51
|
Dutta CN, Christov-Moore L, Ombao H, Douglas PK. Neuroprotection in late life attention-deficit/hyperactivity disorder: A review of pharmacotherapy and phenotype across the lifespan. Front Hum Neurosci 2022; 16:938501. [PMID: 36226261 PMCID: PMC9548548 DOI: 10.3389/fnhum.2022.938501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
For decades, psychostimulants have been the gold standard pharmaceutical treatment for attention-deficit/hyperactivity disorder (ADHD). In the United States, an astounding 9% of all boys and 4% of girls will be prescribed stimulant drugs at some point during their childhood. Recent meta-analyses have revealed that individuals with ADHD have reduced brain volume loss later in life (>60 y.o.) compared to the normal aging brain, which suggests that either ADHD or its treatment may be neuroprotective. Crucially, these neuroprotective effects were significant in brain regions (e.g., hippocampus, amygdala) where severe volume loss is linked to cognitive impairment and Alzheimer's disease. Historically, the ADHD diagnosis and its pharmacotherapy came about nearly simultaneously, making it difficult to evaluate their effects in isolation. Certain evidence suggests that psychostimulants may normalize structural brain changes typically observed in the ADHD brain. If ADHD itself is neuroprotective, perhaps exercising the brain, then psychostimulants may not be recommended across the lifespan. Alternatively, if stimulant drugs are neuroprotective, then this class of medications may warrant further investigation for their therapeutic effects. Here, we take a bottom-up holistic approach to review the psychopharmacology of ADHD in the context of recent models of attention. We suggest that future studies are greatly needed to better appreciate the interactions amongst an ADHD diagnosis, stimulant treatment across the lifespan, and structure-function alterations in the aging brain.
Collapse
Affiliation(s)
- Cintya Nirvana Dutta
- Biostatistics Group, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- School of Modeling, Simulation, and Training, and Computer Science, University of Central Florida, Orlando, FL, United States
| | - Leonardo Christov-Moore
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA, United States
| | - Hernando Ombao
- Biostatistics Group, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Pamela K. Douglas
- School of Modeling, Simulation, and Training, and Computer Science, University of Central Florida, Orlando, FL, United States
- Department of Psychiatry and Biobehavioral Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
52
|
ELBARAZI A, BADARY OA, ELMAZAR MM, ELRASSAS H. Cognitive Processing Therapy Versus Medication for the Treatment of Comorbid Substance Use Disorder and Post-Traumatic Stress Disorder in Egyptian patients (Randomized Clinical Trial). JOURNAL OF EVIDENCE-BASED PSYCHOTHERAPIES 2022. [DOI: 10.24193/jebp.2022.2.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
"Earlier research has established that posttraumatic stress disorder (PTSD) and substance use disorder (SUD) frequently coexist. Aims: Cognitive Processing Therapy was compared to Sertraline and a placebo in an RCT for treating patients with comorbid SUD and PTSD. Methods: 150 patients with SUD and PTSD were interviewed by clinicians and asked to fill out the Clinician-Administered PTSD Scale (CAPS-5), Posttraumatic Stress Disorder Checklist (PCL-5), Beck Depression Inventory (BDI-II), Timeline Follow Back Interview (TLFB), and Brief Addiction Monitor (BAM). Patients were randomly assigned to the following conditions: CPT (n=50), Sertraline (n=50), or Placebo (n=50). Pretreatment, posttreatment, six and, twelve-month follow-up assessments were conducted. Results: When compared to the sertraline group, CPT resulted in much higher reductions in CAPS scores at posttreatment assessment (d=0.93, p < .000). When compared to the control group, CPT considerably reduced PTSD symptoms (the effect size, d=1.9, p < .000). Sertraline resulted in many significant decreases in CAPS when compared to control groups (the effect size , d=1.11, p<.000). At posttreatment, SUD and depression severity were significantly reduced in both CPT and Sertraline groups. After six and twelve months of follow-up, these differences persisted. Conclusion: Comparatively to the control group, CPT and Sertraline significantly decreased PTSD, SUD, and depression."
Collapse
|
53
|
Schwartz EKC, Wolkowicz NR, De Aquino JP, MacLean RR, Sofuoglu M. Cocaine Use Disorder (CUD): Current Clinical Perspectives. Subst Abuse Rehabil 2022; 13:25-46. [PMID: 36093428 PMCID: PMC9451050 DOI: 10.2147/sar.s337338] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022] Open
Abstract
Cocaine use disorder (CUD) is a devastating disorder, impacting both individuals and society. Individuals with CUD face many barriers in accessing treatment for CUD, and most individuals with CUD never receive treatment. In this review, we provide an overview of CUD, including risk factors for CUD, common co-occurring disorders, acute and chronic effects of cocaine use, and currently available pharmacological and behavioral treatments. There are no FDA-approved pharmacological treatments for CUD. Future studies with larger sample sizes and testing treatment combinations are warranted. However, individuals with CUD and co-occurring disorders (eg, a mood or anxiety disorder) may benefit from medication treatments. There are behavioral interventions that have demonstrated efficacy in treating CUD – contingency management (CM) and cognitive-behavioral therapy for substance use disorders (CBT-SUD) in particular – however many barriers remain in delivering these treatments to patients. Following the discussion of current treatments, we highlight some promising emerging treatments, as well as offer a framework that can be used in building a treatment plan for individuals with CUD.
Collapse
Affiliation(s)
- Elizabeth K C Schwartz
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, VA Connecticut Healthcare System, West Haven, CT, USA
- Correspondence: Elizabeth KC Schwartz, Tel +1-203-932-5711, Fax +1-203-937-3472, Email
| | - Noah R Wolkowicz
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Joao P De Aquino
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, VA Connecticut Healthcare System, West Haven, CT, USA
| | - R Ross MacLean
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Mehmet Sofuoglu
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, VA Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
54
|
Brynildsen JK, Yang K, Lemchi C, Dani JA, De Biasi M, Blendy JA. A common SNP in Chrna5 enhances morphine reward in female mice. Neuropharmacology 2022; 218:109218. [PMID: 35973602 DOI: 10.1016/j.neuropharm.2022.109218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022]
Abstract
The single nucleotide polymorphism (SNP) D398N (rs16969968) in CHRNA5, the gene encoding the α5 subunit of the nicotinic acetylcholine receptors (nAChR), has been associated with both nicotine and opiate dependence in human populations. Expression of this SNP on presynaptic VTA dopaminergic (DA) neurons is known to cause a reduction in calcium signaling, leading to alterations in transmitter signaling and altered responses to drugs of abuse. To examine the impact of the Chrna5 SNP on opiate reward and underlying dopaminergic mechanisms, mice harboring two copies of the risk-associated allele (Chrna5 A/A) at a location equivalent to human rs16969968 were generated via CRISPR/cas9 genome editing. We sought to determine whether Chrna5 A/A mice show differences in sensitivity to rewarding properties of morphine using the conditioned place preference paradigm. When mice were tested two weeks after conditioning, female Chrna5 A/A mice showed significantly enhanced preference for the morphine-paired chamber relative to WT females, suggesting that this genotype may enhance opioid reward specifically in females. In contrast, Chrna5 genotype had no effect on locomotor sensitization in male or female mice. Relative to WT females, peak amplitude of ACh-gated currents recorded from VTA DA neurons in Chrna5 A/A females was potentiated 1 day after conditioning with morphine. Increased FOS expression was also observed in Chrna5 A/A mice relative to WT mice following exposure to the morphine CPP chamber. We propose that impaired α5 nAChR subunit function alters DA neuron response following repeated morphine exposures, and that this early cellular response could contribute to enhanced opiate reward two weeks after conditioning.
Collapse
Affiliation(s)
| | | | - Crystal Lemchi
- Department of Systems Pharmacology and Translational Therapeutics, USA
| | | | - Mariella De Biasi
- Department of Neuroscience, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Julie A Blendy
- Department of Systems Pharmacology and Translational Therapeutics, USA.
| |
Collapse
|
55
|
Boroń A, Śmiarowska M, Grzywacz A, Chmielowiec K, Chmielowiec J, Masiak J, Pawłowski T, Larysz D, Ciechanowicz A. Association of Polymorphism within the Putative miRNA Target Site in the 3'UTR Region of the DRD2 Gene with Neuroticism in Patients with Substance Use Disorder. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:9955. [PMID: 36011589 PMCID: PMC9408599 DOI: 10.3390/ijerph19169955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
The study aims at looking into associations between the polymorphism rs6276 that occurs in the putative miRNA target site in the 3'UTR region of the DRD2 gene in patients with substance use disorder (SUD) comorbid with a maniacal syndrome (SUD MANIA). In our study, we did not state any essential difference in DRD2 rs6276 genotype frequencies in the studied samples of SUD MANIA, SUD, and control subjects. A significant result was found for the SUD MANIA group vs. SUD vs. controls on the Neuroticism Scale of NEO FFI test, and DRD2 rs6276 (p = 0.0320) accounted for 1.7% of the variance. The G/G homozygous variants were linked with lower results on the neuroticism scale in the SUD MANIA group because G/G alleles may serve a protective role in the expression of neuroticism in patients with SUD MANIA. So far, there have been no data in the literature on the relationship between the miRSNP rs6276 region in the DRD2 gene and neuroticism (personal traits) in patients with a diagnosis of substance use disorder comorbid with the affective, maniacal type disturbances related to SUD. This is the first report on this topic.
Collapse
Affiliation(s)
- Agnieszka Boroń
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, Aleja Powstańców Wielkopolskich 72 St., 70-111 Szczecin, Poland
| | - Małgorzata Śmiarowska
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University in Szczecin, Aleja Powstańcόw Wielkopolskich 72 St., 70-111 Szczecin, Poland
| | - Anna Grzywacz
- Independent Laboratory of Health Promotion, Pomeranian Medical University in Szczecin, Aleja Powstańcόw Wielkopolskich 72 St., 70-111 Szczecin, Poland
| | - Krzysztof Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, Zyty 28 St., 65-046 Zielona Gora, Poland
| | - Jolanta Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, Zyty 28 St., 65-046 Zielona Gora, Poland
| | - Jolanta Masiak
- Second Department of Psychiatry and Psychiatric Rehabilitation, Medical University of Lublin, Głuska 1 St., 20-059 Lublin, Poland
| | - Tomasz Pawłowski
- Division of Psychotherapy and Psychosomatic Medicine, Wroclaw Medical University, Wyb. L. Pasteura 10 St., 50-367 Wroclaw, Poland
| | - Dariusz Larysz
- 109 Military Hospital with Cutpatient Cinic in Szczecin, Piotra Skargi 9-11 St., 70-965 Szczecin, Poland
| | - Andrzej Ciechanowicz
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, Aleja Powstańców Wielkopolskich 72 St., 70-111 Szczecin, Poland
| |
Collapse
|
56
|
Beierle JA, Yao EJ, Goldstein SI, Lynch WB, Scotellaro JL, Shah AA, Sena KD, Wong AL, Linnertz CL, Averin O, Moody DE, Reilly CA, Peltz G, Emili A, Ferris MT, Bryant CD. Zhx2 Is a Candidate Gene Underlying Oxymorphone Metabolite Brain Concentration Associated with State-Dependent Oxycodone Reward. J Pharmacol Exp Ther 2022; 382:167-180. [PMID: 35688478 PMCID: PMC9341249 DOI: 10.1124/jpet.122.001217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/16/2022] [Indexed: 11/22/2022] Open
Abstract
Understanding the pharmacogenomics of opioid metabolism and behavior is vital to therapeutic success, as mutations can dramatically alter therapeutic efficacy and addiction liability. We found robust, sex-dependent BALB/c substrain differences in oxycodone behaviors and whole brain concentration of oxycodone metabolites. BALB/cJ females showed robust state-dependent oxycodone reward learning as measured via conditioned place preference when compared with the closely related BALB/cByJ substrain. Accordingly, BALB/cJ females also showed a robust increase in brain concentration of the inactive metabolite noroxycodone and the active metabolite oxymorphone compared with BALB/cByJ mice. Oxymorphone is a highly potent, full agonist at the mu opioid receptor that could enhance drug-induced interoception and state-dependent oxycodone reward learning. Quantitative trait locus (QTL) mapping in a BALB/c F2 reduced complexity cross revealed one major QTL on chromosome 15 underlying brain oxymorphone concentration that explained 32% of the female variance. BALB/cJ and BALB/cByJ differ by fewer than 10,000 variants, which can greatly facilitate candidate gene/variant identification. Hippocampal and striatal cis-expression QTL (eQTL) and exon-level eQTL analysis identified Zhx2, a candidate gene coding for a transcriptional repressor with a private BALB/cJ retroviral insertion that reduces Zhx2 expression and sex-dependent dysregulation of cytochrome P450 enzymes. Whole brain proteomics corroborated the Zhx2 eQTL and identified upregulated CYP2D11 that could increase brain oxymorphone in BALB/cJ females. To summarize, Zhx2 is a highly promising candidate gene underlying brain oxycodone metabolite levels. Future studies will validate Zhx2 and its site of action using reciprocal gene editing and tissue-specific viral manipulations in BALB/c substrains. SIGNIFICANCE STATEMENT: Our findings show that genetic variation can result in sex-specific alterations in whole brain concentration of a bioactive opioid metabolite after oxycodone administration, reinforcing the need for sex as a biological factor in pharmacogenomic studies. The cooccurrence of female-specific increased oxymorphone and state-dependent reward learning suggests that this minor yet potent and efficacious metabolite of oxycodone could increase opioid interoception and drug-cue associative learning of opioid reward, which has implications for cue-induced relapse of drug-seeking behavior and for precision pharmacogenetics.
