51
|
Van Haver S, Fan Y, Bekaert SL, Everaert C, Van Loocke W, Zanzani V, Deschildre J, Maestre IF, Amaro A, Vermeirssen V, De Preter K, Zhou T, Kentsis A, Studer L, Speleman F, Roberts SS. Human iPSC modeling recapitulates in vivo sympathoadrenal development and reveals an aberrant developmental subpopulation in familial neuroblastoma. iScience 2024; 27:108096. [PMID: 38222111 PMCID: PMC10784699 DOI: 10.1016/j.isci.2023.108096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/12/2023] [Accepted: 09/26/2023] [Indexed: 01/16/2024] Open
Abstract
Studies defining normal and disrupted human neural crest cell development have been challenging given its early timing and intricacy of development. Consequently, insight into the early disruptive events causing a neural crest related disease such as pediatric cancer neuroblastoma is limited. To overcome this problem, we developed an in vitro differentiation model to recapitulate the normal in vivo developmental process of the sympathoadrenal lineage which gives rise to neuroblastoma. We used human in vitro pluripotent stem cells and single-cell RNA sequencing to recapitulate the molecular events during sympathoadrenal development. We provide a detailed map of dynamically regulated transcriptomes during sympathoblast formation and illustrate the power of this model to study early events of the development of human neuroblastoma, identifying a distinct subpopulation of cell marked by SOX2 expression in developing sympathoblast obtained from patient derived iPSC cells harboring a germline activating mutation in the anaplastic lymphoma kinase (ALK) gene.
Collapse
Affiliation(s)
- Stéphane Van Haver
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Yujie Fan
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
- Developmental Biology Program, MSKCC, New York, NY 10065, USA
- Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10065, USA
| | - Sarah-Lee Bekaert
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Celine Everaert
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Wouter Van Loocke
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Vittorio Zanzani
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Lab for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Joke Deschildre
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Lab for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Inés Fernandez Maestre
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Jr Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adrianna Amaro
- Department of Pediatrics, MSKCC, New York, NY 10065, USA
| | - Vanessa Vermeirssen
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Lab for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Katleen De Preter
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Ting Zhou
- The SKI Stem Cell Research Facility, The Center for Stem Cell Biology and Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Alex Kentsis
- Department of Pediatrics, MSKCC, New York, NY 10065, USA
- Molecular Pharmacology Program, MSKCC, New York, NY, USA
- Tow Center for Developmental Oncology, MSKCC, New York, NY 10065, USA
- Departments of Pediatrics, Pharmacology and Physiology & Biophysics, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
- Developmental Biology Program, MSKCC, New York, NY 10065, USA
| | - Frank Speleman
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | | |
Collapse
|
52
|
Peloggia J, Lush ME, Tsai YY, Wood C, Piotrowski T. Environmental and molecular control of tissue-specific ionocyte differentiation in zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575421. [PMID: 38260427 PMCID: PMC10802608 DOI: 10.1101/2024.01.12.575421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Organisms adjust their physiology to cope with environmental fluctuations and maintain fitness. These adaptations occur via genetic changes over multiple generations or through acclimation, a set of reversible phenotypic changes that confer resilience to the individual. Aquatic organisms are subject to dramatic seasonal fluctuations in water salinity, which can affect the function of lateral line mechanosensory hair cells. To maintain hair cell function when salinity decreases, ion-regulating cells, Neuromast-associated ionocytes (Nm ionocytes), increase in number and invade lateral line neuromasts. How environmental changes trigger this adaptive differentiation of Nm ionocytes and how these cells are specified is still unknown. Here, we identify Nm ionocyte progenitors as foxi3a/foxi3b-expressing skin cells and show that their differentiation is associated with sequential activation of different Notch pathway components, which control ionocyte survival. We demonstrate that new Nm ionocytes are rapidly specified by absolute salinity levels, independently of stress response pathways. We further show that Nm ionocyte differentiation is selectively triggered by depletion of specific ions, such as Ca2+ and Na+/Cl-, but not by low K+ levels, and is independent of media osmolarity. Finally, we demonstrate that hair cell activity plays a role in Nm ionocyte recruitment and that systemic factors are not necessary for Nm ionocyte induction. In summary, we have identified how environmental changes activate a signaling cascade that triggers basal skin cell progenitors to differentiate into Nm ionocytes and invade lateral line organs. This adaptive behavior is an example of physiological plasticity that may prove essential for survival in changing climates.
Collapse
Affiliation(s)
- Julia Peloggia
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Mark E. Lush
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Ya-Yin Tsai
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Christopher Wood
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Tatjana Piotrowski
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Lead Contact
| |
Collapse
|
53
|
Nguyen LT, Zimmermann K, Kowenz-Leutz E, Lim R, Hofstätter M, Mildner A, Leutz A. C/EBPβ-induced lymphoid-to-myeloid transdifferentiation emulates granulocyte-monocyte progenitor biology. Stem Cell Reports 2024; 19:112-125. [PMID: 38157851 PMCID: PMC10828814 DOI: 10.1016/j.stemcr.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
CCAAT/enhancer-binding protein beta (C/EBPβ) induces primary v-Abl immortalized mouse B cells to transdifferentiate (BT, B cell transdifferentiation) into granulocyte-macrophage progenitor-like cells (GMPBTs). GMPBTs maintain cytokine-independent self-renewal, lineage choice, and multilineage differentiation. Single-cell transcriptomics demonstrated that GMPBTs comprise a continuum of myelomonopoietic differentiation states that seamlessly fit into state-to-fate maps of normal granulocyte-macrophage progenitors (GMPs). Inactivating v-Abl kinase revealed the dependence on activated CSF2-JAK2-STAT5 signaling. Deleting IRF8 diminished monopoiesis and enhanced granulopoiesis while removing C/EBPβ-abrogated self-renewal and granulopoiesis but permitted macrophage differentiation. The GMPBT culture system is easily scalable to explore the basics of GMP biology and lineage commitment and largely reduces ethically and legislatively debatable, labor-intensive, and costly animal experiments.
Collapse
Affiliation(s)
- Linh Thuy Nguyen
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Roessle-Str. 10, Berlin, Germany; Berlin School of Integrative Oncology (BSIO), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Karin Zimmermann
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Roessle-Str. 10, Berlin, Germany
| | - Elisabeth Kowenz-Leutz
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Roessle-Str. 10, Berlin, Germany
| | - Ramonique Lim
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Roessle-Str. 10, Berlin, Germany
| | - Maria Hofstätter
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Roessle-Str. 10, Berlin, Germany
| | - Alexander Mildner
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Roessle-Str. 10, Berlin, Germany; Institute of Biomedicine at University of Turku, Turku, Finland; InFLAMES Research Flagship, University of Turku, 20014 Turku, Finland
| | - Achim Leutz
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Roessle-Str. 10, Berlin, Germany.
| |
Collapse
|
54
|
Li Y, Chen S, Liu W, Zhao D, Gao Y, Hu S, Liu H, Li Y, Qu L, Liu X. A full-body transcription factor expression atlas with completely resolved cell identities in C. elegans. Nat Commun 2024; 15:358. [PMID: 38195740 PMCID: PMC10776613 DOI: 10.1038/s41467-023-42677-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/18/2023] [Indexed: 01/11/2024] Open
Abstract
Invariant cell lineage in C. elegans enables spatiotemporal resolution of transcriptional regulatory mechanisms controlling the fate of each cell. Here, we develop RAPCAT (Robust-point-matching- And Piecewise-affine-based Cell Annotation Tool) to automate cell identity assignment in three-dimensional image stacks of L1 larvae and profile reporter expression of 620 transcription factors in every cell. Transcription factor profile-based clustering analysis defines 80 cell types distinct from conventional phenotypic cell types and identifies three general phenotypic modalities related to these classifications. First, transcription factors are broadly downregulated in quiescent stage Hermaphrodite Specific Neurons, suggesting stage- and cell type-specific variation in transcriptome size. Second, transcription factor expression is more closely associated with morphology than other phenotypic modalities in different pre- and post-differentiation developmental stages. Finally, embryonic cell lineages can be associated with specific transcription factor expression patterns and functions that persist throughout postembryonic life. This study presents a comprehensive transcription factor atlas for investigation of intra-cell type heterogeneity.
Collapse
Affiliation(s)
- Yongbin Li
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Siyu Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Weihong Liu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Intelligent Perception Lab, Hanwang Technology Co., Ltd, Beijing, 100193, China
| | - Di Zhao
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise & Health, Tianjin University of Sport, Tianjin, 300381, China
| | - Yimeng Gao
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Shipeng Hu
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Hanyu Liu
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Yuanyuan Li
- Ministry of Education Key Laboratory of Intelligent Computation & Signal Processing, Information Materials and Intelligent Sensing Laboratory of Anhui Province, School of Electronics and Information Engineering, Anhui University, Hefei, 230039, China
| | - Lei Qu
- Ministry of Education Key Laboratory of Intelligent Computation & Signal Processing, Information Materials and Intelligent Sensing Laboratory of Anhui Province, School of Electronics and Information Engineering, Anhui University, Hefei, 230039, China
| | - Xiao Liu
- College of Life Sciences, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
55
|
Li Z, Yang W, Wu P, Shan Y, Zhang X, Chen F, Yang J, Yang JR. Reconstructing cell lineage trees with genomic barcoding: approaches and applications. J Genet Genomics 2024; 51:35-47. [PMID: 37269980 DOI: 10.1016/j.jgg.2023.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 06/05/2023]
Abstract
In multicellular organisms, developmental history of cell divisions and functional annotation of terminal cells can be organized into a cell lineage tree (CLT). The reconstruction of the CLT has long been a major goal in developmental biology and other related fields. Recent technological advancements, especially those in editable genomic barcodes and single-cell high-throughput sequencing, have sparked a new wave of experimental methods for reconstructing CLTs. Here we review the existing experimental approaches to the reconstruction of CLT, which are broadly categorized as either image-based or DNA barcode-based methods. In addition, we present a summary of the related literature based on the biological insight provided by the obtained CLTs. Moreover, we discuss the challenges that will arise as more and better CLT data become available in the near future. Genomic barcoding-based CLT reconstructions and analyses, due to their wide applicability and high scalability, offer the potential for novel biological discoveries, especially those related to general and systemic properties of the developmental process.
Collapse
Affiliation(s)
- Zizhang Li
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Department of Genetics and Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Wenjing Yang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Peng Wu
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yuyan Shan
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xiaoyu Zhang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Feng Chen
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Department of Genetics and Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Junnan Yang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jian-Rong Yang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Department of Genetics and Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
56
|
Sepp M, Leiss K, Murat F, Okonechnikov K, Joshi P, Leushkin E, Spänig L, Mbengue N, Schneider C, Schmidt J, Trost N, Schauer M, Khaitovich P, Lisgo S, Palkovits M, Giere P, Kutscher LM, Anders S, Cardoso-Moreira M, Sarropoulos I, Pfister SM, Kaessmann H. Cellular development and evolution of the mammalian cerebellum. Nature 2024; 625:788-796. [PMID: 38029793 PMCID: PMC10808058 DOI: 10.1038/s41586-023-06884-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
The expansion of the neocortex, a hallmark of mammalian evolution1,2, was accompanied by an increase in cerebellar neuron numbers3. However, little is known about the evolution of the cellular programmes underlying the development of the cerebellum in mammals. In this study we generated single-nucleus RNA-sequencing data for around 400,000 cells to trace the development of the cerebellum from early neurogenesis to adulthood in human, mouse and the marsupial opossum. We established a consensus classification of the cellular diversity in the developing mammalian cerebellum and validated it by spatial mapping in the fetal human cerebellum. Our cross-species analyses revealed largely conserved developmental dynamics of cell-type generation, except for Purkinje cells, for which we observed an expansion of early-born subtypes in the human lineage. Global transcriptome profiles, conserved cell-state markers and gene-expression trajectories across neuronal differentiation show that cerebellar cell-type-defining programmes have been overall preserved for at least 160 million years. However, we also identified many orthologous genes that gained or lost expression in cerebellar neural cell types in one of the species or evolved new expression trajectories during neuronal differentiation, indicating widespread gene repurposing at the cell-type level. In sum, our study unveils shared and lineage-specific gene-expression programmes governing the development of cerebellar cells and expands our understanding of mammalian brain evolution.
