonary resuscitation (CPR). Thus far, five methods to perform CPR in microgravity have been proposed. However, each method seems insufficient to some extent and not applicable at all locations in a spacecraft. The aim of the present study is to describe and gather data for two new CPR methods in microgravity. Materials and Methods: A randomized, controlled trial (RCT) compared two new methods for CPR in a free-floating underwater setting. Paramedics performed chest compressions on a manikin (Ambu Man, Ambu, Germany) using two new methods for a free-floating position in a parallel-group design. The first method (Schmitz–Hinkelbein method) is similar to conventional CPR on earth, with the patient in a supine position lying on the operator’s knees for stabilization. The second method (Cologne method) is similar to the first, but chest compressions are conducted with one elbow while the other hand stabilizes the head. The main outcome parameters included the total number of chest compressions (n) during 1 min of CPR (compression rate), the rate of correct chest compressions (%), and no-flow time (s). The study was registered on clinicaltrials.gov (NCT04354883). Results: Fifteen volunteers (age 31.0 ± 8.8 years, height 180.3 ± 7.5 cm, and weight 84.1 ± 13.2 kg) participated in this study. Compared to the Cologne method, the Schmitz–Hinkelbein method showed superiority in compression rates (100.5 ± 14.4 compressions/min), correct compression depth (65 ± 23%), and overall high rates of correct thoracic release after compression (66% high, 20% moderate, and 13% low). The Cologne method showed correct depth rates (28 ± 27%) but was associated with a lower mean compression rate (73.9 ± 25.5/min) and with lower rates of correct thoracic release (20% high, 7% moderate, and 73% low). Conclusions: Both methods are feasible without any equipment and could enable immediate CPR during cardiac arrest in microgravity, even in a single-helper scenario. The Schmitz–Hinkelbein method appears superior and could allow the delivery of high-quality CPR immediately after cardiac arrest with sufficient quality.
Collapse
|
67
|
Giri J, Moll G. MSCs in Space: Mesenchymal Stromal Cell Therapeutics as Enabling Technology for Long-Distance Manned Space Travel. CURRENT STEM CELL REPORTS 2022. [DOI: 10.1007/s40778-022-00207-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Abstract
Purpose of Review
Advancements in space travel, such as space tourism into Earth’s orbit, but also the prospect of long-distance manned space travel to other celestial bodies such as Mars, has generated a clinical need for new enabling technologies to support the long-term well-being of humans during their passage. Here, we will give an outline on the clinical need and practical considerations to MSC therapy as enabling technology for long-distance manned space travel.
Recent Findings
Long-distance space travel entails a threat to the health of astronaut crews due to the low gravity environment and exposure to toxic radiation in space. Multi-organ-system degenerative changes, such as decline in musculoskeletal, hematopoietic, immune system function, and in particular risk of genetic mutations and cancer, are major health concerns. Physical training, pharmacological agents, and protective shielding are among the currently available methods to counteract harmful effects. However, a potential lack of adequate shielding, side effects of pharmacological compounds, and limitations to physical training suggest a need for new countermeasures, to protect space travellers to the best extent. Here, the prospect of cell-based therapy, e.g. mesenchymal stromal/stem cells (MSCs), has been subject to intense research, due to their potent regenerative and immunomodulatory properties. Off-the-shelf MSC therapeutics can be easily maintained in space due to the ambient extremely low-temperature environment, and cryorecovery and even culturing of MSCs under microgravity were shown to be feasible.
Summary
Designing new therapy against harmful radiation is urgent need in space travel. Here we will discuss aspects related to clinical MSC administration to optimize their therapeutic benefit. MSC-based therapy may aid in evolving protective countermeasures for space travellers.
Collapse
|
68
|
Kim H, Shin Y, Kim DH. Mechanobiological Implications of Cancer Progression in Space. Front Cell Dev Biol 2021; 9:740009. [PMID: 34957091 PMCID: PMC8692837 DOI: 10.3389/fcell.2021.740009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022] Open
Abstract
The human body is normally adapted to maintain homeostasis in a terrestrial environment. The novel conditions of a space environment introduce challenges that changes the cellular response to its surroundings. Such an alteration causes physical changes in the extracellular microenvironment, inducing the secretion of cytokines such as interleukin-6 (IL-6) and tumor growth factor-β (TGF-β) from cancer cells to enhance cancer malignancy. Cancer is one of the most prominent cell types to be affected by mechanical cues via active interaction with the tumor microenvironment. However, the mechanism by which cancer cells mechanotransduce in the space environment, as well as the influence of this process on human health, have not been fully elucidated. Due to the growing interest in space biology, this article reviews cancer cell responses to the representative conditions altered in space: microgravity, decompression, and irradiation. Interestingly, cytokine and gene expression that assist in tumor survival, invasive phenotypic transformation, and cancer cell proliferation are upregulated when exposed to both simulated and actual space conditions. The necessity of further research on space mechanobiology such as simulating more complex in vivo experiments or finding other mechanical cues that may be encountered during spaceflight are emphasized.
Collapse
Affiliation(s)
- Hyondeog Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea
| | - Yun Shin
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea.,Department of Integrative Energy Engineering, College of Engineering, Korea University, Seoul, South Korea
| |
Collapse
|
69
|
Baran R, Marchal S, Garcia Campos S, Rehnberg E, Tabury K, Baselet B, Wehland M, Grimm D, Baatout S. The Cardiovascular System in Space: Focus on In Vivo and In Vitro Studies. Biomedicines 2021; 10:59. [PMID: 35052739 PMCID: PMC8773383 DOI: 10.3390/biomedicines10010059] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/24/2021] [Accepted: 12/25/2021] [Indexed: 12/13/2022] Open
Abstract
On Earth, humans are subjected to a gravitational force that has been an important determinant in human evolution and function. During spaceflight, astronauts are subjected to several hazards including a prolonged state of microgravity that induces a myriad of physiological adaptations leading to orthostatic intolerance. This review summarises all known cardiovascular diseases related to human spaceflight and focusses on the cardiovascular changes related to human spaceflight (in vivo) as well as cellular and molecular changes (in vitro). Upon entering microgravity, cephalad fluid shift occurs and increases the stroke volume (35-46%) and cardiac output (18-41%). Despite this increase, astronauts enter a state of hypovolemia (10-15% decrease in blood volume). The absence of orthostatic pressure and a decrease in arterial pressures reduces the workload of the heart and is believed to be the underlying mechanism for the development of cardiac atrophy in space. Cellular and molecular changes include altered cell shape and endothelial dysfunction through suppressed cellular proliferation as well as increased cell apoptosis and oxidative stress. Human spaceflight is associated with several cardiovascular risk factors. Through the use of microgravity platforms, multiple physiological changes can be studied and stimulate the development of appropriate tools and countermeasures for future human spaceflight missions in low Earth orbit and beyond.
Collapse
Affiliation(s)
- Ronni Baran
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000 Aarhus, Denmark; (R.B.); (D.G.)
| | - Shannon Marchal
- Department of Astronomy, Catholic University of Leuven, 3000 Leuven, Belgium;
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium; (E.R.); (K.T.); (B.B.)
| | - Sebastian Garcia Campos
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; (S.G.C.); (M.W.)
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Emil Rehnberg
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium; (E.R.); (K.T.); (B.B.)
- Department of Molecular Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Kevin Tabury
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium; (E.R.); (K.T.); (B.B.)
- Department of Biomedical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium; (E.R.); (K.T.); (B.B.)
| | - Markus Wehland
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; (S.G.C.); (M.W.)
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Daniela Grimm
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000 Aarhus, Denmark; (R.B.); (D.G.)
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; (S.G.C.); (M.W.)
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Sarah Baatout
- Department of Astronomy, Catholic University of Leuven, 3000 Leuven, Belgium;
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium; (E.R.); (K.T.); (B.B.)
- Department of Molecular Biotechnology, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
70
|
Barravecchia I, De Cesari C, Forcato M, Scebba F, Pyankova OV, Bridger JM, Foster HA, Signore G, Borghini A, Andreassi M, Andreazzoli M, Bicciato S, Pè ME, Angeloni D. Microgravity and space radiation inhibit autophagy in human capillary endothelial cells, through either opposite or synergistic effects on specific molecular pathways. Cell Mol Life Sci 2021; 79:28. [PMID: 34936031 PMCID: PMC11072227 DOI: 10.1007/s00018-021-04025-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/12/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022]
Abstract
Microgravity and space radiation (SR) are two highly influential factors affecting humans in space flight (SF). Many health problems reported by astronauts derive from endothelial dysfunction and impaired homeostasis. Here, we describe the adaptive response of human, capillary endothelial cells to SF. Reference samples on the ground and at 1g onboard permitted discrimination between the contribution of microgravity and SR within the combined responses to SF. Cell softening and reduced motility occurred in SF cells, with a loss of actin stress fibers and a broader distribution of microtubules and intermediate filaments within the cytoplasm than in control cells. Furthermore, in space the number of primary cilia per cell increased and DNA repair mechanisms were found to be activated. Transcriptomics revealed the opposing effects of microgravity from SR for specific molecular pathways: SR, unlike microgravity, stimulated pathways for endothelial activation, such as hypoxia and inflammation, DNA repair and apoptosis, inhibiting autophagic flux and promoting an aged-like phenotype. Conversely, microgravity, unlike SR, activated pathways for metabolism and a pro-proliferative phenotype. Therefore, we suggest microgravity and SR should be considered separately to tailor effective countermeasures to protect astronauts' health.