Collapse
Affiliation(s)
- Jacob A Beierle
- Ph.D. Program in Biomolecular Pharmacology (J.A.B., S.I.G.), Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry (J.A.B., E.J.Y., W.B.L., J.L.S., A.A.S., K.D.S., A.L.W., C.D.B.), Department of Biology and Biochemistry, Center for Network Systems Biology (S.I.G., A.E.), and Graduate Program in Neuroscience (W.B.L), Boston University School of Medicine, Boston, Massachusetts; Transformative Training Program in Addiction Science (TTPAS) (J.A.B., W.B.L.) and Undergraduate Research Opportunity Program (J.L.S., K.D.S.), Boston University, Boston, Massachusetts; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.L.L., M.T.F.); Department of Pharmacology and Toxicity, Center for Human Toxicology, University of Utah, Salt Lake City, Utah (O.A., D.E.M., C.A.R.); and Department of Anesthesiology, Pain, and Preoperative Medicine Stanford University School of Medicine, Stanford, California (G.P.)
| | - Emily J Yao
- Ph.D. Program in Biomolecular Pharmacology (J.A.B., S.I.G.), Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry (J.A.B., E.J.Y., W.B.L., J.L.S., A.A.S., K.D.S., A.L.W., C.D.B.), Department of Biology and Biochemistry, Center for Network Systems Biology (S.I.G., A.E.), and Graduate Program in Neuroscience (W.B.L), Boston University School of Medicine, Boston, Massachusetts; Transformative Training Program in Addiction Science (TTPAS) (J.A.B., W.B.L.) and Undergraduate Research Opportunity Program (J.L.S., K.D.S.), Boston University, Boston, Massachusetts; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.L.L., M.T.F.); Department of Pharmacology and Toxicity, Center for Human Toxicology, University of Utah, Salt Lake City, Utah (O.A., D.E.M., C.A.R.); and Department of Anesthesiology, Pain, and Preoperative Medicine Stanford University School of Medicine, Stanford, California (G.P.)
| | - Stanley I Goldstein
- Ph.D. Program in Biomolecular Pharmacology (J.A.B., S.I.G.), Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry (J.A.B., E.J.Y., W.B.L., J.L.S., A.A.S., K.D.S., A.L.W., C.D.B.), Department of Biology and Biochemistry, Center for Network Systems Biology (S.I.G., A.E.), and Graduate Program in Neuroscience (W.B.L), Boston University School of Medicine, Boston, Massachusetts; Transformative Training Program in Addiction Science (TTPAS) (J.A.B., W.B.L.) and Undergraduate Research Opportunity Program (J.L.S., K.D.S.), Boston University, Boston, Massachusetts; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.L.L., M.T.F.); Department of Pharmacology and Toxicity, Center for Human Toxicology, University of Utah, Salt Lake City, Utah (O.A., D.E.M., C.A.R.); and Department of Anesthesiology, Pain, and Preoperative Medicine Stanford University School of Medicine, Stanford, California (G.P.)
| | - William B Lynch
- Ph.D. Program in Biomolecular Pharmacology (J.A.B., S.I.G.), Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry (J.A.B., E.J.Y., W.B.L., J.L.S., A.A.S., K.D.S., A.L.W., C.D.B.), Department of Biology and Biochemistry, Center for Network Systems Biology (S.I.G., A.E.), and Graduate Program in Neuroscience (W.B.L), Boston University School of Medicine, Boston, Massachusetts; Transformative Training Program in Addiction Science (TTPAS) (J.A.B., W.B.L.) and Undergraduate Research Opportunity Program (J.L.S., K.D.S.), Boston University, Boston, Massachusetts; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.L.L., M.T.F.); Department of Pharmacology and Toxicity, Center for Human Toxicology, University of Utah, Salt Lake City, Utah (O.A., D.E.M., C.A.R.); and Department of Anesthesiology, Pain, and Preoperative Medicine Stanford University School of Medicine, Stanford, California (G.P.)
| | - Julia L Scotellaro
- Ph.D. Program in Biomolecular Pharmacology (J.A.B., S.I.G.), Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry (J.A.B., E.J.Y., W.B.L., J.L.S., A.A.S., K.D.S., A.L.W., C.D.B.), Department of Biology and Biochemistry, Center for Network Systems Biology (S.I.G., A.E.), and Graduate Program in Neuroscience (W.B.L), Boston University School of Medicine, Boston, Massachusetts; Transformative Training Program in Addiction Science (TTPAS) (J.A.B., W.B.L.) and Undergraduate Research Opportunity Program (J.L.S., K.D.S.), Boston University, Boston, Massachusetts; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.L.L., M.T.F.); Department of Pharmacology and Toxicity, Center for Human Toxicology, University of Utah, Salt Lake City, Utah (O.A., D.E.M., C.A.R.); and Department of Anesthesiology, Pain, and Preoperative Medicine Stanford University School of Medicine, Stanford, California (G.P.)
| | - Anyaa A Shah
- Ph.D. Program in Biomolecular Pharmacology (J.A.B., S.I.G.), Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry (J.A.B., E.J.Y., W.B.L., J.L.S., A.A.S., K.D.S., A.L.W., C.D.B.), Department of Biology and Biochemistry, Center for Network Systems Biology (S.I.G., A.E.), and Graduate Program in Neuroscience (W.B.L), Boston University School of Medicine, Boston, Massachusetts; Transformative Training Program in Addiction Science (TTPAS) (J.A.B., W.B.L.) and Undergraduate Research Opportunity Program (J.L.S., K.D.S.), Boston University, Boston, Massachusetts; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.L.L., M.T.F.); Department of Pharmacology and Toxicity, Center for Human Toxicology, University of Utah, Salt Lake City, Utah (O.A., D.E.M., C.A.R.); and Department of Anesthesiology, Pain, and Preoperative Medicine Stanford University School of Medicine, Stanford, California (G.P.)
| | - Katherine D Sena
- Ph.D. Program in Biomolecular Pharmacology (J.A.B., S.I.G.), Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry (J.A.B., E.J.Y., W.B.L., J.L.S., A.A.S., K.D.S., A.L.W., C.D.B.), Department of Biology and Biochemistry, Center for Network Systems Biology (S.I.G., A.E.), and Graduate Program in Neuroscience (W.B.L), Boston University School of Medicine, Boston, Massachusetts; Transformative Training Program in Addiction Science (TTPAS) (J.A.B., W.B.L.) and Undergraduate Research Opportunity Program (J.L.S., K.D.S.), Boston University, Boston, Massachusetts; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.L.L., M.T.F.); Department of Pharmacology and Toxicity, Center for Human Toxicology, University of Utah, Salt Lake City, Utah (O.A., D.E.M., C.A.R.); and Department of Anesthesiology, Pain, and Preoperative Medicine Stanford University School of Medicine, Stanford, California (G.P.)
| | - Alyssa L Wong
- Ph.D. Program in Biomolecular Pharmacology (J.A.B., S.I.G.), Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry (J.A.B., E.J.Y., W.B.L., J.L.S., A.A.S., K.D.S., A.L.W., C.D.B.), Department of Biology and Biochemistry, Center for Network Systems Biology (S.I.G., A.E.), and Graduate Program in Neuroscience (W.B.L), Boston University School of Medicine, Boston, Massachusetts; Transformative Training Program in Addiction Science (TTPAS) (J.A.B., W.B.L.) and Undergraduate Research Opportunity Program (J.L.S., K.D.S.), Boston University, Boston, Massachusetts; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.L.L., M.T.F.); Department of Pharmacology and Toxicity, Center for Human Toxicology, University of Utah, Salt Lake City, Utah (O.A., D.E.M., C.A.R.); and Department of Anesthesiology, Pain, and Preoperative Medicine Stanford University School of Medicine, Stanford, California (G.P.)
| | - Colton L Linnertz
- Ph.D. Program in Biomolecular Pharmacology (J.A.B., S.I.G.), Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry (J.A.B., E.J.Y., W.B.L., J.L.S., A.A.S., K.D.S., A.L.W., C.D.B.), Department of Biology and Biochemistry, Center for Network Systems Biology (S.I.G., A.E.), and Graduate Program in Neuroscience (W.B.L), Boston University School of Medicine, Boston, Massachusetts; Transformative Training Program in Addiction Science (TTPAS) (J.A.B., W.B.L.) and Undergraduate Research Opportunity Program (J.L.S., K.D.S.), Boston University, Boston, Massachusetts; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.L.L., M.T.F.); Department of Pharmacology and Toxicity, Center for Human Toxicology, University of Utah, Salt Lake City, Utah (O.A., D.E.M., C.A.R.); and Department of Anesthesiology, Pain, and Preoperative Medicine Stanford University School of Medicine, Stanford, California (G.P.)
| | - Olga Averin
- Ph.D. Program in Biomolecular Pharmacology (J.A.B., S.I.G.), Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry (J.A.B., E.J.Y., W.B.L., J.L.S., A.A.S., K.D.S., A.L.W., C.D.B.), Department of Biology and Biochemistry, Center for Network Systems Biology (S.I.G., A.E.), and Graduate Program in Neuroscience (W.B.L), Boston University School of Medicine, Boston, Massachusetts; Transformative Training Program in Addiction Science (TTPAS) (J.A.B., W.B.L.) and Undergraduate Research Opportunity Program (J.L.S., K.D.S.), Boston University, Boston, Massachusetts; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.L.L., M.T.F.); Department of Pharmacology and Toxicity, Center for Human Toxicology, University of Utah, Salt Lake City, Utah (O.A., D.E.M., C.A.R.); and Department of Anesthesiology, Pain, and Preoperative Medicine Stanford University School of Medicine, Stanford, California (G.P.)
| | - David E Moody
- Ph.D. Program in Biomolecular Pharmacology (J.A.B., S.I.G.), Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry (J.A.B., E.J.Y., W.B.L., J.L.S., A.A.S., K.D.S., A.L.W., C.D.B.), Department of Biology and Biochemistry, Center for Network Systems Biology (S.I.G., A.E.), and Graduate Program in Neuroscience (W.B.L), Boston University School of Medicine, Boston, Massachusetts; Transformative Training Program in Addiction Science (TTPAS) (J.A.B., W.B.L.) and Undergraduate Research Opportunity Program (J.L.S., K.D.S.), Boston University, Boston, Massachusetts; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.L.L., M.T.F.); Department of Pharmacology and Toxicity, Center for Human Toxicology, University of Utah, Salt Lake City, Utah (O.A., D.E.M., C.A.R.); and Department of Anesthesiology, Pain, and Preoperative Medicine Stanford University School of Medicine, Stanford, California (G.P.)
| | - Christopher A Reilly
- Ph.D. Program in Biomolecular Pharmacology (J.A.B., S.I.G.), Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry (J.A.B., E.J.Y., W.B.L., J.L.S., A.A.S., K.D.S., A.L.W., C.D.B.), Department of Biology and Biochemistry, Center for Network Systems Biology (S.I.G., A.E.), and Graduate Program in Neuroscience (W.B.L), Boston University School of Medicine, Boston, Massachusetts; Transformative Training Program in Addiction Science (TTPAS) (J.A.B., W.B.L.) and Undergraduate Research Opportunity Program (J.L.S., K.D.S.), Boston University, Boston, Massachusetts; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.L.L., M.T.F.); Department of Pharmacology and Toxicity, Center for Human Toxicology, University of Utah, Salt Lake City, Utah (O.A., D.E.M., C.A.R.); and Department of Anesthesiology, Pain, and Preoperative Medicine Stanford University School of Medicine, Stanford, California (G.P.)
| | - Gary Peltz
- Ph.D. Program in Biomolecular Pharmacology (J.A.B., S.I.G.), Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry (J.A.B., E.J.Y., W.B.L., J.L.S., A.A.S., K.D.S., A.L.W., C.D.B.), Department of Biology and Biochemistry, Center for Network Systems Biology (S.I.G., A.E.), and Graduate Program in Neuroscience (W.B.L), Boston University School of Medicine, Boston, Massachusetts; Transformative Training Program in Addiction Science (TTPAS) (J.A.B., W.B.L.) and Undergraduate Research Opportunity Program (J.L.S., K.D.S.), Boston University, Boston, Massachusetts; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.L.L., M.T.F.); Department of Pharmacology and Toxicity, Center for Human Toxicology, University of Utah, Salt Lake City, Utah (O.A., D.E.M., C.A.R.); and Department of Anesthesiology, Pain, and Preoperative Medicine Stanford University School of Medicine, Stanford, California (G.P.)
| | - Andrew Emili
- Ph.D. Program in Biomolecular Pharmacology (J.A.B., S.I.G.), Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry (J.A.B., E.J.Y., W.B.L., J.L.S., A.A.S., K.D.S., A.L.W., C.D.B.), Department of Biology and Biochemistry, Center for Network Systems Biology (S.I.G., A.E.), and Graduate Program in Neuroscience (W.B.L), Boston University School of Medicine, Boston, Massachusetts; Transformative Training Program in Addiction Science (TTPAS) (J.A.B., W.B.L.) and Undergraduate Research Opportunity Program (J.L.S., K.D.S.), Boston University, Boston, Massachusetts; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.L.L., M.T.F.); Department of Pharmacology and Toxicity, Center for Human Toxicology, University of Utah, Salt Lake City, Utah (O.A., D.E.M., C.A.R.); and Department of Anesthesiology, Pain, and Preoperative Medicine Stanford University School of Medicine, Stanford, California (G.P.)
| | - Martin T Ferris
- Ph.D. Program in Biomolecular Pharmacology (J.A.B., S.I.G.), Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry (J.A.B., E.J.Y., W.B.L., J.L.S., A.A.S., K.D.S., A.L.W., C.D.B.), Department of Biology and Biochemistry, Center for Network Systems Biology (S.I.G., A.E.), and Graduate Program in Neuroscience (W.B.L), Boston University School of Medicine, Boston, Massachusetts; Transformative Training Program in Addiction Science (TTPAS) (J.A.B., W.B.L.) and Undergraduate Research Opportunity Program (J.L.S., K.D.S.), Boston University, Boston, Massachusetts; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.L.L., M.T.F.); Department of Pharmacology and Toxicity, Center for Human Toxicology, University of Utah, Salt Lake City, Utah (O.A., D.E.M., C.A.R.); and Department of Anesthesiology, Pain, and Preoperative Medicine Stanford University School of Medicine, Stanford, California (G.P.)
| | - Camron D Bryant
- Ph.D. Program in Biomolecular Pharmacology (J.A.B., S.I.G.), Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry (J.A.B., E.J.Y., W.B.L., J.L.S., A.A.S., K.D.S., A.L.W., C.D.B.), Department of Biology and Biochemistry, Center for Network Systems Biology (S.I.G., A.E.), and Graduate Program in Neuroscience (W.B.L), Boston University School of Medicine, Boston, Massachusetts; Transformative Training Program in Addiction Science (TTPAS) (J.A.B., W.B.L.) and Undergraduate Research Opportunity Program (J.L.S., K.D.S.), Boston University, Boston, Massachusetts; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.L.L., M.T.F.); Department of Pharmacology and Toxicity, Center for Human Toxicology, University of Utah, Salt Lake City, Utah (O.A., D.E.M., C.A.R.); and Department of Anesthesiology, Pain, and Preoperative Medicine Stanford University School of Medicine, Stanford, California (G.P.)
| |
Collapse
|
57
|
Sedki M, Ahmed A, Goel A. Ethical and allocation issues in liver transplant candidates with alcohol related liver disease. Transl Gastroenterol Hepatol 2022; 7:26. [PMID: 35892052 PMCID: PMC9257533 DOI: 10.21037/tgh-2020-13] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 09/17/2020] [Indexed: 09/01/2024] Open
Abstract
In the past decade, alcohol-related liver disease (ALD) has become the leading indication for liver transplantation (LT) in the United States. Despite this major development, there still remains some controversy in a distinct subset of this patient population, those presenting with alcoholic hepatitis (AH). There is significant debate within the transplant community regarding acceptance criteria for patients with AH requiring LT, especially those with less than 6 months of sobriety. With that being said, LT in the setting of ALD and AH has shown an improvement in survival rates; additionally, many studies have reported that careful selection of patients with ALD has produced excellent post-transplant outcomes even if transplant occurred with less than 6 months of sobriety. In this review, we aim to discuss the ethical and allocation-associated issues that arise when considering ALD and/or AH for LT; furthermore, we delve into the history, controversies, current guidelines, and future directions of LT in this subgroup.