Collapse
Affiliation(s)
- Mari Sepp
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| | - Kevin Leiss
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| | - Florent Murat
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- INRAE, LPGP, Rennes, France
| | - Konstantin Okonechnikov
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Piyush Joshi
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Developmental Origins of Pediatric Cancer Junior Group, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Evgeny Leushkin
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Lisa Spänig
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Developmental Origins of Pediatric Cancer Junior Group, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Noe Mbengue
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Céline Schneider
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Julia Schmidt
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Nils Trost
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Maria Schauer
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Philipp Khaitovich
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Steven Lisgo
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Miklós Palkovits
- Human Brain Tissue Bank, Semmelweis University, Budapest, Hungary
| | - Peter Giere
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Lena M Kutscher
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Developmental Origins of Pediatric Cancer Junior Group, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Simon Anders
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- BioQuant, Heidelberg University, Heidelberg, Germany
| | | | - Ioannis Sarropoulos
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.
- Wellcome Sanger Institute, Cambridge, UK.
| | - Stefan M Pfister
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), Heidelberg, Germany.
| | - Henrik Kaessmann
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| |
Collapse
|
57
|
Yu G, Sun B, Zhu Z, Mehareb EM, Teng A, Han J, Zhang H, Liu J, Liu X, Raza G, Zhang B, Zhang Y, Wang K. Genome-wide DNase I-hypersensitive site assay reveals distinct genomic distributions and functional features of open chromatin in autopolyploid sugarcane. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:573-589. [PMID: 37897092 DOI: 10.1111/tpj.16513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/15/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
The characterization of cis-regulatory DNA elements (CREs) is essential for deciphering the regulation of gene expression in eukaryotes. Although there have been endeavors to identify CREs in plants, the properties of CREs in polyploid genomes are still largely unknown. Here, we conducted the genome-wide identification of DNase I-hypersensitive sites (DHSs) in leaf and stem tissues of the auto-octoploid species Saccharum officinarum. We revealed that DHSs showed highly similar distributions in the genomes of these two S. officinarum tissues. Notably, we observed that approximately 74% of DHSs were located in distal intergenic regions, suggesting considerable differences in the abundance of distal CREs between S. officinarum and other plants. Leaf- and stem-dependent transcriptional regulatory networks were also developed by mining the binding motifs of transcription factors (TFs) from tissue-specific DHSs. Four TEOSINTE BRANCHED 1, CYCLOIDEA, and PCF1 (TCP) TFs (TCP2, TCP4, TCP7, and TCP14) and two ethylene-responsive factors (ERFs) (ERF109 and ERF03) showed strong causal connections with short binding distances from each other, pointing to their possible roles in the regulatory networks of leaf and stem development. Through functional validation in transiently transgenic protoplasts, we isolate a set of tissue-specific promoters. Overall, the DHS maps presented here offer a global view of the potential transcriptional regulatory elements in polyploid sugarcane and can be expected to serve as a valuable resource for both transcriptional network elucidation and genome editing in sugarcane breeding.
Collapse
Affiliation(s)
- Guangrun Yu
- School of Life Sciences, Nantong University, Nantong, 226019, China
| | - Bo Sun
- School of Life Sciences, Nantong University, Nantong, 226019, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhiying Zhu
- School of Life Sciences, Nantong University, Nantong, 226019, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Eid M Mehareb
- Sugar Crops Research Institute (SRCI), Agricultural Research Center (ARC), Giza, 12619, Egypt
| | - Ailing Teng
- School of Life Sciences, Nantong University, Nantong, 226019, China
| | - Jinlei Han
- School of Life Sciences, Nantong University, Nantong, 226019, China
| | - Hui Zhang
- School of Life Sciences, Nantong University, Nantong, 226019, China
| | - Jiayong Liu
- Sugarcane Institute, Yunnan Academy of Agricultural Sciences, Kaiyuan, 661699, China
| | - Xinlong Liu
- Sugarcane Institute, Yunnan Academy of Agricultural Sciences, Kaiyuan, 661699, China
| | - Ghulam Raza
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, 38000, Pakistan
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, North Carolina, 27858, USA
| | - Yuebin Zhang
- Sugarcane Institute, Yunnan Academy of Agricultural Sciences, Kaiyuan, 661699, China
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong, 226019, China
| |
Collapse
|
58
|
Moroz LL, Romanova DY. Homologous vs. homocratic neurons: revisiting complex evolutionary trajectories. Front Cell Dev Biol 2023; 11:1336093. [PMID: 38178869 PMCID: PMC10764524 DOI: 10.3389/fcell.2023.1336093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/08/2023] [Indexed: 01/06/2024] Open
Affiliation(s)
- Leonid L. Moroz
- Department of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, United States
| | - Daria Y. Romanova
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, Russia
| |
Collapse
|
59
|
Bump P, Lubeck L. Marine Invertebrates One Cell at A Time: Insights from Single-Cell Analysis. Integr Comp Biol 2023; 63:999-1009. [PMID: 37188638 PMCID: PMC10714908 DOI: 10.1093/icb/icad034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 05/17/2023] Open
Abstract
Over the past decade, single-cell RNA-sequencing (scRNA-seq) has made it possible to study the cellular diversity of a broad range of organisms. Technological advances in single-cell isolation and sequencing have expanded rapidly, allowing the transcriptomic profile of individual cells to be captured. As a result, there has been an explosion of cell type atlases created for many different marine invertebrate species from across the tree of life. Our focus in this review is to synthesize current literature on marine invertebrate scRNA-seq. Specifically, we provide perspectives on key insights from scRNA-seq studies, including descriptive studies of cell type composition, how cells respond in dynamic processes such as development and regeneration, and the evolution of new cell types. Despite these tremendous advances, there also lie several challenges ahead. We discuss the important considerations that are essential when making comparisons between experiments, or between datasets from different species. Finally, we address the future of single-cell analyses in marine invertebrates, including combining scRNA-seq data with other 'omics methods to get a fuller understanding of cellular complexities. The full diversity of cell types across marine invertebrates remains unknown and understanding this diversity and evolution will provide rich areas for future study.
Collapse
Affiliation(s)
- Paul Bump
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Lauren Lubeck
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| |
Collapse
|
60
|
Yao Z, van Velthoven CTJ, Kunst M, Zhang M, McMillen D, Lee C, Jung W, Goldy J, Abdelhak A, Aitken M, Baker K, Baker P, Barkan E, Bertagnolli D, Bhandiwad A, Bielstein C, Bishwakarma P, Campos J, Carey D, Casper T, Chakka AB, Chakrabarty R, Chavan S, Chen M, Clark M, Close J, Crichton K, Daniel S, DiValentin P, Dolbeare T, Ellingwood L, Fiabane E, Fliss T, Gee J, Gerstenberger J, Glandon A, Gloe J, Gould J, Gray J, Guilford N, Guzman J, Hirschstein D, Ho W, Hooper M, Huang M, Hupp M, Jin K, Kroll M, Lathia K, Leon A, Li S, Long B, Madigan Z, Malloy J, Malone J, Maltzer Z, Martin N, McCue R, McGinty R, Mei N, Melchor J, Meyerdierks E, Mollenkopf T, Moonsman S, Nguyen TN, Otto S, Pham T, Rimorin C, Ruiz A, Sanchez R, Sawyer L, Shapovalova N, Shepard N, Slaughterbeck C, Sulc J, Tieu M, Torkelson A, Tung H, Valera Cuevas N, Vance S, Wadhwani K, Ward K, Levi B, Farrell C, Young R, Staats B, Wang MQM, Thompson CL, Mufti S, Pagan CM, Kruse L, Dee N, Sunkin SM, Esposito L, Hawrylycz MJ, Waters J, Ng L, Smith K, Tasic B, Zhuang X, Zeng H. A high-resolution transcriptomic and spatial atlas of cell types in the whole mouse brain. Nature 2023; 624:317-332. [PMID: 38092916 PMCID: PMC10719114 DOI: 10.1038/s41586-023-06812-z] [Citation(s) in RCA: 139] [Impact Index Per Article: 139.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 10/31/2023] [Indexed: 12/17/2023]
Abstract
The mammalian brain consists of millions to billions of cells that are organized into many cell types with specific spatial distribution patterns and structural and functional properties1-3. Here we report a comprehensive and high-resolution transcriptomic and spatial cell-type atlas for the whole adult mouse brain. The cell-type atlas was created by combining a single-cell RNA-sequencing (scRNA-seq) dataset of around 7 million cells profiled (approximately 4.0 million cells passing quality control), and a spatial transcriptomic dataset of approximately 4.3 million cells using multiplexed error-robust fluorescence in situ hybridization (MERFISH). The atlas is hierarchically organized into 4 nested levels of classification: 34 classes, 338 subclasses, 1,201 supertypes and 5,322 clusters. We present an online platform, Allen Brain Cell Atlas, to visualize the mouse whole-brain cell-type atlas along with the single-cell RNA-sequencing and MERFISH datasets. We systematically analysed the neuronal and non-neuronal cell types across the brain and identified a high degree of correspondence between transcriptomic identity and spatial specificity for each cell type. The results reveal unique features of cell-type organization in different brain regions-in particular, a dichotomy between the dorsal and ventral parts of the brain. The dorsal part contains relatively fewer yet highly divergent neuronal types, whereas the ventral part contains more numerous neuronal types that are more closely related to each other. Our study also uncovered extraordinary diversity and heterogeneity in neurotransmitter and neuropeptide expression and co-expression patterns in different cell types. Finally, we found that transcription factors are major determinants of cell-type classification and identified a combinatorial transcription factor code that defines cell types across all parts of the brain. The whole mouse brain transcriptomic and spatial cell-type atlas establishes a benchmark reference atlas and a foundational resource for integrative investigations of cellular and circuit function, development and evolution of the mammalian brain.
Collapse
Affiliation(s)
- Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA, USA.
| | | | | | - Meng Zhang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA, USA
| | | | - Changkyu Lee
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Won Jung
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA, USA
| | - Jeff Goldy
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Pamela Baker
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Eliza Barkan
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | | | - Daniel Carey
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | - Min Chen
- University of Pennsylvania, Philadelphia, PA, USA
| | | | - Jennie Close
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Scott Daniel
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Tim Dolbeare
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - James Gee
- University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Jessica Gloe
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - James Gray
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Windy Ho
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Mike Huang
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Madie Hupp
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Kelly Jin
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Kanan Lathia
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Arielle Leon
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Su Li
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Brian Long
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Zach Madigan
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Zoe Maltzer
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Naomi Martin
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Rachel McCue
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Ryan McGinty
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Nicholas Mei
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Jose Melchor
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | - Sven Otto
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | - Lane Sawyer
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Noah Shepard
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Josef Sulc
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Michael Tieu
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Herman Tung
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Shane Vance
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Katelyn Ward
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Boaz Levi
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Rob Young
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Brian Staats
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Shoaib Mufti
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Lauren Kruse
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Nick Dee
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Jack Waters
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Lydia Ng
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA.
| |
Collapse
|
61
|
Tosches MA, Lee HJ. Cellular atlases of the entire mouse brain. Nature 2023; 624:253-255. [PMID: 38092903 DOI: 10.1038/d41586-023-03781-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
|
62
|
Nevue AA, Zemel BM, Friedrich SR, von Gersdorff H, Mello CV. Cell type specializations of the vocal-motor cortex in songbirds. Cell Rep 2023; 42:113344. [PMID: 37910500 PMCID: PMC10752865 DOI: 10.1016/j.celrep.2023.113344] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/30/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023] Open
Abstract
Identifying molecular specializations in cortical circuitry supporting complex behaviors, like learned vocalizations, requires understanding of the neuroanatomical context from which these circuits arise. In songbirds, the robust arcopallial nucleus (RA) provides descending cortical projections for fine vocal-motor control. Using single-nuclei transcriptomics and spatial gene expression mapping in zebra finches, we have defined cell types and molecular specializations that distinguish RA from adjacent regions involved in non-vocal motor and sensory processing. We describe an RA-specific projection neuron, differential inhibitory subtypes, and glia specializations and have probed predicted GABAergic interneuron subtypes electrophysiologically within RA. Several cell-specific markers arise developmentally in a sex-dependent manner. Our interactive apps integrate cellular data with developmental and spatial distribution data from the gene expression brain atlas ZEBrA. Users can explore molecular specializations of vocal-motor neurons and support cells that likely reflect adaptations key to the physiology and evolution of vocal control circuits and refined motor skills.