Collapse
Affiliation(s)
- Ivana Barravecchia
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | - Chiara De Cesari
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
- Department of Biology, University of Pisa, 56123, Pisa, Italy
| | - Mattia Forcato
- Center for Genome Research, Department of Life Science, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Francesca Scebba
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
| | - Olga V Pyankova
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
| | - Joanna M Bridger
- Laboratory of Nuclear and Genomic Health, Centre of Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Helen A Foster
- Department of Biological and Environmental Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | | | - Andrea Borghini
- Institute of Clinical Physiology, National Research Council, 56124, Pisa, Italy
| | | | | | - Silvio Bicciato
- Center for Genome Research, Department of Life Science, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Mario Enrico Pè
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
| | - Debora Angeloni
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy.
| |
Collapse
|
71
|
Hart DA. Learning From Human Responses to Deconditioning Environments: Improved Understanding of the "Use It or Lose It" Principle. Front Sports Act Living 2021; 3:685845. [PMID: 34927066 PMCID: PMC8677937 DOI: 10.3389/fspor.2021.685845] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 10/28/2021] [Indexed: 01/25/2023] Open
Abstract
Physical activity, mobility or patterned mobility (i.e., exercise) is intrinsic to the functioning of Homo sapiens, and required for maintenance of health. Thus, systems such as the musculoskeletal and cardiovascular systems appear to require constant reinforcement or conditioning to maintain integrity. Loss of conditioning or development of chronic deconditioning can have multiple consequences. The study of different types of deconditioning and their prevention or reversal can offer a number of clues to the regulation of these systems and point to how deconditioning poses risk for disease development and progression. From the study of deconditioning associated with spaceflight, a condition not predicted by evolution, prolonged bedrest, protracted sedentary behavior, as well as menopause and obesity and their consequences, provide a background to better understand human heterogeneity and how physical fitness may impact the risks for chronic conditions subsequent to the deconditioning. The effectiveness of optimized physical activity and exercise protocols likely depend on the nature of the deconditioning, the sex and genetics of the individual, whether one is addressing prevention of deconditioning-associated disease or disease-associated progression, and whether it is focused on acute or chronic deconditioning associated with different forms of deconditioning. While considerable research effort has gone into preventing deconditioning, the study of the process of deconditioning and its endpoints can provide clues to the regulation of the affected systems and their contributions to human heterogeneity that have been framed by the boundary conditions of Earth during evolution and the "use it or lose it" principle of regulation. Such information regarding heterogeneity that is elaborated by the study of deconditioning environments could enhance the effectiveness of individualized interventions to prevent deconditions or rescue those who have become deconditioned.
Collapse
Affiliation(s)
- David A Hart
- Bone and Joint Health Strategic Clinical Network, Alberta Health Services, Edmonton, AB, Canada.,Department of Surgery, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.,McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.,Department of Family Practice, Centre for Hip Health and Mobility, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
72
|
Parsons IT, Nicol ED, Holdsworth D, Guettler N, Rienks R, Davos CH, Halle M, Parati G. Cardiovascular risk in high-hazard occupations: the role of occupational cardiology. Eur J Prev Cardiol 2021; 29:702-713. [PMID: 34918040 DOI: 10.1093/eurjpc/zwab202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 12/20/2022]
Abstract
Work is beneficial for health, but many individuals develop cardiovascular disease (CVD) during their working lives. Occupational cardiology is an emerging field that combines traditional cardiology sub-specialisms with prevention and risk management unique to specific employment characteristics and conditions. In some occupational settings incapacitation through CVD has the potential to be catastrophic due to the nature of work and/or the working environment. These are often termed 'hazardous' or 'high-hazard' occupations. Consequently, many organizations that employ individuals in high-hazard roles undertake pre-employment medicals and periodic medical examinations to screen for CVD. The identification of CVD that exceeds predefined employer (or regulatory body) risk thresholds can result in occupational restriction, or disqualification, which may be temporary or permanent. This article will review the evidence related to occupational cardiology for several high-hazard occupations related to aviation and space, diving, high altitude, emergency workers, commercial transportation, and the military. The article will focus on environmental risk, screening, surveillance, and risk management for the prevention of events precipitated by CVD. Occupational cardiology is a challenging field that requires a broad understanding of general cardiology, environmental, and occupational medicine principles. There is a current lack of consensus and contemporary evidence which requires further research. Provision of evidence-based, but individualized, risk stratification and treatment plans is required from specialists that understand the complex interaction between work and the cardiovascular system. There is a current lack of consensus and contemporary evidence in occupational cardiology and further research is required.
Collapse
Affiliation(s)
- Iain T Parsons
- Academic Department of Military Medicine, Research and Clinical Innovation, Royal Centre for Defence Medicine, Birmingham, UK.,School of Cardiovascular Medicine and Sciences, King's College London, London, UK
| | - Edward D Nicol
- Academic Department of Military Medicine, Research and Clinical Innovation, Royal Centre for Defence Medicine, Birmingham, UK.,Faculty of Medicine, Imperial College, London, UK.,Department of Cardiology, Royal Brompton Hospital, London, UK
| | - David Holdsworth
- Academic Department of Military Medicine, Research and Clinical Innovation, Royal Centre for Defence Medicine, Birmingham, UK
| | - Norbert Guettler
- Department of Internal Medicine and Cardiology, German Air Force Centre of Aerospace Medicine, Fuerstenfeldbruck, Germany
| | - Rienk Rienks
- CardioExpert, Outpatient Clinic for Sports and Occupational Cardiology, Amsterdam, The Netherlands
| | - Constantinos H Davos
- Division of Cardiovascular Research, Cardiovascular Laboratory, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Martin Halle
- Department of Prevention and Sports Medicine, University Hospital Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Cardiovascular Research, DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Gianfranco Parati
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy.,Department of Cardiology, Istituto Auxologico Italiano, IRCCS, San Luca Hospital, Milan, Italy
| |
Collapse
|
73
|
Zuraini NZA, Sekar M, Wu YS, Gan SH, Bonam SR, Mat Rani NNI, Begum MY, Lum PT, Subramaniyan V, Fuloria NK, Fuloria S. Promising Nutritional Fruits Against Cardiovascular Diseases: An Overview of Experimental Evidence and Understanding Their Mechanisms of Action. Vasc Health Risk Manag 2021; 17:739-769. [PMID: 34858028 PMCID: PMC8631183 DOI: 10.2147/vhrm.s328096] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/06/2021] [Indexed: 12/22/2022] Open
Abstract
Cardiovascular diseases (CVDs) are one of the leading causes of morbidity and mortality in both developed and developing countries, affecting millions of individuals each year. Despite the fact that successful therapeutic drugs for the management and treatment of CVDs are available on the market, nutritional fruits appear to offer the greatest benefits to the heart and have been proved to alleviate CVDs. Experimental studies have also demonstrated that nutritional fruits have potential protective effects against CVDs. The aim of the review was to provide a comprehensive summary of scientific evidence on the effect of 10 of the most commonly available nutritional fruits reported against CVDs and describe the associated mechanisms of action. Relevant literatures were searched and collected from several scientific databases including PubMed, ScienceDirect, Google Scholar and Scopus. In the context of CVDs, 10 commonly consumed nutritious fruits including apple, avocado, grapes, mango, orange, kiwi, pomegranate, papaya, pineapple, and watermelon were analysed and addressed. The cardioprotective mechanisms of the 10 nutritional fruits were also compiled and highlighted. Overall, the present review found that the nutritious fruits and their constituents have significant benefits for the management and treatment of CVDs such as myocardial infarction, hypertension, peripheral artery disease, coronary artery disease, cardiomyopathies, dyslipidemias, ischemic stroke, aortic aneurysm, atherosclerosis, cardiac hypertrophy and heart failure, diabetic cardiovascular complications, drug-induced cardiotoxicity and cardiomyopathy. Among the 10 nutritional fruits, pomegranate and grapes have been well explored, and the mechanisms of action are well documented against CVDs. All of the nutritional fruits mentioned are edible and readily accessible on the market. Consuming these fruits, which may contain varying amounts of active constituents depending on the food source and season, the development of nutritious fruits-based health supplements would be more realistic for consistent CVD protection.
Collapse
Affiliation(s)
- Nur Zulaikha Azwa Zuraini
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, 30450, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, 30450, Malaysia
| | - Yuan Seng Wu
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Selangor, 47500, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor, 47500, Malaysia
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, 47500, Malaysia
| | - Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherché des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
| | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, 30450, Malaysia
| | - M Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University (KKU), Asir-Abha, 61421, Saudi Arabia
| | - Pei Teng Lum
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, 30450, Malaysia
| | | | - Neeraj Kumar Fuloria
- Faculty of Pharmacy & Centre of Excellence for Biomaterials Engineering, AIMST University, Kedah, 08100, Malaysia
| | - Shivkanya Fuloria
- Faculty of Pharmacy & Centre of Excellence for Biomaterials Engineering, AIMST University, Kedah, 08100, Malaysia
| |
Collapse
|
74
|
Zhong G, Zhao D, Li J, Liu Z, Pan J, Yuan X, Xing W, Zhao Y, Ling S, Li Y. WWP1 Deficiency Alleviates Cardiac Remodeling Induced by Simulated Microgravity. Front Cell Dev Biol 2021; 9:739944. [PMID: 34733849 PMCID: PMC8558417 DOI: 10.3389/fcell.2021.739944] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/22/2021] [Indexed: 11/15/2022] Open
Abstract
Cardiac muscle is extremely sensitive to changes in loading conditions; the microgravity during space flight can cause cardiac remodeling and function decline. At present, the mechanism of microgravity-induced cardiac remodeling remains to be revealed. WW domain-containing E3 ubiquitin protein ligase 1 (WWP1) is an important activator of pressure overload-induced cardiac remodeling by stabilizing disheveled segment polarity proteins 2 (DVL2) and activating the calcium-calmodulin-dependent protein kinase II (CaMKII)/histone deacetylase 4 (HDAC4)/myocyte-specific enhancer factor 2C (MEF2C) axis. However, the role of WWP1 in cardiac remodeling induced by microgravity is unknown. The purpose of this study was to determine whether WWP1 was also involved in the regulation of cardiac remodeling caused by microgravity. Firstly, we detected the expression of WWP1 and DVL2 in the heart from mice and monkeys after simulated microgravity using western blotting and immunohistochemistry. Secondly, WWP1 knockout (KO) and wild-type (WT) mice were subjected to tail suspension (TS) to simulate microgravity effect. We assessed the cardiac remodeling in morphology and function through a histological analysis and echocardiography. Finally, we detected the phosphorylation levels of CaMKII and HDAC4 in the hearts from WT and WWP1 KO mice after TS. The results revealed the increased expression of WWP1 and DVL2 in the hearts both from mice and monkeys after simulated microgravity. WWP1 deficiency alleviated simulated microgravity-induced cardiac atrophy and function decline. The histological analysis demonstrated WWP1 KO inhibited the decreases in the size of individual cardiomyocytes of mice after tail suspension. WWP1 KO can inhibit the activation of the DVL2/CaMKII/HDAC4 pathway in the hearts of mice induced by simulated microgravity. These results demonstrated WWP1 as a potential therapeutic target for cardiac remodeling and function decline induced by simulated microgravity.