Collapse
Affiliation(s)
- Mai Sedki
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Aijaz Ahmed
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Aparna Goel
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
58
|
Abstract
When does repeated behaviour constitute behavioural addiction? There has been considerable debate about non-substance-related addictions and how to determine when impaired control over a behaviour is addiction. There are public health benefits to identifying new behavioural addictions if intervention can improve outcomes. However, criteria for establishing new behavioural addictions must guard against diagnostic inflation and the pathologizing of normal problems of living. Criteria should include clinical relevance (Criterion 1), alignment with addiction phenomenology (Criterion 2) and theory (Criterion 3), and taxonomic plausibility (Criterion 4). Against such criteria, evidence does not yet support classification of pornography-use and buying-shopping disorders as addictions.
Collapse
Affiliation(s)
- Matthew J. Gullo
- National Centre for Youth Substance Use Research, The University of Queensland, Brisbane, QLD 4072, Australia
- Corresponding author. E-mail:
| | - Andrew P. Wood
- School of Health & Behavioural Sciences, The University of the Sunshine Coast, Birtinya, QLD 4575, Australia
| | - John B. Saunders
- National Centre for Youth Substance Use Research, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
59
|
Clark TP. The history and pharmacology of buprenorphine: New advances in cats. J Vet Pharmacol Ther 2022; 45 Suppl 1:S1-S30. [DOI: 10.1111/jvp.13073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/19/2022] [Accepted: 05/14/2022] [Indexed: 11/30/2022]
|
60
|
Zhao R, Shi H, Yin J, Sun Z, Xu Y. Promoter Specific Methylation of SSTR4 is Associated With Alcohol Dependence in Han Chinese Males. Front Genet 2022; 13:915513. [PMID: 35754825 PMCID: PMC9218598 DOI: 10.3389/fgene.2022.915513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Alcohol dependence (AD), a disease can be affected by environmental factors with epigenetic modification like DNA methylation changes, is one of the most serious and complex public health problems in China and worldwide. Previous findings from our laboratory using the Illumina Infinium Human Methylation450 BeadChip suggested that methylation at the promoter of SSTR4 was one of the major form of DNA modification in alcohol-dependent populations. To investigate whether DNA methylation levels of the SSTR4 promoter influence alcohol-dependent behaviors, genomic DNA was extracted from the peripheral blood sample of 63 subjects with AD and 65 healthy controls, and pyrosequencing was used to verify the results of BeadChip array. Linear regression was used to analyze the correlation between the methylation levels of SSTR4 promoter and the scores of alcohol dependence scales. Gene expression of SSTR4 in brain tissue was obtained from the Genotype-Tissue Expression (GTEx) project and Human Brain Transcriptome database (HBT). We found the methylation levels of SSTR4 in AD group were significantly lower than healthy controls (two-tailed t-test, t = 14.723, p < 0.001). In addition, only weak to moderate correlations between the methylation levels of the SSTR4 promoter region and scale scores of Alcohol Use Disorders Identification Test (AUDIT), Life Events Scale (LES) and Wheatley Stress Profile (WSS) based on linear regression analyses (AUDIT: R 2 = 0.35, p < 0.001; LES: R 2 = 0.27, p < 0.001; WSS: R 2 = 0.49, p < 0.001). The hypomethylated status of SSTR4 may involve in the development of AD and increase the risk of AD persistence in Han Chinese males.
Collapse
Affiliation(s)
- Rongrong Zhao
- The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Huihui Shi
- The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Jiajun Yin
- Brain Science Basic Laboratory, The Affiliated Wuxi Mental Health Center with Nanjing Medical University, Wuxi, China
| | - Zhen Sun
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yahui Xu
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
61
|
Gaines CH, Schoenrock SA, Farrington J, Lee DF, Aponte-Collazo LJ, Shaw GD, Miller DR, Ferris MT, Pardo-Manuel de Villena F, Tarantino LM. Cocaine-Induced Locomotor Activation Differs Across Inbred Mouse Substrains. Front Psychiatry 2022; 13:800245. [PMID: 35599758 PMCID: PMC9120424 DOI: 10.3389/fpsyt.2022.800245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Cocaine use disorders (CUD) are devastating for affected individuals and impose a significant societal burden, but there are currently no FDA-approved therapies. The development of novel and effective treatments has been hindered by substantial gaps in our knowledge about the etiology of these disorders. The risk for developing a CUD is influenced by genetics, the environment and complex interactions between the two. Identifying specific genes and environmental risk factors that increase CUD risk would provide an avenue for the development of novel treatments. Rodent models of addiction-relevant behaviors have been a valuable tool for studying the genetics of behavioral responses to drugs of abuse. Traditional genetic mapping using genetically and phenotypically divergent inbred mice has been successful in identifying numerous chromosomal regions that influence addiction-relevant behaviors, but these strategies rarely result in identification of the causal gene or genetic variant. To overcome this challenge, reduced complexity crosses (RCC) between closely related inbred mouse strains have been proposed as a method for rapidly identifying and validating functional variants. The RCC approach is dependent on identifying phenotypic differences between substrains. To date, however, the study of addiction-relevant behaviors has been limited to very few sets of substrains, mostly comprising the C57BL/6 lineage. The present study expands upon the current literature to assess cocaine-induced locomotor activation in 20 inbred mouse substrains representing six inbred strain lineages (A/J, BALB/c, FVB/N, C3H/He, DBA/2 and NOD) that were either bred in-house or supplied directly by a commercial vendor. To our knowledge, we are the first to identify significant differences in cocaine-induced locomotor response in several of these inbred substrains. The identification of substrain differences allows for the initiation of RCC populations to more rapidly identify specific genetic variants associated with acute cocaine response. The observation of behavioral profiles that differ between mice generated in-house and those that are vendor-supplied also presents an opportunity to investigate the influence of environmental factors on cocaine-induced locomotor activity.
Collapse
Affiliation(s)
- Christiann H. Gaines
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Neuroscience Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Sarah A. Schoenrock
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Joseph Farrington
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - David F. Lee
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Pharmacology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lucas J. Aponte-Collazo
- Pharmacology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ginger D. Shaw
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Darla R. Miller
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Martin T. Ferris
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lisa M. Tarantino
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
62
|
Bagley JR, Khan AH, Smith DJ, Jentsch JD. Extreme phenotypic diversity in operant response to intravenous cocaine or saline infusion in the hybrid mouse diversity panel. Addict Biol 2022; 27:e13162. [PMID: 35470554 PMCID: PMC9870574 DOI: 10.1111/adb.13162] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 01/26/2023]
Abstract
Cocaine self-administration is a complexly determined trait, with a substantial proportion of individual differences being determined by genetic variation. However, the relevant genetic variants that drive heritable differences in cocaine use remain undiscovered. Cocaine intravenous self-administration (IVSA) procedures in laboratory animals provide opportunities to prospectively investigate neurogenetic influences on the acquisition of voluntary cocaine use. Here, we provide information on cocaine (or saline-as a control) IVSA in 84 members of the hybrid mouse diversity panel (HMDP), an array of genetically distinct classical or recombinant inbred strains. We found cocaine IVSA to be substantially heritable in this population, with strain-level intake ranging for near 0 to >25 mg/kg/session. Though saline IVSA was also found to be heritable, a modest genetic correlation between cocaine and saline IVSA indicates that operant responding for the cocaine reinforcer was influenced, at least in part, by unique genetic variants. Genome-wide association studies (GWAS) of infusions earned in cocaine and saline groups revealed significant quantitative trait loci (QTL) on Chromosomes 3 and 14 for cocaine, but not saline, IVSA. Positional candidates were further prioritized through use of bulk RNA sequencing data that revealed genes with cis-eQTL and genetic correlation to number of infusions. Additionally, these data identify reference strains with extreme cocaine IVSA phenotypes, revealing them as polygenic models of risk and resilience to cocaine reinforcement. This work is part of an ongoing effort to characterize genetic variation that moderates cocaine IVSA that may, in turn, provide a more comprehensive understanding of cocaine risk genetics and neurobiology.
Collapse
Affiliation(s)
- Jared R. Bagley
- Department of Psychology, Binghamton University, Binghamton, New York, USA
| | - Arshad H. Khan
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California, USA
| | - Desmond J. Smith
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California, USA
| | - James D. Jentsch
- Department of Psychology, Binghamton University, Binghamton, New York, USA
| |
Collapse
|
63
|
Pituitary adenylate cyclase-activating polypeptide type 1 receptor within the nucleus accumbens core mediates excessive alcohol drinking in alcohol-preferring rats. Neuropharmacology 2022; 212:109063. [PMID: 35460713 DOI: 10.1016/j.neuropharm.2022.109063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/19/2022] [Accepted: 04/12/2022] [Indexed: 12/15/2022]
Abstract
Alcohol use disorders (AUD) have a strong component of heritability; however, the neurobiological mechanisms mediating the propensity to consume excessive amounts of alcohol are still not well understood. Pituitary adenylate cyclase-activating polypeptide (PACAP), a highly conserved neuropeptide which exerts its effects mainly through the PAC1 receptor (PAC1R), has been suggested to be one of the mediators of the effects of drugs of abuse and alcohol. Here, we investigated the role of the PACAP/PAC1R system in excessive alcohol drinking in alcohol-preferring rats, an established animal model of AUD. Intracerebroventricular (i.c.v.) administration of the PAC1R antagonist PACAP(6-38) blocked excessive alcohol drinking and motivation to drink in Sardinian alcohol-preferring (Scr:sP) rats, without affecting water, saccharin, or sucrose intake. Notably, PACAP(6-38) did not affect ethanol responding in outbred Wistar rats. PACAP(6-38) also significantly reduced alcohol-seeking behavior under a second-order schedule of reinforcement. Using immunohistochemistry, a significant increase in the number of PAC1R positive cells was observed selectively in the nucleus accumbens (NAcc) Core of Scr:sP rats, compared to Wistar rats following alcohol drinking. Finally, excessive drinking in Scr:sP rats was suppressed by intra-NAcc Core, but not intra-NAcc Shell, PACAP(6-38), as well as by virally-mediated PAC1R knockdown in the NAcc Core. The present study shows that hyperactivity of the PACAP/PAC1R system specifically in the NAcc Core mediates excessive drinking of alcohol-preferring rats, and indicates that this system may represent a novel target for the treatment of AUD.
Collapse
|
64
|
Wang K, Zhang H, Ji J, Zhang R, Dang W, Xie Q, Zhu Y, Zhang J. Expression Quantitative Trait Locus rs6356 Is Associated with Susceptibility to Heroin Addiction by Potentially Influencing TH Gene Expression in the Hippocampus and Nucleus Accumbens. J Mol Neurosci 2022; 72:1108-1115. [DOI: 10.1007/s12031-022-01992-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 02/25/2022] [Indexed: 11/28/2022]
|
65
|
Strong and weak cross-inheritance of substance use disorders in a nationally representative sample. Mol Psychiatry 2022; 27:1742-1753. [PMID: 34759357 PMCID: PMC9085976 DOI: 10.1038/s41380-021-01370-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/21/2022]
Abstract
Substance use disorders (SUDs) are moderately to highly heritable and are in part cross-transmitted genetically, as observed in twin and family studies. We performed exome-focused genotyping to examine the cross-transmission of four SUDs: alcohol use disorder (AUD, n = 4487); nicotine use disorder (NUD, n = 4394); cannabis use disorder (CUD, n = 954); and nonmedical prescription opioid use disorder (NMPOUD, n = 346) within a large nationally representative sample (n = 36,309), the National Epidemiologic Survey on Alcohol and Related Conditions-III (NESARC-III). All diagnoses were based on in-person structured psychiatric interview (AUDADIS-5). SUD cases were compared alone and together to 3959 "super controls" who had neither a SUD nor a psychiatric disorder using an exome-focused array assaying 363,496 SNPs, yielding a representative view of within-disorder and cross-disorder genetic influences on SUDs. The 29 top susceptibility genes for one or more SUDs overlapped highly with genes previously implicated by GWAS of SUD. Polygenic scores (PGS) were computed within the European ancestry (EA) component of the sample (n = 12,505) using summary statistics from each of four clinically distinct SUDs compared to the 3959 "super controls" but then used for two distinctly different purposes: to predict SUD severity (mild, moderate, or severe) and to predict each of the other 3 SUDs. Our findings based on PGS highlight shared and unshared genetic contributions to the pathogenesis of SUDs, confirming the strong cross-inheritance of AUD and NUD as well as the distinctiveness of inheritance of opioid use disorder.
Collapse
|
66
|
Kaya-Akyüzlü D, Özkan-Kotiloğlu S, Yalçın-Şahiner Ş, Ağtaş-Ertan E, Özgür-İlhan İ. Association of PDYN 68-bp VNTR polymorphism with sublingual buprenorphine/naloxone treatment and with opioid or alcohol use disorder: Effect on craving, depression, anxiety and age onset of first use. Eur J Pharmacol 2022; 921:174862. [PMID: 35271823 DOI: 10.1016/j.ejphar.2022.174862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 11/03/2022]
|
67
|
Custodio L, Malone S, Bardo MT, Turner JR. Nicotine and opioid co-dependence: Findings from bench research to clinical trials. Neurosci Biobehav Rev 2022; 134:104507. [PMID: 34968525 PMCID: PMC10986295 DOI: 10.1016/j.neubiorev.2021.12.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 10/19/2022]
Abstract
Concomitant use of tobacco and opioids represents a growing public health concern. In fact, the mortality rate due to smoking-related illness approaches 50% among SUD patients. Cumulative evidence demonstrates that the vulnerability to drugs of abuse is influenced by behavioral, environmental, and genetic factors. This review explores the contribution of genetics and neural mechanisms influencing nicotine and opioid reward, respiration, and antinociception, emphasizing the interaction of cholinergic and opioid receptor systems. Despite the substantial evidence demonstrating nicotine-opioid interactions within the brain and on behavior, the currently available pharmacotherapies targeting these systems have shown limited efficacy for smoking cessation on opioid-maintained smokers. Thus, further studies designed to identify novel targets modulating both nicotinic and opioid receptor systems may lead to more efficacious approaches for co-morbid nicotine dependence and opioid use disorder.