Collapse
Affiliation(s)
- Alexander A Nevue
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Benjamin M Zemel
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Samantha R Friedrich
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
| | | | - Claudio V Mello
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
63
|
Seifert AW, Duncan EM, Zayas RM. Enduring questions in regenerative biology and the search for answers. Commun Biol 2023; 6:1139. [PMID: 37945686 PMCID: PMC10636051 DOI: 10.1038/s42003-023-05505-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023] Open
Abstract
The potential for basic research to uncover the inner workings of regenerative processes and produce meaningful medical therapies has inspired scientists, clinicians, and patients for hundreds of years. Decades of studies using a handful of highly regenerative model organisms have significantly advanced our knowledge of key cell types and molecular pathways involved in regeneration. However, many questions remain about how regenerative processes unfold in regeneration-competent species, how they are curtailed in non-regenerative organisms, and how they might be induced (or restored) in humans. Recent technological advances in genomics, molecular biology, computer science, bioengineering, and stem cell research hold promise to collectively provide new experimental evidence for how different organisms accomplish the process of regeneration. In theory, this new evidence should inform the design of new clinical approaches for regenerative medicine. A deeper understanding of how tissues and organs regenerate will also undoubtedly impact many adjacent scientific fields. To best apply and adapt these new technologies in ways that break long-standing barriers and answer critical questions about regeneration, we must combine the deep knowledge of developmental and evolutionary biologists with the hard-earned expertise of scientists in mechanistic and technical fields. To this end, this perspective is based on conversations from a workshop we organized at the Banbury Center, during which a diverse cross-section of the regeneration research community and experts in various technologies discussed enduring questions in regenerative biology. Here, we share the questions this group identified as significant and unanswered, i.e., known unknowns. We also describe the obstacles limiting our progress in answering these questions and how expanding the number and diversity of organisms used in regeneration research is essential for deepening our understanding of regenerative capacity. Finally, we propose that investigating these problems collaboratively across a diverse network of researchers has the potential to advance our field and produce unexpected insights into important questions in related areas of biology and medicine.
Collapse
Affiliation(s)
- Ashley W Seifert
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA.
| | - Elizabeth M Duncan
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA.
| | - Ricardo M Zayas
- Department of Biology, San Diego State University, San Diego, CA, 92182, USA.
| |
Collapse
|
64
|
Balasubramanian RN, Gao M, Umen J. Identification of cell-type specific alternative transcripts in the multicellular alga Volvox carteri. BMC Genomics 2023; 24:654. [PMID: 37904088 PMCID: PMC10617192 DOI: 10.1186/s12864-023-09558-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/06/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Cell type specialization is a hallmark of complex multicellular organisms and is usually established through implementation of cell-type-specific gene expression programs. The multicellular green alga Volvox carteri has just two cell types, germ and soma, that have previously been shown to have very different transcriptome compositions which match their specialized roles. Here we interrogated another potential mechanism for differentiation in V. carteri, cell type specific alternative transcript isoforms (CTSAI). METHODS We used pre-existing predictions of alternative transcripts and de novo transcript assembly with HISAT2 and Ballgown software to compile a list of loci with two or more transcript isoforms, identified a small subset that were candidates for CTSAI, and manually curated this subset of genes to remove false positives. We experimentally verified three candidates using semi-quantitative RT-PCR to assess relative isoform abundance in each cell type. RESULTS Of the 1978 loci with two or more predicted transcript isoforms 67 of these also showed cell type isoform expression biases. After curation 15 strong candidates for CTSAI were identified, three of which were experimentally verified, and their predicted gene product functions were evaluated in light of potential cell type specific roles. A comparison of genes with predicted alternative splicing from Chlamydomonas reinhardtii, a unicellular relative of V. carteri, identified little overlap between ortholog pairs with alternative splicing in both species. Finally, we interrogated cell type expression patterns of 126 V. carteri predicted RNA binding protein (RBP) encoding genes and found 40 that showed either somatic or germ cell expression bias. These RBPs are potential mediators of CTSAI in V. carteri and suggest possible pre-adaptation for cell type specific RNA processing and a potential path for generating CTSAI in the early ancestors of metazoans and plants. CONCLUSIONS We predicted numerous instances of alternative transcript isoforms in Volvox, only a small subset of which showed cell type specific isoform expression bias. However, the validated examples of CTSAI supported existing hypotheses about cell type specialization in V. carteri, and also suggested new hypotheses about mechanisms of functional specialization for their gene products. Our data imply that CTSAI operates as a minor but important component of V. carteri cellular differentiation and could be used as a model for how alternative isoforms emerge and co-evolve with cell type specialization.
Collapse
Affiliation(s)
| | - Minglu Gao
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - James Umen
- Donald Danforth Plant Science Center, St. Louis, MO, USA.
| |
Collapse
|
65
|
Abstract
Animal tissues are made up of multiple cell types that are increasingly well-characterized, yet our understanding of the core principles that govern tissue organization is still incomplete. This is in part because many observable tissue characteristics, such as cellular composition and spatial patterns, are emergent properties, and as such, they cannot be explained through the knowledge of individual cells alone. Here we propose a complex systems theory perspective to address this fundamental gap in our understanding of tissue biology. We introduce the concept of cell categories, which is based on cell relations rather than cell identity. Based on these notions we then discuss common principles of tissue modularity, introducing compositional, structural, and functional tissue modules. Cell diversity and cell relations provide a basis for a new perspective on the underlying principles of tissue organization in health and disease.
Collapse
Affiliation(s)
- Miri Adler
- Tananbaum Center for Theoretical and Analytical Human Biology, Yale University School of Medicine, New Haven, Connecticut, USA;
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Arun R Chavan
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ruslan Medzhitov
- Tananbaum Center for Theoretical and Analytical Human Biology, Yale University School of Medicine, New Haven, Connecticut, USA;
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
66
|
Song Y, Miao Z, Brazma A, Papatheodorou I. Benchmarking strategies for cross-species integration of single-cell RNA sequencing data. Nat Commun 2023; 14:6495. [PMID: 37838716 PMCID: PMC10576752 DOI: 10.1038/s41467-023-41855-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 09/21/2023] [Indexed: 10/16/2023] Open
Abstract
The growing number of available single-cell gene expression datasets from different species creates opportunities to explore evolutionary relationships between cell types across species. Cross-species integration of single-cell RNA-sequencing data has been particularly informative in this context. However, in order to do so robustly it is essential to have rigorous benchmarking and appropriate guidelines to ensure that integration results truly reflect biology. Here, we benchmark 28 combinations of gene homology mapping methods and data integration algorithms in a variety of biological settings. We examine the capability of each strategy to perform species-mixing of known homologous cell types and to preserve biological heterogeneity using 9 established metrics. We also develop a new biology conservation metric to address the maintenance of cell type distinguishability. Overall, scANVI, scVI and SeuratV4 methods achieve a balance between species-mixing and biology conservation. For evolutionarily distant species, including in-paralogs is beneficial. SAMap outperforms when integrating whole-body atlases between species with challenging gene homology annotation. We provide our freely available cross-species integration and assessment pipeline to help analyse new data and develop new algorithms.
Collapse
Affiliation(s)
- Yuyao Song
- European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SA, United Kingdom.
| | - Zhichao Miao
- European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SA, United Kingdom
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, China
| | - Alvis Brazma
- European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SA, United Kingdom
| | - Irene Papatheodorou
- European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SA, United Kingdom.
| |
Collapse
|
67
|
Krienen FM, Levandowski KM, Zaniewski H, del Rosario RC, Schroeder ME, Goldman M, Wienisch M, Lutservitz A, Beja-Glasser VF, Chen C, Zhang Q, Chan KY, Li KX, Sharma J, McCormack D, Shin TW, Harrahill A, Nyase E, Mudhar G, Mauermann A, Wysoker A, Nemesh J, Kashin S, Vergara J, Chelini G, Dimidschstein J, Berretta S, Deverman BE, Boyden E, McCarroll SA, Feng G. A marmoset brain cell census reveals regional specialization of cellular identities. SCIENCE ADVANCES 2023; 9:eadk3986. [PMID: 37824615 PMCID: PMC10569717 DOI: 10.1126/sciadv.adk3986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023]
Abstract
The mammalian brain is composed of many brain structures, each with its own ontogenetic and developmental history. We used single-nucleus RNA sequencing to sample over 2.4 million brain cells across 18 locations in the common marmoset, a New World monkey primed for genetic engineering, and examined gene expression patterns of cell types within and across brain structures. The adult transcriptomic identity of most neuronal types is shaped more by developmental origin than by neurotransmitter signaling repertoire. Quantitative mapping of GABAergic types with single-molecule FISH (smFISH) reveals that interneurons in the striatum and neocortex follow distinct spatial principles, and that lateral prefrontal and other higher-order cortical association areas are distinguished by high proportions of VIP+ neurons. We use cell type-specific enhancers to drive AAV-GFP and reconstruct the morphologies of molecularly resolved interneuron types in neocortex and striatum. Our analyses highlight how lineage, local context, and functional class contribute to the transcriptional identity and biodistribution of primate brain cell types.
Collapse
Affiliation(s)
- Fenna M. Krienen
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kirsten M. Levandowski
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Heather Zaniewski
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ricardo C.H. del Rosario
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Margaret E. Schroeder
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Melissa Goldman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Martin Wienisch
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alyssa Lutservitz
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Victoria F. Beja-Glasser
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Cindy Chen
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Qiangge Zhang
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ken Y. Chan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Katelyn X. Li
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jitendra Sharma
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dana McCormack
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tay Won Shin
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Cambridge, MA 02139, USA
| | - Andrew Harrahill
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eric Nyase
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gagandeep Mudhar
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Abigail Mauermann
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Cambridge, MA 02139, USA
| | - Alec Wysoker
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - James Nemesh
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Seva Kashin
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Josselyn Vergara
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Gabriele Chelini
- Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura n.1, Rovereto (TN) 38068, Italy
| | - Jordane Dimidschstein
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sabina Berretta
- Basic Neuroscience Division, McLean Hospital, Belmont, MA 02478, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Benjamin E. Deverman
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ed Boyden
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Cambridge, MA 02139, USA
| | - Steven A. McCarroll
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Guoping Feng
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| |
Collapse
|
68
|
Najle SR, Grau-Bové X, Elek A, Navarrete C, Cianferoni D, Chiva C, Cañas-Armenteros D, Mallabiabarrena A, Kamm K, Sabidó E, Gruber-Vodicka H, Schierwater B, Serrano L, Sebé-Pedrós A. Stepwise emergence of the neuronal gene expression program in early animal evolution. Cell 2023; 186:4676-4693.e29. [PMID: 37729907 PMCID: PMC10580291 DOI: 10.1016/j.cell.2023.08.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/13/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023]
Abstract
The assembly of the neuronal and other major cell type programs occurred early in animal evolution. We can reconstruct this process by studying non-bilaterians like placozoans. These small disc-shaped animals not only have nine morphologically described cell types and no neurons but also show coordinated behaviors triggered by peptide-secreting cells. We investigated possible neuronal affinities of these peptidergic cells using phylogenetics, chromatin profiling, and comparative single-cell genomics in four placozoans. We found conserved cell type expression programs across placozoans, including populations of transdifferentiating and cycling cells, suggestive of active cell type homeostasis. We also uncovered fourteen peptidergic cell types expressing neuronal-associated components like the pre-synaptic scaffold that derive from progenitor cells with neurogenesis signatures. In contrast, earlier-branching animals like sponges and ctenophores lacked this conserved expression. Our findings indicate that key neuronal developmental and effector gene modules evolved before the advent of cnidarian/bilaterian neurons in the context of paracrine cell signaling.