Collapse
Affiliation(s)
- Guohui Zhong
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Dingsheng Zhao
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Jianwei Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Zifan Liu
- Department of Cardiovascular Medicine, Chinese PLA General Hospital & Chinese PLA Medical School, Beijing, China
| | - Junjie Pan
- Medical College of Soochow University, Soochow University, Suzhou, China
| | - Xinxin Yuan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Wenjuan Xing
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yinglong Zhao
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Shukuan Ling
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yingxian Li
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| |
Collapse
|
75
|
Basirun C, Ferlazzo ML, Howell NR, Liu GJ, Middleton RJ, Martinac B, Narayanan SA, Poole K, Gentile C, Chou J. Microgravity × Radiation: A Space Mechanobiology Approach Toward Cardiovascular Function and Disease. Front Cell Dev Biol 2021; 9:750775. [PMID: 34778261 PMCID: PMC8586646 DOI: 10.3389/fcell.2021.750775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, there has been an increasing interest in space exploration, supported by the accelerated technological advancements in the field. This has led to a new potential environment that humans could be exposed to in the very near future, and therefore an increasing request to evaluate the impact this may have on our body, including health risks associated with this endeavor. A critical component in regulating the human pathophysiology is represented by the cardiovascular system, which may be heavily affected in these extreme environments of microgravity and radiation. This mini review aims to identify the impact of microgravity and radiation on the cardiovascular system. Being able to understand the effect that comes with deep space explorations, including that of microgravity and space radiation, may also allow us to get a deeper understanding of the heart and ultimately our own basic physiological processes. This information may unlock new factors to consider with space exploration whilst simultaneously increasing our knowledge of the cardiovascular system and potentially associated diseases.
Collapse
Affiliation(s)
- Carin Basirun
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - Melanie L. Ferlazzo
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon Bérard, Lyon, France
| | - Nicholas R. Howell
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - Guo-Jun Liu
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
- Discipline of Medical Imaging and Radiation Sciences, Faculty of Medicine and Health, Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Ryan J. Middleton
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - Boris Martinac
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - S. Anand Narayanan
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL, United States
| | - Kate Poole
- EMBL Australia Node in Single Molecule Science, Faculty of Medicine, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Carmine Gentile
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Joshua Chou
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
76
|
Kim HN, Richardson KK, Krager KJ, Ling W, Simmons P, Allen AR, Aykin-Burns N. Simulated Galactic Cosmic Rays Modify Mitochondrial Metabolism in Osteoclasts, Increase Osteoclastogenesis and Cause Trabecular Bone Loss in Mice. Int J Mol Sci 2021; 22:11711. [PMID: 34769141 PMCID: PMC8583929 DOI: 10.3390/ijms222111711] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/24/2022] Open
Abstract
Space is a high-stress environment. One major risk factor for the astronauts when they leave the Earth's magnetic field is exposure to ionizing radiation from galactic cosmic rays (GCR). Several adverse changes occur in mammalian anatomy and physiology in space, including bone loss. In this study, we assessed the effects of simplified GCR exposure on skeletal health in vivo. Three months following exposure to 0.5 Gy total body simulated GCR, blood, bone marrow and tissue were collected from 9 months old male mice. The key findings from our cell and tissue analysis are (1) GCR induced femoral trabecular bone loss in adult mice but had no effect on spinal trabecular bone. (2) GCR increased circulating osteoclast differentiation markers and osteoclast formation but did not alter new bone formation or osteoblast differentiation. (3) Steady-state levels of mitochondrial reactive oxygen species, mitochondrial and non-mitochondrial respiration were increased without any changes in mitochondrial mass in pre-osteoclasts after GCR exposure. (4) Alterations in substrate utilization following GCR exposure in pre-osteoclasts suggested a metabolic rewiring of mitochondria. Taken together, targeting radiation-mediated mitochondrial metabolic reprogramming of osteoclasts could be speculated as a viable therapeutic strategy for space travel induced bone loss.
Collapse
Affiliation(s)
- Ha-Neui Kim
- Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR 72205, USA; (K.K.R.); (W.L.)
| | - Kimberly K. Richardson
- Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR 72205, USA; (K.K.R.); (W.L.)
| | - Kimberly J. Krager
- Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR 72205, USA; (K.J.K.); (P.S.); (A.R.A.)
| | - Wen Ling
- Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR 72205, USA; (K.K.R.); (W.L.)
| | - Pilar Simmons
- Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR 72205, USA; (K.J.K.); (P.S.); (A.R.A.)
| | - Antino R. Allen
- Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR 72205, USA; (K.J.K.); (P.S.); (A.R.A.)
| | - Nukhet Aykin-Burns
- Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR 72205, USA; (K.J.K.); (P.S.); (A.R.A.)
| |
Collapse
|
77
|
Xue H, Zhang Y, Chen N, Gao H, Zhang Q, Li S, Yu W, Wang T, Luo F, Cui F, Wan J, Tu Y, Sun L. Monte Carlo determination of dose coefficients at different developmental stages of zebrafish (Danio rerio) in experimental condition. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2021; 237:106667. [PMID: 34116456 DOI: 10.1016/j.jenvrad.2021.106667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
The release of liquid effluent of nuclear power into aquatic system increases with the rapid development of nuclear facilities in coastal and inland regions. Aquatic model animals are very important for the study of the radiation hazards to non-human biota in water environment and its extrapolation of dose-effect relationship to human models. However, the study of the radiation dose rate calculation model of the aquatic animal zebrafish is still on the homogeneous isotropic model used for the protection of the environment. A series of zebrafish models (including adults, larvae and embryos, named zebrafish-family: ZF-family) with multiple internal organs are established in this study to investigate the mechanism of radiation damage effect in order to protect non-human species. The internal and external dose coefficients (DCs) of the whole body, heart and gonads of zebrafishes are calculated in water environment with the combination of the real experimental culture condition, using Monte Carlo application package GATE (Geant4 Application for Emission Tomography) and eight nuclides, i.e., 3H, 14C, 90Sr, 60Co, 110mAg, 134Cs, 137Cs, 131I, which are commonly found in the liquid effluent of nuclear power plants, as the source items, The results show that the level of nuclide γ energy determines the external DCs (DCext), and 90Sr plays the most important role in internal DCs (DCint). The comparison between the external DCs of the heart and gonad and that of the whole body shows that DCs (DCext) of heart and gonad for females are 80% and 43% lower than that of whole body, respectively, while for males, the DCs (DCext) of heart is 44% lower than that of the whole body, and DCs (DCext) of gonad is slightly higher than that of the whole body for most nuclides (up to 25%).The dose of internal radiation makes greater contribution than that of external radiation to pure beta emitter (3H, 14C, 90Sr). This internal DCs of ZF-family model with complex internal structure turns out to demonstrate more sensitive DCs change trend and higher calculation values compared with the internal DCs of the simple ellipsoid model. In this model, the photon emitter with strong penetrating power has higher internal DCs, while the low-energy pure beta nuclide does not alter much. In conclusion, it is vital to carry out refined systematic modeling for model organisms, and the determination of DCs of model organs can promote the evaluation of the radiation effects on non-human species.
Collapse
Affiliation(s)
- Huiyuan Xue
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China; Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions
| | - Yefeng Zhang
- School of Public Health, Medical Department, Soochow University, Suzhou, 215123, China
| | - Na Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China; Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions
| | - Han Gao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China; Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions
| | - Qixuan Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China; Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions
| | - Shengri Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China; Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions
| | - Wentao Yu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China; Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions
| | - Tianzi Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China; Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions
| | - Fajian Luo
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China; Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions
| | - Fengmei Cui
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China; Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions
| | - Jun Wan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China; Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions
| | - Yu Tu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China; Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions
| | - Liang Sun
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China; Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions.
| |
Collapse
|
78
|
Smit T, Schickel E, Azimzadeh O, von Toerne C, Rauh O, Ritter S, Durante M, Schroeder IS. A Human 3D Cardiomyocyte Risk Model to Study the Cardiotoxic Influence of X-rays and Other Noxae in Adults. Cells 2021; 10:cells10102608. [PMID: 34685588 PMCID: PMC8533903 DOI: 10.3390/cells10102608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 02/06/2023] Open
Abstract
The heart tissue is a potential target of various noxae contributing to the onset of cardiovascular diseases. However, underlying pathophysiological mechanisms are largely unknown. Human stem cell-derived models are promising, but a major concern is cell immaturity when estimating risks for adults. In this study, 3D aggregates of human embryonic stem cell-derived cardiomyocytes were cultivated for 300 days and characterized regarding degree of maturity, structure, and cell composition. Furthermore, effects of ionizing radiation (X-rays, 0.1–2 Gy) on matured aggregates were investigated, representing one of the noxae that are challenging to assess. Video-based functional analyses were correlated to changes in the proteome after irradiation. Cardiomyocytes reached maximum maturity after 100 days in cultivation, judged by α-actinin lengths, and displayed typical multinucleation and branching. At this time, aggregates contained all major cardiac cell types, proven by the patch-clamp technique. Matured and X-ray-irradiated aggregates revealed a subtle increase in beat rates and a more arrhythmic sequence of cellular depolarisation and repolarisation compared to non-irradiated sham controls. The proteome analysis provides first insights into signaling mechanisms contributing to cardiotoxicity. Here, we propose an in vitro model suitable to screen various noxae to target adult cardiotoxicity by preserving all the benefits of a 3D tissue culture.
Collapse
Affiliation(s)
- Timo Smit
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany; (T.S.); (E.S.); (S.R.); (M.D.)