Collapse
Affiliation(s)
- Lilian Custodio
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
| | - Samantha Malone
- Department of Psychology, University of Kentucky, Lexington, KY, USA
| | - Michael T Bardo
- Department of Psychology, University of Kentucky, Lexington, KY, USA
| | - Jill R Turner
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
68
|
Reed ZE, Wootton RE, Munafò MR. Using Mendelian randomization to explore the gateway hypothesis: possible causal effects of smoking initiation and alcohol consumption on substance use outcomes. Addiction 2022; 117:741-750. [PMID: 34590374 PMCID: PMC9453475 DOI: 10.1111/add.15673] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/11/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Initial use of drugs such as tobacco and alcohol may lead to subsequent more problematic drug use-the 'gateway' hypothesis. However, observed associations may be due to a shared underlying risk factor, such as trait impulsivity. We used bidirectional Mendelian randomization (MR) to test the gateway hypothesis. DESIGN Our main method was inverse-variance weighted (IVW) MR, with other methods included as sensitivity analyses (where consistent results across methods would raise confidence in our primary results). MR is a genetic instrumental variable approach used to support stronger causal inference in observational studies. SETTING AND PARTICIPANTS Genome-wide association summary data among European ancestry individuals for smoking initiation, alcoholic drinks per week, cannabis use and dependence, cocaine and opioid dependence (n = 1749-1 232 091). MEASUREMENTS Genetic variants for exposure. FINDINGS We found evidence of causal effects from smoking initiation to increased drinks per week [(IVW): β = 0.06; 95% confidence interval (CI) = 0.03-0.09; P = 9.44 × 10-06 ], cannabis use [IVW: odds ratio (OR) = 1.34; 95% CI = 1.24-1.44; P = 1.95 × 10-14 ] and cannabis dependence (IVW: OR = 1.68; 95% CI = 1.12-2.51; P = 0.01). We also found evidence of an effect of cannabis use on the increased likelihood of smoking initiation (IVW: OR = 1.39; 95% CI = 1.08-1.80; P = 0.01). We did not find evidence of an effect of drinks per week on other substance use outcomes, except weak evidence of an effect on cannabis use (IVW: OR = 0.55; 95% CI = 0.16-1.93; P-value = 0.35). We found weak evidence of an effect of opioid dependence on increased drinks per week (IVW: β = 0.002; 95% CI = 0.0005-0.003; P = 8.61 × 10-03 ). CONCLUSIONS Bidirectional Mendelian randomization testing of the gateway hypothesis reveals that smoking initiation may lead to increased alcohol consumption, cannabis use and cannabis dependence. Cannabis use may also lead to smoking initiation and opioid dependence to alcohol consumption. However, given that tobacco and alcohol use typically begin before other drug use, these results may reflect a shared risk factor or a bidirectional effect for cannabis use and opioid dependence.
Collapse
Affiliation(s)
- Zoe E. Reed
- School of Psychological ScienceUniversity of BristolBristolUK
- MRC Integrative Epidemiology UnitUniversity of BristolBristolUK
| | - Robyn E. Wootton
- MRC Integrative Epidemiology UnitUniversity of BristolBristolUK
- Nic Waals InstituteLovisenberg Diaconal HospitalOsloNorway
| | - Marcus R. Munafò
- School of Psychological ScienceUniversity of BristolBristolUK
- MRC Integrative Epidemiology UnitUniversity of BristolBristolUK
- National Institute for Health Research Bristol Biomedical Research CentreUniversity Hospitals Bristol NHS Foundation Trust and University of BristolBristolUK
| |
Collapse
|
69
|
Bellot MS, Guermandi II, Camargo-dos-Santos B, Giaquinto PC. Differences in the Alcohol Preference Assessment of Shy and Bold Zebrafish. Front Behav Neurosci 2022; 16:810051. [PMID: 35283741 PMCID: PMC8907912 DOI: 10.3389/fnbeh.2022.810051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Individuals differ in their preference for alcohol and propensity to develop alcoholism, where the behavioral profile, such as the bold-shy axis, plays an important role for such a difference. However, literature is limited and conflicting on the causes and consequences of this relationship. Translational studies using animal models, such as zebrafish, can help identify behavioral traits that predispose individuals to drink alcohol compulsively. Here, the preference for alcohol was investigated in two distinct traits in zebrafish: shy and bold. For this purpose, fish were separated into shy and bold traits and then a conditioned place preference paradigm was used, a strategy that allows the rewarding effects from alcohol to be assessed by the ability to enhance the animal’s preference for an environment that initially was not preferred. It was found that bold zebrafish actively searched for the environment that was paired to alcohol after one acute exposure, whereas, shy fish changed their place preference even without alcohol administration, showing that the conditioned place preference protocol, given the short amount time to assess place preference, is not ample enough for shy fish to choose. Our results show that behavioral profiles must be considered in further studies since differences between shy and bold individuals on preference behavior can strongly interfere in the assessment of drug preference, mainly when using the conditioned place preference paradigm.
Collapse
Affiliation(s)
- Marina Sanson Bellot
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
- Aquaculture Center of Unesp, São Paulo State University, Jaboticabal, São Paulo, Brazil
| | - Isabela Inforzato Guermandi
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Bruno Camargo-dos-Santos
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
- Aquaculture Center of Unesp, São Paulo State University, Jaboticabal, São Paulo, Brazil
| | - Percília Cardoso Giaquinto
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
- Aquaculture Center of Unesp, São Paulo State University, Jaboticabal, São Paulo, Brazil
- *Correspondence: Percília Cardoso Giaquinto,
| |
Collapse
|
70
|
Smederevac S, Sadiković S, Čolović P, Vučinić N, Milutinović A, Riemann R, Corr PJ, Prinz M, Budimlija Z. Quantitative behavioral genetic and molecular genetic foundations of the approach and avoidance strategies. CURRENT PSYCHOLOGY 2022; 42:1-15. [PMID: 35095249 PMCID: PMC8788394 DOI: 10.1007/s12144-022-02724-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2022] [Indexed: 11/03/2022]
Abstract
Two studies examined genetic and environmental influences on traits proposed by the revised Reinforcement Sensitivity Theory (rRST) of personality. Both quantitative and molecular behavioral genetic methods were applied considering the effects of COMT, DRD2, HTR1A and TPH2 single nucleotide polymorphisms (SNPs). Study one included 274 monozygotic and 154 dizygotic twins for the quantitative behavioral study; and in study two there were 431 twins for the molecular genetic study. The Reinforcement Sensitivity Questionnaire was used to assess basic personality traits defined by the rRST. Univariate biometric modeling suggested that genetic influences accounted for 34-44% of variance of Behavioral Approach System (BAS), Behavioral Inhibition System (BIS) and Fight-Fligh-Freeze System. Molecular genetic analyses proposed the significant main effect of COMT SNP on the BAS and TPH2 SNP on the BIS, and pointed out epistatic effects of COMT x DRD2 on BAS and HTR1A x TPH2 on Fight. Results demonstrated substantial heritability for all rRST constructs, as well as for differences in the molecular genetic basis of both approach-related and avoidance-related dimensions.
Collapse
Affiliation(s)
- Snežana Smederevac
- Department of Psychology, Faculty of Philosophy, University of Novi Sad, Dr. Zorana Djindjića 2, Novi Sad, 21 000 Serbia
| | - Selka Sadiković
- Department of Psychology, Faculty of Philosophy, University of Novi Sad, Dr. Zorana Djindjića 2, Novi Sad, 21 000 Serbia
| | - Petar Čolović
- Department of Psychology, Faculty of Philosophy, University of Novi Sad, Dr. Zorana Djindjića 2, Novi Sad, 21 000 Serbia
| | - Nataša Vučinić
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | | | - Rainer Riemann
- Faculty of Psychology and Sport Science, Bielefeld University, Bielefeld, Germany
| | - Philip J. Corr
- Department of Psychology, City, University of London, London, UK
| | - Mechthild Prinz
- John Jay College of Criminal Justice, City University of New York, New York, NY USA
| | - Zoran Budimlija
- Department of Neurology, NYU School of Medicine, New York, NY USA
| |
Collapse
|
71
|
Chang S, Sun Y, Wang F, Chang X, Zhang Y, Jia T, Sun H, Yue W, Wu P, Lu L, Shi J. Genome‐wide association meta‐analyses identify novel genetic risk loci and polygenic phenotype associations for heroin, methamphetamine and alcohol dependences. Clin Transl Med 2022; 12:e659. [PMID: 35075802 PMCID: PMC8787099 DOI: 10.1002/ctm2.659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/06/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Affiliation(s)
- Su‐Hua Chang
- NHC Key Laboratory of Mental Health (Peking University) National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital) Chinese Academy of Medical Sciences Research Unit (No.2018RU006) Peking University Institute of Mental Health Peking University Peking University Sixth Hospital Beijing China
| | - Yan Sun
- National Institute on Drug Dependence Peking University Beijing China
- Beijing Key Laboratory on Drug Dependence Research, Peking University Beijing China
| | - Fan Wang
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School Beijing China
| | - Xiang‐Wen Chang
- National Institute on Drug Dependence Peking University Beijing China
| | - Ying‐Jian Zhang
- NHC Key Laboratory of Mental Health (Peking University) National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital) Chinese Academy of Medical Sciences Research Unit (No.2018RU006) Peking University Institute of Mental Health Peking University Peking University Sixth Hospital Beijing China
| | - Tian‐Ye Jia
- Social, Genetic and Developmental Psychiatry Centre Psychology & Neuroscience King's College London De Crespigny Park Institute of Psychiatry London UK
- Institute of Science and Technology for Brain‐Inspired Intelligence, Ministry of Education‐Key Laboratory of Computational Neuroscience and Brain‐Inspired Intelligence and Research and Research Institute of Intelligent Complex Systems Fudan University Shanghai China
| | - Hong‐Qiang Sun
- NHC Key Laboratory of Mental Health (Peking University) National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital) Chinese Academy of Medical Sciences Research Unit (No.2018RU006) Peking University Institute of Mental Health Peking University Peking University Sixth Hospital Beijing China
| | - Wei‐Hua Yue
- NHC Key Laboratory of Mental Health (Peking University) National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital) Chinese Academy of Medical Sciences Research Unit (No.2018RU006) Peking University Institute of Mental Health Peking University Peking University Sixth Hospital Beijing China
| | - Ping Wu
- National Institute on Drug Dependence Peking University Beijing China
- Beijing Key Laboratory on Drug Dependence Research, Peking University Beijing China
| | - Lin Lu
- NHC Key Laboratory of Mental Health (Peking University) National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital) Chinese Academy of Medical Sciences Research Unit (No.2018RU006) Peking University Institute of Mental Health Peking University Peking University Sixth Hospital Beijing China
- National Institute on Drug Dependence Peking University Beijing China
| | - Jie Shi
- National Institute on Drug Dependence Peking University Beijing China
- Beijing Key Laboratory on Drug Dependence Research, Peking University Beijing China
- The State Key Laboratory of Natural and Biomimetic Drugs Peking University China
- The Key Laboratory for Neuroscience of the Ministry of Education and Health Peking University China
| |
Collapse
|
72
|
Lee YK, Gold MS, Fuehrlein BS. Looking beyond the opioid receptor: A desperate need for new treatments for opioid use disorder. J Neurol Sci 2022; 432:120094. [PMID: 34933249 DOI: 10.1016/j.jns.2021.120094] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 10/19/2022]
Abstract
The mainstay of treatment for opioid use disorder (OUD) is opioid agonist therapy (OAT), which modulates opioid receptors to reduce substance craving and use. OAT maintains dependence on opioids but helps reduce overdose and negative sequelae of substance abuse. Despite increasing availability of OAT, its effectiveness is limited by difficulty in initiating and maintaining patients on treatment. With the worsening opioid epidemic in the United States and rising overdose deaths, a more durable and effective treatment for OUD is necessary. This paper reviews novel treatments being investigated for OUD, including neuromodulatory interventions, psychedelic drugs, and other novel approaches. Neuromodulatory interventions can stimulate the addiction neural circuitry involving the dorsolateral prefrontal cortex and deeper mesolimbic structures to curb craving and reduce use, and multiple clinical trials for interventional treatment for OUD are currently conducted. Similarly, psychedelic agents are being investigated for efficacy in OUD specifically. There is a resurgence of interest in psychedelic agents' therapeutic potential, with evidence of improving mood symptoms and decreased substance use even after just one dose. Exact mechanism of their anti-addictive effect is not fully elucidated, but psychedelic agents do not maintain opioid dependence and some may even be helpful in abating symptoms of withdrawal. Other potential approaches for OUD include targeting different parts of the dopamine-dependent addiction pathway, identifying susceptible genes and modulating gene products, as well as utilizing vaccines as immunotherapy to blunt the addictive effects of substances. Much more clinical data are needed to support efficacy and safety of these therapies in OUD, but these proposed novel treatments look beyond the opioid receptor to offer hope for a more durably effective OUD treatment.
Collapse
Affiliation(s)
- Yu Kyung Lee
- School of Medicine, Yale University, 333 Cedar St, New Haven, CT 06510, USA.
| | - Mark S Gold
- Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA.
| | - Brian S Fuehrlein
- Department of Psychiatry, Yale University, 300 George Street, New Haven, CT 06511, USA.
| |
Collapse
|
73
|
Jordan CJ, Xi ZX. Identification of the Risk Genes Associated With Vulnerability to Addiction: Major Findings From Transgenic Animals. Front Neurosci 2022; 15:811192. [PMID: 35095405 PMCID: PMC8789752 DOI: 10.3389/fnins.2021.811192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/14/2021] [Indexed: 12/21/2022] Open
Abstract
Understanding risk factors for substance use disorders (SUD) can facilitate medication development for SUD treatment. While a rich literature exists discussing environmental factors that influence SUD, fewer articles have focused on genetic factors that convey vulnerability to drug use. Methods to identify SUD risk genes include Genome-Wide Association Studies (GWAS) and transgenic approaches. GWAS have identified hundreds of gene variants or single nucleotide polymorphisms (SNPs). However, few genes identified by GWAS have been verified by clinical or preclinical studies. In contrast, significant progress has been made in transgenic approaches to identify risk genes for SUD. In this article, we review recent progress in identifying candidate genes contributing to drug use and addiction using transgenic approaches. A central hypothesis is if a particular gene variant (e.g., resulting in reduction or deletion of a protein) is associated with increases in drug self-administration or relapse to drug seeking, this gene variant may be considered a risk factor for drug use and addiction. Accordingly, we identified several candidate genes such as those that encode dopamine D2 and D3 receptors, mGluR2, M4 muscarinic acetylcholine receptors, and α5 nicotinic acetylcholine receptors, which appear to meet the risk-gene criteria when their expression is decreased. Here, we describe the role of these receptors in drug reward and addiction, and then summarize major findings from the gene-knockout mice or rats in animal models of addiction. Lastly, we briefly discuss future research directions in identifying addiction-related risk genes and in risk gene-based medication development for the treatment of addiction.