Collapse
Affiliation(s)
- Sebastián R Najle
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Xavier Grau-Bové
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Anamaria Elek
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Cristina Navarrete
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Damiano Cianferoni
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Cristina Chiva
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Didac Cañas-Armenteros
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Arrate Mallabiabarrena
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Kai Kamm
- Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Eduard Sabidó
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Harald Gruber-Vodicka
- Max Planck Institute for Marine Microbiology, Bremen, Germany; Zoological Institute, Christian Albrechts University, Kiel, Germany
| | - Bernd Schierwater
- Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany; American Museum of Natural History, Richard Gilder Graduate School, NY, USA
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ICREA, Barcelona, Spain
| | - Arnau Sebé-Pedrós
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ICREA, Barcelona, Spain.
| |
Collapse
|
69
|
Deng J, Liu YJ, Wei WT, Huang QX, Zhao LP, Luo LY, Zhu Q, Zhang L, Chen Y, Ren YL, Jia SG, Lin YL, Yang J, Lv FH, Zhang HP, Li FE, Li L, Li MH. Single-cell transcriptome and metagenome profiling reveals the genetic basis of rumen functions and convergent developmental patterns in ruminants. Genome Res 2023; 33:1690-1707. [PMID: 37884341 PMCID: PMC10691550 DOI: 10.1101/gr.278239.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/17/2023] [Indexed: 10/28/2023]
Abstract
The rumen undergoes developmental changes during maturation. To characterize this understudied dynamic process, we profiled single-cell transcriptomes of about 308,000 cells from the rumen tissues of sheep and goats at 17 time points. We built comprehensive transcriptome and metagenome atlases from early embryonic to rumination stages, and recapitulated histomorphometric and transcriptional features of the rumen, revealing key transitional signatures associated with the development of ruminal cells, microbiota, and core transcriptional regulatory networks. In addition, we identified and validated potential cross-talk between host cells and microbiomes and revealed their roles in modulating the spatiotemporal expression of key genes in ruminal cells. Cross-species analyses revealed convergent developmental patterns of cellular heterogeneity, gene expression, and cell-cell and microbiome-cell interactions. Finally, we uncovered how the interactions can act upon the symbiotic rumen system to modify the processes of fermentation, fiber digestion, and immune defense. These results significantly enhance understanding of the genetic basis of the unique roles of rumen.
Collapse
Affiliation(s)
- Juan Deng
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ya-Jing Liu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wen-Tian Wei
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Qi-Xuan Huang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Li-Ping Zhao
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing 100101, China
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Ling-Yun Luo
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Qi Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuan Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan-Ling Ren
- Shandong Binzhou Academy of Animal Science and Veterinary Medicine, Binzhou 256600, China
| | - Shan-Gang Jia
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yu-Luan Lin
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ji Yang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Feng-Hua Lv
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Hong-Ping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Feng-E Li
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China;
| | - Meng-Hua Li
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
70
|
Gumnit E, Tosches MA. A cell type atlas of the lamprey brain. Nat Ecol Evol 2023; 7:1591-1592. [PMID: 37710040 DOI: 10.1038/s41559-023-02195-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Affiliation(s)
- Elias Gumnit
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | | |
Collapse
|
71
|
Lamanna F, Hervas-Sotomayor F, Oel AP, Jandzik D, Sobrido-Cameán D, Santos-Durán GN, Martik ML, Stundl J, Green SA, Brüning T, Mößinger K, Schmidt J, Schneider C, Sepp M, Murat F, Smith JJ, Bronner ME, Rodicio MC, Barreiro-Iglesias A, Medeiros DM, Arendt D, Kaessmann H. A lamprey neural cell type atlas illuminates the origins of the vertebrate brain. Nat Ecol Evol 2023; 7:1714-1728. [PMID: 37710042 PMCID: PMC10555824 DOI: 10.1038/s41559-023-02170-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/18/2023] [Indexed: 09/16/2023]
Abstract
The vertebrate brain emerged more than ~500 million years ago in common evolutionary ancestors. To systematically trace its cellular and molecular origins, we established a spatially resolved cell type atlas of the entire brain of the sea lamprey-a jawless species whose phylogenetic position affords the reconstruction of ancestral vertebrate traits-based on extensive single-cell RNA-seq and in situ sequencing data. Comparisons of this atlas to neural data from the mouse and other jawed vertebrates unveiled various shared features that enabled the reconstruction of cell types, tissue structures and gene expression programs of the ancestral vertebrate brain. However, our analyses also revealed key tissues and cell types that arose later in evolution. For example, the ancestral brain was probably devoid of cerebellar cell types and oligodendrocytes (myelinating cells); our data suggest that the latter emerged from astrocyte-like evolutionary precursors in the jawed vertebrate lineage. Altogether, our work illuminates the cellular and molecular architecture of the ancestral vertebrate brain and provides a foundation for exploring its diversification during evolution.
Collapse
Affiliation(s)
- Francesco Lamanna
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| | | | - A Phillip Oel
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - David Jandzik
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
- Department of Zoology, Comenius University, Bratislava, Slovakia
| | - Daniel Sobrido-Cameán
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Gabriel N Santos-Durán
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Megan L Martik
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Jan Stundl
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Stephen A Green
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Thoomke Brüning
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Katharina Mößinger
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Julia Schmidt
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Celine Schneider
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Mari Sepp
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Florent Murat
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- INRAE, LPGP, Rennes, France
| | - Jeramiah J Smith
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - María Celina Rodicio
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Antón Barreiro-Iglesias
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Daniel M Medeiros
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Detlev Arendt
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Henrik Kaessmann
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| |
Collapse
|
72
|
Posnien N, Hunnekuhl VS, Bucher G. Gene expression mapping of the neuroectoderm across phyla - conservation and divergence of early brain anlagen between insects and vertebrates. eLife 2023; 12:e92242. [PMID: 37750868 PMCID: PMC10522337 DOI: 10.7554/elife.92242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023] Open
Abstract
Gene expression has been employed for homologizing body regions across bilateria. The molecular comparison of vertebrate and fly brains has led to a number of disputed homology hypotheses. Data from the fly Drosophila melanogaster have recently been complemented by extensive data from the red flour beetle Tribolium castaneum with its more insect-typical development. In this review, we revisit the molecular mapping of the neuroectoderm of insects and vertebrates to reconsider homology hypotheses. We claim that the protocerebrum is non-segmental and homologous to the vertebrate fore- and midbrain. The boundary between antennal and ocular regions correspond to the vertebrate mid-hindbrain boundary while the deutocerebrum represents the anterior-most ganglion with serial homology to the trunk. The insect head placode is shares common embryonic origin with the vertebrate adenohypophyseal placode. Intriguingly, vertebrate eyes develop from a different region compared to the insect compound eyes calling organ homology into question. Finally, we suggest a molecular re-definition of the classic concepts of archi- and prosocerebrum.
Collapse
Affiliation(s)
- Nico Posnien
- Department of Developmental Biology, Johann-Friedrich-Blumenbach Institute, University GoettingenGöttingenGermany
| | - Vera S Hunnekuhl
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, University of GöttingenGöttingenGermany
| | - Gregor Bucher
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, University of GöttingenGöttingenGermany
| |
Collapse
|
73
|
Brunet T. Cell contractility in early animal evolution. Curr Biol 2023; 33:R966-R985. [PMID: 37751712 DOI: 10.1016/j.cub.2023.07.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Tissue deformation mediated by collective cell contractility is a signature characteristic of animals. In most animals, fast and reversible contractions of muscle cells mediate behavior, while slow and irreversible contractions of epithelial or mesenchymal cells play a key role in morphogenesis. Animal tissue contractility relies on the activity of the actin/myosin II complex (together referred to as 'actomyosin'), an ancient and versatile molecular machinery that performs a broad range of functions in development and physiology. This review synthesizes emerging insights from morphological and molecular studies into the evolutionary history of animal contractile tissue. The most ancient functions of actomyosin are cell crawling and cytokinesis, which are found in a wide variety of unicellular eukaryotes and in individual metazoan cells. Another contractile functional module, apical constriction, is universal in metazoans and shared with choanoflagellates, their closest known living relatives. The evolution of animal contractile tissue involved two key innovations: firstly, the ability to coordinate and integrate actomyosin assembly across multiple cells, notably to generate supracellular cables, which ensure tissue integrity but also allow coordinated morphogenesis and movements at the organism scale; and secondly, the evolution of dedicated contractile cell types for adult movement, belonging to two broad categories respectively defined by the expression of the fast (striated-type) and slow (smooth/non-muscle-type) myosin II paralogs. Both contractile cell types ancestrally resembled generic contractile epithelial or mesenchymal cells and might have played a versatile role in both behavior and morphogenesis. Modern animal contractile cells span a continuum between unspecialized contractile epithelia (which underlie behavior in modern placozoans), epithelia with supracellular actomyosin cables (found in modern sponges), epitheliomuscular tissues (with a concentration of actomyosin cables in basal processes, for example in sea anemones), and specialized muscle tissue that has lost most or all epithelial properties (as in ctenophores, jellyfish and bilaterians). Recent studies in a broad range of metazoans have begun to reveal the molecular basis of these transitions, powered by the elaboration of the contractile apparatus and the evolution of 'core regulatory complexes' of transcription factors specifying contractile cell identity.
Collapse
Affiliation(s)
- Thibaut Brunet
- Institut Pasteur, Université Paris-Cité, CNRS UMR3691, Evolutionary Cell Biology and Evolution of Morphogenesis Unit, 25-28 Rue du Docteur Roux, 75015 Paris, France.
| |
Collapse
|
74
|
Hoskins JW, Christensen TA, Amundadottir LT. Master regulator activity QTL protocol to implicate regulatory pathways potentially mediating GWAS signals using eQTL data. STAR Protoc 2023; 4:102362. [PMID: 37330907 PMCID: PMC10285694 DOI: 10.1016/j.xpro.2023.102362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/26/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Here, we present a protocol to identify transcriptional regulators potentially mediating downstream biological effects of germline variants associated with complex traits of interest, which enables functional hypothesis generation independent of colocalizing expression quantitative trait loci (eQTLs). We describe steps for tissue-/cell-type-specific co-expression network modeling, expression regulator activity inference, and identification of representative phenotypic master regulators. Finally, we detail activity QTL and eQTL analyses. This protocol requires genotype, expression, and relevant covariables and phenotype data from existing eQTL datasets. For complete details on the use and execution of this protocol, please refer to Hoskins et al.1.