- Biology Department, Technische Universität Darmstadt, 64289 Darmstadt, Germany;
| | - Esther Schickel
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany; (T.S.); (E.S.); (S.R.); (M.D.)
| | - Omid Azimzadeh
- Section Radiation Biology, Federal Office for Radiation Protection (BfS), 85764 Neuherberg, Germany;
- Helmholtz Zentrum München-German Research Center for Environmental Health, Institute of Radiation Biology, 85764 Neuherberg, Germany
| | - Christine von Toerne
- Helmholtz Zentrum München-German Research Center for Environmental Health, Research Unit Protein Science, 80939 Munich, Germany;
| | - Oliver Rauh
- Biology Department, Technische Universität Darmstadt, 64289 Darmstadt, Germany;
| | - Sylvia Ritter
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany; (T.S.); (E.S.); (S.R.); (M.D.)
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany; (T.S.); (E.S.); (S.R.); (M.D.)
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - Insa S. Schroeder
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany; (T.S.); (E.S.); (S.R.); (M.D.)
- Correspondence:
| |
Collapse
|
79
|
Beheshti A, McDonald JT, Hada M, Takahashi A, Mason CE, Mognato M. Genomic Changes Driven by Radiation-Induced DNA Damage and Microgravity in Human Cells. Int J Mol Sci 2021; 22:ijms221910507. [PMID: 34638848 PMCID: PMC8508777 DOI: 10.3390/ijms221910507] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 12/13/2022] Open
Abstract
The space environment consists of a complex mixture of different types of ionizing radiation and altered gravity that represents a threat to humans during space missions. In particular, individual radiation sensitivity is strictly related to the risk of space radiation carcinogenesis. Therefore, in view of future missions to the Moon and Mars, there is an urgent need to estimate as accurately as possible the individual risk from space exposure to improve the safety of space exploration. In this review, we survey the combined effects from the two main physical components of the space environment, ionizing radiation and microgravity, to alter the genetics and epigenetics of human cells, considering both real and simulated space conditions. Data collected from studies on human cells are discussed for their potential use to estimate individual radiation carcinogenesis risk from space exposure.
Collapse
Affiliation(s)
- Afshin Beheshti
- KBR, NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Correspondence: or (A.B.); (M.M.)
| | - J. Tyson McDonald
- Department of Radiation Medicine, Georgetown University School of Medicine, Washington, DC 20007, USA;
| | - Megumi Hada
- Radiation Institute for Science & Engineering, Prairie View A&M University, Prairie View, TX 77446, USA;
| | - Akihisa Takahashi
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi 371-8511, Gunma, Japan;
| | - Christopher E. Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA;
- The World Quant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10065, USA
| | - Maddalena Mognato
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy
- Correspondence: or (A.B.); (M.M.)
| |
Collapse
|
80
|
Tinganelli W, Luoni F, Durante M. What can space radiation protection learn from radiation oncology? LIFE SCIENCES IN SPACE RESEARCH 2021; 30:82-95. [PMID: 34281668 DOI: 10.1016/j.lssr.2021.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Protection from cosmic radiation of crews of long-term space missions is now becoming an urgent requirement to allow a safe colonization of the moon and Mars. Epidemiology provides little help to quantify the risk, because the astronaut group is small and as yet mostly involved in low-Earth orbit mission, whilst the usual cohorts used for radiation protection on Earth (e.g. atomic bomb survivors) were exposed to a radiation quality substantially different from the energetic charged particle field found in space. However, there are over 260,000 patients treated with accelerated protons or heavier ions for different types of cancer, and this cohort may be useful for quantifying the effects of space-like radiation in humans. Space radiation protection and particle therapy research also share the same tools and devices, such as accelerators and detectors, as well as several research topics, from nuclear fragmentation cross sections to the radiobiology of densely ionizing radiation. The transfer of the information from the cancer radiotherapy field to space is manifestly complicated, yet the two field should strengthen their relationship and exchange methods and data.
Collapse
Affiliation(s)
- Walter Tinganelli
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, Darmstadt, Germany
| | - Francesca Luoni
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, Darmstadt, Germany; Technische Universität Darmstadt, Institut für Physik Kondensierter Materie, Darmstadt, Germany
| | - Marco Durante
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, Darmstadt, Germany; Technische Universität Darmstadt, Institut für Physik Kondensierter Materie, Darmstadt, Germany.
| |
Collapse
|
81
|
Paul AM, Overbey EG, da Silveira WA, Szewczyk N, Nishiyama NC, Pecaut MJ, Anand S, Galazka JM, Mao XW. Immunological and hematological outcomes following protracted low dose/low dose rate ionizing radiation and simulated microgravity. Sci Rep 2021; 11:11452. [PMID: 34075076 PMCID: PMC8169688 DOI: 10.1038/s41598-021-90439-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/10/2021] [Indexed: 11/09/2022] Open
Abstract
Using a ground-based model to simulate spaceflight [21-days of single-housed, hindlimb unloading (HLU) combined with continuous low-dose gamma irradiation (LDR, total dose of 0.04 Gy)], an in-depth survey of the immune and hematological systems of mice at 7-days post-exposure was performed. Collected blood was profiled with a hematology analyzer and spleens were analyzed by whole transcriptome shotgun sequencing (RNA-sequencing). The results revealed negligible differences in immune differentials. However, hematological system analyses of whole blood indicated large disparities in red blood cell differentials and morphology, suggestive of anemia. Murine Reactome networks indicated majority of spleen cells displayed differentially expressed genes (DEG) involved in signal transduction, metabolism, cell cycle, chromatin organization, and DNA repair. Although immune differentials were not changed, DEG analysis of the spleen revealed expression profiles associated with inflammation and dysregulated immune function persist to 1-week post-simulated spaceflight. Additionally, specific regulation pathways associated with human blood disease gene orthologs, such as blood pressure regulation, transforming growth factor-β receptor signaling, and B cell differentiation were noted. Collectively, this study revealed differential immune and hematological outcomes 1-week post-simulated spaceflight conditions, suggesting recovery from spaceflight is an unremitting process.
Collapse
Affiliation(s)
- Amber M Paul
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA. .,Universities Space Research Association, Columbia, MD, 21046, USA. .,Department of Human Factors and Behavioral Neurobiology, Embry-Riddle Aeronautical University, Daytona Beach, FL, 32114, USA.
| | - Eliah G Overbey
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Willian A da Silveira
- Faculty of Medicine, Health and Life Sciences, School of Biological Sciences, Institute for Global Food Security (IGFS), Queen's University, Belfast, BT9 5DL, Northern Ireland, UK
| | - Nathaniel Szewczyk
- Ohio Musculoskeletal and Neurological Institute and Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Nina C Nishiyama
- Division of Biomedical Engineering Sciences (BMES), Department of Basic Sciences, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Michael J Pecaut
- Division of Biomedical Engineering Sciences (BMES), Department of Basic Sciences, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Sulekha Anand
- Department of Biological Sciences, San Jose University, San Jose, CA, 95192, USA
| | - Jonathan M Galazka
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Xiao Wen Mao
- Division of Biomedical Engineering Sciences (BMES), Department of Basic Sciences, Loma Linda University, Loma Linda, CA, 92354, USA
| |
Collapse
|
82
|
Möstl S, Orter S, Hoffmann F, Bachler M, Hametner B, Wassertheurer S, Rabineau J, Mulder E, Johannes B, Jordan J, Tank J. Limited Effect of 60-Days Strict Head Down Tilt Bed Rest on Vascular Aging. Front Physiol 2021; 12:685473. [PMID: 34122149 PMCID: PMC8194311 DOI: 10.3389/fphys.2021.685473] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
Background Cardiovascular risk may be increased in astronauts after long term space flights based on biomarkers indicating premature vascular aging. We tested the hypothesis that 60 days of strict 6° head down tilt bed rest (HDTBR), an established space analog, promotes vascular stiffening and that artificial gravity training ameliorates the response. Methods We studied 24 healthy participants (8 women, 24–55 years, BMI = 24.3 ± 2.1 kg/m2) before and at the end of 60 days HDTBR. 16 subjects were assigned to daily artificial gravity. We applied echocardiography to measure stroke volume and isovolumetric contraction time (ICT), calculated aortic compliance (stroke volume/aortic pulse pressure), and assessed aortic distensibility by MRI. Furthermore, we measured brachial-femoral pulse wave velocity (bfPWV) and pulse wave arrival times (PAT) in different vascular beds by blood pressure cuffs and photoplethysmography. We corrected PAT for ICT (cPAT). Results In the pooled sample, diastolic blood pressure (+8 ± 7 mmHg, p < 0.001), heart rate (+7 ± 9 bpm, p = 0.002) and ICT (+8 ± 13 ms, p = 0.036) increased during HDTBR. Stroke volume decreased by 14 ± 15 ml (p = 0.001). bfPWV, aortic compliance, aortic distensibility and all cPAT remained unchanged. Aortic area tended to increase (p = 0.05). None of the parameters showed significant interaction between HDTBR and artificial gravity training. Conclusion 60 days HDTBR, while producing cardiovascular deconditioning and cephalad fluid shifts akin to weightlessness, did not worsen vascular stiffness. Artificial gravity training did not modulate the response.
Collapse
Affiliation(s)
- Stefan Möstl
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - Stefan Orter
- Center for Health and Bioresources, AIT Austrian Institute of Technology, Vienna, Austria
| | - Fabian Hoffmann
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany.,Department of Cardiology, University Hospital Cologne, Cologne, Germany
| | - Martin Bachler
- Center for Health and Bioresources, AIT Austrian Institute of Technology, Vienna, Austria
| | - Bernhard Hametner
- Center for Health and Bioresources, AIT Austrian Institute of Technology, Vienna, Austria
| | | | - Jérémy Rabineau
- Laboratory of Physics and Physiology, University of Brussels, Brussels, Belgium
| | - Edwin Mulder
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - Bernd Johannes
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - Jens Jordan
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany.,Chair of Aerospace Medicine, University Hospital Cologne, Cologne, Germany
| | - Jens Tank
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| |
Collapse
|
83
|
da Silveira WA, Fazelinia H, Rosenthal SB, Laiakis EC, Kim MS, Meydan C, Kidane Y, Rathi KS, Smith SM, Stear B, Ying Y, Zhang Y, Foox J, Zanello S, Crucian B, Wang D, Nugent A, Costa HA, Zwart SR, Schrepfer S, Elworth RAL, Sapoval N, Treangen T, MacKay M, Gokhale NS, Horner SM, Singh LN, Wallace DC, Willey JS, Schisler JC, Meller R, McDonald JT, Fisch KM, Hardiman G, Taylor D, Mason CE, Costes SV, Beheshti A. Comprehensive Multi-omics Analysis Reveals Mitochondrial Stress as a Central Biological Hub for Spaceflight Impact. Cell 2021; 183:1185-1201.e20. [PMID: 33242417 DOI: 10.1016/j.cell.2020.11.002] [Citation(s) in RCA: 169] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/01/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022]
Abstract
Spaceflight is known to impose changes on human physiology with unknown molecular etiologies. To reveal these causes, we used a multi-omics, systems biology analytical approach using biomedical profiles from fifty-nine astronauts and data from NASA's GeneLab derived from hundreds of samples flown in space to determine transcriptomic, proteomic, metabolomic, and epigenetic responses to spaceflight. Overall pathway analyses on the multi-omics datasets showed significant enrichment for mitochondrial processes, as well as innate immunity, chronic inflammation, cell cycle, circadian rhythm, and olfactory functions. Importantly, NASA's Twin Study provided a platform to confirm several of our principal findings. Evidence of altered mitochondrial function and DNA damage was also found in the urine and blood metabolic data compiled from the astronaut cohort and NASA Twin Study data, indicating mitochondrial stress as a consistent phenotype of spaceflight.