Collapse
Affiliation(s)
- Chloe J. Jordan
- Division of Alcohol, Drugs and Addiction, Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, United States
- *Correspondence: Chloe J. Jordan,
| | - Zheng-Xiong Xi
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, United States
- Zheng-Xiong Xi,
| |
Collapse
|
74
|
Philyaw TJ, Rothenfluh A, Titos I. The Use of Drosophila to Understand Psychostimulant Responses. Biomedicines 2022; 10:119. [PMID: 35052798 PMCID: PMC8773124 DOI: 10.3390/biomedicines10010119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/31/2021] [Accepted: 12/31/2021] [Indexed: 01/27/2023] Open
Abstract
The addictive properties of psychostimulants such as cocaine, amphetamine, methamphetamine, and methylphenidate are based on their ability to increase dopaminergic neurotransmission in the reward system. While cocaine and methamphetamine are predominately used recreationally, amphetamine and methylphenidate also work as effective therapeutics to treat symptoms of disorders including attention deficit and hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). Although both the addictive properties of psychostimulant drugs and their therapeutic efficacy are influenced by genetic variation, very few genes that regulate these processes in humans have been identified. This is largely due to population heterogeneity which entails a requirement for large samples. Drosophila melanogaster exhibits similar psychostimulant responses to humans, a high degree of gene conservation, and allow performance of behavioral assays in a large population. Additionally, amphetamine and methylphenidate reduce impairments in fly models of ADHD-like behavior. Therefore, Drosophila represents an ideal translational model organism to tackle the genetic components underlying the effects of psychostimulants. Here, we break down the many assays that reliably quantify the effects of cocaine, amphetamine, methamphetamine, and methylphenidate in Drosophila. We also discuss how Drosophila is an efficient and cost-effective model organism for identifying novel candidate genes and molecular mechanisms involved in the behavioral responses to psychostimulant drugs.
Collapse
Affiliation(s)
- Travis James Philyaw
- Molecular Biology Graduate Program, University of Utah, Salt Lake City, UT 84112, USA;
| | - Adrian Rothenfluh
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT 84108, USA
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84132, USA
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Iris Titos
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
75
|
Fernàndez-Castillo N, Cabana-Domínguez J, Corominas R, Cormand B. Molecular genetics of cocaine use disorders in humans. Mol Psychiatry 2022; 27:624-639. [PMID: 34453125 PMCID: PMC8960411 DOI: 10.1038/s41380-021-01256-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 07/01/2021] [Accepted: 07/30/2021] [Indexed: 12/11/2022]
Abstract
Drug addiction, one of the major health problems worldwide, is characterized by the loss of control in drug intake, craving, and withdrawal. At the individual level, drugs of abuse produce serious consequences on health and have a negative impact on the family environment and on interpersonal and work relationships. At a wider scale, they have significant socio-economic and public health consequences and they cause delinquency and citizen insecurity. Cocaine, a psychostimulant substance, is one of the most used illicit drugs, especially in America, Western Europe, and Australia. Cocaine use disorders (CUD) are complex multifactorial conditions driven by both genetic and environmental influences. Importantly, not all people who use cocaine develop CUD, and this is due, at least in part, to biological factors that are encoded in the genome of individuals. Acute and repeated use of cocaine induces epigenetic and gene expression changes responsible for the neuronal adaptations and the remodeling of brain circuits that lead to the transition from use to abuse or dependence. The purpose of this review is to delineate such factors, which should eventually help to understand the inter-individual variability in the susceptibility to cocaine addiction. Heritability estimates for CUD are high and genetic risk factors for cocaine addiction have been investigated by candidate gene association studies (CGAS) and genome-wide association studies (GWAS), reviewed here. Also, the high comorbidity that exists between CUD and several other psychiatric disorders is well known and includes phenotypes like schizophrenia, aggression, antisocial or risk-taking behaviors. Such comorbidities are associated with a worse lifetime trajectory, and here we report shared genetic factors that may contribute to them. Gene expression changes and epigenetic modifications induced by cocaine use and chronic abuse in humans are addressed by reviewing transcriptomic studies performed on neuronal cells and on postmortem brains. We report some genes which expression is altered by cocaine that also bear genetic risk variants for the disorder. Finally, we have a glance to the pharmacogenetics of CUD treatments, still in early stages. A better understanding of the genetic underpinnings of CUD will foster the search of effective treatments and help to move forward to personalized medicine.
Collapse
Affiliation(s)
- Noèlia Fernàndez-Castillo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain. .,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain. .,Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| | - Judit Cabana-Domínguez
- grid.5841.80000 0004 1937 0247Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia Spain ,grid.452372.50000 0004 1791 1185Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain ,grid.5841.80000 0004 1937 0247Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia Spain ,grid.411160.30000 0001 0663 8628Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia Spain
| | - Roser Corominas
- grid.5841.80000 0004 1937 0247Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia Spain ,grid.452372.50000 0004 1791 1185Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain ,grid.5841.80000 0004 1937 0247Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia Spain ,grid.411160.30000 0001 0663 8628Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia Spain
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain. .,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain. .,Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| |
Collapse
|
76
|
Parsegian A, García-Fuster MJ, Hebda-Bauer E, Watson SJ, Flagel SB, Akil H. Adolescent cocaine differentially impacts psychomotor sensitization and epigenetic profiles in adult male rats with divergent affective phenotypes. Front Psychiatry 2022; 13:1024617. [PMID: 36311521 PMCID: PMC9599748 DOI: 10.3389/fpsyt.2022.1024617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/26/2022] [Indexed: 11/24/2022] Open
Abstract
Adolescent drug use reliably predicts increased addiction liability in adulthood, but not all individuals are equally impacted. To explore the biological bases of this differential reactivity to early life drug experience, we used a genetic rat model of temperament and evaluated the impact of adolescent cocaine exposure on adult psychomotor sensitization. Relative to adult bred low-responder (bLR) rats, bred high-responders (bHR) are more sensitive to the psychomotor-activating effects of cocaine and reinstate drug-seeking behavior more readily following prolonged cocaine exposure and/or abstinence. We found that a 7-day sensitizing cocaine regimen (15 mg/kg/day) during either adolescence or adulthood produced psychomotor sensitization in bHRs only, while a dual cocaine exposure prevented further sensitization, suggesting limits on neuroplasticity. By contrast, adolescent cocaine in bLRs shifted their resilient phenotype, rendering them more responsive to cocaine in adulthood following adolescent cocaine. To begin to explore the neural correlates of these behavioral phenotypes, we assessed two functionally opposite epigenetic chromatin modifications implicated in addiction liability, permissive acetylation (ac) and repressive tri-methylation (me3) on Histone 3 Lysine 9 (H3K9), in four striatal sub-regions. In bHRs, decreased H3K9me3 and increased acH3K9 in the nucleus accumbens (NAc) core associated with cocaine sensitization. In bLRs, the combination of cocaine exposure in adolescence and adulthood, which lead to an increased response to a cocaine challenge, also increased acH3K9 in the core. Thus, adolescent cocaine experience interacts with genetic background to elicit different behavioral profiles relevant to addiction in adulthood, with concurrent modifications in the epigenetic histone profiles in the NAc that associate with cocaine sensitization and with metaplasticity.
Collapse
Affiliation(s)
- Aram Parsegian
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - M Julia García-Fuster
- IUNICS, University of the Balearic Islands, Palma, Spain.,Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Elaine Hebda-Bauer
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - Stanley J Watson
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States.,Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Shelly B Flagel
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States.,Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Huda Akil
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States.,Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
77
|
Zhang J, Fan Y, Zhou J, Ma T, Gao K, Xu M, Xiao Y, Zhu Y. Methylation quantitative trait locus rs5326 is associated with susceptibility and effective dosage of methadone maintenance treatment for heroin use disorder. Psychopharmacology (Berl) 2021; 238:3511-3518. [PMID: 34476566 DOI: 10.1007/s00213-021-05968-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/18/2021] [Indexed: 01/01/2023]
Abstract
RATIONALE Opioid use disorder is a complicated brain disease with high heritability. The underlying mechanisms of the genetic underpinnings in the susceptibility and treatment response of opioid use disorder remain elusive. OBJECTIVES To reveal the potential associations of genotypes and gene methylations of dopaminergic system genes, as well as roles of them in opioid use disorder. In the present study, we detected the DNA methylation in the promoter regions of five representative dopaminergic system genes (DRD1, DRD2, SLC6A3, TH, and COMT) between 120 patients with heroin use disorder in methadone maintenance treatment (MMT) program and 111 healthy controls. The associations of 25 SNPs in the above genes and methylation of 237 CpG sites, known as methylation quantitative trait loci (mQTLs), were determined. Then, the correlations of the above mQTLs and traits of heroin use disorder were analyzed in a sample set of 801 patients with heroin use disorder and 930 healthy controls. RESULTS Our results demonstrated that several mQTLs in the DRD1 and DRD2 genes were identified both in the heroin use disorder and healthy control groups. Interestingly, rs4867798-CpG_174872884 and rs5326-CpG_174872884 in the DRD1 gene were the unique SNP-CpG pairs in the patients with heroin use disorder. Furthermore, mQTL rs5326 was associated with the susceptibility and effective dosage of MMT for heroin use disorder, and demonstrated allele-specific correlation with the expression of the DRD1 gene in the human caudate. CONCLUSIONS Our findings suggest that some mQTLs may be associated with traits of opioid use disorder by implicating the DNA methylation and gene expression.
Collapse
Affiliation(s)
- Jianbo Zhang
- Key Laboratory of National Health Commission for Forensic Science, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.,Bio-evidence Sciences Academy, Xi'an Jiaotong University, Xi'an, 712000, Shaanxi, China
| | - Yajuan Fan
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Jinting Zhou
- Key Laboratory of National Health Commission for Forensic Science, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.,Bio-evidence Sciences Academy, Xi'an Jiaotong University, Xi'an, 712000, Shaanxi, China
| | - Tengfei Ma
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Keqiang Gao
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Min Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yifan Xiao
- Key Laboratory of National Health Commission for Forensic Science, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.,Bio-evidence Sciences Academy, Xi'an Jiaotong University, Xi'an, 712000, Shaanxi, China
| | - Yongsheng Zhu
- Key Laboratory of National Health Commission for Forensic Science, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China. .,Bio-evidence Sciences Academy, Xi'an Jiaotong University, Xi'an, 712000, Shaanxi, China.
| |
Collapse
|
78
|
Genomic and Personalized Medicine Approaches for Substance Use Disorders (SUDs) Looking at Genome-Wide Association Studies. Biomedicines 2021; 9:biomedicines9121799. [PMID: 34944615 PMCID: PMC8698472 DOI: 10.3390/biomedicines9121799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/19/2022] Open
Abstract
Drug addiction, or substance use disorder (SUD), is a chronic, relapsing disorder in which compulsive drug-seeking and drug-taking behaviour persist despite serious negative consequences. Drug abuse represents a problem that deserves great attention from a social point of view, and focuses on the importance of genetic studies to help in understanding the genetic basis of addiction and its medical treatment. Despite the complexity of drug addiction disorders, and the high number of environmental variables playing a role in the onset, recurrence, and duration of the symptoms, several studies have highlighted the non-negligible role of genetics, as demonstrated by heritability and genome-wide association studies. A correlation between the relative risk of addiction to specific substances and heritability has been recently observed, suggesting that neurobiological mechanisms may be, at least in part, inherited. All these observations point towards a scenario where the core neurobiological factors of addiction, involving the reward system, impulsivity, compulsivity, stress, and anxiety response, are transmitted, and therefore, genes and mutations underlying their variation might be detected. In the last few years, the development of new and more efficient sequencing technologies has paved the way for large-scale studies in searching for genetic and epigenetic factors affecting drug addiction disorders and their treatments. These studies have been crucial to pinpoint single nucleotide polymorphisms (SNPs) in genes that affect the reaction to medical treatments. This is critically important to identify pharmacogenomic approaches for substance use disorder, such as OPRM1 SNPs and methadone required doses for maintenance treatment (MMT). Nevertheless, despite the promising results obtained by genome-wide association and pharmacogenomic studies, specific studies related to population genetics diversity are lacking, undermining the overall applicability of the preliminary findings, and thus potentially affecting the portability and the accuracy of the genetic studies. In this review, focusing on cannabis, cocaine and heroin use, we report the state-of-the-art genomics and pharmacogenomics of SUDs, and the possible future perspectives related to medical treatment response in people that ask for assistance in solving drug-related problems.
Collapse
|
79
|
Huggett SB, Johnson EC, Hatoum AS, Lai D, Srijeyanthan J, Bubier JA, Chesler EJ, Agrawal A, Palmer AA, Edenberg HJ, Palmer RHC. Genes identified in rodent studies of alcohol intake are enriched for heritability of human substance use. Alcohol Clin Exp Res 2021; 45:2485-2494. [PMID: 34751961 DOI: 10.1111/acer.14738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/24/2021] [Accepted: 10/29/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Rodent paradigms and human genome-wide association studies (GWAS) on drug use have the potential to provide biological insight into the pathophysiology of addiction. METHODS Using GeneWeaver, we created rodent alcohol and nicotine gene-sets derived from 19 gene expression studies on alcohol and nicotine outcomes. We partitioned the SNP-heritability of these gene-sets using four large human GWAS: 1) alcoholic drinks per week, 2) problematic alcohol use, 3) cigarettes per day and 4) smoking cessation. We benchmarked our findings with curated human alcoholism and nicotine addiction gene-sets and performed specificity analyses using other rodent gene-sets (e.g., locomotor behavior) and other human GWAS (e.g., height). RESULTS The rodent alcohol gene-set was enriched for heritability of drinks per week, cigarettes per day, and smoking cessation, but not problematic alcohol use. However, the rodent nicotine gene-set was not significantly associated with any of these traits. Both rodent gene-sets showed enrichment for several non-substance use GWAS, and the extent of this relationship tended to increase as a function of trait heritability. In general, larger gene-sets demonstrated more significant enrichment. Finally, when evaluating human traits with similar heritabilities, both rodent gene-sets showed greater enrichment for substance use traits. CONCLUSION Our results suggest that rodent gene expression studies can help to identify genes that contribute to heritability of some substance use traits in humans, yet there was less specificity than expected. We outline various limitations, interpretations and considerations for future research.