Collapse
Affiliation(s)
- Jason W Hoskins
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MA 20892, USA.
| | - Trevor A Christensen
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MA 20892, USA
| | - Laufey T Amundadottir
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MA 20892, USA.
| |
Collapse
|
75
|
Dubois‐Chevalier J, Gheeraert C, Berthier A, Boulet C, Dubois V, Guille L, Fourcot M, Marot G, Gauthier K, Dubuquoy L, Staels B, Lefebvre P, Eeckhoute J. An extended transcription factor regulatory network controls hepatocyte identity. EMBO Rep 2023; 24:e57020. [PMID: 37424431 PMCID: PMC10481658 DOI: 10.15252/embr.202357020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/11/2023] Open
Abstract
Cell identity is specified by a core transcriptional regulatory circuitry (CoRC), typically limited to a small set of interconnected cell-specific transcription factors (TFs). By mining global hepatic TF regulons, we reveal a more complex organization of the transcriptional regulatory network controlling hepatocyte identity. We show that tight functional interconnections controlling hepatocyte identity extend to non-cell-specific TFs beyond the CoRC, which we call hepatocyte identity (Hep-ID)CONNECT TFs. Besides controlling identity effector genes, Hep-IDCONNECT TFs also engage in reciprocal transcriptional regulation with TFs of the CoRC. In homeostatic basal conditions, this translates into Hep-IDCONNECT TFs being involved in fine tuning CoRC TF expression including their rhythmic expression patterns. Moreover, a role for Hep-IDCONNECT TFs in the control of hepatocyte identity is revealed in dedifferentiated hepatocytes where Hep-IDCONNECT TFs are able to reset CoRC TF expression. This is observed upon activation of NR1H3 or THRB in hepatocarcinoma or in hepatocytes subjected to inflammation-induced loss of identity. Our study establishes that hepatocyte identity is controlled by an extended array of TFs beyond the CoRC.
Collapse
Affiliation(s)
| | - Céline Gheeraert
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐EGIDLilleFrance
| | - Alexandre Berthier
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐EGIDLilleFrance
| | - Clémence Boulet
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐EGIDLilleFrance
| | - Vanessa Dubois
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐EGIDLilleFrance
- Basic and Translational Endocrinology (BaTE), Department of Basic and Applied Medical SciencesGhent UniversityGhentBelgium
| | - Loïc Guille
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐EGIDLilleFrance
| | - Marie Fourcot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 – UAR 2014 – PLBSLilleFrance
| | - Guillemette Marot
- Univ. Lille, Inria, CHU Lille, ULR 2694 – METRICS: Évaluation des technologies de santé et des pratiques médicalesLilleFrance
| | - Karine Gauthier
- Institut de Génomique Fonctionnelle de Lyon (IGFL), CNRS UMR 5242, INRAE USC 1370, École Normale Supérieure de LyonLyonFrance
| | - Laurent Dubuquoy
- Univ. Lille, Inserm, CHU Lille, U1286 – INFINITE – Institute for Translational Research in InflammationLilleFrance
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐EGIDLilleFrance
| | - Philippe Lefebvre
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐EGIDLilleFrance
| | - Jérôme Eeckhoute
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐EGIDLilleFrance
| |
Collapse
|
76
|
Bravo González-Blas C, De Winter S, Hulselmans G, Hecker N, Matetovici I, Christiaens V, Poovathingal S, Wouters J, Aibar S, Aerts S. SCENIC+: single-cell multiomic inference of enhancers and gene regulatory networks. Nat Methods 2023; 20:1355-1367. [PMID: 37443338 PMCID: PMC10482700 DOI: 10.1038/s41592-023-01938-4] [Citation(s) in RCA: 114] [Impact Index Per Article: 114.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 06/06/2023] [Indexed: 07/15/2023]
Abstract
Joint profiling of chromatin accessibility and gene expression in individual cells provides an opportunity to decipher enhancer-driven gene regulatory networks (GRNs). Here we present a method for the inference of enhancer-driven GRNs, called SCENIC+. SCENIC+ predicts genomic enhancers along with candidate upstream transcription factors (TFs) and links these enhancers to candidate target genes. To improve both recall and precision of TF identification, we curated and clustered a motif collection with more than 30,000 motifs. We benchmarked SCENIC+ on diverse datasets from different species, including human peripheral blood mononuclear cells, ENCODE cell lines, melanoma cell states and Drosophila retinal development. Next, we exploit SCENIC+ predictions to study conserved TFs, enhancers and GRNs between human and mouse cell types in the cerebral cortex. Finally, we use SCENIC+ to study the dynamics of gene regulation along differentiation trajectories and the effect of TF perturbations on cell state. SCENIC+ is available at scenicplus.readthedocs.io .
Collapse
Affiliation(s)
- Carmen Bravo González-Blas
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Seppe De Winter
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Gert Hulselmans
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Nikolai Hecker
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Irina Matetovici
- VIB Center for Brain & Disease Research, Leuven, Belgium
- VIB Tech Watch, VIB Headquarters, Ghent, Belgium
| | - Valerie Christiaens
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | | | - Jasper Wouters
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Sara Aibar
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Stein Aerts
- VIB Center for Brain & Disease Research, Leuven, Belgium.
- Department of Human Genetics, KU Leuven, Leuven, Belgium.
| |
Collapse
|
77
|
Amini S, Doyle JJ, Libault M. The evolving definition of plant cell type. FRONTIERS IN PLANT SCIENCE 2023; 14:1271070. [PMID: 37692436 PMCID: PMC10485272 DOI: 10.3389/fpls.2023.1271070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023]
Affiliation(s)
- Sahand Amini
- Center for Plant Science Innovation, Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Jeffrey J. Doyle
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, United States
- School of Integrative Plant Science, Plant Breeding & Genetics Section, Cornell University, Ithaca, NY, United States
| | - Marc Libault
- Center for Plant Science Innovation, Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
- Single Cell Genomics Core Facility, Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
78
|
Huilgol D, Levine JM, Galbavy W, Wang BS, He M, Suryanarayana SM, Huang ZJ. Direct and indirect neurogenesis generate a mosaic of distinct glutamatergic projection neuron types in cerebral cortex. Neuron 2023; 111:2557-2569.e4. [PMID: 37348506 PMCID: PMC10527425 DOI: 10.1016/j.neuron.2023.05.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 02/27/2023] [Accepted: 05/23/2023] [Indexed: 06/24/2023]
Abstract
Variations in size and complexity of the cerebral cortex result from differences in neuron number and composition, rooted in evolutionary changes in direct and indirect neurogenesis (dNG and iNG) that are mediated by radial glia and intermediate progenitors (IPs), respectively. How dNG and iNG differentially contribute to neuronal number, diversity, and connectivity are unknown. Establishing a genetic fate-mapping method to differentially visualize dNG and iNG in mice, we found that while both dNG and iNG contribute to all cortical structures, iNG contributes the largest relative proportions to the hippocampus and neocortex. Within the neocortex, whereas dNG generates all major glutamatergic projection neuron (PN) classes, iNG differentially amplifies and diversifies PNs within each class; the two pathways generate distinct PN types and assemble fine mosaics of lineage-based cortical subnetworks. Our results establish a ground-level lineage framework for understanding cortical development and evolution by linking foundational progenitor types and neurogenic pathways to PN types.
Collapse
Affiliation(s)
- Dhananjay Huilgol
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Jesse M Levine
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Program in Neuroscience and Medical Scientist Training Program, Stony Brook University, Stony Brook, NY 11794, USA
| | - William Galbavy
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Program in Neuroscience, Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA
| | - Bor-Shuen Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Miao He
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | | | - Z Josh Huang
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
79
|
Tajer B, Savage AM, Whited JL. The salamander blastema within the broader context of metazoan regeneration. Front Cell Dev Biol 2023; 11:1206157. [PMID: 37635872 PMCID: PMC10450636 DOI: 10.3389/fcell.2023.1206157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
Throughout the animal kingdom regenerative ability varies greatly from species to species, and even tissue to tissue within the same organism. The sheer diversity of structures and mechanisms renders a thorough comparison of molecular processes truly daunting. Are "blastemas" found in organisms as distantly related as planarians and axolotls derived from the same ancestral process, or did they arise convergently and independently? Is a mouse digit tip blastema orthologous to a salamander limb blastema? In other fields, the thorough characterization of a reference model has greatly facilitated these comparisons. For example, the amphibian Spemann-Mangold organizer has served as an amazingly useful comparative template within the field of developmental biology, allowing researchers to draw analogies between distantly related species, and developmental processes which are superficially quite different. The salamander limb blastema may serve as the best starting point for a comparative analysis of regeneration, as it has been characterized by over 200 years of research and is supported by a growing arsenal of molecular tools. The anatomical and evolutionary closeness of the salamander and human limb also add value from a translational and therapeutic standpoint. Tracing the evolutionary origins of the salamander blastema, and its relatedness to other regenerative processes throughout the animal kingdom, will both enhance our basic biological understanding of regeneration and inform our selection of regenerative model systems.
Collapse
Affiliation(s)
| | | | - Jessica L. Whited
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States
| |
Collapse
|
80
|
Wang L, Wan MC, Liao RY, Xu J, Xu ZG, Xue HC, Mai YX, Wang JW. The maturation and aging trajectory of Marchantia polymorpha at single-cell resolution. Dev Cell 2023; 58:1429-1444.e6. [PMID: 37321217 DOI: 10.1016/j.devcel.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/13/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023]
Abstract
Bryophytes represent a sister to the rest of land plants. Despite their evolutionary importance and relatively simple body plan, a comprehensive understanding of the cell types and transcriptional states that underpin the temporal development of bryophytes has not been achieved. Using time-resolved single-cell RNA sequencing, we define the cellular taxonomy of Marchantia polymorpha across asexual reproduction phases. We identify two maturation and aging trajectories of the main plant body of M. polymorpha at single-cell resolution: the gradual maturation of tissues and organs along the tip-to-base axis of the midvein and the progressive decline of meristem activities in the tip along the chronological axis. Specifically, we observe that the latter aging axis is temporally correlated with the formation of clonal propagules, suggesting an ancient strategy to optimize allocation of resources to producing offspring. Our work thus provides insights into the cellular heterogeneity that underpins the temporal development and aging of bryophytes.
Collapse
Affiliation(s)
- Long Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Mu-Chun Wan
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ren-Yu Liao
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Jie Xu
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Zhou-Geng Xu
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Hao-Chen Xue
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Yan-Xia Mai
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; Core Facility Center of CEMPS, SIPPE, CAS, Shanghai 200032, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
81
|
Piovani L, Leite DJ, Yañez Guerra LA, Simpson F, Musser JM, Salvador-Martínez I, Marlétaz F, Jékely G, Telford MJ. Single-cell atlases of two lophotrochozoan larvae highlight their complex evolutionary histories. SCIENCE ADVANCES 2023; 9:eadg6034. [PMID: 37531419 PMCID: PMC10396302 DOI: 10.1126/sciadv.adg6034] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 06/30/2023] [Indexed: 08/04/2023]
Abstract
Pelagic larval stages are widespread across animals, yet it is unclear whether larvae were present in the last common ancestor of animals or whether they evolved multiple times due to common selective pressures. Many marine larvae are at least superficially similar; they are small, swim through the beating of bands of cilia, and sense the environment with an apical organ. To understand these similarities, we have generated single-cell atlases for marine larvae from two animal phyla and have compared their cell types. We found clear similarities among ciliary band cells and between neurons of the apical organ in the two larvae pointing to possible homology of these structures, suggesting a single origin of larvae within Spiralia. We also find several clade-specific innovations in each larva, including distinct myocytes and shell gland cells in the oyster larva. Oyster shell gland cells express many recently evolved genes that have made previous gene age estimates for the origin of trochophore larvae too young.
Collapse
Affiliation(s)
- Laura Piovani
- Centre for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Daniel J. Leite
- Centre for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | | | - Fraser Simpson
- Centre for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Jacob M. Musser
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Irepan Salvador-Martínez
- Centre for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Ferdinand Marlétaz
- Centre for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK
| | - Maximilian J. Telford
- Centre for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| |
Collapse
|
82
|
Grausgruber A, Revilla-I-Domingo R. Tracing the history of cell types. eLife 2023; 12:e90447. [PMID: 37530753 PMCID: PMC10396335 DOI: 10.7554/elife.90447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
A study of sea urchin and sea star larvae paves the way for understanding how cell types evolve and give rise to novel morphologies.