Collapse
Affiliation(s)
| | - Hossein Fazelinia
- The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | | - Man S Kim
- The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Cem Meydan
- Weill Cornell Medical College, New York, NY 10065, USA
| | - Yared Kidane
- Texas Scottish Rite Hospital for Children, Dallas, TX 75219, USA
| | - Komal S Rathi
- The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | - Benjamin Stear
- The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yue Ying
- The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yuanchao Zhang
- The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jonathan Foox
- Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | - Dong Wang
- University of California San Francisco, San Francisco, CA 94115, USA
| | | | | | - Sara R Zwart
- University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Sonja Schrepfer
- University of California San Francisco, San Francisco, CA 94115, USA
| | | | | | | | | | | | | | - Larry N Singh
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | - Robert Meller
- Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - J Tyson McDonald
- Georgetown University Medical Center, Washington D.C. 20057, USA
| | | | - Gary Hardiman
- Queens University Belfast, Belfast BT9 5DL, UK; Medical University of South Carolina, Charleston, SC 29425, USA
| | - Deanne Taylor
- The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | - Afshin Beheshti
- KBR, NASA Ames Research Center, Moffett Field, CA 94035, USA.
| |
Collapse
|
84
|
Walsh L, Hafner L, Straube U, Ulanowski A, Fogtman A, Durante M, Weerts G, Schneider U. A bespoke health risk assessment methodology for the radiation protection of astronauts. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2021; 60:213-231. [PMID: 33929575 PMCID: PMC8116305 DOI: 10.1007/s00411-021-00910-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/10/2021] [Indexed: 05/05/2023]
Abstract
An alternative approach that is particularly suitable for the radiation health risk assessment (HRA) of astronauts is presented. The quantity, Radiation Attributed Decrease of Survival (RADS), representing the cumulative decrease in the unknown survival curve at a certain attained age, due to the radiation exposure at an earlier age, forms the basis for this alternative approach. Results are provided for all solid cancer plus leukemia incidence RADS from estimated doses from theoretical radiation exposures accumulated during long-term missions to the Moon or Mars. For example, it is shown that a 1000-day Mars exploration mission with a hypothetical mission effective dose of 1.07 Sv at typical astronaut ages around 40 years old, will result in the probability of surviving free of all types of solid cancer and leukemia until retirement age (65 years) being reduced by 4.2% (95% CI 3.2; 5.3) for males and 5.8% (95% CI 4.8; 7.0) for females. RADS dose-responses are given, for the outcomes for incidence of all solid cancer, leukemia, lung and female breast cancer. Results showing how RADS varies with age at exposure, attained age and other factors are also presented. The advantages of this alternative approach, over currently applied methodologies for the long-term radiation protection of astronauts after mission exposures, are presented with example calculations applicable to European astronaut occupational HRA. Some tentative suggestions for new types of occupational risk limits for space missions are given while acknowledging that the setting of astronaut radiation-related risk limits will ultimately be decided by the Space Agencies. Suggestions are provided for further work which builds on and extends this new HRA approach, e.g., by eventually including non-cancer effects and detailed space dosimetry.
Collapse
Affiliation(s)
- Linda Walsh
- Department of Physics, Science Faculty, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Luana Hafner
- Department of Physics, ETH Zurich, Otto-Stern-Weg 1, 8092 Zurich, Switzerland
| | - Ulrich Straube
- Medical Operations and Space Medicine, HRE-OM, European Space Agency, ESA, European Astronaut Centre, EAC, Cologne, Germany
| | - Alexander Ulanowski
- Present Address: Environment Laboratories, International Atomic Energy Agency, 2444 Seibersdorf, Austria
- Institute of Radiation Medicine, Helmholtz Zentrum München- German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Anna Fogtman
- Medical Operations and Space Medicine, HRE-OM, European Space Agency, ESA, European Astronaut Centre, EAC, Cologne, Germany
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Technische Universität Darmstadt, Darmstadt, Germany
| | - Guillaume Weerts
- Medical Operations and Space Medicine, HRE-OM, European Space Agency, ESA, European Astronaut Centre, EAC, Cologne, Germany
| | - Uwe Schneider
- Department of Physics, Science Faculty, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Radiotherapy Hirslanden, Witellikerstrasse 40, 8032 Zurich, Switzerland
| |
Collapse
|
85
|
Lv J, Jiang N, Wang H, Huang H, Bao Y, Chen Y, Liu X. Simulated weightlessness induces cognitive changes in rats illustrated by performance in operant conditioning tasks. LIFE SCIENCES IN SPACE RESEARCH 2021; 29:63-71. [PMID: 33888289 DOI: 10.1016/j.lssr.2021.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/17/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
The weightless environment encountered in space flight can cause cognitive changes, affecting mission execution and endanger mission safety. Ground simulations provide the means to evaluate these effects and the resulting risks. In this study, rats were used as model animals and subjected to simulated weightlessness by suspending them from their tails. Tail-suspension and operant task learning experiments were conducted to study the effects of simulated weightlessness on the complex operant conditioning abilities of the subject's acquisition, maintenance, and signal discrimination skills. The results showed that simulated weightlessness did not affect the animals' acquisition abilities but did affect their ability to maintain learned reflexes and recognize signals. This study may have general potential to research the effects of weightlessness on cognition in the space environment.
Collapse
Affiliation(s)
- Jingwei Lv
- Research Center for Pharmacology & Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Ning Jiang
- Research Center for Pharmacology & Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Haixia Wang
- Research Center for Pharmacology & Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Hong Huang
- Research Center for Pharmacology & Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Yu Bao
- Research Center for Pharmacology & Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Jilin Agricultural University, Changchun 130118, China
| | - Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xinmin Liu
- Research Center for Pharmacology & Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
86
|
Durante M. Failla Memorial Lecture: The Many Facets of Heavy-Ion Science. Radiat Res 2021; 195:403-411. [PMID: 33979440 DOI: 10.1667/rade-21-00029.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 02/22/2021] [Indexed: 11/03/2022]
Abstract
Heavy ions are riveting in radiation biophysics, particularly in the areas of radiotherapy and space radiation protection. Accelerated charged particles can indeed penetrate deeply in the human body to sterilize tumors, exploiting the favorable depth-dose distribution of ions compared to conventional X rays. Conversely, the high biological effectiveness in inducing late effects presents a hazard for manned space exploration. Even after half a century of accelerator-based experiments, clinical applications and flight research, these two topics remain both fascinating and baffling. Heavy-ion therapy is very expensive, and despite the clinical success it remains controversial. Research on late radiation morbidity in spaceflight led to a reduction in uncertainty, but also pointed to new risks previously underestimated, such as possible damage to the central nervous system. Recently, heavy ions have also been used in other, unanticipated biomedical fields, such as treatment of heart arrhythmia or inactivation of viruses for vaccine development. Heavy-ion science nicely merges physics and biology and remains an extraordinary research field for the 21st century.
Collapse
Affiliation(s)
- Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany; and Technische Universität Darmstadt, Institute of Condensed Matter Physics, 64289 Darmstadt, Germany
| |
Collapse
|
87
|
Restier-Verlet J, El-Nachef L, Ferlazzo ML, Al-Choboq J, Granzotto A, Bouchet A, Foray N. Radiation on Earth or in Space: What Does It Change? Int J Mol Sci 2021; 22:3739. [PMID: 33916740 PMCID: PMC8038356 DOI: 10.3390/ijms22073739] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 12/15/2022] Open
Abstract
After having been an instrument of the Cold War, space exploration has become a major technological, scientific and societal challenge for a number of countries. With new projects to return to the Moon and go to Mars, radiobiologists have been called upon to better assess the risks linked to exposure to radiation emitted from space (IRS), one of the major hazards for astronauts. To this aim, a major task is to identify the specificities of the different sources of IRS that concern astronauts. By considering the probabilities of the impact of IRS against spacecraft shielding, three conclusions can be drawn: (1) The impacts of heavy ions are rare and their contribution to radiation dose may be low during low Earth orbit; (2) secondary particles, including neutrons emitted at low energy from the spacecraft shielding, may be common in deep space and may preferentially target surface tissues such as the eyes and skin; (3) a "bath of radiation" composed of residual rays and fast neutrons inside the spacecraft may present a concern for deep tissues such as bones and the cardiovascular system. Hence, skin melanoma, cataracts, loss of bone mass, and aging of the cardiovascular system are possible, dependent on the dose, dose-rate, and individual factors. This suggests that both radiosusceptibility and radiodegeneration may be concerns related to space exploration. In addition, in the particular case of extreme solar events, radiosensitivity reactions-such as those observed in acute radiation syndrome-may occur and affect blood composition, gastrointestinal and neurologic systems. This review summarizes the specificities of space radiobiology and opens the debate as regards refinements of current radiation protection concepts that will be useful for the better estimation of risks.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nicolas Foray
- Inserm, U1296 Unit, «Radiation: Defense, Health and Environment», Centre Léon-Bérard, 28, Rue Laennec, 69008 Lyon, France; (J.R.-V.); (L.E.-N.); (M.L.F.); (J.A.-C.); (A.G.); (A.B.)
| |
Collapse
|
88
|
Meerman M, Bracco Gartner TCL, Buikema JW, Wu SM, Siddiqi S, Bouten CVC, Grande-Allen KJ, Suyker WJL, Hjortnaes J. Myocardial Disease and Long-Distance Space Travel: Solving the Radiation Problem. Front Cardiovasc Med 2021; 8:631985. [PMID: 33644136 PMCID: PMC7906998 DOI: 10.3389/fcvm.2021.631985] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
Radiation-induced cardiovascular disease is a well-known complication of radiation exposure. Over the last few years, planning for deep space missions has increased interest in the effects of space radiation on the cardiovascular system, as an increasing number of astronauts will be exposed to space radiation for longer periods of time. Research has shown that exposure to different types of particles found in space radiation can lead to the development of diverse cardiovascular disease via fibrotic myocardial remodeling, accelerated atherosclerosis and microvascular damage. Several underlying mechanisms for radiation-induced cardiovascular disease have been identified, but many aspects of the pathophysiology remain unclear. Existing pharmacological compounds have been evaluated to protect the cardiovascular system from space radiation-induced damage, but currently no radioprotective compounds have been approved. This review critically analyzes the effects of space radiation on the cardiovascular system, the underlying mechanisms and potential countermeasures to space radiation-induced cardiovascular disease.