Collapse
Affiliation(s)
- Spencer B Huggett
- Department of Human Genetics, Emory University, Atlanta, GA, USA.,Behavioral Genetics of Addiction Laboratory, Department of Psychology, Emory University, GA University, Atlanta, USA
| | - Emma C Johnson
- Department of Psychiatry, Washington University, St Louis School of Medicine, St. Louis, MO, USA
| | - Alexander S Hatoum
- Department of Psychiatry, Washington University, St Louis School of Medicine, St. Louis, MO, USA
| | - Dongbing Lai
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jenani Srijeyanthan
- Department of Human Genetics, Emory University, Atlanta, GA, USA.,Behavioral Genetics of Addiction Laboratory, Department of Psychology, Emory University, GA University, Atlanta, USA
| | | | | | - Arpana Agrawal
- Department of Psychiatry, Washington University, St Louis School of Medicine, St. Louis, MO, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.,Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Howard J Edenberg
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Biochemistry and Molecular Biology, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Rohan H C Palmer
- Department of Human Genetics, Emory University, Atlanta, GA, USA.,Behavioral Genetics of Addiction Laboratory, Department of Psychology, Emory University, GA University, Atlanta, USA
| |
Collapse
|
80
|
Chebolu E, Schwandt ML, Ramchandani VA, Stangl BL, George DT, Horneffer Y, Vinson T, Vogt EL, Manor BA, Diazgranados N, Goldman D. Common Factors Underlying Diverse Responses in Alcohol Use Disorder. PSYCHIATRIC RESEARCH AND CLINICAL PRACTICE 2021; 3:76-87. [PMID: 34746678 PMCID: PMC8552111 DOI: 10.1176/appi.prcp.20200028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 01/23/2023] Open
Abstract
Objective Interindividual variation in responses to alcohol is substantial, posing challenges for medical management and for understanding the biological underpinnings of alcohol use disorders (AUD). It is important to understand whether diverse alcohol responses such as sedation, which is predictive of risk and partly heritable, occur concurrently or independently from responses such as blackouts and withdrawal. We hypothesized that latent factors accounting for sources of variance in diverse alcohol response phenotypes could be identified in a large, deeply phenotyped sample of patients with AUD. Methods We factor analyzed 17 alcohol response related items from the Alcohol Dependence Scale (ADS) in 938 individuals diagnosed with AUD via structured clinical interviews. Demographic, genetic, and clinical characteristics were tested as predictors of the latent factors by multiple indicators, multiple causes analysis. Results The final factor solution included three alcohol response factors: Physical Symptoms, Perceptual Disturbances, and Neurobiological Effects. Both gender and genetic ancestry were identified as variables influencing alcohol response. Major depressive disorder positively predicted physical symptoms and aggression negatively predicted physical symptoms. Barratt's Impulsivity Scale total score predicted the Physical and Perceptual domains. Family history, average drinks per drinking day, and negative urgency (an impulsivity measure) predicted all three domains. Conclusions Diverse items from the ADS concurrently load onto three correlated alcohol response factors rather than loading independently. Genetic ancestry and clinical characteristics predicted the severity of items that define the alcohol response factors even after accounting for degree of alcohol consumption. Co‐occurring phenotypes point towards an underlying shared physiology of diverse alcohol responses. Three common factors relevant for diverse alcohol responses are identified: Physical Symptoms, Perceptual Disturbances, and Neurobiological Effects Alcohol response items from the Alcohol Dependence Scale concurrently load onto these three factors rather than loading independently The three factors are correlated; patients presenting to clinical settings with a problem such as blackout are likely to experience several other problems either acutely or in the future
Collapse
Affiliation(s)
- Esha Chebolu
- Office of the Clinical Director Laboratory of Neurogenetics NIAAA Bethesda MD
| | | | | | | | | | | | | | - Emily L Vogt
- University of Michigan Medical School Ann Arbor MI
| | | | | | - David Goldman
- Office of the Clinical Director Laboratory of Neurogenetics NIAAA Bethesda MD
| |
Collapse
|
81
|
Goldberg LR, Yao EJ, Kelliher JC, Reed ER, Cox JW, Parks C, Kirkpatrick SL, Beierle JA, Chen MM, Johnson WE, Homanics GE, Williams RW, Bryant CD, Mulligan MK. A quantitative trait variant in Gabra2 underlies increased methamphetamine stimulant sensitivity. GENES, BRAIN, AND BEHAVIOR 2021; 20:e12774. [PMID: 34677900 PMCID: PMC9083095 DOI: 10.1111/gbb.12774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/19/2021] [Accepted: 09/15/2021] [Indexed: 12/24/2022]
Abstract
Psychostimulant (methamphetamine, cocaine) use disorders have a genetic component that remains mostly unknown. We conducted genome-wide quantitative trait locus (QTL) analysis of methamphetamine stimulant sensitivity. To facilitate gene identification, we employed a Reduced Complexity Cross between closely related C57BL/6 mouse substrains and examined maximum speed and distance traveled over 30 min following methamphetamine (2 mg/kg, i.p.). For maximum methamphetamine-induced speed following the second and third administration, we identified a single genome-wide significant QTL on chromosome 11 that peaked near the Cyfip2 locus (LOD = 3.5, 4.2; peak = 21 cM [36 Mb]). For methamphetamine-induced distance traveled following the first and second administration, we identified a genome-wide significant QTL on chromosome 5 that peaked near a functional intronic indel in Gabra2 coding for the alpha-2 subunit of the GABA-A receptor (LOD = 3.6-5.2; peak = 34-35 cM [66-67 Mb]). Striatal cis-expression QTL mapping corroborated Gabra2 as a functional candidate gene underlying methamphetamine-induced distance traveled. CRISPR/Cas9-mediated correction of the mutant intronic deletion on the C57BL/6J background to the wild-type C57BL/6NJ allele was sufficient to reduce methamphetamine-induced locomotor activity toward the wild-type C57BL/6NJ-like level, thus validating the quantitative trait variant (QTV). These studies show the power and efficiency of Reduced Complexity Crosses in identifying causal variants underlying complex traits. Functionally restoring Gabra2 expression decreased methamphetamine stimulant sensitivity and supports preclinical and human genetic studies implicating the GABA-A receptor in psychostimulant addiction-relevant traits. Importantly, our findings have major implications for studying psychostimulants in the C57BL/6J strain-the gold standard strain in biomedical research.
Collapse
Affiliation(s)
- Lisa R. Goldberg
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston, Massachusetts, USA
- NIGMS T32 Ph.D. Training Program in Biomolecular Pharmacology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Emily J. Yao
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston, Massachusetts, USA
| | - Julia C. Kelliher
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston, Massachusetts, USA
| | - Eric R. Reed
- Ph.D. Program in Bioinformatics, Boston University, Boston, Massachusetts, USA
| | - Jiayi Wu Cox
- Program in Biomedical Sciences, Graduate Program in Genetics and Genomics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Cory Parks
- Department of Agricultural, Biology, and Health Sciences, Cameron University, Lawton, Oklahoma, USA
| | - Stacey L. Kirkpatrick
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston, Massachusetts, USA
| | - Jacob A. Beierle
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston, Massachusetts, USA
- NIGMS T32 Ph.D. Training Program in Biomolecular Pharmacology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Melanie M. Chen
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston, Massachusetts, USA
| | - William E. Johnson
- Department of Medicine, Computational Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Gregg E. Homanics
- Departments of Anesthesiology, Neurobiology, and Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Robert W. Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Camron D. Bryant
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston, Massachusetts, USA
| | - Megan K. Mulligan
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
82
|
Gelernter J, Polimanti R. Genetics of substance use disorders in the era of big data. Nat Rev Genet 2021; 22:712-729. [PMID: 34211176 PMCID: PMC9210391 DOI: 10.1038/s41576-021-00377-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2021] [Indexed: 02/06/2023]
Abstract
Substance use disorders (SUDs) are conditions in which the use of legal or illegal substances, such as nicotine, alcohol or opioids, results in clinical and functional impairment. SUDs and, more generally, substance use are genetically complex traits that are enormously costly on an individual and societal basis. The past few years have seen remarkable progress in our understanding of the genetics, and therefore the biology, of substance use and abuse. Various studies - including of well-defined phenotypes in deeply phenotyped samples, as well as broadly defined phenotypes in meta-analysis and biobank samples - have revealed multiple risk loci for these common traits. A key emerging insight from this work establishes a biological and genetic distinction between quantity and/or frequency measures of substance use (which may involve low levels of use without dependence), versus symptoms related to physical dependence.
Collapse
Affiliation(s)
- Joel Gelernter
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, USA.
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA.
| | - Renato Polimanti
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| |
Collapse
|
83
|
Leduc-Pessah H, Trang T. Tackling the opioid crisis: Novel mechanisms and clinical perspectives. J Neurosci Res 2021; 100:5-9. [PMID: 34672010 DOI: 10.1002/jnr.24964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 11/10/2022]
Affiliation(s)
- Heather Leduc-Pessah
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Tuan Trang
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
84
|
Russell JT, Zhou Y, Weinstock GM, Bubier JA. The Gut Microbiome and Substance Use Disorder. Front Neurosci 2021; 15:725500. [PMID: 34531718 PMCID: PMC8439419 DOI: 10.3389/fnins.2021.725500] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/12/2021] [Indexed: 01/15/2023] Open
Abstract
Substance use disorders (SUDs) remain a significant public health challenge, affecting tens of millions of individuals worldwide each year. Often comorbid with other psychiatric disorders, SUD can be poly-drug and involve several different substances including cocaine, opiates, nicotine, and alcohol. SUD has a strong genetic component. Much of SUD research has focused on the neurologic and genetic facets of consumption behavior. There is now interest in the role of the gut microbiome in the pathogenesis of SUD. In this review, we summarize current animal and clinical evidence that the gut microbiome is involved in SUD, then address the underlying mechanisms by which the gut microbiome interacts with SUD through metabolomic, immune, neurological, and epigenetic mechanisms. Lastly, we discuss methods using various inbred and outbred mice models to gain an integrative understanding of the microbiome and host genetic controls in SUD.
Collapse
Affiliation(s)
- Jordan T Russell
- School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Yanjiao Zhou
- School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - George M Weinstock
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | | |
Collapse
|
85
|
Addiction as a brain disease revised: why it still matters, and the need for consilience. Neuropsychopharmacology 2021; 46:1715-1723. [PMID: 33619327 PMCID: PMC8357831 DOI: 10.1038/s41386-020-00950-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022]
Abstract
The view that substance addiction is a brain disease, although widely accepted in the neuroscience community, has become subject to acerbic criticism in recent years. These criticisms state that the brain disease view is deterministic, fails to account for heterogeneity in remission and recovery, places too much emphasis on a compulsive dimension of addiction, and that a specific neural signature of addiction has not been identified. We acknowledge that some of these criticisms have merit, but assert that the foundational premise that addiction has a neurobiological basis is fundamentally sound. We also emphasize that denying that addiction is a brain disease is a harmful standpoint since it contributes to reducing access to healthcare and treatment, the consequences of which are catastrophic. Here, we therefore address these criticisms, and in doing so provide a contemporary update of the brain disease view of addiction. We provide arguments to support this view, discuss why apparently spontaneous remission does not negate it, and how seemingly compulsive behaviors can co-exist with the sensitivity to alternative reinforcement in addiction. Most importantly, we argue that the brain is the biological substrate from which both addiction and the capacity for behavior change arise, arguing for an intensified neuroscientific study of recovery. More broadly, we propose that these disagreements reveal the need for multidisciplinary research that integrates neuroscientific, behavioral, clinical, and sociocultural perspectives.
Collapse
|
86
|
Titos I, Rothenfluh A. From single flies to many genes: Using Drosophila to explore the genetics of psychostimulant consumption. Proc Natl Acad Sci U S A 2021; 118:e2109994118. [PMID: 34315819 PMCID: PMC8346869 DOI: 10.1073/pnas.2109994118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Iris Titos
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112;
| | - Adrian Rothenfluh
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112;
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
87
|
Patterns of Drug Use and Related Factors Among Prisoners in Iran: Results from the National Survey in 2015. J Prim Prev 2021; 41:29-38. [PMID: 31912408 DOI: 10.1007/s10935-019-00574-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Drug use by prisoners is one of the world's most important problems. We sought to determine the pattern of drug use behavior and related factors among prisoners of Iran in 2015. This cross-sectional study was part of the bio-behavioral surveillance survey conducted among 6200 prisoners in 26 prison sites in Iran who were selected through multi-stage sampling. Data were collected through questionnaires and interviews which inquired about participants' demographics and drug use behaviors. We analyzed study data using descriptive statistics, and crude and adjusted logistic regressions, in STATA-12. Of all prisoners, 74.0% had a history of lifetime drug use, and 16.6% of drug users had a history of lifetime injection drug use (IDU). According to the results of a multivariate logistic regression, male sex, being between the ages of 24 and 45, having a history of imprisonment, and having a history of lifetime high-risk sexual behavior were significant risk factors for lifetime drug use. Also, male sex, single status, and a history of previous imprisonment were significant risk factors for lifetime IDU. The prevalence of drug use in Iran's prison population is high and alarming. There is a continuing need for harm reduction programs, including the methadone maintenance treatment, among imprisoned drug users and IDUs.
Collapse
|
88
|
Borrelli KN, Langan CR, Dubinsky KR, Szumlinski KK, Carlezon WA, Chartoff EH, Bryant CD. Intracranial self-stimulation and concomitant behaviors following systemic methamphetamine administration in Hnrnph1 mutant mice. Psychopharmacology (Berl) 2021; 238:2031-2041. [PMID: 33758972 PMCID: PMC8715365 DOI: 10.1007/s00213-021-05829-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 03/15/2021] [Indexed: 11/30/2022]
Abstract
RATIONALE Methamphetamine (MA) addiction is a major public health issue in the USA, with a poorly understood genetic component. We previously identified heterogeneous nuclear ribonucleoprotein H1 (Hnrnph1; H1) as a quantitative trait gene underlying sensitivity to MA-induced behavioral sensitivity. Mice heterozygous for a frameshift deletion in the first coding exon of H1 (H1+/-) showed reduced MA phenotypes including oral self-administration, locomotor activity, dopamine release, and dose-dependent differences in MA conditioned place preference. However, the effects of H1+/- on innate and MA-modulated reward sensitivity are not known. OBJECTIVES We examined innate reward sensitivity and facilitation by MA in H1+/- mice via intracranial self-stimulation (ICSS). METHODS We used intracranial self-stimulation (ICSS) of the medial forebrain bundle to assess shifts in reward sensitivity following acute, ascending doses of MA (0.5-4.0 mg/kg, i.p.) using a within-subjects design. We also assessed video-recorded behaviors during ICSS testing sessions. RESULTS H1+/- mice displayed reduced normalized maximum response rates in response to MA. H1+/- females had lower normalized M50 values compared to wild-type females, suggesting enhanced reward facilitation by MA. Finally, regardless of genotype, there was a dose-dependent reduction in distance to the response wheel following MA administration, providing an additional measure of MA-induced reward-driven behavior. CONCLUSIONS H1+/- mice displayed a complex ICSS phenotype following MA, displaying indications of both blunted reward magnitude (lower normalized maximum response rates) and enhanced reward sensitivity specific to H1+/- females (lower normalized M50 values).