Collapse
Affiliation(s)
- Antonia Grausgruber
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
- Research Platform Single Cell Regulation of Stem Cells, University of Vienna, Vienna, Austria
| | - Roger Revilla-I-Domingo
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
- Research Platform Single Cell Regulation of Stem Cells, University of Vienna, Vienna, Austria
- Max Perutz Labs, University of Vienna, Vienna, Austria
| |
Collapse
|
83
|
Evolution at the cellular level. Nat Ecol Evol 2023; 7:1155-1156. [PMID: 37400516 DOI: 10.1038/s41559-023-02133-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
|
84
|
Hehmeyer J, Spitz F, Marlow H. Shifting landscapes: the role of 3D genomic organizations in gene regulatory strategies. Curr Opin Genet Dev 2023; 81:102064. [PMID: 37390583 PMCID: PMC10547022 DOI: 10.1016/j.gde.2023.102064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 07/02/2023]
Abstract
3D genome folding enables the physical storage of chromosomes into the compact volume of a cell's nucleus, allows for the accurate segregation of chromatin to daughter cells, and has been shown to be tightly coupled to the way in which genetic information is converted into transcriptional programs [1-3]. Importantly, this link between chromatin architecture and gene regulation is a selectable feature in which modifications to chromatin organization accompany, or perhaps even drive the establishment of new regulatory strategies with enduring impacts on animal body plan complexity. Here, we discuss the nature of different 3D genome folding systems found across the tree of life, with particular emphasis on metazoans, and the relative influence of these systems on gene regulation. We suggest how the properties of these folding systems have influenced regulatory strategies employed by different lineages and may have catalyzed the partitioning and specialization of genetic programs that enabled multicellularity and organ-grade body plan complexity.
Collapse
Affiliation(s)
- Jenks Hehmeyer
- Department of Organismal Biology and Anatomy, The University of Chicago, USA
| | - François Spitz
- Department of Human Genetics, The University of Chicago, USA
| | - Heather Marlow
- Department of Organismal Biology and Anatomy, The University of Chicago, USA.
| |
Collapse
|
85
|
Dudchenko O, Ordovas-Montanes J, Bingle CD. Respiratory epithelial cell types, states and fates in the era of single-cell RNA-sequencing. Biochem J 2023; 480:921-939. [PMID: 37410389 PMCID: PMC10422933 DOI: 10.1042/bcj20220572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023]
Abstract
Standalone and consortia-led single-cell atlases of healthy and diseased human airways generated with single-cell RNA-sequencing (scRNA-seq) have ushered in a new era in respiratory research. Numerous discoveries, including the pulmonary ionocyte, potentially novel cell fates, and a diversity of cell states among common and rare epithelial cell types have highlighted the extent of cellular heterogeneity and plasticity in the respiratory tract. scRNA-seq has also played a pivotal role in our understanding of host-virus interactions in coronavirus disease 2019 (COVID-19). However, as our ability to generate large quantities of scRNA-seq data increases, along with a growing number of scRNA-seq protocols and data analysis methods, new challenges related to the contextualisation and downstream applications of insights are arising. Here, we review the fundamental concept of cellular identity from the perspective of single-cell transcriptomics in the respiratory context, drawing attention to the need to generate reference annotations and to standardise the terminology used in literature. Findings about airway epithelial cell types, states and fates obtained from scRNA-seq experiments are compared and contrasted with information accumulated through the use of conventional methods. This review attempts to discuss major opportunities and to outline some of the key limitations of the modern-day scRNA-seq that need to be addressed to enable efficient and meaningful integration of scRNA-seq data from different platforms and studies, with each other as well as with data from other high-throughput sequencing-based genomic, transcriptomic and epigenetic analyses.
Collapse
Affiliation(s)
- Oleksandr Dudchenko
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield, Sheffield, South Yorkshire, U.K
| | - Jose Ordovas-Montanes
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, U.S.A
- Programme in Immunology, Harvard Medical School, Boston, MA, U.S.A
| | - Colin D. Bingle
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield, Sheffield, South Yorkshire, U.K
| |
Collapse
|
86
|
Hutt A, Rich S, Valiante TA, Lefebvre J. Intrinsic neural diversity quenches the dynamic volatility of neural networks. Proc Natl Acad Sci U S A 2023; 120:e2218841120. [PMID: 37399421 PMCID: PMC10334753 DOI: 10.1073/pnas.2218841120] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/19/2023] [Indexed: 07/05/2023] Open
Abstract
Heterogeneity is the norm in biology. The brain is no different: Neuronal cell types are myriad, reflected through their cellular morphology, type, excitability, connectivity motifs, and ion channel distributions. While this biophysical diversity enriches neural systems' dynamical repertoire, it remains challenging to reconcile with the robustness and persistence of brain function over time (resilience). To better understand the relationship between excitability heterogeneity (variability in excitability within a population of neurons) and resilience, we analyzed both analytically and numerically a nonlinear sparse neural network with balanced excitatory and inhibitory connections evolving over long time scales. Homogeneous networks demonstrated increases in excitability, and strong firing rate correlations-signs of instability-in response to a slowly varying modulatory fluctuation. Excitability heterogeneity tuned network stability in a context-dependent way by restraining responses to modulatory challenges and limiting firing rate correlations, while enriching dynamics during states of low modulatory drive. Excitability heterogeneity was found to implement a homeostatic control mechanism enhancing network resilience to changes in population size, connection probability, strength and variability of synaptic weights, by quenching the volatility (i.e., its susceptibility to critical transitions) of its dynamics. Together, these results highlight the fundamental role played by cell-to-cell heterogeneity in the robustness of brain function in the face of change.
Collapse
Affiliation(s)
- Axel Hutt
- Université de Strasbourg, CNRS, Inria, ICube, MLMS, MIMESIS, StrasbourgF-67000, France
| | - Scott Rich
- Krembil Brain Institute, Division of Clinical and Computational Neuroscience, University Health Network, Toronto, ONM5T 0S8, Canada
| | - Taufik A. Valiante
- Krembil Brain Institute, Division of Clinical and Computational Neuroscience, University Health Network, Toronto, ONM5T 0S8, Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ONM5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ONM5S 3G9, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ONM5S 1A8, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ONM5G 2C4, Canada
- Center for Advancing Neurotechnological Innovation to Application, University of Toronto, Toronto, ONM5G 2A2, Canada
- Max Planck-University of Toronto Center for Neural Science and Technology, University of Toronto, Toronto, ONM5S 3G8, Canada
| | - Jérémie Lefebvre
- Krembil Brain Institute, Division of Clinical and Computational Neuroscience, University Health Network, Toronto, ONM5T 0S8, Canada
- Department of Biology, University of Ottawa, Ottawa, ONK1N 6N5, Canada
- Department of Mathematics, University of Toronto, Toronto, ONM5S 2E4, Canada
| |
Collapse
|
87
|
Mitsiadis TA, Pagella P, Capellini TD, Smith MM. The Notch-mediated circuitry in the evolution and generation of new cell lineages: the tooth model. Cell Mol Life Sci 2023; 80:182. [PMID: 37330998 DOI: 10.1007/s00018-023-04831-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/19/2023] [Accepted: 06/09/2023] [Indexed: 06/20/2023]
Abstract
The Notch pathway is an ancient, evolutionary conserved intercellular signaling mechanism that is involved in cell fate specification and proper embryonic development. The Jagged2 gene, which encodes a ligand for the Notch family of receptors, is expressed from the earliest stages of odontogenesis in epithelial cells that will later generate the enamel-producing ameloblasts. Homozygous Jagged2 mutant mice exhibit abnormal tooth morphology and impaired enamel deposition. Enamel composition and structure in mammals are tightly linked to the enamel organ that represents an evolutionary unit formed by distinct dental epithelial cell types. The physical cooperativity between Notch ligands and receptors suggests that Jagged2 deletion could alter the expression profile of Notch receptors, thus modifying the whole Notch signaling cascade in cells within the enamel organ. Indeed, both Notch1 and Notch2 expression are severely disturbed in the enamel organ of Jagged2 mutant teeth. It appears that the deregulation of the Notch signaling cascade reverts the evolutionary path generating dental structures more reminiscent of the enameloid of fishes rather than of mammalian enamel. Loss of interactions between Notch and Jagged proteins may initiate the suppression of complementary dental epithelial cell fates acquired during evolution. We propose that the increased number of Notch homologues in metazoa enabled incipient sister cell types to form and maintain distinctive cell fates within organs and tissues along evolution.
Collapse
Affiliation(s)
- Thimios A Mitsiadis
- Institute of Oral Biology, Centre for Dental Medicine, University of Zurich, Plattenstrasse 11, 8032, Zurich, Switzerland.
| | - Pierfrancesco Pagella
- Institute of Oral Biology, Centre for Dental Medicine, University of Zurich, Plattenstrasse 11, 8032, Zurich, Switzerland
- Wallenberg Center for Molecular Medicine (WCMM) and Department of Biomedical and Clinical Sciences, Linköpings Universitet, 581 85, Linköping, Sweden
| | - Terence D Capellini
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Moya Meredith Smith
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, King's College London, London, UK
| |
Collapse
|
88
|
Fritzsch B, Schultze HP, Elliott KL. The evolution of the various structures required for hearing in Latimeria and tetrapods. IBRO Neurosci Rep 2023; 14:325-341. [PMID: 37006720 PMCID: PMC10063410 DOI: 10.1016/j.ibneur.2023.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Sarcopterygians evolved around 415 Ma and have developed a unique set of features, including the basilar papilla and the cochlear aqueduct of the inner ear. We provide an overview that shows the morphological integration of the various parts needed for hearing, e.g., basilar papilla, tectorial membrane, cochlear aqueduct, lungs, and tympanic membranes. The lagena of the inner ear evolved from a common macula of the saccule several times. It is near this lagena where the basilar papilla forms in Latimeria and tetrapods. The basilar papilla is lost in lungfish, certain caecilians and salamanders, but is transformed into the cochlea of mammals. Hearing in bony fish and tetrapods involves particle motion to improve sound pressure reception within the ear but also works without air. Lungs evolved after the chondrichthyans diverged and are present in sarcopterygians and actinopterygians. Lungs open to the outside in tetraposomorph sarcopterygians but are transformed from a lung into a swim bladder in ray-finned fishes. Elasmobranchs, polypterids, and many fossil fishes have open spiracles. In Latimeria, most frogs, and all amniotes, a tympanic membrane covering the spiracle evolved independently. The tympanic membrane is displaced by pressure changes and enabled tetrapods to perceive airborne sound pressure waves. The hyomandibular bone is associated with the spiracle/tympanic membrane in actinopterygians and piscine sarcopterygians. In tetrapods, it transforms into the stapes that connects the oval window of the inner ear with the tympanic membrane and allows hearing at higher frequencies by providing an impedance matching and amplification mechanism. The three characters-basilar papilla, cochlear aqueduct, and tympanic membrane-are fluid related elements in sarcopterygians, which interact with a set of unique features in Latimeria. Finally, we explore the possible interaction between the unique intracranial joint, basicranial muscle, and an enlarged notochord that allows fluid flow to the foramen magnum and the cochlear aqueduct which houses a comparatively small brain.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Department of Biology & Department of Otolaryngology, University of Iowa, IA, USA
- Correspondence to: Department of Biology & Department of Otolaryngology, University of Iowa, Iowa City, IA, 52242, USA.