Collapse
Affiliation(s)
- Manon Meerman
- Division Heart and Lung, Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, Netherlands.,Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
| | - Tom C L Bracco Gartner
- Division Heart and Lung, Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, Netherlands.,Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jan Willem Buikema
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands.,Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Sean M Wu
- Division of Cardiovascular Medicine, Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - Sailay Siddiqi
- Department of Cardiothoracic Surgery, Radboud University, Nijmegen, Netherlands
| | - Carlijn V C Bouten
- Department of Biomedical Engineering, Technical University Eindhoven, Eindhoven, Netherlands
| | | | - Willem J L Suyker
- Division Heart and Lung, Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jesper Hjortnaes
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands.,Division Heart and Lung, Department of Cardiothoracic Surgery, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
89
|
A Meta-Analysis of the Effects of High-LET Ionizing Radiations in Human Gene Expression. Life (Basel) 2021; 11:life11020115. [PMID: 33546472 PMCID: PMC7913660 DOI: 10.3390/life11020115] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/31/2021] [Accepted: 01/31/2021] [Indexed: 12/19/2022] Open
Abstract
The use of high linear energy transfer (LET) ionizing radiation (IR) is progressively being incorporated in radiation therapy due to its precise dose localization and high relative biological effectiveness. At the same time, these benefits of particle radiation become a high risk for astronauts in the case of inevitable cosmic radiation exposure. Nonetheless, DNA Damage Response (DDR) activated via complex DNA damage in healthy tissue, occurring from such types of radiation, may be instrumental in the induction of various chronic and late effects. An approach to elucidating the possible underlying mechanisms is studying alterations in gene expression. To this end, we identified differentially expressed genes (DEGs) in high Z and high energy (HZE) particle-, γ-ray- and X-ray-exposed healthy human tissues, utilizing microarray data available in public repositories. Differential gene expression analysis (DGEA) was conducted using the R programming language. Consequently, four separate meta-analyses were conducted, after DEG lists were grouped depending on radiation type, radiation dose and time of collection post-irradiation. To highlight the biological background of each meta-analysis group, functional enrichment analysis and biological network construction were conducted. For HZE particle exposure at 8–24 h post-irradiation, the most interesting finding is the variety of DNA repair mechanisms that were downregulated, a fact that is probably correlated with complex DNA damage formation. Simultaneously, after X-ray exposure during the same hours after irradiation, DNA repair mechanisms continue to take place. Finally, in a further comparison of low- and high-LET radiation effects, the most prominent result is that autophagy mechanisms seem to persist and that adaptive immune induction seems to be present. Such bioinformatics approaches may aid in obtaining an overview of the cellular response to high-LET particles. Understanding these response mechanisms can consequently aid in the development of countermeasures for future space missions and ameliorate heavy ion treatments.
Collapse
|
90
|
Kong L, Wang Y, Wang H, Pan Q, Zuo R, Bai S, Zhang X, Lee WY, Kang Q, Li G. Conditioned media from endothelial progenitor cells cultured in simulated microgravity promote angiogenesis and bone fracture healing. Stem Cell Res Ther 2021; 12:47. [PMID: 33419467 PMCID: PMC7792074 DOI: 10.1186/s13287-020-02074-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/06/2020] [Indexed: 12/15/2022] Open
Abstract
Background Paracrine signaling from endothelial progenitor cells (EPCs) is beneficial for angiogenesis and thus promotes tissue regeneration. Microgravity (MG) environment is found to facilitate the functional potentials of various stem or progenitor cells. The present study aimed to elucidate the effects of MG on pro-angiogenic properties and fracture repair capacities of conditioned media (CM) from EPCs. Methods Human peripheral blood-derived EPCs were cultured under MG or normal gravity (NG) followed by analysis for angiogenic gene expression. Furthermore, the serum-free CM under MG (MG-CM) or NG (NG-CM) were collected, and their pro-angiogenic properties were examined in human umbilical vein endothelial cells (HUVECs). In order to investigate the effects of MG-CM on fracture healing, they were injected into the fracture gaps of rat models, and radiography, histology, and mechanical test were performed to evaluate neovascularization and fracture healing outcomes. Results MG upregulated the expression of hypoxia-induced factor-1α (HIF-1α) and endothelial nitric oxide synthase (eNOS) and promoted NO release. Comparing to NG-CM, MG-CM significantly facilitated the proliferation, migration, and angiogenesis of HUVECs through NO-induced activation of FAK/Erk1/2-MAPK signaling pathway. In addition, MG-CM were verified to improve angiogenic activities in fracture area in a rat tibial fracture model, accelerate fracture healing, and well restore the biomechanical properties of fracture bone superior to NG-CM. Conclusion These findings provided insight into the use of MG bioreactor to enhance the angiogenic properties of EPCs’ paracrine signals via HIF-1α/eNOS/NO axis, and the administration of MG-CM favored bone fracture repair. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13287-020-02074-y.
Collapse
Affiliation(s)
- Lingchi Kong
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Rd. 600, Shanghai, 200233, People's Republic of China.,Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR PRC
| | - Yan Wang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR PRC
| | - Haixing Wang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR PRC
| | - Qi Pan
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR PRC
| | - Rongtai Zuo
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Rd. 600, Shanghai, 200233, People's Republic of China
| | - Shanshan Bai
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR PRC
| | - Xiaoting Zhang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR PRC
| | - Wayne Yukwai Lee
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR PRC
| | - Qinglin Kang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Rd. 600, Shanghai, 200233, People's Republic of China.
| | - Gang Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR PRC. .,The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, People's Republic of China. .,Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR PRC.
| |
Collapse
|
91
|
Tapio S, Little MP, Kaiser JC, Impens N, Hamada N, Georgakilas AG, Simar D, Salomaa S. Ionizing radiation-induced circulatory and metabolic diseases. ENVIRONMENT INTERNATIONAL 2021; 146:106235. [PMID: 33157375 PMCID: PMC10686049 DOI: 10.1016/j.envint.2020.106235] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/09/2020] [Accepted: 10/08/2020] [Indexed: 05/23/2023]
Abstract
Risks to health are the prime consideration in all human situations of ionizing radiation exposure and therefore of relevance to radiation protection in all occupational, medical, and public exposure situations. Over the past few decades, advances in therapeutic strategies have led to significant improvements in cancer survival rates. However, a wide range of long-term complications have been reported in cancer survivors, in particular circulatory diseases and their major risk factors, metabolic diseases. However, at lower levels of exposure, the evidence is less clear. Under real-life exposure scenarios, including radiotherapy, radiation effects in the whole organism will be determined mainly by the response of normal tissues receiving relatively low doses, and will be mediated and moderated by systemic effects. Therefore, there is an urgent need for further research on the impact of low-dose radiation. In this article, we review radiation-associated risks of circulatory and metabolic diseases in clinical, occupational or environmental exposure situations, addressing epidemiological, biological, risk modelling, and systems biology aspects, highlight the gaps in knowledge and discuss future directions to address these gaps.
Collapse
Affiliation(s)
- Soile Tapio
- Institute of Radiation Biology, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health GmbH, Neuherberg, Germany.
| | - Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), MD, USA
| | - Jan Christian Kaiser
- Institute of Radiation Medicine, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Nathalie Impens
- Institute of Environment, Health and Safety, Biosphere Impact Studies, SCK•CEN, Mol, Belgium
| | - Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Tokyo, Japan
| | - Alexandros G Georgakilas
- DNA Damage Laboratory, Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Athens, Greece
| | - David Simar
- Mechanisms of Disease and Translational Research, School of Medical Sciences, UNSW Sydney, Sydney, Australia
| | - Sisko Salomaa
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
92
|
Willey JS, Britten RA, Blaber E, Tahimic CG, Chancellor J, Mortreux M, Sanford LD, Kubik AJ, Delp MD, Mao XW. The individual and combined effects of spaceflight radiation and microgravity on biologic systems and functional outcomes. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2021; 39:129-179. [PMID: 33902391 PMCID: PMC8274610 DOI: 10.1080/26896583.2021.1885283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Both microgravity and radiation exposure in the spaceflight environment have been identified as hazards to astronaut health and performance. Substantial study has been focused on understanding the biology and risks associated with prolonged exposure to microgravity, and the hazards presented by radiation from galactic cosmic rays (GCR) and solar particle events (SPEs) outside of low earth orbit (LEO). To date, the majority of the ground-based analogues (e.g., rodent or cell culture studies) that investigate the biology of and risks associated with spaceflight hazards will focus on an individual hazard in isolation. However, astronauts will face these challenges simultaneously Combined hazard studies are necessary for understanding the risks astronauts face as they travel outside of LEO, and are also critical for countermeasure development. The focus of this review is to describe biologic and functional outcomes from ground-based analogue models for microgravity and radiation, specifically highlighting the combined effects of radiation and reduced weight-bearing from rodent ground-based tail suspension via hind limb unloading (HLU) and partial weight-bearing (PWB) models, although in vitro and spaceflight results are discussed as appropriate. The review focuses on the skeletal, ocular, central nervous system (CNS), cardiovascular, and stem cells responses.