Collapse
Affiliation(s)
- Kristyn N Borrelli
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, 72 E. Concord St, L-606C, Boston, MA, 02118, USA
- Ph.D. Training Program in Biomolecular Pharmacology, Boston University School of Medicine, Boston, MA, USA
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA
- Transformative Training Program in Addiction Science, Boston University, Boston, MA, USA
| | - Carly R Langan
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, 72 E. Concord St, L-606C, Boston, MA, 02118, USA
| | - Kyra R Dubinsky
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, 72 E. Concord St, L-606C, Boston, MA, 02118, USA
| | - Karen K Szumlinski
- Department of Psychological and Brain Sciences; Department of Molecular, Cellular and Developmental Biology; and the Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - William A Carlezon
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - Elena H Chartoff
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - Camron D Bryant
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, 72 E. Concord St, L-606C, Boston, MA, 02118, USA.
| |
Collapse
|
89
|
Genome-wide association study of stimulant dependence. Transl Psychiatry 2021; 11:363. [PMID: 34226506 PMCID: PMC8257618 DOI: 10.1038/s41398-021-01440-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 05/04/2021] [Accepted: 05/13/2021] [Indexed: 11/08/2022] Open
Abstract
Stimulant dependence is heritable, but specific genetic factors underlying the trait have not been identified. A genome-wide association study for stimulant dependence was performed in a discovery cohort of African- (AA) and European-ancestry (EA) subjects ascertained for genetic studies of alcohol, opioid, and cocaine use disorders. The sample comprised individuals with DSM-IV stimulant dependence (393 EA cases, 5288 EA controls; 155 AA cases, 5603 AA controls). An independent cohort from the family-based Collaborative Study on the Genetics of Alcoholism (532 EA cases, 7635 EA controls; 53 AA cases, AA 3352 controls) was used for replication. One variant in SLC25A16 (rs2394476, p = 3.42 × 10-10, odds ratio [OR] = 3.70) was GWS in AAs. Four other loci showed suggestive evidence, including KCNA4 in AAs (rs11500237, p = 2.99 × 10-7, OR = 2.31) which encodes one of the potassium voltage-gated channel protein that has been linked to several other substance use disorders, and CPVL in the combined population groups (rs1176440, p = 3.05 × 10-7, OR = 1.35), whose expression was previously shown to be upregulated in the prefrontal cortex from users of cocaine, cannabis, and phencyclidine. Analysis of the top GWAS signals revealed a significant enrichment with nicotinic acetylcholine receptor genes (adjusted p = 0.04) and significant pleiotropy between stimulant dependence and alcohol dependence in EAs (padj = 3.6 × 10-3), an anxiety disorder in EAs (padj = 2.1 × 10-4), and ADHD in both AAs (padj = 3.0 × 10-33) and EAs (padj = 6.7 × 10-35). Our results implicate novel genes and pathways as having roles in the etiology of stimulant dependence.
Collapse
|
90
|
Aghamohammadi-Sereshki A, Olsen F, Seres P, Malykhin NV. Selective Effects of Healthy Cognitive Aging and Catechol- O-Methyl Transferase Polymorphism on Limbic White Matter Tracts. Brain Connect 2021; 12:146-163. [PMID: 34015958 DOI: 10.1089/brain.2020.0919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: The cingulum bundle and uncinate fasciculus are major limbic white matter tracts involved in emotion, memory, and cognition. The main goal of the present study was to investigate the relationship between age and structural properties of the uncinate fasciculus and the cingulum bundle using diffusion tensor imaging (DTI) tractography in a large cohort of healthy individuals. The second goal was to determine the effects of the catechol-O-methyl transferase (COMT) gene polymorphism on the DTI measurements of these white matter tracts. Methods: We recruited 140 healthy participants (18-85 years old). DTI data sets were acquired on a 1.5T magnetic resonance imaging system. The rostral, dorsal, and parahippocampal cingulum, as well as uncinate fasciculus, were delineated using deterministic tractography. Fractional anisotropy (FA), mean (MD), radial (RD), and axial (AD) diffusivities, tract volume, linear (Cl), planar (Cp), and spherical (Cs) tensor shapes were calculated. The COMT polymorphism (methionine homozygous vs. valine carriers) was determined using single nucleotide polymorphism. Results: We found that age was negatively associated with FA, but positively associated with MD and RD for the rostral cingulum, dorsal cingulum, and the uncinate fasciculus but not for the parahippocampal cingulum. Furthermore, individuals with the COMT methionine homozygous had higher FA and lower MD, RD, AD, and Cs values in the right rostral cingulum compared with the valine carriers across the entire adult life span. Discussion: This study indicates that limbic tracts might be nonuniformly affected by healthy aging, and the methionine homozygous genotype might be associated with micro/macro white matter properties of the right rostral cingulum.
Collapse
Affiliation(s)
| | - Fraser Olsen
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Peter Seres
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Nikolai V Malykhin
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
91
|
Aleknonytė-Resch M, Szymczak S, Freitag-Wolf S, Dempfle A, Krawczak M. Genotype imputation in case-only studies of gene-environment interaction: validity and power. Hum Genet 2021; 140:1217-1228. [PMID: 34041609 PMCID: PMC8263402 DOI: 10.1007/s00439-021-02294-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/10/2021] [Indexed: 11/26/2022]
Abstract
Case-only (CO) studies are a powerful means to uncover gene-environment (G × E) interactions for complex human diseases. Moreover, such studies may in principle also draw upon genotype imputation to increase statistical power even further. However, genotype imputation usually employs healthy controls such as the Haplotype Reference Consortium (HRC) data as an imputation base, which may systematically perturb CO studies in genomic regions with main effects upon disease risk. Using genotype data from 719 German Crohn Disease (CD) patients, we investigated the level of imputation accuracy achievable for single nucleotide polymorphisms (SNPs) with or without a genetic main effect, and with varying minor allele frequency (MAF). Genotypes were imputed from neighbouring SNPs at different levels of linkage disequilibrium (LD) to the target SNP using the HRC data as an imputation base. Comparison of the true and imputed genotypes revealed lower imputation accuracy for SNPs with strong main effects. We also simulated different levels of G × E interaction to evaluate the potential loss of statistical validity and power incurred by the use of imputed genotypes. Simulations under the null hypothesis revealed that genotype imputation does not inflate the type I error rate of CO studies of G × E. However, the statistical power was found to be reduced by imputation, particularly for SNPs with low MAF, and a gradual loss of statistical power resulted when the level of LD to the SNPs driving the imputation decreased. Our study thus highlights that genotype imputation should be employed with great care in CO studies of G × E interaction.
Collapse
Affiliation(s)
| | - Silke Szymczak
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany
- Institute of Medical Biometry and Statistics, University of Lübeck, Lübeck, Germany
| | - Sandra Freitag-Wolf
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany
| | - Astrid Dempfle
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany
| | - Michael Krawczak
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany.
| |
Collapse
|
92
|
Vlahović D, Matošić A, Peitl V, Vojnović D, Duraković D, Karlović D. Changes in platelet serotonin concentration after four weeks of alcohol abstinence depending on the genotype of the serotonin transporter. J Addict Dis 2021; 40:56-61. [PMID: 34032190 DOI: 10.1080/10550887.2021.1926882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Alcohol use disorder (AUD) is a psychiatric disorder characterized by excessive and uncontrolled drinking that causes distress and has damaging consequences for men and women of all ages. It is one of the four most disabling diseases and it affects approximately 14.6 million persons in Europe. OBJECTIVES Objective of this study is to investigate changes in platelet serotonin concentration after four weeks of alcohol abstinence in regards to the genotype of the serotonin transporter. METHODS A total of 154 patients with AUD were included in the study. Platelet serotonin concentrations were assessed by enzyme-linked immunosorbent assay. Genotype of serotonin transporter promoter polymorphism was determined by the polymerase chain reaction-based method. RESULTS We did not establish a statistically significant main effect of serotonin transporter polymorphism on platelet serotonin concentration after four weeks of abstinence. CONCLUSION Aforementioned finding is in line with previous research suggesting a complex relationship between serotonin transporter gene and platelet serotonin levels, and congruent with the well-established genotype interaction with numerous other factors, such as sex, ethnicity, education level, and stressful life events.
Collapse
Affiliation(s)
- Darko Vlahović
- Clinical Department of Psychiatry, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Ana Matošić
- Clinical Department of Psychiatry, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia.,School of Dental Medicine, University of Zagreb, Zagreb, Croatia
| | - Vjekoslav Peitl
- Clinical Department of Psychiatry, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia.,Catholic University of Croatia, Zagreb, Croatia
| | - Daniela Vojnović
- Clinical Department of Psychiatry, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Din Duraković
- Clinical Department of Psychiatry, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Dalibor Karlović
- Clinical Department of Psychiatry, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia.,School of Dental Medicine, University of Zagreb, Zagreb, Croatia.,Catholic University of Croatia, Zagreb, Croatia
| |
Collapse
|
93
|
Lopez-Leon S, González-Giraldo Y, Wegman-Ostrosky T, Forero DA. Molecular genetics of substance use disorders: An umbrella review. Neurosci Biobehav Rev 2021; 124:358-369. [PMID: 33556390 DOI: 10.1016/j.neubiorev.2021.01.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 01/12/2021] [Accepted: 01/22/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND Substance use disorders (SUD) are a category of psychiatric disorders with a large epidemiological and societal impact around the world. In the last decades, a large number of genetic studies have been published for SUDs. METHODS With the objective of having an overview and summarizing the evidence published up to date, we carried out an umbrella review of all the meta-analyses of genetic studies for the following substances: alcohol, tobacco, cannabis, cocaine, opioids, heroin and methamphetamines. Meta-analyses for candidate gene studies and genome-wide association studies (GWAS) were included. RESULTS Alcohol and tobacco were the substances with the largest number of meta-analyses, and cannabis, opioids and cocaine the least studied. The following genes were associated with two or more SUDs: OPRM1, DRD2, DRD4, BDNF and SL6A4. The only genes that had an OR higher than two were the SLC6A4 for all addictions, the ADH1B for alcohol dependence, and BDNF for methamphetamine dependence. GWAS confirmed the possible role of CHRNA5 gene in nicotine dependence and identified novel candidate genes in other SUDs, such as FOXP2, PEX and, AUTS2, which need further functional analyses. CONCLUSIONS This umbrella review summarizes the evidence of 16 years of research on the genetics of SUDs and provides a broad and detailed overview of results from more than 150 meta-analyses for SUD. The results of this umbrella review will guide the need for future genetic studies geared toward understanding, preventing and treating SUDs.
Collapse
Affiliation(s)
- Sandra Lopez-Leon
- Drug Development, Novartis Pharmaceuticals Corporation, East Hanover NJ, USA.
| | - Yeimy González-Giraldo
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Talia Wegman-Ostrosky
- Basic Research Subdirection, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Diego A Forero
- Health and Sport Sciences Research Group, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá, Colombia; MSc Program in Epidemiology, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá, Colombia
| |
Collapse
|
94
|
Palmer RHC, Johnson EC, Won H, Polimanti R, Kapoor M, Chitre A, Bogue MA, Benca‐Bachman CE, Parker CC, Verma A, Reynolds T, Ernst J, Bray M, Kwon SB, Lai D, Quach BC, Gaddis NC, Saba L, Chen H, Hawrylycz M, Zhang S, Zhou Y, Mahaffey S, Fischer C, Sanchez‐Roige S, Bandrowski A, Lu Q, Shen L, Philip V, Gelernter J, Bierut LJ, Hancock DB, Edenberg HJ, Johnson EO, Nestler EJ, Barr PB, Prins P, Smith DJ, Akbarian S, Thorgeirsson T, Walton D, Baker E, Jacobson D, Palmer AA, Miles M, Chesler EJ, Emerson J, Agrawal A, Martone M, Williams RW. Integration of evidence across human and model organism studies: A meeting report. GENES, BRAIN, AND BEHAVIOR 2021; 20:e12738. [PMID: 33893716 PMCID: PMC8365690 DOI: 10.1111/gbb.12738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/11/2021] [Accepted: 04/21/2021] [Indexed: 12/13/2022]
Abstract
The National Institute on Drug Abuse and Joint Institute for Biological Sciences at the Oak Ridge National Laboratory hosted a meeting attended by a diverse group of scientists with expertise in substance use disorders (SUDs), computational biology, and FAIR (Findability, Accessibility, Interoperability, and Reusability) data sharing. The meeting's objective was to discuss and evaluate better strategies to integrate genetic, epigenetic, and 'omics data across human and model organisms to achieve deeper mechanistic insight into SUDs. Specific topics were to (a) evaluate the current state of substance use genetics and genomics research and fundamental gaps, (b) identify opportunities and challenges of integration and sharing across species and data types, (c) identify current tools and resources for integration of genetic, epigenetic, and phenotypic data, (d) discuss steps and impediment related to data integration, and (e) outline future steps to support more effective collaboration-particularly between animal model research communities and human genetics and clinical research teams. This review summarizes key facets of this catalytic discussion with a focus on new opportunities and gaps in resources and knowledge on SUDs.