| | | | - Karen L. Elliott
- Department of Biology & Department of Otolaryngology, University of Iowa, IA, USA
| |
Collapse
|
89
|
Weichert-Leahey N, Shi H, Tao T, Oldridge DA, Durbin AD, Abraham BJ, Zimmerman MW, Zhu S, Wood AC, Reyon D, Joung JK, Young RA, Diskin SJ, Maris JM, Look AT. Genetic predisposition to neuroblastoma results from a regulatory polymorphism that promotes the adrenergic cell state. J Clin Invest 2023; 133:e166919. [PMID: 37183825 PMCID: PMC10178836 DOI: 10.1172/jci166919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/14/2023] [Indexed: 05/16/2023] Open
Abstract
Childhood neuroblastomas exhibit plasticity between an undifferentiated neural crest-like mesenchymal cell state and a more differentiated sympathetic adrenergic cell state. These cell states are governed by autoregulatory transcriptional loops called core regulatory circuitries (CRCs), which drive the early development of sympathetic neuronal progenitors from migratory neural crest cells during embryogenesis. The adrenergic cell identity of neuroblastoma requires LMO1 as a transcriptional cofactor. Both LMO1 expression levels and the risk of developing neuroblastoma in children are associated with a single nucleotide polymorphism, G/T, that affects a GATA motif in the first intron of LMO1. Here, we showed that WT zebrafish with the GATA genotype developed adrenergic neuroblastoma, while knock-in of the protective TATA allele at this locus reduced the penetrance of MYCN-driven tumors, which were restricted to the mesenchymal cell state. Whole genome sequencing of childhood neuroblastomas demonstrated that TATA/TATA tumors also exhibited a mesenchymal cell state and were low risk at diagnosis. Thus, conversion of the regulatory GATA to a TATA allele in the first intron of LMO1 reduced the neuroblastoma-initiation rate by preventing formation of the adrenergic cell state. This mechanism was conserved over 400 million years of evolution, separating zebrafish and humans.
Collapse
Affiliation(s)
- Nina Weichert-Leahey
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Division of Pediatric Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Hui Shi
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ting Tao
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Derek A. Oldridge
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Adam D. Durbin
- Department of Oncology and Comprehensive Cancer Center, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Brian J. Abraham
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Mark W. Zimmerman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Shizhen Zhu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic Cancer Center, Rochester, Minnesota, USA
| | - Andrew C. Wood
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Deepak Reyon
- Molecular Pathology Unit, Center for Computational and Integrative Biology, and Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| | - J. Keith Joung
- Molecular Pathology Unit, Center for Computational and Integrative Biology, and Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| | - Richard A. Young
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Biology Department, MIT, Cambridge, Massachusetts, USA
| | - Sharon J. Diskin
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John M. Maris
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - A. Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Division of Pediatric Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
90
|
Ruperti F, Papadopoulos N, Musser JM, Mirdita M, Steinegger M, Arendt D. Cross-phyla protein annotation by structural prediction and alignment. Genome Biol 2023; 24:113. [PMID: 37173746 PMCID: PMC10176882 DOI: 10.1186/s13059-023-02942-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Protein annotation is a major goal in molecular biology, yet experimentally determined knowledge is typically limited to a few model organisms. In non-model species, the sequence-based prediction of gene orthology can be used to infer protein identity; however, this approach loses predictive power at longer evolutionary distances. Here we propose a workflow for protein annotation using structural similarity, exploiting the fact that similar protein structures often reflect homology and are more conserved than protein sequences. RESULTS We propose a workflow of openly available tools for the functional annotation of proteins via structural similarity (MorF: MorphologFinder) and use it to annotate the complete proteome of a sponge. Sponges are highly relevant for inferring the early history of animals, yet their proteomes remain sparsely annotated. MorF accurately predicts the functions of proteins with known homology in [Formula: see text] cases and annotates an additional [Formula: see text] of the proteome beyond standard sequence-based methods. We uncover new functions for sponge cell types, including extensive FGF, TGF, and Ephrin signaling in sponge epithelia, and redox metabolism and control in myopeptidocytes. Notably, we also annotate genes specific to the enigmatic sponge mesocytes, proposing they function to digest cell walls. CONCLUSIONS Our work demonstrates that structural similarity is a powerful approach that complements and extends sequence similarity searches to identify homologous proteins over long evolutionary distances. We anticipate this will be a powerful approach that boosts discovery in numerous -omics datasets, especially for non-model organisms.
Collapse
Affiliation(s)
- Fabian Ruperti
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Faculty of Biosciences, Collaboration for joint Ph.D. degree between EMBL and Heidelberg University, Heidelberg, Germany
| | - Nikolaos Papadopoulos
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Department for Evolutionary Biology, University of Vienna, Vienna, Austria
| | - Jacob M Musser
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Milot Mirdita
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Martin Steinegger
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Artificial Intelligence Institute, Seoul National University, Seoul, South Korea
| | - Detlev Arendt
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
- Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
91
|
Kozlov AP. Carcino-Evo-Devo, A Theory of the Evolutionary Role of Hereditary Tumors. Int J Mol Sci 2023; 24:ijms24108611. [PMID: 37239953 DOI: 10.3390/ijms24108611] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
A theory of the evolutionary role of hereditary tumors, or the carcino-evo-devo theory, is being developed. The main hypothesis of the theory, the hypothesis of evolution by tumor neofunctionalization, posits that hereditary tumors provided additional cell masses during the evolution of multicellular organisms for the expression of evolutionarily novel genes. The carcino-evo-devo theory has formulated several nontrivial predictions that have been confirmed in the laboratory of the author. It also suggests several nontrivial explanations of biological phenomena previously unexplained by the existing theories or incompletely understood. By considering three major types of biological development-individual, evolutionary, and neoplastic development-within one theoretical framework, the carcino-evo-devo theory has the potential to become a unifying biological theory.
Collapse
Affiliation(s)
- Andrei P Kozlov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkina Street, 117971 Moscow, Russia
- Peter the Great St. Petersburg Polytechnic University, 29 Polytekhnicheskaya Street, 195251 St. Petersburg, Russia
| |
Collapse
|
92
|
Kuwabara T, Kohno H, Hatakeyama M, Kubo T. Evolutionary dynamics of mushroom body Kenyon cell types in hymenopteran brains from multifunctional type to functionally specialized types. SCIENCE ADVANCES 2023; 9:eadd4201. [PMID: 37146148 PMCID: PMC10162674 DOI: 10.1126/sciadv.add4201] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Evolutionary dynamics of diversification of brain neuronal cell types that have underlain behavioral evolution remain largely unknown. Here, we compared transcriptomes and functions of Kenyon cell (KC) types that compose the mushroom bodies between the honey bee and sawfly, a primitive hymenopteran insect whose KCs likely have the ancestral properties. Transcriptome analyses show that the sawfly KC type shares some of the gene expression profile with each honey bee KC type, although unique gene expression profiles have also been acquired in each honey bee KC type. In addition, functional analysis of two sawfly genes suggested that the functions in learning and memory of the ancestral KC type were heterogeneously inherited among the KC types in the honey bee. Our findings strongly suggest that the functional evolution of KCs in Hymenoptera involved two previously hypothesized processes for evolution of cell function: functional segregation and divergence.
Collapse
Affiliation(s)
- Takayoshi Kuwabara
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroki Kohno
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masatsugu Hatakeyama
- Division of Insect Advanced Technology, Institute of Agrobiological Sciences, NARO, Owashi, Tsukuba 305-8634, Japan
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
93
|
Keijser J, Sprekeler H. Cortical interneurons: fit for function and fit to function? Evidence from development and evolution. Front Neural Circuits 2023; 17:1172464. [PMID: 37215503 PMCID: PMC10192557 DOI: 10.3389/fncir.2023.1172464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/30/2023] [Indexed: 05/24/2023] Open
Abstract
Cortical inhibitory interneurons form a broad spectrum of subtypes. This diversity suggests a division of labor, in which each cell type supports a distinct function. In the present era of optimisation-based algorithms, it is tempting to speculate that these functions were the evolutionary or developmental driving force for the spectrum of interneurons we see in the mature mammalian brain. In this study, we evaluated this hypothesis using the two most common interneuron types, parvalbumin (PV) and somatostatin (SST) expressing cells, as examples. PV and SST interneurons control the activity in the cell bodies and the apical dendrites of excitatory pyramidal cells, respectively, due to a combination of anatomical and synaptic properties. But was this compartment-specific inhibition indeed the function for which PV and SST cells originally evolved? Does the compartmental structure of pyramidal cells shape the diversification of PV and SST interneurons over development? To address these questions, we reviewed and reanalyzed publicly available data on the development and evolution of PV and SST interneurons on one hand, and pyramidal cell morphology on the other. These data speak against the idea that the compartment structure of pyramidal cells drove the diversification into PV and SST interneurons. In particular, pyramidal cells mature late, while interneurons are likely committed to a particular fate (PV vs. SST) during early development. Moreover, comparative anatomy and single cell RNA-sequencing data indicate that PV and SST cells, but not the compartment structure of pyramidal cells, existed in the last common ancestor of mammals and reptiles. Specifically, turtle and songbird SST cells also express the Elfn1 and Cbln4 genes that are thought to play a role in compartment-specific inhibition in mammals. PV and SST cells therefore evolved and developed the properties that allow them to provide compartment-specific inhibition before there was selective pressure for this function. This suggest that interneuron diversity originally resulted from a different evolutionary driving force and was only later co-opted for the compartment-specific inhibition it seems to serve in mammals today. Future experiments could further test this idea using our computational reconstruction of ancestral Elfn1 protein sequences.
Collapse
Affiliation(s)
- Joram Keijser
- Modelling of Cognitive Processes, Technical University of Berlin, Berlin, Germany
- Einstein Center for Neurosciences, Charité University Medicine Berlin, Berlin, Germany
| | - Henning Sprekeler
- Modelling of Cognitive Processes, Technical University of Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Humboldt University of Berlin, Berlin, Germany
| |
Collapse
|
94
|
Jenike AE, Jenike KM, Peterson KJ, Fromm B, Halushka MK. Direct observation of the evolution of cell-type-specific microRNA expression signatures supports the hematopoietic origin model of endothelial cells. Evol Dev 2023; 25:226-239. [PMID: 37157156 PMCID: PMC10302300 DOI: 10.1111/ede.12438] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/22/2023] [Accepted: 04/26/2023] [Indexed: 05/10/2023]
Abstract
The evolution of specialized cell-types is a long-standing interest of biologists, but given the deep time-scales very difficult to reconstruct or observe. microRNAs have been linked to the evolution of cellular complexity and may inform on specialization. The endothelium is a vertebrate-specific specialization of the circulatory system that enabled a critical new level of vasoregulation. The evolutionary origin of these endothelial cells is unclear. We hypothesized that Mir-126, an endothelial cell-specific microRNA may be informative. We here reconstruct the evolutionary history of Mir-126. Mir-126 likely appeared in the last common ancestor of vertebrates and tunicates, which was a species without an endothelium, within an intron of the evolutionary much older EGF Like Domain Multiple (Egfl) locus. Mir-126 has a complex evolutionary history due to duplications and losses of both the host gene and the microRNA. Taking advantage of the strong evolutionary conservation of the microRNA among Olfactores, and using RNA in situ hybridization, we localized Mir-126 in the tunicate Ciona robusta. We found exclusive expression of the mature Mir-126 in granular amebocytes, supporting a long-proposed scenario that endothelial cells arose from hemoblasts, a type of proto-endothelial amoebocyte found throughout invertebrates. This observed change of expression of Mir-126 from proto-endothelial amoebocytes in the tunicate to endothelial cells in vertebrates is the first direct observation of the evolution of a cell-type in relation to microRNA expression indicating that microRNAs can be a prerequisite of cell-type evolution.