Collapse
Affiliation(s)
| | | | - Elizabeth Blaber
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute
| | | | | | - Marie Mortreux
- Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center
| | - Larry D. Sanford
- Department of Radiation Oncology, Eastern Virginia Medical School
| | - Angela J. Kubik
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute
| | - Michael D. Delp
- Department of Nutrition, Food and Exercise Sciences, Florida State University
| | - Xiao Wen Mao
- Division of Biomedical Engineering Sciences (BMES), Department of Basic Sciences, Loma Linda University
| |
Collapse
|
93
|
Wuu YR, Hu B, Okunola H, Paul AM, Blaber EA, Cheng-Campbell M, Beheshti A, Grabham P. LET-Dependent Low Dose and Synergistic Inhibition of Human Angiogenesis by Charged Particles: Validation of miRNAs that Drive Inhibition. iScience 2020; 23:101771. [PMID: 33376971 PMCID: PMC7756138 DOI: 10.1016/j.isci.2020.101771] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/19/2020] [Accepted: 10/31/2020] [Indexed: 12/17/2022] Open
Abstract
Space radiation inhibits angiogenesis by two mechanisms depending on the linear energy transfer (LET). Using human 3D micro-vessel models, blockage of the early motile stage of angiogenesis was determined to occur after exposure to low LET ions (<3 KeV/AMU), whereas inhibition of the later stages occurs after exposure to high LET ions (>8 KeV/AMU). Strikingly, the combined effect is synergistic, detectible as low as 0.06 Gy making mixed ion space radiation more potent. Candidates for bystander transmission are microRNAs (miRNAs), and analysis on miRNA-seq data from irradiated mice shows that angiogenesis would in theory be downregulated. Further analysis of three previously identified miRNAs showed downregulation of their targets associated with angiogenesis and confirmed their involvement in angiogenesis pathways and increased health risks associated with cardiovascular disease. Finally, synthetic molecules (antagomirs) designed to inhibit the predicted miRNAs were successfully used to reverse the inhibition of angiogenesis.
Collapse
Affiliation(s)
- Yen-Ruh Wuu
- Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Burong Hu
- Department of Radiation Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hazeem Okunola
- Center for Radiological Research, Department of Radiation Oncology, College of Physicians and Surgeons, Columbia University, VC 11-243, 630 West 168 Street, New York, NY 10032, USA
| | - Amber M. Paul
- Universities Space Research Association, Columbia, MD 21046, USA
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Elizabeth A. Blaber
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
- Department of Bioengineering, Center for Biotechnology & InterdisciplinaryStudies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Margareth Cheng-Campbell
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
- Department of Bioengineering, Center for Biotechnology & InterdisciplinaryStudies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Afshin Beheshti
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Peter Grabham
- Center for Radiological Research, Department of Radiation Oncology, College of Physicians and Surgeons, Columbia University, VC 11-243, 630 West 168 Street, New York, NY 10032, USA
| |
Collapse
|
94
|
Preston RJ, Rühm W, Azzam EI, Boice JD, Bouffler S, Held KD, Little MP, Shore RE, Shuryak I, Weil MM. Adverse outcome pathways, key events, and radiation risk assessment. Int J Radiat Biol 2020; 97:804-814. [PMID: 33211576 PMCID: PMC10666972 DOI: 10.1080/09553002.2020.1853847] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022]
Abstract
The overall aim of this contribution to the 'Second Bill Morgan Memorial Special Issue' is to provide a high-level review of a recent report developed by a Committee for the National Council on Radiation Protection and Measurements (NCRP) titled 'Approaches for Integrating Information from Radiation Biology and Epidemiology to Enhance Low-Dose Health Risk Assessment'. It derives from previous NCRP Reports and Commentaries that provide the case for integrating data from radiation biology studies (available and proposed) with epidemiological studies (also available and proposed) to develop Biologically-Based Dose-Response (BBDR) models. In this review, it is proposed for such models to leverage the adverse outcome pathways (AOP) and key events (KE) approach for better characterizing radiation-induced cancers and circulatory disease (as the example for a noncancer outcome). The review discusses the current state of knowledge of mechanisms of carcinogenesis, with an emphasis on radiation-induced cancers, and a similar discussion for circulatory disease. The types of the various informative BBDR models are presented along with a proposed generalized BBDR model for cancer and a more speculative one for circulatory disease. The way forward is presented in a comprehensive discussion of the research needs to address the goal of enhancing health risk assessment of exposures to low doses of radiation. The use of an AOP/KE approach for developing a mechanistic framework for BBDR models of radiation-induced cancer and circulatory disease is considered to be a viable one based upon current knowledge of the mechanisms of formation of these adverse health outcomes and the available technical capabilities and computational advances. The way forward for enhancing low-dose radiation risk estimates will require there to be a tight integration of epidemiology data and radiation biology information to meet the goals of relevance and sensitivity of the adverse health outcomes required for overall health risk assessment at low doses and dose rates.
Collapse
Affiliation(s)
- R Julian Preston
- Office of Air and Radiation, Radiation Protection Division, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Werner Rühm
- Institute of Radiation Medicine, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH) Ingolstaedter, Neuherberg, Germany
| | - Edouard I Azzam
- Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, NJ, USA
| | - John D Boice
- National Council on Radiation Protection and Measurement, Bethesda, MD, USA
| | - Simon Bouffler
- Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Oxfordshire, UK
| | - Kathryn D Held
- National Council on Radiation Protection and Measurements, Bethesda, MD, USA
| | - Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Roy E Shore
- Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, USA
| | - Michael M Weil
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
95
|
Afshinnekoo E, Scott RT, MacKay MJ, Pariset E, Cekanaviciute E, Barker R, Gilroy S, Hassane D, Smith SM, Zwart SR, Nelman-Gonzalez M, Crucian BE, Ponomarev SA, Orlov OI, Shiba D, Muratani M, Yamamoto M, Richards SE, Vaishampayan PA, Meydan C, Foox J, Myrrhe J, Istasse E, Singh N, Venkateswaran K, Keune JA, Ray HE, Basner M, Miller J, Vitaterna MH, Taylor DM, Wallace D, Rubins K, Bailey SM, Grabham P, Costes SV, Mason CE, Beheshti A. Fundamental Biological Features of Spaceflight: Advancing the Field to Enable Deep-Space Exploration. Cell 2020; 183:1162-1184. [PMID: 33242416 PMCID: PMC8441988 DOI: 10.1016/j.cell.2020.10.050] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022]
Abstract
Research on astronaut health and model organisms have revealed six features of spaceflight biology that guide our current understanding of fundamental molecular changes that occur during space travel. The features include oxidative stress, DNA damage, mitochondrial dysregulation, epigenetic changes (including gene regulation), telomere length alterations, and microbiome shifts. Here we review the known hazards of human spaceflight, how spaceflight affects living systems through these six fundamental features, and the associated health risks of space exploration. We also discuss the essential issues related to the health and safety of astronauts involved in future missions, especially planned long-duration and Martian missions.
Collapse
Affiliation(s)
- Ebrahim Afshinnekoo
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ryan T Scott
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Matthew J MacKay
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Eloise Pariset
- Universities Space Research Association (USRA), Mountain View, CA 94043, USA; Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Egle Cekanaviciute
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Richard Barker
- Department of Botany, University of Wisconsin, Madison, WI 53706, USA
| | - Simon Gilroy
- Department of Botany, University of Wisconsin, Madison, WI 53706, USA
| | | | - Scott M Smith
- Human Health and Performance Directorate, NASA Johnson Space Center, Houston, TX 77058, USA
| | - Sara R Zwart
- Department of Preventive Medicine and Community Health, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Mayra Nelman-Gonzalez
- KBR, Human Health and Performance Directorate, NASA Johnson Space Center, Houston, TX 77058, USA
| | - Brian E Crucian
- Human Health and Performance Directorate, NASA Johnson Space Center, Houston, TX 77058, USA
| | - Sergey A Ponomarev
- Institute for the Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia
| | - Oleg I Orlov
- Institute for the Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia
| | - Dai Shiba
- JEM Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Ibaraki 305-8505, Japan
| | - Masafumi Muratani
- Transborder Medical Research Center, and Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan; Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8573, Japan
| | - Stephanie E Richards
- Bionetics, NASA Kennedy Space Center, Kennedy Space Center, Merritt Island, FL 32899, USA
| | - Parag A Vaishampayan
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jonathan Foox
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jacqueline Myrrhe
- European Space Agency, Research and Payloads Group, Data Exploitation and Utilisation Strategy Office, 2200 AG Noordwijk, the Netherlands
| | - Eric Istasse
- European Space Agency, Research and Payloads Group, Data Exploitation and Utilisation Strategy Office, 2200 AG Noordwijk, the Netherlands
| | - Nitin Singh
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Jessica A Keune
- Space Medicine Operations Division, NASA Johnson Space Center, Houston, TX 77058, USA
| | - Hami E Ray
- ASRC Federal Space and Defense, Inc., Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Mathias Basner
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jack Miller
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Martha Hotz Vitaterna
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL 60208, USA; Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Deanne M Taylor
- Department of Biomedical Informatics, The Children's Hospital of Philadelphia, PA 19104, USA; Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; The Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Douglas Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; The Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathleen Rubins
- Astronaut Office, NASA Johnson Space Center, Houston, TX 77058, USA
| | - Susan M Bailey
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Peter Grabham
- Center for Radiological Research, Department of Oncology, College of Physicians and Surgeons, Columbia University, New York, NY 10027, USA.
| | - Sylvain V Costes
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA.