Collapse
Affiliation(s)
- Rohan H. C. Palmer
- Behavioral Genetics of Addiction Laboratory, Department of PsychologyEmory UniversityAtlantaGeorgiaUSA
| | - Emma C. Johnson
- Department of PsychiatryWashington University School of MedicineSt. LouisMissouriUSA
| | - Hyejung Won
- Department of Genetics and Neuroscience CenterUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Renato Polimanti
- Department of PsychiatryYale University School of MedicineWest HavenConnecticutUSA
| | - Manav Kapoor
- Nash Family Department of Neuroscience and Friedman Brain InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Apurva Chitre
- Department of PsychiatryUniversity of California, San DiegoLa JollaCaliforniaUSA
| | | | - Chelsie E. Benca‐Bachman
- Behavioral Genetics of Addiction Laboratory, Department of PsychologyEmory UniversityAtlantaGeorgiaUSA
| | - Clarissa C. Parker
- Department of Psychology and Program in NeuroscienceMiddlebury CollegeMiddleburyVermontUSA
| | - Anurag Verma
- Biomedical and Translational Informatics LaboratoryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Jason Ernst
- Department of Biological ChemistryUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Michael Bray
- Department of PsychiatryWashington University School of MedicineSt. LouisMissouriUSA
| | - Soo Bin Kwon
- Department of Biological ChemistryUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Dongbing Lai
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Bryan C. Quach
- GenOmics, Bioinformatics, and Translational Research Center, Biostatistics and Epidemiology DivisionRTI InternationalResearch Triangle ParkNorth CarolinaUSA
| | - Nathan C. Gaddis
- GenOmics, Bioinformatics, and Translational Research Center, Biostatistics and Epidemiology DivisionRTI InternationalResearch Triangle ParkNorth CarolinaUSA
| | - Laura Saba
- Department of Pharmaceutical SciencesUniversity of Colorado, Anschutz Medical CampusAuroraColoradoUSA
| | - Hao Chen
- Department of Pharmacology, Addiction Science, and ToxicologyUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | | | - Shan Zhang
- Department of Statistics and ProbabilityMichigan State UniversityEast LansingMichiganUSA
| | - Yuan Zhou
- Department of Department of BiostatisticsUniversity of FloridaGainesvilleFloridaUSA
| | - Spencer Mahaffey
- Department of Pharmaceutical Sciences, School of PharmacyUniversity of Colorado DenverAuroraColoradoUSA
| | - Christian Fischer
- Department of Genetics, Genomics and InformaticsUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Sandra Sanchez‐Roige
- Department of PsychiatryUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Anita Bandrowski
- Department of NeuroscienceUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Qing Lu
- Department of Department of BiostatisticsUniversity of FloridaGainesvilleFloridaUSA
| | - Li Shen
- Nash Family Department of Neuroscience and Friedman Brain InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | | | - Joel Gelernter
- Department of PsychiatryYale University School of MedicineWest HavenConnecticutUSA
| | - Laura J. Bierut
- Department of PsychiatryWashington University School of MedicineSt. LouisMissouriUSA
| | - Dana B. Hancock
- GenOmics, Bioinformatics, and Translational Research Center, Biostatistics and Epidemiology DivisionRTI InternationalResearch Triangle ParkNorth CarolinaUSA
| | - Howard J. Edenberg
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
- Department of Biochemistry and Molecular BiologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Eric O. Johnson
- GenOmics, Bioinformatics, and Translational Research Center, Biostatistics and Epidemiology DivisionRTI InternationalResearch Triangle ParkNorth CarolinaUSA
| | - Eric J. Nestler
- Nash Family Department of Neuroscience and Friedman Brain InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Peter B. Barr
- Department of PsychologyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Pjotr Prins
- Department of Genetics, Genomics and InformaticsUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Desmond J. Smith
- Department of Molecular and Medical PharmacologyDavid Geffen School of Medicine, UCLALos AngelesCaliforniaUSA
| | - Schahram Akbarian
- Friedman Brain Institute and Departments of Psychiatry and NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | | | | | - Erich Baker
- Department of Computer ScienceBaylor UniversityWacoTexasUSA
| | - Daniel Jacobson
- Computational and Predictive Biology, BiosciencesOak Ridge National LaboratoryOak RidgeTennesseeUSA
- Department of PsychologyUniversity of Tennessee KnoxvilleKnoxvilleTennesseeUSA
| | - Abraham A. Palmer
- Department of PsychiatryUniversity of California, San DiegoLa JollaCaliforniaUSA
- Institute for Genomic Medicine, University of California San DiegoLa JollaCaliforniaUSA
| | - Michael Miles
- Department of Pharmacology and ToxicologyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | | | | | - Arpana Agrawal
- Department of PsychiatryWashington University School of MedicineSt. LouisMissouriUSA
| | - Maryann Martone
- Department of NeuroscienceUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Robert W. Williams
- Department of Genetics, Genomics and InformaticsUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| |
Collapse
|
95
|
Xie X, Gu J, Zhuang D, Shen W, Li L, Liu Y, Xu W, Hong Q, Chen W, Zhou W, Liu H. Association between GABA receptor delta subunit gene polymorphisms and heroin addiction. Neurosci Lett 2021; 755:135905. [PMID: 33887383 DOI: 10.1016/j.neulet.2021.135905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 12/18/2022]
Abstract
Evidence suggests that γ-aminobutyric acid (GABA) receptors are involved in the development of drug dependence. Considering its exclusively extrasynaptic localization, GABA receptor delta subunit (GABRD) is likely involved in heroin addiction. The purpose of this study was to explore the association between the single nucleotide polymorphisms (SNPs) of GABRD and heroin addiction. Genotyping of five SNPs (rs13303344, rs4481796, rs2376805, rs2229110, and rs41307846) in GABRD gene was performed by using TaqMan SNP assay. The association between heroin addiction and these SNPs was assessed in 446 heroin dependent patients and 400 normal control subjects of male Han Chinese origin. Only the genotype and allele frequencies at rs13303344 differed significantly between the cases and controls (nominal P values were 0.028 and 0.019, respectively). The C allele of rs13303344 was associated with an increased risk of heroin addiction (OR = 1.281, 95 % CI: 1.042-1.575). After Bonferroni correction, the association lost significance. The frequencies of the haplotype C-C-A and A-C-A at GARBD (rs13303344-rs4481796- rs2376805) differed significantly between the cases and controls. The heroin craving score was significantly higher in patients with CC/AC genotypes at rs13303344 than in those with the AA genotype (nominal P = 0.017). The results suggest that GABRD rs13303344 may contribute to the susceptibility to heroin addiction and is associated with the drug cravings of heroin dependent patients.
Collapse
Affiliation(s)
- Xiaohu Xie
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo Kangning Hospital, School of Medicine, Ningbo University, Ningbo, Zhejiang, China.
| | - Jun Gu
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo Kangning Hospital, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Dingding Zhuang
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo Kangning Hospital, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Wenwen Shen
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo Kangning Hospital, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Longhui Li
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo Kangning Hospital, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Yue Liu
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo Kangning Hospital, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Wenjin Xu
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo Kangning Hospital, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Qingxiao Hong
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo Kangning Hospital, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Weisheng Chen
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo Kangning Hospital, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Wenhua Zhou
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo Kangning Hospital, School of Medicine, Ningbo University, Ningbo, Zhejiang, China.
| | - Huifen Liu
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo Kangning Hospital, School of Medicine, Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
96
|
Forouzan S, Nieto SJ, Kosten TA. Persistence of Operant Responding for Food After Prior Cocaine Exposure in Fischer 344 But Not Lewis Rats. Am J Addict 2021; 30:358-365. [PMID: 33797135 DOI: 10.1111/ajad.13152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/23/2020] [Accepted: 01/05/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Chronic cocaine exposure has differential neural effects in Fischer 344 (F344) vs Lewis inbred rats that may explain strain-dependent differences during acquisition vs maintenance of cocaine self-administration. We assessed whether prior cocaine exposure alters operant responding for food across various phases (acquisition, maintenance, extinction, spontaneous recovery, reinitiation) in these strains. METHODS Lewis and F344 rats (N = 12) were administered three cocaine (15 mg/kg) or saline injections at hourly intervals for 3 consecutive days. Beginning the next day for 24 days, rats had access to operant chambers in which one lever depression resulted in the delivery of a food pellet. Then, four extinction sessions were conducted in which food was no longer available, but other stimulus conditions remained the same. After a 2-day break, spontaneous recovery was assessed over four sessions. Food delivery was then restored for 3 days to test reinitiation followed by a progressive ratio session. RESULTS Lewis rats acquired the operant faster than F344 rats. F344 rats showed lower maintenance rates than Lewis rats but higher spontaneous recovery responding. Cocaine exposure caused persistence of responding during extinction in F344 but not Lewis rats. All groups reinitiated responding when food was available again and did not differ in final ratios completed under the progressive ratio schedule. DISCUSSION AND CONCLUSIONS That prior cocaine exposure led to persistence of responding in F344 rats during extinction may reflect heightened contextual conditioning that interferes with the ability to extinguish responding. SCIENTIFIC SIGNIFICANCE Results have implications for the genetic contribution to relapse-like behaviors. (Am J Addict 2021;00:00-00).
Collapse
Affiliation(s)
- Shadab Forouzan
- Department of Psychology, University of Houston, Houston, Texas
| | - Steven J Nieto
- Department of Psychology, University of Houston, Houston, Texas
| | | |
Collapse
|
97
|
Huang CL, Chen PH, Lane HY, Ho IK, Chung CM. Risk Assessment for Heroin Use and Craving Score Using Polygenic Risk Score. J Pers Med 2021; 11:jpm11040259. [PMID: 33915886 PMCID: PMC8066654 DOI: 10.3390/jpm11040259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/20/2021] [Accepted: 03/21/2021] [Indexed: 01/27/2023] Open
Abstract
Addiction is characterized by drug-craving, compulsive drug-taking, and relapse, and results from the interaction between multiple genetic and environmental factors. Reward pathways play an important role in mediating drug-seeking and drug-taking behaviors, and relapse. The objective of this study was to identify heroin addicts who carry specific genetic variants in their dopaminergic reward systems. A total of 326 heroin-dependent patients undergoing methadone maintenance therapy (MMT) were recruited from the Addiction Center of the China Medical University Hospital. A heroin-use and craving questionnaire was used to evaluate the urge for heroin, the daily or weekly frequency of heroin usage, daily life disturbance, anxiety, and the ability to overcome heroin use. A general linear regression model was used to assess the associations of genetic polymorphisms in one's dopaminergic reward system with heroin-use and craving scores. Results: The most significant results were obtained for rs2240158 in GRIN3B (p = 0.021), rs3983721 in GRIN3A (p = 0.00326), rs2129575 in TPH2 (p = 0.033), rs6583954 in CYP2C19 (p = 0.033), and rs174699 in COMT (p = 0.036). These were all associated with heroin-using and craving scores with and without adjustments for age, sex, and body mass index. We combined five variants, and the ensuing dose-response effect indicated that heroin-craving scores increased with the numbers of risk alleles (p for trend = 0.0008). These findings will likely help us to understand the genetic mechanism of craving, which will help in predicting the risk of relapse in clinical practice and the potential for therapies to target craving in heroin addiction.
Collapse
Affiliation(s)
- Chieh-Liang Huang
- Tsaotun Psychiatric Center, Ministry of Health and Welfare, Nan-Tou County 54249, Taiwan;
- Ph.D. Program for Aging, College of Medicine, China Medical University, Taichung 40402, Taiwan;
| | - Ping-Ho Chen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Hsien-Yuan Lane
- Department of Psychiatry & Brain Disease Research Center, China Medical University Hospital, Taichung 40402, Taiwan;
- Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung 41354, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
| | - Ing-Kang Ho
- Ph.D. Program for Aging, College of Medicine, China Medical University, Taichung 40402, Taiwan;
- Center for Drug Abuse and Addiction, China Medical University Hospital, Taichung 406040, Taiwan
| | - Chia-Min Chung
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Center for Drug Abuse and Addiction, China Medical University Hospital, Taichung 406040, Taiwan
- Correspondence: or ; Tel.: +886-4-2205-3366 (ext. 2028)
| |
Collapse
|
98
|
Sil S, Thangaraj A, Chivero ET, Niu F, Kannan M, Liao K, Silverstein PS, Periyasamy P, Buch S. HIV-1 and drug abuse comorbidity: Lessons learned from the animal models of NeuroHIV. Neurosci Lett 2021; 754:135863. [PMID: 33794296 DOI: 10.1016/j.neulet.2021.135863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
Various research studies that have investigated the association between HIV infection and addiction underpin the role of various drugs of abuse in impairing immunological and non-immunological pathways of the host system, ultimately leading to augmentation of HIV infection and disease progression. These studies have included both in vitro and in vivo animal models wherein investigators have assessed the effects of various drugs on several disease parameters to decipher the impact of drugs on both HIV infection and progression of HIV-associated neurocognitive disorders (HAND). However, given the inherent limitations in the existing animal models of HAND, these investigations only recapitulated specific aspects of the disease but not the complex human syndrome. Despite the inability of HIV to infect rodents over the last 30 years, multiple strategies have been employed to develop several rodent models of HAND. While none of these models can accurately mimic the overall pathophysiology of HAND, they serve the purpose of modeling some unique aspects of HAND. This review provides an overview of various animal models used in the field and a careful evaluation of methodological strengths and limitations inherent in both the model systems and study designs to understand better how the various animal models complement one another.
Collapse
Affiliation(s)
- Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Annadurai Thangaraj
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ernest T Chivero
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Fang Niu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Muthukumar Kannan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ke Liao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Peter S Silverstein
- School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
99
|
Brynildsen JK, Blendy JA. Linking the CHRNA5 SNP to drug abuse liability: From circuitry to cellular mechanisms. Neuropharmacology 2021; 186:108480. [PMID: 33539855 PMCID: PMC7958463 DOI: 10.1016/j.neuropharm.2021.108480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/10/2020] [Accepted: 01/28/2021] [Indexed: 10/22/2022]
Abstract
Genetics are known to be a significant risk factor for drug abuse. In human populations, the single nucleotide polymorphism (SNP) D398N in the gene CHRNA5 has been associated with addiction to nicotine, opioids, cocaine, and alcohol. In this paper, we review findings from studies in humans, rodent models, and cell lines and provide evidence that collectively suggests that the Chrna5 SNP broadly influences the response to drugs of abuse in a manner that is not substance-specific. This finding has important implications for our understanding of the role of the cholinergic system in reward and addiction vulnerability. This article is part of the special issue on 'Vulnerabilities to Substance Abuse.'
Collapse
Affiliation(s)
- Julia K Brynildsen
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Julie A Blendy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
100
|
Rai V, Kumar P. Methylenetetrahydrofolate reductase ( MTHFR) gene C677T (rs1801133) polymorphism and risk of alcohol dependence: a meta-analysis. AIMS Neurosci 2021; 8:212-225. [PMID: 33709025 PMCID: PMC7940109 DOI: 10.3934/neuroscience.2021011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 11/22/2020] [Indexed: 12/27/2022] Open
Abstract
Alcohol dependence is a complex neuropsychiatric disorder. Numerous studies investigated association between MTHFR gene C677T (rs1801133) polymorphism and alcohol dependence (AD), but the results of this association remain conflicting. Accordingly, authors conducted a meta-analysis to further investigate such an association. PubMed, Elsevier Science Direct and Springer Link databases were searched for studies on the association between the MTHFRC677T polymorphism and AD. Pooled odds ratio (OR) with 95% confidence interval (CI) was calculated using the fixed- or random-effects model. Statistical analysis was performed with the software program MetaAnayst and MIX.A total of 11 articles were identified through a search of electronic databases, up to February 28, 2020. The results of the present meta-analysis did not show any association between MTHFR C677T polymorphisms and AD risk (for T vs. C: OR = 1.04, 95% CI = 0.88-1.24; CT vs. CC: OR = 1.02, 95% CI = 0.62-1.68; for TT+CT vs. CC: OR = 1.10, 95% CI = 0.94-1.29; for TT vs. CC: OR = 1.01, 95% CI = 0.66-1.51; for TT vs. CT+CC: OR = 0.97, 95% CI = 0.66-1.40). Results of subgroup analysis showed no significant association between MTHFR C677T polymorphism with AD in Asian as well as in Caucasian population. In conclusion, C677T polymorphism is not a risk factor for alcohol dependence.
Collapse
Affiliation(s)
- Vandana Rai
- Human Molecular Genetics Laboratory, Department of Biotechnology, VBS Purvanchal University, Jaunpur-222 003, UP, India
| | - Pradeep Kumar
- Human Molecular Genetics Laboratory, Department of Biotechnology, VBS Purvanchal University, Jaunpur-222 003, UP, India
| |
Collapse
|