Collapse
Affiliation(s)
- Ana E. Jenike
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
| | - Katharine M. Jenike
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
| | - Kevin J. Peterson
- Department of Biological Sciences, Dartmouth College, Hanover NH, USA
| | - Bastian Fromm
- The Arctic University Museum of Norway, UiT-The Arctic University of Norway, 9006 Tromsø, Norway
| | - Marc K. Halushka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
| |
Collapse
|
95
|
Morin A, Chu ECP, Sharma A, Adrian-Hamazaki A, Pavlidis P. Characterizing the targets of transcription regulators by aggregating ChIP-seq and perturbation expression data sets. Genome Res 2023; 33:763-778. [PMID: 37308292 PMCID: PMC10317128 DOI: 10.1101/gr.277273.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 04/26/2023] [Indexed: 06/14/2023]
Abstract
Mapping the gene targets of chromatin-associated transcription regulators (TRs) is a major goal of genomics research. ChIP-seq of TRs and experiments that perturb a TR and measure the differential abundance of gene transcripts are a primary means by which direct relationships are tested on a genomic scale. It has been reported that there is a poor overlap in the evidence across gene regulation strategies, emphasizing the need for integrating results from multiple experiments. Although research consortia interested in gene regulation have produced a valuable trove of high-quality data, there is an even greater volume of TR-specific data throughout the literature. In this study, we show a workflow for the identification, uniform processing, and aggregation of ChIP-seq and TR perturbation experiments for the ultimate purpose of ranking human and mouse TR-target interactions. Focusing on an initial set of eight regulators (ASCL1, HES1, MECP2, MEF2C, NEUROD1, PAX6, RUNX1, and TCF4), we identified 497 experiments suitable for analysis. We used this corpus to examine data concordance, to identify systematic patterns of the two data types, and to identify putative orthologous interactions between human and mouse. We build upon commonly used strategies to forward a procedure for aggregating and combining these two genomic methodologies, assessing these rankings against independent literature-curated evidence. Beyond a framework extensible to other TRs, our work also provides empirically ranked TR-target listings, as well as transparent experiment-level gene summaries for community use.
Collapse
Affiliation(s)
- Alexander Morin
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Eric Ching-Pan Chu
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Aman Sharma
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Alex Adrian-Hamazaki
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Paul Pavlidis
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada;
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
96
|
Holstein TW. The Hydra stem cell system - Revisited. Cells Dev 2023; 174:203846. [PMID: 37121433 DOI: 10.1016/j.cdev.2023.203846] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 05/02/2023]
Abstract
Cnidarians are >600 million years old and are considered the sister group of Bilateria based on numerous molecular phylogenetic studies. Apart from Hydra, the genomes of all major clades of Cnidaria have been uncovered (e.g. Aurelia, Clytia, Nematostella and Acropora) and they reveal a remarkable completeness of the metazoan genomic toolbox. Of particular interest is Hydra, a model system of aging research, regenerative biology, and stem cell biology. With the knowledge gained from scRNA research, it is now possible to characterize the expression profiles of all cell types with great precision. In functional studies, our picture of the Hydra stem cell biology has changed, and we are in the process of obtaining a clear picture of the homeostasis and properties of the different stem cell populations. Even though Hydra is often compared to plant systems, the new data on germline and regeneration, but also on the dynamics and plasticity of the nervous system, show that Hydra with its simple body plan represents in a nutshell the prototype of an animal with stem cell lineages, whose properties correspond in many ways to Bilateria. This review provides an overview of the four stem cell lineages, the two epithelial lineages that constitute the ectoderm and the endoderm, as well as the multipotent somatic interstitial lineage (MPSC) and the germline stem cell lineage (GSC), also known as the interstitial cells of Hydra.
Collapse
Affiliation(s)
- Thomas W Holstein
- Heidelberg University, Centre for Organismal Studies (COS), Molecular Evolution and Genomics, Im Neuenheimer Feld 230, D-69120 Heidelberg, Germany.
| |
Collapse
|
97
|
Yamakawa S, Yamazaki A, Morino Y, Wada H. Early expression onset of tissue-specific effector genes during the specification process in sea urchin embryos. EvoDevo 2023; 14:7. [PMID: 37101206 PMCID: PMC10131483 DOI: 10.1186/s13227-023-00210-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/01/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND In the course of animal developmental processes, various tissues are differentiated through complex interactions within the gene regulatory network. As a general concept, differentiation has been considered to be the endpoint of specification processes. Previous works followed this view and provided a genetic control scheme of differentiation in sea urchin embryos: early specification genes generate distinct regulatory territories in an embryo to express a small set of differentiation driver genes; these genes eventually stimulate the expression of tissue-specific effector genes, which provide biological identity to differentiated cells, in each region. However, some tissue-specific effector genes begin to be expressed in parallel with the expression onset of early specification genes, raising questions about the simplistic regulatory scheme of tissue-specific effector gene expression and the current concept of differentiation itself. RESULTS Here, we examined the dynamics of effector gene expression patterns during sea urchin embryogenesis. Our transcriptome-based analysis indicated that many tissue-specific effector genes begin to be expressed and accumulated along with the advancing specification GRN in the distinct cell lineages of embryos. Moreover, we found that the expression of some of the tissue-specific effector genes commences before cell lineage segregation occurs. CONCLUSIONS Based on this finding, we propose that the expression onset of tissue-specific effector genes is controlled more dynamically than suggested in the previously proposed simplistic regulation scheme. Thus, we suggest that differentiation should be conceptualized as a seamless process of accumulation of effector expression along with the advancing specification GRN. This pattern of effector gene expression may have interesting implications for the evolution of novel cell types.
Collapse
Affiliation(s)
- Shumpei Yamakawa
- Institute of Zoology and Evolutionary Research, Friedrich-Shiller University Jena, Erbertstraße 1, 07747, Jena, Germany.
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
| | - Atsuko Yamazaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Yoshiaki Morino
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Hiroshi Wada
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| |
Collapse
|
98
|
Su X, Wang L, Ma N, Yang X, Liu C, Yang F, Li J, Yi X, Xing Y. Immune heterogeneity in cardiovascular diseases from a single-cell perspective. Front Cardiovasc Med 2023; 10:1057870. [PMID: 37180791 PMCID: PMC10167030 DOI: 10.3389/fcvm.2023.1057870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
A variety of immune cell subsets occupy different niches in the cardiovascular system, causing changes in the structure and function of the heart and vascular system, and driving the progress of cardiovascular diseases (CVDs). The immune cells infiltrating the injury site are highly diverse and integrate into a broad dynamic immune network that controls the dynamic changes of CVDs. Due to technical limitations, the effects and molecular mechanisms of these dynamic immune networks on CVDs have not been fully revealed. With recent advances in single-cell technologies such as single-cell RNA sequencing, systematic interrogation of the immune cell subsets is feasible and will provide insights into the way we understand the integrative behavior of immune populations. We no longer lightly ignore the role of individual cells, especially certain highly heterogeneous or rare subpopulations. We summarize the phenotypic diversity of immune cell subsets and their significance in three CVDs of atherosclerosis, myocardial ischemia and heart failure. We believe that such a review could enhance our understanding of how immune heterogeneity drives the progression of CVDs, help to elucidate the regulatory roles of immune cell subsets in disease, and thus guide the development of new immunotherapies.
Collapse
Affiliation(s)
- Xin Su
- China Academy of Chinese Medical Sciences, Guang’anmen Hospital, Beijing, China
| | - Li Wang
- Department of Breast Surgery, Xingtai People’s Hospital, Xingtai, China
| | - Ning Ma
- Department of Breast Surgery, Dezhou Second People’s Hospital, Dezhou, China
| | - Xinyu Yang
- Fangshan Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Can Liu
- China Academy of Chinese Medical Sciences, Guang’anmen Hospital, Beijing, China
| | - Fan Yang
- China Academy of Chinese Medical Sciences, Guang’anmen Hospital, Beijing, China
| | - Jun Li
- China Academy of Chinese Medical Sciences, Guang’anmen Hospital, Beijing, China
| | - Xin Yi
- Department of Cardiology, Beijing Huimin Hospital, Beijing, China
| | - Yanwei Xing
- China Academy of Chinese Medical Sciences, Guang’anmen Hospital, Beijing, China
| |
Collapse
|
99
|
Zhu B, Jin P, Zhang Y, Shen Y, Wang W, Li S. Genomic and transcriptomic analyses support a silk gland origin of spider venom glands. BMC Biol 2023; 21:82. [PMID: 37055766 PMCID: PMC10099834 DOI: 10.1186/s12915-023-01581-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/29/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Spiders comprise a hyperdiverse lineage of predators with venom systems, yet the origin of functionally novel spider venom glands remains unclear. Previous studies have hypothesized that spider venom glands originated from salivary glands or evolved from silk-producing glands present in early chelicerates. However, there is insufficient molecular evidence to indicate similarity among them. Here, we provide comparative analyses of genome and transcriptome data from various lineages of spiders and other arthropods to advance our understanding of spider venom gland evolution. RESULTS We generated a chromosome-level genome assembly of a model spider species, the common house spider (Parasteatoda tepidariorum). Module preservation, GO semantic similarity, and differentially upregulated gene similarity analyses demonstrated a lower similarity in gene expressions between the venom glands and salivary glands compared to the silk glands, which questions the validity of the salivary gland origin hypothesis but unexpectedly prefers to support the ancestral silk gland origin hypothesis. The conserved core network in the venom and silk glands was mainly correlated with transcription regulation, protein modification, transport, and signal transduction pathways. At the genetic level, we found that many genes in the venom gland-specific transcription modules show positive selection and upregulated expressions, suggesting that genetic variation plays an important role in the evolution of venom glands. CONCLUSIONS This research implies the unique origin and evolutionary path of spider venom glands and provides a basis for understanding the diverse molecular characteristics of venom systems.
Collapse
Affiliation(s)
- Bingyue Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Pengyu Jin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yiming Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Yunxiao Shen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Wei Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Ecology and Environmental Protection of Rare and Endangered Animals and Plants, Ministry of Education, Guangxi Normal University, Guilin, 541004, China
| | - Shuqiang Li
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
100
|
Rusin LY. Evolution of homology: From archetype towards a holistic concept of cell type. J Morphol 2023; 284:e21569. [PMID: 36789784 DOI: 10.1002/jmor.21569] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/10/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
The concept of homology lies in the heart of comparative biological science. The distinction between homology as structure and analogy as function has shaped the evolutionary paradigm for a century and formed the axis of comparative anatomy and embryology, which accept the identity of structure as a ground measure of relatedness. The advent of single-cell genomics overturned the classical view of cell homology by establishing a backbone regulatory identity of cell types, the basic biological units bridging the molecular and phenotypic dimensions, to reveal that the cell is the most flexible unit of living matter and that many approaches of classical biology need to be revised to understand evolution and diversity at the cellular level. The emerging theory of cell types explicitly decouples cell identity from phenotype, essentially allowing for the divergence of evolutionarily related morphotypes beyond recognition, as well as it decouples ontogenetic cell lineage from cell-type phylogeny, whereby explicating that cell types can share common descent regardless of their structure, function or developmental origin. The article succinctly summarizes current progress and opinion in this field and formulates a more generalistic view of biological cell types as avatars, transient or terminal cell states deployed in a continuum of states by the developmental programme of one and the same omnipotent cell, capable of changing or combining identities with distinct evolutionary histories or inventing ad hoc identities that never existed in evolution or development. It highlights how the new logic grounded in the regulatory nature of cell identity transforms the concepts of cell homology and phenotypic stability, suggesting that cellular evolution is inherently and massively network-like, with one-to-one homologies being rather uncommon and restricted to shallower levels of the animal tree of life.
Collapse
Affiliation(s)
- Leonid Y Rusin
- Laboratory for Mathematic Methods and Models in Bioinformatics, Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, Russia
- EvoGenome Analytics LLC, Odintsovo, Moscow Region, Russia
| |
Collapse
|