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA; The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, NY 10021, USA.
| | - Afshin Beheshti
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
96
|
Patel ZS, Brunstetter TJ, Tarver WJ, Whitmire AM, Zwart SR, Smith SM, Huff JL. Red risks for a journey to the red planet: The highest priority human health risks for a mission to Mars. NPJ Microgravity 2020; 6:33. [PMID: 33298950 PMCID: PMC7645687 DOI: 10.1038/s41526-020-00124-6] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/30/2020] [Indexed: 12/19/2022] Open
Abstract
NASA's plans for space exploration include a return to the Moon to stay-boots back on the lunar surface with an orbital outpost. This station will be a launch point for voyages to destinations further away in our solar system, including journeys to the red planet Mars. To ensure success of these missions, health and performance risks associated with the unique hazards of spaceflight must be adequately controlled. These hazards-space radiation, altered gravity fields, isolation and confinement, closed environments, and distance from Earth-are linked with over 30 human health risks as documented by NASA's Human Research Program. The programmatic goal is to develop the tools and technologies to adequately mitigate, control, or accept these risks. The risks ranked as "red" have the highest priority based on both the likelihood of occurrence and the severity of their impact on human health, performance in mission, and long-term quality of life. These include: (1) space radiation health effects of cancer, cardiovascular disease, and cognitive decrements (2) Spaceflight-Associated Neuro-ocular Syndrome (3) behavioral health and performance decrements, and (4) inadequate food and nutrition. Evaluation of the hazards and risks in terms of the space exposome-the total sum of spaceflight and lifetime exposures and how they relate to genetics and determine the whole-body outcome-will provide a comprehensive picture of risk profiles for individual astronauts. In this review, we provide a primer on these "red" risks for the research community. The aim is to inform the development of studies and projects with high potential for generating both new knowledge and technologies to assist with mitigating multisystem risks to crew health during exploratory missions.
Collapse
Affiliation(s)
- Zarana S Patel
- KBR, Houston, TX, USA.
- NASA Lyndon B. Johnson Space Center, Houston, TX, USA.
| | | | | | | | - Sara R Zwart
- NASA Lyndon B. Johnson Space Center, Houston, TX, USA
- University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Scott M Smith
- NASA Lyndon B. Johnson Space Center, Houston, TX, USA
| | | |
Collapse
|
97
|
Saeed A, Murshed MN, Al-Shahari EA. Effect of low-dose fast neutrons on the protein components of peripheral blood mononuclear cells of whole-body irradiated Wistar rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:40443-40455. [PMID: 32666461 DOI: 10.1007/s11356-020-10085-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
The immune system is exposed to extremely low doses of neutrons under different circumstances, such as through exposure to cosmic rays, nuclear accidents, and neutron therapy. Peripheral blood mononuclear cells (PBMCs) are the primary immune cells that exhibit selective immune responses. Changes in the functions of the protein components of PBMC can be induced by structural modifications of these proteins themselves. Herein, we have investigated the effect of low-dose fast neutrons on PBMC proteins at 0, 2, 4, and 8 days post-whole body irradiation. 64 Wistar rats were used in this study of which, 32 were exposed to fast neutrons at a total dose of 10 mGy (241Am-Be, 0.2 mGy/h), and the other 32 were used as controls. Blood samples were drawn, and PBMCs were isolated from whole blood. Fourier transform infrared (FTIR) spectroscopy and fluorescence spectroscopy were used to estimate the changes in the proteins of PBMCs. An alkaline comet assay was performed to assess DNA damage. Hierarchical cluster analysis (HCA) and principal components analysis (PCA) were utilized to discriminate between irradiated and non-irradiated samples. FTIR and fluorescence spectra of the tested samples revealed alterations in the amides and tryptophan, and therefore protein structure at time intervals of 2 and 4 days post-irradiation. No changes were recorded in samples tested at time intervals of 0 and 8 days post-irradiation. The FTIR band intensities of the PBMC proteins of the irradiated samples decreased slightly and were statistically significant. Curve fitting of the amide I band in the FTIR spectra showed changes in the secondary structure of the proteins. At 2 days post-irradiation, fluorescence spectra of the tested samples revealed decreases in the band tryptophan. The comet assay revealed low levels of DNA damage. In conclusion, low-dose fast neutrons can affect the proteins of PBMC.
Collapse
Affiliation(s)
- Abdu Saeed
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
- Department of Physics, Thamar University, Thamar, Yemen.
| | - Mohammad N Murshed
- Department of Physics, Faculty of Science and Arts, Mohayel Aser, King Khalid University, Abha, Saudi Arabia
- Department of Physics, Faculty of Science, Ibb University, Ibb, Yemen
| | - Eman Abdulqader Al-Shahari
- Department of Biology, Faculty of Science and Arts, Mohayel Aser, King Khalid University, Abha, Saudi Arabia
- Department of Biology, Faculty of Science, Ibb University, Ibb, Yemen
| |
Collapse
|
98
|
Greaves DK, Robertson AD, Patterson CA, Au JS, Hughson RL. Evidence for increased cardiovascular risk to crew during long duration space missions. J Appl Physiol (1985) 2020; 129:1111-1112. [PMID: 33197374 DOI: 10.1152/japplphysiol.00573.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Danielle K Greaves
- Department of Kinesiology, University of Waterloo, Waterloo, Canada.,Schlegel-University of Waterloo Research Institute for Aging, Waterloo, Canada
| | - Andrew D Robertson
- Department of Kinesiology, University of Waterloo, Waterloo, Canada.,Schlegel-University of Waterloo Research Institute for Aging, Waterloo, Canada
| | - Courtney A Patterson
- Department of Kinesiology, University of Waterloo, Waterloo, Canada.,Schlegel-University of Waterloo Research Institute for Aging, Waterloo, Canada
| | - Jason S Au
- Department of Kinesiology, University of Waterloo, Waterloo, Canada
| | - Richard L Hughson
- Department of Kinesiology, University of Waterloo, Waterloo, Canada.,Schlegel-University of Waterloo Research Institute for Aging, Waterloo, Canada
| |
Collapse
|
99
|
Wang S, Wang R, Li GQ, Cho JL, Deng Y, Li Y. Myosin light chain kinase mediates intestinal barrier dysfunction following simulated microgravity based on proteomic strategy. J Proteomics 2020; 231:104001. [PMID: 33035716 DOI: 10.1016/j.jprot.2020.104001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/25/2020] [Accepted: 09/29/2020] [Indexed: 01/30/2023]
Abstract
Microgravity induces injury of intestinal barrier. However, the underlying mechanism remains unclear. The present study aimed to investigate the pathological change of intestinal mucosa induced by long term simulated microgravity and to explore its etiological mechanism using a proteomic approach. The well accepted tail-suspended rat model was used to simulate microgravity. The damage of rat small intestine was evaluated via histological and molecular test, and a label-free comparative proteomic strategy was used to determine the molecular mechanism. Simulated microgravity for 21 days damaged intestine barrier with decreased numbers of the goblet cells, large intercellular space, and down-regulated adhesion molecules, accompanied by increased intestinal permeability. Proteomic analysis identified 416 differentially expressed proteins and showed simulated microgravity dramatically down-regulated the adhesion molecules and deteriorated several pathways for metabolism, focal adhesion, and regulation of actin cytoskeleton. Western-blot analysis confirmed that myosin regulatory light chain (MLC) 12B was significantly down-regulated, while rho-associated protein kinase, myosin light chain kinase (MLCK), and phosphorylated MLC were dramatically up-regulated. Taken together, these data reveal that down-regulation of adhesion molecules and MLCK dependent up-regulation MLC phosphorylation mediate intestinal barrier dysfunction during simulated microgravity injury. Our results also indicate that regulation of epithelial MLCK is a potential target for the therapeutic treatment of microgravity injury.
Collapse
Affiliation(s)
- Shibo Wang
- School of Life Science, Beijing Institute of Technology, No.5 Zhongguangcun South Street, Haidian District, Beijing 100081, China
| | - Rui Wang
- School of Life Science, Beijing Institute of Technology, No.5 Zhongguangcun South Street, Haidian District, Beijing 100081, China
| | - George Q Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
| | - Jun-Lae Cho
- Centre for Advanced Food Enginomics, School of Chemical and Biomolecular Engineering, University of Sydney, NSW 2006, Australia
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology, No.5 Zhongguangcun South Street, Haidian District, Beijing 100081, China
| | - Yujuan Li
- School of Life Science, Beijing Institute of Technology, No.5 Zhongguangcun South Street, Haidian District, Beijing 100081, China.
| |
Collapse
|
100
|
Gallo C, Ridolfi L, Scarsoglio S. Cardiovascular deconditioning during long-term spaceflight through multiscale modeling. NPJ Microgravity 2020; 6:27. [PMID: 33083524 PMCID: PMC7529778 DOI: 10.1038/s41526-020-00117-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 08/10/2020] [Indexed: 12/20/2022] Open
Abstract
Human spaceflight has been fascinating man for centuries, representing the intangible need to explore the unknown, challenge new frontiers, advance technology, and push scientific boundaries further. A key area of importance is cardiovascular deconditioning, that is, the collection of hemodynamic changes-from blood volume shift and reduction to altered cardiac function-induced by sustained presence in microgravity. A thorough grasp of the 0G adjustment point per se is important from a physiological viewpoint and fundamental for astronauts' safety and physical capability on long spaceflights. However, hemodynamic details of cardiovascular deconditioning are incomplete, inconsistent, and poorly measured to date; thus a computational approach can be quite valuable. We present a validated 1D-0D multiscale model to study the cardiovascular response to long-term 0G spaceflight in comparison to the 1G supine reference condition. Cardiac work, oxygen consumption, and contractility indexes, as well as central mean and pulse pressures were reduced, augmenting the cardiac deconditioning scenario. Exercise tolerance of a spaceflight traveler was found to be comparable to an untrained person with a sedentary lifestyle. At the capillary-venous level significant waveform alterations were observed which can modify the regular perfusion and average nutrient supply at the cellular level. The present study suggests special attention should be paid to future long spaceflights which demand prompt physical capacity at the time of restoration of partial gravity (e.g., Moon/Mars landing). Since spaceflight deconditioning has features similar to accelerated aging understanding deconditioning mechanisms in microgravity are also relevant to the understanding of aging physiology on the Earth.
Collapse
Affiliation(s)
- Caterina Gallo
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
| | - Luca Ridolfi
- Department of Environmental, Land and Infrastructure Engineering, Politecnico di Torino, Torino, Italy
| | - Stefania Scarsoglio
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
| |
Collapse
|